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ABSTRACT 

 

In an urban context that needs to be constantly adapted to global crises, population 

movements, climate change and economic crises, designers and engineers strive to 

configure solutions that respond to multiple criteria. Within this framework, the concept of 

generative design is gaining more and more ground in the construction field, allowing rapid 

design space exploration, optimization and decision making for complex design problems.  

This thesis implements an experiment in a common design problem such as optimizing the 

topology of shell structures for structural performance, using an Artificial Intelligence 

Framework. To implement this experiment a novel dataset consisting of various mesh 

tessellations is created. The next step is to design a generative workflow that combines 

unsupervised and supervised learning along with a Gradient Descent Algorithm for pattern 

generation, structural performance estimation and optimization. A Variational Autoencoder is 

trained to generate new mesh tessellations and a Surrogate Model is used to predict the 

structural performance of the decoded designs. Finally, a Gradient Descent Algorithm 

searches the latent space of the Variational Autoencoder for optimum solutions.  

The results show that the proposed Artificial Intelligence workflow is able to generate novel 

and structurally better performing solutions that those existing in the training dataset. The 

findings of this thesis indicate that Artificial Intelligence can be successfully integrated into 

the concept of Generative Design to optimize shell structures.  

 

 

 

Keywords: Generative Design, Structural Optimization, Mesh Shells, Tessellations, Artificial 

Learning, Machine Learning, Deep Learning, Unsupervised Learning, Supervised Learning, 

Gradient Descent, Finite Element Method 
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1.1 Background 

The built environment  industry is responsible for massive amounts of energy usage and 

employ millions. Sustainable design and construction is a necessity. Early stage decisions 

affect significantly the final outcome with respect to cost, structural performance, assembly 

time, etc. Generative tools that allow a deeper exploration of the design space are desirable. 

Topology exploration and optimization is a critical field, which includes early-stage decisions, 

affecting significantly the performance of the final structure as well as its aesthetics. Using 

the power of computation, we can define goals and set constraints to generate designs that 

meet both our qualitative and quantitative criteria. That can be a time consuming and 

computationally heavy process. Therefore, technologies that allow a deep investigation of 

the design space can be powerful and decisive tools. 

Artificial Intelligence (AI) is altering the way of learning and problem-solving in most scientific 

fields. As the world faces urgent and complex challenges, AI comes to the forefront of 

research to improve the decision-making process.  

 

1.1.1. Generative Design 

The concept of Generative Design allows for a more integrated workflow between 

designer/engineer and computer and a deeper exploration of the design space beyond the 

traditional design techniques. Inspired by nature’s evolutionary approach it as the iterative 

process that assesses the design’s variants to fit specific design criteria and finds the 

optimum solution. (McKnight, 2017)   

Creating a Generative Workflow involves the following steps: 

Step 1 In this step design’s variants and the performance indicators are specified. 

Step 2 A algorithmic generative model produces a large amount of design options 

based on the step 1. 

Step 3 An interactive environment is created where the de sign/ engineer can update 

the design’s variants. 

Step 4 Upon receiving the results the parameters and goals are adjusted and the 

generative design system will then iterate until the most relevant solution is 

found. 

Step 5  The final design is received as an outcome. 

 

 

 

 

 

 

 

 



9 
 

Figure 1.1. Robert and Arlene Kogod Courtyard 
(Young) 

Figure 1.2. Robert and Arlene Kogod 
Courtyard (Gehry Partners, 2014) 

1.1.2. Importance of topology exploration in Shell Structures 

Shell structures have evolved over time from stone masonry domes to brick and concrete 

structures as well as timber and metal networks. They usually consist of beam networks that 

integrate cladding systems. Thanks to their curvature they are stiff structures that can 

enclose large spaces. Modern applications of shell structures include light weight skins with 

visible beam networks.  

 

Examples of shell structures 

 

 

 

 

 

 

 

 

 

The design process of these structures begins with the investigation of mesh tessellation 

options and then structural verifications using finite element method (FEM). Their topologies 

define architectural aesthetics, structural performance as well as cost, assembly complexity 

and time. The pattern exploration of their topologies is a time-consuming process yet 

matters. Therefore, tools that ease and improve this process can be immensely helpful. 

Computational tools can be integrated in the design process for topology finding patterns but 

heuristics is often needed (Oval et al., 2019). 
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1.2 Problem Statement and Design Assignment 

The topology of shell structures is critical and affects cost, assembly time, structural 

performance, and aesthetics. Designers and engineers need conceptual and practical tools 

to explore it. There are many variants that describe a design and exploring the design space 

for optimum solutions is  a time-consuming process. Generative Models that integrate 

Artificial Intelligence can minimize the number of variants in a smaller sized space and could 

potentially be integrated in an optimization workflow. 

 

 

 

1.3 Research Questions 

Main Question  

According to the problem statement, mentioned above, the main research question is if an AI 

based framework can generate new structurally effective solutions, in relation to the dataset 

that was used for training. This would prove that AI can be a powerful creative assistant for 

designers and engineers, and could potentially help expand the possibilities of generative 

design. 

Sub-question 

• Can a Variational Autoencoder be trained to generate mesh tessellations? 

 

• What form of data can be used to train a Variational Autoencoder to generate mesh 

tessellations? 

 

• Can a surrogate model learn to predict the structural performance of encoded data  

occurring from samples describing truss shell structures?   

 

• Can a surrogate model learn to predict the structural performance of decoded data  

occurring  from samples describing truss shell structures?   

 

• Can a Gradient Descent Optimizer propagate back to encoded data to search for 

optimum solutions?  
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1.4 Objectives and Boundary Conditions 

The purpose of this thesis is to prove that AI can be a powerful assisting tool for designers 

and engineers. A helpful AI workflow would request for certain boundary conditions as an 

input (such as shape, structural performance, etc) and produce effective solutions. 

 

 

Due to time limitation this thesis is restricted in terms of input criteria. The criterion for the 

suggested workflow is structural performance for mesh shell patterns with specific 

boundaries.  

 

 

This workflow includes a generative model able to produce mesh tessellations with a specific 

boundary and a surrogate model able to predict a design’s structural performance. The 

architecture of the generative model is that of the Variational Autoencoder,  an Artificial 

Neural Network architecture introduced by Diederik P. Kingma and Max Welling (Kingma & 

Welling, 2014). 

 A Gradient Descent Optimizer is integrated in the workflow to search the design space for 

effective solutions.  

 

 

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Max_Welling
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A training dataset is needed that according to bibliography should exceed 1000 samples. 

The samples need pre-processing to be used in training machine learning models. 

Appropriate options for the form of the training dataset will be explored.  

Computational power is crucial in training machine learning models. For this reason, TU 

Delft’s supercomputer “Delftblue” is used. 

 

1.4 Methodology 

Literature Review: The first step is to investigate existed research examples. The methods 

for pattern generation in shells structures must be defined. Then existed research for 

generative design and optimization using AI models will be reviewed. During this process, 

the computational tools that will be used have to be specified. To familiarize with these tools 

and models, an experimentation with existed tutorials is needed. 

Design the Training and Optimization Framework: Based on the literature review a 

framework will be proposed that might be altered slightly during the training process 

The proposed steps are: 

• Create the dataset and measure its structural performance (performance indicators 

will be displacement, utilization and the structure’s mass), using Finite Element 

Method software (FEM). 

 

• Train a Variational Autoencoder with the produced data. 

 

• Decoded Data is used to train a surrogate model that is  able to predict a design’s  

structural performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Use a Gradient Based Optimizer that propagates back to the encoded data to search 

for best solutions. 
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• Produced results are assessed to see if more effective solutions are generated. 
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2. LITERATURE REVIEW  
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2.1 Artificial Intelligence,  Machine Learning and Deep Learning 

In the 21st century, the amount of digital information created is astonishing.  Since 2020  we 

produced 90% of the world's data(Bradshaw, n.d.). Massive amounts of information need to 

be processed daily, making our lives increasingly dependent on learning algorithms.  

Machine learning (ML) is a part of computer science and allows machines to learn from data 

without being explicitly programmed. It is often used as a synonym of Artificial Intelligence 

although it is actually its subfield. AI the general term used to classify systems that mimic 

human intelligence whereas ML is more about extracting knowledge from the data. It can be  

used to predict, automate, perfect tasks and generate new systems.  

Deep learning is a subset of machine learning and it is based on artificial neural networks 

able mimic the learning process of the human brain. 

(Manager, 2020)  

 

 

 
Figure 2.1 We can understand AI, Machine Learning and Neural Networks and Deep Learning like Russian nesting dolls 
(Manager, 2020) 

 

2.1.1 Neural Networks 

Neural networks (NNs) are the heart of deep learning algorithms. Their name and structure 

are inspired  by the biological neural networks that brains have. They consist of or artificial 

neurons or node layers. They have an input layer, one or more hidden ones and an output 

layer. (What Are Neural Networks?, 2020) 

The following image describes how an artificial neuron is constructed. Each one has an 

input and an output. The input consists of values for which the NN needs to predict the 

output value. The input data are assigned weights which describe their importance. The 

purpose of the summation function is to bind the inputs and their respective weights 

together and find their Sum. Bias is used to shift the Sum towards left or right. An activation 

function  transforms the output  of the node and decides whether the neuron can be 

activated. (Sharma, n.d.),(Ganesh, 2020) 

https://www.ibm.com/cloud/learn/deep-learning
https://en.wikipedia.org/wiki/Biological_neural_network
https://en.wikipedia.org/wiki/Brain
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Figure 2.2  Inside an artificial neuron 

 

Activation Functions 

In artificial neuron the activation function decides whether the neuron can be activated or not 

and defines its output. The ReLU and Sigmoid are two non -Linear activation functions that 

are used in this thesis. The function of ReLU will output the input directly if it is positive, and 

zero if it is negative. It is probably the most popular activation function due to its 

computational efficiency and fast convergence. A problem with ReLU is that the outputs go 

far away from zero. That problem can be treated with Sigmoid, a function known to be very 

good for classification problems and whose output always ranges between 0 and 1. Sigmoid 

however is computationally heavy and slow converged. (Vinodhkumar, 2020a) 

 

 

Figure 2.3   From left to the right: ReLu and Sigmoid activation functions. 

 

Learning 

When the training dataset is too big, we cannot process it all at once. The dataset is 

therefore divided into a number of batches or sets, that pass forward through the NN’s 

nodes. This process is also called propagation. The NN calculates the error between the 

expected output and the NN’s output, called loss function. The backpropagation algorithm  

computes the gradient of the loss function with respect to the weights and an optimizer 

adjusts them. The process of propagation and backpropagation through which the weights of 

the nodes are adjusted to fit the input to the expected output is called learning. When a 

whole dataset has entered the neural network we say that an epoch is completed. The goal 

https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Loss_function
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#weight
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of the NN is to decrease this loss function, as much as possible to reach its convergence. 

(Vinodhkumar, 2020b) (Daoud, 2020) (Stojiljković, n.d.), (Sharma, 2017) 

 

 

 

Figure 2.4   Learning process. 

 

Deep Learning Algorithms 

The depth, of neural networks is what defines if it is a simple or a deep learning NN. If the 

number of node layers is more than 3 then we talk about a deep learning algorithm. 

(Manager, 2020).(Sharma, n.d.) (What Are Neural Networks?, 2020). 

 

 

Figure 2.5 A Simple NN versus a Deep Learning NN. 
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2.1.2 Types of Neural Networks 

Feed Forward Neural Network 

A Feed Forward NN is the first and the simplest type of an NN in which the connections of 

the nodes move to a single direction and don’t form a circle or loops.(Feed Forward Neural 

Network, 2019) 

 

Recurrent Neural Networks 

The opposite of a Feed Forward NN is the Recurrent NN which has loops. The advantage of 

this type of NNs is that it remembers previous inputs, therefore they can be used when 

training data occur from a series of observations over time (time-series data). (What Are 

Neural Networks?, 2020) 

 

Fully Connected Neural Network: 

A Fully Connected NN (FCNN) consists of a series of fully connected layers or dense layers. 

These layers connect every neuron in one layer to every neuron in the next one. The 

advantage of fully connected networks is that they are “structure agnostic.”, meaning that no 

special assumptions need to be made about the input (for example, that the input consists of 

images or videos).  This allows them to be used broadly, for more general purposes. 

However they tend to have weaker performance than special-purpose networks.(Ramsundar 

& Zadeh, 2022)  

 

Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are mainly used for image recognition, pattern 

recognition and computer vision. These networks apply principles from linear algebra, to 

identify patterns within an image.  (What Are Neural Networks?, 2020) 

 

 

2.1.3 Supervised and Unsupervised learning  

 

When it comes to machine learning there are two types:  

• Supervised learning, used for prediction tasks 

• Unsupervised learning, used for generation  

 

a. Supervised Learning  

In supervised learning the training is being operating with a prior knowledge of the outcome 

target. Supervised learning can be done for classification or prediction problems. 

Classification NNs are used to fit training data to discrete values like a true or false value, or 

gender, etc while regression NNs try to fit them to continues values like price, time, etc. 

(Soni, 2022)  

 

 

 

 

 

 

https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://www.ibm.com/cloud/learn/recurrent-neural-networks
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Surrogate Models 

Performance is critical aspect of design. Computer simulations can calculate a system’s final 

behaviour. Engineers rely on those simulations to perform sensitivity analysis for multiple 

parameters, optimization and risk analysis. Simulations can be heavy computationally. 

Heavy simulations can be replaced by a statistical model, called a surrogate model. It is a 

case of supervised learning, meaning that we are using labelled data. Through this model 

we can predict the final output. (Guo, 2020) (Guo, 2020) 

b. Unsupervised Learning 

In contrast to supervised learning where data are labelled, unsupervised learning exhibits a 

self-organization that aims to understand the pattern of the given samples and build a 

compact internal representation of the data 

Variational Autoencoders 

An autoencoder is a case of unsupervised learning, used for dimension reduction. Its neural 

network consists of two pairs of neural networks: an encoder and a decoder. The encoder 

has input of nodes and consists of hidden layers that are able to reduce the number of 

nodes describing the input data.  

 

Encoded data are directed to a hidden layer called bottleneck or latent space. This layer 

has a lower dimensionality than the original input. The decoder performs the inverse 

process. It takes a vector point from the compressed representation in the latent space and 

reconstructs a corresponding output.  

.  

This architecture allows keeping key information of a large database and storing it using less 

memory.   

 
Figure 2.6 An autoencoder.  

 

Autoencoders can be converted to deep learning generative models called Variational 

Autoencoders (VAEs). These models sample data from the latent space and reconstruct 

them through the decoder producing realistic systems such as images, texts, sounds, etc. 

But they use a slightly different encoding-decoding process: instead of encoding an input as 

a single point, it is encoded as a distribution over the latent space.  

 

A problem that comes with the dimensionality reduction is that the trained latent space may 

not be regular, having gaps between clusters. The lack of regularity means an autoencoders 

cannot generate new content. If the sample point is for instance from a gap the output can 

https://en.wikipedia.org/wiki/Supervised_learning
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be unrealistic. The VAE is an autoencoder that ensures that the encoding distribution is 

regularized during the training process, allowing us to generate new data.  

 

The loss function used when training a VAE has two terms: a “reconstruction term” (on the 

final layer), that tends to make the encoding-decoding scheme as performant as possible, 

and a “regularization term” (on the latent layer), that tends to regularize the organisation of 

the latent space. This regularization term is called the Kullback-Leibler divergence (kl 

divergence).  

(Rocca, 2019). 

 

 
Figure 2.7 From left to the right: Only reconstruction loss, Only KL divergence  and both (Shafkat, 2018) 

 

2.1.4 The Learning Curves 

 

The learning curve can help us access how well is the model learning over the time of 

training. The state of the model’s performance is evaluated through how well it has learned 

to minimize the loss function. The Train Learning Curve represents the learning curve how 

well it has learned to predict the dataset’s output. We can also exclude a part of the dataset 

that will give as the Validation Learning Curve, that will demonstrate how well has the 

model learned to generalize. 

There are three states that can describe a model’s training : 

• Overfit. 

• Underfit. 

• Good Fit 

 

 
Figure 2.8  Learning Curves. 
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https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
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Overfit happens the model has learned to predict the outcome of the dataset (the model fits 

exactly to its training data) but is not able to generalize to new data. The loss function in this 

case drops for the training data and increases for the validation dataset. 

 

Underfit occurs when the model fails to learn. In this case both the train and the validation 

learning curve don’t drop enough 

 

When no overfitting nor underfitting occur and the model fits well to the dataset and the 

validation dataset then we have accomplished a Good Fit. 

(Brownlee, 2019) 

 

 

2.1.5 Gradient Descent Optimizers 

The Gradient Descent is an iterative algorithm, used for optimization to find the best result of 

a function (minima of a curve).  

 

There are different instances of Gradient Descent Based Optimizers: 

 

• Batch Gradient Descent or Vanilla Gradient Descent or Gradient Descent (BGD) 

• Stochastic Gradient Descent (SGD) 

• Mini batch Gradient Descent (MB-GD) 

 

Batch Gradient Descent 

 

The BGD is the most basic and used optimizer. It starts from an arbitrarily chosen position of 

the point or vector Θ= (Θ₁ ,  …, Θn) and moves it iteratively in the direction of the fastest 

decrease of the loss function.  

 

Α GD is described by the following formula:  

Θj = Θj - a
𝜕

𝜕𝛩𝑗
 J (Θ0, Θn,) 

 

α : Learning rate that determines how large the update or moving step is. 

J : Loss function  

Θ: Parameter to be updated 

 

The BGD is easy to implement but requires a lot of memory as the entire dataset is loaded at 

a time to compute the derivative of the loss function. 

 

Stochastic Gradient Descent 

To overcome the problem of high memory usage that the BGD needs, the SGD comes with 

a modification. BGD considers the entire dataset to compute the gradient. SGD however 

picks a “random” instance of training data at each step and then computes the gradient. 

Therefore, the model’s parameters are updated after the loss computation on each training 

set. Consequently, the steps taken towards the minima can be very noisy.  
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Mini batch Gradient Descent (MB-GD) 
The MB-GD is an extension of the SGD algorithm and is considered the best among all the 

variations of gradient descent algorithms. This algorithm divides the dataset into various 

batches and after every batch, it updates the parameters. MB-SGD remains noisier 

compared to GD and takes a longer time to converge but requires less memory.  

(GOYAL, n.d.),(Stojiljković, n.d.), (Sharma, 2017) 
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2.2 Meshes 

 
2.2.1 Mesh Data Structures 

A Mesh network is a topology that describes the connections between nodes or vertices to 

edges and faces. A mesh is also a  manifold if every edge is adjacent to one boundary or 

two faces. There are two common data structures  that describe meshes: 

• Face-Vertex Lists 

• Half-Edge Data Structure 

 Face – Vertex Lists 

This is the simplest representation of a mesh. It consists of an ordered list of vertices with 

their coordinates and a list of faces with each face being a list of the indices of the vertices 

that it occurs from. (Löffler & Vaxman, 2016),(L. Chen, 2014) 

 

                Figure 2.9 A simple mesh. 

Vertex Coordinate 

v1 (x1,y1,z1) 

v2 (x2,y2,z2) 

v3 (x3,y3,z3) 

V4 (x4,y4,z4) 
                 Table 2.1 List of Vertices 

Vertex Coordinate 

F1 v1, v2, v3 

F2 v1, v3, v4 
                    Table 2.2  List of faces 

 

Half-Edge Data Structure 

This is a data structure that encodes more information about the structure of a mesh. First 

we must explain the meaning of half-edge.  A half-edge describes the connection of two 

vertices in a single direction meaning that an edge consists of two edges. Each half-edge 

references to one starting point assuming a counter-clockwise order.  

Half-Edge Data Structure consists of: 
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• A list of vertices that includes its coordinates and one outgoing half-edge. 

• A list of half edges that stores the origin vertex, the twin half-edge, the next half-edge 

and the previous. 

(Löffler & Vaxman, 2016) 

Figure 2.10 Half-Edge Data Structure. 

 

Vertex Coordinate Outgoing Edge 

v1 (x1,y1,z1) e 1,2 

v2 (x2,y2,z2) e 1,1 

v3 (x3,y3,z3) e 3,2 

V4 (x4,y4,z4) e 4,2 
                                                        Table 2.3 List of Vertices 

 

Half-edge Origin Twin Next Previous 

e 1,1 v2 e 1,2 e 2,1 e 3,2 

e 1,2 v1 e 1,1 e 3,1 e 2,2 

e 2,1 v1 e 2,2 e 4,1 e 1,1 

e 2,2 v3 e 2,1 e 1,2 e 3,1 

e 3,1 v2 e 3,2 e 2,2 e 1,2 

e 3,2 v3 e 3,1 e 1,1 e 4,2 

e 4,1 v3 e 4,2 e 4,2 e 2,1 

e 4,2 V4 e 4,1 e 3,2 e 1,1 

e 5,1 v1 e 5,2 e 1,2 e 4,1 

e 5,2 V4 e 5,1 e 4,2 e 1,1 
`                                                       Table 2.4  List of half-edges 

(Faces can also be stored in the Half-Edge Data Structure but are optional) 
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2.2.2 Graph Data Structures: Adjacency Matrices  

The connections of non-linear data can be described through Graphs.  Graphs consist of a 

set of nodes or vertices and a set of edges that connect them. 

 

                Figure 2.11 Graph Data structure. 

 

Vertices=  [v1, v2, v3, v4, v5] 

Edges= [[v1, v2,], [v2, v3,], [v3, v1,],  [v1, v4,],  [v3, v4,]] 

These networks can be described in the form of adjacency matrices. These matrices have 

rows and arrays that respond to the vertices. An undirected connection (an connection with 

no direction) between v1 and v2  means that the cells (v1,v2) and (v2,v1) are assigned a 

value of 1. No connection as that between v2 and v4 means that the cells (v2,v4) and (v4,v2) 

have 0 value.(Millan & Ochoa, 2020),(Sauras-Altuzarra, 2022) 

 

 V1 V2 V3 V4 

V1 0 1 1 1 

V2 1 0 1 0 

V3 1 1 0 1 

V4 1 0 1 0 

Table 2.5  Adjacency Matrix 
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Figure 2.11  A coarse control mesh and 
the application of the quad subdivision 
(Oval et al., 2019) 

2.3 Mesh Tessellations  

The tessellation process includes two essential steps: 

Coarse control mesh: 

The designer starts by defining a coarse  

control mesh 

  

Method of subdivision: 

The designer can then apply multiple algorithms  

for subdividing the faces of the coarse control mesh 

 

 

2.3.1 Methods of subdivision 

Loop subdivisions  

There are various mesh-subdivision loop schemes. Catmull-Clark subdivision produces 

quadrilaterals faces. The Doo-Sabin subdivision creates four faces and four edges (valence 

4) around every new vertex in the refined mesh. The Butterfly/Loop subdivision introduces a 

smooth subdivision scheme for triangle meshes (Bennett et al., 2003). 

 

Convey operators 

Convey operators can be used to transform the subdivision pattern of the surface by keeping 

the same symmetry. Operators like Dual, Ambo, Kis and Truncate replace the vertices, 

edges and faces of an original mesh with a combination of new vertices, edges and faces. 

They can also be combined to form more complex ones(Shepherd & Pearson, 2013). 

In the images below the blue pattern is the original subdivision and the white one the new 

after the application of the convey operator.  

 

 

 

Figure 2.12. From left to the right: coarse control mesh, Catmull-Clark subdivision , Doo-Sabin subdivision,  
Butterfly/Loop subdivision 

Figure 2.13  For left to right: Dual, Ambo, Kis, dual operation, followed by a Kis, followed by another Dual (Shepherd & Pearson, 2013).\ 
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Meshes with a Quad-Based Topology 

This thesis is focused on meshes with Quad-Based Topology. We can distinct three main 

categories for these meshes  

Quad meshes: They consist of quad faces, meaning that every face list four vertexes 

Coarse quad meshes: A mesh strip can be parental for another quad mesh, creating a 

varied densification of the structure 

Pseudo-quad meshes: Most of the faces are quads with some being pseudo-quad meaning 

that are geometrically like triangles but topologically like quads. (Oval et al., 2019) 

 

 

Figure 2.14. From left to the right: Quad meshes, Coarse quad meshes, Pseudo-quad meshes 

 

2.3.2 Singularity 

Singularities in meshes are vertices that have irregular valency vertices. We can specify the 

mesh singularities on quadrilateral meshes by defining  a coarse control mesh(Fogg et al., 

2018). From each singularity with valence n we can trace out n curves, consisting of sets of 

edges that end at other singularities or the boundary of the mesh. We refer to these curves 

as the separatrices(Xu et al., 2020).  

 

Figure 2.15. Different coarse meshes that result into meshes with different separatrices and singularities 

According to the behaviour of these separatrices and the number of singularities we can 

classify the quad  meshes  in four categories:  

1. Unstructured quad-mesh, where a large part of its vertices are singularities 

https://resources.turbosquid.com/training/modeling/quad-based-topology/
https://resources.turbosquid.com/training/modeling/quad-based-topology/
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2. Valence semi-regular quad-mesh. Here the number of singularities is few, but the 

separatrices have a complicated behaviour. 

3. Semi-regular quad-mesh: The separatrices divide the quad-mesh into several topological 

rectangles, the interior of each topological rectangle is regular grids. 

4. Regular quad-mesh: There are no singularities. 

(W. Chen et al., 2018) 
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2.4 Examples 

2.4.1  Feature-based topology finding of patterns for shell structures 

R. Ovala,b,*
,
 M. Rippmannb, R. Mesnila, T. Van Meleb, O. Baverela, P. Blockb 

 

In his research R. Oval proposes a computational method based on singularity meshes to 

design quad-based mesh tessellations. The workflow’s input can be curves or points and the 

mesh’s curve boundary. This input results to a medial axis and a coarse control mesh. A 

quad subdivision follows. The author provides a python library integrated in the COMPAS 

python library for geometry processing.  

 

Steps: 

1. Input: Curves or Points 

2. Medial Axis 

3. Coarse Mesh  

4. Quad-based subdivision: Application of a quad-based subdivision algorithm  

 

The different inputs result in various patterns 

 

 

 

  

 

Pole points are points with a high valency. These points attract forces and are harder to 

materialise. They can be controlled during the skeleton-based generation or by adding and 

deleting strips at the coarse mesh.  
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Studying the case of the roof of the British Museum,  the author assesses the structural 

performance of the shells by exploring mesh singularity scenarios for quad-based meshes. 

The different singularities or their absence seem to affect the structural performance of the 

shell roof.  
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2.4.2  How to teach neural networks to mesh: Application on 2-D simplicial contours 

Alexis Papagiannopoulos a, ∗, Pascal Clausen b, François Avellan a 

 

Mesh generation need to be robust, adaptive to geometry complexities and satisfy the shape 

requirements (Owen, 1998). The analysis procedure to generate compatible meshes that 

respect geometric features can take up to 80% of the whole meshing procedure on account 

of automation absence (Hughes et al., 2005).   Therefore there is a high need for efficient 

computational that require as less explicit treatment as possible. (Papagiannopoulos et al., 

2021). Machine learning algorithms rely on data observation and pattern recognition and can 

solve complex problems. 

In his research Papagiannopoulos proposes a framework based on machine learning for 

generation of 2D meshes. This framework is divided in 4 steps:  

 

 

Step 1: Preparation 

The contour is scaled and rotated with respect to a regular polygon. The target edge length 

is also scaled 

 

Step 2: NN1 

Input: Coordinates of Contour Vertex & target edge length 

Output: Number of vertices that should be inserted inside the cavity of the contour 

 

Step 3: NN2 

Input: Coordinates of Contour Vertex, target edge length, a square grid over the Contour 

Output: Coordinates of the inner vertices 

 

Step 3: NN3 

Input: Coordinates of Contour Vertex, Coordinates of the inner Vertex 

Output: Connection table 
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The research of Papagianopoulos states the importance of mesh modification before the 

training process.  Point coordinates are part of the training dataset. Unprocessed point 

coordinates, however, do not result in a robust and accurate pattern recognition from the 

NNs. This is because machine learning methods are usually used for grid-underlying 

structures, like images. Therefore, Papagianopoulos pre-processes the input data. That 

includes a step that applies a feature transformation, with scaling and rotating the mesh, to 

best fit a reference contour circumscribed in a unitary circle. (Papagiannopoulos et al., 2021) 

The required scaling and rotation are achieved by applying the Procrustes superimposition1 

on a reference contour. For a contour with NC edges and P∗C contour coordinates, a regular 

polygon is used with NC edges inscribed in a unit circle as a reference. (Papagiannopoulos 

et al., 2021) 

 

Conclusions: The proposed meshing framework is approximately four times slower than the 

reference mesher. However, this framework is coded in Python while the reference mesher 

is written in C++. Taking into account that the speed factor between Python and C++ is that 

of 5 to 20 and that the current implementation of the algorithm is not optimized for 

performance Papagianopoulos concluded that the proposed framework attains reasonably 

good performance.  

 

  

 
1 Procrustes superimposition consists of three steps: translation, scaling, and rotation. As an example, 

take five configurations of four landmarks each. The contour mesh is translated so that it has the 

same centroid as the reference polygon. The centered configuration then is scaled to the same 

centroid size  and iteratively rotated until the summed squared distances between the landmarks and 

their corresponding sample average position is a minimum. (Mitteroecker et al., 2013) 
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2.4.3  Robust Topology Optimization Using Variational Autoencoders 

Rini Jasmine Gladstone1, Mohammad Amin Nabian1,2, Vahid Keshavarzzadeh3, and 

Hadi Meidani∗1 

 

In order to improve the computational time for a compliance minimization problem, 

Gladstone (Gladstone et al., 2021) used a Variational Autoencoder (VAE) to transform the  

high dimensional design space into a low dimensional one, thus making the design space 

exploration more efficient. In her research finite element solvers were replaced by a neural 

network surrogate that predicts the probabilistic objective function.  

 

Step1: 

Parameterization of the high dimensional geometry of the design candidates using a low 

dimensional representation obtained by VAEs.  

 

Step2: 

Replacement of the finite element solver with feed forward fully connected compliance 

neural network surrogate to accelerate the cost (robust compliance) evaluation. The input 

layer has number of nodes equal to the dimension of the training image. Output layer is a 

single node which gives predicted robust compliance, QNN(θ). 

 

Step3: 

A gradient descent algorithm is used to find the optimal design on the low dimensional 

representation, minimizing the robust compliance.  

 

Conclusions: In this paper VAEs are used successfully to turn the high dimensional 

optimization problem into a low dimensional one. During the production of the training 

dataset a topology optimization algorithm based on finite element method was used. The 

proposed framework produced robust optimal designs better than the finite element method.  
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2.4.4 Deep Generative Design: Integration of Topology Optimization and Generative    

Models 

            Sangeun Oh1,†, Yongsu Jung2,†, Seongsin Kim1, Ikjin Lee2,*, Namwoo Kang1,* 

 

In his study Oh (Oh et al., 2019) presented an artificial intelligent (AI)-based deep generative 

design framework that is capable of generating numerous design options which are not only 

aesthetic but also optimized for engineering performance. 

 

The workflow consisted of the following steps:  

Stage 1: The earlier designs in the market and the industry are collected as reference 

designs  

Stage 2. The designs are topologically optimized. The optimization process is multi-objective 

and the performance indicators are (1) compliance minimization and (2) difference (i.e., 

pixel-wise L1 distance) minimization from the reference design. 

Stage 3: Similar designs gathered from topology optimization are filtered out by a similarity 

criterion (also stage 6) 

Stage 4: The ratio of the number of new designs in the current iteration to the number of total 

designs in the previous iteration is calculated. If it is smaller than the user-specified 

threshold, then exit the iterative design exploration and jump to Stage 8. Otherwise. proceed 

to Stage 5. 

Stage 5: New designs are created by generative models after learning aggregated designs 

in the current iteration, and they are used as reference designs in Stage 2 after filtering out 

similar designs in Stage 6. 

Stage 7: Involves the building of a loss function (i.e., reconstruction error function) employing 

autoencoder trained by previous designs of Stage 1. This step checks for design novelty. 

Stage 8: Design options obtained from iterative design exploration have to be evaluated on 

the basis of various design attributes that are essential to the designers.  

Conclusions: Many designs starting from a small number of designs was generated. The 

proposed framework offered diverse designs in comparison with the conventional generative 

design. Moreover, the robustness on quality of designs is improved. 
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3. DATASET GENERATION 
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Figure 3.2. Rectangular mesh and the 
indexes of its vertices. 

Figure 3.1. A mesh and its cells. 

3.1 Constructing a Mesh 

A mesh is a representation of a larger geometric domain by smaller discrete cells. 

 

 

 A Mesh is constructed after specifying the two following lists: 

• A lists with the vertex coordinates  

• A list  containing the connection of the vertices to form faces.  

 

 

 

Vertices 

0. [0, 0, 0] 

1. [1.875, 0, 0] 

2. [3.75, 0, 0] 

3. [5.625, 0, 0] 

… 

78. [11.25, 15, 0] 

79. [13.125, 15, 0] 

80. [15, 15, 0] 

Faces 

0. [0,1,10,9] 

1. [1,2,11,10] 

2. [2,3,12,11] 

3. [3,4,13,12] 

… 

61. [68,69,78,77] 

62. [69,70,79,78] 

63. [70,71,80,79] 

https://en.wikipedia.org/wiki/Polygon_mesh
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Figure 3.9 A vertex with its neighboors. 

3.2 Creating subdivision patterns 

In his research R. Oval describes the strip method for changing a mesh’s subdivision 

pattern. The ‘adding strip’ method is described in the images below, where strips are 

inserted along edges 

 

 

Figure 3.3 Inserting a stripe.                                 Figure 3.4 & 3.5  Changing the subdivision pattern with the strip method.                 
                      

To create the dataset for this thesis another method will be followed that can result in the 

same patterns by merging points: 

• First a set of points is chosen. 

• Then they are either merged to their centre point or if one of them is an extreme point 

they are merged at this one.  

 

Figure 3.6 Joining two points in their centre.     Figure 3.7 & 3.8 Creating the new subdivision pattern  through joining points. 

 

3.3 Method explanation 

Every vertex v of the mesh has a set of neighbouring vertices that are connected to v by 

an edge. We can chose a neighbour for each vertex by selecting the index from the list of its 

neighbours. Various mesh tessellations can occur when merging random vertices with  

random neighbours. 

 

 

 

 

 

  

 

 

https://en.wikipedia.org/wiki/Edge_(graph_theory)
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Figure 3.10 Creating the vertices_to_merge list. 

Figure 3.11 Selecting symmetrical vertices. 

The dataset is created using python and the COMPAS framework. The python code can be 

found at the Appendix. 

The topology exploration is described in the following steps: 

 

 Step 1 

First an initial mesh is specified. Then, random vertices are selected. Another set of vertices 

is chosen from the lists of their neighbours, by choosing  random indexes as seen at the 

image in the middle. These random vertices and their selected neighbours form sub-lists  are 

all placed at a list with the vertices_to_merge, as seen at the image on the right.  

 

 

 

 

 

 

 

 

 

 

Step 2 

In this step the symmetrical vertices of the vertices_to_merge are added in a new list. If a 

vertex exists in more than one sub-list then these sub-lists are merged.  
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Figure 3.12 Creating the merged_vertices list. 

Figure 3.13  The starting Mesh with its list of vertices and faces. 

Step 3 

A new list with the merged vertices is created that includes the coordinates of the points 

where the vertices_to_merge are going to be joined.  These points are usually the mean 

point or centre point of the vertices. If some vertices on the sub-lists are extreme vertices,  

then it is their centre that is needed for the new list. If one vertex of the sub-lists is a corner 

point, then this point is the one that is placed on the merged_vertices list. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 4 

The merged vertices are going to replace the initial vertices. A simpler mesh is used to 

explain the method. In the image below the goal is to merge the vertex 4(v4) with vertex 

8(v8).  

 

 

 

 

 

 

Indices of points to merge: [4,8] 

Merged Point: [3.75, 3.75, 0] 

 

 

 

Vertices 

 

0. [0, 0, 0] 

1. [1.875, 0, 0] 

2. [3.75, 0, 0] 

3. [0, 1.875, 0] 

4. [1.875, 1.875, 0] 

5. [3.75, 1.875, 0] 

6. [0, 3.75, 0] 

7. [1.875, 3.75, 0] 

8. [3.75, 3.75, 0] 

 

Faces 

  

0. [0;1;4;3] 

1. [1;2;5;4] 

2. [3;4;7;6] 

3. [4;5;8;7] 

 



40 
 

Vertices_dict = { 

 0: [1.875, 0, 0], 

 1: [3.75, 0, 0], 

 2: [0, 1.875, 0], 

 3: [3.75, 1.875, 0], 

 5: [3.75, 1.875, 0],  

 6: [0, 3.75, 0],   

 7: [1.875, 3.75, 0], 

 8: [3.75, 3.75, 0], 

} 

Figure 3.14  The generated mesh with its lists of vertices and faces. 

Figure 3.15  Double points and zero area faces that occur at the original mesh. 

Figure 3.16 The problem with the order of keys at the dictionaries that describe the simpler mesh . 

As the vertex 8 is an extreme point, then it is the merged vertex as well. In the list of  vertices 

the v8 replaces the v4. After this step a new topology is created. 

 

 

 

 

 

 

 

 

 

 

 

However double and unused vertices occur (vertices 4 and 8 )as well as zero-area faces 

(face 3). Therefore, removing unnecessary vertices and faces is needed.  

 

 

 

 

 

 

 

 

 

 

Step 5 

Compas can create meshes from either lists or dictionaries as inputs. After clearing the 

unnecessary the vertices and faces, Compas creates new meshes that are dictionaries 

whose key numberst are not in order. This would be ok, however the relaxation algorithm 

didn’t seem to work in this way so the order needed to be fixed.   

 

 

 

 

 

 

 

 

 

 

 

Vertices 

 

0. [0, 0, 0] 

1. [1.875, 0, 0] 

2. [3.75, 0, 0] 

3. [0, 1.875, 0] 

4. [3.75, 3.75, 0] 

5. [3.75, 1.875, 0] 

6. [0, 3.75, 0] 

7. [1.875, 3.75, 0] 

8. [3.75, 3.75, 0] 

 

Faces 

  

0. [0,1,4,3] 

1. [1,2,5,4] 

2. [3,4,7,6] 

3. [4,5,8,7] 

 

Faces_dict = { 

 0: [0,1,4,3], 

 1: [1,2,5,4], 

 2: [3,4,7,6] 

}A 
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Step 6 

 

Finally the mesh is relaxed. The boundary points are the  anchor points  and the force 

density algorithm is used with a load of 2kN/m3 prescribed in the edges 

 

 

 

 

 

  Anchor point 

Figure 3.17  Fixing the key numbers of the vertices at the original mesh. 

Figure 3.18  The relaxed mesh. 
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3.4 Dataset pre-processing for training AI models 

In order to train the model, tensors that will occur from arrays with the same shape need to 

be used. As the generated meshes have different number of vertices and faces, their final 

lists cannot be used as they are in the dataset. The process of making appropriate arrays is 

described below. Two options were tested. The python code can be found at the Appendix. 

All the training data are exported after generating the new meshes and before relaxation. 

 

Option 1: Using the structure of vertices as training data 

The first attempt is to train the model using the list of vertices without removing double 

occurring vertices as they occur in step 4. The list of faces remains the same 

 

 

 

 

 

 

 

 

 

 

 

 

The training tensors occur from arrays after replacing the indices of the vertices at the faces 

list with the coordinates of the Vertices.  

 . 

 

 

 

 

 

 

 

Exporting the training data as they occur at step 4 means that the generative model will be 

trained with unrelaxed meshes. 

 

 

 

Vertices 

 

0. [0, 0, 0] 

1. [1.875, 0, 0] 

2. [3.75, 0, 0] 

3. [0, 1.875, 0] 

4. [3.75, 3.75, 0] 

5. [3.75, 1.875, 0] 

6. [0, 3.75, 0] 

7. [1.875, 3.75, 0] 

8. [3.75, 3.75, 0] 

 

Faces 

  

0. [0;1;4;3] 

1. [1;2;5;4] 

2. [3;4;7;6] 

3. [4;5;8;7] 

 

 

array([[0, 0, 0],[1.875, 0, 0];[3.75, 3.75, 0], [0, 1.875, 0], 

[1.875, 0, 0], [3.75, 0, 0], [3.75, 1.875, 0], [3.75, 3.75, 0]] 

[0, 1.875, 0], [3.75, 3.75, 0], [1.875, 3.75, 0], [0, 3.75, 0]] 

[3.75, 3.75, 0]; [3.75, 1.875, 0], [3.75, 3.75, 0], [1.875, 3.75, 0]]) 

 

Figure 3.19  The simpler mesh along with its  lists that will be used to create the training data. 

Figure 3.20  The final array that will be used for trainin.g 
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Option 2: Using an adjacency matrix as training data 

The second option requires pre-processing the generated meshes. Meshes can be 

described as graph data using adjacency matrices.  

As various new points are creating after merging random initial points, a denser mesh, that is 

occurring after subdividing the initial one by two, is used.  

Multiple graphs are created but they all share vertices with the same coordinates. This 

means that the training data describe an unrelaxed mesh. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 0 1 2 3 4 5 6 7 8 9 
0 0 1 0 1 0 0 0 0 0 0 
1 0 0 1 0 1 0 0 0 0 0 
2 0 1 0 0 0 1 0 0 0 0 
3 1 1 0 0 1 0 1 0 0 0 
4 0 1 0 1 0 0 0 1 0 0 
5 0 0 1 0 1 0 0 0 1 0 
6 0 0 0 1 0 0 0 1 0 0 
7 0 0 0 0 1 0 1 0 1 0 
8 0 0 0 0 0 1 0 1 0 0 
9 0 0 0 0 0 0 0 0 0 0 

 0 1 2 3 4 5 6 7 8 9 
0 0 1 0 1 0 0 0 0 0 0 
1 1 0 1 0 0 0 0 0 1 0 
2 0 1 0 0 0 1 0 0 0 0 
3 0 1 0 0 1 0 1 0 1 0 
4 0 1 0 1 0 0 0 0 0 0 
5 0 0 1 0 1 0 0 0 1 0 
6 0 0 0 1 0 0 0 1 0 0 
7 0 0 0 0 0 0 1 0 1 0 
8 0 1 0 1 0 1 0 1 0 0 
9 0 0 0 0 0 0 0 0 0 0 

Figure 3.21  A starting mesh with its adjacency matrix. 

Figure 3.22  A final mesh with its adjacency matrix. 
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A problem that may occur with this strategy is that the merged points may not coincide with 

the vertices of the denser mesh. This can be prevented by taking by taking into account only 

unique coordinates when calculating the average point.  

 

 

 

 

 

 

 

 

 

 

 

Option 3: Using the flatten array that occurs from the adjacency matrix  

The adjacency matrix that describes the connections of nodes is always symmetrical to its 

diagonal axis. As described in Chapter 4 the tensors are flattened before passing inside fully 

connected layers. 

The size of the training sample can be minimized by removing the double sequences that 

occur during the dataset pre-processing step.  

The highlighted part of the adjacency matrix (that describes a simpler mesh) bellow 

represents the flattened information that is kept.  

 

 

 

  

 0 1 2 3 4 5 6 7 8 9 
0 0 1 0 1 0 0 0 0 0 0 
1 1 0 1 0 0 0 0 0 1 0 
2 0 1 0 0 0 1 0 0 0 0 
3 0 1 0 0 1 0 1 0 1 0 
4 0 1 0 1 0 0 0 0 0 0 
5 0 0 1 0 1 0 0 0 1 0 
6 0 0 0 1 0 0 0 1 0 0 
7 0 0 0 0 0 0 1 0 1 0 
8 0 1 0 1 0 1 0 1 0 0 
9 0 0 0 0 0 0 0 0 0 0 

Vertices 

0. [1.875, 1.875, 0] 

1. [1.875, 3.75, 0] 

2. [1.875, 5.625, 0] 

3. [3.75, 3.75, 0] 

x Coordinates           
0. 1.875 

1. 1.875 

2. 1.875 

3. 3.75 

Average x Coordinate 
(1.875+3.75)/2 

Take only unique values 

Figure 3.23  Vertices whose  mean point doesn’t snap at the vertices of the base mesh and the trick to fix this issue. 

Figure 3.24  The adjacency matrix to a flattened array. 

[ 

0, 

1,0, 

0,1,0, 

0,1,0,0, 

0,1,0,1,0, 
0,0,1,0,1,0, 

0,0,0,1,0,0,0, 

0,0,0,0,0,0,1,0 

0,1,0,1,0,1,0,1,0 

0,0,0,0,0,0,0,0,0,0 
] 
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Figure 3.25  Creating the dataset. 

3.5 Dataset Generation 

The following process describes the generation of two databases: one for creating the data 

appropriate for training the generative model and another for creating mesh data that will be 
simulated with FEM software to create the labels that the surrogate models will learn to 

predict.  

These are the following steps:  

• First an empty dataset_list is created 

• Then random sets of vertices are selected so a list with “vertices_to_merge” is 

created. The combination of the vertices and the length of the list is also random. 

Since the symmetrical vertices are going to be added, the random choice is limited to 
one quarter of the mesh. 

• If the generation of the “vertices_to_merge” hasn’t been generated before, the 

algorithm moves to the next step. If not another random set is generated.  

• A new mesh is created according to the list of “vertices_to_merge” and it is added 

to the dataset_list 

• If the desired dataset_list length is reached (10000 in this thesis) the algorithm is 

moved to the next step, if not the second step is repeated 

• The dataset_list is cleared from doubled samples 
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Figure 3.26  Exporting the trainning dataset and data for FEM simulation. 

• The dataset_list is converted to data appropriate for training a machine learning 

model. For this thesis 5890 training samples were generated. 

 

• The new meshes are relaxed and data appropriate for FEM simulation are exported. 

  

• The FEM simulation creates the labels that will be used in the surrogate model  
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End 
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3.6  FEM Simulation 

All the data including mesh information are exported in text documents. Then they are 

imported  inside the Grasshopper environment in Rhinoceros. For FEM testing Karamba3D 

is used.  

 

Figure 3.27 Assigning loads and supports to the mesh's edges. 

The mesh’s edges are tested as steel beams network( Steel S235)  with a IPE80 cross 

section. 

A point load of 1 kN applied at the centre of the network. All the boundary points are used as 

fixed supports.  

 

 

 

 

 

 

 

 

After testing the following performance indicators are extracted and stored in a csv file: 

1. The Maximum Displacement in cm.  

2. The Maximum Utilization (ratio between the tensile or compressive strength and the 

maximum allowable stress) 

3. The Mass of the structure in kg. 

 

 

 

Figure 3.28 Mass, Displacement and Utilization as performance indicators. 
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All performance indicators are normalized to fit in the range between 0 and 1. Then a 

performance value is assigned to each index using the following formula: 

𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞 = 

 𝟎. 𝟒 × 𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 𝑫𝒊𝒔𝒑𝒍𝒂𝒄𝒆𝒎𝒆𝒏𝒕 + 𝟎, 𝟒 × 𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 𝐔𝐭𝐢𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧 

+ 𝟎, 𝟐 × 𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 𝐌𝐚𝐬𝐬  

 

The 10 best performed mesh tessellations are excluded from the training dataset (the 

highlited ones) to see if Artificial Intelligence can solutions better than them.  

Mesh 
Index 

Maximum 
displacement [cm] 

Utilization 
Mass 
[kg] 

Norm  
displacement  

Norm 
Utilization 

Norm Mass  
Performance 

Score 
Norm 

Performance 

1592 7.222685 0.31688 1467.04 0.198500114 0.038938908 0.06568577 0.108112762 0 

916 7.306213 0.331459 1525.86 0.216281778 0.056459133 0.23781521 0.156659406 0.085279428 

2871 7.316427 0.383731 1495.76 0.218456162 0.119276694 0.14971763 0.165036668 0.099995339 

3178 7.336311 0.334702 1534.57 0.222689121 0.060356389 0.26328098 0.165874401 0.101466942 

585 7.198498 0.35392 1539.1 0.19335112 0.083451505 0.27654819 0.166030688 0.101741484 

2448 8.088958 0.284613 1479.04 0.382914632 0.000162235 0.10080725 0.173392197 0.114673073 

468 7.40201 0.343348 1535.19 0.2366753 0.070746668 0.26510758 0.175990302 0.119237033 

1093 7.193045 0.39318 1525.4 0.192190271 0.130631973 0.23645109 0.176419116 0.11999031 

3374 7.112629 0.357602 1570.46 0.175071097 0.087876326 0.36831927 0.178842824 0.124247914 

2286 7.576214 0.379444 1487 0.273760315 0.114124818 0.12409274 0.179972602 0.126232537 

3487 7.139086 0.4255 1514.93 0.180703335 0.169472338 0.20581014 0.181232297 0.12844538 

3659 7.632908 0.312611 1537.29 0.285829486 0.033808663 0.27125253 0.182105766 0.129979758 

3143 7.720711 0.370308 1479.8 0.304521224 0.103145685 0.10302932 0.183672627 0.132732184 

370 7.183572 0.375051 1557.87 0.190173634 0.108845557 0.33147061 0.185901798 0.136648056 

3401 7.33804 0.386916 1526.39 0.223057195 0.123104249 0.23936516 0.18633761 0.137413625 

131 7.32969 0.419356 1504.03 0.221279625 0.162088823 0.17393769 0.188134916 0.140570862 

 

 
Table 3.1  The table with all the performance indicators, their normalized values and the final performance score 
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3.7 Dataset Augmentation 

The generated samples are symmetrical on either one or two axes. To augment the dataset 

the samples that are symmetrical on just one axis are rotated 90 degrees. To do this, the 

dataset is first purged of samples that have the same performance-score (flipped patterns 

have the same score). The next step is to rotate all the samples 90 degrees. Finally a last 

step is performed were the dataset is cleared from doubled meshes (symmetrical meshes on 

both axes occur two times after the rotation step). Overall 7.338 samples were created.  

 

 

 

 

 

 

 

Figure 3.30  Rotating the meshes 90 degrees. 

 

 

Figure 3.29  The test best performed meshes. 
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4. AI WORKFLOW 
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4.1 The Variational Autoencoder 

4.1.1 Architecture 

The Variational Autoencoder is based on F. Chollet’s VAE model (Chollet, 2020) with 

changes on hyperparameters ( layers, the batch size, epochs and learning rate). Keras and 

Tensorflow python libraries were used for implementing the VAE.  

The VAE is a deep learning model that consists of an encoder and a decoder with hidden 

fully connected layers (dense layers). The input data pass through an encoder that is able to 

shrink the data to fit in a latent space. A final layer called sampling layer in the encoder is 

able to perform a reparameterization trick to make sure that the latent space is regular. The 

decoder then attempts to reconstruct the input data. The model is trained by dividing the 

dataset in batches. After passing the entire dataset through the neural network one epoch is 

completed. The neural network measures the error of reconstruction and updates the 

weights at its nodes. 

A workflow of the whole network is presented below. 

 

Figure 4.1 The architecture of a VAE 

 

4.1.2 Data pre-processing  

The input data have to be normalized between 0 and 1 to enter the neural network. 

Normalizing the data generally speeds up learning and leads to faster convergence.  

In the first option the training data that include the mesh’s coordinates have to be divided 

with the dimensions of the mesh (in this thesis it is 15). In the second option and third option 

where  adjacency matrices are used, no normalization is required as the input are arrays 

with only 0 and 1values. 

Data that enter the NN also are arrays that include float numbers. 

The general architecture of the VAE, also explained in the first chapter is demonstrated 

below. It is a autoencoder with a slight modification that ensures the regularization of the  

latent space.  
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4.1.3 VAE - loss function  

The loss function used for the training VAEs is the sum of two losses. The first one 

measures the error between the original input and its reconstruction after exit the NN. The 

second one is the Kullback-Leibler divergence ( kl divergence) loss. The purpose of the kl 

divergence in the loss function is to make the distribution of the encoder output as close as 

possible to a standard multivariate normal distribution.(Lunot, 2019)  

 

Total Loss = Reconstruction Loss + kl coefficient * kl loss 

 

 A demonstration of the effect of kl divergence in the latent space is demonstrated in the 

image below on a latent space with two vectors z[0] and z[1] and the outputs are clustered 

depending on their performance. In this thesis a kl coefficient of 1 was used. 

 

  

Figure 4.2   From left to the right: kl coefficient:0, kl coefficient:1,  kl coefficient:2.   The encoder and decoder have to dense 
layers with 100 nodes each. The training used 100 epochs and a batch size 64 on an input tensor [81,81] (data input are 
adjacency matrices with one quarter of the information) 

 

During the fit() process we also separate a a portion of the training data to evaluate the 

performance of your model on a validation dataset. The evaluation of the training data is 

called train step and that of the validation dataset is called test_step. We can customize 

what is happening during those steps by overriding the We can customize the training loss 

by overriding the VAE.train_step() and the VAE.test_step(),  while retaining built-in 

infrastructure features. The code for these steps can be found at the Appendix. 
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4.1.4 Sampling Layer 

In autoencoders input data are compressed through the encoder without taking into account 

the regularity of the latent space. This is ok when the goal is to achieve compression of large 

databases, but in generative models we need to be able sample vectors from a regular latent 

space to generate valid outputs. Therefore VAEs introduce a sampling layer in the network 

that ensures that the input data get mapped to latent variables with a normal distribution. 

This distribution is parameterized by a mean (𝜇) and a variance (𝜎) which are the learnable 

parameters of the network.  

VAEs also introduce stochasticity in the network. Through backpropagation the neural 

network learns a normal distribution that needs also to be probabilistic. This is achieved by 

adding a random noise to the vector by multiplying the square of the variance with a  random 

variable 𝜀. This variable has also a low value so as to ensure that the result does not deviate 

a lot from the true distribution. Adding this variable is what allows the reparameterization 

trick, demonstrated in the following diagrams. On the left an input is sampled as a latent 

vector 𝛧 from a normal distribution. This does not allow to compute the gradients to 

approximate the latent space, hence we cannot backpropagate back to the NN. This is fixed 

by multiplying the variance square by inserting the variable 𝜀  to calculating the vector 𝛧. 

(Doersch, 2016) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  𝛧𝜇: 𝐴 𝑣𝑒𝑐𝑡𝑜𝑟 𝑤𝑖𝑡ℎ 𝑎 𝑚𝑒𝑎𝑛 𝑜𝑓  𝜇  

  𝛧𝜎: 𝐴 𝑣𝑒𝑐𝑡𝑜𝑟 𝑤𝑖𝑡ℎ 𝑎 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝜎 

  𝜀 ∶ 𝐴  𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑑  𝑓𝑟𝑜𝑚 𝑎 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

 

The code for creating the Sampling layer can be found the Appendix 

  

decoder 

Z 

𝛧𝜎  𝛧𝜇  ε 

  𝛧 =  𝛧𝜇  +  𝛧𝜎2 × 𝜀    

 

encoder 

backpropagation 
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Figure 4.4   From left to the right: The original input and the decoded output 

Chart 4.1   Training loss and validation loss after 200 epochs for option 1 

4.1.5 Encoder- Decoder  

Option 1 : Using the structure of vertices as training data 

The first attempt was to train the VAE using as input the coordinates of the vertices as 

arrays. The input shape of the tensors was [81,3]. The encoder and decoder used one 

dense layer each with 81 nodes. The latent space had 9 nodes. Batch size was 64 and the 

optimizer was Adam with learning rate 0.001.  

 

                                                 Figure 4.3 The architecture of the first's option VAE 

Other combinations of hyperparameters were tested, but the model was not able to decode 

correct outputs in none of the cases. An original input along with its decoded output is 

demonstrated below, along with the loss chart.  
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Figure 4.5 The tested architecture of the second's option VAE 

Option 2 : Using adjacency matrices as training data 

The second option of training the NN with adjacency matrices was more successful. The 

encoder and the decoder consisted of feel forward fully connected layers (dense layers). 

Various numbers of layers and nodes were tested. For training TU Delft’s supercomputer 

Delft Blue was used.  

Below different variations are demonstrated. All layers in both encoder and decoder are fully 

connected. ReLU was used as an activation function in all layers apart from the last one in 

the decoder, which used sigmoid.  

The last two variations consider the shape of  input which is (289,289). The layers that are 

used in those variations have a number of nodes that consists of multiples and dividers of 

the number 289. The architecture that was converged better was the Revision 4.  

Schematic diagrams with the tested architectures of the encoder and the decoder are 

demonstrated below.  
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Charts demonstrating the  loss function during training, depending on the architecture of the 

encoder-decoder are shown below. 

 

 

 

Chart 4.2 TheTraining  Loss after 500 epochs 

 

 

 

Chart 4.3  The Validation Loss after 500 epochs 
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For the best performing architecture (Revision 4) charts demonstrating the loss function 

during training, depending on the size of the latent space are shown below. Increasing the 

latent space leads to a drop in both loss and validation loss. 

 

 

Chart 4.4  The  Training Loss after 500 epochs 

 

 

 

Chart 4.5 The Validation Loss after 500 epochs 
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Results 

Below you can see results of some of the best performed meshes, which were not also used 

when training  

 
 

Original 
Samples 

     
 
 

Decoded 
Samples 

     
Table 4.1  Some of the best performed samples and their decoded result. 

 

These are some decoded meshes from within the train dataset 

 
 

Original 
Samples 

     
 

 
Decoded 
Samples 

     
Table 4.2  Some of the training  samples and their decoded result. 

 

 

These are some random generated meshes 

 
 

Original 
Samples 

     
Table 4.3  Random AI generated meshes. 
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Using a quarter of each of the adjacency matrices 

A final attempt was done to test the performance of the network by minimizing the input 

information. Since the meshes are symmetrical we can keep one quarter of the adjacency 

matrices.  

 

 

Figure 4.6  A quarter of the mesh 

 

The original adjacency matrix has a shape of [289,289]. Keeping one quarter of the 

information means the new matrix has a shape of [81,81]. Therefore we need to keep in both 

axis the  indices included in the shape bellow. 

  

Figure 4.7  The selected vertices in the one quarter of the mesh 
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Again here fully connected layers were used for the encoder and the decoder. ReLU was 

used in all layers apart from the last one in the decoder. Schematic diagrams with the tested 

architectures of the encoder and the decoder are demonstrated below. The VAE architecture 

that performs better is that of Revision 2. 

 

 

Figure 4.8  The tested architectures of the VAE for the second  option using the information of one quarter of the mesh 

 

Charts demonstrating the  loss function during training, depending on the architecture of the 

encoder-decoder are shown below. 

 

 

Chart 4.6   Training Loss after 500 epochs 
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Chart 4.7   Validation Loss after 500 epochs 

 

Results 

Below results of original samples and their decoded outputs are presented 

 

Results of some of the best performed meshes, which were not also used when training  

 

 
Original 
Samples 

     
 

 
Decoded 

Samples 

     
Table 4.4  Some of the best performed samples and their decoded result. 
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Decoded meshes from within the train dataset 

 
 

Original 

Samples 

     
 
 

Decoded 
Samples 

     
Table 4.5  Some of the training  samples and their decoded result. 

 

Random AI generated meshes 

 
 

Original 
Samples 

     
Table 4.6  Random AI generated meshes 

 

Option 3 : Using flattened arrays from the adjacency matrices 

This option aimed to ease the training by minimizing the size of the training samples. This 

option managed to converge the model faster and minimize more the function loss. For 

simplification reason the information that represents the one quarter of the mesh was also 

used.  

The tested architectures are demonstrated below. 

 

Figure 4.9 The tested architectures of the VAE for the third option 
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Chart 4.8   Loss after 500 epochs 

 

 

Chart 4.9   Validation loss after 500 epochs 

 

The first revision manages to drop the validation loss more than the second. Moreover the model is smaller on 

size. Therefore this is the final architecture, also  chosen for the next steps.  
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Results of some of the best performed meshes, which were not also used when training  

 
 

Original 

Samples 

     
 
 

Decoded 
Samples 

     
Table 4.7  Some of the best performed samples and their decoded result. 

Random AI generated meshes 

 
 

Original 
Samples 

     
Table 4.8  Random AI generated meshes 
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Revision 3 

4.2 Surrogate Model 

 

Training a surrogate model to predict the normalized performance out of the VAE’s 

decoded data 

The Surrogate Model attempts to fit the input data x_train to the performance scores 

y_train. Input data are the decoded samples. 50 samples are excluded from the training 

process to evaluate the training. Input shape is [1,3240] and the output is a single score.  

The architecture tested included an input layer, a flatten layer and two dense layers. 

 

Figure 4.10 The architecture of the Surrogate Model. 

 

The following architectures were tested. The architecture whose loss function is better 

converged  is that of the Revision 1. 

 

 

 

 

 

 

 

 

Figure 4.11  The tested architectures for the Surrogate Model. 

 

 

Revision 1 Revision 2 
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Charts demonstrating the  loss function during training, depending on the architecture of the 

Surrogate Model are shown below. 

 

 

Chart 4.10   Lloss after 500 epochs 

 

 

Chart  4.11  Validation  loss after 500 epochs 
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The following Chart demonstrates the loss function after 1000 epochs. The models starts 

validation loss starts increasing slightly after 200 epochs therefore the training stops there 

 

Chart  4.12  Loss and Validation  loss after 1000 epochs for Revision 1 

 

The following chart demonstrates the evaluation of the results on 50 samples that were 

excluded from training. The cyan dots are the true performance scores and the grey dots are 

the model’s estimated performance  

 

 

Chart 4.13 Comparison of predicted and actual performance for 50 test data that were not used when training the 
surrogate model 

 

The following chart demonstrates the evaluation of the results for the 10 best samples that were 

also excluded from training. Their predicted scores are numbers around 0.20. That can be explained 

from the fact that below 0.20 (about 150 out of the 7.338)  and none below 0.12. Therefore the best 

performed samples are scored around the number 0.20. 
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Chart 4.14  Comparison of predicted and actual performance for 10 best performed samples 

 

 

Attempt to train the Surrogate model to predict the normalized performance out of the 

VAE’s encoded data 

Another option that was explored is if the model can be trained with the encoded vectors for the case of the 

second’s option fourth revision. As shown in the picture below the model was overfitting therefore this effort was 

abandoned.  

 

 

Chart 4.15  Loss and validation loss for the surrogate model trainned with encoded vectors 
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4.3 Gradient Descent Optimization 

 

After training the VAE and the Surrogate model we are able to retrieve the Model’s 

gradients. The gradient we are interested in is that of the structural ‘performance’ (y vector) 

with respect to the latent space (z vector). The Gradient Descent algorithm searches for the 

minimum y vector.  

Z = Z – lr 
𝜕𝑦

𝜕𝑧
 (Z0, Zn,) 

 

lr : Learning rate that determines how large the update or moving step is. 

Z: The latent’s space z vector to be updated 

Y: Structural Performance 

 

The following diagram explains how the gradient descent optimization works: 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.12  Flow Chart for the Gradient Descent. 
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for ix in range(adj_mtx.shape[0]):  

    for iy in range(adj_mtx.shape[1]): 

        if adj_mtx [ix,iy]+ adj_mtx [ix,iy]==1: 

            adj_mtx [ix,iy]=1 

            adj_mtx [iy,ix]=1 

 

Some generated adjacency matrices are not symmetrical and have extra edges. To check if 

they already exist in the dataset the extra edges are cleared manually and a final step is 

executed to make the array symmetrical if it is not. The code for this is described below:  

 

 

 

 

 

 

 

 

 

 

 

 

The following examples present optimization cases when running the GD for random design. 

In Cases 1,2,3,4 the GD managed to find novel and  better designs than the provided 

training dataset. In Cases 2 and 3 with a learning rate of 2.5 it managed to find designs 

almost identical to best performing one that was excluded from the training process. 
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Chart 4.16 For Case 1 with a learing rate of 0.5:  Charts demonstrating the values of the performance score (on the 
left) and the root mean square of the gradients of the performance with respect to latent’s space vector (on the 

right), during the optimization after 1000 iterations.  

Case 1. 

_____________________________________________________________________________________________________ 

 

Learning rate: 0.5 

Iterations: 1000 

 

Performance score of initial design: 0.37526757 

Estimated performance score of the optimized design: 0.1391386 

Actual performance score of the optimized design: 0.113302 

Novel Design: Yes 

 

 
Figure 4.13  For the Case 1 2 and a learning rate of 0.5, an initial mesh(on the left) and the optimized one(on the right). 
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Chart 4.17 For Case 1 with a learing rate of 2.5:  Charts demonstrating the values of the performance score (on the 
left) and the root mean square of the gradients of the performance with respect to latent’s space vector (on the 

right), during the optimization after 1000 iterations.  

 

With a learning rate of 0.5 the GD finds a similar but better performing design, Increasing the 

learning rate at 2.5 results also in an better design, not as good as the one the one found 

with the 0.5 learning rate, as the GD skipped it.  

 

Learning rate: 2.5 

Iterations: 1000 

 

Performance score of initial design: 0.37526757 

Estimated performance score of the optimized design: 0.32426813 

Actual performance score of the optimized design: 0.302315 

Novel Design: No 

 

 
 

Figure 4.14  For the Case 1 and a learning rate of 2.5, an initial mesh(on the left) and the optimized one(on the right). 
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Case 2. 
_____________________________________________________________________________________________________ 

 

Learning rate: 0.5 

Iterations: 1000 

Performance score of initial design: 0.17705911 

Estimated performance score of the optimized design: 0.1425786 

Actual performance score of the optimized design: 0.085932 

Novel Design: Yes 

 

 

Figure 4.15  For the Case 2 and a learning rate of 0.5, an initial mesh(on the left) and the optimized one(on the right). 

 

 

 

 

 

 

 

 

  

 

Chart 4.18 For Case 2 with a learing rate of 0.5:  Charts demonstrating the values of the performance score (on the left) and 
the root mean square of the gradients of the performance with respect to latent’s space vector (on the right), during the 

optimization after 1000 iterations.  
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Increasing the learning rate at 1.5 results in an optimized design, with GD jumping faster into 

new solutions. 

 

Learning rate: 2.5 

Iterations: 1164 

Performance score of initial design: 0.17705911 

Estimated performance score of the optimized design: 0.16579011 

Actual performance score of the optimized design: 0.044936816 

Novel Design: Yes 

 

 

Figure 4.16  For the Case 2 and a learning rate of 2.5, an initial mesh(on the left) and the optimized one(on the right). 

 

 

 

 

 

 

 

 

 

 

 
  

Chart 4.19 For Case 2 with a learing rate of 1.5:  Charts demonstrating the values of the performance score (on the left) and 
the root mean square of the gradients of the performance with respect to latent’s space vector (on the right), during the 

optimization after 1000 iterations.  
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Case 3. 
_____________________________________________________________________________________________________ 

 
Learning rate: 2.5 

Iterations: 1000 

 

Performance score of initial design: 0.4659505 

Estimated performance score of the optimized design: 0.15925622 

Actual performance score of the optimized design: 0.01798574 

Novel Design: Yes 
 

 

 

Figure 4.17  For the Case 3, an initial mesh(on the left) and the optimized one(on the right). 

 

 

 

 

 

 

 

 

 

 
Chart 4.20 For Case 3 with a learing rate of 2.5:  Charts demonstrating the values of the performance score (on the left) and 

the root mean square of the gradients of the performance with respect to latent’s space vector (on the right), during the 
optimization after 1000 iterations.  
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Case 4. 
_____________________________________________________________________________________________________ 

 
Learning rate: 2.5 

Iterations: 1000 

 

Performance score of initial design: 0.18231553 

Estimated performance score of the optimized design: 0.12000429 

Actual performance score of the optimized design: 0.113239 

Novel Design: Yes 
 

 

 

Figure 4.18  For the Case 4, an initial mesh(on the left) and the optimized one(on the right). 

 

 

 

 

 

 

 

 

 

 

Chart 4.21 For Case 4 with a learing rate of 2.5:  Charts demonstrating the values of the performance score (on the left) and 
the root mean square of the gradients of the performance with respect to latent’s space vector (on the right), during the 

optimization after 1000 iterations.  
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Case 5. 
_____________________________________________________________________________________________________ 

 
Learning rate: 5 

Iterations: 1000 

 

Performance score of initial design: 0.3534903  

Estimated performance score of the optimized design: 0.1897085 

Actual performance score of the optimized design: 0.115608 

Novel Design: Yes 
 

 

 

Figure 4.19  For the Case 5, an initial mesh(on the left) and the optimized one(on the right). 

 

 

 

 

 

 

 

 

 

 
Chart 4.22 For Case 5 with a learing rate of 5:  Charts demonstrating the values of the performance score (on the left) and 
the root mean square of the gradients of the performance with respect to latent’s space vector (on the right), during the 

optimization after 1000 iterations.  
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Invalid Case 
_____________________________________________________________________________________________________ 

 

VAE may produce invalid designs that the surrogate model has not been trained 

to score their performance. Therefore, often Gradient Descent converged on invalid 

solutions. Below an invalid case is presented..  

 

Learning rate: 0.5 

Iterations: 1000 

 

Performance score of initial design: 0.415089337 

Estimated performance score of the optimized design: 0.1145393 

 

 

 

Figure 4.20  For an Invalid Case, an initial mesh(on the left) and the optimized one(on the right). 

 

 

Chart 4.23 For an Invalid Case:  Charts demonstrating the values of the performance score (on the left) and the root mean 
square of the gradients of the performance with respect to latent’s space vector (on the right), during the optimization after 

1000 iterations.  
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Case 2: Various Learning Rates 
_____________________________________________________________________________________________________ 

 

Some other results for the Case 2, with the Gradient Descent running with various learning 

rates are presented below. The more the learning rate decreases the more similar solutions 

to the initial design the GD outputs.  
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4.4 Results 

VAE 

Using the flatten product of the adjacency matrix (3rd Option) seams to ease training. 
Training the VAE using with  adjacency matrices resulted in a training  loss of 2.82371 and a 

validation loss of 14.14076 after 500 epochs. In the case of the flattened simplified array the 
training loss was  2.308509827 and the validation loss 6.81249094. The model also was 

lighter. Increasing the number of layers may result in a slight overfitting as the validation loss 
seems to increase slowly (Chart 4.11 ). Increasing the dimensions of the latent space can 
also improve the training (Charts 4.4 and 4.5), resulting however in a slower optimization as 

more gradients have to be calculated in the end.  In any case, VAE may generate invalid 
designs. 

 

Surrogate Model 

The performance of the dataset ranges from 0.12844538 to 1 with lower values representing 
better solutions. The Surrogate Model can predict with a good accuracy the performance of 

the shells. For the best designs that were excluded from the dataset (with a performance 
from 0 to 0.126232537 ) it doesn’t predict with accuracy their performance but  scores them 

around 0.15, which is close to the value that the model has learned to estimate as good.  
The Surrogate Model is not able to predict the performance of invalid designs that the VAE 
may produce. 

 

Gradient Descent 

The Gradient Descent managed to optimize designs and find novel solutions.  The scores of 

those solutions are close to 0.15 but in reality they are smaller. Also, in  Case 3  the Gradient 

descent with a learning rate of 2.5 managed to find the best performed sample that was 

excluded from the dataset. In general, smaller learning rates result in optimized designs 

more similar to the initial ones.  Finally, the GD may result in invalid solutions as the VAE is 

very likely to generate invalid designs for which the Surrogate has not yet been trained to 

predict their performance. 
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5. APPLICATION 



82 
 

5 Application 

 

The framework of this thesis  focuses around the case of a shell structure with a quad based 

topology. The optimization process  for this thesis aims to minimize the deflection, the 

utilization and the mass of the structure to prove that AI can help to optimize shell structures. 

In the future more criteria can fit in this framework .  

The example below demonstrates an optimized shell structure in the case of a flat roof. A 

point load of 1 kN is taken into account at the middle, for repair access.  

 

Figure 5.1  The study case 

 

The images below correspond to the Case 2 in the Chapter 3.2 and demonstrate the initial 

design before and after relaxation. The starting performance score is 0.17705911. 

 

 

Figure 5.2 From left to the right: The initial design before and after relaxation. 
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The proposed AI workflow will attempt to optimize the topology of the Mesh first with a 

learning rate of 0.5. The optimized design has a performance score of 0.085932, meaning 

that is the AI workflow managed to optimize it by 206%.  

 

 Figure 5.3 From left to the right: Theoptimized design using a learning rate of 0.5, before and after relaxation. 

 

A second attempt to optimize the structure is made, using a larger learning rate of 2.5. In 

terms of its topology the result is more different compared to the initial design than the 

optimized case above. The optimized design has a performance score of 0.044936816, 

meaning that this time the AI workflow managed to optimize it by 394%.  

 

Figure 5.4 From left to the right: Theoptimized design using a learning rate of 2.5, before and after relaxation. 

 

The designer- engineer can now choose the preferred solution. 

 

 

 

 

 

 

 

 

 

The final design using the AI output result for a learning rate of 0.5 
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The final design using the AI output result for a learning rate of 0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final design using the AI output result for a learning rate of 2.5 
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In the future more criteria can fit in to the workflow. For instance a relaxation in the z axis, 

various boundaries and application other load cases.  

 

 

Figure 5.5 Future development of the AI workflow. 

 

Some scenarios of shell structures with different boundaries and load cases, where AI could 

be used for topology optimization are demonstrated below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Various shell structures. 
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2.4 Research Questions 

Main Question  

Can an AI based framework generate new and structurally effective solutions?  

Even though the Gradient Descent may produce invalid solutions, for some cases it  was 

able to converge to structurally better designs than the provided dataset. There is room for 

further improvement in the AI workflow, however the research results indicate that an AI 

workflow can indeed expand the capabilities of Generative Design and reveal novel and 

structurally more effective solution.  

Sub-questions 

Can a Variational Autoencoder be trained to generate mesh tessellations? 

Yes, The Variational Autoencoder can generate new mesh tessellations. It may also 

generate some invalid meshes. A dataset augmentation and an increase in the latent space 

can improve the training process, however invalid solutions still occur. The form of the 

dataset has also a big impact on the model’s performance. Further explanation can be found 

at the next sub-question.  

What form of data can be used to train a Variational Autoencoder to generate mesh 

tessellations? 

Mesh tessellations can be described successfully using graph data structures. In this thesis 

adjacency matrices were used successfully. Using a denser mesh as a base to create 

adjacency matrices allows to train mesh data with different amount of faces and vertices. 

However, this method increases the size of the database.  

To reduce the size of the dataset, a flattened and simplified product, resulting from the 

adjacency matrix, can be used.  

Another option that was explored was to use arrays with the face’s structure (Option 1 at the 

Variational Autoencoder). This dataset proved to be no appropriate for training VAEs to 

generate new meshes. 

Can a surrogate model learn to predict the structural performance of decoded graph 

networks?  

Yes, if the loss of the VAE is low it can.  

Can a surrogate model learn to predict the structural performance of encoded graph 

networks?  

No, the model in this case was overfitting. Increasing the  size of the latent space did not 

improve the model’s training 

Can a Gradient Descent Optimizer propagate back to encoded data to search for 

optimum solutions?  

Yes, The Gradient Descent was able to optimize mesh tessellations and discover novel and 

better solutions. However, in many cases invalid designs were produced. This is due to two 

main problems: 

1)The VAE often generates invalid samples. 
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2) The surrogate model has not yet been trained to predict the performance of invalid 

tessellations 

The result was that the loss of the Gradient Descent was converged in cases of invalid 

designs.  

 

6.2 Limitations 

• A dataset was created with a specific mesh boundary and limitations when it comes 

to pattern exploration. 

 

• The only generative model that was used was a Variational Autoencoder. 

 

• The optimization ran based on the structural performance. Other criteria such as 

similarity, singularity points, etc were excluded. 

 

• For simplification reasons the dataset at some point was limited only to one quarter 

of the mesh.  
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6.3 Discussion and Future Development 

This section presents the discussion for the dataset creation, dataset labelling, the 

Variational Autoencoder and the Gradient Descent Optimization.  

 

Dataset 

a. Dataset Generation 

The dataset created for this thesis describes meshes with different number of faces and 

vertices. In order to create an appropriate dataset for training purposes, arrays of same 

shape are needed. A base mesh was used in that direction and was used as a base to 

create arrays that describe adjacency matrices. This strategy proved to be successful for 

training generative models.  

The dataset was created from one original quadrilateral mesh using python libraries such as 

NumPy and Compas. It could be enriched with further pattern exploration (for instance 

creating new faces in random vertices). 

 

 

Another option would be to explore more configurations starting from various coarse meshes 

and with the strip method shown in the research of Robin Oval. (Oval et al., 2019) 

“Joining points” Method 

“Creating new faces in 

random vertices” 

Method 

The Method also explained 

in literature review 

suggests starting with a 

Coarse Mesh (bold black 

lines), Subdivide it with a 

edge target length and 

start adding stripes.  
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If the AI workflow proves successful then the dataset could be enriched with further mesh 

boundaries. 

 

b. Labelling the dataset 

The dataset was labelled with a performance score based on the mesh’s maximum 

displacement, utilization and mass. For future development other criteria could be taken into 

account, like different load cases, similarity, number of singularities, maximum length 

of edges, etc.  

Similarity:    

             

Singularities: 

             

 

 

More boundary shapes 

can span into a denser 

grid.   
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Maximum Length: 

             

The dataset could also be enriched with meshes that are relaxed after after applying  loads 

on the z- axis.  

VAE 

The chosen architecture of the workflow’s generative model was that of the VAE. The VAE 

was able to decode successfully the initial dataset as well as some of the best meshes that 

were excluded from training.  

For future development more architectures worth to be explored. One option would be to 

include Graph Convolutional Layers in the model’s architecture. These layers were used 

from Victor Basu to train a Graph VAE(Basu, 2022). Also according to bibliography GANs 

could be more effective for graph generation(Kensert, 2022). 

 

Surrogate Model 

The Surrogate model was trained using decoded data. 50 samples were excluded from the 

training set to evaluate the models performance. The Surrogate Model was able to estimate 

their performance with a good accuracy. For designs performance scores lower than those 

in the dataset, it can’t provide accurate estimates, but it does but score them close to the 

lowest labels in the dataset. 

The model could be improved with decoded data that occur from a better trained Generative 

Model. A dataset augmentation with some invalid meshes that are scored negatively can 

also be tested.  

 

Gradient Descent Optimization 

The Gradient Descent Algorithm is able to retrieve the gradients from the VAE and the 

Surrogate Model and through back propagation to the encoded data search for the minima 

that corresponds to the performance score. The algorithm so far generates various invalid 

meshes. This is due to the fact that the surrogate model was not trained to predict the 

performance of the invalid data that the VAE generates, as explained in conclusions. Despite 

this the GD was able to generate novel solutions and better designs than the provided 

dataset. 

Improving the VAE and the Surrogate Model will improve the performance of the GD. 

Another solution is to integrate to the workflow a model that can predict if the a design is 

valid of not. In case the GD converges to invalid solutions the learning rate can slightly start 

to increase until reaching a valid solution as the example below: 

https://www.linkedin.com/in/victor-basu-520958147
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8. APPENDIX 
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DATASET GENERATION 
 
import time 

import numpy as np 

from compas.datastructures import Mesh 

import networkx  

from networkx.algorithms.components.connected import connected_components 

from compas import datastructures 

from compas.datastructures import mesh_delete_duplicate_vertices 

from compas_plotters.meshplotter import MeshPlotter 

from compas.numerical import dr_numpy 

from compas.geometry import matrix_from_axis_and_angle 

from compas.datastructures import Mesh as CompasMesh 

from compas.geometry import area_polygon 

from random import seed 

from random import randint 

from random import choices 

from stopit import threading_timeoutable as timeoutable  

import os 

 

 

 

#Open dense mesh 

job_directory=os.getcwd() 

data=os.path.join(job_directory, "dense_mesh") 

meshdense = Mesh.from_obj(data) 

plotter = MeshPlotter(meshdense, figsize=(4, 4)) 

plotter.draw_edges() 

plotter.draw_vertices(text='key', radius=0.01) 

plotter.draw_faces() 

plotter.show() 

 
 

#Open mesh to transform 

data=os.path.join(job_directory, "bese_mesh") 

mesh = Mesh.from_obj(data) 

plotter = MeshPlotter(mesh, figsize=(4, 4)) 

plotter.draw_edges() 

plotter.draw_vertices(text='key', radius=0.01) 

plotter.draw_faces() 

plotter.show() 



98 
 

 
#find the centre of xi points 

def find_centre(mesh,xi): 

    cxi=[]     

    cyi=[] 

    czi=[] 

    for xa in xi: 

        i=Mesh.vertex_coordinates(mesh, xa, axes='x') 

        i=i[0] 

        cxi.append(i) 

        cx=((sum(set(cxi)))/(len(set(cxi)))) 

 

        i=Mesh.vertex_coordinates(mesh, xa, axes='y') 

        i=i[0] 

        cyi.append(i) 

        cy=((sum(set(cyi)))/(len(set(cyi)))) 

 

        i=Mesh.vertex_coordinates(mesh, xa, axes='z') 

        i=i[0] 

        czi.append(i) 

        cz=((sum(set(czi)))/(len(set(czi)))) 

        cnt=[cx,cy,cz] 

    return cnt 

 

 

#create a list of the faces structure with sublists of the coordinated of the 

points 

def face_coor(m,fkey):  

    z=m.face_vertices(fkey) 

    coor=[] 

    for i in z: 

        temp=Mesh.vertex_coordinates(m, i, axes='xyz') 

        coor.append(temp) 

    return coor 

 

#list of coordinates for all vertices 

def mesh_vertex_coordinates(m):  

    vertices = list(m.vertices()) 

    vertices_coordinates=[] 

    for i in vertices: 

        i_coordinates=Mesh.vertex_coordinates(m, i, axes='xyz') 

        vertices_coordinates.append(i_coordinates) 
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    return vertices_coordinates 

 

#get the neighboors of the points 

def neigh (m,r):  

    faces = list(mesh.faces()) 

    faces_structure=[] 

    for i in faces: 

        faces_structure.append(m.face_vertices(i)) 

    neigh=[] 

    for i in faces_structure: 

        if r in i: 

            for a in i: 

                neigh.append(a) 

    neigh = list(dict.fromkeys(neigh)) 

    neigh.remove(r) 

    return (neigh) 

 

#get the symmetrical points 

def symmetrical_points (mesh,subdivition_number,subdivition_number2,random_point):  

    num1=subdivition_number+1 

    num2=subdivition_number2+1 

    vertices = list(mesh.vertices()) 

    arr=np.array(vertices) 

    arr=arr.reshape(num2, num1) 

    arr_b=arr.transpose() 

    temp=np.where(arr==random_point) 

    xa=int(temp[0]) 

    xb=int(temp[1]) 

    mir=[] 

    mir.append(arr[xa][xb]) 

    mir.append(arr[xa][-(xb+1)]) 

    mir.append(arr[-(xa+1)][(xb)]) 

    mir.append(arr[-(xa+1)][-(xb+1)]) 

    return mir 

 

def to_graph(l):  

    G = networkx.Graph() 

    for part in l: 

        # each sublist is a bunch of nodes 

        G.add_nodes_from(part) 

        # it also imlies a number of edges: 

        G.add_edges_from(to_edges(part)) 

    return G 

 

def to_edges(l): 

    """  

        treat `l` as a Graph and returns it's edges  

        to_edges(['a','b','c','d']) -> [(a,b), (b,c),(c,d)] 

    """ 

    it = iter(l) 

    last = next(it) 

 

    for current in it: 

        yield last, current 

        last = current     
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def flatten(t): 

    flat_list = [] 

    for sublist in t: 

        for item in sublist: 

            flat_list.append(item) 

    return flat_list 

 

def checklists(a,b):#check if elements in list a are in b 

    lst=[] 

    for i in a: 

        if i in b: 

            lst.append(i) 

    return (lst) 

 

#Relax Mesh 

@timeoutable()# stop relaxation if it takes too long 

def relax(m): 

    # extract the coordinates of vertices 

    vertices, faces = m.to_vertices_and_faces() 

    # extract edges 

    edges = list(m.edges()) 

    # find the nboundary vertices 

    boundary_vertices = m.vertices_on_boundary() 

    # set loads 

    loads = [[0, 0, 0]] * len(vertices) 

    # Prescribed force densities in the edges 

    qpre = [2] * len(edges)  

    # kN/m^3 # TODO: double check the unit 

    xyz, q, f, l, r = dr_numpy(vertices, edges, boundary_vertices, loads, qpre) 

    relaxed_mesh = CompasMesh.from_vertices_and_faces(xyz, faces) 

    return relaxed_mesh 

 

def delete_indices(lst,del_list): 

    t=0 

    for i in del_list: 

        z= i-t 

        lst.pop(z) 

        t=t+1 

    return lst 

 

#select vertices in 1/4 of the mesh 

vertices = list(mesh.vertices()) 

temp=x_sub+1 

temp=int(temp) 

tempb=x_sub/2 

tempb=int(tempb) 

v=[] 

 

for i in range(tempb+1): 

    v.append(vertices[i]) 

a=v 

t=[i+(temp) for i in a] 

v=v+t 

for i in range (tempb-1): 
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    t=[i+(temp) for i in t] 

    v=v+t 

vertices=v 

print (vertices) 

 

#this is the transformation def 

def transformmesh(mesh,random_point,random_select,x_sub,y_sub):  

    boundary_vertices = mesh.vertices_on_boundary() 

    corner_points=[72,80,0,8] 

    #find symmetries 

    p_lst=[] 

    for i in random_point: 

        p_lst.append(neigh(mesh,i)) 

    r_lst=[] 

    for i in range(len(random_point)): 

        temp=p_lst[i] 

        indx=random_select[i] 

        tempb=temp[indx] 

        r_lst.append(tempb) 

    syma=[] 

    for i in r_lst: 

        a= symmetrical_points(mesh,x_sub,y_sub,i) 

        syma.append(a) 

    symb=[] 

    for i in random_point: 

        a= symmetrical_points(mesh,x_sub,y_sub,i) 

        symb.append(a) 

    syma=flatten(syma) 

    symb=flatten(symb) 

    temp_lst=[] 

    for i in range (len(syma)): 

        l=[syma[i],symb[i]] 

        temp_lst.append(l) 

    G = to_graph(temp_lst) 

    lst_new=list(connected_components(G)) 

    pts_to_merge=[] 

 

    for i in range(len(lst_new)): 

        temp=lst_new[i] 

        t=list(temp) 

        pts_to_merge.append(t) 

     

    print (pts_to_merge) 

 

    #Resulting point after merGing selected points 

    merged_points=[] 

    for i in pts_to_merge: 

        tempb=checklists(i,corner_points) 

        if len(tempb)== 0: 

            temp=checklists(i,boundary_vertices)         

            if len(temp)==1:#if there is one boundary point in the points_to_merge 

select it as the resulting point 

                tempa=Mesh.vertex_coordinates(mesh, temp[0], axes='xyz') 

                merged_points.append(tempa)             
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            elif len(temp)>1:#if there is more than one boundary point in the 

points_to_merge, select their centre as the resulting point 

                merged_points.append(find_centre(mesh,temp)) 

            else:#if there is no boundary point in the points_to_merge, select 

their centre as the resulting point 

                merged_points.append(find_centre(mesh,i)) 

        else:#if there is a corner point in the points_to_merge, select it as the 

resulting point 

            tempc=checklists(i,corner_points) 

            tempc=Mesh.vertex_coordinates(mesh, tempc[0], axes='xyz') 

            merged_points.append(tempc) 

 

    #Indexes for vertices, edges and faces 

    vertices = list(mesh.vertices()) 

    edges = list(mesh.edges()) 

    faces = list(mesh.faces()) 

 

    #list with face structure 

    faces_structure=[] 

    for f in faces: 

        faces_structure.append(mesh.face_vertices(f)) 

 

    #list of coordinates for all vertices 

    vertices = list(mesh.vertices()) 

    vertices_coordinates=[] 

    for i in vertices: 

        i_coordinates=Mesh.vertex_coordinates(mesh, i, axes='xyz') 

        vertices_coordinates.append(i_coordinates) 

    x=-1 

    for i in pts_to_merge: 

        x=x+1 

        for e in i: 

            vertices_coordinates[e]=merged_points[x] 

 

    #new mesh  

    mesh2 = Mesh.from_vertices_and_faces(vertices_coordinates, faces_structure) 

    training_vertices = vertices_coordinates 

    #dictionaries of vertices&faces 

    vertices_dict=dict(zip(vertices, vertices_coordinates)) 

    faces_dict=dict(zip(faces,faces_structure)) 

 

    #clear faces with zero area 

    faces = list(mesh2.faces()) 

    faces_structure=[] 

    for i in faces: 

        faces_structure.append(mesh2.face_vertices(i)) 

    vertices_coordinates=mesh_vertex_coordinates(mesh2) 

    i=0 

    l_temp=[] 

 

    #get a list with the indexes of faces with zero area 

    for i in range(len(faces)): 

        t= (face_coor(mesh2,i)) 

        a=area_polygon(t)     

        if abs(a)<0.001: 
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            #del faces_structure[i] 

            l_temp.append(i)         

        i=i+1 

    temp=0 

 

    for i in l_temp: 

        del faces_structure[i-temp] 

        temp=temp+1 

 

    for i in l_temp: 

        del faces_dict[i] 

 

    #remove no used vertices 

    faces_structure_flatten=flatten(faces_structure) 

    temp=[] 

    for i in vertices: 

        if i in faces_structure_flatten: 

            pass 

        else:  

            temp.append(i) 

    for i in temp: 

        del vertices_dict[i] 

 

    #new clear mesh 

    mesh3 = Mesh.from_vertices_and_faces(vertices_dict, faces_dict) 

    mesh_delete_duplicate_vertices(mesh3, precision=None) 

 

    #fix the index of vertices 

    vertices = list(mesh3.vertices()) 

    vertices_coordinates=[] 

    for i in vertices: 

        i_coordinates=Mesh.vertex_coordinates(mesh3, i, axes='xyz') 

        vertices_coordinates.append(i_coordinates) 

 

    faces = list(mesh3.faces()) 

    faces_structure=[] 

    for f in faces: 

        faces_structure.append(mesh3.face_vertices(f)) 

 

    i=0 

    vertices_new=[] 

    for v in vertices: 

        vertices_new.append(i) 

        i=i+1 

    lstold=[] 

    lstnew=[] 

    i=0 

    for v in vertices: 

        if vertices[i] != vertices_new[i]: 

            lstold.append(v) 

            lstnew.append(vertices_new[i]) 

        i=i+1 

    res = {lstold[i]: lstnew[i] for i in range(len(lstold))} 

    e=0 

    faces_structure_new= faces_structure 
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    for f in faces_structure_new: 

        z=0 

        for i in f: 

            if i in lstold: 

                faces_structure_new[e][z]=res[i] 

            z=z+1 

        e=e+1     

    mesh4 = Mesh.from_vertices_and_faces(vertices_coordinates, 

faces_structure_new) 

 

     

    return (mesh4,pts_to_merge) 

     

 

def get_adjmatrix(mesh4,meshdense): 

    vertices_old = list(meshdense.vertices()) 

    v_old=[] 

    for i in vertices_old: 

        i_coordinates_old=Mesh.vertex_coordinates(meshdense, i, axes='xyz') 

        v_old.append(i_coordinates_old) 

 

    vertices_new = list(mesh4.vertices()) 

    v_new=[] 

    for i in vertices_new: 

        i_coordinates_new=Mesh.vertex_coordinates(mesh4, i, axes='xyz') 

        v_new.append(i_coordinates_new) 

 

    #Create empty matrix 

    adjmatrix=np.zeros((289, 289)) 

 

    faces_new = list(mesh4.faces()) 

    faces_structure_new=[] 

    for f in faces_new: 

        faces_structure_new.append(mesh4.face_vertices(f)) 

 

    #Create a dictionary --> (vertex index in new mesh): (vertex index in dense 

mesh) 

    dict_temp= {} 

    for i in range(len(v_old)): 

        if v_old[i] in v_new:  

            temp={(v_new.index(v_old[i])):i} 

            dict_temp.update(temp) 

 

    #Replace the vertex index in faces structure of the dense mesh 

    z=0 

    for i in faces_structure_new: 

        for y in range(len(i)): 

 

            (faces_structure_new[z])[y]=dict_temp[(faces_structure_new[z])[y]] 

        z=z+1 

 

    #create adjacency matrix 

    for i in faces_structure_new: 

        if len(i)==4: 

            adjmatrix[(i[0]),(i[1])]=1.0 
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            adjmatrix[(i[1]),(i[0])]=1.0 

            adjmatrix[(i[1]),(i[2])]=1.0 

            adjmatrix[(i[2]),(i[1])]=1.0 

            adjmatrix[(i[2]),(i[3])]=1.0 

            adjmatrix[(i[3]),(i[2])]=1.0       

            adjmatrix[(i[3]),(i[0])]=1.0      

            adjmatrix[(i[0]),(i[3])]=1.0 

        if len(i)==3: 

            adjmatrix[(i[0]),(i[1])]=1.0 

            adjmatrix[(i[1]),(i[0])]=1.0 

            adjmatrix[(i[1]),(i[2])]=1.0 

            adjmatrix[(i[2]),(i[1])]=1.0 

            adjmatrix[(i[2]),(i[0])]=1.0 

            adjmatrix[(i[0]),(i[2])]=1.0 

 

    #relaxed_mesh=relax(timeout = 2,m=mesh4) 

     

    return (adjmatrix) 

     

 

#dataset creation for option 2: Using an adjacency matrix as training data 

for i in range(11000): #this number is not final because the generation will 

produce double results 

    try: 

        ram_range_ver = randint(1, range_ver) 

        random_point=choices(vertices, k=ram_range_ver) 

        len(random_point) 

        random_select = [] 

        for i in range(len(random_point)): 

            temp=neigh(mesh,random_point[i]) 

            temp=len(temp)-1 

            n = randint(0,temp) 

            random_select.append(n) 

        transform=transformmesh(mesh,random_point,random_select,x_sub,y_sub) 

        tmesh=transform[0] 

        pointstomerge=transform[1] 

        area=Mesh.area(tmesh) 

        relaxed_mesh=relax(timeout = 2,m=tmesh) 

        mtx=get_adjmatrix(tmesh,meshdense) 

        mtx2=mtx.reshape(1,289,289) 

        if pointstomerge in pointstomerge_list: 

            doublemesh=doublemesh+1  

        if area==225 and pointstomerge not in pointstomerge_list : 

            dataset.append(mtx) 

            vertices_and_faces=relaxed_mesh.to_vertices_and_faces()  

            dir="C:/Users/31613/Documents/2021/Graduation/P4/Trainning_data/FEM/" 

            str_interations=str(interations).zfill(4) 

            dir_vert=dir+str_interations+"_vertices.txt" 

            f =open(dir_vert, "w") 

            for i in vertices_and_faces[0]: 

                r=str(i) 

                r=r.replace('[', '{') 

                r=r.replace(']', '}') 

                f.write(r+"/") 
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            f.close() 

 

            dir_faces=dir+str_interations+"_faces.txt"       

            f =open(dir_faces, "w") 

            for i in vertices_and_faces[1]: 

                w=str(i) 

                w=w.replace('[', '{') 

                w=w.replace(']', '}') 

                f.write(w+"/") 

            f.close() 

            interations=interations+1 

            pointstomerge_list.append(pointstomerge)     

            print("iteration",interations) 

 

    except IndexError: 

        print ("error") 

    except AttributeError: 

        print ("error") 

    except ValueError: 

        print ("error") 

 

#dataset generation for option 1: Using the structure of vertices as training data 

for i in range(2000): 

    try: 

        print("iteration",interations) 

        ram_range_ver = randint(1, range_ver) 

        random_point=choices(vertices, k=ram_range_ver) 

        len(random_point) 

        random_select = [] 

        for i in range(len(random_point)): 

            temp=neigh(mesh,random_point[i]) 

            temp=len(temp)-1 

            n = randint(0,temp) 

            #n = randint(0,7) 

            random_select.append(n) 

        print (("random points"),random_point) 

        print (("random select"),random_select) 

        w=transformmesh(mesh,random_point,random_select,x_sub,y_sub) 

        rmesh=w[0] 

        vertices = list(rmesh.vertices()) 

        #plotter = MeshPlotter(rmesh, figsize=(2, 2)) 

        #plotter.draw_edges() 

        #plotter.draw_vertices(text='key', radius=0.01) 

        #plotter.draw_faces() 

        #plotter.show() 

        dataset.append(w[1]) 

         

        #export mesh data to folder 

        vertices_and_faces=rmesh.to_vertices_and_faces()         

        #dir="C:/Users/31613/Documents/2021/Graduation/P3/trainingdata_vs/" 

        #str_interations=str(interations).zfill(4) 

        #dir_vert=dir+str_interations+"_vertices.txt" 

        #f =open(dir_vert, "w") 

        #for i in vertices_and_faces[0]: 

        #   r=str(i) 
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        #   r=r.replace('[', '{') 

        #   r=r.replace(']', '}') 

        #   f.write(r+"/") 

        #f.close() 

 

        #dir_faces=dir+str_interations+"_faces.txt"      

        #f =open(dir_faces, "w") 

        #for i in vertices_and_faces[1]: 

        #   w=str(i) 

        #   w=w.replace('[', '{') 

        #   w=w.replace(']', '}') 

        #   f.write(w+"/") 

        #f.close() 

 

        interations=interations+1    

 

    except IndexError: 

        print ("error") 

    except AttributeError: 

        print ("error") 

    except ValueError: 

        print ("error") 

         

 

#Saving the dataset 

dataset_array=np.array(dataset) 

file="C:/Users/31613/Documents/2021/Graduation/P4/TrainingData/AdjacencyMatrix" 

np.save(job_directory, dataset_array, allow_pickle=True, fix_imports=True) 
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DATASET AUGMENTATION 
 

# #dictionary that flips the quarter_mesh 

row1=[0,1,2,3,4,5,6,7,8,17,26,35,44,53,62,71,80,79,78,77,76,75,74,73,72,63,54,45,3

6,27,18,9,0] 

row2=[10,11,12,13,14,15,16,25,34,43,52,61,70,69,68,67,66,65,64,55,46,37,28,19,10] 

row3=[20,21,22,23,24,33,42,51,60,59,58,57,56,47,38,29,20] 

row4=[30,31,32,41,50,49,48,39,30] 

row5=[40] 

row1_reverse=reversed(row1) 

row2_reverse=reversed(row2) 

row3_reverse=reversed(row3) 

row4_reverse=reversed(row4) 

dict1=dict(zip(row1,row1_reverse)) 

dict2=dict(zip(row2,row2_reverse)) 

dict3=dict(zip(row3,row3_reverse)) 

dict4=dict(zip(row4,row4_reverse)) 

dict5=dict(zip(row5,row5)) 

dict_flip = dict1.copy() 

dict_flip.update(dict2) 

dict_flip.update(dict3) 

dict_flip.update(dict4) 

dict_flip.update(dict5) 

 

#flip the mesh 

def flip_matrix(array,dict_flip,shape): 

    array_flipped=np.zeros((shape,shape)) 

    for i in range(81): 

        for e in range(81):         

            array_flipped[i,e]=array[dict_flip.get(i),dict_flip.get(e)] 

    return array_flipped 

 

 

FLATTEN AND SIMPLIFY ADJACENCY MATRICES 
 

#Create the flattemed and simplified arrays 

def create_flatten_lst(array): 

    flatten_lst=[] 

    for i in range(array.shape[1]): 

        for e in range(i): 

            flatten_lst.append(array[i,e]) 

    return flatten_lst 

#Construct adjacency matrices from flattened and simplified arrays 

def flatten_to_matrix(flatten_lst,shape1): 

    array_zero=np.zeros((shape1,shape1)) 

    y=0 

    for i in range(shape1): 

        for e in range(i): 

            array_zero[i,e]=flatten_lst[y] 

            array_zero[e,i]=flatten_lst[y] 

            y=y+1 

    array_new=array_zero 

    return array_new 
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AI FRAMEWORK 

 
import numpy as np 

from tensorflow import keras 

from tensorflow.keras import layers 

from IPython import display 

from sklearn.model_selection import train_test_split 

import glob 

import imageio 

from compas.datastructures import Mesh 

from compas_plotters.meshplotter import MeshPlotter 

import networkx  

from networkx.algorithms.components.connected import connected_components 

from keras import layers, activations 

import os 

import pandas as pd 

import tensorflow as tf 

 

#Loading data 
#Open the dense mesh that will be used as a base for the adjacency matrix 

job_directory=os.getcwd() 

data= os.path.join(job_directory, "Trainning_data","dense_meshquarter.obj") 

meshdense = Mesh.from_obj(data) 

plotter = MeshPlotter(meshdense, figsize=(5, 5)) 

plotter.draw_edges() 

plotter.draw_vertices(text='key', radius=0.01) 

plotter.draw_faces() 

plotter.show() 

 
# Clear some bad meshes 

remove=[437,457,1123,1142,1307,1377,1772,1775,1781,1921,2050,2312,2364,2394,2439,2

639,2709,2717,2734,2754,2968,3128,3196,3283,3309,3359,3522,3524,3579,3597,3604,364

7,3669,3731,3759,3817,3839,4144,4203,4337,4391,4585,4591,4594,4610,4633,4994,5084,

5166,5390,5468,5661] 

dataset=np.delete(a, remove, axis=0)  
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# Remove best performed meshes from the training dataset 

best=[2102,1142,1721,4270,4884,705,3501,562,1367,5277] 

dataset_new= np.delete(dataset, best, axis=0) 

 

# Select 1/4 of the adjacency matrices 

lst_temp= 

[*range(0,9),*range(17,26),*range(34,43),*range(51,60),*range(68,77),*range(85,94)

,*range(102,111),*range(119,128),*range(136,145)] 

 

dataset_quarter=np.take(dataset_new,lst_temp, axis=1) 

dataset_quarter=np.take(dataset_quarter,lst_temp, axis=2) 

dataset_best=np.take(dataset,best, axis=0) 

dataset_quarter_best=np.take(dataset_best,lst_temp, axis=1) 

dataset_quarter_best=np.take(dataset_quarter_best,lst_temp, axis=2) 

 

# Get a mesh from an adjacency matrix 

def Mesh_from_mtx(mtx): 

    vertices_old = list(meshdense.vertices()) 

    v_old=[] 

    for i in vertices_old: 

        i_coordinates_old=Mesh.vertex_coordinates(meshdense, i, axes='xyz') 

        v_old.append(i_coordinates_old) 

 

    #get the connected edges 

    D=networkx.DiGraph(mtx)  

    edges = [[u, v] for [u, v] in D.edges()] 

 

    #sort the tuples of edges 

    temp=[] 

    for i in edges: 

        temp.append(tuple(sorted(i))) 

 

    #delete duplicate edges 

    temp=set(temp) #first create set 

    temp=tuple(temp) #convert set to tuple 

 

    #Convert to list 

    edges=[] 

    for i in temp: 

        z=[] 

        for y in i: 

            z.append(v_old[y]) 

        edges.append(z) 

 

    mrebuild=Mesh.from_lines(edges) 

    return (mrebuild) 
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#VAE 
#Sampling Layer 

class Sampling(layers.Layer): 

    """Uses (z_mean, z_log_var) to sample z, the vector encoding a digit.""" 

 

    def call(self, inputs): 

        z_mean, z_log_var = inputs 

        batch = tf.shape(z_mean)[0] 

        dim = tf.shape(z_mean)[1] 

        epsilon = tf.keras.backend.random_normal(shape=(batch, dim)) 

        return z_mean + tf.exp(0.5 * z_log_var) * epsilon 

 

#Encoder 

latent_dim = 10 

 

encoder_inputs = keras.Input(shape=(3240)) 

x = layers.Dense(1000, activation="relu")(encoder_inputs) 

x = layers.Dense(100, activation="relu")(x) 

z_mean = layers.Dense(latent_dim, name="z_mean")(x) 

z_log_var = layers.Dense(latent_dim, name="z_log_var")(x) 

z = Sampling()([z_mean, z_log_var]) 

encoder = keras.Model(encoder_inputs, [z_mean, z_log_var, z], name="encoder") 

encoder.summary() 

 

#Decoder 

 

latent_inputs = keras.Input(shape=(latent_dim,)) 

x = layers.Dense(100, activation="relu")(latent_inputs) 

x = layers.Dense(1000, activation="relu")(x) 

decoder_outputs= layers.Dense(3240, activation="sigmoid")(x) 

decoder = keras.Model(latent_inputs, decoder_outputs, name="decoder") 

decoder.summary() 

 

#VAE customize 

class VAE(keras.Model): 

    def __init__(self, encoder, decoder, **kwargs): 

        super(VAE, self).__init__(**kwargs) 

        self.encoder = encoder 

        self.decoder = decoder 

 

    def train_step(self, data): 

        if isinstance(data, tuple): 

            data = data[0] 

        with tf.GradientTape() as tape: 

            z_mean, z_log_var, z = self.encoder(data) 

            #reconstruction =tf.round(self.decoder(z)) 

            reconstruction = self.decoder(z) 

            reconstruction_loss = tf.reduce_mean( 

                keras.losses.mean_squared_error(data, reconstruction) 

            ) 

            reconstruction_loss *= 100 * 100 

            

            kl_loss = 1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var)  

            kl_loss = tf.reduce_mean(kl_loss) 
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            kl_loss *= -0.5  

 

            total_loss = reconstruction_loss + kl_loss  

        grads = tape.gradient(total_loss, self.trainable_weights) 

        self.optimizer.apply_gradients(zip(grads, self.trainable_weights)) 

 

        return { 

            "loss": total_loss, 

            "reconstruction_loss": reconstruction_loss, 

            "kl_loss": kl_loss, 

        } 

 

    def test_step(self, data): 

      if isinstance(data, tuple): 

        data = data[0] 

 

      z_mean, z_log_var, z = self.encoder(data) 

      reconstruction = self.decoder(z) 

      reconstruction_loss = tf.reduce_mean( 

            keras.losses.mean_squared_error(data, reconstruction) 

      ) 

      reconstruction_loss *= 100 * 100 

 

      kl_loss = 1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var) 

      kl_loss = tf.reduce_mean(kl_loss) 

      kl_loss *= -0.5 

      total_loss = reconstruction_loss + kl_loss 

 

      return { 

          "loss": total_loss, 

          "reconstruction_loss": reconstruction_loss, 

          "kl_loss": kl_loss, 

      } 

 

#dataset 

x_train = dataset_quarter.astype('float32') 

 

#train 

vae = VAE(encoder, decoder) 

vae.compile(optimizer=keras.optimizers.Adam(),metrics=['accuracy']) 

history = vae.fit(x_train, epochs=500, batch_size=64,validation_split=0.2) 

 

 

Check how the data are decoded 

test_mesh=dataset_quarter_best[1] 

testmesh= Mesh_from_mtx(test_mesh) 

plotter = MeshPlotter(testmesh, figsize=(2, 2)) 

plotter.draw_edges() 

plotter.draw_vertices(text='key', radius=0.01) 

plotter.draw_faces() 

plotter.show() 

test_mesh= test_mesh.astype('float32') 

test_mesh=test_mesh.reshape((1,81,81,1)) 

#tensor = tf.convert_to_tensor(test_mesh) 

x= vae.encoder(test_mesh) 
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mean=x[0] 

logvar=x[1] 

z=x[2] 

print(z) 

decodedtensor=vae.decoder(z) 

decodesarray=decodedtensor.numpy() 

mtx=decodesarray.reshape(81,81) 

array =np.zeros((81,81)) 

thr=0.4 

for i in range(mtx.shape[0]):  

    for y in range(mtx.shape[1]): 

        if mtx[i,y]>thr: 

            array[i,y]=1 

 

testmesh= Mesh_from_mtx(array) 

plotter = MeshPlotter(testmesh, figsize=(2, 2)) 

plotter.draw_edges() 

plotter.draw_vertices(text='key', radius=0.01) 

plotter.draw_faces() 

plotter.show() 

 

#Generate a mesh randomly from latent space 

tf_random=tf.random.uniform(shape 

    =[1, 10], 

    minval=-1, 

    maxval=1, 

    dtype=tf.dtypes.float32, 

    seed=None, 

    name=None 

) 

 
tf.Tensor( [[-0.8392136 -0.01628723 1.4019599 0.27650622 -2.1292992 
0.33380827 0.18326117 1.1488624 -1.7288721 -0.04750239]], shape=(1, 10), 

dtype=float32) 
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decodedtensor=vae.decoder(tf_random) 

decodedtensor=tf.round(decodedtensor) 

print (decodedtensor.shape) 

decodesarray=decodedtensor.numpy() 

mtx=decodesarray.reshape(81,81) 

testmesh= Mesh_from_mtx(mtx) 

plotter = MeshPlotter(testmesh, figsize=(2, 2)) 

plotter.draw_edges() 

plotter.draw_vertices(text='key', radius=0.01) 

plotter.draw_faces() 

plotter.show() 

 

 
#Get the loss history 

history.history.keys() 

history.history['loss'] 

 

 

#Save VAE 

Save_directory= os.getcwd() 

vae.get_layer('encoder').save_weights(Save_directory + "encoder_weights.h5") 

vae.get_layer('decoder').save_weights(Save_directory +"decoder_weights.h5") 

vae.get_layer('encoder').save(Save_directory + "encoder_arch") 

vae.get_layer('decoder').save(Save_directory +"decoder_arch") 

 

#Load VAE 

Load_directory= os.getcwd() 

encoder= keras.models.load_model(Load_directory + "encoder_arch")  

decoder= keras.models.load_model(Load_directory +"decoder_arch 

vae = VAE(encoder, decoder) #You need to have VAE class defined for this to works 

vae.get_layer('encoder').load_weights(location + "encoder_weights.h5")  

vae.get_layer('decoder').load_weights(location +"decoder_weights.h5")  

vae.compile(optimizer=keras.optimizers.Adam()) 
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#Surrogate 
location_labels= os.path.join(job_directory,LABELS.csv") 

column_names=["Maximum_displacement[cm]","Utilization","Mass[kg]","Norm_dis","Norm

_Util","Norm_Mass","perf","perf_stand","perf_norm"] 

labels_temp = pd.read_csv(location_labels, names=column_names) 

labels_temp.drop(labels=None, axis=None, index=best, columns=None, level=None, 

inplace=True, errors='raise') 

labels_temp.reset_index(drop=True, inplace=True) 

labels_temp.head() 

 

 
 

#exclude 50 samples from training the surrogate 

lst=[] 

for i in range(50):  

    lst.append(i)  

     

train_labels=labels_temp["perf_norm"] 

labels_np=np.array(train_labels) 

labels_np=labels_np.astype('float32') 

labels_np=labels_np.reshape(5879,1) 

y_train=np.delete(labels_np, lst, axis=0) 

 

#Trainning data pre-process 

features_np = np.asarray(out) 

x_train=np.delete(features_np, lst, axis=0) 

x_test=np.take(features_np,lst,axis=0) 

print (x_test.shape) 

y_test=np.take(labels_np,lst,axis=0) 

print (y_test.shape) 

 

#Surrogate-Linear Regression 

normalizer = tf.keras.layers.Normalization(axis=1) 

 

def build_and_compile_model(normalizer): 

  model = keras.Sequential([ 

      normalizer, 

      keras.Input(shape=(1,81,81)), 

      layers.Flatten(), 

      layers.Dense(32, activation='relu'), 

      layers.Dense(32, activation='relu'),  

      layers.Dense(1) 

  ]) 

 

  model.compile(loss='mean_absolute_error', 

                optimizer=tf.keras.optimizers.Adam(5e-4)) 

  return model 
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dnn_model = build_and_compile_model(normalizer) 

 

#Train 

history = dnn_model.fit( 

    x_train, 

    y_train, 

    validation_split=0.2, 

    verbose=1, epochs=100,batch_size=32) 

 

 

#Get loss history 

loss=history.history['loss'] 

 

#Save the surrogate model 

save_path= os.getcwd() 

dnn_model.save(save_path) 

 

loc_history_loss=os.path.join(job_directory,save_his,"loss") 

loc_history_val_loss=os.path.join(job_directory,save_his,"val_loss") 

 

 

#Gradient Descent 
latent_dim = 10 

gradient_lst=[]#this is the root mean square gradients list 

perf_lst=[]#this is the performance list 

mesh_lst=[]#this is the adjacency matrices list 

 

test_mesh=dataset_eval[4775] 

test_mesh= test_mesh.astype('float32') 

test_mesh=test_mesh.reshape((1,81, 81)) 

x= vae.encoder(test_mesh) 

z=x[2] 

 

#Gradient descent for a single sample: 

for i in range(100):  

    with tf.GradientTape() as tape: 

        tape.watch(z) 

        decodedtensor=vae.decoder(z) 

        decodedtensor= layers.Reshape((1,81,81))(decodedtensor) 

        y = dnn_model_loaded(decodedtensor)  

        gradient = tape.gradient(y,z) 

 

    gr_arr=gradient.numpy().reshape(latent_dim) 

    rms=np.sqrt(np.mean(gr_arr**2)) 

    gradient_lst.append(rms) 

    yarr=y.numpy() 

    yarr=yarr.reshape(1)     

    perf_lst.append(yarr[0])          

    decodedtensor=vae.decoder(z) 

    decodedtensor=tf.round(decodedtensor) 

    decodesarray=decodedtensor.numpy() 

    mtx=decodesarray.reshape(81,81) 

    mesh_lst.append(mtx) 

    z=z-(lr*gradient) 
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    if yarr[0]<0.19: 

         break 

 

#VAE for option 1: Using the structure of vertices as training data 
#Load data 

File= os.getcwd() 

dataset=np.load(file, mmap_mode=None, allow_pickle=False, fix_imports=True, 

encoding='ASCII') 

 

#Normalize 

dataset = dataset.astype('float32') / 15. 

 

#Dataset pre-processing 

dataset = dataset.reshape((dataset.shape[0], 81, 3))  

train_dataset,test_dataset=train_test_split(dataset, test_size=0.2, 

train_size=None, random_state=None, shuffle=True, stratify=None) 

 

train_size = (train_dataset.shape)[0] 

batch_size = 32 

test_size = (train_dataset.shape)[1] 

 

train_dataset = (tf.data.Dataset.from_tensor_slices(train_dataset) 

                 .shuffle(train_size).batch(batch_size)) 

test_dataset = (tf.data.Dataset.from_tensor_slices(test_dataset) 

                .shuffle(test_size).batch(batch_size)) 

 

#Sampling later is the same as option 2 

#Class VAE is the same as option 2 

 

#Encoder 

latent_dim = 9 

encoder_inputs = keras.Input(shape=(81, 3, 1)) 

x = layers.Flatten()(encoder_inputs) 

x = layers.Dense(81, activation="relu")(x) 

z_mean = layers.Dense(latent_dim, name="z_mean")(x) 

z_log_var = layers.Dense(latent_dim, name="z_log_var")(x) 

z = Sampling()([z_mean, z_log_var]) 

encoder = keras.Model(encoder_inputs, [z_mean, z_log_var, z], name="encoder") 

encoder.summary() 

 

#Decoder 

latent_inputs = keras.Input(shape=(latent_dim,)) 

x = layers.Dense(81, activation="relu")(latent_inputs) 

x = layers.Dense(81*3, activation="sigmoid")(x) 

decoder_outputs = layers.Reshape((81, 3))(x) 

decoder = keras.Model(latent_inputs, decoder_outputs, name="decoder") 

decoder.summary() 

 

 

#Trainning 

vae = VAE(encoder, decoder) 

vae.compile(optimizer=keras.optimizers.Adam()) 

history = vae.fit(dataset, epochs=200, 

batch_size=64,validation_split=0.2,verbose=2) 
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FEM SIMULATION AT GRASSHOPPER WITH KARAMBA3D  
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TIMELINE: 

 

Choose Topic 

16th November P1 Presentation 

Study Literature related to AI Generative Models 

Study Literature related to possible study cases 

Experiment with Generative Models and existed Tutorials 

Study Python libraries (COMPAS) 

Write report 

4th April   P2 Presentation  

8th  May   Finish the generation of the training dataset                             

15th  May   Finish FEM simulations and label the data 

Start Building  a Variational Autoencoder Model 

Finish training a Variational Autoencoder and check if 

 more training data are needed 
 

1st June `  P3 Presentation 

30th June  Build a basic Surrogate Model 

30th June  Build a basic Gradient Descent Optimizer 

   Train a Surrogate Model  

30th July  Check if the Surrogate Model is trained successfully 

   Run a Gradient Descent Algorithm  

1st -30th August Vacation 

20th September Gather results and check if better results are being produced 

Make any needed improvements 

Gather conclusions 

Reflect on possible improvements 

   Finish the Report 

15th October  P4 Presentation 

Make corrections based on  remarks and Improve the Report 

October final week P5 Presentation 

 

 
 


