

Deep Generative Design

A Deep Learning Framework for Optimized Shell Structures

1

TU Delft

MSc Architecture, Urbanism & Building Sciences

Building Technology Track

Studio: Building Technology Sustainable Design Studio

Student

Stella Pavlidou

Student Number: 5385571

Mentors

Dr. Charalampos Andriotis, Structural Design & Mechanics

Dr. Michela Turrin, Design Informatics

Delegate of the Board of Examiners

Herman de Wolff

2

ABSTRACT

In an urban context that needs to be constantly adapted to global crises, population

movements, climate change and economic crises, designers and engineers strive to

configure solutions that respond to multiple criteria. Within this framework, the concept of

generative design is gaining more and more ground in the construction field, allowing rapid

design space exploration, optimization and decision making for complex design problems.

This thesis implements an experiment in a common design problem such as optimizing the

topology of shell structures for structural performance, using an Artificial Intelligence

Framework. To implement this experiment a novel dataset consisting of various mesh

tessellations is created. The next step is to design a generative workflow that combines

unsupervised and supervised learning along with a Gradient Descent Algorithm for pattern

generation, structural performance estimation and optimization. A Variational Autoencoder is

trained to generate new mesh tessellations and a Surrogate Model is used to predict the

structural performance of the decoded designs. Finally, a Gradient Descent Algorithm

searches the latent space of the Variational Autoencoder for optimum solutions.

The results show that the proposed Artificial Intelligence workflow is able to generate novel

and structurally better performing solutions that those existing in the training dataset. The

findings of this thesis indicate that Artificial Intelligence can be successfully integrated into

the concept of Generative Design to optimize shell structures.

Keywords: Generative Design, Structural Optimization, Mesh Shells, Tessellations, Artificial

Learning, Machine Learning, Deep Learning, Unsupervised Learning, Supervised Learning,

Gradient Descent, Finite Element Method

3

ACKNOWLEDGMENT

Completing these two years of my studies, I feel extremely fortunate for everything I have

learned, for every course and lecture that shaped my perspective, allowing me to discover

new creative and innovative fields.

I can’t think of a topic closer to my interests nor having better guidance than my mentoring

team. I want to thank both my mentors for introducing Artificial Intelligence to the curriculum

of Building Technology, broadening my horizons and allowing this thesis to exist. I am

infinitely grateful for every minute of valuable consultation with Charalampos Andriotis, who

patiently and insightfully guided me to the completion of my thesis. I am also thankful for the

all the apt remarks and encouragement I received from Michela Turrin.

Throughout this process I had the unlimited support of my family and friends. I could not

have attempted this step without my mother and sister motivating me to challenge myself,

without the love of Ifigeneia and Anastasia and the comfort of knowing that Maria and

Antonis were by my side when I needed them. I would also like to thank Sean Virk for his

help and support during the last year as well my AI buddy, Namrata Baruah who reminded

me that “we can do it”.

4

ABBREVIATIONS

AI: Artificial Intelligence

ML: Machine Learning

VAE: Variational Autoencoder

GD: Gradient Descent

NN: Neural Networks

FEM: Finite Element Method

KL: Kullback-Leibler divergence

GAN: Generative Adversarial Network

5

CONTENTS

ABSTRACT………...…………………………………………………………………………………2

CONTENTS………………………………………………………………………………………...…5

1 INTRODUCTION…………………………………………...………………..………………..7

1.1 Background…………………………………………………………………………..…..…....…8

1.1.1 Generative Design………………………………………………...……..…8

1.1.2 Importance of topology exploration in Shell Structures…..........…....…9

1.2 Problem Statement and Design Assignment ………………………………………..……....10

1.3 Research Questions……..…………………………………………………………..……..…..10

1.4 Objectives and Boundary Conditions ………………………………………………...…..…..11

1.5 Methodology …………………………………………………………………….……..……….12

2 LITERATURE REVIEW……………………...………………………………...………….......14

2.1 Artificial Intelligence…………………………………………………………...…………..……15

2.1.1 Neural Networks……………………………………….………………….15

2.1.2 Types of Neural Networks…………………………..…..…………….....18

2.1.3 Supervised and Unsupervised learning………………..….…………….18

2.1.4 The Learning Curves…………………...…………………………………20

2.1.5 Gradient Descent Optimizers………………..………………………..….21

2.2 Meshes ……………………….………………………………………...……………………….23

2.2.1 Mesh Data Structures…………………….……………………………….23

2.2.2 Graph Data Structures: Adjacency Matrices ……………….…….……25

2.3 Mesh Tessellations……………………………………………..………………………………26

2.3.1 Methods of subdivision……………………………………………………26

2.3.2 Singularity……………………………………………………….…………27

2.4 Examples…………………………………………………………………….……………..…...29

2.4.1 Feature-based topology finding of patterns for

shell structures…………………………………………………….………29

.

2.4.2 How to teach neural networks to mesh:

 Application on 2-D simplicial contours…………………………………31

.

2.4.3 Robust Topology Optimization

using Variational Autoencoders…………………………………………33

6

2.4.4 Deep Generative Design: Integration of

Topology Optimization and Generative Models……………………….34

3 DATASET GENERATION………….……………………………..…………………...….......35

3.1 Constructing a Mesh………………………….…….…………………………………………36

3.2 Creating subdivision patterns………………………..…………………………….………….37

3.3 Method explanation………………………………………………….……..………………….37

3.4 Dataset pre-processing for training AI models………………………………..……………..42

3.5 Dataset Generation……………………………………………………………………….……45

3.6 FEM Simulation……………………………………………………………….………………..47

3.7 Dataset Augmentation…………………………………………………..……………..………49

4 AI WORKFLOW………………………………………...………………………………………50

4.1 The Variational Autoencoder…………………………………………………...……………..51

4.1.1 Architecture…………………………………..…………………………….51

4.1.2 Data pre-processing……………….…………………….………………..51

4.1.3 VAE loss-function….…….…………………………………….…………..52

4.1.4 Sampling Layer.……..………………………..……………...……………53

4.1.5 Encoder-Decoder……...........………………….. ..……..……………….54

4.2 Surrogate Model…………………………………………………………………..……………65

4.3 Gradient Descent Optimization…………………………………………...…….…………….69

4.4 Results………………………………………………………………………………………..…80

5 APPLICATION…………...………………………………..…………………….…………...…81

6 CONCLUSIONS………………………………...……………………………..……………….86

6.1 Research Questions………………………………………………………..…….……………87

6.2 Limitations……………………………………………………………………..………………..88

6.3 Discussion and Future Development…………………………………………………………89

7 REFERENCES…………………………………………………………....……..………..…....93

8 APPENDIX…..…………………………………………………………....……..………..…....96

7

1. INTRODUCTION

8

1.1 Background

The built environment industry is responsible for massive amounts of energy usage and

employ millions. Sustainable design and construction is a necessity. Early stage decisions

affect significantly the final outcome with respect to cost, structural performance, assembly

time, etc. Generative tools that allow a deeper exploration of the design space are desirable.

Topology exploration and optimization is a critical field, which includes early-stage decisions,

affecting significantly the performance of the final structure as well as its aesthetics. Using

the power of computation, we can define goals and set constraints to generate designs that

meet both our qualitative and quantitative criteria. That can be a time consuming and

computationally heavy process. Therefore, technologies that allow a deep investigation of

the design space can be powerful and decisive tools.

Artificial Intelligence (AI) is altering the way of learning and problem-solving in most scientific

fields. As the world faces urgent and complex challenges, AI comes to the forefront of

research to improve the decision-making process.

1.1.1. Generative Design

The concept of Generative Design allows for a more integrated workflow between

designer/engineer and computer and a deeper exploration of the design space beyond the

traditional design techniques. Inspired by nature’s evolutionary approach it as the iterative

process that assesses the design’s variants to fit specific design criteria and finds the

optimum solution. (McKnight, 2017)

Creating a Generative Workflow involves the following steps:

Step 1 In this step design’s variants and the performance indicators are specified.

Step 2 A algorithmic generative model produces a large amount of design options

based on the step 1.

Step 3 An interactive environment is created where the de sign/ engineer can update

the design’s variants.

Step 4 Upon receiving the results the parameters and goals are adjusted and the

generative design system will then iterate until the most relevant solution is

found.

Step 5 The final design is received as an outcome.

9

Figure 1.1. Robert and Arlene Kogod Courtyard
(Young)

Figure 1.2. Robert and Arlene Kogod
Courtyard (Gehry Partners, 2014)

1.1.2. Importance of topology exploration in Shell Structures

Shell structures have evolved over time from stone masonry domes to brick and concrete

structures as well as timber and metal networks. They usually consist of beam networks that

integrate cladding systems. Thanks to their curvature they are stiff structures that can

enclose large spaces. Modern applications of shell structures include light weight skins with

visible beam networks.

Examples of shell structures

The design process of these structures begins with the investigation of mesh tessellation

options and then structural verifications using finite element method (FEM). Their topologies

define architectural aesthetics, structural performance as well as cost, assembly complexity

and time. The pattern exploration of their topologies is a time-consuming process yet

matters. Therefore, tools that ease and improve this process can be immensely helpful.

Computational tools can be integrated in the design process for topology finding patterns but

heuristics is often needed (Oval et al., 2019).

10

1.2 Problem Statement and Design Assignment

The topology of shell structures is critical and affects cost, assembly time, structural

performance, and aesthetics. Designers and engineers need conceptual and practical tools

to explore it. There are many variants that describe a design and exploring the design space

for optimum solutions is a time-consuming process. Generative Models that integrate

Artificial Intelligence can minimize the number of variants in a smaller sized space and could

potentially be integrated in an optimization workflow.

1.3 Research Questions

Main Question

According to the problem statement, mentioned above, the main research question is if an AI

based framework can generate new structurally effective solutions, in relation to the dataset

that was used for training. This would prove that AI can be a powerful creative assistant for

designers and engineers, and could potentially help expand the possibilities of generative

design.

Sub-question

• Can a Variational Autoencoder be trained to generate mesh tessellations?

• What form of data can be used to train a Variational Autoencoder to generate mesh

tessellations?

• Can a surrogate model learn to predict the structural performance of encoded data

occurring from samples describing truss shell structures?

• Can a surrogate model learn to predict the structural performance of decoded data

occurring from samples describing truss shell structures?

• Can a Gradient Descent Optimizer propagate back to encoded data to search for

optimum solutions?

11

1.4 Objectives and Boundary Conditions

The purpose of this thesis is to prove that AI can be a powerful assisting tool for designers

and engineers. A helpful AI workflow would request for certain boundary conditions as an

input (such as shape, structural performance, etc) and produce effective solutions.

Due to time limitation this thesis is restricted in terms of input criteria. The criterion for the

suggested workflow is structural performance for mesh shell patterns with specific

boundaries.

This workflow includes a generative model able to produce mesh tessellations with a specific

boundary and a surrogate model able to predict a design’s structural performance. The

architecture of the generative model is that of the Variational Autoencoder, an Artificial

Neural Network architecture introduced by Diederik P. Kingma and Max Welling (Kingma &

Welling, 2014).

 A Gradient Descent Optimizer is integrated in the workflow to search the design space for

effective solutions.

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Max_Welling

12

A training dataset is needed that according to bibliography should exceed 1000 samples.

The samples need pre-processing to be used in training machine learning models.

Appropriate options for the form of the training dataset will be explored.

Computational power is crucial in training machine learning models. For this reason, TU

Delft’s supercomputer “Delftblue” is used.

1.4 Methodology

Literature Review: The first step is to investigate existed research examples. The methods

for pattern generation in shells structures must be defined. Then existed research for

generative design and optimization using AI models will be reviewed. During this process,

the computational tools that will be used have to be specified. To familiarize with these tools

and models, an experimentation with existed tutorials is needed.

Design the Training and Optimization Framework: Based on the literature review a

framework will be proposed that might be altered slightly during the training process

The proposed steps are:

• Create the dataset and measure its structural performance (performance indicators

will be displacement, utilization and the structure’s mass), using Finite Element

Method software (FEM).

• Train a Variational Autoencoder with the produced data.

• Decoded Data is used to train a surrogate model that is able to predict a design’s

structural performance.

• Use a Gradient Based Optimizer that propagates back to the encoded data to search

for best solutions.

13

• Produced results are assessed to see if more effective solutions are generated.

14

2. LITERATURE REVIEW

15

2.1 Artificial Intelligence, Machine Learning and Deep Learning

In the 21st century, the amount of digital information created is astonishing. Since 2020 we

produced 90% of the world's data(Bradshaw, n.d.). Massive amounts of information need to

be processed daily, making our lives increasingly dependent on learning algorithms.

Machine learning (ML) is a part of computer science and allows machines to learn from data

without being explicitly programmed. It is often used as a synonym of Artificial Intelligence

although it is actually its subfield. AI the general term used to classify systems that mimic

human intelligence whereas ML is more about extracting knowledge from the data. It can be

used to predict, automate, perfect tasks and generate new systems.

Deep learning is a subset of machine learning and it is based on artificial neural networks

able mimic the learning process of the human brain.

(Manager, 2020)

Figure 2.1 We can understand AI, Machine Learning and Neural Networks and Deep Learning like Russian nesting dolls
(Manager, 2020)

2.1.1 Neural Networks

Neural networks (NNs) are the heart of deep learning algorithms. Their name and structure

are inspired by the biological neural networks that brains have. They consist of or artificial

neurons or node layers. They have an input layer, one or more hidden ones and an output

layer. (What Are Neural Networks?, 2020)

The following image describes how an artificial neuron is constructed. Each one has an

input and an output. The input consists of values for which the NN needs to predict the

output value. The input data are assigned weights which describe their importance. The

purpose of the summation function is to bind the inputs and their respective weights

together and find their Sum. Bias is used to shift the Sum towards left or right. An activation

function transforms the output of the node and decides whether the neuron can be

activated. (Sharma, n.d.),(Ganesh, 2020)

https://www.ibm.com/cloud/learn/deep-learning
https://en.wikipedia.org/wiki/Biological_neural_network
https://en.wikipedia.org/wiki/Brain

16

Figure 2.2 Inside an artificial neuron

Activation Functions

In artificial neuron the activation function decides whether the neuron can be activated or not

and defines its output. The ReLU and Sigmoid are two non -Linear activation functions that

are used in this thesis. The function of ReLU will output the input directly if it is positive, and

zero if it is negative. It is probably the most popular activation function due to its

computational efficiency and fast convergence. A problem with ReLU is that the outputs go

far away from zero. That problem can be treated with Sigmoid, a function known to be very

good for classification problems and whose output always ranges between 0 and 1. Sigmoid

however is computationally heavy and slow converged. (Vinodhkumar, 2020a)

Figure 2.3 From left to the right: ReLu and Sigmoid activation functions.

Learning

When the training dataset is too big, we cannot process it all at once. The dataset is

therefore divided into a number of batches or sets, that pass forward through the NN’s

nodes. This process is also called propagation. The NN calculates the error between the

expected output and the NN’s output, called loss function. The backpropagation algorithm

computes the gradient of the loss function with respect to the weights and an optimizer

adjusts them. The process of propagation and backpropagation through which the weights of

the nodes are adjusted to fit the input to the expected output is called learning. When a

whole dataset has entered the neural network we say that an epoch is completed. The goal

https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Loss_function
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#weight

17

of the NN is to decrease this loss function, as much as possible to reach its convergence.

(Vinodhkumar, 2020b) (Daoud, 2020) (Stojiljković, n.d.), (Sharma, 2017)

Figure 2.4 Learning process.

Deep Learning Algorithms

The depth, of neural networks is what defines if it is a simple or a deep learning NN. If the

number of node layers is more than 3 then we talk about a deep learning algorithm.

(Manager, 2020).(Sharma, n.d.) (What Are Neural Networks?, 2020).

Figure 2.5 A Simple NN versus a Deep Learning NN.

18

2.1.2 Types of Neural Networks

Feed Forward Neural Network

A Feed Forward NN is the first and the simplest type of an NN in which the connections of

the nodes move to a single direction and don’t form a circle or loops.(Feed Forward Neural

Network, 2019)

Recurrent Neural Networks

The opposite of a Feed Forward NN is the Recurrent NN which has loops. The advantage of

this type of NNs is that it remembers previous inputs, therefore they can be used when

training data occur from a series of observations over time (time-series data). (What Are

Neural Networks?, 2020)

Fully Connected Neural Network:

A Fully Connected NN (FCNN) consists of a series of fully connected layers or dense layers.

These layers connect every neuron in one layer to every neuron in the next one. The

advantage of fully connected networks is that they are “structure agnostic.”, meaning that no

special assumptions need to be made about the input (for example, that the input consists of

images or videos). This allows them to be used broadly, for more general purposes.

However they tend to have weaker performance than special-purpose networks.(Ramsundar

& Zadeh, 2022)

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are mainly used for image recognition, pattern

recognition and computer vision. These networks apply principles from linear algebra, to

identify patterns within an image. (What Are Neural Networks?, 2020)

2.1.3 Supervised and Unsupervised learning

When it comes to machine learning there are two types:

• Supervised learning, used for prediction tasks

• Unsupervised learning, used for generation

a. Supervised Learning

In supervised learning the training is being operating with a prior knowledge of the outcome

target. Supervised learning can be done for classification or prediction problems.

Classification NNs are used to fit training data to discrete values like a true or false value, or

gender, etc while regression NNs try to fit them to continues values like price, time, etc.

(Soni, 2022)

https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://www.ibm.com/cloud/learn/recurrent-neural-networks

19

Surrogate Models

Performance is critical aspect of design. Computer simulations can calculate a system’s final

behaviour. Engineers rely on those simulations to perform sensitivity analysis for multiple

parameters, optimization and risk analysis. Simulations can be heavy computationally.

Heavy simulations can be replaced by a statistical model, called a surrogate model. It is a

case of supervised learning, meaning that we are using labelled data. Through this model

we can predict the final output. (Guo, 2020) (Guo, 2020)

b. Unsupervised Learning

In contrast to supervised learning where data are labelled, unsupervised learning exhibits a

self-organization that aims to understand the pattern of the given samples and build a

compact internal representation of the data

Variational Autoencoders

An autoencoder is a case of unsupervised learning, used for dimension reduction. Its neural

network consists of two pairs of neural networks: an encoder and a decoder. The encoder

has input of nodes and consists of hidden layers that are able to reduce the number of

nodes describing the input data.

Encoded data are directed to a hidden layer called bottleneck or latent space. This layer

has a lower dimensionality than the original input. The decoder performs the inverse

process. It takes a vector point from the compressed representation in the latent space and

reconstructs a corresponding output.

.

This architecture allows keeping key information of a large database and storing it using less

memory.

Figure 2.6 An autoencoder.

Autoencoders can be converted to deep learning generative models called Variational

Autoencoders (VAEs). These models sample data from the latent space and reconstruct

them through the decoder producing realistic systems such as images, texts, sounds, etc.

But they use a slightly different encoding-decoding process: instead of encoding an input as

a single point, it is encoded as a distribution over the latent space.

A problem that comes with the dimensionality reduction is that the trained latent space may

not be regular, having gaps between clusters. The lack of regularity means an autoencoders

cannot generate new content. If the sample point is for instance from a gap the output can

https://en.wikipedia.org/wiki/Supervised_learning

20

be unrealistic. The VAE is an autoencoder that ensures that the encoding distribution is

regularized during the training process, allowing us to generate new data.

The loss function used when training a VAE has two terms: a “reconstruction term” (on the

final layer), that tends to make the encoding-decoding scheme as performant as possible,

and a “regularization term” (on the latent layer), that tends to regularize the organisation of

the latent space. This regularization term is called the Kullback-Leibler divergence (kl

divergence).

(Rocca, 2019).

Figure 2.7 From left to the right: Only reconstruction loss, Only KL divergence and both (Shafkat, 2018)

2.1.4 The Learning Curves

The learning curve can help us access how well is the model learning over the time of

training. The state of the model’s performance is evaluated through how well it has learned

to minimize the loss function. The Train Learning Curve represents the learning curve how

well it has learned to predict the dataset’s output. We can also exclude a part of the dataset

that will give as the Validation Learning Curve, that will demonstrate how well has the

model learned to generalize.

There are three states that can describe a model’s training :

• Overfit.

• Underfit.

• Good Fit

Figure 2.8 Learning Curves.

Epochs

L
o

s
s

Epochs

L
o

s
s

Epochs

L
o

s
s

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

21

Overfit happens the model has learned to predict the outcome of the dataset (the model fits

exactly to its training data) but is not able to generalize to new data. The loss function in this

case drops for the training data and increases for the validation dataset.

Underfit occurs when the model fails to learn. In this case both the train and the validation

learning curve don’t drop enough

When no overfitting nor underfitting occur and the model fits well to the dataset and the

validation dataset then we have accomplished a Good Fit.

(Brownlee, 2019)

2.1.5 Gradient Descent Optimizers

The Gradient Descent is an iterative algorithm, used for optimization to find the best result of

a function (minima of a curve).

There are different instances of Gradient Descent Based Optimizers:

• Batch Gradient Descent or Vanilla Gradient Descent or Gradient Descent (BGD)

• Stochastic Gradient Descent (SGD)

• Mini batch Gradient Descent (MB-GD)

Batch Gradient Descent

The BGD is the most basic and used optimizer. It starts from an arbitrarily chosen position of

the point or vector Θ= (Θ₁ , …, Θn) and moves it iteratively in the direction of the fastest

decrease of the loss function.

Α GD is described by the following formula:

Θj = Θj - a
𝜕

𝜕𝛩𝑗
 J (Θ0, Θn,)

α : Learning rate that determines how large the update or moving step is.

J : Loss function

Θ: Parameter to be updated

The BGD is easy to implement but requires a lot of memory as the entire dataset is loaded at

a time to compute the derivative of the loss function.

Stochastic Gradient Descent

To overcome the problem of high memory usage that the BGD needs, the SGD comes with

a modification. BGD considers the entire dataset to compute the gradient. SGD however

picks a “random” instance of training data at each step and then computes the gradient.

Therefore, the model’s parameters are updated after the loss computation on each training

set. Consequently, the steps taken towards the minima can be very noisy.

22

Mini batch Gradient Descent (MB-GD)
The MB-GD is an extension of the SGD algorithm and is considered the best among all the

variations of gradient descent algorithms. This algorithm divides the dataset into various

batches and after every batch, it updates the parameters. MB-SGD remains noisier

compared to GD and takes a longer time to converge but requires less memory.

(GOYAL, n.d.),(Stojiljković, n.d.), (Sharma, 2017)

23

2.2 Meshes

2.2.1 Mesh Data Structures

A Mesh network is a topology that describes the connections between nodes or vertices to

edges and faces. A mesh is also a manifold if every edge is adjacent to one boundary or

two faces. There are two common data structures that describe meshes:

• Face-Vertex Lists

• Half-Edge Data Structure

 Face – Vertex Lists

This is the simplest representation of a mesh. It consists of an ordered list of vertices with

their coordinates and a list of faces with each face being a list of the indices of the vertices

that it occurs from. (Löffler & Vaxman, 2016),(L. Chen, 2014)

 Figure 2.9 A simple mesh.

Vertex Coordinate

v1 (x1,y1,z1)

v2 (x2,y2,z2)

v3 (x3,y3,z3)

V4 (x4,y4,z4)
 Table 2.1 List of Vertices

Vertex Coordinate

F1 v1, v2, v3

F2 v1, v3, v4
 Table 2.2 List of faces

Half-Edge Data Structure

This is a data structure that encodes more information about the structure of a mesh. First

we must explain the meaning of half-edge. A half-edge describes the connection of two

vertices in a single direction meaning that an edge consists of two edges. Each half-edge

references to one starting point assuming a counter-clockwise order.

Half-Edge Data Structure consists of:

24

• A list of vertices that includes its coordinates and one outgoing half-edge.

• A list of half edges that stores the origin vertex, the twin half-edge, the next half-edge

and the previous.

(Löffler & Vaxman, 2016)

Figure 2.10 Half-Edge Data Structure.

Vertex Coordinate Outgoing Edge

v1 (x1,y1,z1) e 1,2

v2 (x2,y2,z2) e 1,1

v3 (x3,y3,z3) e 3,2

V4 (x4,y4,z4) e 4,2
 Table 2.3 List of Vertices

Half-edge Origin Twin Next Previous

e 1,1 v2 e 1,2 e 2,1 e 3,2

e 1,2 v1 e 1,1 e 3,1 e 2,2

e 2,1 v1 e 2,2 e 4,1 e 1,1

e 2,2 v3 e 2,1 e 1,2 e 3,1

e 3,1 v2 e 3,2 e 2,2 e 1,2

e 3,2 v3 e 3,1 e 1,1 e 4,2

e 4,1 v3 e 4,2 e 4,2 e 2,1

e 4,2 V4 e 4,1 e 3,2 e 1,1

e 5,1 v1 e 5,2 e 1,2 e 4,1

e 5,2 V4 e 5,1 e 4,2 e 1,1
` Table 2.4 List of half-edges

(Faces can also be stored in the Half-Edge Data Structure but are optional)

25

2.2.2 Graph Data Structures: Adjacency Matrices

The connections of non-linear data can be described through Graphs. Graphs consist of a

set of nodes or vertices and a set of edges that connect them.

 Figure 2.11 Graph Data structure.

Vertices= [v1, v2, v3, v4, v5]

Edges= [[v1, v2,], [v2, v3,], [v3, v1,], [v1, v4,], [v3, v4,]]

These networks can be described in the form of adjacency matrices. These matrices have

rows and arrays that respond to the vertices. An undirected connection (an connection with

no direction) between v1 and v2 means that the cells (v1,v2) and (v2,v1) are assigned a

value of 1. No connection as that between v2 and v4 means that the cells (v2,v4) and (v4,v2)

have 0 value.(Millan & Ochoa, 2020),(Sauras-Altuzarra, 2022)

 V1 V2 V3 V4

V1 0 1 1 1

V2 1 0 1 0

V3 1 1 0 1

V4 1 0 1 0

Table 2.5 Adjacency Matrix

26

Figure 2.11 A coarse control mesh and
the application of the quad subdivision
(Oval et al., 2019)

2.3 Mesh Tessellations

The tessellation process includes two essential steps:

Coarse control mesh:

The designer starts by defining a coarse

control mesh

Method of subdivision:

The designer can then apply multiple algorithms

for subdividing the faces of the coarse control mesh

2.3.1 Methods of subdivision

Loop subdivisions

There are various mesh-subdivision loop schemes. Catmull-Clark subdivision produces

quadrilaterals faces. The Doo-Sabin subdivision creates four faces and four edges (valence

4) around every new vertex in the refined mesh. The Butterfly/Loop subdivision introduces a

smooth subdivision scheme for triangle meshes (Bennett et al., 2003).

Convey operators

Convey operators can be used to transform the subdivision pattern of the surface by keeping

the same symmetry. Operators like Dual, Ambo, Kis and Truncate replace the vertices,

edges and faces of an original mesh with a combination of new vertices, edges and faces.

They can also be combined to form more complex ones(Shepherd & Pearson, 2013).

In the images below the blue pattern is the original subdivision and the white one the new

after the application of the convey operator.

Figure 2.12. From left to the right: coarse control mesh, Catmull-Clark subdivision , Doo-Sabin subdivision,
Butterfly/Loop subdivision

Figure 2.13 For left to right: Dual, Ambo, Kis, dual operation, followed by a Kis, followed by another Dual (Shepherd & Pearson, 2013).\

27

Meshes with a Quad-Based Topology

This thesis is focused on meshes with Quad-Based Topology. We can distinct three main

categories for these meshes

Quad meshes: They consist of quad faces, meaning that every face list four vertexes

Coarse quad meshes: A mesh strip can be parental for another quad mesh, creating a

varied densification of the structure

Pseudo-quad meshes: Most of the faces are quads with some being pseudo-quad meaning

that are geometrically like triangles but topologically like quads. (Oval et al., 2019)

Figure 2.14. From left to the right: Quad meshes, Coarse quad meshes, Pseudo-quad meshes

2.3.2 Singularity

Singularities in meshes are vertices that have irregular valency vertices. We can specify the

mesh singularities on quadrilateral meshes by defining a coarse control mesh(Fogg et al.,

2018). From each singularity with valence n we can trace out n curves, consisting of sets of

edges that end at other singularities or the boundary of the mesh. We refer to these curves

as the separatrices(Xu et al., 2020).

Figure 2.15. Different coarse meshes that result into meshes with different separatrices and singularities

According to the behaviour of these separatrices and the number of singularities we can

classify the quad meshes in four categories:

1. Unstructured quad-mesh, where a large part of its vertices are singularities

https://resources.turbosquid.com/training/modeling/quad-based-topology/
https://resources.turbosquid.com/training/modeling/quad-based-topology/

28

2. Valence semi-regular quad-mesh. Here the number of singularities is few, but the

separatrices have a complicated behaviour.

3. Semi-regular quad-mesh: The separatrices divide the quad-mesh into several topological

rectangles, the interior of each topological rectangle is regular grids.

4. Regular quad-mesh: There are no singularities.

(W. Chen et al., 2018)

29

2.4 Examples

2.4.1 Feature-based topology finding of patterns for shell structures

R. Ovala,b,*
,
 M. Rippmannb, R. Mesnila, T. Van Meleb, O. Baverela, P. Blockb

In his research R. Oval proposes a computational method based on singularity meshes to

design quad-based mesh tessellations. The workflow’s input can be curves or points and the

mesh’s curve boundary. This input results to a medial axis and a coarse control mesh. A

quad subdivision follows. The author provides a python library integrated in the COMPAS

python library for geometry processing.

Steps:

1. Input: Curves or Points

2. Medial Axis

3. Coarse Mesh

4. Quad-based subdivision: Application of a quad-based subdivision algorithm

The different inputs result in various patterns

Pole points are points with a high valency. These points attract forces and are harder to

materialise. They can be controlled during the skeleton-based generation or by adding and

deleting strips at the coarse mesh.

30

Studying the case of the roof of the British Museum, the author assesses the structural

performance of the shells by exploring mesh singularity scenarios for quad-based meshes.

The different singularities or their absence seem to affect the structural performance of the

shell roof.

31

2.4.2 How to teach neural networks to mesh: Application on 2-D simplicial contours

Alexis Papagiannopoulos a, ∗, Pascal Clausen b, François Avellan a

Mesh generation need to be robust, adaptive to geometry complexities and satisfy the shape

requirements (Owen, 1998). The analysis procedure to generate compatible meshes that

respect geometric features can take up to 80% of the whole meshing procedure on account

of automation absence (Hughes et al., 2005). Therefore there is a high need for efficient

computational that require as less explicit treatment as possible. (Papagiannopoulos et al.,

2021). Machine learning algorithms rely on data observation and pattern recognition and can

solve complex problems.

In his research Papagiannopoulos proposes a framework based on machine learning for

generation of 2D meshes. This framework is divided in 4 steps:

Step 1: Preparation

The contour is scaled and rotated with respect to a regular polygon. The target edge length

is also scaled

Step 2: NN1

Input: Coordinates of Contour Vertex & target edge length

Output: Number of vertices that should be inserted inside the cavity of the contour

Step 3: NN2

Input: Coordinates of Contour Vertex, target edge length, a square grid over the Contour

Output: Coordinates of the inner vertices

Step 3: NN3

Input: Coordinates of Contour Vertex, Coordinates of the inner Vertex

Output: Connection table

32

The research of Papagianopoulos states the importance of mesh modification before the

training process. Point coordinates are part of the training dataset. Unprocessed point

coordinates, however, do not result in a robust and accurate pattern recognition from the

NNs. This is because machine learning methods are usually used for grid-underlying

structures, like images. Therefore, Papagianopoulos pre-processes the input data. That

includes a step that applies a feature transformation, with scaling and rotating the mesh, to

best fit a reference contour circumscribed in a unitary circle. (Papagiannopoulos et al., 2021)

The required scaling and rotation are achieved by applying the Procrustes superimposition1

on a reference contour. For a contour with NC edges and P∗C contour coordinates, a regular

polygon is used with NC edges inscribed in a unit circle as a reference. (Papagiannopoulos

et al., 2021)

Conclusions: The proposed meshing framework is approximately four times slower than the

reference mesher. However, this framework is coded in Python while the reference mesher

is written in C++. Taking into account that the speed factor between Python and C++ is that

of 5 to 20 and that the current implementation of the algorithm is not optimized for

performance Papagianopoulos concluded that the proposed framework attains reasonably

good performance.

1 Procrustes superimposition consists of three steps: translation, scaling, and rotation. As an example,

take five configurations of four landmarks each. The contour mesh is translated so that it has the

same centroid as the reference polygon. The centered configuration then is scaled to the same

centroid size and iteratively rotated until the summed squared distances between the landmarks and

their corresponding sample average position is a minimum. (Mitteroecker et al., 2013)

33

2.4.3 Robust Topology Optimization Using Variational Autoencoders

Rini Jasmine Gladstone1, Mohammad Amin Nabian1,2, Vahid Keshavarzzadeh3, and

Hadi Meidani∗1

In order to improve the computational time for a compliance minimization problem,

Gladstone (Gladstone et al., 2021) used a Variational Autoencoder (VAE) to transform the

high dimensional design space into a low dimensional one, thus making the design space

exploration more efficient. In her research finite element solvers were replaced by a neural

network surrogate that predicts the probabilistic objective function.

Step1:

Parameterization of the high dimensional geometry of the design candidates using a low

dimensional representation obtained by VAEs.

Step2:

Replacement of the finite element solver with feed forward fully connected compliance

neural network surrogate to accelerate the cost (robust compliance) evaluation. The input

layer has number of nodes equal to the dimension of the training image. Output layer is a

single node which gives predicted robust compliance, QNN(θ).

Step3:

A gradient descent algorithm is used to find the optimal design on the low dimensional

representation, minimizing the robust compliance.

Conclusions: In this paper VAEs are used successfully to turn the high dimensional

optimization problem into a low dimensional one. During the production of the training

dataset a topology optimization algorithm based on finite element method was used. The

proposed framework produced robust optimal designs better than the finite element method.

34

2.4.4 Deep Generative Design: Integration of Topology Optimization and Generative

Models

 Sangeun Oh1,†, Yongsu Jung2,†, Seongsin Kim1, Ikjin Lee2,*, Namwoo Kang1,*

In his study Oh (Oh et al., 2019) presented an artificial intelligent (AI)-based deep generative

design framework that is capable of generating numerous design options which are not only

aesthetic but also optimized for engineering performance.

The workflow consisted of the following steps:

Stage 1: The earlier designs in the market and the industry are collected as reference

designs

Stage 2. The designs are topologically optimized. The optimization process is multi-objective

and the performance indicators are (1) compliance minimization and (2) difference (i.e.,

pixel-wise L1 distance) minimization from the reference design.

Stage 3: Similar designs gathered from topology optimization are filtered out by a similarity

criterion (also stage 6)

Stage 4: The ratio of the number of new designs in the current iteration to the number of total

designs in the previous iteration is calculated. If it is smaller than the user-specified

threshold, then exit the iterative design exploration and jump to Stage 8. Otherwise. proceed

to Stage 5.

Stage 5: New designs are created by generative models after learning aggregated designs

in the current iteration, and they are used as reference designs in Stage 2 after filtering out

similar designs in Stage 6.

Stage 7: Involves the building of a loss function (i.e., reconstruction error function) employing

autoencoder trained by previous designs of Stage 1. This step checks for design novelty.

Stage 8: Design options obtained from iterative design exploration have to be evaluated on

the basis of various design attributes that are essential to the designers.

Conclusions: Many designs starting from a small number of designs was generated. The

proposed framework offered diverse designs in comparison with the conventional generative

design. Moreover, the robustness on quality of designs is improved.

35

3. DATASET GENERATION

36

Figure 3.2. Rectangular mesh and the
indexes of its vertices.

Figure 3.1. A mesh and its cells.

3.1 Constructing a Mesh

A mesh is a representation of a larger geometric domain by smaller discrete cells.

 A Mesh is constructed after specifying the two following lists:

• A lists with the vertex coordinates

• A list containing the connection of the vertices to form faces.

Vertices

0. [0, 0, 0]

1. [1.875, 0, 0]

2. [3.75, 0, 0]

3. [5.625, 0, 0]

…

78. [11.25, 15, 0]

79. [13.125, 15, 0]

80. [15, 15, 0]

Faces

0. [0,1,10,9]

1. [1,2,11,10]

2. [2,3,12,11]

3. [3,4,13,12]

…

61. [68,69,78,77]

62. [69,70,79,78]

63. [70,71,80,79]

https://en.wikipedia.org/wiki/Polygon_mesh

37

Figure 3.9 A vertex with its neighboors.

3.2 Creating subdivision patterns

In his research R. Oval describes the strip method for changing a mesh’s subdivision

pattern. The ‘adding strip’ method is described in the images below, where strips are

inserted along edges

Figure 3.3 Inserting a stripe. Figure 3.4 & 3.5 Changing the subdivision pattern with the strip method.

To create the dataset for this thesis another method will be followed that can result in the

same patterns by merging points:

• First a set of points is chosen.

• Then they are either merged to their centre point or if one of them is an extreme point

they are merged at this one.

Figure 3.6 Joining two points in their centre. Figure 3.7 & 3.8 Creating the new subdivision pattern through joining points.

3.3 Method explanation

Every vertex v of the mesh has a set of neighbouring vertices that are connected to v by

an edge. We can chose a neighbour for each vertex by selecting the index from the list of its

neighbours. Various mesh tessellations can occur when merging random vertices with

random neighbours.

https://en.wikipedia.org/wiki/Edge_(graph_theory)

38

Figure 3.10 Creating the vertices_to_merge list.

Figure 3.11 Selecting symmetrical vertices.

The dataset is created using python and the COMPAS framework. The python code can be

found at the Appendix.

The topology exploration is described in the following steps:

 Step 1

First an initial mesh is specified. Then, random vertices are selected. Another set of vertices

is chosen from the lists of their neighbours, by choosing random indexes as seen at the

image in the middle. These random vertices and their selected neighbours form sub-lists are

all placed at a list with the vertices_to_merge, as seen at the image on the right.

Step 2

In this step the symmetrical vertices of the vertices_to_merge are added in a new list. If a

vertex exists in more than one sub-list then these sub-lists are merged.

39

Figure 3.12 Creating the merged_vertices list.

Figure 3.13 The starting Mesh with its list of vertices and faces.

Step 3

A new list with the merged vertices is created that includes the coordinates of the points

where the vertices_to_merge are going to be joined. These points are usually the mean

point or centre point of the vertices. If some vertices on the sub-lists are extreme vertices,

then it is their centre that is needed for the new list. If one vertex of the sub-lists is a corner

point, then this point is the one that is placed on the merged_vertices list.

Step 4

The merged vertices are going to replace the initial vertices. A simpler mesh is used to

explain the method. In the image below the goal is to merge the vertex 4(v4) with vertex

8(v8).

Indices of points to merge: [4,8]

Merged Point: [3.75, 3.75, 0]

Vertices

0. [0, 0, 0]

1. [1.875, 0, 0]

2. [3.75, 0, 0]

3. [0, 1.875, 0]

4. [1.875, 1.875, 0]

5. [3.75, 1.875, 0]

6. [0, 3.75, 0]

7. [1.875, 3.75, 0]

8. [3.75, 3.75, 0]

Faces

0. [0;1;4;3]

1. [1;2;5;4]

2. [3;4;7;6]

3. [4;5;8;7]

40

Vertices_dict = {

 0: [1.875, 0, 0],

 1: [3.75, 0, 0],

 2: [0, 1.875, 0],

 3: [3.75, 1.875, 0],

 5: [3.75, 1.875, 0],

 6: [0, 3.75, 0],

 7: [1.875, 3.75, 0],

 8: [3.75, 3.75, 0],

}

Figure 3.14 The generated mesh with its lists of vertices and faces.

Figure 3.15 Double points and zero area faces that occur at the original mesh.

Figure 3.16 The problem with the order of keys at the dictionaries that describe the simpler mesh .

As the vertex 8 is an extreme point, then it is the merged vertex as well. In the list of vertices

the v8 replaces the v4. After this step a new topology is created.

However double and unused vertices occur (vertices 4 and 8)as well as zero-area faces

(face 3). Therefore, removing unnecessary vertices and faces is needed.

Step 5

Compas can create meshes from either lists or dictionaries as inputs. After clearing the

unnecessary the vertices and faces, Compas creates new meshes that are dictionaries

whose key numberst are not in order. This would be ok, however the relaxation algorithm

didn’t seem to work in this way so the order needed to be fixed.

Vertices

0. [0, 0, 0]

1. [1.875, 0, 0]

2. [3.75, 0, 0]

3. [0, 1.875, 0]

4. [3.75, 3.75, 0]

5. [3.75, 1.875, 0]

6. [0, 3.75, 0]

7. [1.875, 3.75, 0]

8. [3.75, 3.75, 0]

Faces

0. [0,1,4,3]

1. [1,2,5,4]

2. [3,4,7,6]

3. [4,5,8,7]

Faces_dict = {

 0: [0,1,4,3],

 1: [1,2,5,4],

 2: [3,4,7,6]

}A

41

Step 6

Finally the mesh is relaxed. The boundary points are the anchor points and the force

density algorithm is used with a load of 2kN/m3 prescribed in the edges

 Anchor point

Figure 3.17 Fixing the key numbers of the vertices at the original mesh.

Figure 3.18 The relaxed mesh.

42

3.4 Dataset pre-processing for training AI models

In order to train the model, tensors that will occur from arrays with the same shape need to

be used. As the generated meshes have different number of vertices and faces, their final

lists cannot be used as they are in the dataset. The process of making appropriate arrays is

described below. Two options were tested. The python code can be found at the Appendix.

All the training data are exported after generating the new meshes and before relaxation.

Option 1: Using the structure of vertices as training data

The first attempt is to train the model using the list of vertices without removing double

occurring vertices as they occur in step 4. The list of faces remains the same

The training tensors occur from arrays after replacing the indices of the vertices at the faces

list with the coordinates of the Vertices.

 .

Exporting the training data as they occur at step 4 means that the generative model will be

trained with unrelaxed meshes.

Vertices

0. [0, 0, 0]

1. [1.875, 0, 0]

2. [3.75, 0, 0]

3. [0, 1.875, 0]

4. [3.75, 3.75, 0]

5. [3.75, 1.875, 0]

6. [0, 3.75, 0]

7. [1.875, 3.75, 0]

8. [3.75, 3.75, 0]

Faces

0. [0;1;4;3]

1. [1;2;5;4]

2. [3;4;7;6]

3. [4;5;8;7]

array([[0, 0, 0],[1.875, 0, 0];[3.75, 3.75, 0], [0, 1.875, 0],

[1.875, 0, 0], [3.75, 0, 0], [3.75, 1.875, 0], [3.75, 3.75, 0]]

[0, 1.875, 0], [3.75, 3.75, 0], [1.875, 3.75, 0], [0, 3.75, 0]]

[3.75, 3.75, 0]; [3.75, 1.875, 0], [3.75, 3.75, 0], [1.875, 3.75, 0]])

Figure 3.19 The simpler mesh along with its lists that will be used to create the training data.

Figure 3.20 The final array that will be used for trainin.g

43

Option 2: Using an adjacency matrix as training data

The second option requires pre-processing the generated meshes. Meshes can be

described as graph data using adjacency matrices.

As various new points are creating after merging random initial points, a denser mesh, that is

occurring after subdividing the initial one by two, is used.

Multiple graphs are created but they all share vertices with the same coordinates. This

means that the training data describe an unrelaxed mesh.

 0 1 2 3 4 5 6 7 8 9
0 0 1 0 1 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0
2 0 1 0 0 0 1 0 0 0 0
3 1 1 0 0 1 0 1 0 0 0
4 0 1 0 1 0 0 0 1 0 0
5 0 0 1 0 1 0 0 0 1 0
6 0 0 0 1 0 0 0 1 0 0
7 0 0 0 0 1 0 1 0 1 0
8 0 0 0 0 0 1 0 1 0 0
9 0 0 0 0 0 0 0 0 0 0

 0 1 2 3 4 5 6 7 8 9
0 0 1 0 1 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 1 0
2 0 1 0 0 0 1 0 0 0 0
3 0 1 0 0 1 0 1 0 1 0
4 0 1 0 1 0 0 0 0 0 0
5 0 0 1 0 1 0 0 0 1 0
6 0 0 0 1 0 0 0 1 0 0
7 0 0 0 0 0 0 1 0 1 0
8 0 1 0 1 0 1 0 1 0 0
9 0 0 0 0 0 0 0 0 0 0

Figure 3.21 A starting mesh with its adjacency matrix.

Figure 3.22 A final mesh with its adjacency matrix.

44

A problem that may occur with this strategy is that the merged points may not coincide with

the vertices of the denser mesh. This can be prevented by taking by taking into account only

unique coordinates when calculating the average point.

Option 3: Using the flatten array that occurs from the adjacency matrix

The adjacency matrix that describes the connections of nodes is always symmetrical to its

diagonal axis. As described in Chapter 4 the tensors are flattened before passing inside fully

connected layers.

The size of the training sample can be minimized by removing the double sequences that

occur during the dataset pre-processing step.

The highlighted part of the adjacency matrix (that describes a simpler mesh) bellow

represents the flattened information that is kept.

 0 1 2 3 4 5 6 7 8 9
0 0 1 0 1 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 1 0
2 0 1 0 0 0 1 0 0 0 0
3 0 1 0 0 1 0 1 0 1 0
4 0 1 0 1 0 0 0 0 0 0
5 0 0 1 0 1 0 0 0 1 0
6 0 0 0 1 0 0 0 1 0 0
7 0 0 0 0 0 0 1 0 1 0
8 0 1 0 1 0 1 0 1 0 0
9 0 0 0 0 0 0 0 0 0 0

Vertices

0. [1.875, 1.875, 0]

1. [1.875, 3.75, 0]

2. [1.875, 5.625, 0]

3. [3.75, 3.75, 0]

x Coordinates
0. 1.875

1. 1.875

2. 1.875

3. 3.75

Average x Coordinate
(1.875+3.75)/2

Take only unique values

Figure 3.23 Vertices whose mean point doesn’t snap at the vertices of the base mesh and the trick to fix this issue.

Figure 3.24 The adjacency matrix to a flattened array.

[

0,

1,0,

0,1,0,

0,1,0,0,

0,1,0,1,0,
0,0,1,0,1,0,

0,0,0,1,0,0,0,

0,0,0,0,0,0,1,0

0,1,0,1,0,1,0,1,0

0,0,0,0,0,0,0,0,0,0
]

45

Figure 3.25 Creating the dataset.

3.5 Dataset Generation

The following process describes the generation of two databases: one for creating the data

appropriate for training the generative model and another for creating mesh data that will be
simulated with FEM software to create the labels that the surrogate models will learn to

predict.

These are the following steps:

• First an empty dataset_list is created

• Then random sets of vertices are selected so a list with “vertices_to_merge” is

created. The combination of the vertices and the length of the list is also random.

Since the symmetrical vertices are going to be added, the random choice is limited to
one quarter of the mesh.

• If the generation of the “vertices_to_merge” hasn’t been generated before, the

algorithm moves to the next step. If not another random set is generated.

• A new mesh is created according to the list of “vertices_to_merge” and it is added

to the dataset_list

• If the desired dataset_list length is reached (10000 in this thesis) the algorithm is

moved to the next step, if not the second step is repeated

• The dataset_list is cleared from doubled samples

 True

Clear the dataset from

doubled samples

Check if the

generated list

hasn’t been

generated

 before

False

Tru

e

Is the

dataset’s

length

 smaller than

 10000

Add the generated mesh

to the dataset_list=[]

Generate Mesh

False

Start

Select random sets of

vertices to create a

vertices_to_merge list

“vertices_to_merge”

Create an emty

dataset_list=[]

46

Figure 3.26 Exporting the trainning dataset and data for FEM simulation.

• The dataset_list is converted to data appropriate for training a machine learning

model. For this thesis 5890 training samples were generated.

• The new meshes are relaxed and data appropriate for FEM simulation are exported.

• The FEM simulation creates the labels that will be used in the surrogate model

Export training

data for the

generative model

End

Mesh Relaxation

Export data for

FEM simulation

FEM simulation

Labels

End

Dataset

47

3.6 FEM Simulation

All the data including mesh information are exported in text documents. Then they are

imported inside the Grasshopper environment in Rhinoceros. For FEM testing Karamba3D

is used.

Figure 3.27 Assigning loads and supports to the mesh's edges.

The mesh’s edges are tested as steel beams network(Steel S235) with a IPE80 cross

section.

A point load of 1 kN applied at the centre of the network. All the boundary points are used as

fixed supports.

After testing the following performance indicators are extracted and stored in a csv file:

1. The Maximum Displacement in cm.

2. The Maximum Utilization (ratio between the tensile or compressive strength and the

maximum allowable stress)

3. The Mass of the structure in kg.

Figure 3.28 Mass, Displacement and Utilization as performance indicators.

48

All performance indicators are normalized to fit in the range between 0 and 1. Then a

performance value is assigned to each index using the following formula:

𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞 =

 𝟎. 𝟒 × 𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 𝑫𝒊𝒔𝒑𝒍𝒂𝒄𝒆𝒎𝒆𝒏𝒕 + 𝟎, 𝟒 × 𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 𝐔𝐭𝐢𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧

+ 𝟎, 𝟐 × 𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 𝐌𝐚𝐬𝐬

The 10 best performed mesh tessellations are excluded from the training dataset (the

highlited ones) to see if Artificial Intelligence can solutions better than them.

Mesh
Index

Maximum
displacement [cm]

Utilization
Mass
[kg]

Norm
displacement

Norm
Utilization

Norm Mass
Performance

Score
Norm

Performance

1592 7.222685 0.31688 1467.04 0.198500114 0.038938908 0.06568577 0.108112762 0

916 7.306213 0.331459 1525.86 0.216281778 0.056459133 0.23781521 0.156659406 0.085279428

2871 7.316427 0.383731 1495.76 0.218456162 0.119276694 0.14971763 0.165036668 0.099995339

3178 7.336311 0.334702 1534.57 0.222689121 0.060356389 0.26328098 0.165874401 0.101466942

585 7.198498 0.35392 1539.1 0.19335112 0.083451505 0.27654819 0.166030688 0.101741484

2448 8.088958 0.284613 1479.04 0.382914632 0.000162235 0.10080725 0.173392197 0.114673073

468 7.40201 0.343348 1535.19 0.2366753 0.070746668 0.26510758 0.175990302 0.119237033

1093 7.193045 0.39318 1525.4 0.192190271 0.130631973 0.23645109 0.176419116 0.11999031

3374 7.112629 0.357602 1570.46 0.175071097 0.087876326 0.36831927 0.178842824 0.124247914

2286 7.576214 0.379444 1487 0.273760315 0.114124818 0.12409274 0.179972602 0.126232537

3487 7.139086 0.4255 1514.93 0.180703335 0.169472338 0.20581014 0.181232297 0.12844538

3659 7.632908 0.312611 1537.29 0.285829486 0.033808663 0.27125253 0.182105766 0.129979758

3143 7.720711 0.370308 1479.8 0.304521224 0.103145685 0.10302932 0.183672627 0.132732184

370 7.183572 0.375051 1557.87 0.190173634 0.108845557 0.33147061 0.185901798 0.136648056

3401 7.33804 0.386916 1526.39 0.223057195 0.123104249 0.23936516 0.18633761 0.137413625

131 7.32969 0.419356 1504.03 0.221279625 0.162088823 0.17393769 0.188134916 0.140570862

Table 3.1 The table with all the performance indicators, their normalized values and the final performance score

49

3.7 Dataset Augmentation

The generated samples are symmetrical on either one or two axes. To augment the dataset

the samples that are symmetrical on just one axis are rotated 90 degrees. To do this, the

dataset is first purged of samples that have the same performance-score (flipped patterns

have the same score). The next step is to rotate all the samples 90 degrees. Finally a last

step is performed were the dataset is cleared from doubled meshes (symmetrical meshes on

both axes occur two times after the rotation step). Overall 7.338 samples were created.

Figure 3.30 Rotating the meshes 90 degrees.

Figure 3.29 The test best performed meshes.

50

4. AI WORKFLOW

51

4.1 The Variational Autoencoder

4.1.1 Architecture

The Variational Autoencoder is based on F. Chollet’s VAE model (Chollet, 2020) with

changes on hyperparameters (layers, the batch size, epochs and learning rate). Keras and

Tensorflow python libraries were used for implementing the VAE.

The VAE is a deep learning model that consists of an encoder and a decoder with hidden

fully connected layers (dense layers). The input data pass through an encoder that is able to

shrink the data to fit in a latent space. A final layer called sampling layer in the encoder is

able to perform a reparameterization trick to make sure that the latent space is regular. The

decoder then attempts to reconstruct the input data. The model is trained by dividing the

dataset in batches. After passing the entire dataset through the neural network one epoch is

completed. The neural network measures the error of reconstruction and updates the

weights at its nodes.

A workflow of the whole network is presented below.

Figure 4.1 The architecture of a VAE

4.1.2 Data pre-processing

The input data have to be normalized between 0 and 1 to enter the neural network.

Normalizing the data generally speeds up learning and leads to faster convergence.

In the first option the training data that include the mesh’s coordinates have to be divided

with the dimensions of the mesh (in this thesis it is 15). In the second option and third option

where adjacency matrices are used, no normalization is required as the input are arrays

with only 0 and 1values.

Data that enter the NN also are arrays that include float numbers.

The general architecture of the VAE, also explained in the first chapter is demonstrated

below. It is a autoencoder with a slight modification that ensures the regularization of the

latent space.

52

4.1.3 VAE - loss function

The loss function used for the training VAEs is the sum of two losses. The first one

measures the error between the original input and its reconstruction after exit the NN. The

second one is the Kullback-Leibler divergence (kl divergence) loss. The purpose of the kl

divergence in the loss function is to make the distribution of the encoder output as close as

possible to a standard multivariate normal distribution.(Lunot, 2019)

Total Loss = Reconstruction Loss + kl coefficient * kl loss

 A demonstration of the effect of kl divergence in the latent space is demonstrated in the

image below on a latent space with two vectors z[0] and z[1] and the outputs are clustered

depending on their performance. In this thesis a kl coefficient of 1 was used.

Figure 4.2 From left to the right: kl coefficient:0, kl coefficient:1, kl coefficient:2. The encoder and decoder have to dense
layers with 100 nodes each. The training used 100 epochs and a batch size 64 on an input tensor [81,81] (data input are
adjacency matrices with one quarter of the information)

During the fit() process we also separate a a portion of the training data to evaluate the

performance of your model on a validation dataset. The evaluation of the training data is

called train step and that of the validation dataset is called test_step. We can customize

what is happening during those steps by overriding the We can customize the training loss

by overriding the VAE.train_step() and the VAE.test_step(), while retaining built-in

infrastructure features. The code for these steps can be found at the Appendix.

53

4.1.4 Sampling Layer

In autoencoders input data are compressed through the encoder without taking into account

the regularity of the latent space. This is ok when the goal is to achieve compression of large

databases, but in generative models we need to be able sample vectors from a regular latent

space to generate valid outputs. Therefore VAEs introduce a sampling layer in the network

that ensures that the input data get mapped to latent variables with a normal distribution.

This distribution is parameterized by a mean (𝜇) and a variance (𝜎) which are the learnable

parameters of the network.

VAEs also introduce stochasticity in the network. Through backpropagation the neural

network learns a normal distribution that needs also to be probabilistic. This is achieved by

adding a random noise to the vector by multiplying the square of the variance with a random

variable 𝜀. This variable has also a low value so as to ensure that the result does not deviate

a lot from the true distribution. Adding this variable is what allows the reparameterization

trick, demonstrated in the following diagrams. On the left an input is sampled as a latent

vector 𝛧 from a normal distribution. This does not allow to compute the gradients to

approximate the latent space, hence we cannot backpropagate back to the NN. This is fixed

by multiplying the variance square by inserting the variable 𝜀 to calculating the vector 𝛧.

(Doersch, 2016)

 𝛧𝜇: 𝐴 𝑣𝑒𝑐𝑡𝑜𝑟 𝑤𝑖𝑡ℎ 𝑎 𝑚𝑒𝑎𝑛 𝑜𝑓 𝜇

 𝛧𝜎: 𝐴 𝑣𝑒𝑐𝑡𝑜𝑟 𝑤𝑖𝑡ℎ 𝑎 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝜎

 𝜀 ∶ 𝐴 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑓𝑟𝑜𝑚 𝑎 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

The code for creating the Sampling layer can be found the Appendix

decoder

Z

𝛧𝜎 𝛧𝜇 ε

 𝛧 = 𝛧𝜇 + 𝛧𝜎2 × 𝜀

encoder

backpropagation

54

Figure 4.4 From left to the right: The original input and the decoded output

Chart 4.1 Training loss and validation loss after 200 epochs for option 1

4.1.5 Encoder- Decoder

Option 1 : Using the structure of vertices as training data

The first attempt was to train the VAE using as input the coordinates of the vertices as

arrays. The input shape of the tensors was [81,3]. The encoder and decoder used one

dense layer each with 81 nodes. The latent space had 9 nodes. Batch size was 64 and the

optimizer was Adam with learning rate 0.001.

 Figure 4.3 The architecture of the first's option VAE

Other combinations of hyperparameters were tested, but the model was not able to decode

correct outputs in none of the cases. An original input along with its decoded output is

demonstrated below, along with the loss chart.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1
1

1
9

2
7

3
5

4
3

5
1

5
9

6
7

7
5

8
3

9
1

9
9

1
0
7

1
1
5

1
2
3

1
3
1

1
3
9

1
4
7

1
5
5

1
6
3

1
7
1

1
7
9

1
8
7

1
9
5

Training Loss Validation Loss

Epochs

L
o

s
s

55

Figure 4.5 The tested architecture of the second's option VAE

Option 2 : Using adjacency matrices as training data

The second option of training the NN with adjacency matrices was more successful. The

encoder and the decoder consisted of feel forward fully connected layers (dense layers).

Various numbers of layers and nodes were tested. For training TU Delft’s supercomputer

Delft Blue was used.

Below different variations are demonstrated. All layers in both encoder and decoder are fully

connected. ReLU was used as an activation function in all layers apart from the last one in

the decoder, which used sigmoid.

The last two variations consider the shape of input which is (289,289). The layers that are

used in those variations have a number of nodes that consists of multiples and dividers of

the number 289. The architecture that was converged better was the Revision 4.

Schematic diagrams with the tested architectures of the encoder and the decoder are

demonstrated below.

56

Charts demonstrating the loss function during training, depending on the architecture of the

encoder-decoder are shown below.

Chart 4.2 TheTraining Loss after 500 epochs

Chart 4.3 The Validation Loss after 500 epochs

0

100

200

300

400

500

600

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1
3

1
2
7

1
4
1

1
5
5

1
6
9

1
8
3

1
9
7

2
1
1

2
2
5

2
3
9

2
5
3

2
6
7

2
8
1

2
9
5

3
0
9

3
2
3

3
3
7

3
5
1

3
6
5

3
7
9

3
9
3

4
0
7

4
2
1

4
3
5

4
4
9

4
6
3

4
7
7

4
9
1

Revision 1 Revision 2 Revision 3 Revision 4 Revision 5

T
ra

in
in

g
 L

o
s
s

0

100

200

300

400

500

600

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1
3

1
2
7

1
4
1

1
5
5

1
6
9

1
8
3

1
9
7

2
1
1

2
2
5

2
3
9

2
5
3

2
6
7

2
8
1

2
9
5

3
0
9

3
2
3

3
3
7

3
5
1

3
6
5

3
7
9

3
9
3

4
0
7

4
2
1

4
3
5

4
4
9

4
6
3

4
7
7

4
9
1

Revision 1 Revision 2 Revision 3 Revision 4 Revision 5

V
a

lid
a

ti
o

n
 L

o
s
s

Epochs

Epochs

57

For the best performing architecture (Revision 4) charts demonstrating the loss function

during training, depending on the size of the latent space are shown below. Increasing the

latent space leads to a drop in both loss and validation loss.

Chart 4.4 The Training Loss after 500 epochs

Chart 4.5 The Validation Loss after 500 epochs

0

50

100

150

200

250

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1
3

1
2
7

1
4
1

1
5
5

1
6
9

1
8
3

1
9
7

2
1
1

2
2
5

2
3
9

2
5
3

2
6
7

2
8
1

2
9
5

3
0
9

3
2
3

3
3
7

3
5
1

3
6
5

3
7
9

3
9
3

4
0
7

4
2
1

4
3
5

4
4
9

4
6
3

4
7
7

4
9
1

Latent 4 Latent 17 Latent 32

0

50

100

150

200

250

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1
3

1
2
7

1
4
1

1
5
5

1
6
9

1
8
3

1
9
7

2
1
1

2
2
5

2
3
9

2
5
3

2
6
7

2
8
1

2
9
5

3
0
9

3
2
3

3
3
7

3
5
1

3
6
5

3
7
9

3
9
3

4
0
7

4
2
1

4
3
5

4
4
9

4
6
3

4
7
7

4
9
1

Latent 4 Latent 17 Latent 32

 T
ra

in
in

g
 L

o
s
s

Epochs

Epochs

 V
a

lid
a

ti
o
n

 L
o
s
s

58

Results

Below you can see results of some of the best performed meshes, which were not also used

when training

Original
Samples

Decoded
Samples

Table 4.1 Some of the best performed samples and their decoded result.

These are some decoded meshes from within the train dataset

Original
Samples

Decoded
Samples

Table 4.2 Some of the training samples and their decoded result.

These are some random generated meshes

Original
Samples

Table 4.3 Random AI generated meshes.

59

Using a quarter of each of the adjacency matrices

A final attempt was done to test the performance of the network by minimizing the input

information. Since the meshes are symmetrical we can keep one quarter of the adjacency

matrices.

Figure 4.6 A quarter of the mesh

The original adjacency matrix has a shape of [289,289]. Keeping one quarter of the

information means the new matrix has a shape of [81,81]. Therefore we need to keep in both

axis the indices included in the shape bellow.

Figure 4.7 The selected vertices in the one quarter of the mesh

60

Again here fully connected layers were used for the encoder and the decoder. ReLU was

used in all layers apart from the last one in the decoder. Schematic diagrams with the tested

architectures of the encoder and the decoder are demonstrated below. The VAE architecture

that performs better is that of Revision 2.

Figure 4.8 The tested architectures of the VAE for the second option using the information of one quarter of the mesh

Charts demonstrating the loss function during training, depending on the architecture of the

encoder-decoder are shown below.

Chart 4.6 Training Loss after 500 epochs

0

10

20

30

40

50

60

1

1
7

3
3

4
9

6
5

8
1

9
7

1
1
3

1
2
9

1
4
5

1
6
1

1
7
7

1
9
3

2
0
9

2
2
5

2
4
1

2
5
7

2
7
3

2
8
9

3
0
5

3
2
1

3
3
7

3
5
3

3
6
9

3
8
5

4
0
1

4
1
7

4
3
3

4
4
9

4
6
5

4
8
1

4
9
7

Revision 1 Revision 2

 T
ra

in
in

g
 L

o
s
s

Epochs

61

Chart 4.7 Validation Loss after 500 epochs

Results

Below results of original samples and their decoded outputs are presented

Results of some of the best performed meshes, which were not also used when training

Original
Samples

Decoded

Samples

Table 4.4 Some of the best performed samples and their decoded result.

0

10

20

30

40

50

60

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1
3

1
2
7

1
4
1

1
5
5

1
6
9

1
8
3

1
9
7

2
1
1

2
2
5

2
3
9

2
5
3

2
6
7

2
8
1

2
9
5

3
0
9

3
2
3

3
3
7

3
5
1

3
6
5

3
7
9

3
9
3

4
0
7

4
2
1

4
3
5

4
4
9

4
6
3

4
7
7

4
9
1

Revision 1 Revision 2

Epochs

V
a

lid
a
ti
o
n

 L
o
s
s

62

Decoded meshes from within the train dataset

Original

Samples

Decoded
Samples

Table 4.5 Some of the training samples and their decoded result.

Random AI generated meshes

Original
Samples

Table 4.6 Random AI generated meshes

Option 3 : Using flattened arrays from the adjacency matrices

This option aimed to ease the training by minimizing the size of the training samples. This

option managed to converge the model faster and minimize more the function loss. For

simplification reason the information that represents the one quarter of the mesh was also

used.

The tested architectures are demonstrated below.

Figure 4.9 The tested architectures of the VAE for the third option

63

Chart 4.8 Loss after 500 epochs

Chart 4.9 Validation loss after 500 epochs

The first revision manages to drop the validation loss more than the second. Moreover the model is smaller on

size. Therefore this is the final architecture, also chosen for the next steps.

0

2

4

6

8

10

12

14

16

18

20

1

1
8

3
5

5
2

6
9

8
6

1
0
3

1
2
0

1
3
7

1
5
4

1
7
1

1
8
8

2
0
5

2
2
2

2
3
9

2
5
6

2
7
3

2
9
0

3
0
7

3
2
4

3
4
1

3
5
8

3
7
5

3
9
2

4
0
9

4
2
6

4
4
3

4
6
0

4
7
7

4
9
4

Revision 1 Revision 2

0

5

10

15

20

25

30

35

40

1

1
8

3
5

5
2

6
9

8
6

1
0
3

1
2
0

1
3
7

1
5
4

1
7
1

1
8
8

2
0
5

2
2
2

2
3
9

2
5
6

2
7
3

2
9
0

3
0
7

3
2
4

3
4
1

3
5
8

3
7
5

3
9
2

4
0
9

4
2
6

4
4
3

4
6
0

4
7
7

4
9
4

Revision 1 Revision 2

Epochs

Epochs

 T
ra

in
in

g
 L

o
s
s

 V
a

lid
a

ti
o
n

 L
o
s
s

64

Results of some of the best performed meshes, which were not also used when training

Original

Samples

Decoded
Samples

Table 4.7 Some of the best performed samples and their decoded result.

Random AI generated meshes

Original
Samples

Table 4.8 Random AI generated meshes

65

Revision 3

4.2 Surrogate Model

Training a surrogate model to predict the normalized performance out of the VAE’s

decoded data

The Surrogate Model attempts to fit the input data x_train to the performance scores

y_train. Input data are the decoded samples. 50 samples are excluded from the training

process to evaluate the training. Input shape is [1,3240] and the output is a single score.

The architecture tested included an input layer, a flatten layer and two dense layers.

Figure 4.10 The architecture of the Surrogate Model.

The following architectures were tested. The architecture whose loss function is better

converged is that of the Revision 1.

Figure 4.11 The tested architectures for the Surrogate Model.

Revision 1 Revision 2

66

Charts demonstrating the loss function during training, depending on the architecture of the

Surrogate Model are shown below.

Chart 4.10 Lloss after 500 epochs

Chart 4.11 Validation loss after 500 epochs

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
1

1
8

3
5

5
2

6
9

8
6

1
0
3

1
2
0

1
3
7

1
5
4

1
7
1

1
8
8

2
0
5

2
2
2

2
3
9

2
5
6

2
7
3

2
9
0

3
0
7

3
2
4

3
4
1

3
5
8

3
7
5

3
9
2

4
0
9

4
2
6

4
4
3

4
6
0

4
7
7

4
9
4

Revision 1 Revision 2 Revision 3

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1

1
8

3
5

5
2

6
9

8
6

1
0
3

1
2
0

1
3
7

1
5
4

1
7
1

1
8
8

2
0
5

2
2
2

2
3
9

2
5
6

2
7
3

2
9
0

3
0
7

3
2
4

3
4
1

3
5
8

3
7
5

3
9
2

4
0
9

4
2
6

4
4
3

4
6
0

4
7
7

4
9
4

Revision 1 Revision 2 Revision 3

 V
a

lid
a

ti
o
n

 L
o
s
s

T
ra

in
in

g
 L

o
s
s

Epochs

Epochs

67

The following Chart demonstrates the loss function after 1000 epochs. The models starts

validation loss starts increasing slightly after 200 epochs therefore the training stops there

Chart 4.12 Loss and Validation loss after 1000 epochs for Revision 1

The following chart demonstrates the evaluation of the results on 50 samples that were

excluded from training. The cyan dots are the true performance scores and the grey dots are

the model’s estimated performance

Chart 4.13 Comparison of predicted and actual performance for 50 test data that were not used when training the
surrogate model

The following chart demonstrates the evaluation of the results for the 10 best samples that were

also excluded from training. Their predicted scores are numbers around 0.20. That can be explained

from the fact that below 0.20 (about 150 out of the 7.338) and none below 0.12. Therefore the best

performed samples are scored around the number 0.20.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1

3
4

6
7

1
0
0

1
3
3

1
6
6

1
9
9

2
3
2

2
6
5

2
9
8

3
3
1

3
6
4

3
9
7

4
3
0

4
6
3

4
9
6

5
2
9

5
6
2

5
9
5

6
2
8

6
6
1

6
9
4

7
2
7

7
6
0

7
9
3

8
2
6

8
5
9

8
9
2

9
2
5

9
5
8

9
9
1

Loss Validation Loss

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

True Performance Predicted Performance

68

Chart 4.14 Comparison of predicted and actual performance for 10 best performed samples

Attempt to train the Surrogate model to predict the normalized performance out of the

VAE’s encoded data

Another option that was explored is if the model can be trained with the encoded vectors for the case of the

second’s option fourth revision. As shown in the picture below the model was overfitting therefore this effort was

abandoned.

Chart 4.15 Loss and validation loss for the surrogate model trainned with encoded vectors

0

0.05

0.1

0.15

0.2

0.25

True Performance Predicted Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

Validation Loss Loss

69

4.3 Gradient Descent Optimization

After training the VAE and the Surrogate model we are able to retrieve the Model’s

gradients. The gradient we are interested in is that of the structural ‘performance’ (y vector)

with respect to the latent space (z vector). The Gradient Descent algorithm searches for the

minimum y vector.

Z = Z – lr
𝜕𝑦

𝜕𝑧
 (Z0, Zn,)

lr : Learning rate that determines how large the update or moving step is.

Z: The latent’s space z vector to be updated

Y: Structural Performance

The following diagram explains how the gradient descent optimization works:

Figure 4.12 Flow Chart for the Gradient Descent.

70

for ix in range(adj_mtx.shape[0]):

 for iy in range(adj_mtx.shape[1]):

 if adj_mtx [ix,iy]+ adj_mtx [ix,iy]==1:

 adj_mtx [ix,iy]=1

 adj_mtx [iy,ix]=1

Some generated adjacency matrices are not symmetrical and have extra edges. To check if

they already exist in the dataset the extra edges are cleared manually and a final step is

executed to make the array symmetrical if it is not. The code for this is described below:

The following examples present optimization cases when running the GD for random design.

In Cases 1,2,3,4 the GD managed to find novel and better designs than the provided

training dataset. In Cases 2 and 3 with a learning rate of 2.5 it managed to find designs

almost identical to best performing one that was excluded from the training process.

71

0

0.05

0.1

0.15

0.2

0.25

1

5
4

1
0
7

1
6
0

2
1
3

2
6
6

3
1
9

3
7
2

4
2
5

4
7
8

5
3
1

5
8
4

6
3
7

6
9
0

7
4
3

7
9
6

8
4
9

9
0
2

9
5
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1

5
1

1
0
1

1
5
1

2
0
1

2
5
1

3
0
1

3
5
1

4
0
1

4
5
1

5
0
1

5
5
1

6
0
1

6
5
1

7
0
1

7
5
1

8
0
1

8
5
1

9
0
1

9
5
1

Chart 4.16 For Case 1 with a learing rate of 0.5: Charts demonstrating the values of the performance score (on the
left) and the root mean square of the gradients of the performance with respect to latent’s space vector (on the

right), during the optimization after 1000 iterations.

Case 1.

Learning rate: 0.5

Iterations: 1000

Performance score of initial design: 0.37526757

Estimated performance score of the optimized design: 0.1391386

Actual performance score of the optimized design: 0.113302

Novel Design: Yes

Figure 4.13 For the Case 1 2 and a learning rate of 0.5, an initial mesh(on the left) and the optimized one(on the right).

G
ra

d
ie

n
t

R
M

S

Iterations

E
s
ti
m

a
te

d
 P

e
rf

o
rm

a
n

c
e

Iterations

https://en.wikipedia.org/wiki/Root_mean_square

72

0

0.05

0.1

0.15

0.2

0.25

0.3

1

5
4

1
0
7

1
6
0

2
1
3

2
6
6

3
1
9

3
7
2

4
2
5

4
7
8

5
3
1

5
8
4

6
3
7

6
9
0

7
4
3

7
9
6

8
4
9

9
0
2

9
5
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1

5
1

1
0
1

1
5
1

2
0
1

2
5
1

3
0
1

3
5
1

4
0
1

4
5
1

5
0
1

5
5
1

6
0
1

6
5
1

7
0
1

7
5
1

8
0
1

8
5
1

9
0
1

9
5
1

Chart 4.17 For Case 1 with a learing rate of 2.5: Charts demonstrating the values of the performance score (on the
left) and the root mean square of the gradients of the performance with respect to latent’s space vector (on the

right), during the optimization after 1000 iterations.

With a learning rate of 0.5 the GD finds a similar but better performing design, Increasing the

learning rate at 2.5 results also in an better design, not as good as the one the one found

with the 0.5 learning rate, as the GD skipped it.

Learning rate: 2.5

Iterations: 1000

Performance score of initial design: 0.37526757

Estimated performance score of the optimized design: 0.32426813

Actual performance score of the optimized design: 0.302315

Novel Design: No

Figure 4.14 For the Case 1 and a learning rate of 2.5, an initial mesh(on the left) and the optimized one(on the right).

G
ra

d
ie

n
t

R
M

S

Iterations

E
s
ti
m

a
te

d
 P

e
rf

o
rm

a
n

c
e

Iterations

https://en.wikipedia.org/wiki/Root_mean_square

73

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1

5
4

1
0
7

1
6
0

2
1
3

2
6
6

3
1
9

3
7
2

4
2
5

4
7
8

5
3
1

5
8
4

6
3
7

6
9
0

7
4
3

7
9
6

8
4
9

9
0
2

9
5
5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1

5
1

1
0
1

1
5
1

2
0
1

2
5
1

3
0
1

3
5
1

4
0
1

4
5
1

5
0
1

5
5
1

6
0
1

6
5
1

7
0
1

7
5
1

8
0
1

8
5
1

9
0
1

9
5
1

Case 2.

Learning rate: 0.5

Iterations: 1000

Performance score of initial design: 0.17705911

Estimated performance score of the optimized design: 0.1425786

Actual performance score of the optimized design: 0.085932

Novel Design: Yes

Figure 4.15 For the Case 2 and a learning rate of 0.5, an initial mesh(on the left) and the optimized one(on the right).

Chart 4.18 For Case 2 with a learing rate of 0.5: Charts demonstrating the values of the performance score (on the left) and
the root mean square of the gradients of the performance with respect to latent’s space vector (on the right), during the

optimization after 1000 iterations.

G
ra

d
ie

n
t

R
M

S

Iterations

E
s
ti
m

a
te

d
 P

e
rf

o
rm

a
n

c
e

Iterations

https://en.wikipedia.org/wiki/Root_mean_square

74

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1

6
3

1
2
5

1
8
7

2
4
9

3
1
1

3
7
3

4
3
5

4
9
7

5
5
9

6
2
1

6
8
3

7
4
5

8
0
7

8
6
9

9
3
1

9
9
3

1
0
5
5

1
1
1
7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1

6
3

1
2
5

1
8
7

2
4
9

3
1
1

3
7
3

4
3
5

4
9
7

5
5
9

6
2
1

6
8
3

7
4
5

8
0
7

8
6
9

9
3
1

9
9
3

1
0
5
5

1
1
1
7

Increasing the learning rate at 1.5 results in an optimized design, with GD jumping faster into

new solutions.

Learning rate: 2.5

Iterations: 1164

Performance score of initial design: 0.17705911

Estimated performance score of the optimized design: 0.16579011

Actual performance score of the optimized design: 0.044936816

Novel Design: Yes

Figure 4.16 For the Case 2 and a learning rate of 2.5, an initial mesh(on the left) and the optimized one(on the right).

Chart 4.19 For Case 2 with a learing rate of 1.5: Charts demonstrating the values of the performance score (on the left) and
the root mean square of the gradients of the performance with respect to latent’s space vector (on the right), during the

optimization after 1000 iterations.

G
ra

d
ie

n
t

R
M

S

Iterations

E
s
ti
m

a
te

d
 P

e
rf

o
rm

a
n

c
e

Iterations

https://en.wikipedia.org/wiki/Root_mean_square

75

0

0.05

0.1

0.15

0.2

0.25

0.3

1

5
4

1
0
7

1
6
0

2
1
3

2
6
6

3
1
9

3
7
2

4
2
5

4
7
8

5
3
1

5
8
4

6
3
7

6
9
0

7
4
3

7
9
6

8
4
9

9
0
2

9
5
5

0

0.1

0.2

0.3

0.4

0.5

0.6

1

5
4

1
0
7

1
6
0

2
1
3

2
6
6

3
1
9

3
7
2

4
2
5

4
7
8

5
3
1

5
8
4

6
3
7

6
9
0

7
4
3

7
9
6

8
4
9

9
0
2

9
5
5

Case 3.

Learning rate: 2.5

Iterations: 1000

Performance score of initial design: 0.4659505

Estimated performance score of the optimized design: 0.15925622

Actual performance score of the optimized design: 0.01798574

Novel Design: Yes

Figure 4.17 For the Case 3, an initial mesh(on the left) and the optimized one(on the right).

Chart 4.20 For Case 3 with a learing rate of 2.5: Charts demonstrating the values of the performance score (on the left) and

the root mean square of the gradients of the performance with respect to latent’s space vector (on the right), during the
optimization after 1000 iterations.

G
ra

d
ie

n
t

R
M

S

Iterations

E
s
ti
m

a
te

d
 P

e
rf

o
rm

a
n

c
e

Iterations

https://en.wikipedia.org/wiki/Root_mean_square

76

0

0.05

0.1

0.15

0.2

0.25

0.3

1

5
4

1
0
7

1
6
0

2
1
3

2
6
6

3
1
9

3
7
2

4
2
5

4
7
8

5
3
1

5
8
4

6
3
7

6
9
0

7
4
3

7
9
6

8
4
9

9
0
2

9
5
5

0

0.1

0.2

0.3

0.4

0.5

0.6

1

5
4

1
0
7

1
6
0

2
1
3

2
6
6

3
1
9

3
7
2

4
2
5

4
7
8

5
3
1

5
8
4

6
3
7

6
9
0

7
4
3

7
9
6

8
4
9

9
0
2

9
5
5

Case 4.

Learning rate: 2.5

Iterations: 1000

Performance score of initial design: 0.18231553

Estimated performance score of the optimized design: 0.12000429

Actual performance score of the optimized design: 0.113239

Novel Design: Yes

Figure 4.18 For the Case 4, an initial mesh(on the left) and the optimized one(on the right).

Chart 4.21 For Case 4 with a learing rate of 2.5: Charts demonstrating the values of the performance score (on the left) and
the root mean square of the gradients of the performance with respect to latent’s space vector (on the right), during the

optimization after 1000 iterations.

G
ra

d
ie

n
t

R
M

S

Iterations

E
s
ti
m

a
te

d
 P

e
rf

o
rm

a
n

c
e

Iterations

https://en.wikipedia.org/wiki/Root_mean_square

77

0

0.05

0.1

0.15

0.2

0.25

1

5
4

1
0
7

1
6
0

2
1
3

2
6
6

3
1
9

3
7
2

4
2
5

4
7
8

5
3
1

5
8
4

6
3
7

6
9
0

7
4
3

7
9
6

8
4
9

9
0
2

9
5
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1

5
1

1
0
1

1
5
1

2
0
1

2
5
1

3
0
1

3
5
1

4
0
1

4
5
1

5
0
1

5
5
1

6
0
1

6
5
1

7
0
1

7
5
1

8
0
1

8
5
1

9
0
1

9
5
1

Case 5.

Learning rate: 5

Iterations: 1000

Performance score of initial design: 0.3534903

Estimated performance score of the optimized design: 0.1897085

Actual performance score of the optimized design: 0.115608

Novel Design: Yes

Figure 4.19 For the Case 5, an initial mesh(on the left) and the optimized one(on the right).

Chart 4.22 For Case 5 with a learing rate of 5: Charts demonstrating the values of the performance score (on the left) and
the root mean square of the gradients of the performance with respect to latent’s space vector (on the right), during the

optimization after 1000 iterations.

G
ra

d
ie

n
t

R
M

S

Iterations

E
s
ti
m

a
te

d
 P

e
rf

o
rm

a
n

c
e

Iterations

https://en.wikipedia.org/wiki/Root_mean_square

78

0

0.05

0.1

0.15

0.2

0.25

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

Invalid Case

VAE may produce invalid designs that the surrogate model has not been trained

to score their performance. Therefore, often Gradient Descent converged on invalid

solutions. Below an invalid case is presented..

Learning rate: 0.5

Iterations: 1000

Performance score of initial design: 0.415089337

Estimated performance score of the optimized design: 0.1145393

Figure 4.20 For an Invalid Case, an initial mesh(on the left) and the optimized one(on the right).

Chart 4.23 For an Invalid Case: Charts demonstrating the values of the performance score (on the left) and the root mean
square of the gradients of the performance with respect to latent’s space vector (on the right), during the optimization after

1000 iterations.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

G
ra

d
ie

n
t

R
M

S

Iterations

E
s
ti
m

a
te

d
 P

e
rf

o
rm

a
n

c
e

Iterations

https://en.wikipedia.org/wiki/Root_mean_square
https://en.wikipedia.org/wiki/Root_mean_square

79

Case 2: Various Learning Rates

Some other results for the Case 2, with the Gradient Descent running with various learning

rates are presented below. The more the learning rate decreases the more similar solutions

to the initial design the GD outputs.

80

4.4 Results

VAE

Using the flatten product of the adjacency matrix (3rd Option) seams to ease training.
Training the VAE using with adjacency matrices resulted in a training loss of 2.82371 and a

validation loss of 14.14076 after 500 epochs. In the case of the flattened simplified array the
training loss was 2.308509827 and the validation loss 6.81249094. The model also was

lighter. Increasing the number of layers may result in a slight overfitting as the validation loss
seems to increase slowly (Chart 4.11). Increasing the dimensions of the latent space can
also improve the training (Charts 4.4 and 4.5), resulting however in a slower optimization as

more gradients have to be calculated in the end. In any case, VAE may generate invalid
designs.

Surrogate Model

The performance of the dataset ranges from 0.12844538 to 1 with lower values representing
better solutions. The Surrogate Model can predict with a good accuracy the performance of

the shells. For the best designs that were excluded from the dataset (with a performance
from 0 to 0.126232537) it doesn’t predict with accuracy their performance but scores them

around 0.15, which is close to the value that the model has learned to estimate as good.
The Surrogate Model is not able to predict the performance of invalid designs that the VAE
may produce.

Gradient Descent

The Gradient Descent managed to optimize designs and find novel solutions. The scores of

those solutions are close to 0.15 but in reality they are smaller. Also, in Case 3 the Gradient

descent with a learning rate of 2.5 managed to find the best performed sample that was

excluded from the dataset. In general, smaller learning rates result in optimized designs

more similar to the initial ones. Finally, the GD may result in invalid solutions as the VAE is

very likely to generate invalid designs for which the Surrogate has not yet been trained to

predict their performance.

81

5. APPLICATION

82

5 Application

The framework of this thesis focuses around the case of a shell structure with a quad based

topology. The optimization process for this thesis aims to minimize the deflection, the

utilization and the mass of the structure to prove that AI can help to optimize shell structures.

In the future more criteria can fit in this framework .

The example below demonstrates an optimized shell structure in the case of a flat roof. A

point load of 1 kN is taken into account at the middle, for repair access.

Figure 5.1 The study case

The images below correspond to the Case 2 in the Chapter 3.2 and demonstrate the initial

design before and after relaxation. The starting performance score is 0.17705911.

Figure 5.2 From left to the right: The initial design before and after relaxation.

83

The proposed AI workflow will attempt to optimize the topology of the Mesh first with a

learning rate of 0.5. The optimized design has a performance score of 0.085932, meaning

that is the AI workflow managed to optimize it by 206%.

 Figure 5.3 From left to the right: Theoptimized design using a learning rate of 0.5, before and after relaxation.

A second attempt to optimize the structure is made, using a larger learning rate of 2.5. In

terms of its topology the result is more different compared to the initial design than the

optimized case above. The optimized design has a performance score of 0.044936816,

meaning that this time the AI workflow managed to optimize it by 394%.

Figure 5.4 From left to the right: Theoptimized design using a learning rate of 2.5, before and after relaxation.

The designer- engineer can now choose the preferred solution.

The final design using the AI output result for a learning rate of 0.5

84

The final design using the AI output result for a learning rate of 0.5

The final design using the AI output result for a learning rate of 2.5

85

In the future more criteria can fit in to the workflow. For instance a relaxation in the z axis,

various boundaries and application other load cases.

Figure 5.5 Future development of the AI workflow.

Some scenarios of shell structures with different boundaries and load cases, where AI could

be used for topology optimization are demonstrated below.

Figure 5.6 Various shell structures.

86

6. CONCLUSIONS

87

2.4 Research Questions

Main Question

Can an AI based framework generate new and structurally effective solutions?

Even though the Gradient Descent may produce invalid solutions, for some cases it was

able to converge to structurally better designs than the provided dataset. There is room for

further improvement in the AI workflow, however the research results indicate that an AI

workflow can indeed expand the capabilities of Generative Design and reveal novel and

structurally more effective solution.

Sub-questions

Can a Variational Autoencoder be trained to generate mesh tessellations?

Yes, The Variational Autoencoder can generate new mesh tessellations. It may also

generate some invalid meshes. A dataset augmentation and an increase in the latent space

can improve the training process, however invalid solutions still occur. The form of the

dataset has also a big impact on the model’s performance. Further explanation can be found

at the next sub-question.

What form of data can be used to train a Variational Autoencoder to generate mesh

tessellations?

Mesh tessellations can be described successfully using graph data structures. In this thesis

adjacency matrices were used successfully. Using a denser mesh as a base to create

adjacency matrices allows to train mesh data with different amount of faces and vertices.

However, this method increases the size of the database.

To reduce the size of the dataset, a flattened and simplified product, resulting from the

adjacency matrix, can be used.

Another option that was explored was to use arrays with the face’s structure (Option 1 at the

Variational Autoencoder). This dataset proved to be no appropriate for training VAEs to

generate new meshes.

Can a surrogate model learn to predict the structural performance of decoded graph

networks?

Yes, if the loss of the VAE is low it can.

Can a surrogate model learn to predict the structural performance of encoded graph

networks?

No, the model in this case was overfitting. Increasing the size of the latent space did not

improve the model’s training

Can a Gradient Descent Optimizer propagate back to encoded data to search for

optimum solutions?

Yes, The Gradient Descent was able to optimize mesh tessellations and discover novel and

better solutions. However, in many cases invalid designs were produced. This is due to two

main problems:

1)The VAE often generates invalid samples.

88

2) The surrogate model has not yet been trained to predict the performance of invalid

tessellations

The result was that the loss of the Gradient Descent was converged in cases of invalid

designs.

6.2 Limitations

• A dataset was created with a specific mesh boundary and limitations when it comes

to pattern exploration.

• The only generative model that was used was a Variational Autoencoder.

• The optimization ran based on the structural performance. Other criteria such as

similarity, singularity points, etc were excluded.

• For simplification reasons the dataset at some point was limited only to one quarter

of the mesh.

89

6.3 Discussion and Future Development

This section presents the discussion for the dataset creation, dataset labelling, the

Variational Autoencoder and the Gradient Descent Optimization.

Dataset

a. Dataset Generation

The dataset created for this thesis describes meshes with different number of faces and

vertices. In order to create an appropriate dataset for training purposes, arrays of same

shape are needed. A base mesh was used in that direction and was used as a base to

create arrays that describe adjacency matrices. This strategy proved to be successful for

training generative models.

The dataset was created from one original quadrilateral mesh using python libraries such as

NumPy and Compas. It could be enriched with further pattern exploration (for instance

creating new faces in random vertices).

Another option would be to explore more configurations starting from various coarse meshes

and with the strip method shown in the research of Robin Oval. (Oval et al., 2019)

“Joining points” Method

“Creating new faces in

random vertices”

Method

The Method also explained

in literature review

suggests starting with a

Coarse Mesh (bold black

lines), Subdivide it with a

edge target length and

start adding stripes.

90

If the AI workflow proves successful then the dataset could be enriched with further mesh

boundaries.

b. Labelling the dataset

The dataset was labelled with a performance score based on the mesh’s maximum

displacement, utilization and mass. For future development other criteria could be taken into

account, like different load cases, similarity, number of singularities, maximum length

of edges, etc.

Similarity:

Singularities:

More boundary shapes

can span into a denser

grid.

91

Maximum Length:

The dataset could also be enriched with meshes that are relaxed after after applying loads

on the z- axis.

VAE

The chosen architecture of the workflow’s generative model was that of the VAE. The VAE

was able to decode successfully the initial dataset as well as some of the best meshes that

were excluded from training.

For future development more architectures worth to be explored. One option would be to

include Graph Convolutional Layers in the model’s architecture. These layers were used

from Victor Basu to train a Graph VAE(Basu, 2022). Also according to bibliography GANs

could be more effective for graph generation(Kensert, 2022).

Surrogate Model

The Surrogate model was trained using decoded data. 50 samples were excluded from the

training set to evaluate the models performance. The Surrogate Model was able to estimate

their performance with a good accuracy. For designs performance scores lower than those

in the dataset, it can’t provide accurate estimates, but it does but score them close to the

lowest labels in the dataset.

The model could be improved with decoded data that occur from a better trained Generative

Model. A dataset augmentation with some invalid meshes that are scored negatively can

also be tested.

Gradient Descent Optimization

The Gradient Descent Algorithm is able to retrieve the gradients from the VAE and the

Surrogate Model and through back propagation to the encoded data search for the minima

that corresponds to the performance score. The algorithm so far generates various invalid

meshes. This is due to the fact that the surrogate model was not trained to predict the

performance of the invalid data that the VAE generates, as explained in conclusions. Despite

this the GD was able to generate novel solutions and better designs than the provided

dataset.

Improving the VAE and the Surrogate Model will improve the performance of the GD.

Another solution is to integrate to the workflow a model that can predict if the a design is

valid of not. In case the GD converges to invalid solutions the learning rate can slightly start

to increase until reaching a valid solution as the example below:

https://www.linkedin.com/in/victor-basu-520958147

92

93

7. REFERENCES

Basu, V. (2022). Implementing a Convolutional Variational AutoEncoder (VAE) for

DrugDiscovery. Keras. https://keras.io/examples/generative/molecule_generation/

Bennett, J., Mahrous, K., Hamann, B., & Joy, K. I. (2003). Bicubic subdivision-surface

wavelets for large-scale isosurface representation and visualization. Spring Conference

on Computer Graphics, SCCG 2003 - Conference Proceedings, February, 9–16.

https://doi.org/10.1145/984952.984954

Bradshaw, L. (n.d.). Big Data and what it Means. Us Chamber Foundation. Retrieved

March 28, 2022, from https://www.uschamberfoundation.org/bhq/big-data-and-what-it-
means

Brownlee, A. (2019). Overfitting and Underfitting With Machine Learning Algorithms.

Machine Learning Mastery. https://machinelearningmastery.com/overfitting-and-

underfitting-with-machine-learning-algorithms/

Chen, L. (2014). Basic Data Structure Representing a Mesh Contents. UCI Department

of Mathematics. https://www.math.uci.edu/~chenlong/iFEM/doc/html/meshbasicdoc.html

Chen, W., Zheng, X., Lei, N., & Luo, Z. (2018). Metric Based Quadrilateral Mesh

Generation. November.

Chollet, F. (2016). Building Autoencoders in Keras. The Keras Blog.

https://blog.keras.io/building-autoencoders-in-keras.html

Chollet, F. (2020). Keras. Variational AutoEncoder.

https://keras.io/examples/generative/vae/

Daoud, M. (2020). Neurons, Activation Functions, Back-Propagation, Epoch, Gradient

Descent: What are these? Medium. https://towardsdatascience.com/neurons-activation-

functions-back-propagation-epoch-gradient-descent-what-are-these-c80349c6c452

Doersch, C. (2016). Tutorial on Variational Autoencoders. 1–23.

http://arxiv.org/abs/1606.05908

Feed Forward Neural Network. (2019). DeePai. https://deepai.org/machine-learning-

glossary-and-terms/feed-forward-neural-network

Fogg, H. J., Sun, L., Makem, J. E., Armstrong, C. G., & Robinson, T. T. (2018).

Singularities in structured meshes and cross-fields. CAD Computer Aided Design, 105,

11–25. https://doi.org/10.1016/j.cad.2018.06.002

Ganesh, S. (2020). What’s The Role Of Weights And Bias In a Neural Network?

Medium. https://medium.com/p/4cf7e9888a0f

Gladstone, R. J., Nabian, M. A., Keshavarzzadeh, V., & Meidani, H. (2021). Robust

Topology Optimization Using Variational Autoencoders. 1–20.

http://arxiv.org/abs/2107.10661

GOYAL, C. (n.d.). Complete Guide to Gradient-Based Optimizers in Deep Learning.

2021. Retrieved March 21, 2022, from
https://www.analyticsvidhya.com/blog/2021/06/complete-guide-to-gradient-based-

optimizers/#:~:text=Gradient descent is an optimization,function to its local minimum.

Guo, S. (2020). An introduction to Surrogate modeling, Part I: fundamentals. Towards

Data Science. https://towardsdatascience.com/an-introduction-to-surrogate-modeling-

94

part-i-fundamentals-84697ce4d241

Kensert, A. (2022). WGAN-GP with R-GCN for the generation of small molecular graphs.

Keras. https://keras.io/examples/generative/wgan-graphs/

Kingma, D. P., & Welling, M. (2014). Auto-encoding variational bayes. 2nd International

Conference on Learning Representations, ICLR 2014 - Conference Track Proceedings,

Ml, 1–14.

Löffler, M., & Vaxman, A. (2016). Mesh Data Structures & Traversal. Utrecht University.

https://www.enseignement.polytechnique.fr/informatique/INF562/Slides/MeshDataStruct

ures.pdf

Lunot, V. (2019). Vincent’s Blog. On the Use of the Kullback–Leibler Divergence in

Variational Autoencoders. https://www.vincent-lunot.com/post/on-the-use-of-the-
kullback-leibler-divergence-in-variational-autoencoders/

Manager, E. K. (2020). AI vs. Machine Learning vs. Deep Learning vs. Neural Networks:

What’s the Difference? IBM Cloud. https://www.ibm.com/cloud/blog/ai-vs-machine-

learning-vs-deep-learning-vs-neural-networks

McKnight, M. (2017). Generative Design: What it is? How is it being used? Why it’s a

game changer. KnE Engineering, 2(2), 176. https://doi.org/10.18502/keg.v2i2.612

Millan, P. P., & Ochoa, D. (2020). Graph theory: adjacency matrices. EMBL’s European

Bioinformatics Institute. https://doi.org/DOI: 10.6019/TOL.Networks_t.2016.00001.1

Mitteroecker, P., Gunz, P., Windhager, S., & Schaefer, K. (2013). A brief review of

shape, form, and allometry in geometric morphometrics, with applications to human

facial morphology. Hystrix, 24(1). https://doi.org/10.4404/hystrix-24.1-6369

Oh, S., Jung, Y., Kim, S., Lee, I., & Kang, N. (2019). Deep generative design: Integration

of topology optimization and generative models. Journal of Mechanical Design,

Transactions of the ASME, 141(11). https://doi.org/10.1115/1.4044229

Oval, R., Rippmann, M., Mesnil, R., Mele, T. Van, Baverel, O., & Block, P. (2019).

Automation in Construction Feature-based topology fi nding of patterns for shell

structures. Automation in Construction, 103(May 2018), 185–201.

https://doi.org/10.1016/j.autcon.2019.02.008

Papagiannopoulos, A., Clausen, P., & Avellan, F. (2021). How to teach neural networks

to mesh: Application on 2-D simplicial contours. Neural Networks, 136, 152–179.

https://doi.org/10.1016/j.neunet.2020.12.019

Ramsundar, B., & Zadeh, R. B. (2022). TensorFlow for Deep Learning.

https://www.oreilly.com/library/view/tensorflow-for-deep/9781491980446/ch04.html

Rocca, J. (2019). Understanding Variational Autoencoders (VAEs). Towards Data

Science. https://towardsdatascience.com/understanding-variational-autoencoders-vaes-
f70510919f73

Sauras-Altuzarra, L. (2022). Adjacency Matrix. Wolfram MathWorld.

https://mathworld.wolfram.com/AdjacencyMatrix.html

Shafkat, I. (2018). Intuitively Understanding Variational Autoencoders. Towards Data

Science. https://towardsdatascience.com/intuitively-understanding-variational-
autoencoders-1bfe67eb5daf

Sharma, S. (n.d.). Activation Functions in Neural Networks. Towards Data Science.

Retrieved March 21, 2022, from https://medium.com/towards-data-science/activation-

95

functions-neural-networks-1cbd9f8d91d6

Sharma, S. (2017). Epoch vs Batch Size vs Iterations. Towards Data Science.

https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9

Shepherd, P., & Pearson, W. (2013). Topology Optimization of Algorithmically Generated

Space Frames. Proceedings of the International Association for Shell and Spatial

Structures (IASS) Symposium 2013, 1–7.

Soni, D. (2022). Supervised vs. Unsupervised Learning. Towards Data Science.

Supervised vs. Unsupervised Learning

Stojiljković, M. (n.d.). Stochastic Gradient Descent Algorithm With Python and NumPy.

Real Python. Retrieved March 28, 2022, from https://realpython.com/gradient-descent-
algorithm-python/?fbclid=IwAR3-

887K1sRhZZ2onwNdh2p8brseVQC7ZU0oIJMmYSpiPo7X_0cwo2ra2jw%0A%0A

Vinodhkumar, B. (2020a). Activation functions and its types. Medium.

https://medium.com/@vinodhb95/activation-functions-and-its-types-8750f1287464

Vinodhkumar, B. (2020b). What is Loss in Neural Nets? Is cost function and loss function

are same ? https://medium.com/@vinodhb95/what-is-loss-in-neural-nets-is-cost-function-

and-loss-function-are-same-ef069a570e95

What are Neural Networks? (2020). IBM Cloud Education.

https://www.ibm.com/cloud/learn/neural-networks#:~:text=Neural networks%2C also
known as,neurons signal to one another.

Xu, K., Akram, M. N., & Chen, G. (2020). Semi-global Quad Mesh Structure

Simplification via Separatrix Operations. SIGGRAPH Asia 2020 Technical

Communications, SA 2020, December. https://doi.org/10.1145/3410700.3425436

Young, N. & Foster + Partners. (n.d.). Robert and Arlene Kogod Courtyard [Photograph].

https://www.ggnltd.com/the-robert-and-arlene-kogod-courtyard

Gehry Partners, LLP and Frank O. Gehry, & Baan, I. (2014). Fondation Luis

Vuitton [Photograph]. https://www.fondationlouisvuitton.fr/en/fondation

https://www.fondationlouisvuitton.fr/en/fondation

96

8. APPENDIX

97

DATASET GENERATION

import time

import numpy as np

from compas.datastructures import Mesh

import networkx

from networkx.algorithms.components.connected import connected_components

from compas import datastructures

from compas.datastructures import mesh_delete_duplicate_vertices

from compas_plotters.meshplotter import MeshPlotter

from compas.numerical import dr_numpy

from compas.geometry import matrix_from_axis_and_angle

from compas.datastructures import Mesh as CompasMesh

from compas.geometry import area_polygon

from random import seed

from random import randint

from random import choices

from stopit import threading_timeoutable as timeoutable

import os

#Open dense mesh

job_directory=os.getcwd()

data=os.path.join(job_directory, "dense_mesh")

meshdense = Mesh.from_obj(data)

plotter = MeshPlotter(meshdense, figsize=(4, 4))

plotter.draw_edges()

plotter.draw_vertices(text='key', radius=0.01)

plotter.draw_faces()

plotter.show()

#Open mesh to transform

data=os.path.join(job_directory, "bese_mesh")

mesh = Mesh.from_obj(data)

plotter = MeshPlotter(mesh, figsize=(4, 4))

plotter.draw_edges()

plotter.draw_vertices(text='key', radius=0.01)

plotter.draw_faces()

plotter.show()

98

#find the centre of xi points

def find_centre(mesh,xi):

 cxi=[]

 cyi=[]

 czi=[]

 for xa in xi:

 i=Mesh.vertex_coordinates(mesh, xa, axes='x')

 i=i[0]

 cxi.append(i)

 cx=((sum(set(cxi)))/(len(set(cxi))))

 i=Mesh.vertex_coordinates(mesh, xa, axes='y')

 i=i[0]

 cyi.append(i)

 cy=((sum(set(cyi)))/(len(set(cyi))))

 i=Mesh.vertex_coordinates(mesh, xa, axes='z')

 i=i[0]

 czi.append(i)

 cz=((sum(set(czi)))/(len(set(czi))))

 cnt=[cx,cy,cz]

 return cnt

#create a list of the faces structure with sublists of the coordinated of the

points

def face_coor(m,fkey):

 z=m.face_vertices(fkey)

 coor=[]

 for i in z:

 temp=Mesh.vertex_coordinates(m, i, axes='xyz')

 coor.append(temp)

 return coor

#list of coordinates for all vertices

def mesh_vertex_coordinates(m):

 vertices = list(m.vertices())

 vertices_coordinates=[]

 for i in vertices:

 i_coordinates=Mesh.vertex_coordinates(m, i, axes='xyz')

 vertices_coordinates.append(i_coordinates)

99

 return vertices_coordinates

#get the neighboors of the points

def neigh (m,r):

 faces = list(mesh.faces())

 faces_structure=[]

 for i in faces:

 faces_structure.append(m.face_vertices(i))

 neigh=[]

 for i in faces_structure:

 if r in i:

 for a in i:

 neigh.append(a)

 neigh = list(dict.fromkeys(neigh))

 neigh.remove(r)

 return (neigh)

#get the symmetrical points

def symmetrical_points (mesh,subdivition_number,subdivition_number2,random_point):

 num1=subdivition_number+1

 num2=subdivition_number2+1

 vertices = list(mesh.vertices())

 arr=np.array(vertices)

 arr=arr.reshape(num2, num1)

 arr_b=arr.transpose()

 temp=np.where(arr==random_point)

 xa=int(temp[0])

 xb=int(temp[1])

 mir=[]

 mir.append(arr[xa][xb])

 mir.append(arr[xa][-(xb+1)])

 mir.append(arr[-(xa+1)][(xb)])

 mir.append(arr[-(xa+1)][-(xb+1)])

 return mir

def to_graph(l):

 G = networkx.Graph()

 for part in l:

 # each sublist is a bunch of nodes

 G.add_nodes_from(part)

 # it also imlies a number of edges:

 G.add_edges_from(to_edges(part))

 return G

def to_edges(l):

 """

 treat `l` as a Graph and returns it's edges

 to_edges(['a','b','c','d']) -> [(a,b), (b,c),(c,d)]

 """

 it = iter(l)

 last = next(it)

 for current in it:

 yield last, current

 last = current

100

def flatten(t):

 flat_list = []

 for sublist in t:

 for item in sublist:

 flat_list.append(item)

 return flat_list

def checklists(a,b):#check if elements in list a are in b

 lst=[]

 for i in a:

 if i in b:

 lst.append(i)

 return (lst)

#Relax Mesh

@timeoutable()# stop relaxation if it takes too long

def relax(m):

 # extract the coordinates of vertices

 vertices, faces = m.to_vertices_and_faces()

 # extract edges

 edges = list(m.edges())

 # find the nboundary vertices

 boundary_vertices = m.vertices_on_boundary()

 # set loads

 loads = [[0, 0, 0]] * len(vertices)

 # Prescribed force densities in the edges

 qpre = [2] * len(edges)

 # kN/m^3 # TODO: double check the unit

 xyz, q, f, l, r = dr_numpy(vertices, edges, boundary_vertices, loads, qpre)

 relaxed_mesh = CompasMesh.from_vertices_and_faces(xyz, faces)

 return relaxed_mesh

def delete_indices(lst,del_list):

 t=0

 for i in del_list:

 z= i-t

 lst.pop(z)

 t=t+1

 return lst

#select vertices in 1/4 of the mesh

vertices = list(mesh.vertices())

temp=x_sub+1

temp=int(temp)

tempb=x_sub/2

tempb=int(tempb)

v=[]

for i in range(tempb+1):

 v.append(vertices[i])

a=v

t=[i+(temp) for i in a]

v=v+t

for i in range (tempb-1):

101

 t=[i+(temp) for i in t]

 v=v+t

vertices=v

print (vertices)

#this is the transformation def

def transformmesh(mesh,random_point,random_select,x_sub,y_sub):

 boundary_vertices = mesh.vertices_on_boundary()

 corner_points=[72,80,0,8]

 #find symmetries

 p_lst=[]

 for i in random_point:

 p_lst.append(neigh(mesh,i))

 r_lst=[]

 for i in range(len(random_point)):

 temp=p_lst[i]

 indx=random_select[i]

 tempb=temp[indx]

 r_lst.append(tempb)

 syma=[]

 for i in r_lst:

 a= symmetrical_points(mesh,x_sub,y_sub,i)

 syma.append(a)

 symb=[]

 for i in random_point:

 a= symmetrical_points(mesh,x_sub,y_sub,i)

 symb.append(a)

 syma=flatten(syma)

 symb=flatten(symb)

 temp_lst=[]

 for i in range (len(syma)):

 l=[syma[i],symb[i]]

 temp_lst.append(l)

 G = to_graph(temp_lst)

 lst_new=list(connected_components(G))

 pts_to_merge=[]

 for i in range(len(lst_new)):

 temp=lst_new[i]

 t=list(temp)

 pts_to_merge.append(t)

 print (pts_to_merge)

 #Resulting point after merGing selected points

 merged_points=[]

 for i in pts_to_merge:

 tempb=checklists(i,corner_points)

 if len(tempb)== 0:

 temp=checklists(i,boundary_vertices)

 if len(temp)==1:#if there is one boundary point in the points_to_merge

select it as the resulting point

 tempa=Mesh.vertex_coordinates(mesh, temp[0], axes='xyz')

 merged_points.append(tempa)

102

 elif len(temp)>1:#if there is more than one boundary point in the

points_to_merge, select their centre as the resulting point

 merged_points.append(find_centre(mesh,temp))

 else:#if there is no boundary point in the points_to_merge, select

their centre as the resulting point

 merged_points.append(find_centre(mesh,i))

 else:#if there is a corner point in the points_to_merge, select it as the

resulting point

 tempc=checklists(i,corner_points)

 tempc=Mesh.vertex_coordinates(mesh, tempc[0], axes='xyz')

 merged_points.append(tempc)

 #Indexes for vertices, edges and faces

 vertices = list(mesh.vertices())

 edges = list(mesh.edges())

 faces = list(mesh.faces())

 #list with face structure

 faces_structure=[]

 for f in faces:

 faces_structure.append(mesh.face_vertices(f))

 #list of coordinates for all vertices

 vertices = list(mesh.vertices())

 vertices_coordinates=[]

 for i in vertices:

 i_coordinates=Mesh.vertex_coordinates(mesh, i, axes='xyz')

 vertices_coordinates.append(i_coordinates)

 x=-1

 for i in pts_to_merge:

 x=x+1

 for e in i:

 vertices_coordinates[e]=merged_points[x]

 #new mesh

 mesh2 = Mesh.from_vertices_and_faces(vertices_coordinates, faces_structure)

 training_vertices = vertices_coordinates

 #dictionaries of vertices&faces

 vertices_dict=dict(zip(vertices, vertices_coordinates))

 faces_dict=dict(zip(faces,faces_structure))

 #clear faces with zero area

 faces = list(mesh2.faces())

 faces_structure=[]

 for i in faces:

 faces_structure.append(mesh2.face_vertices(i))

 vertices_coordinates=mesh_vertex_coordinates(mesh2)

 i=0

 l_temp=[]

 #get a list with the indexes of faces with zero area

 for i in range(len(faces)):

 t= (face_coor(mesh2,i))

 a=area_polygon(t)

 if abs(a)<0.001:

103

 #del faces_structure[i]

 l_temp.append(i)

 i=i+1

 temp=0

 for i in l_temp:

 del faces_structure[i-temp]

 temp=temp+1

 for i in l_temp:

 del faces_dict[i]

 #remove no used vertices

 faces_structure_flatten=flatten(faces_structure)

 temp=[]

 for i in vertices:

 if i in faces_structure_flatten:

 pass

 else:

 temp.append(i)

 for i in temp:

 del vertices_dict[i]

 #new clear mesh

 mesh3 = Mesh.from_vertices_and_faces(vertices_dict, faces_dict)

 mesh_delete_duplicate_vertices(mesh3, precision=None)

 #fix the index of vertices

 vertices = list(mesh3.vertices())

 vertices_coordinates=[]

 for i in vertices:

 i_coordinates=Mesh.vertex_coordinates(mesh3, i, axes='xyz')

 vertices_coordinates.append(i_coordinates)

 faces = list(mesh3.faces())

 faces_structure=[]

 for f in faces:

 faces_structure.append(mesh3.face_vertices(f))

 i=0

 vertices_new=[]

 for v in vertices:

 vertices_new.append(i)

 i=i+1

 lstold=[]

 lstnew=[]

 i=0

 for v in vertices:

 if vertices[i] != vertices_new[i]:

 lstold.append(v)

 lstnew.append(vertices_new[i])

 i=i+1

 res = {lstold[i]: lstnew[i] for i in range(len(lstold))}

 e=0

 faces_structure_new= faces_structure

104

 for f in faces_structure_new:

 z=0

 for i in f:

 if i in lstold:

 faces_structure_new[e][z]=res[i]

 z=z+1

 e=e+1

 mesh4 = Mesh.from_vertices_and_faces(vertices_coordinates,

faces_structure_new)

 return (mesh4,pts_to_merge)

def get_adjmatrix(mesh4,meshdense):

 vertices_old = list(meshdense.vertices())

 v_old=[]

 for i in vertices_old:

 i_coordinates_old=Mesh.vertex_coordinates(meshdense, i, axes='xyz')

 v_old.append(i_coordinates_old)

 vertices_new = list(mesh4.vertices())

 v_new=[]

 for i in vertices_new:

 i_coordinates_new=Mesh.vertex_coordinates(mesh4, i, axes='xyz')

 v_new.append(i_coordinates_new)

 #Create empty matrix

 adjmatrix=np.zeros((289, 289))

 faces_new = list(mesh4.faces())

 faces_structure_new=[]

 for f in faces_new:

 faces_structure_new.append(mesh4.face_vertices(f))

 #Create a dictionary --> (vertex index in new mesh): (vertex index in dense

mesh)

 dict_temp= {}

 for i in range(len(v_old)):

 if v_old[i] in v_new:

 temp={(v_new.index(v_old[i])):i}

 dict_temp.update(temp)

 #Replace the vertex index in faces structure of the dense mesh

 z=0

 for i in faces_structure_new:

 for y in range(len(i)):

 (faces_structure_new[z])[y]=dict_temp[(faces_structure_new[z])[y]]

 z=z+1

 #create adjacency matrix

 for i in faces_structure_new:

 if len(i)==4:

 adjmatrix[(i[0]),(i[1])]=1.0

105

 adjmatrix[(i[1]),(i[0])]=1.0

 adjmatrix[(i[1]),(i[2])]=1.0

 adjmatrix[(i[2]),(i[1])]=1.0

 adjmatrix[(i[2]),(i[3])]=1.0

 adjmatrix[(i[3]),(i[2])]=1.0

 adjmatrix[(i[3]),(i[0])]=1.0

 adjmatrix[(i[0]),(i[3])]=1.0

 if len(i)==3:

 adjmatrix[(i[0]),(i[1])]=1.0

 adjmatrix[(i[1]),(i[0])]=1.0

 adjmatrix[(i[1]),(i[2])]=1.0

 adjmatrix[(i[2]),(i[1])]=1.0

 adjmatrix[(i[2]),(i[0])]=1.0

 adjmatrix[(i[0]),(i[2])]=1.0

 #relaxed_mesh=relax(timeout = 2,m=mesh4)

 return (adjmatrix)

#dataset creation for option 2: Using an adjacency matrix as training data

for i in range(11000): #this number is not final because the generation will

produce double results

 try:

 ram_range_ver = randint(1, range_ver)

 random_point=choices(vertices, k=ram_range_ver)

 len(random_point)

 random_select = []

 for i in range(len(random_point)):

 temp=neigh(mesh,random_point[i])

 temp=len(temp)-1

 n = randint(0,temp)

 random_select.append(n)

 transform=transformmesh(mesh,random_point,random_select,x_sub,y_sub)

 tmesh=transform[0]

 pointstomerge=transform[1]

 area=Mesh.area(tmesh)

 relaxed_mesh=relax(timeout = 2,m=tmesh)

 mtx=get_adjmatrix(tmesh,meshdense)

 mtx2=mtx.reshape(1,289,289)

 if pointstomerge in pointstomerge_list:

 doublemesh=doublemesh+1

 if area==225 and pointstomerge not in pointstomerge_list :

 dataset.append(mtx)

 vertices_and_faces=relaxed_mesh.to_vertices_and_faces()

 dir="C:/Users/31613/Documents/2021/Graduation/P4/Trainning_data/FEM/"

 str_interations=str(interations).zfill(4)

 dir_vert=dir+str_interations+"_vertices.txt"

 f =open(dir_vert, "w")

 for i in vertices_and_faces[0]:

 r=str(i)

 r=r.replace('[', '{')

 r=r.replace(']', '}')

 f.write(r+"/")

106

 f.close()

 dir_faces=dir+str_interations+"_faces.txt"

 f =open(dir_faces, "w")

 for i in vertices_and_faces[1]:

 w=str(i)

 w=w.replace('[', '{')

 w=w.replace(']', '}')

 f.write(w+"/")

 f.close()

 interations=interations+1

 pointstomerge_list.append(pointstomerge)

 print("iteration",interations)

 except IndexError:

 print ("error")

 except AttributeError:

 print ("error")

 except ValueError:

 print ("error")

#dataset generation for option 1: Using the structure of vertices as training data

for i in range(2000):

 try:

 print("iteration",interations)

 ram_range_ver = randint(1, range_ver)

 random_point=choices(vertices, k=ram_range_ver)

 len(random_point)

 random_select = []

 for i in range(len(random_point)):

 temp=neigh(mesh,random_point[i])

 temp=len(temp)-1

 n = randint(0,temp)

 #n = randint(0,7)

 random_select.append(n)

 print (("random points"),random_point)

 print (("random select"),random_select)

 w=transformmesh(mesh,random_point,random_select,x_sub,y_sub)

 rmesh=w[0]

 vertices = list(rmesh.vertices())

 #plotter = MeshPlotter(rmesh, figsize=(2, 2))

 #plotter.draw_edges()

 #plotter.draw_vertices(text='key', radius=0.01)

 #plotter.draw_faces()

 #plotter.show()

 dataset.append(w[1])

 #export mesh data to folder

 vertices_and_faces=rmesh.to_vertices_and_faces()

 #dir="C:/Users/31613/Documents/2021/Graduation/P3/trainingdata_vs/"

 #str_interations=str(interations).zfill(4)

 #dir_vert=dir+str_interations+"_vertices.txt"

 #f =open(dir_vert, "w")

 #for i in vertices_and_faces[0]:

 # r=str(i)

107

 # r=r.replace('[', '{')

 # r=r.replace(']', '}')

 # f.write(r+"/")

 #f.close()

 #dir_faces=dir+str_interations+"_faces.txt"

 #f =open(dir_faces, "w")

 #for i in vertices_and_faces[1]:

 # w=str(i)

 # w=w.replace('[', '{')

 # w=w.replace(']', '}')

 # f.write(w+"/")

 #f.close()

 interations=interations+1

 except IndexError:

 print ("error")

 except AttributeError:

 print ("error")

 except ValueError:

 print ("error")

#Saving the dataset

dataset_array=np.array(dataset)

file="C:/Users/31613/Documents/2021/Graduation/P4/TrainingData/AdjacencyMatrix"

np.save(job_directory, dataset_array, allow_pickle=True, fix_imports=True)

108

DATASET AUGMENTATION

#dictionary that flips the quarter_mesh

row1=[0,1,2,3,4,5,6,7,8,17,26,35,44,53,62,71,80,79,78,77,76,75,74,73,72,63,54,45,3

6,27,18,9,0]

row2=[10,11,12,13,14,15,16,25,34,43,52,61,70,69,68,67,66,65,64,55,46,37,28,19,10]

row3=[20,21,22,23,24,33,42,51,60,59,58,57,56,47,38,29,20]

row4=[30,31,32,41,50,49,48,39,30]

row5=[40]

row1_reverse=reversed(row1)

row2_reverse=reversed(row2)

row3_reverse=reversed(row3)

row4_reverse=reversed(row4)

dict1=dict(zip(row1,row1_reverse))

dict2=dict(zip(row2,row2_reverse))

dict3=dict(zip(row3,row3_reverse))

dict4=dict(zip(row4,row4_reverse))

dict5=dict(zip(row5,row5))

dict_flip = dict1.copy()

dict_flip.update(dict2)

dict_flip.update(dict3)

dict_flip.update(dict4)

dict_flip.update(dict5)

#flip the mesh

def flip_matrix(array,dict_flip,shape):

 array_flipped=np.zeros((shape,shape))

 for i in range(81):

 for e in range(81):

 array_flipped[i,e]=array[dict_flip.get(i),dict_flip.get(e)]

 return array_flipped

FLATTEN AND SIMPLIFY ADJACENCY MATRICES

#Create the flattemed and simplified arrays

def create_flatten_lst(array):

 flatten_lst=[]

 for i in range(array.shape[1]):

 for e in range(i):

 flatten_lst.append(array[i,e])

 return flatten_lst

#Construct adjacency matrices from flattened and simplified arrays

def flatten_to_matrix(flatten_lst,shape1):

 array_zero=np.zeros((shape1,shape1))

 y=0

 for i in range(shape1):

 for e in range(i):

 array_zero[i,e]=flatten_lst[y]

 array_zero[e,i]=flatten_lst[y]

 y=y+1

 array_new=array_zero

 return array_new

109

AI FRAMEWORK

import numpy as np

from tensorflow import keras

from tensorflow.keras import layers

from IPython import display

from sklearn.model_selection import train_test_split

import glob

import imageio

from compas.datastructures import Mesh

from compas_plotters.meshplotter import MeshPlotter

import networkx

from networkx.algorithms.components.connected import connected_components

from keras import layers, activations

import os

import pandas as pd

import tensorflow as tf

#Loading data
#Open the dense mesh that will be used as a base for the adjacency matrix

job_directory=os.getcwd()

data= os.path.join(job_directory, "Trainning_data","dense_meshquarter.obj")

meshdense = Mesh.from_obj(data)

plotter = MeshPlotter(meshdense, figsize=(5, 5))

plotter.draw_edges()

plotter.draw_vertices(text='key', radius=0.01)

plotter.draw_faces()

plotter.show()

Clear some bad meshes

remove=[437,457,1123,1142,1307,1377,1772,1775,1781,1921,2050,2312,2364,2394,2439,2

639,2709,2717,2734,2754,2968,3128,3196,3283,3309,3359,3522,3524,3579,3597,3604,364

7,3669,3731,3759,3817,3839,4144,4203,4337,4391,4585,4591,4594,4610,4633,4994,5084,

5166,5390,5468,5661]

dataset=np.delete(a, remove, axis=0)

110

Remove best performed meshes from the training dataset

best=[2102,1142,1721,4270,4884,705,3501,562,1367,5277]

dataset_new= np.delete(dataset, best, axis=0)

Select 1/4 of the adjacency matrices

lst_temp=

[*range(0,9),*range(17,26),*range(34,43),*range(51,60),*range(68,77),*range(85,94)

,*range(102,111),*range(119,128),*range(136,145)]

dataset_quarter=np.take(dataset_new,lst_temp, axis=1)

dataset_quarter=np.take(dataset_quarter,lst_temp, axis=2)

dataset_best=np.take(dataset,best, axis=0)

dataset_quarter_best=np.take(dataset_best,lst_temp, axis=1)

dataset_quarter_best=np.take(dataset_quarter_best,lst_temp, axis=2)

Get a mesh from an adjacency matrix

def Mesh_from_mtx(mtx):

 vertices_old = list(meshdense.vertices())

 v_old=[]

 for i in vertices_old:

 i_coordinates_old=Mesh.vertex_coordinates(meshdense, i, axes='xyz')

 v_old.append(i_coordinates_old)

 #get the connected edges

 D=networkx.DiGraph(mtx)

 edges = [[u, v] for [u, v] in D.edges()]

 #sort the tuples of edges

 temp=[]

 for i in edges:

 temp.append(tuple(sorted(i)))

 #delete duplicate edges

 temp=set(temp) #first create set

 temp=tuple(temp) #convert set to tuple

 #Convert to list

 edges=[]

 for i in temp:

 z=[]

 for y in i:

 z.append(v_old[y])

 edges.append(z)

 mrebuild=Mesh.from_lines(edges)

 return (mrebuild)

111

#VAE
#Sampling Layer

class Sampling(layers.Layer):

 """Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""

 def call(self, inputs):

 z_mean, z_log_var = inputs

 batch = tf.shape(z_mean)[0]

 dim = tf.shape(z_mean)[1]

 epsilon = tf.keras.backend.random_normal(shape=(batch, dim))

 return z_mean + tf.exp(0.5 * z_log_var) * epsilon

#Encoder

latent_dim = 10

encoder_inputs = keras.Input(shape=(3240))

x = layers.Dense(1000, activation="relu")(encoder_inputs)

x = layers.Dense(100, activation="relu")(x)

z_mean = layers.Dense(latent_dim, name="z_mean")(x)

z_log_var = layers.Dense(latent_dim, name="z_log_var")(x)

z = Sampling()([z_mean, z_log_var])

encoder = keras.Model(encoder_inputs, [z_mean, z_log_var, z], name="encoder")

encoder.summary()

#Decoder

latent_inputs = keras.Input(shape=(latent_dim,))

x = layers.Dense(100, activation="relu")(latent_inputs)

x = layers.Dense(1000, activation="relu")(x)

decoder_outputs= layers.Dense(3240, activation="sigmoid")(x)

decoder = keras.Model(latent_inputs, decoder_outputs, name="decoder")

decoder.summary()

#VAE customize

class VAE(keras.Model):

 def __init__(self, encoder, decoder, **kwargs):

 super(VAE, self).__init__(**kwargs)

 self.encoder = encoder

 self.decoder = decoder

 def train_step(self, data):

 if isinstance(data, tuple):

 data = data[0]

 with tf.GradientTape() as tape:

 z_mean, z_log_var, z = self.encoder(data)

 #reconstruction =tf.round(self.decoder(z))

 reconstruction = self.decoder(z)

 reconstruction_loss = tf.reduce_mean(

 keras.losses.mean_squared_error(data, reconstruction)

)

 reconstruction_loss *= 100 * 100

 kl_loss = 1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var)

 kl_loss = tf.reduce_mean(kl_loss)

112

 kl_loss *= -0.5

 total_loss = reconstruction_loss + kl_loss

 grads = tape.gradient(total_loss, self.trainable_weights)

 self.optimizer.apply_gradients(zip(grads, self.trainable_weights))

 return {

 "loss": total_loss,

 "reconstruction_loss": reconstruction_loss,

 "kl_loss": kl_loss,

 }

 def test_step(self, data):

 if isinstance(data, tuple):

 data = data[0]

 z_mean, z_log_var, z = self.encoder(data)

 reconstruction = self.decoder(z)

 reconstruction_loss = tf.reduce_mean(

 keras.losses.mean_squared_error(data, reconstruction)

)

 reconstruction_loss *= 100 * 100

 kl_loss = 1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var)

 kl_loss = tf.reduce_mean(kl_loss)

 kl_loss *= -0.5

 total_loss = reconstruction_loss + kl_loss

 return {

 "loss": total_loss,

 "reconstruction_loss": reconstruction_loss,

 "kl_loss": kl_loss,

 }

#dataset

x_train = dataset_quarter.astype('float32')

#train

vae = VAE(encoder, decoder)

vae.compile(optimizer=keras.optimizers.Adam(),metrics=['accuracy'])

history = vae.fit(x_train, epochs=500, batch_size=64,validation_split=0.2)

Check how the data are decoded

test_mesh=dataset_quarter_best[1]

testmesh= Mesh_from_mtx(test_mesh)

plotter = MeshPlotter(testmesh, figsize=(2, 2))

plotter.draw_edges()

plotter.draw_vertices(text='key', radius=0.01)

plotter.draw_faces()

plotter.show()

test_mesh= test_mesh.astype('float32')

test_mesh=test_mesh.reshape((1,81,81,1))

#tensor = tf.convert_to_tensor(test_mesh)

x= vae.encoder(test_mesh)

113

mean=x[0]

logvar=x[1]

z=x[2]

print(z)

decodedtensor=vae.decoder(z)

decodesarray=decodedtensor.numpy()

mtx=decodesarray.reshape(81,81)

array =np.zeros((81,81))

thr=0.4

for i in range(mtx.shape[0]):

 for y in range(mtx.shape[1]):

 if mtx[i,y]>thr:

 array[i,y]=1

testmesh= Mesh_from_mtx(array)

plotter = MeshPlotter(testmesh, figsize=(2, 2))

plotter.draw_edges()

plotter.draw_vertices(text='key', radius=0.01)

plotter.draw_faces()

plotter.show()

#Generate a mesh randomly from latent space

tf_random=tf.random.uniform(shape

 =[1, 10],

 minval=-1,

 maxval=1,

 dtype=tf.dtypes.float32,

 seed=None,

 name=None

)

tf.Tensor([[-0.8392136 -0.01628723 1.4019599 0.27650622 -2.1292992
0.33380827 0.18326117 1.1488624 -1.7288721 -0.04750239]], shape=(1, 10),

dtype=float32)

114

decodedtensor=vae.decoder(tf_random)

decodedtensor=tf.round(decodedtensor)

print (decodedtensor.shape)

decodesarray=decodedtensor.numpy()

mtx=decodesarray.reshape(81,81)

testmesh= Mesh_from_mtx(mtx)

plotter = MeshPlotter(testmesh, figsize=(2, 2))

plotter.draw_edges()

plotter.draw_vertices(text='key', radius=0.01)

plotter.draw_faces()

plotter.show()

#Get the loss history

history.history.keys()

history.history['loss']

#Save VAE

Save_directory= os.getcwd()

vae.get_layer('encoder').save_weights(Save_directory + "encoder_weights.h5")

vae.get_layer('decoder').save_weights(Save_directory +"decoder_weights.h5")

vae.get_layer('encoder').save(Save_directory + "encoder_arch")

vae.get_layer('decoder').save(Save_directory +"decoder_arch")

#Load VAE

Load_directory= os.getcwd()

encoder= keras.models.load_model(Load_directory + "encoder_arch")

decoder= keras.models.load_model(Load_directory +"decoder_arch

vae = VAE(encoder, decoder) #You need to have VAE class defined for this to works

vae.get_layer('encoder').load_weights(location + "encoder_weights.h5")

vae.get_layer('decoder').load_weights(location +"decoder_weights.h5")

vae.compile(optimizer=keras.optimizers.Adam())

115

#Surrogate
location_labels= os.path.join(job_directory,LABELS.csv")

column_names=["Maximum_displacement[cm]","Utilization","Mass[kg]","Norm_dis","Norm

_Util","Norm_Mass","perf","perf_stand","perf_norm"]

labels_temp = pd.read_csv(location_labels, names=column_names)

labels_temp.drop(labels=None, axis=None, index=best, columns=None, level=None,

inplace=True, errors='raise')

labels_temp.reset_index(drop=True, inplace=True)

labels_temp.head()

#exclude 50 samples from training the surrogate

lst=[]

for i in range(50):

 lst.append(i)

train_labels=labels_temp["perf_norm"]

labels_np=np.array(train_labels)

labels_np=labels_np.astype('float32')

labels_np=labels_np.reshape(5879,1)

y_train=np.delete(labels_np, lst, axis=0)

#Trainning data pre-process

features_np = np.asarray(out)

x_train=np.delete(features_np, lst, axis=0)

x_test=np.take(features_np,lst,axis=0)

print (x_test.shape)

y_test=np.take(labels_np,lst,axis=0)

print (y_test.shape)

#Surrogate-Linear Regression

normalizer = tf.keras.layers.Normalization(axis=1)

def build_and_compile_model(normalizer):

 model = keras.Sequential([

 normalizer,

 keras.Input(shape=(1,81,81)),

 layers.Flatten(),

 layers.Dense(32, activation='relu'),

 layers.Dense(32, activation='relu'),

 layers.Dense(1)

])

 model.compile(loss='mean_absolute_error',

 optimizer=tf.keras.optimizers.Adam(5e-4))

 return model

116

dnn_model = build_and_compile_model(normalizer)

#Train

history = dnn_model.fit(

 x_train,

 y_train,

 validation_split=0.2,

 verbose=1, epochs=100,batch_size=32)

#Get loss history

loss=history.history['loss']

#Save the surrogate model

save_path= os.getcwd()

dnn_model.save(save_path)

loc_history_loss=os.path.join(job_directory,save_his,"loss")

loc_history_val_loss=os.path.join(job_directory,save_his,"val_loss")

#Gradient Descent
latent_dim = 10

gradient_lst=[]#this is the root mean square gradients list

perf_lst=[]#this is the performance list

mesh_lst=[]#this is the adjacency matrices list

test_mesh=dataset_eval[4775]

test_mesh= test_mesh.astype('float32')

test_mesh=test_mesh.reshape((1,81, 81))

x= vae.encoder(test_mesh)

z=x[2]

#Gradient descent for a single sample:

for i in range(100):

 with tf.GradientTape() as tape:

 tape.watch(z)

 decodedtensor=vae.decoder(z)

 decodedtensor= layers.Reshape((1,81,81))(decodedtensor)

 y = dnn_model_loaded(decodedtensor)

 gradient = tape.gradient(y,z)

 gr_arr=gradient.numpy().reshape(latent_dim)

 rms=np.sqrt(np.mean(gr_arr**2))

 gradient_lst.append(rms)

 yarr=y.numpy()

 yarr=yarr.reshape(1)

 perf_lst.append(yarr[0])

 decodedtensor=vae.decoder(z)

 decodedtensor=tf.round(decodedtensor)

 decodesarray=decodedtensor.numpy()

 mtx=decodesarray.reshape(81,81)

 mesh_lst.append(mtx)

 z=z-(lr*gradient)

117

 if yarr[0]<0.19:

 break

#VAE for option 1: Using the structure of vertices as training data
#Load data

File= os.getcwd()

dataset=np.load(file, mmap_mode=None, allow_pickle=False, fix_imports=True,

encoding='ASCII')

#Normalize

dataset = dataset.astype('float32') / 15.

#Dataset pre-processing

dataset = dataset.reshape((dataset.shape[0], 81, 3))

train_dataset,test_dataset=train_test_split(dataset, test_size=0.2,

train_size=None, random_state=None, shuffle=True, stratify=None)

train_size = (train_dataset.shape)[0]

batch_size = 32

test_size = (train_dataset.shape)[1]

train_dataset = (tf.data.Dataset.from_tensor_slices(train_dataset)

 .shuffle(train_size).batch(batch_size))

test_dataset = (tf.data.Dataset.from_tensor_slices(test_dataset)

 .shuffle(test_size).batch(batch_size))

#Sampling later is the same as option 2

#Class VAE is the same as option 2

#Encoder

latent_dim = 9

encoder_inputs = keras.Input(shape=(81, 3, 1))

x = layers.Flatten()(encoder_inputs)

x = layers.Dense(81, activation="relu")(x)

z_mean = layers.Dense(latent_dim, name="z_mean")(x)

z_log_var = layers.Dense(latent_dim, name="z_log_var")(x)

z = Sampling()([z_mean, z_log_var])

encoder = keras.Model(encoder_inputs, [z_mean, z_log_var, z], name="encoder")

encoder.summary()

#Decoder

latent_inputs = keras.Input(shape=(latent_dim,))

x = layers.Dense(81, activation="relu")(latent_inputs)

x = layers.Dense(81*3, activation="sigmoid")(x)

decoder_outputs = layers.Reshape((81, 3))(x)

decoder = keras.Model(latent_inputs, decoder_outputs, name="decoder")

decoder.summary()

#Trainning

vae = VAE(encoder, decoder)

vae.compile(optimizer=keras.optimizers.Adam())

history = vae.fit(dataset, epochs=200,

batch_size=64,validation_split=0.2,verbose=2)

118

FEM SIMULATION AT GRASSHOPPER WITH KARAMBA3D

119

TIMELINE:

Choose Topic

16th November P1 Presentation

Study Literature related to AI Generative Models

Study Literature related to possible study cases

Experiment with Generative Models and existed Tutorials

Study Python libraries (COMPAS)

Write report

4th April P2 Presentation

8th May Finish the generation of the training dataset

15th May Finish FEM simulations and label the data

Start Building a Variational Autoencoder Model

Finish training a Variational Autoencoder and check if

 more training data are needed

1st June ` P3 Presentation

30th June Build a basic Surrogate Model

30th June Build a basic Gradient Descent Optimizer

 Train a Surrogate Model

30th July Check if the Surrogate Model is trained successfully

 Run a Gradient Descent Algorithm

1st -30th August Vacation

20th September Gather results and check if better results are being produced

Make any needed improvements

Gather conclusions

Reflect on possible improvements

 Finish the Report

15th October P4 Presentation

Make corrections based on remarks and Improve the Report

October final week P5 Presentation

