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Abstract
The XRP Ledger (XRPL) relies on a Byzantine fault-tolerant consen-

sus algorithm to ensure global agreement on transactions across dis-

tributed nodes. Despite its critical financial role, the implementation

remains under-tested. While prior work has shown the potential of

evolutionary testing to uncover potential consensus violations in

XRPL, the role of genetic operator selection in this process remains

unexplored. We address this research gap by presenting a compar-

ative evaluation of four evolutionary configurations that differ in

their balance of exploration and exploitation. The system is tested

by injecting network delays to simulate adverse conditions and

trigger violations. Our results show that the balance of exploration

and exploitation affects the performance of bug detection: configu-

rations that favor exploitation, complemented by subtle exploration,

yield the most favorable results. In addition, we contribute an ex-

tensible testing method tailored to XRPL but applicable to other

distributed systems.

Keywords
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1 Introduction
The XRP Ledger (XRPL) consensus algorithm, commonly referred

to as a protocol, is designed to be Byzantine fault-tolerant (BFT),

enabling the decentralized XRPL system to reach agreement on

a single correct value, even when a subset of processes behaves

maliciously or unpredictably [1], [2]. The XRP Ledger
1
is a public,

decentralized blockchain developed by Ripple to facilitate efficient

cross-border transactions using the XRP cryptocurrency. XRPL

processes hundreds of millions of of dollars in transactions daily,

making the reliability of its consensus implementation critically

important.

Although the algorithm offers strong theoretical guarantees, its

practical implementation remains susceptible to human errors [3],

[4], which could lead to critical bugs. Such bugs may allow attack-

ers to halt system progress or even validate invalid transactions.

Consequently, rigorous testing of complex systems such as XRPL is

essential to ensure both their correctness and robustness in practice.

XRPL validators maintain copies of the ledger history and co-

ordinate through a proposal-based process where they exchange

1
https://xrpl.org/
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transaction sets until sufficient agreement is reached to finalize a

new ledger. Testing such decentralized systems presents significant

challenges due to the nondeterministic nature of message deliv-

ery between distributed nodes, potential network delays, and the

complex interactions that can lead to subtle concurrency bugs that

are difficult to reproduce and detect in traditional testing environ-

ments [4].

Previous testing efforts have effectively uncovered vulnerabil-

ities in the XRPL consensus algorithm. An evolutionary testing

approach was introduced that enables message reordering via delay

injection and scheduling prioritization [4], leading to the discov-

ery of a previously unknown concurrency bug. Building on this,

the ByzzFuzz algorithm [3] applied message mutations and sim-

ulated network faults, revealing a critical bug capable of halting

system progress entirely. These findings led to the development of

Rocket [5], a comprehensive testing framework designed to sim-

ulate an entire network of XRPL nodes and inject faults based on

user-defined test cases.

Despite these advancements, system-level testing of blockchain

consensus algorithms, including XRPL, remains underexplored [6],

[3]. While prior work has applied evolutionary testing with delay

injection to uncover concurrency bugs [4], the impact of genetic

operator selection has yet to be evaluated. These operators differ

in their degrees of exploration and exploitation, and this choice

can play a critical role in determining how effectively bugs are

uncovered during testing [7].

In this paper, we evaluate how different configurations of genetic

operators influence the effectiveness of evolutionary testing for the

XRPL consensus algorithm using delay-based event representations.

We present a method that evolves test cases consisting of sequences

of message delays, which are applied to consensus messages within

a simulated XRPL network. By varying the genetic operator con-

figurations, we explore how different balances of exploration and

exploitation impact the discovery of edge-case behaviors and poten-

tial vulnerabilities. Specifically, we experiment with two crossover

operators: Simulated Binary Crossover (SBX), which emphasizes

exploitation, and Blend-𝛼 crossover, which favors exploration. We

also consider two mutation operators, with polynomial mutation

favoring exploitation and Gaussian mutation favoring exploration.

Our experimental results show that a configuration combin-

ing exploitation-oriented crossover using SBX with exploration-

focused mutation through Gaussian mutation performs particularly

well. This setup is especially effective in discovering local optima

within the input space, leading to executions that are more prone to

violations and enabling the efficient discovery of bugs in the XRPL

consensus algorithm.

https://xrpl.org/
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These findings suggest that the XRPL input space exhibits locally

dense but globally sparse distributions of bug-revealing inputs. In

such a landscape, fine-grained exploitation is key to exposing bugs

once a promising region is found, while periodic exploration is

necessary to escape local optima and uncover new fault clusters.

At the same time, unguided randomized testing still performs

competitively, often generating a broader and more diverse set of

inputs as it explores the input space without directional constraints.

Depending on the testing objective, whether it is maximizing di-

versity or intensifying bug discovery, this diversity may be either

advantageous or less effective compared to guided evolutionary

methods.

This paper makes two primary contributions to the field of con-

currency testing in distributed systems:

• An in-depth evaluation of different genetic operators in evo-

lutionary testing of the XRPL consensus algorithm.

• A flexible and extensible testing method that supports addi-

tional configuration parameters to guide the generation of

test cases.

2 Background and Related Work
This section outlines core functional aspects (Section 2.1) and cor-

rectness properties (Section 2.2) of the XRPL consensus algorithm.

Furthermore, it reviews related work in the field of testing dis-

tributed systems (Section 2.3) and outlines the application of evolu-

tionary testing within the context of the XRPL consensus algorithm

(Section 2.4).

2.1 Reaching Consensus
The XRPL system utilizes its consensus algorithm to ensure that a

distributed set of nodes agrees on a single, validated set of transac-

tions. The nodes that actively participate in this consensus process

are also known as validators or validator nodes. Each validator main-

tains a record of the ledger history, commonly called the blockchain
in other blockchain systems. Every new ledger contains the set

of transactions that have been validated since the previous ledger,

along with additional metadata. This mechanism ensures network

consistency and prevents double spending, where the same funds

could be used in multiple transactions.

Unlike other BFT and blockchain protocols, the XRPL consensus

algorithm introduces a unique approach to trust by supporting

subjective and asymmetric trust relationships among nodes [8].

The XRPL consensus algorithm allows each validator to rely on a

personalized set of trusted peers, which are simply other validators,

known as the Unique Node List (UNL). Validators participate in

consensus by evaluating proposals only from the nodes included in

their respective UNLs. Consensus is strongly guaranteed as long

as at least 80% of a validator’s UNL behaves honestly, and there

is sufficient overlap between the UNLs of different validators to

ensure network-wide agreement, roughly at least 90% [2].

Each consensus round in XRPL has three phases: open, proposal,

and validation [2]. In the open phase, clients can submit transac-

tions to the network. These transactions are temporarily held by

validators and remain pending until they are potentially included

in the next validated ledger. During the proposal phase, validators

exchange and adjust transaction proposals, resolving disputes with

a rising agreement threshold through avalanche tuning. If at least

80% agreement is reached within a validator’s UNL, it moves to

the validation phase; otherwise, it returns to the open phase. In

the validation phase, validators confirm agreement on the ledger

and broadcast validation messages. If a node receives matching

validations from at least 80% of its UNL, it finalizes the ledger and

applies its transactions permanently, ensuring network consistency

and integrity.

2.2 Consensus Properties
The correctness of the XRPL consensus algorithm is characterized

by the following key properties of BFT consensus theory [9]:

(1) Termination: Every correct process eventually decides on

some value.

(2) Validity: A correct process may only decide on a value that

was proposed by a correct process.

(3) Integrity: No correct process decides more than once.

(4) Agreement: No two correct processes decide differently.

In XRPL, the value being decided during consensus is the next

ledger to be validated and appended to the ledger history. Validators

independently build candidate ledgers from received transactions

and exchange proposals to agree on a single correct ledger. The

process is asynchronous, and concurrent message delivery causes

nondeterminism. Variations in message order, especially with con-

flicting transactions, can lead to different execution paths. The

committed transactions depend on message timing and order. This

makes consensus correctness, safety and liveness, critical. Safety

properties (agreement, validity, integrity) ensure no divergence, in-

valid values, or multiple decisions. Liveness (termination) ensures

consensus completes so the network stays responsive.

2.3 Related Work
A large variety of approaches have been effective in verifying dis-

tributed systems. Systematic methods explore all possible execution

orders but do not scale well to large systems. Conversely, random-

ized testing offers better scalability by producing highly varied

executions, often improved with reduction or learning techniques,

which has been shown to outperform systematic methods in prac-

tice [10]. Some techniques simulate random network partitions to

stress distributed systems [11], while others, such as blockchain-

specific fuzzing frameworks [12], have uncovered real-world vul-

nerabilities across multiple platforms. Probabilistic concurrency

testing adds theoretical guarantees [13], and other methods en-

hance test diversity using partial order reduction [14], semantic

reduction [15], or reinforcement learning [16]. Manual testing is

also commonly employed, but it is labor-intensive and difficult to

scale to the complexity of distributed systems [5].

Testing the XRPL consensus algorithm is challenging due to its

inherent nondeterminism, which limits the effectiveness of tradi-

tional deterministic methods. Even though system-level testing

of XRPL remains underexplored, the ByzzFuzz algorithm [3] has

shown that randomized testing can effectively verify its consen-

sus protocol. By applying small mutations to valid messages and

simulating network failures, ByzzFuzz triggered subtle edge-case

executions. These executions revealed bugs linked to weak trust
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assumptions in UNLs and uncovered a critical implementation flaw

that could halt the consensus process.

2.4 Evolutionary Testing
Building on randomized testing, evolutionary testing introduces

search guidance to more effectively uncover challenging execution

scenarios in nondeterministic systems like XRPL. Such approaches

start with a random population of test cases, represented as individ-

uals composed of genes, each gene encoding a specific parameter

of the test case. These individuals are evaluated using fitness func-

tions, and the best are selected as parents to produce a population

of offspring, new test cases, through crossover and mutation. The

fittest individuals from both populations form the next generation,

and this process repeats until a stopping condition is met.

Evolutionary testing has been widely used in search-based soft-

ware testing to automatically generate and refine test cases for

specific goals [17]. Driven by fitness functions that assess how well

test cases meet those goals, these methods have proven effective

across unit, integration, and system testing [18], [19], [20]. They

consistently outperform random testing in coverage and bug detec-

tion, making them well-suited for complex, large-scale software.

Adapting this strategy to distributed systems, prior work has

applied evolutionary testing to uncover concurrency bugs in the

XRPL consensus algorithm, showing its effectiveness in real-world

distributed systems [4]. However, the impact of different genetic

operator configurations in this context remains unexplored. Since

these operators control how the search process balances exploration

and exploitation, their configurationmay influence the effectiveness

of bug discovery in XRPL [7].

3 Methodology
We apply evolutionary testing to evaluate how different genetic

configurations affect the effectiveness of bug discovery in XRPL. In

this section, we elaborate on four key components of our method-

ology: the use of message delays to trigger edge-case executions

(Section 3.1), the application of these delays in a local test network

(Section 3.2), the generation and evolution of test cases using differ-

ent genetic operators (Section 3.3), and the detection of consensus

violations (Section 3.4).

3.1 Message Delays and Reordering
In distributed networks, injecting delays alters the timing of mes-

sage delivery, which can indirectly result in message reordering.

One such scenario is illustrated in Figure 1. By introducing a delay

to the network event represented by the orange square, a novel

message arrival order is produced.

Message reordering in the asynchronous XRPL network can

cause conflicting transactions to be committed inconsistently [21],

[22], leading to nondeterministic ledger states. By applying evolu-

tionary testing in combination with varying genetic operators, our

method efficiently identifies buggy executions without requiring

exhaustive exploration of all possible message schedules.

3.2 Controlling a Local XRPL Network
We apply message delays in a local XRPL test network to gain full

control over message transmissions. For this purpose, we use the

Figure 1: An example message reordering by applying a delay.

Table 1: XRPL consensus-related message types.

Message Type Description

ProposeSet Contains a set of transactions proposed by a

node for the next ledger.

StatusChange Signals that a node has closed its current

ledger or accepted a new one.

Validation Confirms a node’s agreement on the validity

of a new ledger.

Transaction Carries a client-submitted transaction in-

tended for inclusion.

HaveTransactionSet Indicates that the sender has obtained a spe-

cific transaction set.

GetLedger Requests missing ledger or transaction data

from peers.

LedgerData Responds to data requests by sending ledger

and transaction information.

Rocket framework [5], which allows us to simulate network faults

in an isolated XRPL test network. Rocket intercepts all inter-node

messages and allows for custom message-handling strategies. In

our method, this functionality is used to apply specific delays to

messages as defined by our test cases. Additionally, Rocket provides

access to detailed runtime logs, which we use to analyze test case

performance during post-execution evaluation.

Our method utilizes a network consisting of 5 validator nodes

with 100% overlap in their UNLs. This configuration allows us

to create adverse but controlled conditions, as demonstrated in

previous work [4], while preserving the theoretical guarantees of

XRPL consensus under full UNL overlap [2], [23].

The XRPL consensus algorithm relies on a variety of message

types exchanged between validators to coordinate agreement on the

next ledger. These messages serve distinct roles across the consen-

sus phases [23], including proposing transactions, signaling state

changes, validating ledgers, and synchronizing ledger data. Table 1

provides an overview of the message types relevant to the consen-

sus process, such as ProposeSet, StatusChange, Validation, and
others involved in transaction propagation and ledger synchroniza-

tion.

3.3 Evolving Test Cases
Each individual (test case) is represented by an encoding of delays

assigned to network events. For every consensus-related event

in the network, a corresponding delay is defined. Each event is

defined as a message sent over the network, represented by the

tuple (sender, receiver,message type).
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To evaluate the performance of each individual, we define two

fitness functions that guide the search toward executions likely to

reveal consensus violations:

𝒇𝒕 : Measures the average time taken to validate one ledger (in

seconds). This is motivated by prior work [4], which suggests

that longer execution times correlate with conditions under

which concurrency bugs are more likely to emerge.

𝒇𝒗 : Counts the number of liveness and safety violations observed

during execution.

We use a population of size 10 and evolve it over 50 generations.

The choice of a relatively small population size is motivated by exist-

ing literature, which shows that large populations do not necessarily

improve performance in evolutionary algorithms [24]. Additionally,

smaller populations are shown to be particularly well-suited for

computationally expensive problems [25], such as ours, where each

evaluation involves simulating complete XRPL consensus rounds.

We initialize the first generation with a population of individuals

whose gene values, representing message delays, are randomly

chosen between 0 and 4000 milliseconds. This range is selected to

provide sufficient room for reordering messages within an entire

consensus round, while still allowing the XRPL network to make

progress (as noted in [4]). In practice, a single consensus round in

XRPL typically completes within 3 to 5 seconds. The 4000 ms value

also serves as a strict upper bound that is never exceeded during

evolution.

Offspring are generated by selecting parents through tournament

selection using the crowded comparison operator [26], from which

a new population of 10 individuals is produced. The next generation

is then formed using the NSGA-II selection procedure, which selects

the best 10 individuals from the combined pool of the prior and

offspring populations.

An individual in the offspring generation is produced from two

parents using a combination of genetic operators. In our evaluation,

we consider two crossover operators and two mutation operators,

chosen to represent different balances between exploration and

exploitation.

We consider the following crossover operators:

• Simulated Binary Crossover (SBX) with 𝜂 = 3 [27]: This

setting favors exploitation by producing offspring near the

parent solutions, consistent with the configuration used in

prior research [4]. Each gene is recombinedwith a probability

of 0.5, as supported by earlier work [4], [28].

• Blend-𝜶 Crossover with 𝛼 = 0.7 [29]: This setting favors

exploration by generating offspring that can lie beyond the

range of the parents, as argued in [30].

We consider the following mutation operators:

• Polynomial Mutation with a distribution index of 𝜂 =

20, which favors exploitation by producing more localized

modifications [31].

• Gaussian Mutation, which adds a value sampled from a

normal distribution with mean 𝜇 = 0 and standard deviation

𝜎 = 40 [31], [4]. This encourages exploration by enabling

broader search steps.

For both mutation operators, the mutation probability is set to

1

𝑛 , where 𝑛 is the number of genes in an individual. This means

Figure 2: Overview of test case evolution.

that, on average, one gene is mutated per individual, which is a

commonly used setting in the literature [4], [31].

Figure 2 provides an overview of how test cases are evaluated

during the evolutionary process. An encoding, alongwith additional

configuration parameters such as the number of nodes, is sent to

Rocket. Rocket interacts with the XRPL network by intercepting

messages and applying delays according to the given encoding

(a). Once a test case has been executed, Rocket returns the results,

which are then used to compute the fitness of the correspond-

ing individual. After evaluating all individuals in the population,

crossover and mutation operators are applied to generate offspring.

The combined population of parents and offspring is then passed

through NSGA-II selection to retain the best individuals to form a

new generation. This process is repeated until the final generation

has been evaluated.

3.4 Detecting Consensus Violations
To detect liveness and safety violations, we analyze the four BFT

consensus properties (mentioned in Section 2.2) using the method-

ology presented in [4]:

• Termination: A violation is recorded if a consensus round

fails to complete within a bounded time frame; specifically,

if the time to reach agreement on a new ledger exceeds a

predefined timeout of 65 seconds.

• Validity: A violation is recorded if a validator agrees on a

transaction set that includes transactions not proposed by

any validator, validates a ledger that was never constructed

by any other validator, or switches to a ledger chain unsup-

ported by the network.

• Integrity: A violation is recorded if a validator declares con-

sensus more than once in the same round or sends multiple

validation messages for the same ledger sequence.

• Agreement:A violation is recorded if two validators declare

consensus on different transaction sets or validate different

ledgers.

4 Evaluating Genetic Operators
We combine our methodology with a controlled experimental setup

(Section 4.1) to evaluate how genetic operator selection influences

delay-based evolutionary testing of the XRPL consensus algorithm.

To structure this evaluation, we define a research question (Sec-

tion 4.2) that guides our analysis of how genetic operator selection

affects testing performance.
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Table 2: Evolutionary configurations to compare.

Configuration Name Description

The Fantastic (baseline) Acts as a baseline configuration which com-

pletely randomizes every generation.

The Thing Favors exploitation through SBX crossover

(𝜂 = 3), but exploration through Gaussian

mutation (𝜇 = 0, 𝜎 = 40).

The Torch Favors exploration through Blend-𝛼

crossover (𝛼 = 0.7) and Gaussian mutation

(𝜇 = 0, 𝜎 = 40).

The Invisible Favors exploitation through SBX crossover

(𝜂 = 3) and localized mutation via polyno-

mial mutation (𝜂 = 20).

4.1 Experimental setup
In our experiments

2
, we test two versions of XRPL. The first is

the official release version 2.4.0
3
, which we refer to as version A.

The second is a modified, seeded version of 2.4.0
4
, in which the

consensus threshold is lowered from 80% to 40%; we refer to this

variant as version B. This reduction makes the network more prone

to consensus violations, such as halted progress (liveness violations)

or validators reaching agreement on different ledgers (safety viola-

tions), thereby increasing the likelihood of exposing bugs during

testing. This controlled increase in bug likelihood enables a more

informative comparison of the effectiveness of different genetic

operators.

For each XRPL version, we test four evolutionary configurations,

including one baseline configuration, which are listed in Table 2.

These configurations combine different genetic operators to exam-

ine how varying levels of exploration and exploitation affect bug

discovery. The baseline configuration, The Fantastic, applies full ran-
domization in every generation. The Thing emphasizes exploitation

in crossover using SBX and exploration in mutation via Gaussian

mutation. The Torch emphasizes exploration in both crossover and

mutation by combining Blend-𝛼 crossover with Gaussian mutation.

The Invisible focuses on exploitation through SBX crossover and

localized mutation using polynomial mutation.

The network runs with delays until all nodes have closed the

ledger with sequence number 10, then proceeds without delay until

ledger 14 to allow recovery from the perturbations. Delays are also

lifted earlier if any node closes a ledger with sequence number 12.

Inspired by prior work [4], we use a similar transaction pattern

involving three XRP accounts. Account 1 starts with 100,000 XRP

and attempts to overspend by concurrently submitting four trans-

actions of 80,000 XRP: two to Account 2 and two to Account 3.

Specifically, we submit the following transactions to four different

validator nodes: Tx1 = (1, 1, 2, 80 000), Tx2 = (2, 1, 3, 80 000), Tx3 =
(3, 1, 2, 80 000), and Tx4 = (4, 1, 3, 80 000), where each tuple repre-

sents (transaction ID, source account, destination account, amount).
This overspending pattern is designed to create race conditions,

2
The implementation of our experimental setup is available at https://github.com/

amousavigourabi/rocket/tree/btgg

3
https://github.com/XRPLF/rippled/releases/tag/2.4.0

4
https://github.com/amousavigourabi/bug-seeded-rippled/tree/seeded-2.4.0-fully-

lowered-threshold

as the transactions compete to be included in the ledger despite

the source account lacking sufficient funds to cover all of them. In

the presence of network delays, such conditions can potentially

lead to inconsistent validation outcomes across nodes, resulting in

ledger divergence or other forms of consensus failure. Accounts

are created after ledger sequence 2 is validated (ensuring proper

network setup), and the transactions are dispatched 2000 ms later.

To analyze a test case, we extended the logging functionality in

Rocket to capture the information necessary to verify consensus

properties. Liveness failures are detected using built-in functionality

provided by Rocket. To detect safety violations, we enhanced Rocket

to poll the validated ledgers from the validator nodes after the test

case has executed. This allows us to verify that no two nodes have

declared consensus on different ledgers.

Tests run on a remote server (2×AMD EPYC 7H12, 128 cores, 256

threads, 256GB RAM). With an average runtime of 2.73 minutes per

test, the full set totals roughly 7.58 days. Each test case is executed

within an isolated Docker
5
container, ensuring clean separation

between runs and preventing any cross-test interference.

4.2 Evaluation Criteria
To evaluate the effectiveness of different genetic operators in a

delay-based evolutionary approach in testing the XRPL consensus

algorithm, we will answer the following research question:

RQ How does the selection of genetic operators affect the perfor-
mance of guided randomized testing in an evolutionary ap-
proach?

This research question serves multiple purposes. First, it allows

us to compare the effectiveness of evolutionary testing against un-

guided randomized testing, providing insight into whether guided

search strategies offer a measurable advantage. Second, it enables a

detailed assessment of how the choice of genetic operators influ-

ences search dynamics and bug-discovery effectiveness. Finally, it

helps us evaluate the overall capability of our testing approach to

uncover meaningful bugs in the XRPL consensus algorithm.

To answer this question, we compare the performance of the

four evolutionary configurations (Table 2), including the unguided

randomized baseline, in terms of how many consensus violations

they uncover and how quickly they do so. This allows us to assess

whether the use of guidance through genetic operators leads to

improvements in fault discovery compared to unguided search.

We also examine how the evolutionary configurations differ in

their search behavior over time. Specifically, we analyze how each

configuration balances exploration and exploitation, and how this

influences the discovery of fault-revealing test cases in XRPL’s

complex input space. This helps us understand not only which

configurations perform well, but why they do so.

Finally, we assess the broader effectiveness of the evolutionary

testing method as a whole. Our goal is to determine whether the

method provides a reliable and practical way to uncover consensus

failures under our experimental conditions, and how it compares

to findings from prior work on concurrency testing.

5
https://www.docker.com/

https://github.com/amousavigourabi/rocket/tree/btgg
https://github.com/amousavigourabi/rocket/tree/btgg
https://github.com/XRPLF/rippled/releases/tag/2.4.0
https://github.com/amousavigourabi/bug-seeded-rippled/tree/seeded-2.4.0-fully-lowered-threshold
https://github.com/amousavigourabi/bug-seeded-rippled/tree/seeded-2.4.0-fully-lowered-threshold
https://www.docker.com/
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Figure 3: The trajectory of bug discoveries in XRPL version B.

5 Results
We now present the results that address our research question, cov-

ering baseline comparisons, the impact of operator choice, and the

overall effectiveness of our evolutionary testing approach. Notably,

no bugs were discovered in the unseeded XRPL version throughout

the course of our experiments. As a result, our analysis primarily

focuses on the bug-seeded version of XRPL, where the evolution-

ary process consistently uncovered consensus violations across

multiple configurations.

Figure 3 shows the trajectory of the total amount of bug discov-

eries across generations in the bug-seeded XRPL version (version B)

per configuration. A clear divergence in total discoveries emerges

early on, highlighting performance differences between configu-

rations. Among them, The Thing (SBX & Gaussian) consistently

outperforms the rest, maintaining a strong linear discovery rate

throughout the evolutionary process and ending with the highest

overall count. The Fantastic (our baseline) and The Invisible (SBX
& Polynomial) follow similar trajectories, showing moderate but

sustained growth over generations. In contrast, The Torch (Blend-𝛼

& Gaussian) exhibits limited effectiveness, flattening out early and

contributing few additional discoveries beyond generation 25.

These trends suggest that certain configurations, particularly

The Thing, achieve a more effective balance between exploration

and exploitation. This balance appears to support sustained bug

discovery performance.

The Invisible eventually surpasses the baseline and appears to

rise more rapidly over time. This behavior is presumably due to its

exploitation-heavy design: once high-performing individuals are

identified, the algorithm generates offspring that closely resemble

them. This increases the likelihood of repeatedly triggering similar

violation-prone executions, resulting in an accelerating discovery

rate.

In contrast, The Torch heavily favors exploration and performs

worse than the baseline. Its tendency to generate offspring that

deviate significantly from high-performing individuals hinders the

retention of beneficial traits. This behavior appears to cause the

search to drift into unproductive areas of the input space, resulting

Table 3: Performance of configurations on XRPL versions A and B.

Configuration Total 𝑳20 𝑫5 𝒇𝒕

A B A B A B A B

The Fantastic (baseline) 0 24 0 10 – 4 4.27 5.06

The Thing (SBX & Gaussian) 0 50 0 22 – 8 4.26 5.32

The Torch (Blend-𝛼 & Gaussian) 0 6 0 3 – 46 4.35 4.20

The Invisible (SBX & Polynomial) 0 27 0 16 – 14 4.15 5.70

in prolonged intervals of poor performance before discovering a

new local optimum.

Table 3 presents the evaluation metrics for all configurations

in XRPL versions A and B, representing the unseeded and seeded

variants, respectively. The Total column shows the overall number

of consensus violations discovered during the experiments. 𝐿20
captures the number of violations found in the last 20 generations,

providing insight into long-term performance. 𝐷5 indicates the

generation at which each configuration reached its fifth discovery,

serving as an indicator of early traction. Finally, 𝑓𝑡 represents the

average validation time per ledger across all evaluated individuals.

Looking at the totals for version B, we reach the same conclu-

sion: The Thing yields the highest overall number of discoveries,

confirming its superior effectiveness. The Fantastic and The Invisible
show similar performance on this metric. However, 𝐿20 confirms

our earlier observation: while The Invisible exhibits low early trac-

tion, it consistently outperforms the baseline in later generations,

achieving a higher bug discovery rate over time. This is further sup-

ported by the𝐷5 metric, where The Invisible takes remarkably more

generations than The Fantastic to reach its first five discoveries.

As also seen in Figure 3, The Fantastic demonstrates a notably

consistent discovery rate throughout the evolutionary process. Out

of 50 generations, it uncovered 24 bugs in total, with 10 of those

found in the final 20 generations. This reflects a relatively steady

rate of approximately one bug every two generations. This pattern

contrasts with The Torch and The Invisible, which exhibit more

fluctuation in their discovery rates over time. One notable exception

is The Thing, which also follows a largely linear trajectory, but at a

higher average rate of discovery.

The 𝐷5 metric reveals that the baseline configuration (The Fan-
tastic) reached five bug discoveries significantly earlier than the

other configurations. This can be attributed to its fully randomized

search strategy, which may have produced favorable, violation-

prone executions early on. In contrast, the other configurations

required more time to reach this milestone. Since their performance

depends on gradually refining the population, a poor initial pop-

ulation can delay early progress. Suboptimal parents are likely to

produce similarly ineffective offspring until stronger individuals

emerge through selection and variation. In some cases, the initial

conditions are so poor that even highly explorative configurations

struggle to recover, as clearly exemplified by The Torch.
For 𝑓𝑡 , we observe no meaningful differences between configura-

tions in the unseeded XRPL version A. This is expected, as no bugs

were discovered in that version, suggesting the XRPL consensus

algorithm is strongly resilient to delay-based perturbations.
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In contrast, version B reveals clearer distinctions on 𝑓𝑡 . The Torch
shows a notably low 𝑓𝑡 , comparable to values from version A, which

aligns with its poor bug discovery performance. Meanwhile, The
Thing and The Invisible both show higher values than the baseline,

consistent with their superior effectiveness. The Invisible exhibits
the highest 𝑓𝑡 overall, potentially due to its exploitation-heavy be-

havior. Once a few high-𝑓𝑡 individuals are discovered, there is a high

likelihood that subsequent offspring will retain similar performance,

thereby sustaining elevated 𝑓𝑡 values even when no additional bug

discoveries are made.

6 Discussion
Our results highlight the impact of genetic operator selection on

the effectiveness of evolutionary testing in uncovering consensus

violations in XRPL. By varying the balance between exploration and

exploitation through different operator configurations, we observed

notable differences in bug detection performance.

The best-performing configuration favored exploitation in the

crossover operator, effectively recombining promising individuals,

while maintaining exploration through mutation, introducing oc-

casional diversity. This combination created a superior balance,

enabling the search to refine effective test inputs while still pro-

ducing diverse behaviors. In contrast, configurations that lean too

heavily towards exploration or exploitation performed worse. The
Torch, the purely exploratory configuration, often failed to build on

previously effective test cases, limiting its ability to refine promising

behaviors. In contrast, The Invisible, which is heavily exploitative,

tended to converge slowly toward a few high-performing individ-

uals, reducing input diversity and missing other fault-inducing

scenarios. This pattern of behavior aligns with expectations from

prior research on the trade-off between exploration and exploitation

in evolutionary algorithms [32].

These observations suggest that the XRPL input space contains

clusters of bug-revealing inputs that are locally dense but globally

sparse. In other words, once a promising area is discovered, local

refinement (exploitation) is beneficial, but, occasional jumps (ex-

ploration) are necessary to escape local optima and discover new

fault-prone regions.

As expected, our results also show that unguided randomized

testing remains a strong baseline, and is not easily outperformed by

guided evolutionary strategies. Because random testing generates

completely unstructured inputs, it naturally produces highly diverse

test cases, which can be more beneficial in exposing faults than

guiding the search toward a specific optimum. This diversity allows

random testing to cover unexpected scenarios that more targeted

approaches might overlook.

When examining the average validation time, 𝑓𝑡 , we observe a

clear correlation between higher 𝑓𝑡 and the number of bugs found.

This supports the idea that a long execution time is a meaning-

ful indicator for bug detection effectiveness, as suggested in prior

work [4].

We evaluated our approach using a bug-seeded version of XRPL

v2.4.0, in which the same consensus bug was manually injected

as in prior work using XRPL v1.7.2 [4]. That work reported a bug

detection success rate of approximately 70% when evolutionary

testing was run for an average of 18 generations. By comparing

the first 18 generations of our approach under highly similar setup

parameters, we establish a baseline for evaluating the efficiency

of our method. This suggests that our testing strategy performs

comparably in terms of effectiveness, while offering indications of

improved efficiency in bug detection relative to prior work.

7 Threats to Validity
We acknowledge three threats to the validity of our results. While

we designed our experiments to reflect realistic conditions and

applied mitigation strategies where feasible, certain limitations

remain due to the nature of the system under test and the testing

methodology.

First, XRPL itself is inherently nondeterministic. As a result, even

running the exact same test case multiple times can lead to different

outcomes. For instance, transactions included in a ledger may vary

across runs due to timing differences in message propagation and

processing. These variations could not be controlled or eliminated,

as our approach treats the system as a black box. We run a full live

network and inject network faults without modifying or interfer-

ing with XRPL’s internal logic. This means we have control over

when messages arrive, but not over the exact timing or order in

which nodes internally process and send those messages. However,

we deliberately adopted this setup to reflect conditions as close as

possible to real-world deployments, accepting the inherent nonde-

terminism as part of the testing environment. To partially mitigate

this variability, we executed each test case twice when determining

fitness, which provided a more stable and representative estimate

of test effectiveness.

Second, we observed occasional false positives in liveness vio-

lations due to threading issues in the Rocket framework, which

occur when the machine cannot handle the number of concurrent

threads required for all node transmissions in the XRPL network.

Under heavy load, some messages get queued unexpectedly, mak-

ing it seem like nodes have stalled when they are only delayed. To

deal with this, we manually inspected all reported liveness viola-

tions. In each case, the issue was either a false positive caused by

message queuing or a real liveness failure that occurred after an

earlier safety failure, where two nodes validated different ledgers.

For the seeded bug experiments, we therefore only checked for this

specific condition, since it is the concrete fault that the injected bug

is expected to trigger.

Third, evolutionary testing is inherently stochastic, meaning

that repeated runs may produce different sequences of test inputs

and slightly different bug discovery trajectories. While the overall

conclusions are generally stable, individual runs can vary in detail.

To mitigate this, we repeated each experiment three times and veri-

fied that the key measurements and overall bug discovery patterns

remained consistent across runs. We also used a fixed random seed

for each run to improve reproducibility. However, due to nondeter-

minism in the XRPL implementation itself, this had limited effect

on ensuring identical outcomes. Nevertheless, the consistency of

results across runs supports the reliability of our conclusions.
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8 Responsible Research
Throughout this research, we have followed and will continue to

follow ethical standards to ensure the integrity, reproducibility, and

responsible publication and reporting of our work.

First, we made reproducibility a core consideration in the design

and execution of our experiments. The complete setup used in

our evaluation is described in detail, and we used the exact same

environment for all experimental runs. To support repeatability,

we used fixed random seeds to initialize each run. However, as

discussed earlier, exact repeatability remains challenging due to the

inherently nondeterministic nature of XRPL, where variations in

timing and message delivery can lead to different outcomes across

executions. Our results and the software used in our experiments

are available at Zenodo [33].

Second, in the event that our methodology reveals a potential

real-world consensus violation in XRPL, we commit to the following

coordinated and responsible disclosure practices. Any such discov-

ery will be privately reported to the Ripple development team to

give them the opportunity to assess and address the issue before

any public disclosure is considered. We recognize that consensus

failures in XRPL could have significant financial implications for

its users and the broader cryptocurrency ecosystem, and as such,

premature disclosure could pose serious risks. Our approach priori-

tizes user safety, network stability, and the integrity of the XRPL

platform.

9 Conclusion and Future Work
In this paper, we evaluated the impact of different genetic operator

configurations in delay-based concurrency testing of the XRPL con-

sensus algorithm using an evolutionary approach. Our experiments

explored configurations with varying balances of exploration and

exploitation, with the goal of effectively discovering bugs. We found

that configurations combining exploitation in crossover with explo-

ration in mutation perform particularly well. In contrast, configura-

tions that lean too heavily toward either exploration or exploitation

tend to perform worse. Excessive exploitation leads to low input

diversity and struggles to discover new fault-revealing areas, while

excessive exploration fails to build on promising inputs. The strong

performance of unguided random testing highlights that maintain-

ing diversity and unpredictability in test generation continues to

play an important role in effective fault discovery, especially in com-

plex and high-dimensional spaces where structural assumptions

may not hold.

From these findings, we can conclude that the XRPL input space

for delay-based representations is likely characterized by locally

dense clusters of fault-revealing inputs, separated by large, sparse

regions. This suggests that once a promising region is found, fo-

cused refinement through exploitation is effective, but occasional

exploratory jumps remain essential for discovering new clusters of

faults.

For future work, a natural extension would be to explore a

broader range of genetic operators, particularly those designed

for real-valued input representations. Further improvements may

also be achieved by tuning key hyperparameters such as population

size, mutation rate, and selection strategies, as well as operator-

specific parameters that influence the behavior of crossover and

mutation. Systematic experimentation with these hyperparameters

could lead to more effective search dynamics and improved fault

discovery. Beyond this, our methodology could be applied to detect

more complex or less subtle seeded bugs, allowing for a deeper

assessment of its fault detection capabilities.

Another promising research direction is the incorporation of self-

learning techniques. These methods have shown success in testing

other distributed systems and could enhance the adaptability and

precision of testing strategies for XRPL.

Finally, this delay-based concurrency testing approach could also

be applied to other blockchain platforms. Doing so may provide

valuable comparative insights and help uncover the structure and

nature of input spaces in different consensus systems.
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