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Abstract

The aim of this thesis is to provide a formula for the value of a correlation swap.
To get to this formula, a model from an article by Bossu is inspected and its
resulting expression for fair the fair value of a correlation swap is simulated. The
Jacobi process will be defined and two discretization schemes will be compared
for it. Methods are discussed to make simulations of the Jacobi process as
accurate as possible, making sure it crosses its boundaries -1 and 1 as little as
possible. It will be shown that a correlation swap can be hedged by dynamically
trading variance dispersion trades. The main result of the thesis is a partial
differential equation for the fair value of a correlation swap. It will be shown
that the expression for the value of a correlation swap obtained by Bossu’s model
satisfies this partial differential equation.
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Chapter 1

Introduction

In recent years, volatility has become an important factor on the financial mar-
ket. It is a traded asset with great liquidity and further derivatives on it are
being widely traded as well. Volatility swaps and variance swaps are popular
financial products, but they bring with them an exposure to correlation. To
hedge that exposure, correlation swaps can be used.

In this thesis, a model by Bossu [1] for correlation swaps will be inspected.
All its definitions and assumptions are being explored, resulting in a formula
for the fair value of a correlation swap. This result will be simulated and these
simulations analyzed. Its drawbacks will be pointed out and explained.

In addition, the Jacobi process will be defined. This is a bounded process
with boundaries -1 and 1 and it is easy to simulate numerically. This makes
it a fitting process for simulating correlation paths. The Euler discretization
scheme and the Milstein discretization scheme will be compared for the Jacobi
process. Next, we will look at why the simulations cross the boundaries -1 and
1. We will look at several possible options to reduce the amount of paths within
a simulation that exceed the boundaries. The effect of these options will be
observed and explained.

Furthermore, the hedging of the correlation swaps is looked into. We define
variance dispersion trades and look at how they can be used to hedge corre-
lation swaps. A hedged portfolio consisting of correlation swaps and variance
dispersion trades is then inspected to arrive at a partial differential equation for
the fair value of a correlation swap. Finally, this partial differential equation
is used to confirm that the formula given by [1] is the no-arbitrage price of a
correlation swap.
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Chapter 2

Financial background

2.1 What are correlation swaps?

2.1.1 Basic financial concepts

In finance, the an important aspect we deal with is a financial market. Math-
ematically, a market is represented as a probability space. In this probability
space, we can use random processes to represent stocks. Stocks are basically
small pieces of ownership of a company, but they are often bought and sold only
for trading, rather than the buyer actually being interested in the company’s
policy. Sometimes, stocks are put together in a stock index. If you invest in
a stock index, you immediately invest in a lot of different stocks, and usually
their share in the index is weighted. The constituent stocks and the weights
are chosen and frequently changed by the index managers. A stock index can
be modeled by taking the appropriate linear combination of the stocks in the
index, the constituent stocks.

On the financial market, not only stocks are traded, but also many other
products that have to do with stocks. Traded products that are derived from
stocks are called (financial) derivatives or simply financial products. In
this thesis, the term ‘financial products’ will be used to prevent confusion with
mathematical derivatives of a function. An example of a financial product is a
future contract. This is a deal between two parties saying that one party will
buy a certain amount of a certain stock from the other party at a predetermined
date (expiry date) and against a predetermined price (strike price). If the
market stock price at the expiry date is higher than the strike price, the buying
side of the future contract makes a profit, because he can get the stock cheaper
than usual. If this is more likely to happen than the stock price being lower
than the strike price, the seller is likely to lose. In this case, the seller may de-
mand a payment from the buyer when entering the contract, as compensation
for the expected loss. This payment is called the price of the contract. These
definitions extend to many other types of financial derivatives, including swaps,
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Figure 2.1: High volatility on the left versus low volatility on the right. The
stock with high volatility fluctuates around its expected value much more than
the stock with low volatility. [5]

which will be explained in section 2.1.4.

Correlation swaps have several things in common with future contracts, but
there are some large differences as well. To see this, we need several more
definitions.

2.1.2 Volatility

The volatility of a stock price is, simply put, the square root of its variance, so
it is mathematically equivalent to the standard deviation. But since we are deal-
ing with stock prices, and not just any random variable, there is a bit more to
it than that. As can be seen in figure 2.1, the volatility describes how much the
stock price wiggles around its expected value, not to be confused with its total
difference from the previous value or previous average. This is in line with our
understanding of variance and standard deviation: the higher the variance, the
more observations will differ from expectations. This is the same with volatility.

In mathematical terms, the volatility of a random variable X is defined as
the square root of the variance of X;

σX =
√

Var(X) =
√
E(X2)− (E(X))2.

This is the exact definition of volatility, and here we view a stock price as
‘just’ a random variable. In reality, stock prices are modeled in various ways,
and the volatility may be approximated with different definitions to go along
with that to make calculations simpler. This will be evident when the toy model
from [1] is discussed.
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It is important to note the difference between implied and realized volatil-
ity. Volatility is a variable that will change over time. This is partly because
within the company selling the stocks, there are periods of stability (low volatil-
ity, stock price moves very little), and periods of uncertainty (high volatility).
This means future volatility is uncertain, and needs to be predicted. If a model
yields such a prediction for the future volatility, this is called implied volatil-
ity. The realized volatility, however, represents the exact value the volatility
will have in the future. Implied volatility is often taken as the expected value of
the realized volatility, using a distribution or path and a probability space given
by the model. The use of the two different terms implied and realized volatility
helps to distinguish when predictions for future volatility are discussed (implied
volatility), or when there is talk of a future situation in which the volatility at
that point in time will be known (realized volatility).

2.1.3 Correlation

Volatility is an essential variable when regarding stock prices, but it is not
enough when several stock prices or a stock index are involved. Different stock
prices may not move completely independently from each other, e.g. when one
bank collapses, other banks may start doing bad as well. This means the stock
prices of those banks are correlated/there is a correlation. Two random vari-
ables may be represented by a correlation coefficient, a number to describe
how much influence one random variable has on another one. It is similar to
the statistical idea of covariance, but the correlation coefficient is scaled to be
between -1 and 1. The correlation coefficient for two random variables is defined
if and only if their covariance is defined.

Since the economic situation is very important for the stock market, it is
logical that every stock is influenced by a good or bad economy. This gives
every stock a basic (but very low) level of correlation with the other stocks,
which is further increased if the companies are in the same sector, e.g. technol-
ogy or banking. Many stock indices pick their constituent stocks from the same
sector, and in addition, there is a logical correlation between the index and the
constituent stocks. All of this means that correlation is an important concept
in the world of finance.

The mathematical definition of the correlation coefficient ρX,Y between two
stocks X and Y is:

ρX,Y =
cov(X,Y )

σXσY
=

E(XY )− E(X)E(Y )√
[E(X2)− (E(X))2][E(Y 2)− (E(Y ))2]

,

where cov(X,Y) is the covariance between X and Y, and σX and σY are the
volatilities of X and Y respectively. As with volatility, different definitions of
correlation or correlation coefficients may be used to simplify models. Several
different examples of correlation are shown in figure 2.2.
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Figure 2.2: Scatterplots of outcomes from two random variables. The top row
shows that different correlation coefficients mean different levels of noisiness,
while the slope remains the same. The middle row shows that changing the
slope can only change the sign of the correlation coefficient, but not its absolute
value. In the middle plot on the middle row, the random variable on the Y-axis
has variance 0, so the correlation coefficient is not defined. The bottom row
shows that the correlation coefficient does not say anything about non-linear
relationships between the two random variables. [6]

Like volatility, correlation is a variable which can change over time. There-
fore, we also have implied correlation and realized correlation, just like
we have implied and realized volatility. Their definitions are analogue: implied
correlation is what we currently expect the correlation to be at a future point
in time (an expected value using a model), while realized correlation is the true
value of the correlation at that point in time (which is currently unknown).

2.1.4 Swaps

A swap can be seen as a bet on a market variable, such as the correlation
coefficient between two stocks. Basically, a swap is a contract stating that one
party will pay the other party a certain amount of money, and that amount of
money depends on the changes in time of the underlying market variable.

Of course, the formal definition of a swap is quite different. A swap is a
financial instrument traded between two companies. The swap has a price, a
fixed predetermined payment from one side to the other. It also has a payout,
based on a changing variable such as correlation, and on the predetermined
strike price. This strike price is always tuned so that the up-front price of
the swap is 0. The swaps we will be looking at will also have a predetermined
expiry date. Another property of swaps is that they are traded over the
counter, meaning that companies make the trade among themselves, without
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the intervention of a stock exchange and its rules.

With this, we can define correlation swaps. Correlation can be described
as a number using the correlation coefficient, which can change over time, so a
swap can be applied to it. An amount of money is assigned for each point the
correlation coefficient goes up or down; this is known as the notional amount.

For example, it might be a good idea to invest in a correlation swap between
Volkswagen and McDonalds if Volkswagen announces it will only sell burgers
instead of cars from now on, which probably means the correlation between
their two stocks will rise. Conversely, the correlation between Volkswagen and
Mercedes-Benz will then likely drop.

In the same way, volatility and variance swaps can be defined; just take
the correlation swap and replace the correlation coefficient with volatility and
variance rates respectively. These will later be used as a stepping stone to cor-
relation swaps, because their complexity makes it hard to give a mathematical
expression for their payoff straight away.

2.2 Why correlation swaps?

As with all financial products, correlation swaps can be traded for two purposes:
speculating and hedging. Speculating can be seen as gambling on the future
correlation: if you think correlation will go up, you can invest in a correlation
swap. You can win money, or you can lose, similar to a casino. Hedging,
however, is a bit more complicated.

2.2.1 Hedging

If you invest to speculate, you bear a risk. The purpose of hedging, however,
is to reduce or even eliminate risks. Hedging always goes together with other
investments, otherwise there would be no risks to reduce. For example, a bank
might have tons of investments, and a net result of losing AC200 per point the
correlation between Apple and Google increases (and gaining AC200 for every
point it decreases). To get rid of this correlation-related risk, a correlation swap
could be entered which makes the bank gain AC200 per point the correlation
between Apple and Google increases. This makes their investment safe for any
changes in correlation; their exposure to correlation is zero.

This method is most often used by investment banks, who try to have no
exposure and make marginal profits by selling financial products for slightly
higher prices than what they are worth. Another use of hedging is to get rid
of unwanted exposure, meaning e.g. that a financial product might come with
exposure to both volatility and correlation when you only want to invest in
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volatility. In this case, a correlation swap could cancel out profits or losses be-
cause of correlation changes, and you are left with only the desired investment
in volatility.
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Chapter 3

Bossu’s toy model

In this chapter, we will look at the toy model described in [1] and the results
derived from it. The first section will give some standard definitions of known
statistical terms used in the article. Using these statistical terms, [1] defines
its own (approximations of) variables. These are covered in section 3.2, and in
section 3.3, these definitions are compared to the actual definitions. All of this
is combined in section 3.4 to define the actual toy model, which is then used to
calculate prices of variance swaps and correlation swaps. Finally, in section 3.5
it is explored if an assumption which in reality might not be true can be left
out.

3.1 Statistical definitions used

3.1.1 Standard Brownian motion/Wiener process

A Wiener process Wt, also called Standard Brownian motion, is a random
process characterized by the following properties:

1. W0 = 0

2. W has independent increments: Wt+u −Wt is independent of Ws : s ≤ t
for u ≥ 0

3. W has Gaussian increments: Wt+u−Wt is normally distributed with mean
0 and variance u: Wt+u −Wt ∼ N(0, u)

4. W has continuous paths: with probability 1, Wt is continuous in t.

3.1.2 Adapted process to a filtration

A filtration (Fi)i=1...n of the set of events F in a probability space is an in-
dexed set of subsets of F . This index set I is subject to the condition that if
i ≤ j in I, then Fi ⊂ Fj . The index is usually a time parameter, in this case
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the filtration can be seen as including all historical data and information but
not future data.

Then, a process that is adapted to a filtration can for the purposes of this
thesis be interpreted as a process that cannot see into the future. This means
that a process X is adapted if and only if for every realization and every n,
Xn is known at time n; it can be evaluated using the available information. In
short, X only depends on past data and information and not on future data.

3.2 Definitions in Bossu (2007)

In this section, the definitions used in Bossu’s article [1] will be presented.
These definitions are used to derive the toy model for correlation swaps, so to
understand the toy model, we must understand the definitions. These definitions
will be looked at more in the next section to further improve our understanding
of them.

3.2.1 Realised volatility and correlation

To define any sort of volatility and correlation, we must first define a stock
market. We consider a universe of N stocks S = (Si)i=1...N . We take a proba-
bility space (Ω, E, P ) with P -filtration F , and we assume that the vector S is
an F-adapted, positive Ito process.1 We denote Si(t) the price of stock Si at
time t. To define the index, we first define the weights: a vector of positive real
numbers w = (wi)i=1...N that sum up to 1. We define the index as

I(t) ≡
N∏
i=1

(Si(t))
wi .

This is a simplified model for the calculation of stock index I with con-
stituent stocks S and weights w; in practice, however, most stock indices are
defined as an arithmetic weighted average.

Given a time period τ and a positive Ito process S, further definitions are
given. For the length of a time period, a definition is given that also covers time
periods consisting of multiple intervals. Let τ consist of n intervals, where the
i-th interval ranges from ai to bi. The length of the time period τ is then given

1An Itô process is a random process X such that

Xt = X0 +

∫ t

0
σsdWs +

∫ t

0
µsds.

The first integral is a so-called Itô integral, which is defined in the same way as a Riemann-
integral, only with a Brownian motion W replacing the integration variable. See also footnote
2.
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so that it can be written as the sum of the lengths of the intervals it consists of:

‖τ‖ ≡
∫
τ

ds =

n∑
i=1

(bi − ai).

The continuously sampled realized volatility of a constituent stock or index
is defined using a stochastic integral2:

σS(τ) ≡

√
‖τ‖−1

∫
τ

(d lnSx)2. (3.1)

Because only variance has a liquid market, the volatilities of the individual
stocks are squared before we take their weighted average. Finally the square
root is taken to get to the continuously sampled average realized volatility of
the constituent stocks, or constituent volatility:

σS(τ) ≡

√√√√ N∑
i=1

wi (σSi(τ))
2
.

In the same way, we find the realized residual:

ε(τ) ≡

√√√√ N∑
i=1

w2
i (σSi(τ))

2
.

Using the above definitions, we define the continuously sampled average real-
ized dispersion d(τ) between constituent stocks, and their continuously sampled
average realized correlation ρ(τ), which will later be referred to as canonical
realized correlation:

d(τ) ≡
√(

σS(τ)
)2 − (σI(τ))

2
(3.2)

ρ(τ) ≡
(
σI(τ)

)2 − (ε(τ))
2(

σS(τ)
)2 − (ε(τ))

2
(3.3)

2Suppose that W is a Wiener process, H is a right-continuous, adapted and locally bounded
process, and that {πn} is a sequence of partitions of [0, t] with mesh going to zero. Then the
Itô integral of H with respect to W up to time t is a random variable∫ t

0
HdW = lim

n→∞

∑
[ti−1,ti]∈πn

Hti−1 (Wti −Wti−1 ).

For an Itô process X with ‘sub-processes’ σ and µ (see also footnote 1), the following
stochastic integral is defined:∫ t

0
HdX =

∫ t

0
HsσsdWs +

∫ t

0
Hsµsds.
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3.2.2 Implied volatility and correlation

Using conditional expectations, we can extend the above definitions to implied
values. First we define implied volatility:

σ∗St :=

√
E
[
(σS(τ))

2 | σS([0, t])
]
, (3.4)

where E[ · | σX([0, t])] denotes conditional expectation. P ∗ is a P -equivalent,
F-adapted measure, meaning that P ∗(X) = 0 ⇔ P (X) = 0. In the same way,
we define the implied constituent volatility and the implied residual as:

σ∗St (τ) ≡

√√√√ N∑
i=1

wi

(
σ∗Si
t (τ)

)2

=

√
E
[(
σS(τ)

)2 | σS([0, t])
]
, (3.5)

ε∗t (τ) ≡

√√√√ N∑
i=1

w2
i

(
σ∗Si
t (τ)

)2

=

√
E
[
(ε(τ))

2 | ε([0, t])
]
. (3.6)

We consider a variance market on (S,w, I), where agents can buy future re-
alized variance against payment at maturity of a pre-agreed price. In this case,
implied variance (the square of implied volatility) of S as defined above is the
no-arbitrage price of future realized variance of S. In the definitions, t denotes
time at which the variance is bought or sold, and τ = [0, T ] denotes the period
over which the variance is traded. The squares of implied constituent volatility
and implied residual are the no-arbitrage prices of a portfolio of the N future
realized variances of the constituent stocks with weights w and (w2

i )i=1...N , re-
spectively.

We can now define implied dispersion and canonical implied correlation:

d∗t (τ) ≡
√(

σ∗St (τ)
)2 − (σ∗It (τ)

)2
=

√
E
[
(d(τ))

2 | d([0, t])
]
, (3.7)

ρ∗t (τ) ≡
(
σ∗It (τ)

)2 − (ε∗t (τ))
2(

σ∗St (τ)
)2 − (ε∗t (τ))

2
≤ 1. (3.8)

Here, d∗t is the no-arbitrage price of realized dispersion as defined earlier, but
in general, ρ∗t (τ) 6= E(ρ(τ) | ρ([0, t]), so canonical implied correlation is not the
no-arbitrage price for realized correlation.

3.2.3 Proxy formulas

If the amount of constituent stocks N goes to infinity, the residual terms ε(τ)
and ε∗t (τ) vanish, as will be shown later in this section. This yields the following
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”proxy” formulas:

ρ(τ)
N→+∞−−−−−→

(
σI(τ)

σS(τ)

)2

≡ ρ̂(τ) (3.9)

ρ∗t (τ)
N→+∞−−−−−→

(
σ∗It (τ)

σ∗St (τ)

)2

≡ ρ̂∗t (τ) (3.10)

ρ̂(τ) is called realized correlation, and ρ̂∗t (τ) is called implied correlation.
For most indices, this is economically correct: fifty stocks is already enough to
almost nullify the difference between canonical realized correlation and realized
correlation, as shown in [1].

We can archieve a better understanding of the reason why the ε terms are left
out by looking at the definitions of all terms appearing in the original formula
for ρ:

(σI)2 = |τ |−1

∫
τ

(d ln I)2

= |τ |−1

∫
τ

(d

N∑
i=1

wi lnSi)
2 (3.11)

(σS)2 =

N∑
i=1

wi(σ
Si)2 (3.12)

ε2 =

N∑
i=1

w2
i (σ

Si)2 (3.13)

We can see that in the definitions of (σI)2 and (σS)2, the weight terms wi
appear without a power. In the definition for (σI)2, the weight term is squared,
but only after some other operations. In the definition for ε2, the weight term is
immediately squared. This means that if the weights would go to zero, ε2 would
vanish in comparison to (σI)2 and (σS)2. However, the weights do not necessar-
ily go to zero if N → ∞: if there are 1000 constituent stocks, it is possible for
one stock to have a weight of 0.9 while the other 999 stocks have a total weight
of 0.1. So [1] implicitly makes the assumption that this does not happen, and
that lim

N→∞
wi = 0 for all i. Since it is numerically shown in [1] that the canonical

values and the proxy values are very close, this may be a reasonable assumption.

3.3 Comparison of the definitions in [1] to the
regular definitions

The definitions for volatility and correlation in [1] are different from the common
definitions. That is why we compare the definitions used in [1] with the standard
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definitions in this section. First, some results will be derived from the textbook
definitions of variance and correlation. These results are rewritten to be as close
as possible to the definitions in [1]. It will turn out that there are disparities
between the true values derived from the regular definitions and the formulas
used in the article. The consequences of assuming these formulas to be close to
the true values are discussed as well. Lastly, the case ρ = 0 is explored.

3.3.1 Using the definitions of variance and correlation

Take two random variables S1 and S2. According to the standard definitions,
the variance of S1 is:

var(S1) = E(S2
1)− E(S1)2.

The correlation between S1 and S2 is:

ρS1,S2
=

cov(S1, S2)√
var(S1)

√
var(S2)

.

√
var(S1) may also be substituted by the volatility σX =

√
var(S1). This

gives rise to the insight that the price of a correlation swap might also be a
value divided by the price of the corresponding volatility swaps. This will later
turn out to be true, where the price of the volatility swaps is represented by the
price of constituent volatility.

If we take multiple Si, i = 1, 2, . . . , n, we can take the average of the pairwise
correlations as the correlation among all Xi:

ρSi
=

1

n2

n∑
i=1

n∑
j=1

E(SiSj)− E(Si)E(Sj)

σSi
σSj

.

This formula is not very informative. Another approach for finding a relation
is looking at var(S1 + S2). Expanding this gives:

var(S1 + S2) = var(S1) + var(S2) + 2cov(S1, S2),

σS1+S2 = σ2
S1

+ σ2
S2

+ 2σS1σS2ρS1,S2 .

Bringing the correlation coefficient to the other side gives us an expression
for the correlation in terms of the volatilities:

ρS1,S2
=

1

2

(
σS1+S2

σS1
σS2

− σS1

σS2

− σS2

σS1

)
. (3.14)

3.3.2 Justifying the formulas in [1]

Going further into (3.14), we might be able to justify formula (3.3) for correlation
given in [1], repeated here:

ρ(τ) =

(
σI(τ)

)2 − (ε(τ))
2(

σS(τ)
)2 − (ε(τ))

2
, (3.15)
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where

σS(τ) =

√√√√ N∑
i=1

wi (σSi(τ))
2
,

ε(τ) =

√√√√ N∑
i=1

w2
i (σSi(τ))

2
,

τ is a time period and wi are the weights of the constituent stocks in the
stock index. σSi and σI also have other definitions than usual (using Itô inte-
grals, see section 3.2), but we will work with the standard definitions here, since
the difference between the definitions is small.

Looking at a portfolio I consisting of stocks S1, S2 with corresponding weights
wS1 , wS2 and using the same reasoning as for (3.14), we obtain for the correla-
tion:

var(I) = w2
S1

var(S1) + w2
S2

var(S2) + 2wS1wS2cov(S1, S2)

σ2
I = (wS1

σS1
)2 + (wS2

σS2
)2 + 2wS1

σS1
wS2

σS2
ρS1,S2

ρS1,S2
=
σ2
I − (wS1σS1)2 − (wS2σS2)2

2wS1
σS1

wS2
σS2

This result can be extended for an index I consisting of N stocks Si with
weights wi and volatilities σSi . Define a correlation value that can be seen as
the weighted average correlation in the index:

ρ =

N∑
i 6=j

wiwjσ
SiσSjρi,j

N∑
i 6=j

wiwjσSiσSj

.

Using this definition and the same reasoning as for the case with 2 stocks,
we lose the dependence on pairwise correlations and we gain a dependence on
the index volatility:

ρ =

(σI)2 −
N∑
i=1

w2
i (σ

Si)2

N∑
i 6=j

wiwjσSiσSj

We can see that the numerator of this expression is exactly the same as the
numerator in equation (3.3), but the denominator is different. We can rewrite
the denominator to a term closer to the denominator in (3.3). Going back to the
case with only two constituent stocks, we can substitute 2wS1wS2σS1σS2 with
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(wS1σS1 + wS2σS2)
2 − ε2, justified below:

(wS1σS1 + wS2σS2)
2 − w2

S1
σ2
S1
− w2

S2
σ2
S2

= w2
S1
σ2
S1

+ w2
S2
σ2
S2

+ 2wS1
wS2

σS1
σS2
− w2

S1
σ2
S1
− w2

S2
σ2
S2

= 2wS1
wS2

σS1
σS2

.

Using this substitution in the case with N constituent stocks, the formula
for ρ becomes:

ρ =
(σI)2 − ε2(

N∑
i=1

wiσSi

)2

− ε2
(3.16)

By this, the term −ε2 is incorporated, but we still have

(
N∑
i=1

wiσ
Si

)2

6=

(σS)2 =
N∑
i=1

wi
(
σSi
)2

. This inequality is disregarded in [1]; it is assumed that

the difference between these two terms is small. This becomes clear from the
statement that constituent volatility is more frequently defined as the weighted

arithmetic average of volatilities of constituent stocks,
N∑
i=1

wiσ
Si . By taking a

different definition for constituent volatility, it is implicitly assumed in [1] that
the difference between these two definitions remains small:(

N∑
i=1

wiσ
Si

)2

≈ (σS)2. (3.17)

The difference between these two terms is assumed not only to be close to
zero, but also to always have the same sign. The following inequality is stated
in [1]:

ρ =
(σI)2 − ε2

(σS)2 − ε2
≤ (σI)2 − ε2(

N∑
i=1

wiσSi

)2

− ε2
,

which implies (
N∑
i=1

wiσ
Si

)2

≥ (σS)2. (3.18)

3.3.3 Implicit assumptions

In this subsection, assumptions (3.17) and (3.18) are looked into. The meaning
of these assumptions on economical level is discussed, as well as how reasonable
the assumptions and their economical equivalents are.
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Consider the following:(
N∑
i=1

wiσ
Si

)2

, =

N∑
i=1

wiσ
Si

 N∑
j=1

wjσ
Sj


(σS)2 =

N∑
i=1

wiσ
Si
(
σSi
)
.

This enables us to see that the assumption made at (3.17) is equivalent to

N∑
i=1

wiσ
Si ≈ 1

N

N∑
i=1

σSi ,

or in words: the weighted average of the volatilities of the constituent stocks
is close to the non-weighted average. This means that the weights are more or
less evenly distributed for constituent stocks with large and small volatilities,
and that the constituent stocks with large volatilities generally do not have sig-
nificantly higher or lower weights than those with small volatilities. This is a
reasonable assumption, especially for a large number N of constituent stocks.

However, inequality (3.18) is not explained by this assumption. It is equiv-
alent to:

1

N

N∑
i=1

σSi −
N∑
i=1

wiσ
Si ≥ 0,

while this value might just as easily be positive. This means that for the
inequality to hold, the constituent stocks with low volatilities must have larger
weights than those with high volatilities. When combined with the reasoning
above, this means the following assumption is done in [1]: Constituent stocks of
the index with low volatilities have slightly larger weights than those with high
volatilities.

Economically, this assumption means that the relatively stable stocks (low
volatility) are preferred when creating or updating the stock index. For many
indices, this assumption is correct: the risk of high-volatility stocks is only ac-
cepted if in return there’s a higher expected profit. Even when the index doesn’t
explicitly select stocks based on volatility levels, many indices give weights to
constituent stocks corresponding to their market caps. Generally, stocks with
high market caps, i.e. stocks of large companies, are less volatile than stocks of
small companies. This means that in such indices, stocks with low volatilities
have higher weights than stocks with high volatilities, in accordance with the
assumption.

3.3.4 The case ρ = 0

Whether we use the formula in [1] or the true formula for ρ, the result for taking
ρ = 0 remains the same, since the numerator of the fraction needs to be 0 in
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that case, and the numerators are the same in both formulas. So both formulas
yield the following:

(σI)2 − ε2 = 0;

(σI)2 =

N∑
i=1

w2
i .(σ

Si)2.

This means that the index variance equals the ‘weighted’ (squared weights,
so they do not add to 1) arithmetic average of the variances of constituent stocks
if and only if the average correlation equals 0. This conclusion agrees with our
intuition: if there is a correlation, it would alter the index variance with regard
to the average constituent variance. Since we are only considering averages,
there may be some pairwise correlations, but if they cancel each other out, their
effects on the index variance apparently cancel out as well. The squared weights
make sense as well, since a scalar taken out of a variance must be squared.

3.4 The toy model

3.4.1 One factor: variance swaps

Definition

Now the ‘toy model’ in [1] for derivatives on realized variance will be defined
using the definitions discussed in the previous sections. These derivatives can
be seen as variance swaps. We start simple, by taking a market on a single

asset S, where agents can trade the asset’s realized variance
(
σS(τ)

)2
over a

fixed time period τ = [0, T ]. For t ∈ [0, T ], we take the variance price v∗t to be
the best estimate of the variance we can give at time t: we take the realized
variance until time t, and from time t until time T , we substitute it with implied
variance. This is defined mathematically as

v∗t =
t

T

(
σS([0, t])

)2
+
T − t
T

(
σ∗St ([t, T ])

)2
, (3.19)

where σS and σ∗St are volatility and implied volatility of S respectively,
defined according to (3.1) and (3.4). The forward-neutral dynamics of v∗ - the
way in which v∗ changes over time - are not determined by (3.19). In [1] it is
assumed that these forward dynamics have the following structure:

dv∗t = 2ω
T − t
T

v∗t dW
∗
t , (3.20)

where ω is a positive ”volatility of volatility” parameter, and W ∗ is a stan-
dard Brownian motion under P*. The flexibility of this structure lies in the
parameter ω, which can be chosen using past data and a maximum likelihood
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estimate. The term T−t
T gets closer to 0 as t→ T , meaning the price of the vari-

ance swap becomes less volatile as the time approaches maturity, which agrees
with our intuition. As expected, the volatility of the swap price is proportional
to the swap price v∗t itself. The Brownian motion W ∗ gives the variance process
its randomness.

This model is used to define the fair strike of a volatility swap, which we
will call fair volatility. The payoff is VT ≡

√
v∗T , quite logically the square root

of the price of realized variance. The fair value of the swap at any time t is
calculated in [1] using (3.20) and some properties of Itô integrals:

Vt =
√
v∗t exp

[
−1

6
ω2T

(
T − t
T

)3
]
.

Setting t = 0, we find for the fair volatility V0:

V0 =
√
v∗0 exp

[
−1

6
ω2T

]
v∗0 is known as the fair strike of a variance swap, or fair variance in this

thesis. Notice that the term strike is used instead of the term price: this is the
fair price for a variance swap with strike 0, but as is the rule with swaps, the
strike is adjusted so that the price becomes 0. In our case, this means the strike
must be v∗0 . The term exp

[
− 1

6ω
2T
]

is known as the convexity adjustment;
a term that compensates for the fact that variance is convex in volatility.

Simulation

This toy model can be simulated in MATLAB using the Euler discretization
scheme on its forward-neutral dynamics. For details about the Euler discretiza-
tion scheme, see chapter 4 of this thesis or [4].

An example of several variance paths simulated using this model can be seen
in figure 3.1. ω is taken as 0.61: this is a reasonable value for a maturity of 1
year according to an estimation done in [1] using real-world data. v0 has been
arbitrarily picked, because there are many different stocks with many different
variances. It can clearly be seen from this plot that the volatility of a path is
lower when v is lower (because of the term v in the forward dynamics) and when
t is higher (because of the term T−t

T ). Both for T−t
T → 0 and for v → 0 the

volatility should approach 0, since both these terms appear as a scaling factor
in (3.20). The situation T−t

T → 0 occurs in the simulation, at the right side of
figure 3.1, and we see that the volatility does indeed approach 0 in that part.
To illustrate what happens for v → 0, the blue path has been modeled with
v0 = 0.02. We can see that the volatility for this path is indeed very low, as
expected, and the value of v barely changes.
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Figure 3.1: 5 paths of the toy model using Euler discretization. ω = 0.61, ∆t =
0.001, T = 1, v0 = 0.02 for the bottom (blue) path, v0 = 0.2 for the other
paths. It can be seen that the volatility of these paths is lower for low values of
v and for t approaching maturity T .

3.4.2 Two factors: correlation swaps

In this subsection, the fair value of a correlation claim is modeled by extending
the toy model to two factors, being index variance and constituent variance.
This correlation claim is inspired by the proxy formulas discussed in 3.2.3. Its
payoff is

cT ≡ ρ̂(τ) =

(
σI(τ)

σS(τ)

)2

.

This is different from a standard correlation swap with strike 0, which has
payoff

ρ(τ) =

∑
i<j

wiwjρ
SiSj (τ)∑

i<j

wiwj
,

where ρSiSj is the pairwise correlation between stocks Si and Sj . The dif-
ference in payoff between this correlation claim and the standard correlation
swap is almost zero (shown in [1] using real-world data), so their prices will
also be close to each other. In reality, all swaps (including correlation swaps)
have a strike such that the up-front price of the swap becomes zero. This is
not considered in [1], but in chapter 5 we use the price of a correlation swap
with strike 0 to find the value the strike should have to make the price equal to 0.
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Definition

The toy model is extended to two factors; those factors are the index variance
and the constituent variance. We denote with v∗It the market price of realized
index variance at time t, with v∗Si

t the market price of the realized variance of
stock Si at time t, and we define the no-arbitrage price of realized constituent
variance at time t as:

v∗St ≡
N∑
i=1

wiv
∗Si
t . (3.21)

In the same way as for the one-factor toy model, we define a structure for
the forward-neutral dynamics of both paths:

dv∗It = 2ωI
T − t
T

v∗It dW
∗I
t , (3.22)

dv∗St = 2ωS
T − t
T

v∗St dW ∗St , (3.23)

where ωI and ωS are constants volatility of volatility parameters and W ∗I

and W ∗S are standard Brownian motions under P*. We assume that W ∗I and
W ∗S have a constant correlation χ, i.e.

(
dW ∗It

) (
dW ∗St

)
= χdt. Note that this

value denotes the correlation between changes in index and constituent volatil-
ities, rather than the correlation between the absolute levels.

Equation (3.23) is only an approximation: it is assumed that each v∗Si fol-
lows this type of dynamics, but their arithmetic average v∗St does not necessarily
have to follow the same dynamics. Assuming that

dv∗St ≈ v∗Sti+1
− v∗Sti (3.24)

for some points in time ti+1 and ti close to each other, we can justify formula
(3.23), using that each v∗Si follows this type of dynamics. First we substitute
definition (3.21) in (3.24):

dv∗St ≈
N∑
j=1

wjv
∗Sj

ti+1
−

N∑
j=1

wjv
∗Sj

ti

=

N∑
j=1

wj

(
v
∗Sj

ti+1
− v∗Sj

ti

)

≈
N∑
j=1

wjdv
∗Sj

t ,

using approximation (3.24) (with dv
∗Sj

t instead of dv∗St ) in the last step.
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Now we can use that each dv
∗Sj

t follows the dynamics in (3.23):

dv∗St ≈
N∑
j=1

2wjωSj

T − t
T

v
∗Sj

t dz
∗Sj

t (3.25)

= 2
T − t
T

N∑
j=1

wjωSjv
∗Sj

t dz
∗Sj

t . (3.26)

Each volatility of volatility parameter ωSj
of the individual constituent

stocks is much higher than the volatility of constituent volatility parameter ωS ,
so the (weighted) mean of the ωSj

will also be much higher. On the other hand,

the (weighted) mean of the Wiener process increments dz
∗Sj

t is much lower than
dz∗St in absolute value, which is a Wiener process as well: because of the law of
large numbers, the weighted mean of Wiener process increments converges to
zero. It is a reasonable assumption that these two disparities cancel each other
out, i.e.

N∑
j=1

wjωSjdz
∗Sj

t ≈ ωSdz∗St .

This means that ωSj
dz
∗Sj

t can be approximated by ωSdz
∗S
t for each j. Mak-

ing this substitution in (3.26), we get

dv∗St ≈ 2
T − t
T

ωS

 N∑
j=1

wjv
∗Sj

t

 dz∗St

= 2
T − t
T

ωSv
∗S
t dz∗St ,

which is exactly how it is defined in (3.23).

Now the analytically derived formula for the fair value of the correlation
claim will be introduced. The payoff of the correlation claim is

cT ≡
v∗IT
v∗ST

.

Using the definitions for index volatility and constituent volatility given ear-
lier in this chapter and some properties of Itô integrals, the following fair price
for the correlation claim at time t is obtained in [1]:

ct ≡ E(cT | v∗It , v∗St ) =
v∗It
v∗St

exp

[
4

3

(
ω2
S − χωSωI

)
T

(
T − t
T

)3
]
.

In words: the fair value of the correlation claim is equal to the ratio of fair
index variance to fair constituent variance, multiplied by an adjustment factor
which depends on the volatility of index volatility, the volatility of constituent
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Figure 3.2: 5 paths of the fair value of the correlation claim. ωi = 0.61, ωs =
0.54, χ = 0.9, v∗I0 = 0.5, v∗S0 = 0.6, ∆t = 0.001, T = 1. The top paths (purple
and red) do not stay below their boundary of 1 because there is no mathematical
condition enforcing the boundary.

volatility, and the correlation between index volatility and constituent volatility.
Taking t = 0 and rewriting the equation, we obtain for the fair correlation
adjustment, the ratio between implied correlation and the trading price of the
correlation claim:

ρ̂∗0
c0

= exp

(
4

3

(
χωSωI − ω2

S

)
T

)
.

Historical data shows that the fair correlation adjustment is close to one for
most maturities, meaning implied correlation and fair correlation are very close.
[1]

Simulation

The two-factor toy model can be simulated as a simple extension of the simu-
lation of the one-factor toy model. Both v∗It and v∗St are modeled in the same
way as v∗t in the one-factor toy model. Using these values, the formula for the
fair price of a correlation claim can be filled in.

In figure 3.2, 5 of these paths are shown. ωi, ωs and χ are taken to be equal
to the estimates in [1] using real-world data. v∗I0 and v∗S0 are arbitrarily picked,
but still satisfying v∗I0 ≤ v∗S0 . This inequality cannot be maintained for the rest
of the paths, as can be seen in figure 3.3, since there is no condition built into
the model that prevents v∗It from getting higher than v∗St . There is only the fair
correlation adjustment, which is lower than 1 for most maturities when using
the parameter estimates from [1], since ωS ≤ χωI . However, this adjustment is
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Figure 3.3: The corresponding variance paths for the correlation paths in figure
3.2. Each color represents the variance paths corresponding to the correlation
path of the same color. The solid lines are index variance paths v∗It , the dotted
lines are constituent variance paths v∗St . ωi = 0.61, ωs = 0.54, χ = 0.9, v∗I0 =
0.5, v∗S0 = 0.6, ∆t = 0.001, T = 1. It can be seen that whenever the correlation
in figure 3.2 is above 1, the index variance path is above the constituent variance
path, as expected.

quite small, especially for larger t.

This is what causes the problem that the fair correlation becomes higher
than 1. When comparing figure 3.2 with figure 3.3, we see that the correlation
being higher than 1 corresponds to the index variance being higher than the
constituent variance. This problem does not appear if v∗I0 is much lower than
v∗S0 and χ stays high. That way, the high correlation prevents v∗It from grow-
ing too fast without v∗St growing as well. This problem is also illustrated in
appendix G in [1], where the probability of the payoff being higher than 1 is
shown as a function of χ for different values of ρ0. The result of this appendix
can be seen in figure 3.4.

In our example in figures 3.2 and 3.3, we used correlation between volatilities
χ = 0.9 and ρ̂∗0 = 0.5/0.6 ≈ 0.83. If we look at the plot in figure 3.4, following
the line for ρ = 0.8, we find a probability of around 0.25 for cT > 1. This agrees
quite well with our simulations in figure 3.2, where at maturity T , the top path
(purple) clearly exceeds 1 and the second path from the top (red) is close to 1.

To make sure the correlation does not exceed 1, we apparently need high χ
and low ρ̂∗0. Since the χ we used was already quite high (0.9), we simulate cor-
relation paths for lower ρ̂∗0. According to figure 3.4, the probability for cT > 1
is almost 0 for ρ̂∗0 = 0.5. To archieve this, we keep v∗S0 = 0.6, meaning we have
to set v∗It = 0.3. The results of this simulation can be seen in figure 3.5. We
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Figure 3.4: The result of appendix G in [1], comparing the probability of the
correlation being higher than 1 at maturity T (for T = 1 year) as a function of
the correlation between volatilities χ with different values of the starting value
of correlation ρ̂∗0 = v∗I0 /v∗St (denoted with ρ in this image). This image shows
that the probability for cT > 1 goes down for higher χ, but for higher starting
correlations ρ the effect is diminished, only having a real impact for χ→ 100%.

can see from the left plot that the correlation paths stay well below zero. The
right plot shows that the condition v∗It < v∗St is well satisfied. We can conclude
that this model may give unrealistic values of cT > 1, but if the parameters are
right, i.e. high χ and low ρ̂∗0, the model does work.

Furthermore, the diminishing volatility of the fair correlation over time is
visible again, as in figure 3.1. This is because of the terms T−t

T in the paths for

the implied and constituent volatilities. The term (T−tT )3 in the fair correlation
adjustment makes this term go to 1 for t→ T , as it should, since the payoff of
the correlation swap is cT = v∗IT /v

∗S
T , without any adjustment factor.

3.5 Without the assumption σI ≤ σS

From formula (3.16) for the true, unapproximated correlation value, it is clear
that (

σI
)2 ≤ ( N∑

i=1

wiσ
Si

)2

,

because the correlation value needs to stay below 1. By making approxima-
tion (3.17) and substituting it in the formula for the correlation, [1] implies that
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Figure 3.5: 5 simulations of fair correlation paths (left) and in the same color
their corresponding variance paths (right). Dotted lines are constituent variance
paths v∗St , solid lines are index variance paths v∗I . ωi = 0.61, ωs = 0.54, χ =
0.9, v∗I0 = 0.3, v∗S0 = 0.6, ∆t = 0.001, T = 1. The parameters are chosen such
that χ is high and ρ̂∗0 = v∗I0 /v∗S0 is low, to avoid any correlation paths going
over 1. This was succesful, since all correlation paths stay well below 1.

the correlation value remains below 1, so:

σI ≤ σS .

To simplify notation, we use the following definition for the weighted arith-
metic constituent volatility for this section:

σA :=

N∑
i=1

wiσ
Si .

This gives a shorter formula for the true correlation:

ρ =
(σI)2 − ε2

(σA)2 − ε2
,

and for the proxy formula:

ρ̂ =

(
σI

σA

)2

.

This all works fine without approximation (3.17). The part where the as-
sumption simplifies the calculations is in the two-factor toy model. Definition

(3.21) is the logical definition for a variance process corresponding to
(
σS
)2

.
Below the definition, it is explained how this process can be approximated by
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the forward dynamics in (3.23). If we look at the variance process corresponding
to σA:

v∗At =

(
N∑
i=1

wi

√
v∗Si
t

)2

, (3.27)

we can expect that this process is further away from the type of dynamics
in (3.23) than v∗St . To find out what kind of process approximates (3.27), we
start rewriting the process from its definition. Again, we use the approximation

dv∗At ≈ v∗Atk+1
− v∗Atk (3.28)

for some points in time tk+1 and tk close to each other, to allow us to use
definition (3.27). Substituting this:

dv∗At ≈

(
N∑
i=1

wi

√
v∗Si
tk+1

)2

−

(
N∑
i=1

wi

√
v∗Si
tk

)2

(3.29)

=

N∑
i=1

(
wi

√
v∗Si
tk+1

)2

+

N∑
i=1

N∑
j 6=i

wi

√
v∗Si
tk+1

wj

√
v
∗Sj

tk+1
(3.30)

−
N∑
i=1

(
wi

√
v∗Si
tk

)2

−
N∑
i=1

N∑
j 6=i

wi

√
v∗Si
tk

wj

√
v
∗Sj

tk
(3.31)

=

N∑
i=1

w2
i

(
v∗Si
tk+1
− v∗Si

tk

)
(3.32)

+

N∑
i=1

N∑
j 6=i

wiwj

(√
v∗Si
tk+1

√
v
∗Sj

tk+1
−
√
v∗Si
tk

√
v
∗Sj

tk

)
. (3.33)

The first step we took here was writing out the square in the first term in

(3.29) to
(∑N

i=1 wi

√
v∗Si
tk+1

)(∑N
j=1 wj

√
v
∗Sj

tk+1

)
. For i = j, this is equal to the

first term in (3.30) and for i 6= j, it is equal to the second term. We do the same
for the second term in (3.29), which becomes the two terms in (3.31). Next, we
subtract the first term in (3.31) from the first term in (3.30) to get to (3.32)
and we subtract the second term in (3.31) from the second term in (3.30) to get
to (3.33).

Term (3.32) can be approximated by
N∑
i=1

w2
i dv
∗Si
t , but term (3.33) is a bit

more involved. It can be a substantial part of the full value of dv∗At , so we

cannot neglect it. We can take
√
v∗Si
tk+1

and
√
v
∗Sj

tk+1
together, as well as

√
v∗Si
tk

and
√
v
∗Sj

tk
, but there is no way to express this part in terms of dvSi

t . So to be

able to model (3.33), we need to define a model for√
v∗Si
tk+1

v
∗Sj

tk+1
−
√
v∗Si
tk

v
∗Sj

tk
. (3.34)
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We expect that if we have a good model for (3.34), we can substitute that in
the toy model and use v∗At instead of v∗St . The model would most likely become
more accurate from this, and depending on the accuracy of the model for (3.34),
the modeled value of the correlation claim might not exceed 1 anymore. Of
course this is a good thing, but it is hard to find a satisfactory approximate
for (3.34). The model would have to contain an expression for the correlation
in the portfolio I, but we are trying to model the correlation ourselves, so if
we had had an expression for the correlation, we would not be doing all these
calculations. This also explains why [1] suggested approximation (3.17); even
though the accuracy of the model suffers, the model becomes so much more
complex when not making the assumption that the additional accuracy is not
worth it.
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Chapter 4

The Jacobi Process

To see if our calculations actually work, it is useful to perform simulations.
Simulations can generate plots to help us explain certain phenomena or they can
provide estimates for certain parameters by doing a large number of simulations
and looking at the properties of this set of simulations, such as their mean. The
Jacobi process is a very useful process, since it can be easily simulated and its
parameters can be chosen such that it approximates a correlation process.

4.1 What is the Jacobi process?

The bounded Jacobi process, which we will call simply the Jacobi process
in this thesis, has several properties that make it ideal to model correlation
paths. The dynamics of the process are given by

dρ(t) = κρ (µρ − ρ(t)) dt+ γρ
√

1− ρ2(t)dW (t). (4.1)

The term (µρ − ρ(t)) makes the process mean-reverting. If ρ(t) < µρ this
term makes the process go up over time and if ρ(t) > µρ it makes the process go
down over time, so the process will always be inclined to move in the direction
of µρ. How strong this effect is can be controlled with κρ. For κρ, the condi-
tion 0 ≤ κρ < 1 must hold, since for negative κρ the process would move away
from its mean and for κρ > 1 the process would move past its mean instead of
towards it. The mean µρ must be between -1 and 1, since a correlation value
cannot exceed these values. The mean-reverting property can also be seen in
reality on the stock market, with the correlation between stocks usually being
around the same level for a period of time.

The term γρ
√

1− ρ2(t)dW (t) in (4.1) is the random part of the process,

with W denoting a Wiener process. The term
√

1− ρ2(t) makes sure the pro-

cess does not cross its boundaries 1 and -1, because
√

1− ρ2(t) → 0 for both
ρ→ 1 and ρ→ −1. This means that whenever ρ approaches one of its bound-
aries, the random part of the process will start contributing less and less to the
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total shift in ρ and the mean-reverting part will take the process back away from
the boundary. The square root makes sure that this term does not contribute
too much to the process when ρ is far from its boundaries. The parameter γρ
can be seen as a volatility parameter of the entire process, since it scales the
term with the Wiener process in it. Since volatility must always be positive, we
have γρ > 0.

To ensure that the process will stay within its boundaries of -1 and 1, the
following parameter constraint is given in [4]:

κρ > max

(
γ2
ρ

1− µρ
,

γ2
ρ

1 + µρ

)
. (4.2)

If we substitute (4.2) into (4.1), we find

lim
ρ→1

dρ(t) < −γ2
ρdt, lim

ρ→−1
dρ(t) > γ2

ρdt.

Since γ2
ρ is always positive, this makes sure the path will go down if it ap-

proaches 1 and up if it approaches -1.

All parameters (i.e. κρ, µρ and γρ) have ρ in their subscripts to denote
that they can be functions of ρ. This gives even more versatility to the Jacobi
process, but for simplicity reasons they will be modeled as constant values in
this thesis.

4.2 Discretization schemes

The Jacobi process defined in (4.1) is an example of a so-called stochastic
differential equation: an equation where a path is specified implicitly by
specifying the shift in its value using the value of the path itself. The general
formula for a stochastic differential equation for a path X is as follows:

dX(t) = α(t,X(t))dt+ σ(t,X(t))dW (t). (4.3)

Every stochastic differential equation has a term dependent on the shift in
time dt, and a random term dependent on the increment dW (t) of a Wiener
process W (t). The solution X of a stochastic differential equation is a contin-
uous path. However, we cannot simulate true continuity, so we have to use a
discretization scheme to divide the time period into small intervals [ti−1, ti] and
change the terms appearing in (4.3) accordingly.

Two potentially useful discretization schemes for the Jacobi process are the
Euler discretization and the Milstein discretization. In this section, we check
how well both discretization schemes perform with the Jacobi process. At the
end, we make a choice for which discretization scheme to use in the rest of the
thesis.
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4.2.1 Euler discretization

The simplest of the discretization schemes is the Euler discretization. It turns
the time variable t into a finite number of equidistant points in time ti. The
path X(t) is made discrete by taking their values at time ti:

Xi := X(ti),

and the shift in its value becomes Xi+1 − Xi. The functions α and σ are
evaluated for ti, Xi and the shift in time dt is replaced by ∆t := ti+1−ti. Finally,
since Wiener increments W (ti+1) −W (ti) are normally distributed with mean
0 and variance ∆t, dW (t) is replaced with

√
∆tZ, where Z is a draw from a

standard normal distribution. Applying all this, the Euler discretization for a
general stochastic differential equation (4.3) becomes

Xi+1 = Xi + α(ti, Xi)∆t+ σ(ti, Xi)∆tZ. (4.4)

The Jacobi process can be written as a general stochastic differential equa-
tion by taking X = ρ, α(t, ρ(t)) = κ(µ − ρ(t)) and σ(t, ρ(t)) = γ

√
1− ρ2(t).

Substituting this into (4.4), we get a discrete version of the Jacobi process:

ρi+1 = ρi + κ(µ− ρi)∆t+ γ
√

1− ρ2
i

√
∆tZ. (4.5)

Since computer programs like MATLAB can take draws from a standard
normal distribution, this is a formula that can be used to numerically simulate
a correlation path. An example of a simulation of a Jacobi process is shown
in figure 4.1. In this example, there were values of the Jacobi path crossing
the boundary of 1; these have been truncated, meaning any values higher
than 1 were replaced by 1. For the continuous Jacobi process, it should not be
possible to cross the boundaries because of parameter constraint (4.2). This is
because for the path to become higher than 1, we must first have ρ(t) = 1. In
this case, the parameter constraint makes sure the path goes down immediately
afterwards. After discretization however, we can have ρi < 1 and ρi+1 > 1
without the path ever being exactly equal to 1. Possible solutions to this problem
are explored in section 4.3.

4.2.2 Milstein discretization

A slightly more complicated way to turn the Jacobi process into a discrete path
is by using the Milstein discretization. This discretization takes one additional
term from the Itô-Taylor expansion, the stochastic equivalent of the Taylor
expansion. For a general stochastic differential equation as described in (4.3),
the discretization looks like this:

Xi+1 = Xi + α(ti, xi)∆t+ σ(ti, xi)
√

∆tZ +
1

2
σ(ti, xi)(∆tZ

2 −∆t)
∂σ

∂x
(ti, xi),

(4.6)
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Figure 4.1: 5 simulations of Jacobi paths with values above 1 truncated to 1.
ρ0 = 0, κ = 0.5, µ = 0.6, γ = 0.6, ∆t = 0.005.

where Z is a draw from a standard normal distribution. For the Jacobi
process

dρ(t) = κ(µ− ρ(t))dt+ γ
√

1− ρ2(t)dW (t),

we have for the partial derivative:

∂σ

∂x
=

−γρ(t)√
1− ρ2(t)

.

Substituting this and the other necessary functions into the Milstein dis-
cretization, equation (4.6):

ρi+1 = ρi + ∆tκ(µ− ρi) +
√

∆tZγ
√

1− ρ2
i +

1

2
γ2ρi(∆tZ

2 −∆t).

Notice that in the last term, the part
√

1− ρ2
i in σ is canceled out because

it also appears in the denominator of ∂σ∂x (ti, ρi). Using this formula, we can sim-
ulate the Jacobi process in Matlab.

In figure 4.2, 5 paths simulated using the Milstein discretization are shown.
The parameters are exactly the same as in figure 4.1. The figures obviously look
very similar, since they model the same process. An interesting observation is
that the amount of exceedances of the boundary ρ = 1 does not appear to be
much lower than for the Euler discretization. This will be looked into in section
4.2.3.

4.2.3 Comparison of the discretization schemes

In this section, we will compare the Euler discretization scheme with the Mil-
stein discretization scheme. A good way to do this is by comparing the amount
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Figure 4.2: 5 simulations of Jacobi paths simulated using the Milstein dis-
cretization with values above 1 truncated to 1. ρ0 = 0, κ = 0.5, µ = 0.6, γ =
0.6, ∆t = 0.005.

N T = 1 ∆t T = 5 ∆t T = 10 ∆t T = 20 ∆t T = 50 ∆t
100 0.019 0.01 0.482 0.05 0.804 0.1 0.971 0.2 1 0.5
1000 0.014 0.001 0.464 0.005 0.771 0.01 0.976 0.02 1 0.05
10000 0.009 0.0001 0.444 0.0005 0.792 0.001 0.958 0.002 1 0.005
100000 0.014 1 ∗ 10−5 0.433 5 ∗ 10−5 0.786 0.0001 0.961 0.0002 1 0.0005

Table 4.1: The proportion of exceedances for different amounts of timesteps
N and different end times T . ∆t represents the timestep size. The paths are
modeled using Euler discretization. ρ0 = 0, κ = 0.5, µ = 0.6, γ = 0.6,M = 1000.

of boundary exceedances for both discretization schemes. These amounts will
be calculated and with them, a decision will be made about which discretization
scheme best fits our needs and will be used for the rest of the thesis.

If we look at figures 4.1 and 4.2, our first idea is that the amount of ex-
ceedances do not differ much between the two discretization schemes. This is
not completely unexpected, since both discretization schemes have the same
order of weak convergence: the convergence of the simulated process value to
the true value for ∆t→ 0. (See [4] for details). To investigate this further, a ta-
ble comparing the timestep sizes to the proportion of paths exceeding 1 or -1 is
shown in table 4.1 for Jacobi discretization and in 4.2 for Milstein discretization.

Tables 4.1 and 4.2 show the amounts of exceedances for different timestep
sizes ∆t and end times T for Euler discretization and Milstein discretization.
The reaction of the amount of exceedances to the timestep size and the end
time will be discussed in section 4.3. Here we note that the tables show almost
exactly the same amounts of exceedances for the Euler discretization as for the
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N T = 1 ∆t T = 5 ∆t T = 10 ∆t T = 20 ∆t T = 50 ∆t
100 0.024 0.01 0.504 0.05 0.839 0.1 0.975 0.2 1 0.5
1000 0.014 0.001 0.494 0.005 0.813 0.01 0.977 0.02 1 0.05
10000 0.017 0.0001 0.440 0.0005 0.801 0.001 0.974 0.002 1 0.005
100000 0.016 1 ∗ 10−5 0.434 5 ∗ 10−5 0.786 0.0001 0.960 0.0002 1 0.0005

Table 4.2: The proportion of paths modeled using Milstein discretization ex-
ceeding 1 or -1, for different amounts of timesteps N and different end times T .
∆t represents the timestep size. ρ0 = 0, κ = 0.5, µ = 0.6, γ = 0.6,M = 1000.

Milstein discretization. Even though the Milstein discretization is slightly more
complicated than the Euler discretization, adding an additional term with a par-
tial derivative, this apparently does not result in a lower amount of exceedances.
This is because they have the same order of weak convergence, as pointed out
earlier. The increased complexity of the Milstein discretization turns out not to
have any effects for modeling the Jacobi process, so we use the Euler discretiza-
tion in the rest of this thesis.

4.3 Exceeding the boundaries

Even though the truncated path shown in figure 4.1 is theoretically a viable
correlation path, the values have been changed. That means that this is no
longer a true Jacobi path, so it is not a good simulation of the Jacobi process
anymore. To prevent this from happening, we need to make sure that we do not
have to truncate. For that goal, we simulate 1000 paths at once and look at the
proportion of paths for which at least one value has been truncated. First, we
compare this proportion to a value derived from the parameter constraint (4.2)
on the Jacobi process. The parameter constraint is repeated here:

κ > max

(
γ2

1− µ
,
γ2

1 + µ

)
.

Rewriting this constraint to be described by a single variable, we get:

A := max

(
κ− γ2

1− µ
, κ− γ2

1 + µ

)
> 0.

In table 4.3, this value A is compared to the proportion of exceedances while
moving around the parameters γ, κ and µ. It appears that A is not represen-
tative for the proportion of exceedances. For example, for κ = 0.5, γ = 0.6, µ =
0.4 : A = 0.2429 and #exc = 0.2630, or 0.2470 in a different set of simula-
tions with the same parameters. However, for κ = 0.30, γ = 0.30, µ = 0.40 :
A = 0.2357, but #exc = 0.0000. In these two cases, A is almost the same,
but the number of exceedances vastly differs. This means that the number of
exceedances and the value of A react differently to changes in the underlying
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#exc A κ γ µ
0,1240 0,4429 0,70 0,60 0,40
0,1830 0,3429 0,60 0,60 0,40
0,2630 0,2429 0,50 0,60 0,40
0,3380 0,1429 0,40 0,60 0,40
0,3580 0,0429 0,30 0,60 0,40
0,0000 0,2357 0,30 0,30 0,40
0,0010 0,1357 0,20 0,30 0,40
0,0170 0,0357 0,10 0,30 0,40
0,0000 0,6357 0,70 0,30 0,40
0,0000 0,4357 0,50 0,30 0,40
0,2470 0,2429 0,50 0,60 0,40
0,3180 0,2600 0,50 0,60 0,50
0,4860 0,2750 0,50 0,60 0,60

Table 4.3: The proportion of paths exceeding 1 or -1 at least once, with 1000
simulations for every combination of parameters. For every simulation, ρ0 =
0, T = 5, ∆t = 0.005. The Jacobi discretization is used.

parameters.

Note that, as mentioned above for the case of κ = 0.5, γ = 0.6, µ = 0.4,
there may be a difference in the number of exceedances per simulation even
when the underlying variables are kept the same. This means the amount of
simulations (1000) is not enough to provide an accurate value for the proportion
of exceedances. It is accurate enough, however, to show that A is not represen-
tative for the proportion of exceedances: a difference of around 0.25 is too big
to be accounted for by the inaccuracy of the simulations.

To find a quantity that is representative of the amount of exceedances, we
try looking at the process itself and the probability that a path crosses 1 or
-1. Unfortunately, this probability cannot be written in terms of the underlying
parameters. This is firstly because we only have an implicit formula for the
path ρ, where ρi+1 depends on ρi in several ways, and secondly because there is
no explicit cumulative distribution function for the normal distribution, which
Z follows.

Intuitively, we expect the amount of exceedances to be related to the size
of the timesteps. To check this, the proportion of exceedances is compared
with the amount of timesteps and the end times in table 4.1. The amount
of exceedances does not appear to be connected to the amount of timesteps
N . I personally think this is very strange at first sight. Usually, lowering the
size of the timesteps makes a numerical simulation more accurate. However, a
high amount of exceedances means inaccuracy of the simulation, because there
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cannot be any exceedances in the continuous Jacobi process. Because this phe-
nomenon seems so strange, it will be discussed further below.

The end time T does matter for the amount of exceedances in table 4.1. For
T = 1, less than 2% of all paths exceeds 1 or -1 for each N . This proportion
is already much higher for T = 5, and continues to rise for higher T , until at
T = 50 all paths exceed 1 or -1.

The unimportance of the timestep size

In table 4.1, it appears as if decreasing ∆t for a certain end time T has little
to no effect on the proportion of paths exceeding 1 or -1. However, it must be
noted that since the number of timesteps N is increased as well, there are more
‘opportunities’ (discrete points in time) where ρ can cross these values. Since
lowering ∆t without increasing N , namely by decreasing T , does have effect,
the most logical explanation would be this: the positive effect in decreasing the
amount of exceedances gained from lowering ∆t is exactly canceled out by the
negative effect gained from increasing N . In this part, it will be checked if this
idea is in accordance with the theory.

First, we look at the formula used to simulate the Jacobi process, obtained
with Euler discretization:

ρi+1 = ρi + ∆tκ(µ− ρi) +
√

∆tZγ
√

1− ρ2
i .

The significance of ∆t here is a scaling factor for both the mean reverting part
and, in a lesser manner, the random part. Now, let us look at a random value
ρi and the probability that it crosses 1. We will be comparing this probability
for different ∆t and different amounts of timesteps, so we can disregard the
probability that it crosses -1 (since it is calculated in exactly the same way and
thus has the exact same relationship for different ∆t and N) and we can assume
without loss of generality that ρi ≥ 0. For ρi+1 to be larger than 1, we need the
following:

ρi+1 − ρi = ∆tκ(µ− ρi) +
√

∆tZγ
√

1− ρ2
i > 1− ρi.

Since we keep ρi and all parameters fixed for this argumentation, we can
substitute κ(µ−ρi) with a constant c1 and γ

√
1− ρ2 with another constant c2.

Then we get
c1∆t+ c2

√
∆tZ > 1− ρi. (4.7)

If we know c1, c2,∆t and ρi, a probability can be calculated from this for-
mula. For now, we will compare it to a case with δt = ∆t

10 and look at the
probability that ρi+10 > 1. Looking from ρi, we need to look 10 timesteps
ahead to calculate this probability:

10∑
n=1

(
c1δt+ c2

√
δtZn

)
> 1− ρi,
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M = 10 M = 100 M = 1 000 M = 10 000 M = 100 000
Mean 0.10624 0.11024 0.15608 0.15342 0.15275

Variance 0.046396 0.053783 0.045237 0.046241 0.046427

Table 4.4: The mean and variance of all simulated values ρ(T ), for different
amounts M of simulated paths. There are 0 paths exceeding 1 or -1 for each
M .

where each Zn is an independent draw from a standard normal distribution.

Defining Z :=
√

1
10

∑10
n=1 Zn, we get

c1∆t+ c2
√

∆tZ > 1− ρi.

The random variable
∑10
n=1 Zn is normally distributed with mean 0 and vari-

ance 10, so Z follows the standard normal distribution. This means the above
equation is exactly equal to equation (4.7). This shows that the probability for
ρ crossing 1 or -1 in one timestep is exactly the same as with ten timesteps
that are ten times smaller. This explains why the proportion of exceedances
stays the same if we decrease the timestep size by only increasing the amount
of timesteps with the same factor.

4.4 Correlation swaps

To model correlation swaps using a Jacobi process, we will use the mean of many
simulated processes as the expected value of the process. To be able to use this
as an expected value, we have two requirements: the amount of exceedances
should be as low as possible, and the mean must converge to a single value for
large numbers of simulations M . How to keep the exceedances low has been
discussed in the previous section: we will take T, γ and µ low, and κ high. It
appears that it does not matter what we choose for N and whether we use Euler
or Milstein discretization schemes, so we will take N = 100 and use the Euler
discretization scheme. For T = 1, γ = 0.3, µ = 0.3 and κ = 0.7, some test runs
of the simulation all yield 0 exceedances.

First, we will check if the mean of the results of the simulation at t = T
converges. Looking at table 4.4, we can see that for M higher than 1000, the
mean is stable. The variance is quite low here, because we have T and γ low.
But the mean does converge, so we can at least use it as the expected value
of the correlation with these parameters. (If the variance is higher, the mean
will still converge as long as there are little to no exceedances, although M may
need to be higher.) In figure 4.3, it can be seen that the distribution followed
by the simulated correlation values at time T is a normal distribution.

The Jacobi process can be used to model the correlation path used in [1],
if we take the right values (or functions) for γ, µ, κ and ρ0. This is an inter-
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Figure 4.3: A histogram showing how the results at time t = T of the simulations
of the Jacobi process are distributed. M = 100000, T = 1, γ = 0.3, µ = 0.3
and κ = 0.7. The values are normally distributed around their mean.

esting topic for further research. The forward dynamics of the correlation path
ρ̂∗t = v∗It /v

∗S
t will first have to be defined. This definition of ρ̂∗t will have to

be rewritten in order to be able to use the forward dynamics of v∗It and v∗St ,
perhaps some approximations will have to be made. When a formula for the
forward dynamics of ρ̂∗t is obtained, it can be compared with the forward dy-
namics of the Jacobi process, as defined in equation (4.1). This will show what
the best definitions for κρ, µρ and γρ would be; they would probably have to be
functions of ρ and t. Even with the right definitions, the Jacobi process would
still be different from the correlation path in [1], because of the term

√
1− ρ2(t)

in the forward dynamics of the Jacobi process. This is what makes it interesting,
however. This term aims to keep the value of the process below 1, so it may
solve the problem of the correlation path defined in [1] getting higher than 1.
Inspecting this difference may even lead to an improvement of the model in [1].

Another use of the Jacobi process would be to model the correlation swap
in a different way. It could be used to model the correlation defined in [1]
as described above, but instead of inspecting the differences in the correlation
paths themselves, a swap on the correlation path could be inspected. The fair
value of this swap could be obtained by running a large number of simulations
of the correlation path and taking the mean of the swap’s payoff as the swap
price (discounting to compensate for the interest rate as necessary). This price
could then be compared to the price given in [1], and an explanation for any
difference could be found. Although these ideas are interesting, there is no room
to explore them in this thesis.
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Chapter 5

Hedging

5.1 Introduction

In this section, we will look at how to hedge the correlation swap as described
in [1]. In [1], a hedging strategy is described using so-called variance dispersion
trades. Hedging the correlation swap here means that a portfolio consisting of
the swap and the hedging products should be vega-neutral: independent of
changes in both index variance and constituent variance. We go deeper into
dispersion trades and check if it cancels out the dependence on index vari-
ance and constituent variance (the vegas) of the correlation swap. Using this
vega-neutral portfolio, we find derive a partial differential equation for the no-
arbitrage price of a correlation swap with strike 0. We confirm that the value
given in [1] satisfies this equation. Finally, we use this no-arbitrage price of a
correlation swap with strike 0 to find the fair strike of a correlation swap to
make its price 0.

5.2 The method of variance dispersion trades

5.2.1 What are variance dispersion trades?

Variance dispersion is a financial term describing the difference between con-
stituent variance and index variance in a portfolio of stocks. It follows that
variance dispersion trades are spread trades between constituent variance and
index variance, with payoff:

D(β, τ) ≡ β
(
σS(τ)

)2 − (σI(τ)
)2
,

where β is a positive constant. The motivation for entering such a trade is usu-
ally to trade correlation between constituent stocks. This is contained in the
index volatility, and the unwanted volatility exposure is hedged away through
the opposite position in constituent volatility. This makes it an interesting op-
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tion for hedging a correlation swap.

There are several choices for β. One of them is the fundamental approach:

β =

(
σ∗I
t0

σ∗S
t0

)2

= ρ̂∗t0 . Substituting this into the formula of the variance dispersion

payoff, we get:

D(β, τ) =

(
σ∗It0
σ∗St0

)2 (
σS(τ)

)2 − (σI(τ)
)2

(5.1)

=

(
σ∗It0
σ∗St0

)2 (
σS
)2 − ( σI

σS

)2 (
σS
)2

(5.2)

=
(
ρ̂∗t0 − ρ̂

) (
σS
)2

(5.3)

So we can rewrite the variance dispersion payoff as: D(β) =
(
ρ̂∗t0 − ρ̂

) (
σS
)2

.
This essentially turns the dispersion trade into a correlation swap, with realized
constituent variance playing the role of a scaling factor. For the fundamen-
tal approach, the variance dispersion trade is vega-neutral at t0, meaning the
position is not sensitive to fluctuations in either constituent or index volatility.

5.2.2 The hedging property

In [1] it is stated that the correlation swap described in the article can be repli-
cated by dynamically trading variance dispersion trades. The word dynamically
here means the hedging portfolio is updated over time. The beta for this dis-
persion trade is

βt =
v∗It
v∗St

.

This beta is similar to the one used in the fundamental approach described

in section 5.2.1. The differences are that the theoretical volatilities
(
σ∗It0
)2

and(
σ∗St0

)2
are replaced by the modeled variance paths v∗It and v∗St , and that to

make the hedge time dependent, the β is updated by taking values at time t
instead of t0. This section will show that if one owns a correlation swap as
described in [1] and the correct amount of variance dispersion trades with beta
as described above, their total investment is not affected by small changes in
volatility. What this ‘correct amount’ of variance dispersion trades is will also
be calculated in this section.

We first look at the definition of vega: the derivative of the price of a financial
product with respect to the variance. First, we look at the correlation swap. Its
value at time t according to [1] is:

ct =
v∗It
v∗St

exp

[
4

3

(
ω2
S − χωSωI

)
T

(
T − t
T

)3
]
.
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It has two underlying variances (v∗It and v∗St ), so it also has two vegas:

νIct =
∂ct
∂v∗It

=
ct
v∗It

, (5.4)

νSct =
∂ct

∂v∗St
= − ct

v∗St
. (5.5)

A variance dispersion trade entered at time t0 has the following value at
time t:

D∗t =
v∗It0
v∗St0

v∗St − v∗It .

Its vegas are:

νIDt
=
∂D∗t
∂v∗It

= −1,

νSDt
=
∂D∗t
∂v∗St

=
v∗It0
v∗St0

.

These are both constants, while the vegas for ct are dependent on v∗It (only
νSct) and on v∗St . To hedge the correlation swap, the vegas of the correlation
swap and the dispersion trade should cancel each other out. This is impossible
if we try a ‘static hedge’, meaning we enter a position at t0 and do not update
it. In this case, the vegas of the dispersion trade are not time-dependent, as
shown above, so they can never cancel out the vegas of the correlation swap,
which are time-dependent. This means that a static hedge is impossible.

So we look at dynamic hedging. For this, we continuously update our po-
sition in the variance dispersion trade, meaning we can also change our beta.
Bossu suggests we use a beta of βt = v∗It /v

∗S
t . To get this beta, we substitute t0

in the vegas of the variance dispersion trade νIDt
and νSDt

with t. This is because
t0 represents the time when the dispersion trade is entered, and for dynamic
hedging, new dispersion trades are entered continuously at time t. Doing this,
we get

νSDt
=
v∗It
v∗St

,

and νIDt
remains −1. Since we can choose freely how much of the dispersion

trade we buy, depending on how much of the correlation swap we have, we only
need to make sure the ratio between the vegas is the same for the correlation
swap and the dispersion trade. This appears to be the case:

νIct
νSct

= −v
∗S
t

v∗It
=
νIDt

νSDt

. (5.6)

This means that dynamically trading a variance dispersion trade with

βt =
v∗It
v∗St
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can indeed hedge the correlation swap described in [1].

Now we will find a formula for how much of the dispersion trade we should
own for each unit of the correlation swap owned. This ratio may depend on v∗It
and v∗St . First, let us see what the changes in ct and Dt are when v∗It goes up
by 1. This is equal to the vega values:

νIct =
ct
v∗It

,

νIDt
= −1.

For these changes to cancel each other out, we need νIct = −νIDt
. This means

we need to own ct/v
∗I
t of dispersion trades. Because of (5.6), this should also

cancel out the changes in ct and Dt when v∗St goes up by 1. We can check this
in the following way:

ct
v∗It

νSDt
=

ct
v∗It

v∗It
v∗St

=
ct

v∗St
= −νSct .

This means that changes in v∗St will also cancel each other out if we own
ct/v

∗I
t of dispersion trades, so the portfolio consisting of a correlation swap and

this amount of dispersion trades is vega-neutral.

Dynamic hedging

As stated before, dynamic hedging means the hedge is updated continuously. In
reality however, this is impossible. Here we will make a discretization to show
more clearly what happens in reality with dynamic hedging.

Since all of the variables in the dispersion trade are time-dependent, we will
first make clear which variables change automatically over time and which have
to be updated. By definition, the dispersion trade consists of a long position of
size β in constituent variance and a short position of size 1 in index variance:

D∗t = βv∗St − v∗It (5.7)

This means that if the dispersion trade is not updated, only these variables
v∗St and v∗It will change over time. The ratio parameter β, which we take to
be v∗It /v

∗S
t , as well as the amount ct/v

∗I
t of dispersion trades will need to be

updated.

We can approximate continuous updating by updating the trade very often.
For this, we define 0 = t0 < t1 < t2 < · · · < tn = T (i.e. a partition of [0, T ])
such that ti − ti−1 are equal for all 1 < i < n. We update the dispersion trade
at each time ti. This means we sell the old dispersion trade we had, and enter
a new one.
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Recall that the payoff of a dispersion trade with β = ρ̂∗t0 is described in (5.3),
so its value at any time t is given by taking the conditional expectation:

D∗t (τ) = E
[(
ρ̂∗t0(τ)− ρ̂(τ)

) (
σS(τ)

)2 | ρ̂([0, t]), σS([0, t])
]
. (5.8)

Here, t0 indicates the time at which the dispersion trade was entered, and
t indicates the current time. If we look at a point where the dispersion trade
is updated, the current time becomes ti and the time at which the dispersion
trade was entered becomes ti−1. Since the position in this dispersion trade will
be terminated, we get a payoff out of it, which we will call Di. Filling in (5.8)
gives us the following expression for Di:

Di = E
[(
ρ̂∗ti−1

− ρ̂
) (
σS
)2 | ρ̂ti , σSti]

=
(
ρ̂∗ti−1

− ρ̂∗ti
) (
σS∗ti

)2
.

If we take δt = ti − ti−1 small enough, this kind of dynamic trading ap-
proximates continuous updating quite well. Note that at the time when a (new)
dispersion trade is entered, it always has price zero. This can be seen by looking
at the price of the dispersion trade as the expected value of its payoff at time
ti when the trade is entered:

D∗i (ti) = E
[(
ρ̂∗ti − ρ̂

) (
σS
)2 | ρ̂ti , σSti]

=
(
ρ̂∗ti − ρ̂

∗
ti

) (
σS∗ti

)2
= 0.

This means that entering the dispersion trade is free, so the change in time
of the value of a dynamically hedged dispersion trade consists of the payoffs Di

the dispersion trades generate in between updates.

5.3 Fair strike of a correlation swap

For swaps, strike K is always chosen such that the up-front price of the swap
is zero. Because of this, we’re not interested in the price in the swap, but in
this fair strike K. To find it, we look at a correlation swap with strike 0 and
determine its no-arbitrage price. With this price, we should be able to find the
fair strike K such that the price becomes 0.

To archieve this, we use the hedging products discussed above. We look at
the portfolio consisting of a correlation swap and the right amount of disper-
sion trades, such that the portfolio is vega-neutral. We take steps similar to
the derivation of the Black-Scholes partial differential equation in [2] to reach a
partial differential equation for the value of a correlation swap. Next, we show
that the solution given in [1] satisfies this partial differential equation. Finally,
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we use the pricing method used in [1] to get from this no-arbitrage price to the
fair strike of the correlation swap.

5.3.1 The vega-neutral portfolio

We start by setting up a hedging position; we have shown in section 5.2 that a
dynamically traded long position of ct/v

∗I
t in a variance dispersion trade with

βt = v∗It /v
∗S
t continuously updated hedges a correlation swap. So we take this

as our hedging position, so that we have a total portfolio Π consisting of a
correlation swap and a position in dispersion trades:

Πt = ct +
ct
v∗It

D∗t . (5.9)

Note that because we set strike K = 0, the value of the correlation swap
is simply the value of the correlation ct. Since this is a hedged portfolio, its
changes over time ∆Π should be non-random. No arbitrage means that a non-
random investment should always have a payoff equal to the payoff you would
get from investing an amount of cash equal to the price of the investment in a
bank account. Mathematically, this means the growth of the portfolio over time
should be equal to the interest rate:

δΠ = rδtΠ, (5.10)

where r is the interest rate. This is already a PDE for the value of the
portfolio, but it will have to be filled in further to get an expression for ct. First
we can write down the change in value, or P&L (profit and loss) variation of
the portfolio at time t. We regard a very small shift in time at first, so that the
portfolio is not updated during this time.

δΠt = δct +
ct
v∗It

δD∗t . (5.11)

We now use a Taylor expansion of δc with respect to the time, the implied
volatility and the constituent volatility:

δct =
∂ct
∂t
dt+

∂ct
∂v∗I

dv∗It +
∂ct

∂v∗S
dv∗St (5.12)

+
1

2

(
∂2ct

(∂v∗I)
2

(
dv∗It

)2
+

∂2ct(
∂v∗S

)2 (dv∗St )2 + 2
∂2ct

∂v∗I∂v∗S
dv∗It dv

∗S
t

)
.

Note that the squared terms of variance shift (the part between brackets)
are being kept, because these will make a contribution of size proportional to
dt. [2] We also need a more extensive representation of δD∗t . We can start by
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simply filling in its definition:

δD∗t = δ

[
v∗It
v∗St

v∗St − v∗St
]

=
v∗It
v∗St

δv∗St − δv∗It (5.13)

We know from (5.4) and (5.5) that

∂ct
∂v∗I

=
ct
v∗It

,
∂ct

∂v∗St
= − ct

v∗St
.

This means that the second and third terms from (5.12) are canceled out
by
(
ct/v

∗I
t

)
δD∗t when substituting (5.12) and (5.13) into (5.11). This leaves us

with

δΠt =
∂ct
∂t
dt+

1

2

(
∂2ct

(∂v∗I)
2

(
dv∗It

)2
+

∂2ct(
∂v∗S

)2 (dv∗St )2 + 2
∂2ct

∂v∗I∂v∗S
dv∗It dv

∗S
t

)
.

(5.14)
We can combine (3.22) and (3.23) with the quadratic variation t of a stan-

dard Brownian motion and the correlation between the two Brownian motions(
dW ∗It

) (
dW ∗St

)
= χdt to substitute dv∗It and dv∗St in (5.14):

∆Πt =
∂ct
∂t

∆t+ 2

(
∂2ct

(∂v∗I)
2ω

2
I

(
v∗It
)2

+
∂2ct(
∂v∗S

)2ω2
S

(
v∗St
)2)(T − t

T

)2

∆t

+ 4
∂2ct

∂v∗I∂v∗S
ωIωSχv

∗I
t v
∗S
t

(
T − t
T

)2

∆t. (5.15)

Note that the δ and d have been substituted by ∆: this is to indicate that
we’ve summed over all small time intervals so that we can approximate the

squared Brownian motion increments
(
dv∗It

)2
and

(
dv∗St

)2
with their quadratic

variation dt, as well as approximate the product of the two Brownian motion
increments dv∗It dv

∗S
t with their correlation χdt.

Now let us take a moment to look at (5.15) and analyze what it means. The
portfolio is hedged, but the shift in value is not zero, so it will still change over
time. This is because we have only vega-hedged the correlation swap: the vega is
the derivative with respect to variance, and we can see that these derivatives do
not appear in (5.15) for neither constituent variance nor index variance. These
were canceled out by the contribution (5.13) of the dispersion trade. The shift
in portfolio value is still dependent on the derivative with respect to time, called
the theta, and the second derivatives with respect to both types of variance,
called the volgas. Further research may be done to make the portfolio value
independent from these values as well.
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If we assume the volatility of volatility parameters ωI and ωS and the cor-
relation between volatilities χ to be constant over time, then (5.15) contains
only non-random values, so we can apply (5.10). We can apply the formula to
a large time shift, since (5.15) is non-random for any time period. time period.
We choose an initial time t when the dispersion trade has just been updated,
and we view a time period long enough for (5.15) to hold. The left hand side
of (5.10) is of course given by (5.15) and for the right hand side we can use
the composition of the portfolio given by (5.9). Since the dispersion trade has
just been updated, its value is (approximately) zero, so the portfolio value is
Πt = ct. Substituting this and (5.15) into (5.10) gives

rct =
∂ct
∂t

+ 2

(
∂2ct

(∂v∗I)
2ω

2
I

(
v∗It
)2

+
∂2ct(
∂v∗S

)2ω2
S

(
v∗St
)2)(T − t

T

)2

+ 4
∂2ct

∂v∗I∂v∗S
ωIωSχv

∗I
t v
∗S
t

(
T − t
T

)2

. (5.16)

The solution ct of this PDE is the fair, no-arbitrage price of a correlation
swap with strike zero.

5.3.2 Comparison to the solution in [1]

Instead of trying to solve (5.16), we check if the fair value for ct given in [1]
satisfies this PDE. For ease of notation, we set

u(t) := exp

[
4

3

(
ω2
S − χωSωI

)
T

(
T − t
T

)3
]
.

Using this, we will state the solution in [1] and all its derivatives appearing
in (5.16):

ct =
v∗It
v∗St

u(t) (5.17)

∂ct
∂t

=

(
d

dt

(
v∗It
v∗St

)
− 4

v∗It
v∗St

(
ω2
S − χωSωI

)(T − t
T

)2
)
u(t) (5.18)

∂2ct

(∂v∗I)
2 = 0 (5.19)

∂2ct(
∂v∗S

) =
2v∗It(
v∗St
)3u(t) (5.20)

∂2ct

∂v∗I∂v∗S
=
−1(
v∗St
)2u(t). (5.21)

Substituting (5.18), (5.19), (5.20) and (5.21) into (5.16), most terms cancel
each other out, and we are left with

rct = u(t)
d

dt

(
v∗It
v∗St

)
. (5.22)
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In [1], the interest rate is disregarded, which means r is assumed to be 0.
So there is a spread between both sides of equation (5.22). This may be be-
cause the portfolio is only vega-hedged, but still has exposure to large changes
in volatility and changes in other variables. Going deeper into this is a topic
for further research. More information about the spread between a correlation
swap and a dispersion trade can be found in [3].

For the remainder of this thesis, we will assume that this spread is small.
This is motivated by the reasoning that the remaining exposure of the vega-
neutral portfolio is small, so if the spread is indeed caused by this, it will not
be a substantial spread. This means that the solution ct given in [1] can be
regarded as a solution of (5.16). We will not prove uniqueness of the solution
mathematically, but if we keep in mind that the solution of (5.16) is the fair
price of a correlation swap, it makes sense that there can only be one solution.
That means (5.17) is the only solution of (5.16) and thus (5.17) is the fair value
of a correlation swap with strike 0 in a world where there is no interest rate.

5.3.3 From no-arbitrage price to fair strike

We take the solution c0 of (5.16) for time t0 at which the correlation swap
is entered, so that c0 indicates the no-arbitrage price of the correlation swap.
Using this solution, we can quickly derive what the strike K should be to make
the correlation swap have price 0. The payoff of the correlation swap at maturity
T is cT −K. Another way to calculate the price c0 of a correlation swap with
strike 0 (different from the method we used here) is the method used in [1],
which is:

c0 = E [cT ] . (5.23)

In the same way, we get for a swap with price zero

0 = E [cT −K] = E [cT ]− E [K] = c0 −K, (5.24)

using (5.23) and the fact that K is known at time t0 for the last step. Here
we keep the assumption that there is no interest rate. This equation implies
that K = c0; the fair strike of the correlation swap to make the price 0 is equal
to the fair price of a correlation swap with strike 0.

If we consider a non-zero interest rate r, the solution becomes a bit different.
We no longer have E [K] = K, but E [K] = e−r(T−t0)K. The term e−r(T−t0) is
to account for the fact that if you put an amount K of cash in a bank account
from time t0 until time T , it will grow with interest rate r over that time. This
is called the discount factor in financial terms. Substituting this into (5.24),
we get

c0 − e−r(T−t0)K = 0,

which yields for the fair strike

K = er(T−t0)c0. (5.25)
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This is the final solution to the problem of this thesis. Equation (5.25) gives
the fair strike of a correlation swap to make the price equal to zero, as it should
be for a swap. It depends on the solution c0 of PDE (5.16), which is obtained
by looking at a vega-hedged correlation swap and using the law of no arbitrage.
This solution c0 turns out to be equal to the solution (5.17) given in [1].
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Chapter 6

Conclusion

In this thesis, we have thoroughly examined the toy model in [1]. All its defini-
tions and assumptions were looked into and compared to the regular definitions
of variance and correlation. Using these regular definitions, we came to a formula
for correlation close to the one in [1], but there was still a difference between
the weighted arithmetic average of volatilities and the constituent volatility as it
was defined in [1]. The assumption that these definitions are very close to each
other turned out to be equivalent to the assumption that stable stocks with low
volatility are preferred over stocks with high volatility when creating a stock
index, which is a reasonable assumption.

Next, we looked into Bossu’s toy model for correlation. Its main flaw is
that the correlation does not always stay below 1, which is caused by the lack
of a mathematical condition enforcing the boundary. This inaccuracy in the
model was caused by the assumption that the index volatility is lower than the
constituent volatility, which was suggested because the model would otherwise
become too complicated. We found that if we did simulations with a high corre-
lation between volatilities and a low implied correlation at the starting time, the
simulated index variance would stay below the simulated constituent variance,
satisfying the theoretical assumption that this would hold. The correlation value
modeled in this way could be multiplied with an adjustment factor to reach the
fair correlation value suggested in [1].

In chapter 4 we looked at the Jacobi process. We compared the Euler dis-
cretization scheme with the Milstein discretization scheme for this process and
found that the more complicated Milstein discretization scheme did not improve
the accuracy of the simulations. We found that although the continuous Jacobi
process cannot exceed its boundaries of 1 or -1, the discretization caused it to
sometimes cross these boundaries. The proportion of paths within a simulation
that exceeded these boundaries turned out not to depend on the timestep size,
but on the end time and the parameters of the Jacobi process.
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Furthermore, we showed that a correlation swap can be hedged by dynami-
cally trading variance dispersion swaps. Using this hedged position, we derived
a partial differential equation for the fair price of a correlation swap with strike
0, similar to the Black-Scholes equation. The main result of the thesis is that
the solution given in [1] satisfies this partial differential equation and thus is the
no-arbitrage price of a correlation swap with strike 0. Finally, this no-arbitrage
price was used to find the fair strike of a correlation swap so that it would have
price 0, as all swaps should.

6.1 Further research

The next step could be to connect the Jacobi process further to the toy model
in [1] and its results. The parameters of the Jacobi process could be chosen so
that the process would approximate the fair correlation path as given by [1].
This model could be used either to solve the problem that the correlation path
in [1] does not stay under 1, or to model a correlation swap and check if the
simulation results agree with the theory in [1].

A different way to improve the model in [1] would be to remove the assump-
tion that index volatility is lower than constituent volatility. This would make
the model considerably more complex, but it should also remove the problem
of the correlation paths going above 1.

Something that could also be expanded into is the behaviour of the time
derivative of the (non-adjusted) correlation path as described in [1]. While
checking if the fair correlation given in [1] was a solution of our partial differen-
tial equation for fair correlation, we assumed this derivative to be close to zero,
but of course the result would become more accurate if this assumption is not
made.

Another assumption that could be removed is the assumption in [1] that
there is no interest rate. In reality there is always interest rate, so taking this
into consideration would make the model more widely applicable.
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