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Abstract—We propose a novel reconfigurable hardware archi-
tecture to implement Monte Carlo based simulation of physical
dose accumulation for intensity-modulated adaptive radiother-
apy. The long term goal of our effort is to provide accurate
online dose calculation in real-time during patient treatment.
This will allow wider adoption of personalised patient therapies
which has the potential to significantly reduce dose exposure
to the patient as well as shorten treatment and greatly reduce
costs. The proposed architecture exploits the inherent parallelism
of Monte Carlo simulations to perform domain decomposition
and provide high resolution simulation without being limited by
on-chip memory capacity. We present our architecture in detail
and provide a performance model to estimate execution time,
hardware area and bandwidth utilisation. Finally, we evaluate
our architecture on a Xilinx VU9P platform and show that three
cards are sufficient to meet our real time target of 100 million
randomly generated particle histories per second.

Index Terms—Monte Carlo Simulation, FPGA Acceleration,
Radiotherapy, Dataflow, Dose Calculation

I. INTRODUCTION

Radiotherapy is a commonly used treatment for various
cancer types. High doses of radiation are used to kill cancer
cells. Modern radiotherapy relies on an intensity modulation
technique that aims to deliver high dose gradients to cancerous
tissues while sparing the surrounding healthy organs as much
as possible. This is achieved by setting up a therapy treatment
plan which takes into account the anatomy as well as the
clinical case and dose delivering machine. In order to validate
and optimise such therapy plans, the expected spatial dose
distribution within the patient needs has to be simulated before
the actual treatment. This is often implemented by Monte
Carlo methods which simulate the pathway of millions of
radiation particle trajectories as they enter the patient body.
These simulations are very accurate on the one hand but
require relatively long computation times on the other hand.

Historically, these long computation times were not a prob-
lem. However, modern treatment machines in addition to
radiation delivery, also allow imaging of the patient during
treatment [1]. Real time dose simulation would allow patient
treatment adjustments in real time. This is advantageous since,
e.g., in the case of prostate or lung cancer target tissue
might significantly move between imaging and treatment or
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even within one treatment session. As a result, using real
time imaging techniques, will facilitate accurate radioactive
dose delivery. This would minimise dose accumulation in
healthy tissue and therefore reduce the risk of new cancer cells
growing. Additionally the number of treatments per patient
could be reduced, decreasing the overall treatment costs.

To solve the computational challenge of real time dose simu-
lation, different technologies have been proposed which utilise
Central Processing Units (CPUs), Graphics Processing Units
(GPUs) on local or cloud based systems. However, in the case
of CPUs and GPUs the size of the machine required to meet
the realtime target is prohibitive. In the case of cloud based
systems privacy concerns, bandwidth requirements and latency
issues as well as the need to guarantee service quality during
treatment provide major challenges for practical deployment.

In this paper, we will discuss the usage of Field-
Programmable Gate Arrays (FPGAs) to address these prob-
lems in order to build the first real time radiotherapy simula-
tion systems. There is a long history of accelerating Monte
Carlo simulations using FPGAs. The inherent parallelism
of Monte Carlo simulations allows very high speedups on
FPGAs. Additionally, FPGA implementations are highly pre-
dictable making them especially suited for real time appli-
cations. Finally, the compute density of datacenter FPGA
based systems is typically superior. As a result FPGAs are
an excellent fit for the problem of real time dose simulation.

Programmability of FPGAs, however, is still a major chal-
lenge. Especially for this use case, it is crucial that medical
domain experts can fine tune the FPGA design to their needs.
To ease the programming we adopted the static dataflow ab-
straction and Maxeler’s MaxCompiler. This provides a higher
level of abstraction for the underlying hardware.

The main contributions of this paper are as follows:
• A dataflow architecture for Monte Carlo based dose

accumulation simulation;
• An analytical model to estimate hardware usage and

accurately assess performance; and
• Evaluation of the architecture and model using an imple-

mentation based on a Xilinx VU9P FPGA.
The remainder of the paper is organised as follows. In

section II we will discuss the background of radiotherapy
and dataflow computing. Section III will present related work.
Afterwards in section IV we will present the architecture



used for the FPGA implementation. The performance will
be modelled in section V. In section VI we will present and
evaluate our implementation. Finally, section VII will conclude
the paper and present possible directions for future work.

II. BACKGROUND

A. Monte Carlo based Dose Simulation for Radiotherapy

Using Monte Carlo simulations to calculate the dose dis-
tribution in radiotherapy is widely considered to be the most
accurate method. This process relies on simulating individual
particles and their trajectories through material representing
the patient. The software simulates particle interactions and
calculates the dose deposition along the trajectories following
fundamental physics laws. However, this accuracy comes at
a cost, since a significant amount of particles need to be
simulated to achieve statistically significant results.

In our work we will focus on the Dose Planning Method
(DPM) [2] implementation of a Monte Carlo technique that
simulates the dosimetric effect of high energy photons in
organic materials. This algorithm is specifically optimised for
the radio therapy use case. DPM provides implementations
for all relevant photon-matter and electron-matter interactions
that occur in radiotherapy. High efficiency is achieved by
optimising the physical interaction description as well as their
implementation on modern processors. The authors distinguish
between hard interaction processes which have to be calculated
analogously and soft interactions which can be accumulated
and only simulated once over a certain distance. Especially
the latter technique reduces the simulation time of electron
interactions significantly.

The DPM implementation uses a patient cube to store details
on the patient as well as the accumulated dose. The cube
consists of voxels, which can represents different materials,
e.g., bone, tissue or water. In each dimension the cube has
a configurable numbers of voxels, which divide the patient
cube volume into equally sized parts. To achieve statistically
significant results 100 million particles have to be generated
and for real time operation the simulation needs to finish
within one second according to medical experts.

B. Dataflow

Streaming dataflow graphs provide a good abstraction for
hardware structures. Each node of the dataflow graph rep-
resents a hardware unit and each edge represents the wires
connecting these hardware units. Maxeler MaxCompiler uses
this dataflow concept as main abstraction for the programmer.

MaxCompiler uses the notion of Kernel, which represents
a single dataflow graph with inputs and outputs. The dataflow
graph is scheduled automatically and deeply pipelined to help
with timing closure. Due to the dataflow graph description,
the inherent parallelism is fully exposed to the compiler. The
control logic for the kernel is auto generated and stalls the
kernel when either an input is empty or an output becomes
full. As a result, the kernel abstraction provides an easy way

to implement massively parallel computational hardware struc-
tures without requiring deep understanding of the underlying
hardware concepts.

Additionally, MaxCompiler uses a Manager to describe
connections between kernels and all external interfaces. These
I/O interfaces include PCIe and DDR but also networking like
ethernet. I/O interfaces can be created using a single functional
call. Similarly, only a single function call is necessary to
connect these interfaces with each other or user logic. Another
block that can be included in the manager is a State Machine.
A state machine can be used to program custom flow control
based on simple push and pull interfaces. As a result state
machines are harder to program, but allow implementation
of more complicated and latency critical components, e.g.,
complex data arbitration tasks.

MaxCompiler targets different FPGA accelerator cards,
including in-house developed so called Dataflow Engines
(DFEs), Xilinx Alveo cards and the Amazon EC2 F1 instances.
The main assumption is that a CPU based host is available and
connected to the card. Additionally, the SLiC runtime interface
can be used to integrate the FPGA design into a normal CPU
application utilising Maxeler proprietary drivers and libraries.

III. RELATED WORK

A. Monte Carlo Dose Simulation

Due to the practical relevance of Monte Carlo dose sim-
ulation and the high computational requirements related to
it a lot of research has focused on accelerating it. This
includes algorithmic improvements as presented in [2]–[7].
There are also multiple studies which use GPUs to accelerate
the workload, e.g., [8] and [9]. In these cases, speedups
of up to multiple 100x are reported in comparison to CPU
code. However, the authors of [10] and [11] report that this
performance advantage is actually a lot smaller, if realistic test
cases are considered and the comparison is performed against
optimised CPU code. In those cases, the speedup of GPU over
CPU implementations is closer to 2.5x.

Additionally to the GPU implementations, also CPU based
implementations were proposed. Examples for these can be
found in [12], [13] and [14]. The latter manages to finish the
dose simulation in less than a minute and outperforms well-
known GPU implementations.

To facilitate adaptive radiotherapy and the required real time
dose simulation, the work in [14] was further expanded in [15]
by adding support for cloud computing. The authors propose
to use the scalability of cloud based systems to create a bigger
cluster of cloud instances to perform the simulation. They
manage to reduce the runtime of Monte Carlo dose simulation
to values between 1.1 and 10.9 seconds depending on the
specific use case. Additionally, they make use of encryption
to facilitate privacy for the medical data transferred into the
cloud. However, cloud based solutions have the disadvantage
of requiring a very good and stable internet connection in the
hospital to be useable for medical treatment.



To our knowledge there is currently no implementation
which manages to meet our real time requirements of finishing
the simulation in less than a second.

B. Monte Carlo Simulations on FPGAs

In [16] the authors propose an FPGA implementation for
Monte Carlo based dose simulation. They simulate photons
and electrons, where the initial photons are generated by an
external source and sent to the FPGA. Afterwards, the dose
is calculated and accumulated in the patient cube. However,
the patient cube voxels are only saved in on-chip memory,
limiting the resolution of the patient cube to 64 voxels in
each dimension. A speedup of up to two orders of magnitude
compared to a CPU implementation is claimed.

In [17] a methodology to develop FPGA based mixed pre-
cision Monte Carlo designs is presented. The authors propose
an analytical model to determine the optimal precision and
resource allocation for a given Monte Carlo simulation. They
combine an FPGA and a CPU to achieve the desired accuracy
while using reduced precision. As a result they report speedups
of up to 4.6x, 7.1x and 163x compared to state of the art GPU,
FPGA and CPU designs respectively.

The authors of [18] present a domain specific language for
the development of Monte Carlo simulations which targets
FPGAs and GPUs. They report a 3.7x speedup compared
to CPUs for the generated FPGA designs. The advantage
of this work is that the user only needs to describe the
Monte Carlo simulation using a high level framework based
on LATEX equations to obtain the FPGA design.

A significant amount of other related work exists, in
which different Monte Carlo simulations are accelerated using
FPGAs. This includes image reconstruction for Single-Photon
Emission Computed Tomography (SPECT) [19], pricing of
Asian options [20], simulation of electron dynamics in semi-
conductors [21] and simulation of biological cells [22].

IV. ARCHITECTURE

For simplicity the full capability of DPM is not completely
implemented. For example, we focus only on the simulation of
electrons, do not consider bremsstrahlung and only use water
as material within the patient cube. However, these simplifi-
cations have no impact on the feasibility of the architecture
and adding them will add only minimal overhead. For the full
feature set the following changes are required. Bremsstrahlung
is an additional form of particle interaction and as a result only
needs additional area. Different materials can be implemented
as on-chip memory initialised from DDR. Additionally, inter-
action equations will use the material coefficients. All in all
the simulation kernel area will slightly increase and a bit more
on-chip memory as well as DDR bandwidth will be required.

One of the major challenges involved in implementing the
dose accumulation simulation is the memory access into the
patient cube. This is due to the random paths an electron
takes through the patient cube. As a result, the position of
the memory access into the patient cube to accumulate the
dose is also random. Per voxel of the patient cube we only

need to access a few bytes. This leads to a bandwidth of less
than 10 % of the theoretical achievable bandwidth due to the
random access pattern to DDR memory. For this reason the
patient cube has to be buffered on-chip.

The on-chip memory capacity of even the largest con-
temporary FPGAs is not sufficient to store patient cubes of
the required resolution for all envisioned use cases. As a
result, we decided to decompose the patient cube into multiple
subdomains, where each subdomain fits into on-chip memory.
Since we only consider water as material, the on-chip patient
cube buffer only needs to store the dose. Due to on-chip
buffering of the patient cube, we can perform fully random
memory access without impacting performance.

The buffer containing the patient cube is implemented in
a kernel. Additionally this kernel contains the arithmetic to
perform the actual simulation of the electrons and the calcu-
lation of the emitted dose. As described above, the simulation
of the electron decides which interaction occurs. Based on
this, the emitted dose is calculated and the values of the
electron can be updated. The updated electron moves into a
new direction and has updated energy and fuel values. The
energy and fuel values determine which interaction occurs and
when an electron gets absorbed. In the CPU implementation,
a while loop is executed for each externaly generated electron,
which repeats these steps until the energy of the electron
is depleted. However, in our case, the kernel accepts new
electrons, evaluates the interaction and outputs the updated
electrons on every cycle. Since the kernel is deeply pipelined
a loop implementation is not feasible. To circumvent this the
processing order of electrons differs between CPU and FPGA.
This is a valid transformation, since all electron interactions
are fully independent. As a result, the data arbitration and
loop logic is handed off to a different component, which also
handles the transport of electrons between subdomains.

Fig. 1 shows the simplified architecture of the application.
An External Particle Generator kernel generates new electrons
and sends them to the Particle Distributor state machine.
The particle distributor has three inputs, one from the Ex-
ternal Particle Generator, one from DDR and another from
the kernel containing the subdomain buffer and interaction
simulation. Additionally, it has outputs to DDR and to the
particle simulation kernel. This kernel sends the patient cube
back to the host via PCIe once the dose is calculated and
forwards the updated electrons to the particle distributor.
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Fig. 1. The simplified architecture of the dose accumulation simulation.

The particle distributor handles the arbitration of the elec-



trons and controls the simulation kernel. It decides, when the
simulation kernel is going to switch to the next subdomain.
Additionally, it makes sure that only electrons which are in
the current subdomain are sent to the kernel. If they belong
to a different subdomain, they are buffered in DDR and read
as soon as the kernel switches to the correct subdomain.

The amount of data that has to be stored for each electron
approximates the DDR4 burst size. To simplify memory layout
we decided to pad the electron data structure to 512 bits.
Additionally, for each subdomain we reserve the same memory
capacity. However, this means, that only a very limited number
of electrons can be buffered in the DDR memory. Since we
need to generate around 100 million electrons for statistically
significant results and each of those electrons can create
multiple additional electrons, this has to be considered.

If the complete simulation is run, it is not possible to buffer
all electrons for a specific subdomain in the allocated off-chip
memory block. As a result, we split the overall simulation
in multiple batches. Within each batch we run through all
subdomains, which means that each subdomain of the patient
cube is processed multiple times. However, we decided that we
could further simplify the architecture by sending the current
part of the patient cube back to the CPU once processing of
the current batch is finished. As a result, the combination of
multiple copies of the same subdomain is not required on the
FPGA, which removes the requirement to buffer the data on-
card. As such, we decided to double buffer the patient cube.
Therefore when processing of a subdomain finishes the buffers
can be switched and the now inactive half can be streamed out
and set to zero in preparation for the next subdomain.

As a result of splitting the patient cube into subdomains a
problem occurs if an electron updated by an interaction moves
into an already processed subdomain. Since we use multiple
batches, it is possible to buffer these electrons in DDR for
the next batch. However, on the last batch this is not possible.
As a result we added another output to the particle distributor
which sends those electrons back to the CPU when the last
batch is currently processed. Since the amount of electrons
sent back is orders of magnitude smaller than the total, it is
possible to simulate those electrons on the CPU. We also start
the simulation of the electrons sent back as soon as they arrive
to overlap the compute time on the CPU and on the FPGA.

In the proposed architecture, DDR memory is used only to
buffer electrons. Potentially, the amount of electrons which
have to be buffered in DDR is very large. As such, we need
to consider the access patterns to optimise the achievable
bandwidth. By using long continuous memory access we can
get closest to the theoretical peak memory bandwidth.

Reading electrons from DDR is inherently linear, since we
can simply read all electrons buffered for a specific subdomain
sequentially. However, the access pattern on the write side is
not linear. Since the direction of electrons after interaction is
based on random number generators, it is very likely that each
electron is written to different parts of the memory. To alleviate
this problem we added an additional state machine, which
has small on-chip buffers for each subdomain. We accumulate

multiple electrons in these on-chip buffers and only when they
are full we write the complete buffer to DDR. Additionally,
they can be flushed by the particle distributor to make sure that
all electrons for the current subdomains are written to memory,
so that they can be read again for processing. We decided to
make these buffers hold sixteen electrons, which limits the
required on-chip memory capacity but already manages to
achieve up to 90% of the peak bandwidth. By packing all
individual buffers into a single on-chip memory we can also
increase the on-chip memory utilisation. Each individual buffer
has a unique address range in the bigger on-chip memory. By
ensuring that read and write patterns are linear we are able to
significantly improve off-chip memory bandwidth.

The area required for the simulation of a single electron
is small compared to the area available on modern FPGAs
(see section V). As such, we can not only rely on the pipeline
parallelism but also need to exploit algorithm level parallelism
to use all available chip resources. We exploit the inherent
parallelism of the Monte Carlo simulation on two levels.

The first additional level of parallelism creates multiple
instances of the entire design. The motivation for this can
be found in the platform we target (see section VI). We use
an FPGA accelerator card based on the Xilinx VU9P. The
VU9P consists of three individual dies and interconnectivity
between these dies is limited. As such it is often a good idea
to treat those dies like they would be separate FPGAs. On
the platform used here, each die is connected to one DDR4
DIMM and as a result implementing one design on each die
is easy. The individual designs only share the PCIe controller
and are otherwise completely independent.

The second additional level of parallelism allows us to
process multiple electrons in parallel within the same sim-
ulation kernel. Parallelising the compute in the kernel itself
is accomplished by simply duplicating the dataflow graph.
However, the patient cube buffer has to be shared to save
on-chip memory resources. As a result, we need to consider
potential memory access conflicts. To decrease the likelihood
of such events, we implement each xy plane of the cube as a
separate memory. This will also help with timing closure, since
big on-chip memory structures often have problems routing the
control signals between multiple memory columns.

Another state machine is introduced which checks the elec-
trons coming from the particle distributor for memory access
conflicts. Only if the z position of the electrons is different
or they access the same memory position, all electrons are
sent to the simulation kernel. Otherwise, only a conflict free
subset is forwarded. To avoid starving one input, a round
robin scheme is used to prioritise all inputs fairly. Since it is
non trivial to parallelise the particle distributor we decided to
instead create one instance of the particle distributor for each
electron processed in parallel. This also means that the off-chip
memory space has to be equally split between each particle
distributor. The overhead introduced by this is negligible, but
the implementation complexity is significantly reduced.

The final architecture for a single die where the kernel
processes two electrons per cycle is shown in figure 2. All



arrows, apart from the kernel output sending the dose cube to
the host, represent electrons. These connections use FIFOs.
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Fig. 2. The architecture of the dose accumulation simulation for a single
FPGA die if the kernel processes two electrons on every cycle.

To summarise, the main technical challenges are to support
big voxel cubes and the processing of multiple electrons within
the same kernel using the same on-chip dose memory. The first
challenge is addressed by splitting the voxel cube into multiple
subdomains and adding particle distribution logic to deal with
electrons transitioning between subdomains. Additionally we
add logic to improve memory efficiency and maximise our
usable memory bandwidth. The second challenge is addressed
by adding a unit for resolving potential memory conflicts at
the input of the kernel.

V. PERFORMANCE MODEL

The performance model consists of a set of simple equations
capturing the most important system characteristics. It is used
for rapid design space exploration without running place and
route. It also guides the architectural design and evaluates
the final implementation. The architecture described above
was developed using an iterative process of performance
modelling and refinement. We, however, present only the final
results. The performance model will be used to verify if our
implementation meets our expectations in section VI.

One of the major challenges in modelling the performance
of this application is the extensive use of random number
generators. For example, after how many iterations an electron
is absorbed and the amount of electrons stored in DDR are
both variable. As such, we need to work with estimations
based on measurements using the CPU code.

We will denote the number of electrons updated by inter-
actions before they are absorbed as ninter. The percentage of
electrons which move between subdomains, and therefore re-
quire DDR buffering, is noted as psub. Finally, the percentage
of cases in which there is a memory access conflict in the
patient cube buffer of the simulation kernel is represented by
pmem. These factors are also highly dependent on the way
in which the external electrons are generated and as a result
we will discuss the factors in more detail in section VI while
keeping all equations generic here.

In this section, we will provide equations for area usage,
the achievable electron processing speed, memory bandwidth
requirements and finally PCIe bandwidth requirements.

A. Area Usage

To forecast the area usage of the implementation we need
to count the operations in the CPU code. The simulation of
the electrons does include multiple trigonometric functions
and square roots. For some of those MaxCompiler offers API
functions and we implement the remaining ones as a linear
interpolation between values in a ROM lookup table.

Tab. I shows the operation count and the predicted area
usage for one simulation kernel which processes one electron
per cycle. We determined the area usage for each operation
using micro benchmarks and then simply multiply these with
the number of operations needed and calculate the sum over
all operations. The area usage will scale linearly with the
number of processed electrons per cycle. It should be noted
that additional memories and FFs are needed for scheduling
of the dataflow graph.

The simulation kernel also contains the memory to buffer
the patient cube. The size of this memory depends on the
dimensions of the subdomain, xsub, ysub and, zsub in voxels.
Additionally we have to consider the depth and width of
the physical memories, which we call memd and memw

respectively. Eq. 1 calculates the number of physical on-
chip memories required for a single xy plane. The parameter
accWidth represents the number of bits required for the
datatype used for the dose accumulation. In total zsub of
these memories are needed. However, they might use different
memory resources, since MaxCompiler will automatically use
either BRAMs and URAMs.

#memcube =

⌈
accWidth

memw

⌉
∗
⌈
xsub ∗ ysub
memd

⌉
(1)

In addition to the kernel resource, we also have to consider
the state machines and other manager blocks. The state ma-
chines predominantly use LUTs, FFs and on-chip memory. We
can safely estimate the number of LUTs and FFs required per
state machine to be less than 5,000 and 10,000 respectively.
The particle distributor does not need any additional memory
resources, while the write cache to improve memory efficiency
mainly consists of a single buffer. The size of this buffer can be
estimated using eq. 2 with elecw representing the width of the
electron data structure in bits without padding, 417 bits in our
case. The depth is determined by the number of subdomains
necessary in total. d represents the depth of the memory per
subdomain, which in our case is 16.

#memcache =

⌈
elecw
memw

⌉
∗

⌈
xcube

xsub
∗ ycube

ysub
∗ zcube

zsub
∗ d

memd

⌉
(2)

Lastly, we need to consider the remaining manager blocks.
The memory requirements for each FIFO can be estimated
using eq. 3. Usually the depth of a FIFO is 512 and since
most FIFOs buffer electrons the width is usually either 417



TABLE I
OVERVIEW OF OPERATION COUNT AND PREDICTED AREA USAGE FOR THE SIMULATION OF ONE ELECTRON.

Multiplications Divisions Additions Interpolation RNG Sin/Cos/Sqrt LUT FF DSP BRAM
82 15 45 8 11 8 85,000 120,000 408 54

or 512 bits. Each memory controller requires 3 DSPs, roughly
20,000 LUTs and 30,000 FFs and around 50 BRAMs. Per
design instance we will require one memory controller. Finally
the resource requirements for the PCIe controller can be
estimated as 8,000 LUTs, 12,000 FFs and 35 BRAMs. The
PCIe controller is shared between all instances of the design.

#memFIFO =

⌈
FIFOw

memw

⌉
∗
⌈
FIFOd

memd

⌉
(3)

B. Electron Processing Speed

To calculate the electron processing speed, we need to
estimate how many electrons can be processed by the kernel
at a given frequency. Eq. 4 shows how to calculate this.
nelec represents the number of electrons processed per second,
while ndesign and npipes represent the parallelism in terms of
number of instances of the design and electrons processed
in parallel respectively. Finally f represents the assumed
frequency the implementation will be running at.

nelec = ndesign ∗ (pmem + npipes ∗ (1− pmem)) ∗ f (4)

Additionally, we have to consider that for each subdomain
the on-chip buffer has to be written back to the host. Normally
this can be overlapped with the compute latency using double
buffering. However, if only a very small number of electrons
belong to a given subdomain the time required for the compute
might not be sufficient to flush the previous buffer. As a result,
we need to wait for the previous buffer to be fully written back
before we can switch to the next subdomain. The number of
cycles required for that per subdomain can be calculated as
shown in equation 5. In this case, readoutwidth represents
the number of voxel values read from the patient cube buffer
per cycle. The overlap between the flushing of the patient
cube buffer and the electron calculation heavily depends on
the electron generation pattern.

cyclesflush =
xsub ∗ ysub ∗ zsub
readoutwidth

(5)

C. Memory Bandwidth Requirements

The total amount of data that needs to be transferred to
and from DDR memory, SDDR, is calculated in equation 6.
Each electron requires 64 bytes and needs to be written and
read only once. Additionally, the data volume depends on the
number of electrons created by the external particle generator
nelec,total. The required bandwidth can then be calculated as
a function of the execution time ttotal as shown in equation
7, where DDReff represents the average memory efficiency.

SDDR = 2 ∗ 64 ∗ nelec,total ∗ ninter ∗ psub (6)

BWDDR =
SDDR

ttotal
∗ 1

DDReff
(7)

D. PCIe Bandwidth Requirements

The PCIe bandwidth requirements are determined by two
factors. On one side, the patient cube has to be streamed back
to the host and in addition we also send the electrons back,
which we can not process within the last batch. Eq. 8 estimates
the amount of data that has to be transmitted for the patient
cube. We assume that all values sent back from the FPGA are
converted to single precision floating point, to ease usage on
the CPU side of the system. As such, the total amount of data
is simply the product of the cube dimensions, the number of
batches that are processed and 4, the size of single precision
floating point number in bytes.

SPCIe,PatientCube = xcube ∗ ycube ∗ zcube ∗ batches ∗ 4 (8)

Additionally the amount of data transferred for the electrons
that have to be sent back to the CPU is calculated in eq. 9
based on the number of electrons sent back nelectron,PCIe.
This factor again depends on the external particle generation.

SPCIe,Electron = nelectron,PCIe ∗ 64 (9)

The required bandwidth can be obtained by calculating the
sum of both equations and dividing by the execution time.

VI. EVALUATION

To evaluate our architecture we implemented it using Max-
eler MaxCompiler version 2018.3.1 and Vivado 2018.2. We
target Maxeler’s MAX5C Dataflow Engine (DFE) as our
FPGA platform. Its compute device, the Xilinx VU9P FPGA,
consists of 1,182,240 LUTs, 2,364,480 FFs, 6,840 DSPs,
4,320 BRAMs and 960 URAMs. Additionally the card has
three 16GB DDR4 DIMMs which provide a peak theoretical
bandwidth of 15 GB/s each.

We built the implementation with different parallelism de-
grees and cube sizes to run the resulting bitstreams on up to
three cards in parallel. For this we used a 2U server powered
by two, six core Intel Xeon E5-2643 v4 CPUs running at 3.4
GHz. Even though we used a server, it is possible to build a
workstation with very similar configuration.

A. Area Results

We decided to implement four different configurations. All
use three design instances, to make optimal use of the three
dies of the VU9P. For builds 1 and 3, the simulation kernel
processes only one electron per cycle, while builds 2 and 4
process two. In the case of builds 1 and 2, we set the patient



cube size to 128 voxels in each dimension and the subdomain
size is 64 voxels accordingly. For builds 3 and 4, the resolution
is increased and the cube size is set to 256 in each dimension.
The subdomain in these cases consists of 128 voxels in x
dimension and 64 in y and z. The area usage for these four
designs is depicted in tab. II.

The area usage predicted using the equations presented in
section V-A are shown in tab. III. The predicted numbers for
DSPs and LUTs for designs with a kernel parallelism of one
are very close. In the case of a higher kernel parallelism the
LUT prediction is slightly higher, which can be explained by
a pessimistic estimation of the state machines. Our FIFO and
BRAM prediction is usually lower, since we do not include
the resources required for the scheduling of the dataflow
graph. Additionally, to simplify the prediction task, we only
predict BRAM usage and not URAMs. To summarise, the area
predictions are sufficiently accurate and allowed us to perform
a very fast design space exploration.

B. Performance Results

The results of processing 100 million externally generated
electrons are shown in tab. IV. The particles are generated
as a single beam, where all electrons enter the voxel cube at
the same point with an energy of 6MeV. The offset column
indicates if this voxel is within a subdomain or at the centre
of the cube. No offset means, that the beam is pointed at the
centre of the patient cube. In this case the cube is entered at
the intersection of four subdomains, significantly increasing
the number of electrons needing DDR buffering.

We show FPGA and total runtime separately. The total
runtime includes the time required to finish simulation for all
electrons sent back to the CPU as well as the time required
to combine all partial results into one single patient cube.

We predicted the runtime and the time required to perform
memory transfers using the equations in section V. For each
combination of offset and build we simulate a smaller run on
the CPU to derive the factors determined by random number
generators like the number of iterations for each initial electron
and the rate of electrons which require buffering in DDR. In
most cases our predictions are accurate, even though a bit too
optimistic. The reason for this is that we omitted initialisation
time and the time required to send back subdomains to the
CPU when transmission time and compute time can not be
fully overlapped. The initialisation time can take up to 100
ms and additionally the time to send back sub domains can
take between 60 ms for the smaller patient cube and 500 ms
for the bigger one.

In some cases, however, our prediction error is more sig-
nificant. Usually, the error is bigger if the simulation kernel
processes two electrons on every cycle. This can be explained
by considering that the chance of two electrons conflicting,
therefore reducing the parallelism back to one, is random
and has a significant impact on the expected runtime. In our
experiments the chance of a conflict occurring was usually
around 60%, however the actual timing in hardware might
differ significantly from our simulation.

In the cases where the electron beam is sent to the centre
of the patient cube the error is even bigger. In these cases
the predicted compute time is up to 4 times smaller than
the actual time. However, in many of these cases the time
for memory transfers needs to be considered. The kernel will
stall to access memory, if the access happens in bursts and
the DDR memory can not deliver enough data fast enough.
This increases the total runtime. Even though it is theoretically
possible to overlap compute, memory access and data transfers
to the host it turns out that especially in these cases overlap is
quite limited. One reason for this is that, the overall run has
to be split into significantly more batches to ensure that the
off-chip memory address space reserved for each subdomain
is sufficient. As a result, up to 64 batches have to be executed.
It seems that in many cases not enough electrons belong to
one subdomains to overlap streaming back to the host and the
compute (see eq. 5). This adds up to 500ms to the runtime.

In run 3 we managed to simulate the required 100 million
particles in less than a second even when the post processing
on the CPU is included. This requires all three cards. In order
to also meet our requirements for bigger voxel cubes we will
need to improve the timing characteristics or use more cards.

C. Comparison to Traditional Systems

The comparison to related work for this application is not
easy, since the precise test case is often not reproducible. In
[14] the authors report execution times of 10.8 seconds for a
patient cube of size 256x256x234 on a two socket Intel Xeon
system. Additionally they report a speedup of 1.95x compared
to the GPU implementation presented in [8]. A similar test
case on our system (Run 12) takes 2.6 seconds including
the not fully optimised CPU code. As a result we achieve
a speedup of 4.1x compared to the CPU and 8x compared to
the GPU implementation.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an FPGA based implementation
for real time Monte Carlo dose simulation for adaptive radio-
therapy. We proposed an architecture, which decomposes the
voxel cube representing the patient into multiple sub cubes
to reduce on-chip memory space requirements. The perfor-
mance and area usage for this architecture were modelled
using simple equations to predict the hardware implementation
characteristics. Finally, we presented four implementations of
the architecture and showed that in most cases the perfor-
mance model provides an accurate indication of the measured
runtime. We manage to fulfil our realtime goals of simulating
100 million electrons in less than a second using three FPGA
cards for a voxel cube with a size of 128 in all dimensions.

Future work will include the implementation of
bremsstrahlung, additional particle types and support of
different materials. The integration of our approach into the
latest adaptive radiotherapy systems will also be explored.



TABLE II
AREA USAGE RESULTS FOR THE PROPOSED ARCHITECTURE.

Num Frequency Design
Count

Kernel
Parallelism

Cube
Size

Subdomain
Size LUT FF DSP BRAM URAM

1 250 3 1 128 64 337,059 (28.51%) 640,139 (27.07%) 1,233 (18.03%) 1,770 (40.97%) 351 (36.56%)
2 250 3 2 128 64 543,642 (45.98%) 1,069,421 (45.23%) 2,457 (35.92%) 2,916 (67.5%) 384 (40%)
3 250 3 1 256 128 343,918 (29.09%) 669,232 (28.3%) 1,233 (18.03%) 2,562 (59.31%) 672 (70%)
4 250 3 2 256 128 554,637 (46.91%) 1,105,734 (46.76%) 2,457 (35.92%) 3,708 (85,83%) 708 (73.75%)

TABLE III
PREDICTED AREA USAGE RESULTS FOR THE PROPOSED ARCHITECTURE.

Num LUT FF DSP BRAM
1 338,000 492,000 1,233 2,763
2 623,000 912,000 2,457 3,371
3 338,000 492,000 1,233 5,067
4 623,000 912,000 2,457 5,675

TABLE IV
ACTUAL AND PREDICTED RUNTIME.

Run
Num

Build
Num Cards Offset

FPGA
Time
[ms]

Total
Time
[ms]

Predicted
Compute

Time [ms]

Predicted
DDR

Time [ms]
1 1 1 yes 2,882 2,977 2,667 110
2 1 2 yes 1,451 1,558 1,333 55
3 1 3 yes 981 1,088 889 37
4 2 1 yes 3,267 3,435 1,901 69
5 2 2 yes 1,173 1,342 950 34
6 2 3 yes 810 988 634 23
7 3 1 yes 3,956 4,612 3,333 378
8 3 2 yes 2,182 2,878 1,667 189
9 3 3 yes 1,589 2,351 1,111 126

10 4 1 yes 3,127 4,241 2,427 351
11 4 2 yes 1,750 2,933 1,214 176
12 4 3 yes 1,387 2,613 810 117
13 1 1 no 7,710 7,987 2,800 1,364
14 1 2 no 4,222 4,596 1,400 682
15 1 3 no 3,475 3,778 933 455
16 2 1 no 4,185 5,084 2,011 1,404
17 2 2 no 3,765 4,134 1,005 702
18 2 3 no 2,642 3,101 670 468
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