DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering, Mathematics & Computer Science, Cyber Security
Group

Decentralized Learning Towards

Passport-Grade Anomaly Detection

Vlad-Mihai Constantinescu
Student number: 5216648

Thesis committee:

Dr. Ir. J.A. Pouwelse (Thesis supervisor)
Dr. H.J. Griffioen

To obtain the degree of Master of Science in Computer Science
Software Technology track with a specialization in Cyber Security.
To be defended publicly on July 8th, 2025 at 09:30 AM.

Decentralized Learning Towards
Passport-Grade Anomaly Detection

1% Constantinescu Vlad-Mihai
Distributed Systems
Delft University of Technology

Abstract—In today’s networks, the frequency of distributed
cyber attacks made centrally based SIEM solutions vulnerable
to bottlenecks, privacy invasions, and single points of failure. This
thesis proposes a decentralized anomaly detection platform for
autonomous agents, every server visualized as a node, operating
independently without centralized control to identify coordinated
attacks with a focus on compliance in the European Blockchain
Services Infrastructure (EBSI).

We construct an evolving subnet adjacency graph over desti-
nation IPs and use Deep Graph Infomax (DGI) to learn high-
quality node embeddings that capture local traffic patterns as
well as global information. The fine-tuned online embeddings
are concatenated with raw flow features and fed into a universal
LSTM-augmented reinforcement learning policy. The LSTM
temporal memory enables both sudden and slow, sneaky attacks.

Evaluation metrics (ROC-AUC, F1, Accuracy, Precision and
Recall) are computed at two granularity levels: per-agent
for each node detection performance and system-level using a
“union-of-alerts” decision rule for event-level detection. Experi-
ments on the UNSW-NB15 flow data set demonstrate that our
approach improves ROC-AUC from ~ 0.936 to ~ 0.95 and F1
from =~ 0.89 to ~ 0.913, outperforming the independent PPO-
LSTM baseline. The system preserves data privacy, only exposing
aggregated scores of anomalies. These results suggest that inte-
grating self-supervised graph embeddings with recurrent multi-
agent RL produces a robust, scalable, and privacy-preserving
SIEM solution tailored for the EBSI federated environment.
Further studies on window granularity, hyperparameters, and
per-subnet policy specialization could potentially further validate
design choices and offer a roadmap for deploying decentralized
network defense systems.

Index Terms—Decentralized Anomaly Detection, Decentralized
SIEM, Privacy-Preserving Monitoring, EBSI, Sovereign Security
Agents

I. INTRODUCTION

Today’s networks face a flood of security events, ranging
from user logins and file transfers to API requests. Traditional
Security Information and Event Management (SIEM) solutions
centralize these events for analysis, but as organizations em-
brace multicloud and edge computing architectures, transfering
every log into a single repository creates serious bandwidth
and storage bottlenecks. Moreover, edge filtering or sampling
to reduce data volume can leave critical blind spots. [1] [2]

Centralized SIEM systems also present significant pri-
vacy and compliance challenges. Regulations like GDPR
require controls on personal data, and even encrypted or
pseudonymized logs can leak sensitive information through
metadata. [3].

2™ Dr. ir. J.A. Pouwelse
Distributed Systems
Delft University of Technology

Furthermore, storing all security events in one place forms
a high-value target, introducing a single point of failure that
must be trusted by the other parties. If this central author-
ity is misconfigured, overloaded, or compromised, the entire
network loses visibility. In federated environments, such as
public sector bodies under the European Blockchain Services
Infrastructure (EBSI) [4], no participant will give full control
of its logs to another party, creating gaps in collective defense
and leaving coordinated multi-node attacks undetected [5]. In
addition to the coordinated attacks, big network such as EBSI
can present load balancers or NAT points, splitting the traffic,
distributing targeted attacks to multiple nodes, resulting in
undetected attacks.

Decentralized approaches offer a promising alternative. By
empowering each server (to be called an agent from now on)
to analyze its own logs locally and share compact aggregated
indicators, organizations can avoid central bottlenecks, reduce
the risk of a single point of failure, and better comply with
privacy regulations.

Recent studies in edge security emphasize how distributing
analysis tasks closer to data sources not only improves scala-
bility but also enables finer-grained control over sensitive data,
agents being able to apply local anonymization before sharing
alerts. [6] [7]

Meanwhile, the EBSI initiative has demonstrated how feder-
ated governance and self-sovereign identity frameworks enable
trust without centralized intermediaries. By issuing verifi-
able credentials [5] and maintaining tamper-resistant records,
EBSI provides a blueprint for privacy-preserving collaboration
across jurisdictions [8]. These principles inspire a SIEM model
where independent nodes cooperate on threat detection without
exposing raw logs to a central authority.

Advances in graph neural networks and self-supervised
learning further enable this vision. By constructing graphs-like
structures that capture relationships between network entities
and applying contrastive objectives, it allows for development
of methods to extract embeddings reflecting both local behav-
iors and global context.

This thesis integrates these technological advancements into
a novel, unified, decentralized SIEM framework tailored for
federated environments like EBSI. We develop a pipeline
where each node aggregates local flow features, constructs
subnet-based graphs, and learns dynamic graph embeddings
online. Independent RL agents decide on alerts using both

local and embedding-based inputs.

By exchanging only minimal, privacy-preserving state vec-
tors, our design scales to large federations, creating a com-
pliant and resistant architecture, eliminating single points of
failure, all while delivering robust anomaly detection.

The rest of this thesis is organized as follows: Chapter
I presents the introduction, Chapter II defines the problem,
Chapter III reviews related work, Chapter IV describes the
methodology, Chapter V describes the dataset used in the
experimental setup, Chapter VI details the experimental setup,
Chapter VII reports the results gathered from the experiments,
Chapter VIII discusses limitations and future work and Chap-
ter IX offers the conclusion.

II. PROBLEM DESCRIPTION

Traditional Security Information and Event Management
(SIEM) systems rely on centralizing logs and events from
across the network into a single repository for analysis. While
this approach simplifies correlation and threat hunting, it
struggles to keep pace with today’s evolving, multi-cloud
architectures.

As data volumes increase, transferring every log to a central
authority drastically increase the bandwidth and storage costs.
This most often forces organizations to sample data which can
hide threats.

Furthermore, storing all sensitive logs in one place creates
a high-value target for attackers and raises serious privacy
concerns. Misconfiguration, downtime, or compromise of the
analytics hub blinds the entire organization. This gap makes
it difficult to detect more advanced, coordinated attacks that
span multiple targets, or attacks that are distributed to multiple
nodes via internal load balancers or NAT.

Moreover, personal identifiers and metadata must be
pseudonymized and strictly controlled to comply with GDPR,
yet even encrypted or masked records can leak information
through metadata.

Meanwhile, decentralized approaches present significant
advancements in adjacent domains. Self-sovereign identity
frameworks demonstrate how individuals can fully own and
selectively share verifiable credentials without entrusting raw
personal data to a central authority. Federated learning shows
that models can be trained collaboratively across many nodes,
each keeping its data locally to preserve privacy. However,
these ideas have seen little application in SIEM technology.

This being said, the core challenge is to rethink SIEM as
a truly distributed system: one where each server analyzes its
own traffic, shares only compact signals rather than raw logs,
and collectively learns to spot both local anomalies and coordi-
nated, multi-node attacks. We must discover how to represent
security signals in a bandwidth-efficient, privacy-preserving
way, and how to adapt continuously to evolving threats without
central bottlenecks. Addressing these questions is essential to
building a SIEM framework that scales with modern networks,
respects privacy regulations, and withstands single points of
failure.

III. RELATED WORK

Over the past decade, researchers have explored various
ways to distribute security monitoring and analysis in order
to overcome the limitations of centralized SIEMs. One early
tentative, BlockSIEM [6], proposed using a permissioned
blockchain to record security events in a tamper-proof ledger,
allowing multiple “SIEM miners” to verify alerts without rely-
ing on a single log repository. Although this design improved
integrity and non-repudiation, its reliance on smart contracts
and full-chain replication introduced substantial latency for
high-throughput environments.

More recently, the concept of a cybersecurity mesh has
emerged as a guiding vision for decentralized threat detection.
In their survey, Ramos-Cruz et al. [9] argue that by treating
each network node as an independent security sensor coop-
erating through federated learning and blockchain. They can
achieve both scalability and resilient coordination. This mesh
approach shares our goal of local analysis combined with peer
collaboration, but practical implementations remain sparse,
particularly when it comes to real-time anomaly detection.

With increased data protection regulations, modern SIEM
designs must also preserve privacy. Menges et al. [10] ex-
amine the impact of the EU GDPR on SIEM data handling
and propose an architecture to process security telemetry in
compliance with privacy requirements. An important technique
to be mentioned is pseudonymization of personally identifiable
information in logs.

In practice, Vazdo et al. [11] built and evaluated an open-
source SIEM prototype with inline data pseudonymization to
ensure GDPR compliance. Their works illustrate that the future
of SIEM solutions must balance security analytics with data
confidentiality controls.

In the field of collaborative machine learning, federated
learning (FL) has shown it is possible to train models on
decentralized datasets without exchanging raw records.

As a concrete example, Lazzarini et al. [12] evaluate FL
for IoT intrusion detection using a lightweight neural network
shared among clients. Their results show that a collaborative
federated IDS can approach the accuracy of a centralized
model while each client keeps its network logs local.

Parallel to federated approaches, graph-based and
self-supervised methods have gained traction for cybersecurity
tasks. Caville et al. introduce Anomal-E [13], a system that
constructs communication graphs of hosts and applies Deep
Graph Infomax (DGI) to learn node embeddings that reflect
both local flow patterns and global topology. This method
uncovers complex attack structures without labeled examples,
paving the way for more generalizable anomaly detectors. In
their approach, network entities (hosts, [P addresses) form
nodes in a graph, and communication flows form edges. A
Graph Neural Network encoder (based on GraphSAGE [14])
is trained using DGI to maximize correlated information
between local and global representations, resulting in powerful
embeddings for anomaly detection.

Although Anomal-E focuses on offline analysis, its use of
DGI inspires our choice of an online, fine-tuned graph encoder
for streaming threats.

Another emerging direction is the use of Multi-Agent sys-
tems and Reinforcement Learning for distributed anomaly
detection. Instead of a single monolithic detector, multiple
intelligent agents can be deployed across a network, each
learning to identify local abnormalities and collaborate to flag
global threats. One approach is to have agents collaboratively
learn expected behaviors and then detect deviations. For exam-
ple Kazari et al. [15] propose a Multi-Agent-Reinforcement-
Learning (MARL) based system where agents predict each
other’s actions to recognize an insider with abnormal be-
haviour. These multi-agent and reinforcement learning tech-
niques align with the trend of autonomous cyber defense,
where distributed intelligent agents collectively guard large,
complex infrastructures.

In parallel, recent advances in federated graph learning
demonstrate the power of combining privacy-preserving model
training with attention-based graph neural networks. Wu et
al. introduce a Federated Graph Attention Network (FedGAT)
[16] that organizes traffic logs into chronological graphs and
leverages node-to-node attention to detect network attacks
across decentralized clients without sharing raw data. Addi-
tionally, Liu et al [17] propose an Adaptive Multi-channel
Bayesian Graph Attention Network (AMBGAT) for detect-
ing anomalies in blockchain transaction graphs, showcasing
how Bayesian attention mechanisms can adaptively weight
heterogeneous channels for improved classification in privacy-
sensitive applications [2].

In summary, prior work has demonstrated the feasibility
of decentralized logging, federated training, self-sovereign
identity, graph-based anomaly scoring and multi-agent defense
coordination.

However, a unified framework that combines online,
self-supervised graph embeddings with self-sovereign agents
remains unexplored.

This thesis aims to fill that gap by integrating these strands
into a cohesive, privacy-preserving, and scalable SIEM ar-
chitecture suitable for federated, compliance-driven environ-
ments.

IV. METHODOLOGY

In this chapter, it is described each step of our decentralized
SIEM pipeline, from local data processing to graph embed-
ding, multi-agent environment design, and online learning.
We break the workflow into four main stages: Local Feature
Aggregation, Subnet Graph Construction, Online Graph
Embedding via Deep Graph Infomax, Multi-Agent Rein-
forcement Learning Environment .

A. Local Feature Aggregation

Each node (destination IP) collects raw flow records from its
local network traffic. We aggregate these records into fixed-
length time windows (3 seconds) and compute a summary:
packet counts, byte volumes, flow durations, and protocol

distributions. This produces a feature vector z! =€? where
d is the number of features used, per node at t time window.

B. Subnet Graph Construction

We construct an undirected adjacency graph based on /24
subnets: nodes ¢ and j share an edge if they belong to
the same subnet. This coarse grouping captures the likely
coordination or exposure to shared threats among hosts. In
real deployments, particularly under EBSI, load balancers,
NAT gateways, or virtualized endpoints may distribute traffic
across multiple internal servers that share a public /24 address.
By defining edges at the subnet level, we implicitly link
these distributed instances, allowing the graph encoder to learn
patterns that span behind a single public IP. The static edge list
is stored as an index tensor E, which remains fixed throughout
the training.

C. Online Graph Embedding with Deep Graph Infomax

We employ Deep Graph Infomax (DGI) to extract robust
node representations that capture both local traffic character-
istics and global network structure without requiring labeled
data.

DGI’s self-supervised contrastive objective encourages em-
beddings to align with the overall graph summary, making
it well suited for evolving threat patterns. By fine-tuning
online at each RL iteration, the encoder adapts continuously to
new behaviors, ensuring that agents receive up-to-date graph
context alongside raw features. We implement the encoder fy
as a two-layer Graph Attention Network (GAT).

1) GAT encoder: Two successive GATConv layers aggre-
gate neighbor features via learned attention, interleaved
with ELU activations and dropout.

2) Summary vector:

P =o(k34),

i=1

where zft) = fg((ﬂ,gt),E) and o denotes the sigmoid
function.

3) Corruption: We generate negative samples by randomly
permuting rows of X (), yielding corrupted embeddings

2

4) Cm;trastive loss:
LDGI = — Zz =1V [loga(ziTs) + log(1 — U(iiTs))] .

5) Online fine-tuning: At each RL iteration, we sample
mini-batches of past graphs (batch size 4), compute
LDGI, and update 6 via backpropagation.

6) Feature concatenation: For the current window, com-
pute Z() = f(X®, E) and form each agent’s obser-
vation:

o) = [xgt)HzZ(t)] € R19+4,

D. Multi-Agent Reinforcement Learning Environment

We model each node as an independent agent in a syn-
chronous MultiAgentEnv. At time ¢, agents receive obser-
vations 02@ and choose actions al(-t) € 0, 1. The instantaneous
reward is:

+1, ifal”? =1 and ¢ =1,
if o ()
) —0.5, ifa;” =1andy,” =0,
rl = o (1) ® (1)
—0.2, ifa;”’ =0and y,” =1,
0, otherwise.

Episodes span all windows in the training split (first 80%),
truncated into segments of length L = 20 for LSTM back-
propagation. Each agent’s LSTM hidden state resets only at
the start of each episode

E. Individual per-agent LSTM-Enhanced Policy via PPO

We adopt an individual per-agent policy Proximal Policy
Optimization (PPO) with an LSTM backbone.

F. Threat Model

In order to support the applicability of our implementa-
tion, we define the following threat model, specifying the
adversaries considered, assumptions and guarantees upon the
system.

As a first assumption, agents are considered accesible to the
internet and are assumed to run an unmodified version of the
detection software. Furthermore, the communication between
agents is assumed to be authenticated and integral.

In our threat model the system is considered to not rely on
a central authority for detection or policy distribution, and raw
logs are not shared between nodes.

As far as the adversarie’s capabilities goes, we consider
the system designed against external adversaries, which can
interact with any or multiple of the agents and can launch
reconnaissance activities or various types of attacks, both
targeted and distributed, upon the agent/agents. We assume
that adversaries cannot directly tamper with the detection logic
or the LSTM policy weights.

As far as the security goals goes, our system is designed
to achieve privacy preservation, meaning no raw logs are
exchanged between the agents, aligning with various require-
ments such as GDPR and EBSI. Furthermore, the system
must detect both localized and distributed attacks using a
combination of local observations and global context.

The system must also be resistant to partial network failure
and the anomaly detection must continue even if a subset of
agents are unavailable.

Lastly, any agent must make their own decision indepen-
dently in a scalable and fully decentralized fashion.

Regarding limitations, the current implementation assumes
a static subnet topology and does not explicitly defend against
long-term embedding poisoning. More limitations are dis-
cussed in Section VIIL

V. DATASET

In this chapter, one can find a description of the network
flow data used in the experimental setup, how it was processed,
and some initial insights that motivated the design choices.

A. Dataset Overview

The dataset used in the experiments is UNSW-NB 15, which
contains raw flow records captured over a 24hours time period
in late 2015.

It containss approximantely 10 million flows in total, each
record representing an unidirection TCP/UDP transaction.

The dataset under discussion comes in the form of multiple
headrless CSV files, so a custom python script was used to
parse, load, and merge the data into one big data table with
49 features per flow.

For simplicity and explainability reasons, we split the fea-
tures into categories with some example:

o Basic fields: source Ip (srcip), destination IP (dstip),
ports, protocol, state.

o Trafic volume and timing: bytes sent/received (sbytes,
dbytes), duration (dur), inter-packet times (Sinpkt,
Dinpkt)

o Behaviour flags: HTTP depth, FPT login ,same-IP-port
indicati (is_sm_ips_ports)

o Aggregated counters: counts of recent connections per
service or host (ct_srv_src, ct_dst_lmt, etc.)

o Timestamps: timestamp of the first packet (Stime), times-
tamp of the last packet (Ltime)

The records of the dataset are aggregated into non-
overlapping 3s windows and labeled per IP, resulting in a per-
actor, time-sensitive dataset. After constructing the summary
table and the /24-subnet graph, the wondows are chrono-
logically sorted, then split into Training set (first 80 % of
windows) used for RL training and DGI online fine-tuning,
and Evaluation set (final 20% of windows), used only for
metric computation.

This time-aware split prevents look-ahead leakage and mim-
ics a streaming, online deployment.

B. Participant (IP) Analysis

We start by analyzing the unique destination IPs in the
dataset and identifying how many experienced at least one
attack. This analysis reveals whether malicious traffic is re-
stricted to a few hosts or spread across the network.

As can be seen in Table I, the data set presented a total
number of 47 independent hosts, of which 10 presented attack
windows.

The distribution of attacks per IP host can be found in Figure
1.

TABLE 1
SUMMARY OF DESTINATION IPS
Metric Count | Share (%)
All destination IPs 47 100%
IPs ever under attack 10 21.27%

Number of Attacks per Host

Number

st 1P Addresses

Fig. 1. Number of attacks per host.

From this we can see that about one in five hosts in the
network experienced malicious activity during the captured
period. Most IPs remain clean, suggesting that a detection
approach must balance sensitivity with the noise of benign
flows.

C. Flow-level analysis

Understanding the overall balance between normal and
attack flows is also key. In the full dataset:

e Normal flows windows:12,861,31 (3.95%)
o Attack flows windows: 52,993 (96.04%)

So about 4% of all windows are malicious. This moderate
imbalance is manageable with standard techniques such as
weight-loss functions.

VI. EXPERIMENTAL SETUP

To rigorously evaluate our decentralized SIEM pipeline,
we propose the following experimental setup. The goal is
to demonstrate (a) that our online, individual-policy, LSTM-
enhanced approach outperforms static and feed-forward base-
lines, (b) the impact of fully independent agents versus policy
sharing, and (c) how detection quality varies at the per-agent
and system-wide levels.

A. Configurations

We compare three main configurations:
o Independent LSTM-PPO Policy

— Baseline

— Each agent trains its own LSTM policy (same archi-
tecture) on only its local observations and rewards.

— No parameter sharing across IPs.

o Independent LSTM-PPO Policy + Online DGI

— Each agent trains its own LSTM policy (same archi-
tecture) on only its local observations and rewards.
— No parameter sharing across IPs.
— Online DGI fine-tuning per training iteration.
o Shared LSTM+PPO Policy
— Act as a upper bound in our experiments.
— One policy over all agents.
— Each agent has full view over the network.
For simplicity, in this paper we consider one episode as
one run through the training dataset and one step as one

3s aggregated window. We run each configuraton until the
ROC-AUC converges, which for our experimental setup was
after 3 episodes. We test our approach against the Independent
LSTM-PPO Policy to showcase the gains that comes with the
addition of global-context awareness.

Furthermore, the shared LSTM-PPO policy acts as an upper
bound, demonstrating the room for improvement and validat-
ing that the our implementation is closing the gap between
Isolation and Perfect Information

B. Metrics and Evaluation

At the same time, both per-agent and system-wide metrics
are collected.

As the per-agent metrics, ROC-AUC, F1, Accuracy, Pre-
cision and Recall scores are computed by comparing all
agent-window predictions with the real action in the evaluation
part of the dataset. This measures each model’s ability to
differentiate between mallicious and normal trafic from the
point of view of a individual nodes.

Furthermore, as for many security use-cases an alert any-
where in the network results in a global-wide investigation,
during the experiment, are also computed the ROC-AUC and
F1-scores under a union-of-alers rule: for each window, if any
agent raises an alert, count the window as “detected”.

This system-level view captures how well a decentralized
ensemble of agents can catch coordinated or distributed attacks
even if some nodes miss them.

C. Scalability Benchmark Setup

In addition to model evaluation, a scalability microbench-
mark was conducted to assess how the system behaves as the
number of participating agents increases.

To see how well this scales in practice, we ran a mi-
crobenchmark starting from a base setup of 25 agents trained
on UNSW-NBI1S5 traffic. We then increased the number of
agents by scaling up to 50, 125, and 250 agents. In order
to keep the traffic look realistic while increasing the number
of agents, we create replicas of already existing agents, assign
them other IP addresses and then duplicate the existing traffic
from the existing agent to the replica. This way we are
simulating larger organizations or networks.

We measured how long it takes per training step to compute
graph embeddings with DGI and to exchange those embed-
dings via a gossip protocol. The selected gossip protocol
works as the following: each agent communicates with up to
3 randomly selected neighbors per gossip round, following a
fanout-3 model.

We consider the following formula: gossip_time =
rounds-(SIM_LANTECY +overhead), where the number
of gossip rounds is estimated as rounds = log,(N), and
each round’s overhead is composed of the network latency
(SIM_LATENCY) (which for our experiment was capped on
2ms) and serialization + deserialization overhead.

We do not count for packet queue, packet drop, real network
connection, transfer or congestion.

The gossip topology is defined by the /24 IP-prefix prox-
imity graph.

VII. EXPERIMENTAL RESULTS

In this chapter, one can find a comprehensive evaluation of
the framework under discussion against the disputed baseline
as described in Section 6.

We first describe the quantitative performance in terms of
ROC-AUC ,F1, Accuracy, Precision and Recall scores at both
per-agent and system-level granularity.

A. System-Wide “Union-of-Alerts” Analysis

We apply the union-of-alerts rule: a window is flagged if
any host raises an alert. ROC-AUC system level, F1, precision,
precision and recall metrics are reported in Table III, presented
in the Appendix.

From the beginning, we observe that global context aggre-
gation amplifies gains: the independent policy reaches 92%
ROC-AUC on average, while the DGI-enhanced version hits
95%. This demonstrates that even if some agents miss an
attack, others compensate, as long as each maintains fresh
graph embeddings.

Specifically, as shown in Figure 3 (left), our system achieves
a higher precision, averaging around 84.6% versus 80.7%,
generating fewer false alarms than the No-GAT model and
achieving the same precision as our ’perfect information’
shared policy (84.9%).

Figure 3 (center) illustrates the recall metric. Although
shared PPO remain at highest recall (>97%) and both our
and baseline models present high detection rates (>97%), the
GAT model presents itself with an average of 98.7% compared
to 97.5% for the baseline.

In terms of overall accuracy, presented in Figure 3 (right),
our implementation presents a gain of about 2 percentage
points, from 91.5% (baseline) to 93.5% correct decisions, only
0.1% away from the shared policy with 93.6%.

The F1-score is presented in Figure 4 (left) and confirms that
our approach balances Precision and Recall more effectively,
improving from 88.7% up to 91.1%, while the shared policy
stands at 91.4%.

Finally, Figure 4 (right) shows ROC-AUC rising from
approximately 93.0% without GAT to 94.7% with GAT, show-
ing that it differentiates better between classes when using
dynamic graph embeddings.

B. Independent Agent Analysis

While, according to the system-wide analysis above, the
DGlI-enhanced system, by useing global relationships, outper-
formed the baseline, a more granular, per-agent analysis might
reveal more information to support our claim.

Figure 5 and Figure 6 plot the metric described above per
agent under the three policies under discussion, revealing how
local detectors, DGI-enhanced agents, and a fully centralized
policy compare at the agent level.

One can find the evolution of per-agent ROC-AUC, Fi,
Precision, Recall and Accuracy metrics in Tables V IV VL

One observation to be made is about the high variability
across agents, as precision ranges from as low as 62.7% (for
149.171.126.13) to as high as 92.7% (for 149.171.126.10),

while the shared policy presents a smaller range, from 77.6%
to 91.9%. This hardens the idea of some of the agents encoun-
tering noisy data and sparse attack signals when training.

Another observation is the consistent weak links, specifi-
cally IPs 149.171.126.12 and 149.171.126.13. These agents
presents consistently one of the lowest Fl-scores and ROC-
AUC, indicating that highly imbalanced data struggles to
provide reliable policies without cross-agent context.

Futhermore, one can observe the consistency of strong
performing agents, specifically IPs 149.171.126.14 and
149.171.126.17, which achieve F1-scsores > 0.92 and ROC-
AUC > 0.93. This is a clear signal that when local data is
meaningfull enough, independent training can approach opti-
mal classification. However, even for such strong performers,
the addition of global context awareness increases the ability
to classify traffic. For example, in the case of 149.171.126.17,
the ROC-AUC increased from 0.961 to 0.973 and F1 score
from 0.924 to 0.942.

The patterns described above confirm the hypothesis that
a subset of IPs can become robust detectors on their own,
while a significant fraction remain vulnerable in isolation. This
further hardens the motivation for out DGI-based approach
as by sharing embeddings, individual agents can elevate the
weaker ones and maintain a high system-wide performance.

Overall, DGI-enhanced agents generally sit, performance-
wise, between the fully independent approach (lower bound)
and the Shared-PPO, roughly at 80-90% of that gap.

In the case of some of the agents, the GAT encoder
even outperforms the shared policy, showcasing the ability to
specialize detection to local graph structure while still using
global context.

C. Scalability Benchmark

The results reveals that the DGI encoder presents near-linear
growth with the numbe of agents, however, it reamins wihtin
sub-second latency for up to 125 agents. Communication over-
head from the gossip algorithm, remains negligible throughout
with a maximum of 6 miliseconds observed.

Overall, these results is hardening the idea that the presented
system 1is suitable for real-time operation across moderately
sized decentralized networks and can be used as foundation
for scaling to larger enterprise-level environments.

TABLE II
SCALABILITY BENCHMARK

Agent Count (N) | DGI Time (seconds) | Gossip Time (seconds)
25 0.185 0.002
50 0.233 0.003
125 0.308 0.006

VIII. LIMITATIONS AND FUTURE WORK
A. Static Graph Topology

Although the presented framework demonstrates strong
detection performance and practical resource requirements,
several limitations and open challenges can be observed.

Scalability of DGI and Gossip Communication

—o— DGI Compute
Gossip Parallel

0.5 4

0.4 4

0.3 1

Time (s)

0.2 1

0.1+

0.0 A

50 100 150 200 250
Number of Agents

Fig. 2. Scalability Benchmark

As a first limitation to be brought into discussion, a fixed
/24-subnet adjencecy graph is built at deployment time. This
choice successfully captures patterns between nodes behind
load balancers of NAT, however, it lacks the ability to adapt if
network address changes. For example, new subnets brought
online, dynamic IP assignment, virtual IPs or if the attack pivot
across subnets.

With this limitation in mind, one can research the effective-
ness of a system that periodically rebuilds or augments the
graph from recent traffic statistics.

B. Scalability to Very Large Networks

As part of the evaluation of this thesis, 47 hosts were
detected and used to train on a single CPU machine.

However, a network part of a larger enterprises may con-
sist of thousands of monitored hosts, raising concerns about
exceeding real-time level processing speeds.

As the the number of hosts increases, the cost of GAT
message-passing and the per-iteration cost of the PPO rollouts
increase.

As a potential fix, we propose the usage of mini-batch graph
sampling algorithms such as GraphSAGE-style neighborhood
sampling.

Additionally, one can create try to create a hierarchical
partitioning system where the IP space is partitioned into
clusters and distinct encoders and policies and trained with
occasional cross-cluster syncronization.

C. Cold-Start for New Agents

When a new, previously unseen IP first appears, it has
no historical embedding or policy experience. In the current
implementation, new agents simply inherit the global DGI
encoder’s parameters. This approach lacks any fine-tuning
specific to the node until the policy learns about node’s trafic
profile. In this period of 'uncertainty’ detection accuracy can
suffer as the encoder may produce embeddings that do not

reflect the node’s true behaviour and the policy may miss
genuine attacks or label as annomaly normal traffic.

This behaviour can be a potential vulnerability in fast-
moving environments, where nodes spin on and off rapidly.

As for future improvements, we propose the use of a hybrid
meta-learning strategy such as Model-Agnostic Meta-Learning
(MAML) [18].

An alternative solution could potentially be to temporarily
increase exploration for new agents. For example, increasing
the entropy coefficient or ¢ for a period of time, could lead to
faster policy tuning.

IX. CONCLUSION

In this work, it was designed and evaluated a novel, fully
decentralized Security Information and Event Management
(SIEM) framework that brings together self-supervised graph
embeddings and multi-agent reinforcement learning.

Rather than sending every log into a central repository, our
approach treats each server as an independent “agent” that
processes its own traffic, communicates only compact anomaly
signals, and learns collaboratively to spot coordinated attacks.
By aligning with EBSI compliance guidelines, our proposed
design preserves privacy and data sovereignty by avoiding
centralized data collection.

Our contribution consist of two main blocks.

On one hand, instead of moving every single network packet
to one big database, we build a small “subnet graph” that links
together IPs in the same /24 block and run a self-supervised
graph encoder (DGI) on it. That means each server only ever
shares compact node summaries, not raw logs, so privacy
stays intact and we still capture the bigger picture of what’s
happening across the network.

Furthermore, each independent agent is enhanced with a
lightweight LSTM policy trained with PPO. As a result,
each agent can learn and detect patterns on its own traffic.
These per-agent models see both their local features and the
graph embeddings, letting them spot unusual patterns that only
make sense in context. In our tests on UNSW-NBI15, this
combination of personalized, recurrent policies plus shared
graph signals showcased an increase in ROC-AUC, F} score,
Accuracy, Precision and Recall metrics.

By exchanging only low-dimensional embeddings and bi-
nary alerts, never raw flows or metadata, we align with GDPR
and EBSI’s self-sovereign identity rules.

At the same time, we recognize several limitations that
point to future work such as consolidate cold-start procedures,
support dynamic topologies, and refine inter-agent protocols.

Looking ahead, this thesis lays down the foundation for
a truly decentralized, privacy-preserving SIEM architecture.
By combining online attention mechanisms with specialized
multi-agent learning, we illustrate a path toward resilient,
scalable network defense that fits perfectly into federated
infrastructures like EBSI.

Building on these results, future efforts will loosen the
limitations and bring us closer to a next-generation SIEM that
scales out, not up.

[1]

[2]
[3]
[4]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

R. Zuech, T. M. Khoshgoftaar, and R. Wald, “Intrusion detection and
big heterogeneous data: a survey,” Journal of Big Data, vol. 2, no. 1,
p- 3, Feb. 2015. [Online]. Available: https://doi.org/10.1186/s40537-
015-0013-4

A. Oliner, A. Ganapathi, and W. Xu, “Advances and challenges in log
analysis,” Commun. ACM, vol. 55, pp. 55-61, 02 2012.

A. Narayanan and V. Shmatikov, “Robust de-anonymization of large
sparse datasets,” 06 2008, pp. 111-125.

D. Kasimatis, W. Buchanan, M. Abubakar, O. Lo, C. Chrysoulas,
N. Pitropakis, P. Papadopoulos, S. Sayeed, and M. Sel, Transforming
EU Governance: The Digital Integration Through EBSI and GLASS, 07
2024, pp. 250-263.

E. Tan, E. Lerouge, J. Caju, and D. Seuil, “Verification of education
credentials on european blockchain services infrastructure (ebsi): Action
research in a cross-border use case between belgium and italy,” Big Data
and Cognitive Computing, vol. 7, p. 79, 04 2023.

J. Velandia, A. Mesa, F. Rodriguez, D. Diaz-Lépez, P. Nespoli, and
F. Gomez Marmol, “Blocksiem: Protecting smart city services through
a blockchain-based and distributed siem,” Sensors, vol. 20, p. 4636, 08
2020.

H. Bahsi and A. Levi, “Preserving organizational privacy in intrusion
detection log sharing,” in 2011 3rd International Conference on Cyber
Conflict, 2011, pp. 1-14.

E. Tan and D. Seuil, European Digital Infrastructure Consortium
(EDIC): A New Governance Framework for the European Blockchain
Services Infrastructure (EBSI), 03 2025, pp. 83-101.

B. Ramos-Cruz, J. Andreu-Perez, and L. Martinez, “The cybersecu-
rity mesh: A comprehensive survey of involved artificial intelligence
methods, cryptographic protocols and challenges for future research,”
Neurocomputing, vol. 581, p. 127427, 2024.

F. Menges, T. Latzo, M. Vielberth, S. Sobola, H.-C. P6hls, B. Taubmann,
and et al., “Towards GDPR-compliant data processing in modern SIEM
systems,” Computers & Security, vol. 103, p. 102165, 2021.

A. P. V. ao, L. Santos, R. L. Costa, and C. R. ao, “Implementing and
evaluating a GDPR-compliant open-source SIEM solution,” Journal of
Information Security and Applications, vol. 75, p. 103509, 2023.

R. Lazzarini, H. Tianfield, and V. Charissis, “Federated Learning for IoT
Intrusion Detection,” A, vol. 4, no. 3, pp. 509-530, 2023.

E. Caville, W. W. Lo, S. Layeghy, and M. Portmann, “Anomal-E: A self-
supervised network intrusion detection system based on graph neural
networks,” Knowledge-Based Systems, vol. 258, p. 110030, 2022.

W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing
Systems, 1. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates,
Inc., 2017.

K. Kazari, E. Shereen, and G. Dan, “Decentralized Anomaly Detection
in Cooperative Multi-Agent Reinforcement Learning,” in Proc. 1JCAI,
2023, pp. 162-170.

J. Wu, G. Qiu, C. Wu, W. Jiang, and J. Jin, “Federated learning for
network attack detection using attention-based graph neural networks,”
Scientific Reports, vol. 14, p. 19088, 2024.

Z. Liu, D. Yang, S. Wang, and H. Su, “Adaptive multi-channel bayesian
graph attention network for iot transaction security,” Digital Communi-
cations and Networks, 12 2022.

C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” CoRR, vol. abs/1703.03400, 2017.
[Online]. Available: http://arxiv.org/abs/1703.03400

APPENDIX

TABLE III
SYSTEM-WIDE METRICS PER EPISODE

Episode Setting Precision Recall ~ Accuracy Fl-score ROC-AUC
1 With GAT 0.847 0.990 0.936 0.913 0.949
Independent 0.793 0.977 0.906 0.876 0.923
Shared 0.849 0.977 0.933 0.909 0.944
2 With GAT 0.845 0.984 0.933 0.909 0.946
Independent 0.820 0.971 0.918 0.889 0.931
Shared 0.846 0.988 0.935 0912 0.948
3 With GAT 0.846 0.986 0.935 0.911 0.947
Independent 0.827 0.976 0.923 0.895 0.936
Shared 0.846 0.994 0.936 0914 0.950
Precision per Episode: System-Wide Comparison Recall per Episode: System-Wide Comparison Accuracy per Episode: System-Wide Comparison
ee—,] [z~ S D ————
—e— Shared PPO
0844 0.990 0930
¥ 0.985 0.925
'E 0.82 1 oo g 0.920
081 0915
0.80 —e— Independent 097 0.910 —e— Independent
—e— With GAT —e— With GAT
—e— Shared PPO —e— Shared PPO
0.970 0.905
100 125 150 175 200 225 250 275 3.00 100 125 150 175 200 225 250 275 3.00 100 125 150 175 200 225 250 275 3.00
Episode Episode Episode

Fig. 3. Precision, Recall, and Accuracy over Episodes for independent and context-aware approaches.

F1 per Episode: System-Wide Comparison ROC per Episode: System-Wide Comparison
0.915 0.950
0.945
0.905
0.900 0.940
o 0.895 8
% 0935
0.890
0.885 0.930
0.880 —e— Independent —e— Independent
: —o— With GAT 0.925 —o— With GAT
—8— Shared PPO —— Shared PPO
0.875
100 125 150 175 200 225 250 275 3.00 100 125 150 175 200 225 250 275 3.00

Episode Episode

Fig. 4. Fl-score and ROC-AUC over Episodes for both independent and context-aware approaches.

Perip Accuracy C; Polces.

Fig. 5. Precision, Recall, and Accuracy per agent for both independent and context-aware approaches.

IP (addr)

IP 0 (149.171.126.18)
IP 1 (149.171.126.16)
IP 2 (149.171.126.10)
IP 3 (149.171.126.15)
IP 4 (149.171.126.14)
IP 5 (149.171.126.12)
IP 6 (149.171.126.13)
IP 7 (149.171.126.11)
IP 8 (149.171.126.17)
IP 9 (149.171.126.19)

IP (addr)

149.171.126.18
149.171.126.16
149.171.126.10
149.171.126.15
149.171.126.14
149.171.126.12
149.171.126.13
149.171.126.11
149.171.126.17
149.171.126.19

IP (addr)

149.171.126.18
149.171.126.16
149.171.126.10
149.171.126.15
149.171.126.14
149.171.126.12
149.171.126.13
149.171.126.11
149.171.126.17
149.171.126.19

P
0.814
0.807
0.888
0.829
0.895
0.692
0.627
0.799
0.868
0.732

0.836
0.875
0.917
0.836
0.903
0.813
0.786
0.852
0.891
0.770

Perip L

PerIP ROC

Fig. 6. Fl-score and ROC-AUC per agent for both independent and context-aware approaches.

PER-IP METRICS FOR INDEPENDENT IPS WITH ONLINE DGI (GAT) ACROSS EPISODES

P
0.820
0.874
0.927
0.837
0.899
0.810
0.782
0.851
0.884
0.770

R
0.975
0.983
0.954
0.975
0.995
0.985
0.991
0.969
0.987
0.964

0.967
0.983
0.975
0.963
0.970
0.983
0.980
0.987
0.989
0.987

Episode 1
R A Fq
0992 0936 0.898
0.995 0.956 0.930
0973 0957 0.949
0.995 0910 0.909
0999 0.952 0.946
0.997 0.927 0.894
0994 0914 0.875
0.968 0.933 0.906
0993 0.960 0.935
0998 0911 0.869

ROC
0.953
0.967
0.960
0.917
0.958
0.947
0.937
0.942
0.970
0.936

PER-IP METRICS FOR INDEPENDENT IPS (BASELINE) ACROSS EPISODES

Episode 1

A F1 ROC
0930 0.887 0.943
0925 0.886 0.942
0932 0.920 0.935
0.897 0.896 0.904
0949 0.942 0.955
0.861 0.813 0.895
0.819 0.768 0.868
0909 0.876 0.924
0.952 0.924 0.963
0.885 0.833 0.908

PER-IP METRICS

Episode 1

A F1 ROC
0.937 0.897 0.946
0954 0.926 0.962
0953 0.945 0.957
0.897 0.895 0.902
0943 0.935 0.947
0.926 0.890 0.942
0913 0.872 0.932
0939 0915 0951
0962 0.937 0970
0909 0.865 0.932

P
0.795
0.793
0.892
0.826
0.894
0.806
0.772
0.800
0.847
0.745

P
0.824
0.876
0.919
0.836
0.902
0.810
0.778
0.850
0.885

TABLE IV
Episode 2
P R A Fp ROC
0.817 0976 0931 0.890 0.945
0.875 0.991 0956 0930 0.966
0919 0990 0960 0953 0.965
0.837 0.995 0909 0909 0917
0.897 0947 0932 0921 0.934
0.808 0.981 0922 0.886 0.939
0.774 0987 0909 0.867 0.931
0.853 0991 0941 0917 0.953
0.887 0.996 0962 0939 0.972
0.770 0.996 0911 0.869 0.936
TABLE V
Episode 2
R A Fq ROC P
0983 0923 0879 0941 0.809
0982 0919 0878 0937 0.867
0934 0927 0913 0928 0.906
0984 0.898 0.898 0905 0.837
0995 0.948 0942 0954 0.874
0916 0.907 0.858 0909 0.784
0.970 0904 0860 0923 0.779
0981 0913 0881 0930 0.778
0980 0.943 0909 0954 0.858
0985 0.896 0.848 0.921 0.759
TABLE VI
FOR SHARED PPO POLICY ACROSS EPISODES
Episode 2
R A Fq ROC P
0978 0.935 0.895 0948 0.821
0985 0954 0927 0963 0.875
0993 0.961 0954 0966 0919
0.990 0907 0907 0914 0.837
0990 0951 0944 0956 0.901
0989 0926 0.891 0943 0.810
0983 0910 0.869 0931 0.776
0986 0.938 0913 0950 0.850
0992 0960 0935 0969 0.884
0993 0910 0867 0934 0.770

0.770

P
0.820
0.874
0.923
0.836
0.897
0.810
0.775
0.855
0.896
0.770

R
0.976
0.967
0.970
0.986
0.992
0.965
0.970
0.975
0.988
0.965

0.989
0.994
0.996
0.996
0.995
0.994
0.991
0.989
0.995
0.996

Episode 3
R A
0.986 0.935
0.994 0.956
0.994 0.964
0.993 0.908
0.938 0.928
0.998 0.928
0995 0911
0.986 0.940
0.993 0.965
0996 0911
Episode 3
A F1
0.928 0.885
0946 0914
0.947 0.937
0.906 0.906
0.936 0.929
0.908 0.865
0.908 0.864
0.900 0.865
0.949 0919
0.899 0.850
Episode 3
A F
0.936 0.897
0.956 0931
0.962 0.956
0.910 0.909
0.952 0.946
0.927 0.893
0911 0.870
0939 0914
0.961 0.936
0911 0.869

Fy
0.895
0.930
0.958
0.908
0917
0.894
0.871
0.916
0.942
0.869

ROC
0.943
0.952
0.950
0.913
0.944
0.924
0.925
0.919
0.961
0.918

ROC
0.952
0.967
0.967
0.917
0.958
0.945
0.933
0.952
0.971
0.936

ROC
0.950
0.967
0.969
0.915
0.930
0.947
0.935
0.952
0.973
0.936

