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REGULARIZED IDENTIFICATION WITH INTERNAL POSITIVITY
SIDE-INFORMATION\ast 

MOHAMMAD KHOSRAVI\dagger AND ROY S. SMITH\ddagger 

Abstract. In this paper, we present an impulse response identification scheme that incorporates
the internal positivity side-information of the system. The realization theory of positive systems
establishes specific criteria for the existence of a positive realization for a given transfer function.
These transfer function criteria are translated to a set of suitable conditions on the shape and struc-
ture of the impulse responses of positive systems. Utilizing these conditions, the impulse response
estimation problem is formulated as a constrained optimization in a reproducing kernel Hilbert space
equipped with a stable kernel, and suitable constraints are imposed to encode the internal positiv-
ity side-information. The optimization problem is infinite-dimensional with an infinite number of
constraints. An equivalent finite-dimensional convex optimization in the form of a convex quadratic
program is derived. The resulting equivalent reformulation makes the proposed approach suitable for
numerical simulation and practical implementation. A Monte Carlo numerical experiment evaluates
the impact of incorporating the internal positivity side-information in the proposed identification
scheme. The effectiveness of the proposed method is demonstrated using data from a heating system
experiment.
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1. Introduction. In various dynamical systems, the characteristic variables are
constrained to be nonnegative or bounded, either by the nature of their definition or
according to the physics of the underlying system. In the broad sense, a system de-
scribed only by such nonnegative variables is called a positive system [25]. Examples
of such systems include dynamics describing charges in RC circuits, populations for
certain species of animals or bacteria, temperatures in the buildings, mass flows in
compartmental systems, concentration of pathogens, level of traffic and congestion in
networks and roads, prices of stocks and goods, pressure of fluids, and many other
quantities of interest that are always nonnegative [9, 25, 33, 46, 62]. For an illustra-
tive practical case, see the heating system experiment in section 7. Depending on
our perspective---i.e., whether the positivity feature is considered as an input-output
property or a state-space characteristic---we have two central notions of positivity in
the system theory literature [25, 31]: internal positivity and external positivity, where
the main focus of the literature is on the former one. In externally positive systems,
the nonnegativity of the input signal implies the same feature for the output signal.
Meanwhile, in internally positive systems, the state trajectory and output signal are
nonnegative when the initial state and input signal are nonnegative.

Positive systems have received extensive attention in the past decades owing to
being omnipresent in various fields of science and their wide range of applications
[6, 54, 68]. Luenberger pioneered the system theoretic approach to positive systems
with his seminal work [48] in the 1980s.
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IDENTIFICATION WITH POSITIVITY SIDE-INFORMATION 27

Since then, various aspects of system theory have been tackled for positive sys-
tems, e.g., realization theory [6], controllability and reachability [26, 65], model re-
duction [56], observability and observer design [3], stability [13, 20, 34], positive sta-
bilization [59, 61], fault detection and estimation [50], decentralized and distributed
control [17, 22], and large-scale positive systems [23, 55].

Concerning the identification problem [4, 67], there are two aspects when the
underlying system is known to be internally positive. First, respecting the positivity
property can be an essential issue in some applications, such as implementing model
predictive control. Accordingly, any accurate mathematical modeling approach is
expected to include this feature and construct an internally positive system. The
second aspect is informed system identification [1, 37, 38, 39] and concerns utilizing
the internal positivity side-information and integrating features of this knowledge in
the model to improve the estimation accuracy. Indeed, disregarding the positivity
information can lead to models that are not physically interpretable and explainable
or behaviors that contradict our expectations [54, 64]. While positive systems have
been extensively researched from various viewpoints [55], their identification problem
is not well studied, especially with regard to these aspects. For instance, a set of con-
ditions is introduced in [5] for identifying compartmental models, which is a particular
case of internal positivity feature. In [16], assuming the output sequence of data is a
Poisson process, a maximum likelihood approach is presented for third-order positive
systems with distinct real poles. In [64], a particular situation is considered where
state variable measurements are provided, in addition to input-output data, and the
stability and scalability issues are discussed. Since internally positive systems are also
externally positive, side-information on internal positivity implies external positivity.
Accordingly, from the perspective of informed system identification, one can consider
external positivity as partial information to be integrated into the model. To this
end, one may employ the external positive system identification methods [32, 70]. For
example, since the externally positive systems are precisely those with the nonnega-
tive impulse response, a kernel-based nonparametric maximum a posteriori approach
is introduced in [69, 70] for estimating a nonnegative finite impulse response (FIR). In
this approach, the covariance of the prior distribution is specified by the stable kernels,
while the mean is designed arbitrarily as an exponentially decaying FIR. Note that, in
the FIR identification approaches with an external positivity constraint [32, 69, 70],
the complete information of internal positivity is not exploited. The kernel-based
methods [2, 8, 41, 42, 52], which resolve the issues of bias-variance trade-off, robust-
ness, and model order selection [36, 40, 47, 53], also provide a proper framework for
the integration of various sorts of side-information into the model, including the sta-
bility of the system, the smoothness of the impulse response, time constants, and
resonant frequencies [10, 11, 14, 24, 28, 43, 44, 45, 49, 57, 58, 72]. This is mainly
done through appropriate formulation of the identification problem [43] or based on
suitable kernel design [71]; e.g., harmonic analysis of nonstationary Gaussian pro-
cesses is employed in [72] for kernel design, allowing the incorporation of information
about frequency content and decay rates and improving implementation efficiency by
providing a practical method for approximating the kernel matrix. Together with
the realization theory of positive systems [25], the kernel-based framework can be a
suitable foundation for impulse response identification of positive systems.

This paper extends our previous work [37] and presents an identification method
that integrates the internal positivity side-information in the estimated impulse re-
sponse. From the realization theory of positive systems [25], we know that the impulse
response of an internally positive system has a specific form; i.e., it has a dominant
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28 MOHAMMAD KHOSRAVI AND ROY S. SMITH

nonnegative part, where the corresponding transfer function has structured poles, and
a residual part. This specific form can be translated to a set of structural constraints
on the impulse response. Accordingly, the estimation problem is expressed in the form
of a constrained optimization in a stable reproducing kernel Hilbert space, where
suitable constraints are imposed to encode the internal positivity side-information.
Alhough this problem is initially formulated in an infinite-dimensional space and with
an infinite number of constraints, we derive an equivalent finite-dimensional convex
optimization in the form of a convex quadratic program (QP). We evaluate the impact
of incorporating the internal positivity side-information and assess the performance
of the proposed identification scheme through a Monte Carlo numerical experiment.
The efficacy of the proposed positive system identification technique is confirmed
using data from a thermal dynamics experiment.

2. Notation. In this paper, the set of natural numbers, the set of integers,
the set of nonnegative integers, the set of real numbers, the set of nonnegative real
numbers, n-dimensional Euclidean space, and the set of n by m matrices are denoted,
respectively, by \BbbN , \BbbZ , \BbbZ +, \BbbR , \BbbR +, \BbbR n, and \BbbR n\times m. The positive orthant of \BbbR n is
denoted by \BbbR n

+. The identity matrix and zero matrix are denoted by I and 0n,
respectively. Also, the n-dimensional zero vector and the all-ones vector are denoted
by 0n and 1n, respectively. When the dimension is clear from the context, we drop
the subscript. For p \in [1,\infty ), the p-norm of vector h = (hs)

\infty 
s=0 \in \BbbR \BbbZ + is defined as

\| h\| p = (
\sum 

s\geq 0 | hs| p)
1
p , and the \infty -norm of h is defined as \| h\| \infty = sups\geq 0 | hs| . The

space of vectors h \in \BbbR \BbbZ + with finite p-norm is denoted by \ell p. Given bounded signal
u = (us)s\in \BbbZ +

and t \in \BbbZ , the linear map Lt : \ell 
1\rightarrow \BbbR is defined as Lt(g) =

\sum \infty 
s=0 gsut - s

for any g = (gs)
\infty 
s=0 \in \ell 1. Given a subset \scrC \subset \scrX , the function \delta \scrC : \scrX \rightarrow \{ 0,+\infty \} 

is defined as \delta \scrC (x) = 0 if x \in \scrC and \delta \scrC (x) = \infty , otherwise. The set of polynomials
in x with maximum degree n and real coefficients is denoted by \BbbR n[x]. For transfer
function G, r(G) denotes its spectral radius.

3. System identification with internal positivity side-information: Prob-
lem statement and mathematical formulation.

3.1. Positive system identification: Problem statement. Let g(\scrS ) :=
(g

(\scrS )
t )\infty t=0 be the impulse response of stable and causal system \scrS and G(\scrS )(z) :=\sum \infty 
t=0 g

(\scrS )
t z - t be the corresponding transfer function. We call impulse response g(\scrS ),

or equivalently the system \scrS , internally positive if there exists a realization such that
the state trajectory and the output remain nonnegative given that the initial state
and the input are nonnegative (see Definition 3.1). Suppose that a bounded signal
u is applied to the input of system \scrS . Let yt denote the measured output at time
instant t \in T , where T := \{ ti | i= 0, . . . , nD - 1\} for a given nD \in \BbbN . In other words,
we have that

yt := Lt(g
(\scrS )) +wt, t\in T ,(3.1)

where wt denotes the uncertainty in the output measured at time instant t for t\in T .
Accordingly, we have a set of input-output measurement data denoted by D . Based on
the given setting, we introduce the following impulse response identification problem.

Problem 1. Using data D , estimate the impulse response of g(\scrS ) given the side-
information that g(\scrS ) is internally positive.

In addressing this problem, the main concern is the appropriate integration of the
available internal positivity side-information into the impulse response identification
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IDENTIFICATION WITH POSITIVITY SIDE-INFORMATION 29

problem. To this end, we need to exploit suitable conditions inducing the desired
positivity feature. In the sequel, these conditions are discussed, and the estimation
problem is formulated accordingly.

3.2. Positive system identification: Mathematical formulation. In the
realization theory of positive systems, sufficient conditions are introduced under which
the transfer function of a system admits a so-called positive realization. We employ
these conditions together with the notion of stable reproducing kernel Hilbert spaces
(RKHSs) for bridging to the impulse response identification of stable positive systems.

Definition 3.1 (see [25]). The impulse response g(\scrS ) \in \ell 1 is said to be internally
positive, or simply positive, if there exists a realization for system \scrS as\Biggl\{ 

xt+1 =Axt +but

yt = cxt + dut
\forall t\in \BbbZ ,(3.2)

where A \in \BbbR n\mathrm{x}\times n\mathrm{x} , b \in \BbbR n\mathrm{x} , c \in \BbbR 1\times n\mathrm{x} , d \in \BbbR , and nx \in \BbbN such that x0 \in \BbbR n\mathrm{x}
+ and

ut \in \BbbR +, for all t\geq 0, implies that xt \in \BbbR n\mathrm{x}
+ and yt \in \BbbR + for each t\geq 0. The realization

(3.2) with this property is called a positive realization for g(\scrS ), or equivalently, for
G(\scrS ). Moreover, the set of stable internally positive impulse responses is denoted by
P.

The internal positivity enforces a specific attribute on g(\scrS ) according to Kronecker's
theorem given below.

Theorem 3.2 (see [27]). With respect to impulse response g = (gt)
\infty 
t=0 \in \ell 1, define

Hankel operator Hankel(g) : \ell \infty \rightarrow \ell \infty with entrywise representation in the standard
basis of \ell \infty as follows:

Hankel(g) :=

\left[     
g0 g1 g2 . . .
g1 g2
g2
...

\right]     =
\bigl[ 
gi+j - 2

\bigr] \infty 
i,j=1

.(3.3)

Then, G(z) :=
\sum \infty 

t=0 gtz
 - t is a rational function if and only if the rank of Hankel(g)

is finite; i.e., we have that rank(Hankel(g)) := dim\{ Hankel(g)v
\bigm| \bigm| v \in \ell \infty \} < \infty . We

call impulse response g finite Hankel rank when this property is satisfied.

According to (3.2), we know that G(\scrS )(z) = c(zI - A) - 1b+d is a rational function.
Therefore, due to Theorem 3.2, the internal positivity of g(\scrS ) implies that

rank
\Bigl( 
Hankel

\bigl( 
g(\scrS )

\bigr) \Bigr) 
<\infty .(3.4)

The realization (3.2) needs to have the special structure introduced in the next
theorem.

Theorem 3.3 (see [25]). The impulse response g(\scrS ) \in \ell 1 is internally positive if
and only if there exists a realization as in (3.2) such that the entries of A,b, c, and d
are nonnegative. Moreover, the internal passivity of impulse response g(\scrS ) \in \ell 1 implies
that

g
(\scrS )
t \geq 0 \forall t\in \BbbZ +.(3.5)

Let P denote the set of stable externally positive impulse responses; i.e., P := \{ g =
(gt)

\infty 
t=0 \in \ell 1

\bigm| \bigm| gt \geq 0 \forall t \in \BbbZ +\} = \ell 1 \cap \BbbR \BbbZ +

+ . Theorem 3.3 implies that any internally
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30 MOHAMMAD KHOSRAVI AND ROY S. SMITH

positive impulse response is externally positive as well. Accordingly, due to (3.4), we
have that P \subset P, where the set of impulse responses P is defined as

P :=P \cap 
\Bigl\{ 
g\in \ell 1

\bigm| \bigm| rank(Hankel(g))<\infty 
\Bigr\} 
.(3.6)

Meanwhile, from the next example, which is a modified version of an example given
in [6], one can see that the inclusion in P \subset P is strict; i.e., P \not =P.

Example 1. Let \rho \in (0,1) and \omega be an irrational real number. Define the impulse
response g = (gt)

\infty 
t=0 as gt = \rho t(1 + cos(2\pi \omega t)) for all t \in \BbbZ +. One can see that g is a

nonnegative impulse response with the following transfer function:

G(z) =
1

1 - \rho z - 1
+

1 - \rho cosw z - 1

1 - 2\rho cosw z - 1 + \rho 2z - 2
.(3.7)

Therefore, we have that g \in P. However, there is no positive realization for the
impulse response g [25]. Accordingly, due to Definition 3.1, we know that g is not
internally positive; i.e., g /\in P and P \not =P.

Based on the above discussion, conditions (3.4) and (3.5) are necessary but not
sufficient for g(\scrS ) being an internally positive impulse response. Using the following
theorem, we derive sufficient conditions for the internal positivity of g, which are used
later to formulate the identification problem of internally positive systems.

Theorem 3.4 (see [25]). Let g \in \ell 1 be a nonnegative impulse response and G be
the corresponding transfer function. If G is a strictly proper rational function with a
unique dominant pole \rho \in (0,1), then there exists a positive realization for G.

With respect to each \rho \in (0,1), define P\rho \subset \ell 1 as the set of nonnegative impulse
responses satisfying (3.4) such that we have that

there exists a\in (0,\infty ), lim
t\rightarrow \infty 

\rho  - tgt = a;(3.8)

i.e., limt\rightarrow \infty \rho  - tgt is well defined and equal to a positive real scalar a. Furthermore,
we define P(0,1) as P(0,1) =\cup \rho \in (0,1)P\rho . Based on Theorem 3.4, we have the following
corollary for P\rho and P(0,1).

Corollary 3.5. For any \rho \in (0,1), each impulse response g(\scrS ) \in P\rho is internally
positive; i.e., P\rho \subset P. Moreover, we have that P(0,1) \subset P.

Proof. Let g(\scrS ) \in P\rho and G(\scrS ) be the corresponding transfer function. We know
that g(\scrS ) is a nonnegative impulse response, which satisfies (3.4). Accordingly, due
to Theorem 3.2, there exist nx \in \BbbN , A \in \BbbR n\mathrm{x}\times n\mathrm{x} , b \in \BbbR n\mathrm{x} , c \in \BbbR 1\times n\mathrm{x} , and d \in \BbbR such
that G(\scrS )(z) = c(zI - A) - 1b + d. Note that, since d= g

(\scrS )
0 , we know that d\geq 0. Let

g = (gt)
\infty 
t=0 be the impulse response defined as g0 = 0 and gt = g

(\scrS )
t for t\geq 1. Also, letG

be the transfer function corresponding to g. One can easily see that g is nonnegative,
and also, we have that G(z) =G(\scrS )(z) - d= c(zI - A) - 1b, which is a strictly proper

rational transfer function. Since there exists a > 0 such that limt\rightarrow \infty \rho  - tg
(\scrS )
t = a, we

know that limt\rightarrow \infty \rho  - t(gt  - a\rho t) = 0. Therefore, the spectral radius of the rational
transfer function G(z) - a(1 - \rho z - 1) - 1 is less than \rho , and consequently, \rho is the unique
dominant pole of G(z). Hence, according to Theorem 3.4, G(z) admits a positive
realization; i.e., there exist mx \in \BbbN , A+ \in \BbbR m\mathrm{x}\times m\mathrm{x}

+ , b+ \in \BbbR m\mathrm{x}
+ , and c+ \in \BbbR 1\times m\mathrm{x}

+ such
that G(z) = c+(zI - A+)

 - 1b+. Therefore, we have G(\scrS )(z) = c+(zI - A+)
 - 1b+ + d,

which says that G(\scrS ) has a positive realization due to d \geq 0. Accordingly, g(\scrS ) is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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IDENTIFICATION WITH POSITIVITY SIDE-INFORMATION 31

internally positive and g(\scrS ) \in P; i.e., P\rho \subset P. From this result and the definition of
P(0,1), the last claim is directly implied.

Note that P(0,1) contains exactly the impulse responses satisfying conditions (3.4),
(3.5), and (3.8). Hence, Corollary 3.5 says that any impulse response in \ell 1 that
satisfies these conditions is internally positive. Accordingly, one can employ (3.4),
(3.5), and (3.8) in the identification problem to enforce internal positivity on the
impulse response to be estimated. The next theorem further highlights the importance
of positive systems P(0,1).

Theorem 3.6. The set of impulse responses P(0,1) is dense in P with respect to
p-norm topology for any p\in [1,\infty ].

Proof. Let \varepsilon > 0 and g \in P with transfer function G. Since P \subset \ell 1, each element
of P is a stable impulse response, and therefore, we have that r(G)< 1. Let \rho and a
be positive real scalars such that \rho \in (r(G),1) and a < (1 - \rho )\varepsilon . Consider an impulse

response g(\varepsilon ) = (g
(\varepsilon )
t )\infty t=0 with transfer function G(\varepsilon ), where, for any t \in \BbbZ +, gt is

defined as g
(\varepsilon )
t = gt+a\rho 

t. For any t\in \BbbZ +, one has gt \geq 0, and, since a, \rho > 0, it follows

that g
(\varepsilon )
t \geq 0; i.e., g(\varepsilon ) is a nonnegative impulse response. Moreover, one can easily

see that G(\varepsilon )(z) =G(z) + a(1 - \rho z - 1) - 1. Since g belongs to P, we know that G is a
rational transfer function. Accordingly, due to Theorem 3.2, it follows that (3.4) holds
for g(\varepsilon ). Moreover, \rho > r(G) implies that limt\rightarrow \infty \rho  - tgt = 0. Subsequently, one has

limt\rightarrow \infty \rho  - tg
(\varepsilon )
t = a, and therefore, g(\varepsilon ) \in P\rho \subset P(0,1). For the case of p=\infty , we have

that \| g - g(\varepsilon )\| \infty = supt\in \BbbZ +
a\rho t = a< (1 - \rho )\varepsilon < \varepsilon . Also, for p\in [1,\infty ), one can see that

\| g - g(\varepsilon )\| p = a

\Biggl( \infty \sum 
t=0

\rho pt

\Biggr) 1
p

=
a

(1 - \rho p)
1
p

<
(1 - \rho )\varepsilon 
(1 - \rho p)

1
p

\leq \varepsilon ,

where the last inequality is due to \rho p+(1 - \rho )p \leq 1, which holds for any \rho \in (0,1) and
p\in [1,\infty ).

With respect to each g = (gt)
\infty 
t=0 \in P(0,1), one can define impulse response h =

(ht)
\infty 
t=0 such that ht = gt  - a\rho t for t \in \BbbZ +, where \rho and a are the positive scalars

introduced in (3.8). More precisely, according to (3.8), we know that limt\rightarrow \infty \rho  - tht =
0, and since \rho \in (0,1), property (3.8) implies that h = (ht)

\infty 
t=0 is a stable impulse

response dominated by

f\rho = (ft)
\infty 
t=0 := (\rho t)\infty t=0;(3.9)

i.e., g = (gt)
\infty 
t=0 can be decomposed into a stable impulse response and a first-order pos-

itive impulse response that dominates the stable one. Note that, when g = (gt)
\infty 
t=0 cor-

responds to a finite-dimensional system, the transfer function defined by h = (ht)
\infty 
t=0

has a finite number of poles, each with a magnitude strictly less than \rho \in (0,1).
Following the above discussion, to identify the internally positive impulse response
g = (gt)

\infty 
t=0, we need to estimate \rho , a, and the stable impulse response h = (ht)

\infty 
t=0,

dominated by f\rho = (\rho t)\infty t=0, and meanwhile ensure that g = (gt)
\infty 
t=0 satisfies properties

(3.4) and (3.5). To this end, we also need a suitable hypothesis space for h = (ht)
\infty 
t=0.

Thus, we employ stable RKHSs [12, 52].

Definition 3.7 (see [7, 12]). The nonzero symmetric function k :\BbbZ + \times \BbbZ +\rightarrow \BbbR 
is said to be a kernel if, for any m \in \BbbN , t1, . . . , tm \in \BbbT and a1, . . . , am \in \BbbR , we
have that

\sum m
i=1

\sum m
j=1aik(ti, tj)aj \geq 0. Moreover, the section of kernel k at t \in \BbbZ +

is denoted by kt and defined as the function k(t, \cdot ) : \BbbZ + \rightarrow \BbbR . Furthermore, the
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32 MOHAMMAD KHOSRAVI AND ROY S. SMITH

positive kernel k is said to be stable if, for any u = (ut)t\in \BbbZ + \in \ell \infty , we have that\sum 
t\in \BbbZ +
| 
\sum 

s\in \BbbZ +
usk(t, s)| <\infty .

Theorem 3.8 (see [7, 12]). Given a kernel k : \BbbZ + \times \BbbZ + \rightarrow \BbbR , there exists a
unique Hilbert space \scrH k \subseteq \BbbR \BbbZ + endowed with inner product \langle \cdot , \cdot \rangle \scrH k

and norm \| \cdot \| \scrH k ,
called the RKHS with kernel k, such that, for each t \in \BbbZ +, we have (i) kt \in \scrH k
and (ii) \langle g,kt\rangle \scrH k

= gt for all g = (gt)t\in \BbbZ +
\in \scrH k. The second feature is called the

reproducing property. Moreover, \scrH k \subset \ell 1 if and only if k is a stable kernel. In this
case, \scrH k is said to be a stable RKHS.

Given a stable kernel k, we take\scrH k as the hypothesis space for the stable impulse
response h. Considering the set of input-output data D , we define the empirical loss
function \scrE \rho :\BbbR \times \scrH k\rightarrow \BbbR + as

\scrE \rho (a,h) :=
nD - 1\sum 
i=0

\bigl( 
yti  - aLti(f\rho ) - Lti(h)

\bigr) 2
,(3.10)

where we assume the hyperparameter \rho \in (0,1) is given. The estimation of \rho will
be discussed later. We formulate the identification problem with internal positivity
side-information as the following regularized optimization problem:

min
a\in \BbbR ,h\in \scrH k

\scrE \rho (a,h) + \lambda \| h\| 2\scrH k

s.t. ht + a\rho t \geq 0 \forall t\geq 0,
rank(Hankel(h))<\infty ,
a > 0,

(3.11)

where \lambda > 0 is the regularization weight. Note that, similar to the standard problem
formulation in the literature on kernel-based impulse response identification [53], the
objective function in (3.11) is an empirical loss function regularized with the RKHS
norm of h. This ensures the stability of h and also allows incorporating other features
such as exponential decay and smoothness [10]. Furthermore, one should note that,
from g = h + \alpha f\rho , we have that Hankel(g) = Hankel(h) + Hankel(\alpha f\rho ), which implies
that rank(Hankel(h)) is finite if and only if rank(Hankel(g)) is finite. More precisely,
due to rank(Hankel(\alpha f\rho )) = 1, we know that

rank(Hankel(g)) = rank
\bigl( 
Hankel(h) +Hankel(\alpha f\rho )

\bigr) 
\leq rank(Hankel(h)) + rank(Hankel(\alpha f\rho ))

= rank(Hankel(h)) + 1.

(3.12)

Similarly, we can show that

rank(Hankel(h))\leq rank(Hankel(g)) + 1.(3.13)

Thus, from (3.12) and (3.13), one can conclude that rank(Hankel(h))<\infty is equivalent
to rank(Hankel(g)) <\infty . The next theorem says that the solution of (3.11) leads to
an internally positive estimation of impulse response g. Before proceeding to the
theorem, we need to introduce an assumption.

Assumption 1. There exist C \in \BbbR + and \rho d \in (0, \rho ) such that we have | k(t, t)| \leq 
C\rho 2td for any t\in \BbbZ +.

The primary objective of the condition introduced in Assumption 1 is to ensure
the noted dominancy feature on the elements of \scrH k, the hypothesis space utilized for
the estimation of h = (ht)

\infty 
t=0.
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IDENTIFICATION WITH POSITIVITY SIDE-INFORMATION 33

Theorem 3.9. Let Assumption 1 hold, a and h = (ht)
\infty 
t=1 be a solution pair for

(3.11), and the impulse response g = (gt)
\infty 
t=0 be defined as gt = ht+a\rho 

t for any t\in \BbbZ +.
Then, g is internally positive.

Proof. Let G be the transfer function that corresponds to g. Due to (3.11), the
rank of Hankel operator Hankel(h) is finite. Subsequently, according to Theorem 3.2,
the transfer function corresponding to h, denoted by H, has finite order. On the
other hand, we know that G(z) = az - 1(1 - \rho z - 1) - 1 +H(z). Therefore, the order of
G is finite. Accordingly, due to Theorem 3.2, it follows that rank(Hankel(g)) <\infty ;
i.e., g satisfies (3.4). Also, according to the first constraint in (3.11), one can see
that g is a nonnegative impulse response and that (3.5) holds for g. Moreover, from
the reproducing property of the kernel, we know that ht = \langle kt,h\rangle and \| kt\| 2\scrH k

=
\langle kt,kt\rangle = k(t, t) for any t\in \BbbZ +. Hence, due to the Cauchy--Schwartz inequality and
Assumption 1, we have that

| ht| = | \langle kt,h\rangle | \leq \| kt\| \scrH k\| h\| \scrH k = k(t, t)
1
2 \| h\| \scrH k \leq C

1
2 \| h\| \scrH k\rho 

t
d(3.14)

for any t\in \BbbZ +. Following this, one can see that

0\leq liminf
t\rightarrow \infty 

\rho  - tht \leq limsup
t\rightarrow \infty 

\rho  - tht \leq limsup
t\rightarrow \infty 

\rho  - t| ht| \leq limsup
t\rightarrow \infty 

C
1
2 \| h\| \scrH k\rho 

t
d\rho 

 - t = 0,

where the last equality is due to \rho d \in (0, \rho ). Hence, limt\rightarrow \infty \rho  - tht is well defined,
and we have that limt\rightarrow \infty \rho  - tht = 0. Subsequently, due to the definition of g, it
follows that limt\rightarrow \infty \rho  - tgt = a and g satisfies (3.8). Therefore, g belongs to P\rho , and
consequently, due to Corollary 3.5, g is internally positive.

Remark 3.10. For a, h, and g introduced in Theorem 3.9, we have that

\scrE \rho (a,h) =
nD - 1\sum 
i=0

\bigl( 
yti  - Lti(g)

\bigr) 2
;(3.15)

i.e., in the cost function of (3.11), the first term is the sum of squared errors for the
impulse response fitting when the dominant pole \rho is known.

Let amin > 0 be a specified lower bound for a, which may potentially be very small.
Accordingly, we can reformulate the identification problem as

min
a\in \BbbR ,h\in \scrH k

\scrE \rho (a,h) + \lambda \| h\| 2\scrH k

s.t. ht + a\rho t \geq 0 \forall t\geq 0,
rank(Hankel(h))<\infty ,
a\geq amin.

(3.16)

Indeed, the last constraint in (3.11) is modified to a\geq amin to ensure that a> 0. The
following section studies this problem and presents a practical method for obtaining
its solution.

Remark 3.11. While the last constraint in (3.16) is introduced primarily to ensure
that a > 0, it also allows for avoiding specific technical issues arising from employing
strict inequalities. In many cases, it is feasible to obtain a lower bound, possibly
conservative and imprecise, on the coefficient of the dominant part of the impulse
response that can be used as amin in the identification problem. Alternatively, one
may initially assign an arbitrary positive value to amin and solve the final optimiza-
tion problem in section 4. If the constraint a \geq amin is inactive, the decided choice
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34 MOHAMMAD KHOSRAVI AND ROY S. SMITH

for amin is not a limiting factor. Otherwise, we can scale amin with a positive scalar
strictly smaller than one and repeat the procedure till we reach the numerical solver
precision level. From the perspective of numerical implementation, there is no prac-
tical distinction between a> 0 and a\geq amin when amin is a positive real scalar at the
precision level of numerical solvers; i.e., one may alternatively set amin to this value.

4. Toward a tractable solution. In this section, we investigate the optimiza-
tion problem (3.16), introduced for impulse response identification with internal posi-
tivity side-information. This optimization problem is in an infinite-dimensional space
with an infinite number of constraints. In the following, we analyze this problem and
provide a tractable approach for deriving its solution.

Let \scrV k be the Hilbert space \BbbR \times \scrH k, which is endowed with the inner product
\langle \cdot , \cdot \rangle \scrV k

: \scrV k \times \scrV k\rightarrow \BbbR defined as

\langle (a1,h1), (a2,h2)\rangle \scrV k
= a1a2 + \langle h1,h2\rangle \scrH k

(4.1)

for any a1, a2 \in \BbbR and h1,h2 \in \scrH k. Also, let F \subseteq \scrH k be the set of finite Hankel
rank impulse responses in \scrH k; i.e., F = \{ h \in \scrH k | rank(Hankel(h)) <\infty \} . We define
function \scrJ F : \scrV k\rightarrow \BbbR \cup \{ +\infty \} as

\scrJ F (a,h) = \scrE \rho (a,h) +
\infty \sum 
s=0

\delta Rs(a,h) + \delta F (h) + \lambda \| h\| 2\scrH k
,(4.2)

where Rs \subseteq \scrV k is the set

Rs :=
\Bigl\{ \bigl( 
a, (ht)t\in \BbbZ +

\bigr) 
\in \scrV k

\bigm| \bigm| \bigm| hs + a\rho s \geq 0, a\geq amin

\Bigr\} 
(4.3)

for s\in \BbbZ +. From the definition of \scrJ F , it follows easily that the optimization problem
(3.16) is equivalent to

inf
(a,h)\in \scrV k

\scrJ F (a,h).(4.4)

For (a,h) = (amin,0), where 0 denotes the zero vector in \scrH k, one can easily see that

\scrJ F (amin,0) =

n\sum 
i=1

\bigl( 
yti  - aminLti(f\rho )

\bigr) 2
<\infty .(4.5)

Since, for any (a,h)\in \scrV k, we have that \scrJ F (a,h)\geq 0, it follows that (4.4) is bounded.
However, this argument does not guarantee the existence of a solution for (4.4). In the
following, we show that, under mild conditions, the optimization problem (4.4) admits
a solution when the kernel k meets certain criteria. Let function \scrJ : \scrV k\rightarrow \BbbR \cup \{ +\infty \} 
be defined as

\scrJ (a,h) = \scrE \rho (a,h) +
\infty \sum 
s=0

\delta Rs(a,h) + \lambda \| h\| 2\scrH k
,(4.6)

and consider the optimization problem

inf
(a,h)\in \scrV k

\scrJ (a,h).(4.7)

One can easily see that \scrJ F =\scrJ + \delta F , which implies that

\scrJ (a,h)\leq \scrJ F (a,h) \forall (a,h)\in \scrV k.(4.8)
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IDENTIFICATION WITH POSITIVITY SIDE-INFORMATION 35

Consequently, if (4.7) has a solution (a\ast ,h\ast ) such that the operator Hankel(h\ast ) is
finite rank, then (a\ast ,h\ast ) is a solution for (4.4) as well. In other words, the identifi-
cation problem with internal positivity side-information introduced in (3.16) admits
a solution. Hence, we need to study the solution behavior of (4.7). To this end, we
require several technical assumptions.

Assumption 2. There exists i\in \{ 0,1, . . . , nD  - 1\} such that Lti(f\rho ) \not = 0.

If Assumption 2 does not hold, then, for all i \in \{ 0,1, . . . , nD  - 1\} , we have that
Lti(f\rho ) = 0, which means that the dominant pole is not excited by the input signal
u. Accordingly, this assumption essentially says that the input signal excites the
dominant pole.

Assumption 3. There exists t\leq 0 such that ut = 0 for any t < t.

Assumption 3 is a technical assumption and introduced mainly for the sake of
our mathematical arguments, i.e., to guarantee the continuity of linear operator Lti :
\scrH k\rightarrow \BbbR for i\in \{ 0,1, . . . , nD - 1\} . Indeed, this assumption holds in realistic situations,
such as when the system is initially at rest. Based on these assumptions, we can show
the existence and uniqueness for the solution of (4.7).

Theorem 4.1. Under Assumptions 2 and 3, optimization problem (4.7) admits a
unique solution; i.e., there exist (a\ast ,h\ast )\in \scrV k such that

\scrJ (a\ast ,h\ast )<\scrJ (a,h) \forall (a,h)\in \scrV k\setminus 
\bigl\{ 
(a\ast ,h\ast )

\bigr\} 
.(4.9)

Proof. Let set R \subset \scrV k be defined as R =
\bigcap \infty 

s=0 Rs. Accordingly, one can see that\sum \infty 
s=0 \delta Rs

= \delta R, and hence, we have that

\scrJ (a,h) = \scrE \rho (a,h) + \lambda \| h\| 2\scrH k
+ \delta R(a,h).(4.10)

With respect to each s \in \BbbZ +, define set \scrQ s \subset \scrV k as \scrQ s := \{ (a, (ht)t\in \BbbZ +
) \in \scrV k | hs +

a\rho s \geq 0\} . For any a \in \BbbR , h = (ht)t\in \BbbZ + \in \scrH k, and s \in \BbbZ +, due to the reproducing
property of the kernel, we have that

hs + a\rho s = \langle h,ks\rangle \scrH k
+ a\rho s = \langle (a,h), (\rho s,ks)\rangle \scrV k

.(4.11)

Therefore, we know that \scrQ s \subset \scrV k is a half-space, and hence, it is a nonempty, closed,
and convex subset of \scrV k, for all s \in \BbbZ +. Note that [amin,\infty ) \times \scrH k is a nonempty,
closed, and convex subset of \scrV k. One can see that R =

\bigl( 
\cap \infty s=0\scrQ s

\bigr) 
\cap 
\bigl( 
[amin,\infty )\times \scrH k

\bigr) 
,

and also, we know that (amin,0) belongs to [amin,\infty )\times \scrH k and \scrQ s for each s \in \BbbZ +.
Therefore, R is a nonempty, closed, and convex subset of \scrV k. Consequently, it follows
that \delta R : \scrV \rightarrow \BbbR \cup \{ +\infty \} is a proper, convex, and lower semicontinuous function [51],
where we have that \delta R(amin,0) = 0. With respect to each i \in \{ 0, . . . , nD  - 1\} , define
\varphi i as

\varphi i :=

ti - t\sum 
s=0

uti - sks = utik0 + uti - 1k1 + \cdot \cdot \cdot + utkti - t.(4.12)

Since \scrH k is a linear space that contains the sections of the kernel, we know that
\varphi i \in \scrH k for each i\in \{ 0,1, . . . , nD - 1\} . Moreover, from Assumption 3, the reproducing
property of the kernel, and the linearity property of the inner product, it follows that

Lti(h) =

ti - t\sum 
s=0

hsuti - s =

ti - t\sum 
s=0

\langle h,ks\rangle \scrH k
uti - s =

\Biggl\langle 
h,

ti - t\sum 
s=0

ksuti - s

\Biggr\rangle 
\scrH k

= \langle h,\varphi i\rangle \scrH k
.(4.13)
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36 MOHAMMAD KHOSRAVI AND ROY S. SMITH

Consequently, we have that

aLti(f\rho ) + Lti(h) = aLti(f\rho ) + \langle h,\varphi i\rangle \scrH k
= \langle (a,h),\psi i\rangle \scrV k

,(4.14)

where \psi i \in \scrV k is the vector defined as \psi i = (Lti(f\rho ),\varphi i) for i = 0,1, . . . , nD  - 1.
Therefore, one can see that

\scrJ (a,h)=
nD - 1\sum 
i=0

\bigl( 
yti - \langle (a,h),\psi i\rangle \scrV k

\bigr) 2
+ \lambda \| h\| 2\scrH k

+\delta R(a,h).

Accordingly, since \delta R is proper, convex, and lower semicontinuous and also due to
the fact that \scrJ (amin,0) =

\sum n
i=1

\bigl( 
yti - aminLti(f\rho )

\bigr) 2
<\infty , we know that \scrJ is a proper,

convex, and lower semicontinuous function. This implies that (4.7) has a solution
[51]. Define bilinear operator Q : \scrV k \times \scrV k\rightarrow \BbbR as

Q
\bigl( 
(a1,h1), (a2,h2)

\bigr) 
=

nD - 1\sum 
i=0

\langle (a1,h1),\psi i\rangle \scrV k
\langle (a2,h2),\psi i\rangle \scrV k

+\lambda \langle h1,h2\rangle \scrH k
.(4.15)

For any (a,h)\in \scrV k, one can easily see that

Q
\bigl( 
(a,h), (a,h)

\bigr) 
=

nD - 1\sum 
i=0

\langle (a,h),\psi i\rangle 2\scrV k
+\lambda \| h\| 2\scrH k

\geq 0.(4.16)

Moreover, since \lambda is a positive real scalar, if Q
\bigl( 
(a,h), (a,h)

\bigr) 
= 0, then we need to have

h = 0 and \langle (a,h),\psi i\rangle \scrV k
= 0 for all i= 0,1, . . . , nD  - 1, which implies that aLti(f\rho ) = 0.

Subsequently, due to Assumption 2, we have that a= 0; i.e., (a,h) = (0,0). Based on
this argument, we know that Q is a positive definite bilinear operator. Therefore, the
function f : \scrV k \rightarrow \BbbR , defined as f(v) = Q(v,v) for all v \in \scrV k, is strictly convex [51].
Note that we have that

\scrJ (a,h) = f(a,h) - 2L(a,h) +

nD - 1\sum 
i=0

y2ti + \delta R(a,h),(4.17)

where L : \scrV k\rightarrow \BbbR is the bounded linear operator defined as

L(a,h) =

nD - 1\sum 
i=0

yti\langle (a,h),\psi i\rangle \scrV k
.(4.18)

Since f is strictly convex, L is linear, and \delta R is convex, it follows that \scrJ : \scrV k \rightarrow \BbbR 
is a strictly convex function, and consequently, the solution of optimization problem
(4.7) is unique [51].

Due to Theorem 4.1, we know that the convex program (4.7) has a unique solution
(a\ast ,h\ast ). Meanwhile, one should note that (4.7) is an infinite-dimensional optimiza-
tion problem with an infinite number of constraints. Thus, obtaining the solution
(a\ast ,h\ast ) is not straightforward. On the other hand, since h\ast belongs to the set of sta-
ble impulse responses \scrH k dominated by f\rho , one may intuitively expect that h\ast \in Rm

(see (4.3)) when m \in \BbbZ + is large enough. In other words, the solution to the op-
timization problem (4.7) is determined by a finite number of constraints, and the
remaining constraints are unnecessary. In order to formalize this idea, let function
\scrJ m : \scrV k \rightarrow \BbbR \cup \{ +\infty \} be defined as \scrJ m(a,h) = \scrE \rho (a,h) +

\sum m
s=0 \delta Rs(a,h) + \lambda \| h\| 2\scrH k

,
and consider the following program:
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IDENTIFICATION WITH POSITIVITY SIDE-INFORMATION 37

inf
(a,h)\in \scrV k

\scrJ m(a,h).(4.19)

Note that (4.19) is equivalent to

min
a\in \BbbR ,h\in \scrH k

nD - 1\sum 
i=0

\bigl( 
yti  - aLti(f\rho ) - Lti(h)

\bigr) 2
+\lambda \| h\| 2\scrH k

s.t. ht + a\rho t \geq 0 \forall t\in \{ 0,1, . . . ,m\} ,
a\geq amin.

(4.20)

The next theorem guarantees the existence and uniqueness of solution for optimization
problem (4.19), or equivalently, for program (4.20).

Theorem 4.2. Under the assumptions of Theorem 4.1, for each m\in \BbbZ +, problem
(4.19) admits a unique solution (a(m),h(m)).

Proof. Define set P(m) \subset \scrV k as P(m) =
\bigcap m

s=0 Rs. By replacing P with P(m) in
the proof of Theorem 4.1 and then repeating the same steps, the claim follows.

Once the existence and uniqueness for the solution of (4.19) are established by
Theorem 4.2, a reasonable concern is the asymptotic behavior of (a(m),h(m)), espe-
cially with respect to (a\ast ,h\ast ). The next theorem reveals this link, saying that the
solution (a(m),h(m)) coincides with (a\ast ,h\ast ) when m is large enough. Before pro-
ceeding further, we need to introduce additional definitions. Define a0 as a0 :=
argmina\geq a\mathrm{m}\mathrm{i}\mathrm{n}

\scrJ (a,0). Since \scrJ (\cdot ,0) :\BbbR \rightarrow \BbbR is a quadratic function because

\scrJ (a,0) =
nD - 1\sum 
i=0

\bigl( 
yti  - aLti(f\rho )

\bigr) 2 \forall a\in \BbbR ,(4.21)

one can easily see that

a0 =min

\left\{   amin,

\Biggl( 
nD - 1\sum 
i=0

Lti(f\rho )
2

\Biggr)  - 1 nD - 1\sum 
i=0

ytiLti(f\rho )

\right\}   ,(4.22)

which is well defined following Assumption 2. Additionally, we define C0 and m0,
respectively, as C0 :=\scrJ (a0,0) and

m0 :=min

\biggl\{ 
m\in \BbbZ +

\bigm| \bigm| \bigm| \bigm| m\geq 1

2

ln(C0C) - ln(a2min\lambda )

ln(\rho ) - ln(\rho d)

\biggr\} 
.(4.23)

Note that m0 is defined only based on the data and a priori known constants.

Theorem 4.3. Under Assumptions 2 and 3, the following statements hold:
i) Given Assumption 1, there exists m\in \BbbZ + such that a(m) = a\ast and h(m) =h\ast .
ii) For m\in \BbbZ +, one has that (a

(m),h(m)) = (a\ast ,h\ast ) if and only if \scrJ (a(m),h(m))<
\infty .

iii) If (a(m),h(m)) = (a\ast ,h\ast ), for a nonnegative integer m, then a(m) = a\ast and
h(m) =h\ast for every m\geq m.

Proof. Part i) For any a\geq amin and any m\in \BbbZ +, we have that

\scrJ m(a,0) =\scrJ (a,0) =
n\sum 

i=1

\bigl( 
yti  - aLti(f\rho )

\bigr) 2 \in [0,\infty ).(4.24)
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38 MOHAMMAD KHOSRAVI AND ROY S. SMITH

Note that C0 =\scrJ m(a0,0) for anym\in \BbbZ +. If C0 = 0, then (a0,0) needs to be a solution
for optimization problems (4.7) and (4.19), where, because of their uniqueness, we
have that (a0,0) = (a(m),h(m)) = (a\ast ,h\ast ). Now, we consider the case C0 > 0. Based
on the definition of m0, one can easily see that

amin\rho 
s  - \lambda  - 1

2C
1
2
0 C

1
2 \rho sd \geq 0(4.25)

for any s \geq m0. Let m be an arbitrary integer such that m \geq m0, and consider
the convex program (4.19) with unique solution (a(m),h(m)). We know that h

(m)
s +

a(m)\rho s \geq 0 for each s= 0,1, . . . ,m. On the other hand, for s >m, from the reproducing
property and the Cauchy--Schwartz inequality, it follows that

h(m)
s + a(m)\rho s = \langle h(m),ks\rangle \scrH k

+ a(m)\rho s \geq  - \| h(m)\| \scrH k k(s, s)
1
2 + amin\rho 

s.(4.26)

Note that, due to \scrJ m(a(m),h(m)) \leq \scrJ m(a0,0), one has that \lambda \| h(m)\| 2\scrH k
\leq \scrJ m(a(m),

h(m)) \leq C0, which implies that \| h(m)\| \scrH k \leq \lambda  - 
1
2C

1
2
0 . Hence, according to (4.25),

(4.26), and Assumption 1, we have that h
(m)
s + a(m)\rho s \geq amin\rho 

s  - \lambda  - 1
2C

1
2
0 C

1
2 \rho sd \geq 

0, which implies that h
(m)
s + a(m)\rho s \geq 0 for all s \in \BbbZ +. Therefore, one can see

that
\sum \infty 

s=0 \delta Rs(a
(m),h(m)) = 0, and subsequently, we have that \scrJ (a(m),h(m)) =

\scrJ m(a(m),h(m)). On the other hand, according to the definition of (a\ast ,h\ast ) and (a(m),
h(m)), we know that \scrJ m(a(m),h(m)) \leq \scrJ m(a\ast ,h\ast ) and \scrJ (a\ast ,h\ast ) \leq \scrJ (a(m),h(m)).
Accordingly, since \scrJ m(a,h)\leq \scrJ (a,h) for all (a,h)\in \scrV k, one can see that

\scrJ m(a(m),h(m))\leq \scrJ m(a\ast ,h\ast )\leq \scrJ (a\ast ,h\ast )\leq \scrJ (a(m),h(m)) =\scrJ m(a(m),h(m)).(4.27)

Hence, we have that \scrJ m(a(m),h(m)) = \scrJ m(a\ast ,h\ast ), and subsequently, due to Theo-
rem 4.2, one has (a(m),h(m)) = (a\ast ,h\ast ). This concludes the proof of Part i).

Part ii) Consider the case that \scrJ (a(m),h(m))<\infty . This implies that
\sum 

s\geq 0 \delta Rs
(a(m),

h(m)) = 0, and consequently, \scrJ (a(m),h(m)) = \scrJ m(a(m),h(m)). One can see that
\scrJ m(a,h)\leq \scrJ m(a,h)\leq \scrJ (a,h) for any m\leq m and each (a,h) \in \scrV k. Accordingly, due
to the definition of (a\ast ,h\ast ) and (a(m),h(m)), we have that

\scrJ m(a(m),h(m))\leq \scrJ m(a\ast ,h\ast )\leq \scrJ (a\ast ,h\ast )\leq \scrJ (a(m),h(m)) =\scrJ m(a(m),h(m)),(4.28)

which implies that (a\ast ,h\ast ) is a solution for (4.19). Since this solution is unique
according to Theorem 4.2, we need to have (a(m),h(m)) = (a\ast ,h\ast ). The converse is
straightforward and concludes the proof of Part ii).

Part iii) From the previous part, we know that \scrJ (a(m),h(m))<\infty . Consequently,
we have that

\sum 
s\geq 0 \delta Rs

(a(m),h(m)) = 0, which implies that \scrJ m(a(m),h(m)) =\scrJ m(a(m),

h(m)) = \scrJ (a(m),h(m)). Accordingly, due to the definition of (a(m),h(m)) and (a(m),
h(m)), we have that

\scrJ m(a(m),h(m)) =\scrJ m(a(m),h(m))\leq \scrJ m(a(m),h(m))\leq \scrJ m(a(m),h(m)).(4.29)

Therefore, we know that (a(m),h(m)) is the unique solution of optimization prob-
lem inf(a,h)\in \scrV k \scrJ m(a,h), and consequently, we have that (a(m),h(m)) = (a(m),h(m)) =
(a\ast ,h\ast ), where the second equality holds by assumption. This concludes the proof of
Part iii) and the proof of Theorem 4.3.

The following observation is a direct result of Theorem 4.3.
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IDENTIFICATION WITH POSITIVITY SIDE-INFORMATION 39

Corollary 4.4. Under the assumptions of Theorem 4.3, there exists a nonneg-
ative integer m\ast such that (a(m),h(m)) = (a\ast ,h\ast ) if and only if m \geq m\ast . Indeed, for

any m<m\ast , there exists s\in \BbbZ + such that h
(m)
s + a(m)\rho s < 0. This implies that

m\ast =min
\bigl\{ 
m\in \BbbZ +

\bigm| \bigm| \scrJ (a(m),h(m))<\infty 
\bigr\} 
.(4.30)

Moreover, for m0 introduced in (4.23), we have that m\ast \leq m0.

Corollary 4.5. Let m \in \BbbZ + be such that the impulse response g(m) := (h
(m)
s +

a(m)\rho s)\infty s=0 is not nonnegative; i.e., m<m\ast . Then, based on the proof of Theorem 4.3,
one can see that there exists s \in \BbbZ + such that gs < 0 and s \leq m0, where m0 is
introduced in (4.23).

Due to Theorem 4.3 and Corollary 4.4, it suffices to consider only a finite number
of constraints in optimization problem (4.7) as in (4.19). The feasible set of this
optimization problem is of infinite dimension, which makes the problem intractable
in the current format. In the remainder of this section, we derive a practical heuristic
for obtaining the solution of (3.16) using the representer theorem [19, 35, 60] and an
additional definition. Before proceeding to the next theorem, we define the matrices
O\in \BbbR nD\times nD , L\in \BbbR nD\times (m+1), and K\in \BbbR (m+1)\times (m+1), respectively, as

O(i, j) = Lti - 1
(Ltj - 1

(k)), 1\leq i, j\leq nD ,

L(i, j) = Lti - 1
(kj - 1), 1\leq i\leq nD ,1\leq j\leq m+1,

K(i, j) = k(i - 1, j  - 1), 1\leq i, j\leq m+1.

(4.31)

Also, the vectors y \in \BbbR nD , b \in \BbbR nD , and c \in \BbbR m+1 are defined, respectively, as
y := [yti ]

nD - 1
i=0 , b := [Lti(f\rho )]

nD - 1
i=0 , and c := [\rho j ]mj=0.

Theorem 4.6. Let Assumption 3 hold. Then, for any nonnegative integer m,
there exists x(m) = [x

(m)
0 , . . . , x

(m)
nD+m]\sansT \in \BbbR nD+m+1 such that the unique solution of

(4.20), h(m) = (h
(m)
t )\infty t=0, admits the following parametric representation:

h
(m)
t =

nD\sum 
i=0

x
(m)
i Lti(kt) +

m\sum 
s=0

x
(m)
nD+sks(t) \forall t\in \BbbZ +.(4.32)

Moreover, (a(m),x(m)) is the solution of the following convex QP:

min
a\in \BbbR , x\in \BbbR nD+m+1

\bigm\| \bigm\| \bigm\| y - ba - 
\bigl[ 
O L

\bigr] 
x
\bigm\| \bigm\| \bigm\| 2+\lambda x\sansT \biggl[ O L

L\sansT K

\biggr] 
x

s.t.
\bigl[ 
L\sansT K

\bigr] 
x+ ca\geq 0,

a\geq amin.

(4.33)

Proof. For s= 0, . . . ,m, let \scrA s be the set

\scrA s =
\bigl\{ 
(a,x)\in \BbbR 2

\bigm| \bigm| x+ a\rho s \geq 0, a\geq amin

\bigr\} 
,(4.34)

and define function e : \BbbR nD+m+1 \rightarrow \BbbR \cup \{ +\infty \} such that, for any x \in \BbbR nD+m+1, we
have

e(x0, . . . , xnD+m) =min
a\in \BbbR 

\Biggl[ 
nD - 1\sum 
i=0

\bigl( 
yti  - aLti(f\rho ) - xi

\bigr) 
+

m\sum 
s=0

\delta \scrA s
(a,xnD+s)

\Biggr] 
.(4.35)

Also, for i= 0, . . . , nD  - 1 and s= 0, . . . ,m, let \varphi i and \varphi nD+s be defined, respectively,
as in (4.12) and \varphi nD+s = ks. Due to the reproducing property and (4.13), we know
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40 MOHAMMAD KHOSRAVI AND ROY S. SMITH

that Lti(h) = \langle h,\varphi i\rangle \scrH k
and hs = \langle h,ks\rangle \scrH k

for any h = (hs)
\infty 
s=0. Accordingly, due to

(4.35), one can see that (4.19) is equivalent to the optimization problem

min
h\in \scrH k

e
\Bigl( 
\langle h,\varphi 0\rangle \scrH k

, . . . , \langle h,\varphi nD+m\rangle \scrH k

\Bigr) 
+ \lambda \| h\| 2\scrH k

(4.36)

with unique solution h(m). Therefore, due to the representer theorem [19], we know

that h(m) belongs to the span of \varphi 0,\varphi 1, . . . ,\varphi nD+m; i.e., there exists x(m) = [x
(m)
i ]nD+m

i=0

\in \BbbR nD+m+1 such that

h(m) =

nD+m\sum 
i=0

x
(m)
i \varphi i =

nD - 1\sum 
i=0

x
(m)
i \varphi i +

m\sum 
s=0

x
(m)
nD+sks.(4.37)

Due to the reproducing property, we know that h
(m)
t = \langle h(m),kt\rangle \scrH k

for any t \in \BbbZ +.
Accordingly, from (4.13), (4.37), the linearity property of the inner product, and the
reproducing property, we have that

h
(m)
t =

\Biggl\langle 
nD - 1\sum 
i=0

x
(m)
i \varphi i +

m\sum 
s=0

x
(m)
nD+sks,kt

\Biggr\rangle 
\scrH k

=

nD - 1\sum 
i=0

x
(m)
i \langle \varphi i,kt\rangle \scrH k

+

m\sum 
s=0

x
(m)
nD+s\langle ks,kt\rangle \scrH k

=

nD - 1\sum 
i=0

x
(m)
i Lti(kt) +

m\sum 
s=0

x
(m)
nD+sks(t).

(4.38)

Moreover, for j = 0, . . . , nD  - 1, we have that

Ltj(h
(m)) = Ltj

\Biggl( 
nD - 1\sum 
i=0

x
(m)
i \varphi i +

m\sum 
s=0

x
(m)
nD+sks

\Biggr) 

=

nD - 1\sum 
i=0

x
(m)
i Ltj(Lti(k)) +

m\sum 
s=0

x
(m)
nD+sLtj(ks).

(4.39)

Considering optimization problem (4.20), which is equivalent to (4.19), we replace h
with the parametric form given in (4.37). Hence, due to (4.31), (4.38), (4.39), and
the definition of vectors b, c, and h(m), the optimization problem (4.33) follows.

Remark 4.7. Let the system be initially at rest and the sampling times be T =
\{ 0,1, . . . , nD - 1\} . With respect to each n1, n2 \in \BbbZ +, we define matrix Kn1,n2

\in \BbbR n1\times n2

such that Kn1,n2
(i, j) = k(i - 1, j  - 1) for i = 1, . . . , n1 and j = 1, . . . , n2. Then, one

can easily see that O = TuKnD ,nDT
\sansT 
u , L = TuKnD ,m+1 , and K = Km+1,m+1, where

Tu \in \BbbR n\times n is the Toeplitz matrix defined as Tu = [ui - j ]
nD
i,j=1.

Theorem 4.6 offers a practical way to solve problem (4.20). Due to Theorem 4.3 and
Corollary 4.4, we know that this solution coincides with the solution of (4.6) provided
that m\geq m\ast . Nevertheless, compared to (4.6), the main optimization problem (4.2)
has an additional constraint on the rank of resulting Hankel operator being finite. In
the remainder of this section, we fill this gap by employing the notion of finite Hankel
rank kernels.

Definition 4.8. We call the kernel k :\BbbZ +\times \BbbZ + a finite Hankel rank if, for each
s\in \BbbZ +, the section of the kernel at s is a finite Hankel rank impulse response; i.e.,
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IDENTIFICATION WITH POSITIVITY SIDE-INFORMATION 41

rank(Hankel(ks))<\infty \forall s\in \BbbZ +.(4.40)

The standard stable kernels in the literature [18, 53] are tuned/correlated (TC),
diagonal/correlated (DC), and stable spline (SS), which are, respectively, denoted by
kTC, kDC, and kSS and, for any s, t\in \BbbZ +, defined as

kTC(s, t) = \beta max(s,t) \forall s, t\in \BbbZ +,(4.41)

kDC(s, t) = \beta 
s+t
2 \gamma | s - t| \forall s, t\in \BbbZ +,(4.42)

kSS(s, t) =
1

2
\beta s+t+max(s,t)  - 1

6
\beta 3max(s,t) \forall s, t\in \BbbZ +,(4.43)

where \beta \in [0,1) and \gamma \in [ - 1,1] are the corresponding hyperparameters. Furthermore,
the second-order generalizations of the TC and DC kernels, respectively, denoted by
kTC2 and kDC2, have been recently introduced in [71] as

kTC2(s, t) = 2\beta max(s,t)+1 + (1 - \beta )(1 + | t - s| )\beta max(s,t) \forall s, t\in \BbbZ +,

(4.44)

kDC2(s, t) =
1

1 - \xi 
\beta max(s,t)(1 - (1 - \beta )\xi | s - t| +1) - \xi 2

1 - \xi 
\beta max(s,t)+1 \forall s, t\in \BbbZ +

(4.45)

with hyperparameters \beta , \xi \in [0,1). As shown by the next theorem, these common
kernels are finite Hankel rank.

Theorem 4.9. The finite support kernels, kTC, kDC, kTC2, kDC2, and kSS are
finite Hankel rank kernels.

Proof. Let c00 be the space of impulse responses that are finitely nonzero; i.e., for
each g = (gs)

\infty 
s=0, there exists ng \in \BbbZ + such that gs = 0 for all s\geq ng. Note that, for

such g \in c00, we have that Hankel(g)v \in \BbbR n\mathrm{g} \times \{ 0\} for any v \in \ell \infty . This implies that
rank

\bigl( 
Hankel(g)

\bigr) 
\leq ng <\infty , and therefore, g is a finite Hankel rank impulse response.

Let k : \BbbZ + \times \BbbZ +\rightarrow \BbbR be a finite support kernel; i.e., there exists nk \in \BbbZ + such that
k(s, t) = 0 when s \geq nk or t \geq nk. One can easily see that kt \in c00 for any t \in \BbbZ +.
Therefore, we have that rank

\bigl( 
Hankel(kt)

\bigr) 
\leq nk <\infty , and consequently, k is a finite

Hankel rank kernel.
Let f\beta = (ft)

\infty 
t=0 be the impulse response defined as ft = \beta t for t \in \BbbZ +. One

can easily see that \{ Hankel(f\beta )v
\bigm| \bigm| v \in \ell \infty \} = \{ f\beta v

\bigm| \bigm| v \in \BbbR \} . Therefore, we have
that rank

\bigl( 
Hankel(f\beta )

\bigr) 
= 1, and consequently, f\beta is a finite Hankel rank impulse re-

sponse. For the TC kernel introduced in (4.41) and t \in \BbbZ +, consider the section
of kTC at t, i.e., (kTC,t)

\infty 
s=0. Note that we have kTC,t = f\beta + g, where the im-

pulse response g = (gs)
\infty 
s=0 is defined by gs = \beta max(s,t)  - \beta s for s \in \BbbZ +. One can

easily see that gs = 0 for all s \geq t, which implies that g \in c00, and subsequently,
rank

\bigl( 
Hankel(g)

\bigr) 
<\infty . Accordingly, since the rank of Hankel(f\beta ) is finite, it follows

that rank
\bigl( 
Hankel(kTC,t)

\bigr) 
<\infty , and consequently, kTC is a finite Hankel rank kernel.

Based on similar arguments, one can show the same result for kDC, kTC2, kDC2,
and kSS and conclude the proof.

Based on the notion of finite Hankel rank kernel and our previous discussion,
we can show when the solution of our estimation problem (3.16) can be obtained by
solving (4.33).

Theorem 4.10. Under the assumptions of Theorem 4.3, if kernel k is finite
Hankel rank, then the unique solution of (4.19) satisfies
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42 MOHAMMAD KHOSRAVI AND ROY S. SMITH

rank
\bigl( 
Hankel(h(m))

\bigr) 
<\infty .(4.46)

Moreover, (a(m),h(m)) is a solution of (3.16) provided that m\geq m\ast .

Proof. Due to Theorem 4.6 and (4.32), we know that

h(m) =

nD - 1\sum 
i=0

x
(m)
i

\Biggl( 
ti - t\sum 
s=0

uti - sks

\Biggr) 
+

m\sum 
s=0

x
(m)
nD+sks,(4.47)

where x(m) = [x
(m)
0 , . . . , x

(m)
nD+m]\sansT \in \BbbR nD+m+1 is the solution of (4.33) (see (4.12) and

(4.37)). Rearranging the terms in (4.47), one can see that there exist real scalars
x0, . . . , xt, where t=max\{ m,tnD - 1  - t\} , such that we have that h(m) = x0k0 + \cdot \cdot \cdot +
xtkt. Therefore, we know that Hankel(h(m)) =

\sum t
s=0 xsHankel(ks), and subsequently,

it follows that rank(Hankel(h(m))) \leq 
\sum t

s=0 rank(Hankel(ks)), which is finite. For
m\geq m\ast , we know that (a(m),h(m)) is the solution of (4.7). Accordingly, due to (4.46),
we have that \scrJ F (a(m),h(m)) = \scrJ (a(m),h(m))<\infty . Also, for any (a,h) \in \scrV k, one can
see that \scrJ (a(m),h(m)) \leq \scrJ (a,h) \leq \scrJ F (a,h). Hence, it follows that \scrJ F (a(m),h(m)) \leq 
\scrJ F (a,h) for any (a,h)\in \scrV k; i.e., (a

(m),h(m)) is a solution of (3.16).

Based on the above discussion, in order to solve the optimization problem (3.16),
it suffices to find the solution of QP (4.33), where m \geq m\ast and k is a given finite
Hankel rank kernel such as kTC, kDC, kTC2, kDC2, or kSS. Corollary 4.4 provides
a bound for m\ast . In some special cases, we can provide a more practical bound.

Theorem 4.11. Let the assumptions of Theorem 4.3 hold. If k is either the TC
kernel (4.41) or the DC kernel (4.42), then we have that m\ast \leq tnD - 1  - t+ 1.

Proof. Let m = tnD - 1  - t + 1, and consider (a(m),h(m)) the unique solution of

(4.19). For t = 0,1, . . . ,m, we know that h
(m)
t + a(m)\rho t \geq 0. On the other hand, due

to the definition of the TC kernel and (4.47), we have that h
(m)
t = \beta t - mh

(m)
m for any

t > m. Note that, due to Assumption 1, we have that \beta s \leq C\rho sd for all s \in \BbbZ +. This
implies that \beta \leq \rho 2d. Therefore, since \rho 2d <\rho , we have that

h
(m)
t + a(m)\rho t = \beta t - mh(m)

m + a(m)\rho m\rho t - m

\geq \beta t - mh(m)
m + \beta t - ma(m)\rho m = \beta t - m(h(m)

m + a(m)\rho m)\geq 0,
(4.48)

where the last equality is due to h
(m)
m +a(m)\rho m \geq 0. Therefore, (a(m),h(m)) is feasible

for (4.7), and subsequently, we have that \scrJ (a(m),h(m)) < \infty . Hence, according to
Theorem 4.3, we know that (a(m),h(m)) = (a\ast ,h\ast ), which implies that m\ast \leq m =
tnD - 1 - t+1. Based on a similar argument, one can show the same result for the DC
kernel.

5. Numerical implementation algorithm. Based on the discussion in sec-
tions 3.2 and 4, to identify a system \scrS with internal positivity side-information, we
need to solve the convex QP (4.33). This optimization problem can be solved us-
ing standard off-the-shelf solvers such as MATLAB's quadprog or cvx supported by
MOSEK [30]. Note that (4.33) depends on nonnegative integer parameter m, which
is supposed to be larger or equal to the parameter m\ast introduced in Corollary 4.4.
One possible approach is to set the value of m to m0, which is introduced in (4.23)
and guaranteed to have the desired property. Also, one may take initially m equal to
tnD  - t+ 1 and iteratively increase it until m exceeds m\ast and a nonnegative impulse
response is obtained. This is of special interest when a suitable QP solver with a
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IDENTIFICATION WITH POSITIVITY SIDE-INFORMATION 43

Algorithm 5.1 System identification with internal positivity side-information
(PosiID)

1: Input: Set of data D , finite Hankel rank stable kernel k, dominant pole \rho ,
regularization weight \lambda , and \Delta m \in \BbbN .

2: m \leftarrow tnD - 1  - t+ 1
3: while stopping/exiting condition is not met, do

4: Calculate vectors y = [yti ]
nD - 1
i=0 , b = [Lti(f\rho )]

nD - 1
i=0 , and c = [\rho j ]mj=0.

5: Obtain matrices O, L, and K as in (4.31) or by Remark 4.7
6: Solve QP (4.33) for a(m) and x(m).
7: Obtain h(m) based on (4.32), or equivalently, (4.47).

8: g(m) \leftarrow (a(m)\rho s + h
(m)
s )\infty s=0

9: if g(m) is nonnegative, then exit the loop;
10: else, m \leftarrow m+\Delta m

11: end
12: end
13: Input: Internally positive impulse response g\ast and also x\ast , a\ast , h\ast .

warm-starting feature is available [29]. In this iterative approach, at each iteration

m, one should check whether the estimated impulse response g(m) = (g
(m)
s )\infty s=0 is

nonnegative, or equivalently, m \geq m\ast . According to Corollary 4.5, for verifying this
stopping condition, it is enough to see whether g

(m)
s \geq 0 holds for s \leq m0. Due to

(4.23), we know that m0 depends logarithmically on the parameters of problem, and
thus, the size of m0 is not prohibitively large in the practical examples. According to
Theorem 4.11, when the TC or DC kernels are employed and the initial value of m is
set to tnD  - t+ 1, the introduced iterative scheme takes only a single iteration. The
outline of this approach is summarized in Algorithm 5.1.

In order to initialize Algorithm 5.1, in addition to the set of data D , we need a
suitable kernel k and also an estimation of the dominant pole \rho and the regularization
weight \lambda . In general, deciding on the type of kernel depends on the shape and smooth-
ness of the impulse response to be identified [53]. Once the type of kernel k is set, we
need to estimate the vector of hyperparameters \theta k that characterizes k. Accordingly,
vector \theta defined as \theta := [\rho ,\lambda , \theta k] \in \Theta is the overall vector of hyperparameters to be
determined, where \Theta denotes the space of feasible hyperparameters. For estimating
\theta , we employ schemes with a cross-validation nature [66] equipped with a subsequent
Bayesian optimization heuristic [63]. To this end, we need a model evaluation metric
v : \Theta \rightarrow \BbbR described based on the measurement data and the identification strategy.
Subsequently, the hyperparameters \theta can be estimated as \^\theta := argmin\theta \in \Theta v(\theta ). De-
pending on the choice of cross-validation scheme, the model evaluation function can
be defined in various forms, including the ones discussed below.

\bullet Holdout cross-validation (HCV): In this scheme, we split the index set of
data, denoted by \scrI and defined as \scrI = \{ 0,1, . . . , nD  - 1\} , into two mutually
disjoint subsets \scrI T and \scrI V for training and validation, respectively. The
model evaluation metric vHCV : \Theta \rightarrow \BbbR is then defined based on the prediction
error of the validation data as

vHCV(\theta ) =
1

| \scrI V| 
\sum 
i\in \scrI \mathrm{V}

\bigl( 
yti  - Lti(g(\theta ,\scrI T))

\bigr) 2
,(5.1)
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44 MOHAMMAD KHOSRAVI AND ROY S. SMITH

where g(\theta ,\scrI T) is the result of the proposed identification method using the
training data (i.e., the data with index in \scrI T) and the hyperparameters \theta \in \Theta .

\bullet Leave-one-out cross-validation (LOOCV): For each i \in \scrI , let g - i(\theta ) be the
identification result obtained using the data with index set \scrI \setminus \{ i\} and the
given hyperparameters \theta \in \Theta . Accordingly, the LOOCV model evaluation
metric vLOOCV : \Theta \rightarrow \BbbR is defined as

vLOOCV(\theta ) =
1

nD

nD\sum 
i=1

\bigl( 
yti  - Lti(g - i(\theta ))

\bigr) 2
(5.2)

for any \theta \in \Theta .
\bullet Generalized cross-validation (GCV): For any i= 0,1, . . . , nD  - 1, let gi(\theta ) be

the identification result given hyperparameters \theta \in \Theta and using the data with
index in \scrI , assuming that yti is replaced with Lt(g - i(\theta )). Define the function
\zeta : \Theta \rightarrow \BbbR as

\zeta (\theta ) =

nD - 1\sum 
i=0

Lti(gi(\theta )) - Lti(g(\theta ))

Lti(g - i(\theta )) - yti
(5.3)

for any \theta \in \Theta , where g(\theta ) is the identified impulse response using the data
with index set \scrI and the given hyperparameters \theta \in \Theta . Subsequently, the
GCV model evaluation metric vGCV : \Theta \rightarrow \BbbR is defined, for any \theta \in \Theta , as

vGCV(\theta ) =
1\bigl( 

nD  - \zeta (\theta )
\bigr) 2 nD - 1\sum 

i=0

\bigl( 
yti  - Lti(g(\theta ))

\bigr) 2
.(5.4)

\bullet Approximate generalized cross-validation (AGCV): In the AGCV scheme, the
model evaluation metric vAGCV : \Theta \rightarrow \BbbR is defined as a modified version of
vGCV, where function \zeta : \Theta \rightarrow \BbbR in (5.4) is replaced with an approximation
derived from the solution of (4.33). Further details are provided in [66].

Since the dependency of the mentioned model evaluation metrics on the hyperpa-
rameters \theta has a black-box oracle form, we employ Bayesian optimization algorithms
such as Gaussian Process - Lower Confidence Bound (GP-LCB) or similar alternatives
[63]. These heuristics are readily available in MATLAB's bayesopt function.

Remark 5.1. To evaluate vHCV and vAGCV, one needs to solve a single QP or
each. In contrast, the evaluation of vLOOCV and vGCV requires solving nD and 2nD +1
QPs, respectively. Therefore, the computational complexity of LOOCV and GCV is
significantly higher compared to that of HCV and AGCV.

Remark 5.2. Note that, in the introduced problem formulation and the proposed
identification scheme, no probabilistic assumption has been made on the variables.
Accordingly, the hyperparameters are estimated using methods with a cross-validation
nature. Extending the proposed methodology by employing a suitable probabilistic
framework allows for utilizing other hyperparameter estimation techniques, such as
Empirical-Bayes and Stein's unbiased risk estimator.

6. Further internal positivity side-information and extensions. In sec-
tion 3.2, we employed positive system realization theory to formulate the identification
problem with internal positivity side-information. The resulting optimization problem
(3.16) is formulated using the fact that the transfer function of system \scrS is in the form
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IDENTIFICATION WITH POSITIVITY SIDE-INFORMATION 45

G(\scrS )(z) = F (\scrS )(z) +H(\scrS )(z) =
a

1 - \rho z - 1
+H(\scrS )(z);(6.1)

i.e., the transfer function G(\scrS ) has a dominant part F (\scrS )(z) := a(1  - \rho z - 1) - 1 with
\rho \in (0,1) and a suppressed part H(\scrS ). Given that the impulse response of the system
satisfies specific properties, the introduced formulation can be further extended to the
following cases:

G(\scrS )(z) = F (\scrS )(z) +H(\scrS )(z) =
N (\scrS )(z - 1)

(1 - \rho z - 1)n
+H(\scrS )(z)(6.2)

and

G(\scrS )(z) = F (\scrS )(z) +H(\scrS )(z) =
N (\scrS )(z - 1)

1 - \rho nz - n
+H(\scrS )(z),(6.3)

where N (\scrS ) \in \BbbR n - 1[z
 - 1] is a polynomial with degree less than n and H(\scrS ) is a transfer

function with r(H(\scrS ))< \rho ; i.e., the spectral radius of H(\scrS ) is less than \rho . Note that,
according to [6, Theorem 9], the transfer function of a positive system with nonzero
spectral radius is in form of (6.2) or (6.3), which are generalizations of (6.1). These
cases correspond to the situations where, in addition to internal positivity, we may
have further information on the dominant part of the impulse response of the system.
In this section, we discuss these extensions. Before proceeding further, one should
note that, according to [6, Theorem 8], when the transfer function G(\scrS ) has zero
spectral radius (r(G(\scrS )) = 0), the impulse response g(\scrS ) is internally positive if g(\scrS ) is
nonnegative. Furthermore, we know that g(\scrS ) belongs to c00; i.e., there exists ng \in \BbbZ +

such that G(\scrS )(z) =
\sum n\mathrm{g} - 1

t=0 gtz
 - t and gt = 0 for all t \geq ng. Compared to the other

cases of internal positivity side-information, the case of zero spectral radius provides
the weakest information. Indeed, this knowledge only says the g(\scrS ) is a nonnegative
and finitely nonzero sequence and provides no further information about the behavior
of the impulse response of system \scrS .

Remark 6.1. Based on the discussion above, the identification problem with the
internal positivity side-information and the extra knowledge r(G(\scrS )) = 0 can be for-
mulated as

min
g\in \scrH k

nD - 1\sum 
i=0

\bigl( 
yti  - Lti(g)

\bigr) 2
+ \lambda \| g\| 2\scrH k

s.t. gt \geq 0 \forall t= 0,1, . . . , ng  - 1,
(6.4)

where k is a kernel that is zero on \BbbZ 2
+\setminus \{ 0, . . . , ng  - 1\} 2. One can show that, for

g\ast = (g\ast t )
\infty 
t=0, the solution of (6.4), and t = 0,1, . . . , ng  - 1, we have that g\ast t =\sum nD

i=0 xiLti(kt) +
\sum n\mathrm{g} - 1

s=0 xnD+sks(t), where x = [xi]
nD+n\mathrm{g} - 1
i=1 is the solution of the

following convex QP:

min
x\in \BbbR nD+n\mathrm{g}

\bigm\| \bigm\| y - [O L]x
\bigm\| \bigm\| 2 + \lambda x\sansT 

\biggl[ 
O L
L\sansT K

\biggr] 
x

s.t. [L\sansT K]x\geq 0.
(6.5)

6.1. Nonsimple unique dominant pole. We first discuss the extension that
corresponds to (6.2); i.e., the transfer function has a unique dominant pole with
multiplicity n, where n can be larger than one. The mathematical proofs are omitted
since they are similar to the ones given in section 4.

With respect to each n\in \BbbN and \rho \in (0,1), let F\alpha ,n be the following set of impulse
responses:
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46 MOHAMMAD KHOSRAVI AND ROY S. SMITH

F\alpha ,n =

\Biggl\{ 
f = (ft)

\infty 
t=0 \in \ell 1

\bigm| \bigm| \bigm| lim
t\rightarrow \infty 

t - n+1\rho  - tft > 0, (1 - \rho z - 1)n
\infty \sum 
t=0

ftz
 - t \in \BbbR n - 1[z

 - 1]

\Biggr\} 
.

Also, define the impulse response sets P\alpha ,n and P(0,1),n, respectively, as

P\alpha ,n =
\Bigl\{ 
g = f + h\in P

\bigm| \bigm| \bigm| f \in F\alpha ,n,h= (ht)
\infty 
t=0 \in \ell 1, lim

t\rightarrow \infty 
\rho  - tht = 0

\Bigr\} 
(6.6)

and P(0,1),n =\cup \rho \in (0,1)P\alpha ,n. According to [6, Theorem 11] and based on an argument
similar to the proof of Corollary 3.5, one can show that, for any \rho \in (0,1), the impulse
responses in P\alpha ,n are internally positive. Indeed, P\alpha ,n is exactly the set of impulse
responses of positive systems with dominant pole structure as in (6.2). Thus, to
identify impulse response g(\scrS ) with internal positivity side-information in the sense
that g(\scrS ) \in P\alpha ,n, we need to estimate f and h with the properties given in (6.6). One
can see that each f = (ft)

\infty 
t=0 \in F\alpha ,n is uniquely characterized, in terms of real positive

number a and vector a = [aj ]
n - 2
j=0 \in \BbbR 

n - 2, as ft = atn - 1\rho t+
\sum n - 2

j=0 ajt
j\rho t for all t\in \BbbZ +.

Subsequently, we redefine the empirical loss function \scrE \rho ,n :\BbbR \times \BbbR n - 2 \times \scrH k\rightarrow \BbbR + as

\scrE \rho ,n(a,a,h) :=
nD - 1\sum 
i=0

\left[  yti  - Lti

\left(  af\rho ,n - 1 +

n - 2\sum 
j=0

ajf\rho ,j

\right)   - Lti(h)

\right]  2

,(6.7)

where, for j = 0, . . . , n  - 1, the impulse response f\alpha ,j is defined as f\alpha ,j = (tj\rho t)\infty t=0.
According to (6.7), the identification problem (3.16) is updated to the following opti-
mization problem:

min
a\in \BbbR ,h\in \scrH k,a\in \BbbR n - 1

\scrE \rho ,n(a,a,h) + \lambda \| h\| 2\scrH k
+ \varepsilon \| a\| 2

s.t. ht + \rho t
\biggl[ 
atn - 1 +

n - 2\sum 
j=0

ajt
j

\biggr] 
\geq 0 \forall t\geq 0,

rank(Hankel(h))<\infty ,
a\geq amin,

(6.8)

where amin > 0 is a given lower bound for a and \varepsilon > 0 is a regularization weight. Based
on the same line of argument as in section 4, we can present a finite-dimensional convex
QP equivalent to (6.8). Before proceeding further, we define matrices B\in \BbbR nD\times n and
C\in \BbbR (m+1)\times n as follows:

B(i, j) = Lti - 1
(f\rho ,j - 1), 1\leq i\leq nD ,1\leq j\leq n,

C(i, j) = (i - 1)j - 1\rho i - 1, 1\leq i\leq m+1,1\leq j\leq n.(6.9)

Theorem 6.2. Let Assumptions 1, 2, and 3 hold and k be a finite Hankel rank
kernel. Also, with respect to each m \in \BbbZ +, let (a(m),a(m),x(m)) be the solution of
convex QP:

min
x\in \BbbR nD+m+1,a\in \BbbR ,a\in \BbbR n - 1

\bigm\| \bigm\| \bigm\| \bigm\| y - B

\biggl[ 
a
a

\biggr] 
 - 
\bigl[ 
O L

\bigr] 
x

\bigm\| \bigm\| \bigm\| \bigm\| 2 + \lambda x\sansT 
\biggl[ 
O L
L\sansT K

\biggr] 
x+ \varepsilon \| a\| 2

s.t.
\bigl[ 
L\sansT K

\bigr] 
x+C

\biggl[ 
a
a

\biggr] 
\geq 0,

a\geq amin,

(6.10)

and the impulse response h(m) be defined according to (4.32). Then, there exists m\ast 

such that (a(m),a(m),h(m)) is a solution of (6.8) for any m\geq m\ast . Moreover, for any
m1,m2 \geq m\ast , we have that (a(m1),a(m1),h(m1)) = (a(m2),a(m2),h(m2)).
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IDENTIFICATION WITH POSITIVITY SIDE-INFORMATION 47

6.2. Multiple simple dominant poles. In this section, we introduce the ex-
tension corresponding to the case in (6.3); i.e., the dominant part of the transfer
function has specially structured multiple simple dominant poles.

For any n \in \BbbN and any \rho \in (0,1), define the impulse response sets F
(n)
\alpha , P

(n)
\alpha ,

and P
(n)
(0,1), respectively, as

F (n)
\alpha =

\Biggl\{ 
f =(ft)

\infty 
t=0 \in P

\bigm| \bigm| liminf
t\rightarrow \infty 

\rho  - tft > 0, (1 - \rho nz - n)

\infty \sum 
t=0

ftz
 - t\in \BbbR n - 1[z

 - 1]

\Biggr\} 
,

P(n)
\alpha =

\Bigl\{ 
g = f + h\in P

\bigm| \bigm| f \in F (n)
\alpha ,h= (ht)

\infty 
t=0 \in \ell 1, liminf

t\rightarrow \infty 
\rho  - t| ht| = 0

\Bigr\} 
,

(6.11)

and P
(n)
(0,1) =\cup \rho \in (0,1)P

(n)
\alpha . One can easily see that, for n= 1, these sets coincide with

P\alpha and P(0,1). Due to [6, Theorem 12] and by following the same line of argument

as in the proof of Corollary 3.5, we can show that P
(n)
\alpha contains internally positive

impulse responses for any \rho \in (0,1). Accordingly, the identification with internal

positivity side-information in the sense that the impulse response belongs to P
(n)
\alpha 

translates to the estimation of f and h with the properties given in (6.11). Note that,

with respect to each f = (ft)
\infty 
t=0 \in F

(n)
\alpha , there exist real scalars a

(r)
0 , . . . , a

(r)
n - 1 and

a
(i)
0 , . . . , a

(i)
n - 1 such that, for any t\in \BbbZ +, we have that

ft = real

\Biggl( 
n - 1\sum 
k=0

(a
(r)
k + ja

(i)
k )\rho t\omega kt

\Biggr) 
,0 = imag

\Biggl( 
n - 1\sum 
k=0

(a
(r)
k + ja

(i)
k )\rho t\omega kt

\Biggr) 
,(6.12)

where \omega = e
2\pi 
n ; i.e., f is uniquely characterized in terms of vectors a(r)= [a

(r)
0 , . . . , a

(r)
n - 1]

\sansT 

and a(i) = [a
(i)
0 , . . . , a

(i)
n - 1]

\sansT . Hence, we can reintroduce the empirical loss function

\scrE (n)\rho :\BbbR n \times \BbbR n \times \scrH k\rightarrow \BbbR + as follows:

\scrE (n)\rho (a(r),a(i),h) :=

nD - 1\sum 
i=0

\Biggl[ 
yti  - Lti

\Biggl( 
n - 1\sum 
k=0

\bigl( 
a
(r)
k f

(r)
\alpha ,k  - a

(i)
k f

(i)
\alpha ,k

\bigr) \Biggr) 
 - Lti(h)

\Biggr] 2
,

where f
(r)
\alpha ,k :=

\bigl( 
\rho t real(\omega kt)

\bigr) \infty 
t=0

and f
(i)
\alpha ,k :=

\bigl( 
\rho t imag(\omega kt)

\bigr) \infty 
t=0

for k = 0, . . . , n  - 1.
Therefore, the identification problem (3.16) is modified to

min
a(\mathrm{r}),a(\mathrm{i})\in \BbbR n,h\in \scrH k

\scrE (n)\rho (a(r),a(i),h) + \lambda \| h\| 2\scrH k
+ \varepsilon \| Ea(r)\| 2 + \varepsilon \| Ea(i)\| 2

s.t. ht +
n - 1\sum 
k=0

\bigl( 
a
(r)
k f

(r)
\alpha ,k  - a

(i)
k f

(i)
\alpha ,k

\bigr) 
\geq 0 \forall t\geq 0,

n - 1\sum 
k=0

\bigl( 
a
(i)
k f

(r)
\alpha ,k + a

(r)
k f

(i)
\alpha ,k

\bigr) 
= 0 \forall t\geq 0,

liminf
t\rightarrow \infty 

\rho  - t
n - 1\sum 
k=0

\bigl( 
a
(r)
k f

(r)
\alpha ,k  - a

(i)
k f

(i)
\alpha ,k

\bigr) 
\geq amin,

rank(Hankel(h))<\infty ,

(6.13)

where amin > 0 is a small positive real scalar, \varepsilon > 0 is a regularization weight, and
E \in \BbbR n\times n is defined as E = diag(0,1,1, . . . ,1). By an argument similar to section 4,
we can derive an equivalent finite-dimensional convex QP for (6.13). Define matrices
Vm \in \BbbR m\times n, B(r) \in \BbbR nD\times n, and B(i) \in \BbbR nD\times n, respectively, as

Vm(i, j) = \omega (i - 1)(j - 1), 1\leq i\leq m,1\leq j\leq n,
B(r)(i, j) = Lti - 1

(f
(r)
\rho ,j - 1), 1\leq i\leq nD ,1\leq j\leq n,

B(i)(i, j) = Lti - 1
(f

(i)
\rho ,j - 1), 1\leq i\leq nD ,1\leq j\leq n

(6.14)
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48 MOHAMMAD KHOSRAVI AND ROY S. SMITH

for m\in \BbbZ + \cup \{ \infty \} . Also, let V
(r)
m , V

(i)
m , and Dm be defined, respectively, as real(Vm),

imag(Vm), and diag(1, \rho , . . . , \rho m - 1). One can see that the first constraint in (6.13) is

equivalent to h +D\infty V
(r)
\infty a(r)  - D\infty V

(i)
\infty a(i) \geq 0. The second constraint in (6.13) is

D\infty V(r)
\infty a(i) +D\infty V(i)

\infty a(r) = 0,(6.15)

which implies that V
(r)
\infty a(i) +V

(i)
\infty a(r) = 0 due to \rho > 0. As \omega n = 1, we know that Vm

is an n-periodic Vandermonde matrix. Therefore, (6.15) is equivalent to V
(r)
n a(i) +

V
(i)
n a(r) = 0. Similarly, one can show that the third constraint in (6.13) is equivalent

to V
(r)
n a(r) +V

(i)
n a(i) \geq amin1n. Based on the discussion above and similar to those in

section 4, we can present the finite-dimensional convex QP equivalent to (6.13).

Theorem 6.3. Let the assumptions of Theorem 6.2 hold. For any m \in \BbbZ +, let
(a(r,m),a(i,m),x(m)) be the solution of the convex QP

min
x\in \BbbR nD+m+1

a(\mathrm{r}), a(\mathrm{i})\in \BbbR n

\bigm\| \bigm\| \bigm\| y - B(r)a(r) - B(i)a(i) - 
\bigl[ 
O L

\bigr] 
x
\bigm\| \bigm\| \bigm\| 2+\lambda x\sansT \biggl[ O L

L\sansT K

\biggr] 
x+\varepsilon \| Ea(r)\| 2+\varepsilon \| Ea(i)\| 2

s.t.
\bigl[ 
L\sansT K

\bigr] 
x+Dm+1

\Bigl[ 
V

(r)
m+1  - V

(i)
m+1

\Bigr] \biggl[ a(r)
a(i)

\biggr] 
\geq 0,

V
(r)
n a(i) +V

(i)
n a(r) = 0,

V
(r)
n a(r) +V

(i)
n a(i) \geq amin1n,

(6.16)

and define the impulse response h(m) by (4.32). Then, there exists m\ast such that
(a(r,m),a(i,m),x(m)) is a solution of (6.8) for each m\geq m\ast . Moreover, for any integer
m1,m2 \geq m\ast , we have that (a(r,m1),a(i,m1),h(m1)) = (a(r,m2),a(i,m2),h(m2)).

7. Numerical experiments. In this section, we provide numerical and exper-
imental examples to verify the efficacy and performance of the proposed method for
impulse response identification with internal positivity side-information. The first ex-
ample concerns the impact of incorporating internal positivity side-information on the
estimation quality and provides a comparative analysis for the proposed identification
scheme through a Monte Carlo analysis. The second example concerns the efficacy
of the proposed identification scheme on a set of data collected from an experimental
heating system.

7.1. Monte Carlo experiment. Consider a system \scrS described with the im-
pulse response g(\scrS ) = (g

(\scrS )
t )\infty t=0 defined as g

(\scrS )
t = \rho t(1 + \beta t cos(2\pi \omega t)) for all t \in \BbbZ +,

where \rho and \beta are real scalars in (0,1) and \omega is an irrational real number in (0,1).
One can easily see that g(\scrS ) is a nonnegative impulse response with transfer

function

G(\scrS )(z)=
1

1 - \rho z - 1
+

1 - \rho \beta cosw z - 1

1 - 2\rho \beta cosw z - 1 + \rho 2\beta 2z - 2
.(7.1)

Therefore, according to Corollary 3.5, we know that g(\scrS ) is internally positive.

7.1.1. Simulation configuration. In this numerical experiment, we set \rho =
0.98, \beta = 0.92, and \omega = 1

10\pi 
2. Using MATLAB's idinput function, we generate a set of

400 random binary input signals, each with length of nD = 200. The system is initially
at rest. The input signals are applied to the system, and the corresponding noiseless
output is obtained. We consider three signal-to-noise ratio (SNR) levels of 0 dB, 5
dB, and 10 dB. With respect to each of these SNR levels and each output signal, we
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IDENTIFICATION WITH POSITIVITY SIDE-INFORMATION 49

generate a zero-mean white Gaussian signal as the additive measurement uncertainty.
The resulting noisy output is measured at time instants ti = i for i = 0,1, . . . ,199.
Accordingly, with respect to each of the mentioned SNR levels, we have 120 sets of
input-output data.

7.1.2. Comparison methods. For estimating the impulse response of system,
we utilize the input-output data sets and the following identification methods:

A. The first method is based on the subspace approach implemented by MAT-
LAB's n4sid and using the true order of system \scrS . Once we obtain an
initial estimation \~g(1), the result is projected on the positive orthant by
\^g(1) =max(\~g(1),0), where the max operation is performed coordinatewise.

B. In the second method, we employ the least-squares approach, and then, simi-
lar to method A, the projection on the positive orthant is applied to estimate
a nonnegative finite impulse response. More precisely, \^g(2) is obtained by
\^g(2) = max(\~g(2),0), where \~g(2) := argming\in \BbbR n\mathrm{g} \| Tug  - y\| 2 and vector y and
Toeplitz matrix Tu are, respectively, defined in Remark 4.7.

C. This method is based on a constrained least-squares approach, where the
external positivity feature is enforced by setting the feasible set to the pos-
itive orthant. In other words, the impulse response is estimated as \^g(3) :=
argming\in \BbbR n\mathrm{g}

+
\| Tug - y\| 2.

D. and E. The fourth and fifth methods are, respectively, similar to the second
and third approaches, but with an additional kernel-based regularization term
included in the corresponding optimization problems. For method D, one
can employ MATLAB's impulseest function and then take the positive part
of the resulting FIR. Also, method E essentially corresponds to (6.4), or
equivalently, (6.5).

F. The sixth method is a Bayesian FIR estimation scheme for externally positive
systems [69, 70]. This scheme is based on maximum a posteriori estimation,
where the employed prior is a maximum entropy distribution with support
on positive orthant and a kernel-based covariance.

PosiID. The last method is the scheme proposed in this paper and summarized in
Algorithm 5.1 (see section 5).

One should note that, in all of the mentioned methods, the resulting impulse responses
are nonnegative. In order to have a fair comparison, in the kernel-based methods D,
E, F, and PosiID, the same kernel type (4.42) is employed.

7.1.3. Evaluation metrics and results. For evaluating the performances of
these methods, we compare the resulting bias-variance trade-offs, as shown in Table 1.
Moreover, for further quantitative comparison of the estimated impulse responses, we
use coefficient of determination, or R-squared, which is denoted by fit and defined as

fit(\^g) = 100\times 
\biggl( 
1 - \| \^g - g(\scrS )\| 2

\| g(\scrS )\| 2

\biggr) 
,(7.2)

where \^g is the estimated impulse response. Figure 1 compares the resulting quality
of fit for the different SNR levels.

7.1.4. Discussion. We have several observations from the Monte Carlo nu-
merical experiment. As shown in Figure 1, all methods are outperformed by the
proposed identification scheme, which maximally incorporates the internal positivity
side-information. Indeed, the side-information helps exclude spurious model candi-
dates and subsequently increases the accuracy of the estimation. The bias-variance
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Fig. 1. Box plots of the R-squared metric for the estimation results of the different methods
and SNR levels.

results presented in Table 1 confirm this fact. While each of these methods estimates
a nonnegative impulse response and partially integrates positivity side-information,
we can see that the level of integrated side-information by methods A, B, C, and D
is less than that of PosiID; i.e., the proposed approach incorporates this information
in the model maximally. Comparing methods B and C, one can see the former is a
two-step procedure where the estimation is performed in the first step and nonnega-
tivity of the impulse response is obtained in the second step, while the latter approach
is a single-step procedure that considers impulse response nonnegativity during the
estimation. On the other hand, according to the fitting results shown in Figure 1, C
performs better than method B. For methods D and E, we have a similar argument.
This observation highlights the importance of jointly considering the positivity with
the impulse response estimation, as done by the proposed method. Method A knows
the actual order of the system. However, according to the results presented in Figure 1
and Table 1, one can see that positivity is a more advantageous and stronger side-
information for impulse response estimation, especially when it is incorporated with
its maximum strength as it is done by PosiID. Finally, one can see that the kernel-
based methods D, E, F, and PosiID have better estimation performance compared to
the methods A, B, and C, which is expected [53].
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IDENTIFICATION WITH POSITIVITY SIDE-INFORMATION 51

Table 1
The bias, variance, and mean squared error (MSE) resulting from the identification methods

listed in section 7.1. The last four columns correspond to the proposed approach, which integrates
internal positivity.

Method A B C D E F
PosiID PosiID PosiID PosiID

(HCV) (LOOCV) (GCV) (AGCV)

0
d
B Bias 66.0476.0386.0867.0700.1971.1934.1702.1644.133.2)ĝ(

Var 401.2069.1499.1750.2538.3062.4652.486.6190.2220.3)ĝ(

MSE 064.2646.2948.4156.5723.641.8181.4264.8)ĝ( 2.413 2.539

5
d
B Bias 773.0873.0573.0284.0097.0059.0080.1208.0928.062.2)ĝ(

Var 077.0667.0308.0990.1496.1691.2226.2069.5460.793.1)ĝ(

MSE 449.0133.1713.2990.3987.3306.6157.705.6)ĝ( 0.909 0.912

1
0
d
B Bias 512.0112.0612.0672.0295.0367.0979.0867.0077.062.2)ĝ(

Var 033.0233.0863.0274.0179.0752.1606.1206.2368.207.0)ĝ(

MSE 514.0845.0323.1938.1465.2291.3654.328.5)ĝ( 0.376 0.376

u

A/D
Board

D/A
Board

Power
Amplifier

Thermocouple
Interface

y
Plate

Fig. 2. The experimental system (left) and the corresponding block-diagram schematic (right).

7.2. Heating system experiment. In this example, we verify the efficacy of
the proposed identification scheme on a set of data collected from an experimental
nonlinear heating system [21].

Figure 2 shows the experiment configuration and the corresponding control and
measurement schematic. In this experiment, a metal plate is heated up by a 300-watt
Halogen lamp mounted almost 5 cm above the center of the plate. On the other side
of the plate, a thermocouple is placed, measuring the temperature. The thermocouple
is connected to a computer via an analog-to-digital (A/D) board for sampling and
recording the temperature measurements. The lamp is supplied by a thyristor-based
power amplifier driven by a digital-to-analog (D/A) board and controlled by a com-
puter. The sampling time for control and data acquisition is Ts = 2s. Accordingly, we
have a nonlinear discrete-time system from the input of the D/A board to the output
of the A/D board, which is intuitively close to a linear positive system. The nonlin-
earity of the system is mainly due to the power amplifier [21]. Moreover, the system
is subject to delay and disturbances from the ambient. To make the identification
problem more challenging, we disregard the nonlinearity and external disturbances
issues.

The system is actuated by a piecewise constant input, and the output of the
system is measured for 801 samples. The collected input-output data are shown in
Figure 3, which is also available in the DAISY database [15]. We employ these data
for identifying the system using the identification methods discussed in section 7.1
and then compare the results. Since the lamp failed near the end of experiment and
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Fig. 3. The measurement data corresponding to the experiments.

Table 2
R-squared metric evaluations of test data for different identification methods.

Method N + ARX A B C D E F PosiID

Fit [\%] 48.5 83.4 81.2 80.4 81.7 89.7 85.8 92.2

the tail of data has less fidelity, we discard the last 101 samples (200 seconds). We
split the data into a training set, to be used for identification, and a test set, which
is the base for comparing the identified models. The sample training set contains
the first 500 measurement samples, and the next 200 data points belong to the test
set. The quality of the estimated models is evaluated based on the R-squared metric,
which measures the prediction precision on the test data and is defined as follows:

fit(\^g) = 100\times 

\left(  1 - 

\Biggl[ \sum 
501\leq i\leq 700(yti  - \^yti)

2\sum 
501\leq i\leq 700(yti  - y)2

\Biggr] 1
2

\right)  ,(7.3)

where \^ys denotes the predicted output for time instant s and y is the average of
output measurements in the test set. In [21], a Hammerstein model is derived, where
the static nonlinear block is a sinusoidal map derived by curve-fitting and the linear
block is an autoregressive exogenous (ARX) model with estimated coefficients. We
denote this method by N+ARX. In the kernel-based methods D, E, F, and PosiID,
we have employed the TC kernel (4.41). Also, for the methods that are estimating
an FIR, we have set ng = 200. We evaluate the R-squared metric on the test data
for this model and the ones estimated by the above methods. Table 2 reports fitting
results where one can see that the proposed method provides more accurate fit. This
is also confirmed by Figure 4, which compares the test data with the output signals
predicted by methods N+ARX, E, F, and PosiID. It seems that for obtaining models
with more accurate predictions, one should identify a model with nonlinear dynamics.

8. Conclusion. In this paper, we have considered the problem of impulse re-
sponse identification when side-information is available on the internal positivity of
the system. We have employed the realization theory of positive systems to introduce
the identification scheme in which the positivity side-information is integrated into the
identified model. The resulting formulation is in the form of a constrained optimiza-
tion over an RKHS endowed with a stable kernel, where the constraints are suitably
designed to incorporate the positivity side-information in the solution. We have bor-
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Test and Predicted Data

Fig. 4. The figure compares the test measurement data and the predicted values.

rowed techniques and tools from optimization theory in normed spaces to derive an
equivalent finite-dimensional convex QP. This gives a computationally tractable iden-
tification scheme that incorporates the internal positivity side-information and has
the well-known advantageous features of kernel-based methods. We have performed
a Monte Carlo numerical experiment to compare the performance of the proposed
approach with FIR identification methods considering only the external positivity fea-
ture. This has empirically studied the impact of integrating positivity side-information
in terms of estimation bias, variance, and mean squared error. The results show that
the proposed identification approach, which integrates internal positivity, outperforms
the schemes considering only external positivity. We have observed that incorpo-
rating internal positivity side-information reduces the estimation bias and variance.
This observation is expected since FIR external positivity implies the weakest form
of information about an internally positive system and fails to exploit the complete
information of internal positivity. We have further evaluated the effectiveness of the
proposed identification scheme using data from a heating system experiment.

REFERENCES

[1] A. A. Ahmadi and B. El Khadir, Learning dynamical systems with side information (short
version), Proc. Mach. Learn. Res., 120 (2020), pp. 718--727, http://proceedings.mlr.press/
v120/ahmadi20a.

[2] A. Y. Aravkin, J. V. Burke, and G. Pillonetto, Generalized system identification with
stable spline kernels, SIAM J. Sci. Comput., 40 (2018), pp. B1419--B1443, https://doi.org/
10.1137/16M1070517.

[3] J. Back and A. Astolfi, Design of positive linear observers for positive linear systems via
coordinate transformations and positive realizations, SIAM J. Control Optim., 47 (2008),
pp. 345--373, https://doi.org/10.1137/060663891.

[4] R. Bellman, Dynamic programming, system identification, and suboptimization, SIAM J.
Control, 4 (1966), pp. 1--5, https://doi.org/10.1137/0304001.

[5] L. Benvenuti, A. De Santis, and L. Farina, On model consistency in compartmental sys-
tems identification, Automatica, 38 (2002), pp. 1969--1976, https://doi.org/10.1016/S0005-
1098(02)00107-3.

[6] L. Benvenuti and L. Farina, A tutorial on the positive realization problem, IEEE Trans.
Automat. Control, 49 (2004), pp. 651--664, https://doi.org/10.1109/TAC.2004.826715.

[7] A. Berlinet and C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability and
Statistics, Springer, Cham, 2011.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/2

2/
25

 to
 1

54
.5

9.
12

4.
11

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

http://proceedings.mlr.press/v120/ahmadi20a
http://proceedings.mlr.press/v120/ahmadi20a
https://doi.org/10.1137/16M1070517
https://doi.org/10.1137/16M1070517
https://doi.org/10.1137/060663891
https://doi.org/10.1137/0304001
https://doi.org/10.1016/S0005-1098(02)00107-3
https://doi.org/10.1016/S0005-1098(02)00107-3
https://doi.org/10.1109/TAC.2004.826715


54 MOHAMMAD KHOSRAVI AND ROY S. SMITH

[8] M. Bisiacco and G. Pillonetto, Kernel absolute summability is sufficient but not necessary
for RKHS stability, SIAM J. Control Optim., 58 (2020), pp. 2006--2022, https://doi.org/
10.1137/19M1278442.

[9] R. F. Brown, Compartmental system analysis: State of the art , IEEE Trans. Bio-Mec. Eng.,
BME-27 (1980), pp. 1--11, https://doi.org/10.1109/TBME.1980.326685.

[10] T. Chen, On kernel design for regularized LTI system identification, Automatica, 90 (2018),
pp. 109--122, https://doi.org/10.1016/j.automatica.2017.12.039.

[11] T. Chen, H. Ohlsson, and L. Ljung, On the estimation of transfer functions, regulariza-
tions and Gaussian processes -- Revisited , Automatica, 48 (2012), pp. 1525--1535, https://
doi.org/10.1016/j.automatica.2012.05.026.

[12] T. Chen and G. Pillonetto, On the stability of reproducing kernel Hilbert spaces of
discrete-time impulse responses, Automatica, 95 (2018), pp. 529--533, https://doi.org/
10.1016/j.automatica.2018.05.017.

[13] M. Colombino and R. S. Smith, A convex characterization of robust stability for posi-
tive and positively dominated linear systems, IEEE Trans. Automat. Control, 61 (2015),
pp. 1965--1971, https://doi.org/10.1109/TAC.2015.2480549.

[14] M. A. H. Darwish, G. Pillonetto, and R. T\'oth, The quest for the right kernel in Bayesian
impulse response identification: The use of OBFs, Automatica, 87 (2018), pp. 318--329,
https://doi.org/10.1016/j.automatica.2017.10.007.

[15] B. De Moor, P. De Gersem, B. De Schutter, and W. Favoreel, DAISY: A database for
identification of systems, J. A, 38 (1997), pp. 4--5.

[16] A. De Santis and L. Farina, Identification of positive linear systems with Poisson out-
put transformation, Automatica, 38 (2002), pp. 861--868, https://doi.org/10.1016/S0005-
1098(01)00277-1.

[17] N. K. Dhingra, M. Colombino, and M. R. Jovanovi\'c, Structured decentralized control of pos-
itive systems with applications to combination drug therapy and leader selection in directed
networks, IEEE Trans. Control Network Syst., 6 (2018), pp. 352--362, https://doi.org/
10.1109/TCNS.2018.2820499.

[18] F. Dinuzzo, Kernels for linear time invariant system identification, SIAM J. Control Optim.,
53 (2015), pp. 3299--3317, https://doi.org/10.1137/130920319.

[19] F. Dinuzzo and B. Sch\"olkopf, The representer theorem for Hilbert spaces: A necessary and
sufficient condition, in Advances in Neural Information Processing Systems 2012, 2012,
pp. 189--196.

[20] X. Duan, S. Jafarpour, and F. Bullo, Graph-theoretic stability conditions for Metzler ma-
trices and monotone systems, SIAM J. Control Optim., 59 (2021), pp. 3447--3471, https://
doi.org/10.1137/20M131802X.

[21] G. Dullerud and R. Smith, Sampled-data model validation: An algorithm and experimental
application, Int. J. Robust Nonlinear Control, 6 (1996), pp. 1065--1078, https://doi.org/
10.1002/(SICI)1099-1239(199611)6:9/10\langle ;1065::AID-RNC269\rangle ;3.0.CO;2-N.

[22] Y. Ebihara, D. Peaucelle, and D. Arzelier, Decentralized control of interconnected positive
systems using L1-induced norm characterization, in 2012 IEEE 51st IEEE Conference on
Decision and Control (CDC), IEEE, 2012, pp. 6653--6658.

[23] Y. Ebihara, D. Peaucelle, and D. Arzelier, Stability and persistence analysis of large scale
interconnected positive systems, in 2013 European Control Conference (ECC), IEEE, 2013,
pp. 3366--3371.

[24] N. Everitt, G. Bottegal, and H. Hjalmarsson, An empirical Bayes approach to identifica-
tion of modules in dynamic networks, Automatica, 91 (2018), pp. 144--151, https://doi.org/
10.1016/j.automatica.2018.01.011.

[25] L. Farina and S. Rinaldi, Positive Linear Systems: Theory and Applications, Wiley, Hobo-
ken, NJ, 2011.

[26] E. Fornasini and M. E. Valcher, Reachability of a class of discrete-time positive switched
systems, SIAM J. Control Optim., 49 (2011), pp. 162--184, https://doi.org/10.1137/
090757551.

[27] P. A. Fuhrmann, A Polynomial Approach to Linear Algebra, Springer, Cham, 2011.
[28] Y. Fujimoto, I. Maruta, and T. Sugie, Extension of first-order stable spline kernel to encode

relative degree, IFAC-PapersOnLine, 50 (2017), pp. 14016--14021, https://doi.org/10.1016/
j.ifacol.2017.08.2425.

[29] J. Gondzio, P. Gonz\'alez-Brevis, and P. Munari, Large-scale optimization with the
primal-dual column generation method , Math. Program. Comput., 8 (2016), pp. 47--82,
https://doi.org/10.1007/s12532-015-0090-6.

[30] M. Grant and S. Boyd, CVX: Matlab Software for Disciplined Convex Programming, version
2.1, 2014, https://cvxr.com/cvx/.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/2

2/
25

 to
 1

54
.5

9.
12

4.
11

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/19M1278442
https://doi.org/10.1137/19M1278442
https://doi.org/10.1109/TBME.1980.326685
https://doi.org/10.1016/j.automatica.2017.12.039
https://doi.org/10.1016/j.automatica.2012.05.026
https://doi.org/10.1016/j.automatica.2012.05.026
https://doi.org/10.1016/j.automatica.2018.05.017
https://doi.org/10.1016/j.automatica.2018.05.017
https://doi.org/10.1109/TAC.2015.2480549
https://doi.org/10.1016/j.automatica.2017.10.007
https://doi.org/10.1016/S0005-1098(01)00277-1
https://doi.org/10.1016/S0005-1098(01)00277-1
https://doi.org/10.1109/TCNS.2018.2820499
https://doi.org/10.1109/TCNS.2018.2820499
https://doi.org/10.1137/130920319
https://doi.org/10.1137/20M131802X
https://doi.org/10.1137/20M131802X
https://doi.org/10.1002/(SICI)1099-1239(199611)6:9/10<;1065::AID-RNC269>;3.0.CO;2-N
https://doi.org/10.1002/(SICI)1099-1239(199611)6:9/10<;1065::AID-RNC269>;3.0.CO;2-N
https://doi.org/10.1016/j.automatica.2018.01.011
https://doi.org/10.1016/j.automatica.2018.01.011
https://doi.org/10.1137/090757551
https://doi.org/10.1137/090757551
https://doi.org/10.1016/j.ifacol.2017.08.2425
https://doi.org/10.1016/j.ifacol.2017.08.2425
https://doi.org/10.1007/s12532-015-0090-6
https://cvxr.com/cvx/


IDENTIFICATION WITH POSITIVITY SIDE-INFORMATION 55

[31] C. Grussler and A. Rantzer, On second-order cone positive systems, SIAM J. Control
Optim., 59 (2021), pp. 2717--2739, https://doi.org/10.1137/20M1337454.

[32] C. Grussler, J. Umenberger, and I. R. Manchester, Identification of externally positive
systems, in 2017 IEEE 56th Annual Conference on Decision and Control, IEEE, 2017,
pp. 6549--6554.

[33] W. M. Haddad, V. Chellaboina, and Q. Hui, Nonnegative and Compartmental Dynamical
Systems, Princeton University Press, Princeton, NJ, 2010.

[34] D. Hinrichsen and E. Plischke, Robust stability and transient behaviour of positive linear
systems, Vietnam J. Math., 35 (2007), pp. 429--462.

[35] M. Khosravi, Representer theorem for learning Koopman operators, IEEE Trans. Automat.
Control, 68 (2023), pp. 2995--3010, https://doi.org/10.1109/TAC.2023.3242325.

[36] M. Khosravi, A. Iannelli, M. Yin, A. Parsi, and R. S. Smith, Regularized system identifi-
cation: A hierarchical Bayesian approach, IFAC-PapersOnLine, 53 (2020), pp. 406--411.

[37] M. Khosravi and R. S. Smith, Kernel-based identification of positive systems, in 2019 IEEE
58th Annual Conference on Decision and Control, IEEE, 2019, pp. 1740--1745, https://
doi.org/10.1109/CDC40024.2019.9029276.

[38] M. Khosravi and R. S. Smith, Convex nonparametric formulation for identification of gra-
dient flows, IEEE Control Syst. Lett., 5 (2021), pp. 1097--1102, https://doi.org/10.1109/
LCSYS.2020.3000176.

[39] M. Khosravi and R. S. Smith, Nonlinear system identification with prior knowledge on the
region of attraction, IEEE Control Syst. Lett., 5 (2021), pp. 1091--1096, https://doi.org/
10.1109/LCSYS.2020.3005163.

[40] M. Khosravi and R. S. Smith, On robustness of kernel-based regularized system identification,
IFAC-PapersOnLine, 54 (2021), pp. 749--754.

[41] M. Khosravi and R. S. Smith, Diagonally Square Root Integrable Kernels in System Identi-
fication, preprint, arXiv:2302.12929, 2023.

[42] M. Khosravi and R. S. Smith, The existence and uniqueness of solutions for kernel-
based system identification, Automatica, 148 (2023), 110728, https://doi.org/10.1016/j.
automatica.2022.110728.

[43] M. Khosravi and R. S. Smith, Kernel-based identification with frequency domain side-
information, Automatica, 150 (2023), 110813, https://doi.org/10.1016/j.automatica.2022.
110813.

[44] M. Khosravi and R. S. Smith, Kernel-based impulse response identification with side-
information on steady-state gain, IEEE Trans. Automat. Control, 68 (2023), pp. 6401--
6408, https://doi.org/10.1109/TAC.2023.3243099.

[45] M. Khosravi, M. Yin, A. Iannelli, A. Parsi, and R. S. Smith, Low-complexity identification
by sparse hyperparameter estimation, IFAC-PapersOnLine, 53 (2020), pp. 412--417.

[46] U. Krause, Positive Dynamical Systems in Discrete Time, De Gruyter, Berlin, 2015.
[47] L. Ljung, T. Chen, and B. Mu, A shift in paradigm for system identification, Internat. J.

Control, 93 (2020), pp. 173--180, https://doi.org/10.1080/00207179.2019.1578407.
[48] D G. Luenberger, Introduction to Dynamic Systems; Theory, Models, and Applications,

Wiley, Hoboken, NJ, 1979.
[49] A. Marconato, M. Schoukens, and J. Schoukens, Filter-based regularisation for impulse

response modelling, IET Control Theory Appl., 11 (2016), pp. 194--204, https://doi.org/
10.1049/iet-cta.2016.0908.

[50] A. Oghbaee, B. Shafai, and S. Nazari, Complete characterisation of disturbance estimation
and fault detection for positive systems, IET Control Theory Appl., 12 (2018), pp. 883--891,
https://doi.org/10.1049/iet-cta.2017.0911.

[51] J. Peypouquet, Convex Optimization in Normed Spaces: Theory, Methods and Examples,
Springer, Cham, 2015.

[52] G. Pillonetto and G. De Nicolao, A new kernel-based approach for linear system identifica-
tion, Automatica, 46 (2010), pp. 81--93, https://doi.org/10.1016/j.automatica.2009.10.031.

[53] G. Pillonetto, F. Dinuzzo, T. Chen, G. De Nicolao, and L. Ljung, Kernel methods in
system identification, machine learning and function estimation: A survey, Automatica,
50 (2014), pp. 657--682, https://doi.org/10.1016/j.automatica.2014.01.001.

[54] A. Rantzer and M. E. Valcher, A tutorial on positive systems and large scale control , in
2018 IEEE Conference on Decision and Control, IEEE, 2018, pp. 3686--3697.

[55] A. Rantzer and M. E. Valcher, Scalable control of positive systems, Annu. Rev. Control.
Robotics Auton. Syst., 4 (2021), pp. 319--341, https://doi.org/10.1146/annurev-control-
061520-010621.

[56] T. Reis and E. Virnik, Positivity preserving balanced truncation for descriptor systems, SIAM
J. Control Optim., 48 (2009), pp. 2600--2619, https://doi.org/10.1137/080734200.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/2

2/
25

 to
 1

54
.5

9.
12

4.
11

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/20M1337454
https://doi.org/10.1109/TAC.2023.3242325
https://doi.org/10.1109/CDC40024.2019.9029276
https://doi.org/10.1109/CDC40024.2019.9029276
https://doi.org/10.1109/LCSYS.2020.3000176
https://doi.org/10.1109/LCSYS.2020.3000176
https://doi.org/10.1109/LCSYS.2020.3005163
https://doi.org/10.1109/LCSYS.2020.3005163
https://arxiv.org/abs/2302.12929
https://doi.org/10.1016/j.automatica.2022.110728
https://doi.org/10.1016/j.automatica.2022.110728
https://doi.org/10.1016/j.automatica.2022.110813
https://doi.org/10.1016/j.automatica.2022.110813
https://doi.org/10.1109/TAC.2023.3243099
https://doi.org/10.1080/00207179.2019.1578407
https://doi.org/10.1049/iet-cta.2016.0908
https://doi.org/10.1049/iet-cta.2016.0908
https://doi.org/10.1049/iet-cta.2017.0911
https://doi.org/10.1016/j.automatica.2009.10.031
https://doi.org/10.1016/j.automatica.2014.01.001
https://doi.org/10.1146/annurev-control-061520-010621
https://doi.org/10.1146/annurev-control-061520-010621
https://doi.org/10.1137/080734200


56 MOHAMMAD KHOSRAVI AND ROY S. SMITH

[57] R. S. Risuleo, G. Bottegal, and H. Hjalmarsson, A nonparametric kernel-based ap-
proach to Hammerstein system identification, Automatica, 85 (2017), pp. 234--247, https://
doi.org/10.1016/j.automatica.2017.07.055.

[58] R. S. Risuleo, F. Lindsten, and H. Hjalmarsson, Bayesian nonparametric identification of
Wiener systems, Automatica, 108 (2019), 108480, https://doi.org/10.1016/j.automatica.
2019.06.032.

[59] B. Roszak and E. J. Davison, Necessary and sufficient conditions for stabilizability of pos-
itive LTI systems, Syst. Control Lett., 58 (2009), pp. 474--481, https://doi.org/10.1016/
j.sysconle.2009.02.003.

[60] B. Sch\"olkopf, R. Herbrich, and A. J. Smola, A generalized representer theorem, in Inter-
national Conference on Computational Learning Theory, Lecture Notes in Comput. Sci.
2111, Springer, Cham, 2001, pp. 416--426.

[61] B. Shafai, J. Chen, and M. Kothandaraman, Explicit formulas for stability radii of non-
negative and Metzlerian matrices, IEEE Trans. Automat. Control, 42 (1997), pp. 265--270,
https://doi.org/10.1109/9.554408.

[62] R. Shorten, F. Wirth, and D. Leith, A positive systems model of TCP-like congestion
control: Asymptotic results, IEEE/ACM Trans. Network., 14 (2006), pp. 616--629, https://
doi.org/10.1109/TNET.2006.876178.

[63] N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger, Information-theoretic regret
bounds for Gaussian process optimization in the bandit setting, IEEE Trans. Inform. The-
ory, 58 (2012), pp. 3250--3265, https://doi.org/10.1109/TIT.2011.2182033.

[64] J. Umenberger and I. R. Manchester, Scalable identification of stable positive systems,
in 2016 IEEE 55th Conference on Decision and Control, IEEE, 2016, pp. 4630--4635,
https://doi.org/10.1109/CDC.2016.7798974.

[65] M. E. Valcher, Reachability properties of continuous-time positive systems, IEEE Trans.
Automat. Control, 54 (2009), pp. 1586--1590, https://doi.org/10.1109/TAC.2009.2015556.

[66] G. Wahba, Spline Models for Observational Data, SIAM, Philadelphia, 1990.
[67] D. Xiong, L. Chai, and J. Zhang, Sparse system identification in pairs of pulse and Takenaka--

Malmquist bases, SIAM J. Control Optim., 58 (2020), pp. 965--985, https://doi.org/
10.1137/18M1217474.

[68] Y. Zeinaly, J. H. van Schuppen, and B. D. Schutter, Linear positive systems may have a
reachable subset from the origin that is either polyhedral or nonpolyhedral , SIAM J. Matrix
Anal. Appl., 41 (2020), pp. 279--307, https://doi.org/10.1137/19M1268161.

[69] M. Zheng and Y. Ohta, Positive FIR system identification using maximum entropy prior ,
IFAC-PapersOnLine, 51 (2018), pp. 7--12, https://doi.org/10.1016/j.ifacol.2018.09.082.

[70] M. Zheng and Y. Ohta, Bayesian positive system identification: Truncated Gaussian prior
and hyperparameter estimation, Systems Control Letters, 148 (2021), 104857, https://
doi.org/10.1016/j.sysconle.2020.104857.

[71] M. Zorzi, A second-order generalization of TC and DC kernels, IEEE Trans. Automat. Con-
trol, 69 (2024), pp. 3835--3848, https://doi.org/10.1109/TAC.2023.3337056.

[72] M. Zorzi and A. Chiuso, The harmonic analysis of kernel functions, Automatica, 94 (2018),
pp. 125--137, https://doi.org/10.1016/j.automatica.2018.04.015.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/2

2/
25

 to
 1

54
.5

9.
12

4.
11

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1016/j.automatica.2017.07.055
https://doi.org/10.1016/j.automatica.2017.07.055
https://doi.org/10.1016/j.automatica.2019.06.032
https://doi.org/10.1016/j.automatica.2019.06.032
https://doi.org/10.1016/j.sysconle.2009.02.003
https://doi.org/10.1016/j.sysconle.2009.02.003
https://doi.org/10.1109/9.554408
https://doi.org/10.1109/TNET.2006.876178
https://doi.org/10.1109/TNET.2006.876178
https://doi.org/10.1109/TIT.2011.2182033
https://doi.org/10.1109/CDC.2016.7798974
https://doi.org/10.1109/TAC.2009.2015556
https://doi.org/10.1137/18M1217474
https://doi.org/10.1137/18M1217474
https://doi.org/10.1137/19M1268161
https://doi.org/10.1016/j.ifacol.2018.09.082
https://doi.org/10.1016/j.sysconle.2020.104857
https://doi.org/10.1016/j.sysconle.2020.104857
https://doi.org/10.1109/TAC.2023.3337056
https://doi.org/10.1016/j.automatica.2018.04.015

	Introduction
	Notation
	System identification with internal positivity side-information: Problem statement and mathematical formulation
	Positive system identification: Problem statement
	Positive system identification: Mathematical formulation

	Toward a tractable solution
	Numerical implementation algorithm
	<?LDGXML	?>6. Further internal positivity side-information and extensions
	Nonsimple unique dominant pole
	Multiple simple dominant poles

	Numerical experiments
	Monte Carlo experiment
	Simulation configuration
	Comparison methods
	Evaluation metrics and results
	Discussion

	Heating system experiment

	Conclusion
	References

