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Chapter 1

Preface

Before I started my thesis I went to Cor Kraaikamps office to see if he had any
graduation projects that I could do. Instead of giving me a project he sent
me home with a bunch of articles to pick a subject from. He gave me a lot of
freedom of what I could do. I came with the suggestion of introducing a new
continued fraction map and he was enthousiastic right away. Of course, this
motivated me to spend a lot of time on the project. Therefore I want to thank
Cor for his enthousiasm and also for the good ideas and input on the project. A
room was assigned to me, at the Statistics and Probability department on the
6" floor, to be able to work at the university and to be among the professors. I
really enjoyed working there. Along with two other students (Harold and Said)
I had a good time. The people of the department really tried to involve us
in everything. Especially I would like to thank the techinician, Carl and the
secretary, Leonie for this very reason.

The project itself was very interesting to me. Some things went relatively easy
and others were far harder then expected. I hope the reader will enjoy reading
the thesis as much as I enjoyed making it.
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Chapter 2

Introduction

In recent years, much research has been done on continued fraction expansions.
New variations of the classical regular continued fraction expansion have been
introduced and their dynamical properties explored.

In this thesis, a combination of two different variations is introduced combin-
ing 2-expansions and flipped expansions. The 2-expansions are specific cases of
N-expansions introduced in 2008 by E.B. Burger, J. Gell-Redman, R. Kravitz,
D. Walton and N. Yates in [2] and studied in [T} [ 18] amongst others. The
flipped expansions have been studied in [3, [TI]. The question is: why would you
combine the two expansions? There are already so many different expansions!
So why keep adding more animals to the zoo? One of the reasons is that vari-
ous continued fraction expansions exhibit very interesting dynamical behavior.
In this sense they are ‘toy models’ in ergodic theory and dynamical systems.
Another reason is to find infinitely many expansions with odd or even digits.
This is not the case when you make even and odd expansions in the classical
way like in Schweiger’s paper [16] from 1988, or as in [6].

The 2-expansions we will investigate, are determined by a set L and the flipped
expansions will be determined by a set F'. Logically, the ensuing expansion will
be determined by L and F'. Stating that there are infinitely many ways to make
an even or odd expansion means there are infinitely many choices for L and
F' to make the expansion even or odd. Since these expansions have not been
studied before a whole range of examples are given for L and F. If possible,
an explicit density of the underlying dynamical system is given. In the past,
however, it turned out to be very difficult to find such densities even though we
can show that whenever our system is ergodic such invariant measures always
exist! In this new family of expansions we will see that there are infinitely many
mappings which are not ergodic but we can formulate a lemma and with the
help of that lemma almost all the examples in this thesis can be proved to be
ergodic. In cases where we do not have an explicit density a numerical estimate
is given. We restricted ourselves to the 2-expansion because this already gives
enough challenges and we expect the N-expansions to behave in a similar way
or in a richer way. In some parts of the thesis we will look at cases where N > 2
but not too often since we do not want to deviate too much from the main topic.



First, in Chapter 2, we will review the 2-expansions followed by a chapter on
flipped expansions. In the chapter on flipped expansions we will already see some
new expansions with only odd or only even digits. Then, the two expansions are
combined and a new map is introduced. Once we have the new map, we prove
the convergence of the new expansions as well as the fact that rational numbers
have a finite expansion. Before we look into specific examples of flipped 2-
expansions we will study for which L and F the system is ergodic. Even though
we did not get a description of the sets for which the system is not ergodic (which
looked extremely hard) we will prove that for all maps exhibited in this thesis
the system will be ergodic. Next, some specific choices for L and F are given.
As they are not the main subject of this thesis it will be a quick overview to
show what can be done with this new map (with the exception of the 3-divisible
expansion which will be more elaborate) and, if possible, the invariant measure
is given. After that we can finally look into ways of finding even expansions
using the new map. In Chapter [J it is shown why there are infinitely many
systems with only even digits and some examples are given. In Chapter [I0] the
same is done but for expansions with only odd digits.

In the chapter on ergodicity some non-ergodic maps are given. We will look into
two of those maps on which, if we restrict the mapping to a specific domain,
is ergodic. This is done in Chapter and will give interesting results. For
simulations, a new method is introduced by using the idea behind the Gauss-
Kuzmin Theorem. At last, before going to the conclusion and future work,
some examples of mappings with finite digits for the case N = 4 are given. In
the appendix we discuss the regular continued fraction map for those readers
not familiar with some of the terminology of the field or simply forgot it for a
moment. It might be also nice to read if the reader is unfamiliar with continued
fraction expansions. An explanation on how the simulations are done can be
found in the appendix as well together with all the Matlab code used for this
thesis.
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Chapter 3

2-expansions

In this thesis we will make 2-expansions by fixing a set L. For some choices of L
it turns out to be easy to obtain their underlying dynamical system along with
the invariant measure and natural extension.

Some of these choices are shown in [5] for general N. We will see some examples
as well as a method of finding the invariant measures of these examples. But
first we will give a short introduction to N-expansions.

3.0.1 N-expansions

Let us first recall some basic facts on N-expansions. An N-expansion of a
number z € (0,1) is a continued fraction expansion of the form

N

N

dy + N

dy +

ds+ .

where N € Z\{0} and d; € N for all i. It turns out that, whenever N > 2,
there are infinitely many sequences (dy, dz, ds . ..) for which the equation holds.
This is shown by Maxwell Anselm and Steven Weintraub in [I], see also [5] for
a different approach. We will use the approach from [5]. Let T": [0, N] — [0, N]
be defined by

T(x) = g

—d(z) forx#0, andT(0)=0

where d(x) is a natural number (greater than zero) such that T'(xz) € [0, N].
As we will see for N = 2 we can use such maps to find the continued fraction
expansion of any x € (0, N). Also for N = 2 we will see that for every x € (0,1)
there are 2 options for d(x). This gives us infinitely many different expansions.
Note that N = 1 gives us the regular continued fraction expansion. For the
regular continued fraction the digits are unique. Except for rational numbers
which have a finite expansion and can be written in two ways (ending with a
digit 1 and one ending with a digit other then 1).
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3.0.2 Various 2-expansions

We will now start by introducing the 2-expansions. We will specify for each
2 which value for d(z) to pick by giving a set L. Let L C [0,1) be a Borel
measurable set. We define T}, : [0,2) — [0,2) by

Tr(x) = 2 E

T

J +1p(z) .

The set L is the set on which we use the top map which is also called the lazy
map.

Figure 3.1: 2-expansions with the lazy map dotted.

Furthermore let di = d(z) = |2| — 1.(2) and d, = du(z) = d(T} ' (2))
whenever 77! (z) # 0. We will see that we can make a continued fraction of

any number x € (0,2) by applying T, (z) iteratively. We write

T (x) = % —d(@)
SO 2
T ) o) 3.1)

12



Now, if we set T2 (z) = Ty, (TL(x)), we find

T2(a) = o — ATy (a)
which gives us )
Tul@) = do + T?(z)
Substituting this in [3.1] yields
2
v 2

di+ ——5—
Yy + T2 (2)

In general, if TF(x) # 0 for 0 < k < n, we can write
2

xTr =

dy +

* T d, + Ty ()
The numbers d,, are called the digits (or: partial quotients) of x.

We call
_ b _ 2

¢ 2z
n 2
Ty ———

do + i
the nth convergent of x. Occasionally we write ¢, = [2/d1,2/da,...,2/d,]
as a short hand notation. These convergents have the pleasant property that
lim,, ,+ ¢, = x. For the p,’s and ¢,,’s we have the recurrence relations

p-1:=1 po:=0; pp=dupn-1+2pp2, n=>1,
q-1:=0; qo:=1; @gn=dpqn-1+2¢n—2, n>1.

A proof of convergence can be found in Chapter [6] and, while proving the con-
vergence, the recurrence formulas are obtained together with a bound on the
convergents. In Chapter [f] such a proof is given for a larger class of maps of
which these 2-expansions are a subfamily. Now a bound for the convergents of
2-expansions is already known and is given by
27L
|z —cnl < — -
n

Note that lim, s 3—: = 0 (see also [18]). This can be derived from the above
recurrence relation for Gn- We see that if ¢, grows fast as n — oo we will find
better convergents. Now whenever L = ) we will always choose the largest digits
possible resulting in the best convergence and whenever L = [0, 1] we will always
choose the lowest digits possible resulting in the worst convergence. Because
convergence is the fastest for L = () we call the corresponding map the greedy
2-expansion map. The map with L = [0, 1] is called the lazy 2-expansion map.
Note that we can only choose L for which L N [1,2] = @ since the digit will be
0 otherwise. This will result in dividing by 0 in the convergents. In Figure |3.1
the dotted lines give the lazy map and the solid lines indicate the greedy map.
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Both for the greedy map and the lazy map the invariant measure is known
(see [5]). Also their natural extension is known in both cases. For the definition
of an invariant measure see Appendix and for the definition of the natural
extension see Appendix [A.1.4]

For the greedy 2-expansion it follows from [5] that the invariant measure is given
by:

1 1
(A = 7/ dz |
) ln(%) Anjo,] 2+

where A C [0,1] is a Borel set (for an explanation on Borel sets see Ap-
pendix [A.1.2)). The natural extension map Ty : [0,2) x [0,2) — [0,2) x [0,2)
defined as

Ty(z,y) = (Tﬂ(m)’ d(ac)2+y>

has as invariant measure p, given by

1 2
1= [ e

where A C [0,1] x [0,1] is a Borel set. For the lazy 2-expansion we have the
invariant measure:

1 1 1
u(A) = / 7dx+/ dz |,
( ) 2111(%) < AN[o,1] 2+ 3z + 2 AN([1,2] 24+

again where A C [0,1] x [0,1] is a Borel set. In general, it is hard to find an
invariant measure. Still these two invariant measures are obtained. In the next
section we will give a strategy to find the invariant measure in some cases. This
strategy is based on a strategy explained in [5]. The invariant measure of the
lazy and the greedy 2-expansion could have been obtained using this method.
The odd 2-expansion is used to illustrate this strategy.
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3.1 Finding the invariant measure for the odd
2-expansion
For the odd 2-expansion we will lower the digit whenever its even so we take
(o)
2 2
L= — — .
nL:J1 (2n +1’ 2n}

This yields that for all « € (0,1) the digits d,,(z) will be odd (hence the name).
Note that this map is called a regular 2-expansion in [5].

o
~o

Figure 3.2: The odd 2-expansion.

Now the natural extension is known (see [5]) and the map
Tr :[0,2) x [0,2) — [0,2) x [0,2) is given by

i) = (Tao) g2 )

(x) +y
We have that 77 (x,0) = (tn,vn), where t,, = T7(x) = [2/dpn+1,2/dn+2, - - -], and
vp = [2/dpn,2/dn-1,...,2/d1]. In some sense the ¢, gives all the information

about the future at ‘time’ n while v,, captures the past.

15



We define the fundamental intervals A; = {(z,y) € [0,2) x [0,2) : d(x) = i} for
1 € N. Of course, the odd 2-expansion only have the fundamental intervals with
i odd. In Figure we can see how 7 maps these fundamental intervals.

2 2

Tr(Aq)
T
.« oo Ay A —E

2
z TL(A3)

5

0 2 2 2 0

5 3

Figure 3.3: Natural extension map of the odd 2-expansion.

The invariant measure of the natural extension is also known (see [5]) and is

given by
2
A)=C ———dzdy,
u(4) //A @tay?

c = —  _dedy= ——
/o / 2+ay)? YT @)

is the normalizing constant, i.e. p([0,2] x [0,2]) = 1. Now to find the invariant
measure for 77, (z) we simply integrate over y.
We find

where

2 2 1
(A =C — = _dydz=0C d
wiy=c [ [ o =c [ e

for any A C [0, 2] measurable.

3.2 Simulating the density

In every section where a continued fraction map with N = 2 is discussed, a
simulation of the density of its invariant measure is given. Whenever we have a
analytic formula for the density of the invariant measure, the graph of this den-
sity will also be plotted. Not only will this show the strength of our simulations,
but also confirms we did not make any calculation mistakes when obtaining the
invariant measure. In Figure we see a simulation of the odd 2-expansion
together with the analytic formula ﬁuﬁ Indeed the simulation is very close
to the theoretic density. In Appendix [B] we will elaborate more on how we
perform the simulations.

16



Figure 3.4: The invariant density of the (odd) regular 2-expansion with a sim-
ulation.

We have seen that we can make an expansion with odd digits only by using
the 2-expansion and the right choice for L. Note that we can not make an
even expansion because we have L N [1,2] = 0 so almost all z € (0,2) will have
digits equal to 1. Also note that there was only one option for L to make the
expansions have only odd digits (up to a set with Lebesgue measure zero). In the
next chapter we will introduce flipped 2-expansions. With a flipped 2-expansion
you can make expansions for which for all z € (0,2) all digits are odd or are
even. Their invariant measure will be obtained.
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Chapter 4

Flipped expansions

The flipped continued fraction expansion is extensively studied in [3| [IT]. Tt is
an expansion derived from the regular continued fraction map. By giving a set
F C [0,1) the flipped expansion can be obtained by flipping the regular map on
the set ' around the line y = % In [IT] it is shown that many of well known
continued fraction expansions are flipped expansions with the right choice of
F. Examples are: the odd or even continued fraction expansions, the backward
continued fraction expansion, the folded a-continued fraction expansion and an
expansion omitting one or more particular digits. Furthermore the metric and
ergodic properties have been studied in [IT].

In this thesis we adapt the idea of ‘flipped expansions’ to the case of 2-expansions.
Instead of the regular continued fraction expansion we shall take the greedy 2-
expansion as our ‘starting point’. Though, since you will only be in [1,2] for
at most one step we restrict the domain to [0,1). Let F C [0,1] be a Borel
measurable set. The map T% : [0,1) — [0,1) is given by

{QJ forx ¢ F

2
L)) 2 ereer

Setting

forz ¢ F

1 forz ¢ F _ J
e(r) = { and d(z) = { +12)) forzeF,

-1 forxeF

we have that

19



Now let d; = d(z) and d,, = dy(2) = d(Tp '(x)) as well as &; = () and
en(®) = e(Tp (), whenever T '(z) # 0. We find a continued fraction

expansion
2

251

xr=
dy +

dy +
+ B 257171
dp + e, Th(x)

Figure 4.1: The greedy (solid lines) and the flipped expansions (dotted lines).

As usual, taking finite truncations yield the convergents

2
281

Cp =
dy +

. 2e,_
da + e

d'll

A proof of convergence of ¢, to z is given in Chapter[6] In fact in Chapter [6] the
convergence of a family of expansions is given of which the flipped expansions are
examples of. In the next sections we will study the odd flipped expansion and
the even flipped expansion. We will slightly change the method of Section [3:1] to
find the invariant measures of both. Also we will obtain the invariant measure
of odd flipped expansions with N > 2 and also find the invariant measure of
flipped expansions with N > 2 with only even digits.

20



4.1 0Odd flipped expansion

To make an odd flipped expansion we have to flip every interval where the digit
would be even. This gives F = 7~ ( 2_ 2 ]

2n+1° 2n
1
o o
0 23 & 2 3 1

Figure 4.2: The odd flipped expansion.

Now we want to obtain the natural extension to be able to find the invariant
measure of the odd flipped expansion. In order to find the natural extension let
2 =1[0,1] x [A, B]. We will use the following natural extension map

Tr : Q2 — Q, given by

Ti(z,y) = (TFm, Cm) ,

where we choose [A, B] in such a way that the map Tr is bijective on © (up to
a set of Lebesgue measure 0). We use this map because we know that, up to a
normalising constant, W is the density of the invariant measure.

Now we define the fundamental intervals
Ay = {(z,y) € Q:di(x) = a,e1(x) = b}

with short hand notation A_, := A, 1) and, like in Section A=A
Note that on A, ) the map Tr is injective. Thus we need to pick A and B in
such a way the fundamental intervals do not overlap and fill Q (up to a set of
Lebesgue measure 0).

21



Tr(As)
Tr(As)
o o dnglay Ay A_s %. 0
Tr(A_s)
Tr(A_3)
A A

Figure 4.3: Q and Tp(Q).

We see that, if we want the image of the rectangles to fit nicely and not leave
holes or overlap, we need the equality A = —BJFLA and B = 3+LA which implies:

A2 +3A+2=0 (4.1)

So A = —1or A = —2. Inspection shows that we need A = —1 which yields
B =1 to make our map injective. Indeed we see that the rectangles nicely fit
and do not overlap so that gives us injectivity. If we would make A larger and/or
B smaller we would get ‘holes’. When applying T iteratively more and more
‘holes’ will appear. Making the interval larger will give you overlap (which is
forbidden by the definition of the natural extension). The map is (almost surely)

surjective because
2
im 220 _
n—oo N + Y
for both e(z) =1 and e(z) = —1.
Note that the line (z,0) is not in the image of our map (but has Lebesgue
measure 0). Now to find the invariant measure of Tp(x) we need to integrate

/BQd/12d1+1
a Cray? T ) w2 T 21 T2

and determine the constant C' such that we get a density on [0, 1] again

C /1 ! + ! d In3
= Tr = In
0 2+x 2-=x ’

so the density is now given by

f(x)zlnl?)<2ix+2ix> : (4.2)

This integration is a projection on the x coordinate and therefor measure preser-
vant. Simulation shows that the method works (and the method shows the
simulation is rather accurate see Figure [4.4]).
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Figure 4.4: The density for the odd flipped expansion together with a simulation
of the density.

4.1.1 The general odd case for N > 2

Note that we could find the invariant measure of any odd flipped N-expansion
(starting from the greedy N-expansion) for an even N in a completely similar
way. For A you would get the equation A = —5=7-— and instead of equation

(4.1) we would get

N+1+
A2+ (N+1)A+N=0 (4.3)
giving A=—-1lor A=—-N

To make the domain in such a way the natural extension is injective we always
need A = —1 and so B = 1. Resulting in the following densities:

Inte) = (]%1) <N:—x+Nl—x> (44)

Which is almost the same as in (4.2]) but then there is an N instead of a 2.
For an odd flipped N-expansion with N € N odd we find a slightly different
equation for A, namely

A4+ (N+2)A+N=0 (4.5)

giving A = 3(—=(N+2)+VN2+4) or A= (= (N+2)— /N2 +14). This time,
in order to make our extension injective,
we need

1
A= 5(—(1\7—&—2)4— N2 +4)
giving
B 2N
VNZ+4+N-2

23



This gives us the following densities:

VNZ+4+N-2+422 2N+ (VNZ+4—(N+2)z
(4.6)

fN(rc)zCN< P NZ¥d—(N+2) )

where

Col = om [ YA HAEN
VNZHd+ N2

_<m—(N+2))ln<N_2+m> .

2N

We could calculate all kind of things with these invariant measures (such as
the percentage of a certain digit occurring in a continued fraction for almost all
x € [0,1] wrt. the Lebesgue measure or constants of Khinchine). But this is
beyond the scope of this thesis where we do not want to deviate too much from
the 2-expansions.

4.2 Even flipped expansions

For the even flipped expansion we do the opposite as we did for the odd flipped
expansion. Starting from the greedy expansion, by ‘flipping’, we will make
the digit even on each interval it would be odd. This is achieved by setting

F=, (Tizv Qfﬁ] The graph of T is given in Figure

1

o

i
oo
SN
SN
o
—_

Figure 4.5: The even flipped expansion.

Again, using the method from in Section to find the domain of the natural
extension we can find the invariant measure. This time A is a solution of the
polynomial

A2 +4A+2=0

24



which has the solutions A = v/2—2 and A = —/2 —2. It turns out A = /2 —2
is the right one to pick giving B = /2. We find the following density:

/(@) L ( ! V22 )

T(V2+ ) \V2ra 2+ (V22

A simulation of the density of the invariant measure is shown in Figure as
well as the density of the theoretic measure.

“’\\\

Figure 4.6: A simulation of the invariant measure for the even flipped expansion
together with the exact density of this expansion.

4.2.1 The general even case for N > 2

Just as in previous chapter, we can find the invariant measure of any flipped
N-expansion with only even digits. For N even we get the same equation for A
as in the case of a flipped N-expansion with N odd with only odd digits (namely
equation ) Leading to the densities but now with N even. Likewise
we find that if we want an N-expansion with only even digits and N is odd we
find that the equation for A is given in giving the invariant measure as in
(@A)

The map that is used in [I6] to make an even expansion is not a flipped 2-
expansion but a flipped expansion. In contrast to our map, the map in [16]
leads to a o-finite infinite measure for only even digits.

Note that is an indication of this where the constant is undefined for N =1

because we would have —— and therefore a division by 0. We also have that

In(G
— 00 as ¢ — 1. This formula is also given in [I6] but without the constant.

1
1—x

4.3 Other possibilities

In Section we started with the greedy 2-expansion map and flipped it on
a set F' in the line y = % Of course, if we would have started with the lazy
2-expansion map and we would have flipped on a suitable set F' in y = 1% we
would have obtained other odd or even expansions. In the next chapter we
show that these and other expansions can be obtained by combining the flipped
expansions and 2-expansions which we discussed.
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Chapter 5

Combining the flipped and
2-expansions

To make things more interesting we will combine the two expansions given
in previous chapters. Starting from the greedy 2-expansion, for the flipped
expansions there is only one choice for F' to make an expansion with only odd
or even digits. The same holds for the 2-expansions. When combining the
two, we will find infinitely many choices for L and F given some conditions.
This will be discussed in Chapter [J] and Besides these expansions, a whole
range of different choices for L and F' are studied. Before we can do anything
we define our map T p with L C [0,1] and F' C [0,2] both measurable. Let
Tp.r :[0,2] = [0,2] be defined by

Ty, p(z) = 2€ix) —¢e(z)d(z) ifx#0and Ty r(0)=0,
wher
o |1 forxgF
s(x){ -1 forzeF
d
o dla) — 2] —1.(2) forz ¢ F
(x)_{lJrlL(x)JrLiJ forz e F .

Furthermore, whenever Tf’}l(x) # 0, let d,(z) = d(Tﬁ}l(x)) and e, (z) =
e(Ty ' (z)). Note that e and d are different functions for different choices of
L and F. When we take L = () we find the flipped continued fraction maps
from Chapter 4] and whenever F' = () we find the continued fraction maps for
2-expansions from Chapter[3] When both L and F are empty we find the greedy
map.

If we write T7, p(x) as

Trp(x) =

2517(”3) (@) (2)

then
- 261 2

o e1dy +TL,F($) - dq +€1TL’F(£U)
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and, as long as T£7F(x) #0fori=1,2,...,n, we find

2

T =
2e
dy + !

. 2ep,—
Now we define the nth convergent c,, as

2
251

Cp =
d
1+ d + 28»”,1
2 . d,

In Chapter [ we will show that lim,,_, ¢, = .

Cld, + EnTﬁF(ac)

Figure 5.1: The flipped 2-expansions.

This allows us to write

261

dy +
dy +

28

(5.1)

(5.2)



However it only converges if L and F' comply with the following condition:
Trr(FOE2)N(ELN[E1]) =0 (5.3)

This condition assures that whenever d,,_1(z) = 2 and &,_1(z) = —1 we do not
have d,,(r) = 1 and we would not divide by 0 in the n*" convergent. This can
only happen if Tﬁ}l(x) €[2,2] and z € F and € LN[2,1] which is translated
into this condition.

This seems a rather complicated restriction but luckily it does not restrict us in
making expansions with only odd or even digits. In the next Subsection we will
see a map that is not included whenever L C [0, 1].

5.0.1 Another map

Remember that we took L C [0, 1] because otherwise we would have digit 0.
However, now that we combined it with flipped expansions, we can look at
maps for which LN [0,2] # 0 but with LN0,2] = F'N|0,2] which would be the
map f(z) =3— % and will result in a digit of 3. We will see that this map gives
some obsticals.

Note that if we pick this map flipped on [1,2] for every x € [1,2] then [1,2] is

invariant under 77, r resulting in non-uniqueness of the continued fractions and
in non-ergodic maps. A remedy for this is to demand that there is a § such that

LO[2—62] =0 (5.4)

This ensures that you can not stay in [1, 2] forever (see Figure [5.2)).

2

Figure 5.2: A hole to escape [1,2].

This solves the problem of non-uniqueness but since map makes a proof of
convergence hard (or impossible) this map will never be chosen and we will
always use L C [0,1] in this thesis.

In the next chapter we will discuss whether rational numbers have a finite ex-
pansion. This is a property that holds for the regular continued fraction map
(see Appendix page . It turns out that this is dependent on the choice
of L and F.
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5.1 Do rational numbers have a finite
expansion?

This question is not that trivial anymore for our new family of continued fraction
maps as it is for the regular continued fraction. In fact, we already seen in
Chapter [3| that for every = € (0,2) we have infinitely many 2-expansions. In [I]
it is stated that every rational number has finite and infinite 2-expansions. This
gives us reason to think depends on the choice of L and F' whether a rational
number will have a finite expansion or not. We give some sets for which we
can prove that either all elements of the sets have a finite expansion or all the
elements of that set have an infinite expansion. Though which rational numbers
are in the particular set will depend on the choice of L and F'. Let

A {a€QnI0,2]: T7 p(q) €[0,1) for all n > 1},

B = {q€Qn]0,2]: there is an m such that T7 z(q) € [0,1) for all n. > m}
C = {qeQn|0,2]: T} p(q) € FN[1,2] and T} (q) # 1 for all n > 1},
D = {qe€Qn]I0,2]: there is an n such that T} z(q) = 1} .

To T'n

Now let ¢ = 52 with ro and sg relatively prime and 17 n(¢q) = $* with r,, and
spn relatively prime. Then we have the following equation

(rn) 2e(2)s, — e(2)d(2)rn 1o
TL,F — = .

Sn

Tn Sn+1

Note that a continued fraction expansion of ¢ is finite if and only if there is an
n such that T7' (¢) = 0. We will first prove that for all measurable sets L and
F all elements in A have a finite continued fraction expansion. Let ¢ € A and
suppose ¢ has an infinite expansion. We have that

Tt < 26(52)sn — e(52)d(52)rn < 7T

If Tr p(q) # 0 for all n > 1, this gives us an infinite decreasing sequence
v < Tpy1 <1y <...<71r1 <71 which is impossible so ¢ has a finite expansion.
The equation also gives us an upper bound on the number of iterates since
rn+1 < T We can have at most rq digits. Now let ¢ € B then we have 7,41 < rp,
and we find the decreasing sequence ... < rpq1 < 7, which gives us that
q has at most 7, + m digits. For ¢ € C it will be a little trickier. In case
Ty, p(2) € [0,1) then we have r,41 < 7, and in case T, g(22) € (1,2] we have

Sn Sn

(TnJrl) _ 25n+1 — T'n+1 o T'n+2

" St Tnt1 Snt2

Now 7,41 > sp41 which gives us rpq2 < 28541 — g1 < Spt1 < Ty so we find
that either r, 11 < 7, or 4o < 7,. Suppose ¢ has an infinite expansion. We
can now give a strictly decreasing subsequence which is impossible for positive
integers and thus by contradiction we find that ¢ has a finite expansion with
at most 2ry digits. Whenever ¢ € D it depends on whether 1,2 are in L and
or F or not. Suppose 1 ¢ L and 1 € F, then T}j}l (¢) = 0 and ¢ has a finite

expansion. Suppose 1 € L and 1 € F', then Tf}l(q) =1 and we find an infinite
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expansion. In case 1 € L and 1 ¢ F, then Tf}l (¢) = 1 and we find an infinite
expansion again. Now for 1 € L and 1 € F then Tf;}l(q) = 2 and we need to
look at the value of Ty, p(2). Suppose 2 € F' then we find an infinite expansion
and if 2 ¢ F' we find a finite expansion for q.

We will see that the sets A, B, C, D are very different for different choices of L
and F. For example in Section [8.1| we have that C' = [0,2] NQ and therefore all
rationals have a finite expansion and in Section |11.4) we have that D = [%, 11nQ
and T, (1) = 1 so we find that every ¢q € [%, 1] N @Q has an infinite expansion.

In the following chapter we will prove the convergence of (see page for
general choices of L and F' using Mobius transformations. Recurrence relations
are also obtained which will be of interest for the odd and even expansions. The
proof is slightly more complicated then the proof of convergence for the regular
continued fraction. For the standard continued fraction such proof can be found
in [4] and in Appendix A proof of the statement that a number has a
finite standard continued fraction expansion if and only if its rational can also
be found in the book.
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Chapter 6

A proof of convergence

In this chapter we will prove the convergence of the sequence of convergents ¢,
of any number x € (0,2] using a map T, ¢ for those measurable sets L and F
which are allowed and not restricted by .

Let ¢, = 2= be the truncated expansion of z having n digits (as in equation

(5.1) page .In this chapter we prove lim,, o, ¢, = .

Essential in the proof are 2 x 2 matrices from N, where

N = {A : det(A) = £2 and all entries are integers}

and their related Mobius transformation. Recurrence formulas are found in the
process. Let

A:{Z Z}EN.

The Mobius transformation, induced by A, is the map A : C* — C*, given by

_ar+b
cx+d’
Furthermore we define for n > 1
0 2e,—
An = l: 1 dn ! :|

where g = 1 and we set

Mn :AlAQAn with M() :.[2><2 .
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Evaluating M, (z) in = = 0 yields that

26,
ML) = (414,0) = Moo (572
2511—1 2571—2
- Mn—QAn—l( d ) - n—2 28”_1
" dn—l + dn
= cn
Writing M,, as
| ™ DPn ] .
M, = |: Sn dn | , With 7, 80, Pn,gn € Z,
we find
[ Tn—1 Pn-1 0 2511—1
M, = M,_1A, =
! | Sn—1 dn-—1 :| |: 1 dyn :|

Pn—-1 dnpnfl + 2571717‘7171
dn—1 dnqn—l + 2571—1871—1

giving r, = pp—1 and s, = qn—_1.
The recurrence relations are now found:

p—1:=1; po:=0; pp=dnpp—1+26n_1Pp—2, n=>1,
q—1 = 07 qo ‘= 17 qn = annfl + 25n71Qn727 n > 1.

2qy— . . L
Let v, = %. By using the recurrence relations this gives
n

Up = [2/dn725n71/dn71,--- ;El/dl] .

Furthermore, let ¢, = T} (x) which gives t, = [en/dnt1,En+1/dn2, -]
We will now introduce the last matrix.

Let
* 0 257171
An = { 1 dy+enty }
which gives

® [ Pn—2 Pn-1 0 2ep_1
M, 1A
1o L qn—2 dn—1 :| |: 1 dn +5ntn :|

_ Pn-1 25n—1pn—2 + dnpn—l + pn—lgntn
| dn-1 2en-1qn-2 + dngn-1 + Gn—16ntn
_ [ Pn—-1 DPn +pn715ntn
L qn—1 dn + anlgntn

We can write z as & = M,,_1 A (0) yielding

T = Pn +pn—1tn€n
dn + qnfltngn
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Note that on the one hand

det(Mn) = qnPn—1 — Pnqn-1
while on the other hand

n—1
det(My) = det(A; Ag. .. Ap) = (—=1)" [] 22 = £2" .
k=0

Finally we can look at the convergence.
Now

Pn + Pr—1tnen _ Pn

On + qn—1tnEn  Gn

(@nPn—1 = Pndn-1)tnen
q”(% + Qn—ltn&L)

‘ P
g Pn
n

B +27,¢,
Qn(Qn + qn—ltngn)
o 2,

@22+ entyvn

We will use the continued fraction of x € [0, 2] for which
z
a

converges the slowest so that for all y € [0,2] we have that converges to

0. This gives a lower bound for ¢,. After that we will use another continued
fraction to give a worst upper bound for

%*,
2+ eptnvn

(6.1)

(6.2)

2" 2ty

Then we will combine the two results and see that T et

—0asn— oo

The continued fraction with the slowest increase in g, is

2

r= s =4-2V2.
1+ ————

4 —

1+

Clearly the number with the slowest increase in ¢, would have T} p(x) € [%, 2]
since here the lowest digits are obtained. Furthermore it has to be periodic
with period at most 2. This gives us few candidates and this one is found by
inspection. We can write the following recurrence relations for x:

Gn = 4qn—1 +2qn_2, n even,
qn = 4n—-1 — 2(17%27 n odd

with g_1 =0 and ¢o = 1. First we will prove that for all n € N we have ¢, > 1.
This is done by induction. Clearly ¢y =1 > 1 and g2 = 6 > 1. Suppose ¢ > 1
for all k¥ < n. Suppose that n + 1 is even. We find

dn+1 = 4Qn + 2qn71 >1.
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Now suppose n + 1 > is odd. Then we have

dn+1 = 4n — QQn—l = 4Qn—l + 2(]n—2 - QQn—l = 2qn—l + 2Qn—2 Z 1

We find that for all n € N we have ¢,, > 1. This gives us the following inequali-
ties:
Gn > 4q,_1 for n even

and
qn > 2qy,_3 for n odd.

By combining these 2 we find ¢, > 8¢,,—4 for n even which will give us conver-
gence. Let n > 4 be even. Then we can write n = 45 + k with k € {0,2}. We
find
on 24j+k 24j+k
< - < -

(gn)* = ((22)7(ar))* = 2%
This converges to 0 as 5 — oo so all even numbers give a convergent sequence.
Now we also have that ¢, > 2q,_3 for all odd n so all the odd numbers give a
convergent sequence as well. We find that

271
W%Oasn%oo
dn

Since this is the slowest converging sequence for all numbers we find that for all
x € (0,2] we have convergence at least this fast.

For we will not find a fixed number as upper bound but we will see that it
does not grow fast enough to beat the convergence speed of ([6.1). The number
which has the worst upper bound is the number with all epsilons negative with
the lowest digits so for x = 2 with expansion [-2,—4,—2,—4,...]. Note that
for this x we have ¢,, = 1 for n is odd and ¢,, = 2 for n is even. Furthermore
note that v, = ¢, (1) for n is even and v, = ¢,(2) for n is odd due to symmetry
of the sequence of digits. We will first look at n is even. This gives us that we
need to find an upper bound for

4
2—2u,

Now the interesting thing is that the v,’s are convergents of x = 1 so if it has
a fast convergence we will see this fraction will grow fast and it will result in a

bad convergence for x = 2. By induction we will see that we can give the values
of vy, in terms of n explicitly. We claim v, = 25 for all n even.

For n = 2 we find that v,, = % Fix n even. Suppose it is true for n — 2. To

prove is that it holds also for n.
We have that

(6.3)

2 2 — Un—2

T4 2 T3 9, 5

2—’1)7,,_2

Un

By using the induction hypothesis we find

9 _ n=2

2—vp_9 n-1i _ N
3—2v, o 3-22=2 4l
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which is what we wanted to prove. Now subtituting v,, for

4 4

= 2
2 — 2u, — —nfl

=2n+2.

For n is odd we have

2 2 2n

’]_}n— = =

C2—vpg 2-21 0 n4d
and t, = 1. Substituting both in (6.2]) gives

2t 2 o
= on n :
2 — 1t 2— P

_n_

n+1

in gives us

Since this is the worst upper bound the bound also holds for all other x € (0, 2].

Combining the two results yields

2" 2,

—27%0 as n — oo
45 2+ entnvn

Now that we have convergence we would want ergodicity and the existence
of an invariant measure for all L and F. However not for every choice we
have ergodicity. In the next chapter we show ergodicity of practically all maps
studied in this thesis. For all maps studied in this thesis it will be clear whether
they are ergodic or not. Whenever they are ergodic we know that there exists
an invariant measure. Some examples of non-ergodic maps in our family of

continued fraction expansions will be given as well.
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Chapter 7

Existence and ergodicity

When introducing a new continued fraction one should always check if the new
map is ergodic and has an invariant measure. For several flipped expansions
this is proved in [II]. In general you can prove the existence of an invariant
measure together with ergodicity by using checking Rényi’s condition (see [14])
which can be written as the following theorem:

Theorem 7.1. If there is an M such that for all n € N we have that for all
cylinder sets A; the following holds:

if ¢,y € A; then
‘ (1) (=)

(Tm)(y)

Then T is ergodic and has an invariant measure which is finite.

<M.

A cylinder set should be understood as a one-dimensional fundamental interval
(so x and y are two points from the same fundamental interval). This theorem,
however, is not that helpfull for checking the existence of an invariant measure
and ergodicity. Instead of checking Rényi’s condition, we will use Adlers (Folk-
lore) theorem which is Rényi’s condition but reformulated in a way we do not
need to iterate n times T'. But before we can give Adler’s theorem we need to
define when a measurable space is Markov.

Theorem 7.2. A map T : X — X on the measurable space ([a,b], F) is Markov
if there is an at most countable collection {(B(k)ren} for which the following
holds:

o T is defined on U, B(k) and X\ U, B(k) has measure zero

e Tl is strictly monotonic and is twice differentiable on B(k) for all k
e Forallk,j if T(B(k)) N B(j) # 0 then B(j) C T(B(k))

e For all k,j there exists an R such that B(j) C UE_,T™(B(k))
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Note that B(k) does not need to be the partition of cylinder sets even though
the cylinder sets will often be used as partition. If we have a measurable space
that is Markov it is easy to check whether we have an ergodic map with an
invariant measure by using Adler’s Theorem.

Theorem 7.3. Let T : X — X be Markov on
the measurable space (X = [a,b], F). If

T/I(x)

32| =%

M = sup sup
B(k) z,ycB(k)

and
inf |(T")(x)| > 1 for somen € N,

then T is ergodic and has an invariant measure which is finite.

It turns out that for some choices of L and F' the map 17, ¢ is not ergodic. This
is due to the fact the map is not Markov and will be explained later. For those
which are Markov we can prove that there is a finite invariant measure and the
corresponding map is ergodic. We can formulate this in the following lemma.

Lemma 7.4. For all measurable sets L C [0,1] and F' C [0,2] for which Ty p is
Markov on ([0, 2], F) the map Ty r is ergodic and has a corresponding invariant
measure.

Proof. Let L, F C [0,2]. For the first and second derivative of Ty, p(z) we find

 2e(w)

Tin({L') = 2

and Je ()
E\x
Ti’,F(fﬂ) = 3

Now for {(B(k)ren} we take B(k) = [TQ-H’ 772 which gives us
T//(ZC)

T'(y)?
4

M = sup sup
B(k) z,y€B(k)

= sup sup —
B(k) z,ycB(k) T
= sup(%)4
ke (327)°
_ 2(2k +1)3
T en (2k— 1)

=bd<o0.

Left is to find an n for which inf, |(77)'(z)| > 1. It turns out n = 2 works. We
find

(T2)/(x) _ —28(1’) —26(%)

T(x)? a2
4
B 267(9”) —e(x)d(z) x?
_ 4e(x)

2x — d(x)x?



Now

. 4e(x)
note that if d(z) = m then € [, 2] and
1
supz(2 — mx) = —
x m
we find A
inf ﬂ =4dm>1.
z | 2x — ma?
Now, by using Theorem [7.3] we find Lemma [7.4] O

We will investigate for what choices of L and F' the map Ty, r is Markov and
therefore is ergodic and has a finite invariant measure by using Lemma [7.4]
First we will see some choices that do give ergodicity and after that we will see
some choices which do not give ergodicity. All the different choices for L and
F in this thesis (outside this chapter) will give a map that is Markov. Up to
Chapter [11] it follows from the following lemma.

Lemma 7.5. Let B(k) = [ki—&-l’ %] If L = UgerB(k) and F = UgerB(k) for

some I,J CN with1 &1 and I # 0 then T, p is Markov.

Proof. Take as an at most countable selection of sets {(B(k)gen}. The first and
second condition of Theorem are easily verified.

For the third condition note that for all £ we have that if B(k) € L then
Tp, r(B(k)) =[1,2] = B(1) and if B(k) ¢ L then Ty, p = [0,1] and for all j # 1
we have B(j) C Tt p(B(k)) thus the third condition also holds.

For the fourth condition we have that for all k if B(k) € L then Tr p(B(k)) =

[1,2] and T7 (B(k)) = [0,1] so if we take R = 2 we find Uf_, T"(B(k)) = [0,2]
and the fourth condition is satisfied. If B(k) ¢ L then T7 ,(B(k)) = [0,2] and
with R = 2 the fourth condition is satisfied. O

7.0.1 Non-ergodic examples

We will now see some examples of choices for L and F' such that the map 77,
is not ergodic. First, we will find an example where L is empty. As a second
example, we will find a 2-expansion which is not ergodic. After that we will find
infinitely many examples for our map 77, p with both L and F non empty.

The case L =)

If we take L = () we can find the following map Ty, which is not ergodic.

Choose F = {[0, 3] N{z: Typ(z) > 1} U{[E, 1] n{z: Thp(z) < 3}} (see Fig-
ure [7.1] . Observe that for this F we have that
_ 1 1
T@);‘([(L 2]) = [07 2]
and 1 1
Tyt 1) =[5 1)



whho
—

Figure 7.1: A non ergodic map.

Therefore the system is not ergodic on [0,1]. However, if we restrict the map
to the interval [0, %] it is easy to see the map is ergodic. This map is studied in
Section If we restrict the map to [%, 1] we also get an ergodic map which
is studied in Section 1.4l

We could ask ourselves whether this is the only map with L = () which is not
ergodic. Note that there is no way of making two intervals [0, a] and [a, 1] with
a € (0,1)\{1} such that

T;,#([0,a]) = [0, 0]
and

TQI}T’([av 1]) = [a,1] .

This is due to the fact that when a < % then there is an interval D; such that
D; C [0,a] and A(Tp #(D;)) > 3 where X is the Lebesgue measure so that we

can not have Ty #(D;) C [0,a]. When a > 3 we can see that A\(Ty ([5,1])) = 3

so we can not have Ty r([2,1]) C [a,1]. Note that this does not exclude the
existence of any set F, different from the example above, for which the map
Tp,r is not ergodic.

The case F =0
Inspection of Figure [3.1 shows that there is no a € [0,2] such that
T, 4([0,a]) = [0, 4]

and
T[:(})([aa 2)) =la,2] .

Therefore we will try to find an interval [a, b] such that
TL,@([av bD = [aa b]

and
Trp(la, b)) = [a,b]°
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and then we found a non-ergodic map. Again by inspection you can see that
there is not an interval [a, b] without a discontinuity for which the map is not
ergodic. Now note that whenever we have a discontinuity the ’jump’ is 1 so
we are going to try to make an interval [a,b] with b — a = 1 furthermore we
have that Tr, ¢([b,2]) = [0, 2 — 1] so by setting a = # — 1 we find the following

equation
2
b—|-—-1)=1

so b — % = 0 which gives us b = v/2 and @ = v/2 — 1 This yields the following
set for L

L= (j0.vV2-1n{z: Typ() € [VZ—1,v2))
U(V2= 11N {e: Typle) € V2 - 1,V

This indeed gives a non-ergodic map. Again, when we restrict Ty g to [a, b] or
[a,b]¢ then T, p will be ergodic. These two ergodic maps are are studied in

Section [[1.1] and Section [1.2]

o
~o

Figure 7.2: A non ergodic 2-expansion.
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Note that this is the only way of making a non-ergodic map with an interval
[a,b] and b — a = 1. Suppose there is an interval [a’,b'] with ' < v2 — 1
then &' < v/2 and T}, 4((',v/2)) C [@/,V']. Now suppose we have [a’,b] with
a’ >+/2—1then ¥ > /2 and Ty ¢((v/2,)) C [0,d'].

Other examples

If we drop the restriction of L = @) or F' = () we have infinitely many choices for
L and F for which the map 77, r is not ergodic. Based on the non-ergodic map
with L = () we can find non-ergodic maps in two ways. First, we will choose L
and F' in such a way we will get

Ty #([0,3)) = [0, 3]

and

Le . e .0

jan}
I
=}
v
—_
[\

Figure 7.3: Choices for non-ergodic mappings.

In Figure the maps from which we can choose are shown. We observe that
for each & € [4, 2] we can choose between 3 maps and for each z € [2,1] we
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can choose between 2 maps. This gives us infinitely many choices for L and
F. Note that we would not make 2 separate parts [0,a] and [a,2] with a # 1
since if a < % the same argument as for L = () holds. If a > % then we have
Tr, r ([1,2]) N [0,a] # 0 for any choice of L and F.

Another way of making non-ergodic maps, based on the non-ergodic map with
L = (), is to expand the domain to [0, 2] and flip the map on [1, %] U [%, 2]. So

F={[0,3]0{z: Typ(x) > 3}} U{l5. 1In{z: Tyo(z) < 3}} UL, 5]U[5.2].
Now for any measurable set L C [0, 1] we find
TL,F ((0’ %) U (17 %)) N ((%’ 1) u (%7 2)) =0

and
TLF ((%7 Hu (%,2» n ((O> %) U (1, %)) =0.
This gives that the map is not ergodic (see also Figure [7.4)).

Figure 7.4: More choices for non-ergodic mappings.

45



We can also find infinitely many choices for L and F based on the non-ergodic
map with F' = (). This can be done by keeping the interval [v/2 — 1, /2] but we
will see that there are more intervals for which we have

Tp0(la,b]) = [a, 0]

and
TL,(B([aa b]c) = [av b]c

When keeping the interval [v/2 — 1,v/2] we can choose any measurable set
F C [0,1] and find a set L such that the map is not ergodic by setting

L = ([o,\/§—1]m{x:T@,F(x)e[\/§_1 \/i})
u([\/ﬁ—l,l]m{x:T@,F() V21 WC})

Now we can also choose an interval [v2—146,v/2+ 6] with § € [0, 2 —v/2] and
choose a set F’ C [0,1] and let F' = F' U [v/2, 2]. By setting

L = ([0,\@71+5]O{x:T@,F(a¢)6[\@—1+5,\@+5])
U(IV2-1+61]N{z: Top(e) € [V2—1+06,V2+3})

we find a map T, _p(x) which is not ergodic.
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Chapter 8

Several examples of
different L and F

We have seen in Chapter [6] that for all L and F, that are allowed, the expansion
converges . Of course, there are infinitely many choices for L and F' for which
the map 77, r is ergodic. We will look into some of which we find interesting.
In particular, those which make our continued fraction have only odd or only
even digits. We will first introduce some notation to make it easier to describe
L and F.

First we define for ¢ € N,,

D; ={z€(0,2]: EJ =i} .

Now we define
Deven = U Dz

and
Doga = U D; .
i:9 odd
Note that A, ) from Section depends on the choice of F and L while D; is
independent of this choice.

For each example in this chapter, the sets L and F' are specified. A simulation
of the density of the invariant measure is given, and whenever possible the
theoretical density is as well. If the theoretical density is found this is done
by using the natural extension method of Section Furthermore typical
characteristics are explained.
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8.1 The lazy backward expansion

Let L = F =[0,1) we find that

2
el .
0 1 2

Figure 8.1: The lazy backward expansion.

Note that whenever x € [0, 1] then T, p(z) € [1,2] and whenever x € [1, 2] then
Tr.r(x) € [0,1]. So the map T7 5 is not ergodic. Of course Ty, r is ergodic due
to Lemma Also digits 2 and 3 are omitted. Note that for all z € [0, 2] it has
digits 1 and € = 1 in 50% of the time since it is alternating digit 1 with other
digits and digit 1 is the only digit with positive e. We will find the density by
using the method of Section In figure [B:2] the domain is shown with the
variables A, B and C' in the second coordinate. We have the following equations
for A,B and C: A = 4:_—23, B = % and C' = 1_%‘ Solving the equation for B
results in B = 2 which gives A = —% and we find C' = 3.
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To.r

Ay

Figure 8.2: Q and Ty, () .

After projecting onto the first

fx) =

where C; ' =2In(2) .

1.2

Cy
Gy

3

243z

)

6—x

2

A

——) for z € [0,1] ,

for z € [1,2],

T(A_5)

T(A_4)

Figure 8.3: A simulation of the density of the lazy backward map.
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coordinate, this gives the following density




8.2 The lazy backward expansion (v2)

With L = [0,1] and F = [0,2] we find the same expansion as in Section
but now the interval [1,2] is also flipped. This results in an expansion without
digits 1 and 3. Having the interval [1,2] flipped drastically changes the shape
of the invariant measure (see Figure . Whenever we use the method to find
the natural extension as in [3.1]and change the domain we will find the following
domain:

0- 0
A_o
T 5
5 T,k B T D
o o o|lA_sIA_4 T(A—Q)
A 1 2 A 1 2

Figure 8.4: Q and Tz r(Q).

Now for A and B we find the equations A = 2:_—%3 and B = %2 so A = —2. This
gives us the following formula

1 1
—_— — for z € [0,1),
f(x){ - for x € [1,2) .
We find that we have a o-finite infinite measure (as shown in Figure [8.5). This
is due to the fact that points close to 1 are mapped to points close to 2 and visa
versa.

Figure 8.5: A simulation of the invariant measure of the lazy backward v2.
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8.3 Digits only divisible by 3 or digit 1

We can also make a continued fraction expansion for which the d,, (z) is always
divisible by 3 except on the interval [1,2] where we will pick digit 1. Even
though this map generates digits of 1 we will refer to it as the 3 divisible map.
Let

I={neN:n=1 mod 3}\{1}

and
J={neN:n=2 mod3}.

The lazy set and flipped set are easily made, namely

L:UDZ- and F:UDZ-.

iel ieJ
2
1
0 75% 1 % 1 2

Figure 8.6: An expansion with digits only divisible by 3 or digit 1.
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We will find the invariant measure by using method

C| C]
T (A1)
b B T(A3)
T T(Ag)
. AGA_ 6A3 A_g Al LE :a
0 0 ’
T(A_ )
T(A_3)
A 1 2 A 1
Figure 8.7: Q and Tz r(Q).
We get the following equations for A, B and C:
-2 2
and C=2.

= ——— Bzi
34+ A° 1+ B

Now we have that B > 0 so we find B =1 and A = —1. The density is now
given by

f(:c)_c<1ix+2iw)forx€[0,1} and

f@) = <2ix> for o € [1,2]

16
t=In(—) .

A simulation of this density is given in Figure [8.8

where

Figure 8.8: A simulation of the density for the 3 divisible map.
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In this section we will also give the percentages a certain digit is occurring for
almost all « € [0,2]. For the percentages of a specific digit with a specific € we
will use Birkhoffs ergodic theorem with the indicator function 1 A for digit

i with €. Birkhoffs ergodic theorem, which can be viewed as a generahsatmn
of the law of large numbers, can be found in Appendix If we use the
function 1 we will find the percentage of occurrence of ¢ = —1. Birkhoffs
ergodic theorem provides us that this is given by

3w+2
Z / 27 dx = 0.4141

n=0

j
3

So the percentage of occurrence of e = —1 is 41.41%. In Table the percent-
ages of the digits are given.

1 3 6 9 12 15 other
e=1 17.19 | 21.31 | 6.77 | 3.35 | 2.00 | 1.33 | 6.64
e=-1 0 28.07 | 5.35 | 2.23 | 1.27 | 0.81 | 3.68

Table 8.1: Percentages of the occurrence of certain digits with their sign e.

In the next subsection we will see a continued fraction map with the same
density as the map of the 3 divisible map.

8.3.1 3 divisibles spouse

L=|JDi

iel

Let

and
F =1L\ D
i€J
where I, J are defined as in previous section. We can find the invariant density of
11, r without any calculations. The following lemma will show that the density
is the same as the density corresponding to the map of the 3 divisible expansion.

Lemma 8.1. Let Ti(x) be defined by the measurable sets Ly and Fy and let
T5(x) be defined by Ly = Ly and Fy = Fy N Ly U (FFf N L$) then the following
holds.

The density of the invariant measure corresponding to Ti(x) is symmetric on
0,1

if and only if

the density of the invariant measure corresponding to To(x) is the same density
as the invariant measure corresponding to T1(x).

Proof. « =7

Let p be the invariant measure corresponding to 77 (x). It suffices to prove that
1 ([0, 2]) = p (T5 ([0, 2])) for all z € [0,2]. Take z € [0,2] at arbitrary.
Suppose z € [0,1] then we have T, * ([0,2]) = T, ([1 — 2, 1]).

This gives

H (Tgl([oa Z])) =K (Tlil([l - % 1])) =K ([1 - % 1]) =H ([07 Z])
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Now suppose z € (1,2]. We know that T (z) = Ty(z) for all z € T, *([1,2]),
yielding that

p(T51([0,2]) = w(Ty1([0,1]) + p (T3 (1, 20))
= p([0,1]) + p (T 1([1,2]))
= w([0,1]) +p([1,2])
= n([0,2])

“<: ”
Left to prove is that if the invariant measures of T} (z) and Tx(x) are the same
then it is symmetric on [0,1]. Now let z € [0, 1], we find that

(0. 2]) = 1 (T3 1([0.2]) = (T (L~ 2.1]) = a (L~ 2.1)

and this gives that the density is symmetric on [0, 1]. O

8.4 A ‘switching digits’ expansion
In this section we will have
L= Dodd\ D1 and F = Deven .

In Figure we can see why this section is called switching digits.

fundamental intervals of ASALAs| Ag
greedy 2-expansion

fundamental intervals of AP 502 A3 Aq
switching digits expansion

Figure 8.9: The reasoning behind the name ‘switching digits’.

For this choice of L and F' we can not find the invariant measure by using the
natural extension and making the domain bijective.
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Note that, even though in general it is hard to find an invariant measure, we
succeeded in most instances in finding the invariant measure. A simulation
shows that the density looks symmetric on [0, 1] (see Figure 8.10).

0.9

Figure 8.10: A simulation of the density for the switching digits map.

By using Lemma [8.1] this would mean it has the same density as the density for
the even regular expansion with F = [1, 2] (which will be discussed in Chapter [9))
but we could not find the density of that map either. What we can do is simulate
random points from the line [0, 2] x {0} and iterate them over Tz r(z,y). Maybe
this gives an indication of how the natural extension looks like. Note that we
have no guarantee that the line is in the domain at all and neither all of the
iterates. Though, whenever points ‘enter’ the domain they cannot ‘leave’. The
result is shown in Figure 811 A description of the programming can be found
in Appendix [B] and the program itself in Appendix [B.0.6]

Figure 8.11: A simulation of the domain of the natural extension of the switch-
ingdigit map.
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Chapter 9

Continued fraction
expansions with only even
digits

In this chapter we will finally look into continued fractions for which all digits
are even. We have seen an even expansion in Section and not in Chapter
This is because with 2-expansions we could not make a map which would lead
to only even digits. Now with the new family of maps Ty, p(z) we will have
infinitely many maps that would lead to only even digits. For the sets L and F
of such map we have the following restrictions:

Dygqg CFUL, DygqNFNL=0, DeyenNF = Deyen N L.

Under these restrictions we can rewrite d(x) and it becomes clear why this would
give an expansion with only even digits

|2] -1  forz € LN Dyq

a(z) L%JH for 2 € F N Dyaa
| = for x € (FUL)°N Deyen
2] 42  forze (FUL)N Dopen -

Now we have two choices for the image of  for all z € [0,1] (see Figure [0.1)).
Furthermore we can pick any measurable set L C (0, 1] and find a unique set F'
such that the corresponding continued fraction expansion has only even digits
and the other way around. Note that for each z € [0, 2] both p,(z) and g, (x)
are even for all n > 0 (see page [34] for recurrence relations).
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2 :
0 1 2

Figure 9.1: The options for an expansion with only even digits.

9.1 Examples of continued fraction expansions
with only even digits

In Section[3.1]it is mentioned that we could not make an even ‘regular’ expansion
because we could not make the digit even on the interval [1,2]. However, now
that we can also flip our continued fraction map % — 1 we have this option. This
example is given first. Afterwards we will see the even expansion with F' = [0, 2]
and the even expansion with L = [0,1].
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9.2 ‘Regular’ even continued fraction map with
[1,2] flipped
If we take L = D,qq and F = [1,2] we will find an even continued fraction

map. In the spirit of [5] we will call the corresponding expansion a regular even
2-expansion and 77, r the regular even map.

2
1
0 1 2

Figure 9.2: The regular even map.

Unfortunately, we could not find the invariant measure. Since this map T, p(z)
belongs to the main topic of this thesis, we will be ellaborate on the process of
searching the domain of the natural extension such that Ty r(z,y) is bijective.
We will see that all tricks we try do not work. Also the same way of simulating
as in Section [8.4]is used to give an idea of how the domain could look like. But
first we will try the method as in Section adjusting the domain. We get the
following equations for A, B and C"
-2 -2 2

- % B—_"* audC=_°>_
210’ sro wdC=57

which givesus A= -1, B= —% and C = 2.
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Even though this works for the boundaries of the domain it will not give a
bijection because all the fundamental intervals in the image of 77, r should fit

exactly and they do not (see Figure . In order to fit we need that MLB =

ﬁ for n = 2,4,... such that the images of the edges fundamental intervals

Ay, Ay, ... connect. This gives B — A = 2 and we have that B — A = % We
end up with holes between the images of the fundamental intervals. Another
problem is that 7 (A,+2) C T(Al) which gives overlap.

c c
T(A2)
Al A A, AEYY
0 Tur
B B
Adl Ay T(A_,)
A A

Figure 9.3: Q and Tz ¢(Q).

In fact, a simulation shows that we do not have such a domain as we hoped
for but a domain with infinitely many holes. Figure shows an indication
of how the natural extension could look like. Note that, even though in the
simulation the number of holes seems to be finite, we think that there are
infinitely many holes. The reason for the simulation not to show that many
holes is that simulated points have a thickness in Figure [9.4]

Figure 9.4: A simulation of the domain of the natural extension of the regular
even map.
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For our next attempt we will try to use a different formula for the map of the
natural extension which does allow a domain on which it is bijective.

Let 775 ¢ ([0, 2] [0, 2])\ (11, 2] x [1,2]) = ([0,2]x [0, 2)\([L, 2] x [1, 2]) be defined
as

7—L,F(x,y) = (TL’F(I'), d(.ﬁC)—fE(CC)y) .

TL.g

0 2 0

Figure 9.5: Q and Tz, ¢(9).

However, if we now use

u(A)zC//Aﬁdxdy,

where C' is a normalising constant, as invariant measure for the natural extension

and integrate out y we will find 0(24-%3:) as density on [0, 1] and 0(2_%1) on [1,2].

Simulation shows this is totally incorrect.

Figure 9.6: A simulation of the invariant measure as well as the theoretic result.
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In fact, whenever we would have used this natural extension on the same map
but without flipping on [1, 2] the fundamental intervals would have been on the
exact same spots. It turns out the densities found are the ones of this map! The
reason for this is that the invariant measure is not invariant anymore for the
extension when we use the flipped map on [1,2]. Now the density looks very
symmetric. If this is indeed the case then, by using the symmetry lemma, it is
the same density as the density of the Switching digit expansion on page

Figure 9.7: A simulation of the invariant measure with no flip on [1,2] as well
as the theoretic result.

We also tried to find the density by trying functions

o B
¢ <2+ax2+ﬂx) for z € [0, 1]

and

g
) (2+7x> for z € [1,2]

and search for a triple «, 8, which fits the simulation the best (by using the
least squared error method). This did not lead to the desired result.

Even though we could not find the density theoretically we do have the density
numerically. This gives us the possibility to calculate the occurrence of a certain
digit numerically by using Birkhoffs Theorem. The digits are given in Table

2,e=—-1]2,e=1 4 6 8 10 | other
27.59 36.15 12.29 | 5.90 | 3.60 | 3.18 | 4.65

Table 9.1: Percentages of the occurrence of certain digits.
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9.3 Even expansion with F' = [0, 2]

In this section we choose F to be F' = [0,2]. In order to make the map even we
have L = Dgyen. In Figure the map is shown for this choice of L and F.

2

Figure 9.8: An even expansion with F' = [0, 2].

This map can be obtained by flipping the even regular expansion map in the
line y = 1 on [0,1]. Whenever we use the method as in Section adjusting
the domain we will find the following equations for A and B:
-2 -2
= — dB=——.
2+ M 114

we find that A = —2 and B = —1 see Figure

0 0
Ay
T(A_g)
T(A_y)
B o o o|A_gA_y ’TL’Q B -
T(A-2)
A A

Figure 9.9: Q and Tz ¢(9).
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Whenever we integrate over the second coordinate we find the following formu-
las: f(z) = 1= for z € [0,1) and f(z) = 5= for z € [1,2).

Again we find a o-finite infinite measure just as in Section A simulation is
shown in Figure

Figure 9.10: A simulation of the density of the even expansion with F' = [0, 2].
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9.4 Even expansion with L = [0, 1]

Now as a last even expansion we will pick L = [0, 1] which gives us that
F = Deyen. In Figure the corresponding graph is shown.

Figure 9.11: The even expansion with L = [0, 1].

This maps looks like the odd flipped 2-expansion but then with L = [0, 1] instead
of L = (. Now we will find that the invariant measure is again o-finite infinite.
We can show this by using the method as in Section adjusting the domain.
We find the following equations for A, B,C and D (see Figure :

—2 —2 —2 2
A= —— B= = D= —-.
21 C 57p ¢~ a1ra wnd 21 A

We find that A = —2 and C' = —1. Now in the equation for D we get a division
by zero. It turns out that whenever we put D = oo we find a bijective map.
This implies B = 0.

From this we find the following formula for f(z):



T(Az)
T(Ay)
Ay
TL,
0 _ g
B, B
T(A_g)
T(A_y)
A_p Ag|A—g T(A_g)
A A

Figure 9.12: Q and Ty, #(£2).

In Figure [9.13] a simulation is shown. In the next Chapter we will discus con-
tinued fraction expansions with only odd digits. There will be no dynamical
system with a o-finite infinite measure.

Figure 9.13: A simulations of the density of the invariant measure of the even
expansion with L = [0, 1].
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Chapter 10

Continued fraction
expansions with only odd
digits

We already have seen two ways of making a continued fraction expansion with
only odd digits in Section and Section In this chapter we will use both
sets L and F to find more examples of such continued fraction expansions We
will have restrictions on L and F' in a way similar to the even expansions. These
restrictions are given by

Deyen C FUL, DevenﬂFﬂL:(b, DogaNFEF =DygqaNL .

These restrictions give exactly those maps prohibited in the previous chapter.
In Figure we see the different maps we can choose from. Note that for all
x € [0,1] we have two options which gives us infinitely many ways of making
odd expansions. Also note that given any measurable set L C [0,1] there is a
unique F such that the expansion is giving only odd digits (and the other way
around). If we look at the recurrence relations in Chapter @ on page [34] we see
that by picking the digits only odd for all « € [0, 2] the ¢,’s will be odd for all
n € N. The p,’s will always be even no matter what the digits are. In the next
sections we will see several examples of continued fraction expansions with only
odd digits.
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Figure 10.1: The options for an expansion with only odd digits.

10.1 Examples of continued fraction expansions
with only odd digits

We examine two examples which are somewhat similar to the ones we already
encountered in Section and Section The example we consider first is
the odd expansion with F' = [0, 1]. This map looks like the backward continued
fraction map (see Figure . Afterwards we study the odd expansion with
L = [0,1] which looks like the flipped even continued fraction map but then
lifted to [1,2]. As a last example we will see an expansion with d; =1 mod 4
for all 4 > 1.
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10.2 Odd expansion with F' = [0, 1]

As mentioned, we can first pick a set F' and then find a set L such that 77
gives only odd digits. In this section we choose F' to be F' = [0,1]. Now we
observe that we need to pick L = D,4q in order to make an odd expansion. In

Figure the graph is shown.

o
~Io
[V
S
[NIN)
by

—_

Figure 10.2: The odd expansion for F' = [0, 1].

Note that this map looks like the regular odd expansion map but then flipped.
In fact, if we flip the regular odd expansion map on the interval [0, 1] in the
line y = 1 we will get this map. Unfortunately we could not find the invariant
measure. We will give a short description of why the method as in Section [3.1
did not work. We get the following equations for A, B,C and D:

-2 -2 2 2

= B = — Dzi.
5T A C and

A =
5+A 1 1+ B

69



R N N N T(Al)
C C
T
0 L
Al T(A_7)
B A_gA_gA_4 B T(A_5)
T(A_3)
A A

Figure 10.3: © and 7 (€2) but without the images of the rectangles with a prime.

This givesus A = —1 or A = —2. We will explain that if we pick A = —1 we will
get overlap and that implies that you will get overlap when you take A = —2.
Now A = —1 gives B = —% and D = 4. We find that the image of A’ ,,_,
overlaps with the image of A’ ,, 5 with ¢ > 1. The images of A’ 5, | withi>1
are not drawn in Figure Not only do we have overlap we also have holes.
Note that the image of A_3 does not fit to the rest anymore since the highest
y value is %2 Figure shows a simulation of the natural extension. We can
see that it indeed has holes.

4

Figure 10.4: A simulation of the domain of the natural extension of the odd
expansion with F' = [0, 1].
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Figure 10.5: A simulation of the density for the odd expansion with F = [0, 1].

Even though we do not have the theoretical density we can still simulate the
density (see Figure . With this simulated density we can calculate the
percentage of occurrence of certain digits using Birkhoffs ergodic theorem. The
result is found in Table [I0.1] For the percentage of ¢ = 1 we find it is the
same as the percentage of occurrence of digit 1. Since on all other fundamental
intervals e = —1.

1 3 5 7 9 11 other
28.11 | 23.17 | 16.90 | 8.79 | 4.18 | 3.08 | 15.77

Table 10.1: Percentages of the occurrence of certain digits.

It might be disappointing that we did not find the invariant measure but in the
next two examples we will find the invariant measure by using the method as

in Section B.1]
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10.3 0Odd expansion with L = [0, 1]

Now we will pick the set L = [0, 1] and choose a set F' such that our expansion
will become odd. It turns out we have to choose F' = D,4q. In Figure the
graph is shown.

2 ,
| |
0 1 2

Figure 10.6: The odd expansion for L = [0, 1].

This map could have been obtained by taking the flipped even expansion and
then putting L = [0, 1].

To find the invariant measure we will use the method of Section [3.1] again ad-
justing the domain. This time we have to determine A, B and D for which the
map is bijective. We get the following equations:

2 2 2
_ B AdD=—>_ .
5+ D an

A= =
1+A4 1+D

The natural extension is shown in Figure [10.
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B B
e o ol A5 A/l T(Al)
D! Trg D
' T(AY)
Aq
T(As)
A A

Figure 10.7: Q and T, ().

The third equation gives us D =1 or D = —2. Now D = —2 gives us A > D
which is impossible so we find D = 1. This gives us A = —% and B = 3. This
gives us that the density on [0, 1] is

3 1
f<x):c(2+3z_2+:z:)

and on [1,2] we find
1 1
/(@) _C<2+x * Gx)

2
where C~! =1n (f) A simulation of the density is shown in Figure [10.8

Figure 10.8: A simulation of the density for the odd expansion with L = [0, 1].
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10.4 The ‘large’ flip

For the following expansion we will take

L={x: VJEQ mod 4 V EJE?) mod 4}

x
and
2 2
F=A{x: —|=0 mod4d VvV |—|=3 mod4}
x x
The map we get is shown in Figure [10.9]
2
1
0 233 17 3 1 2

Figure 10.9: The large flip map.

Note that this map gives only digits d; with d; = 1 mod 4 for all z € [0, 2].
Using the method of Section adjusting the domain we get the following
equations for A and B:

- 2
A= m and B = m .
This gives us A = (/17 — 5) and B = \/%_3 = 1(V17 + 3). The density is
now given by
) = C VIT+3  VJ/1T-5
4+ W17 -5z 4+ (V17T -5)z
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Chapter 11

The ergodic parts of the
non-ergodic mappings

In Chapter [7] we saw that in the family of new continued fraction maps there are
infinitely many maps which are not ergodic. In this chapter we will look into
two specific cases. For L = () we found an F' for which the map is not ergodic
and for F = () we also found one map for which Ty g is not ergodic. In both
cases the domain splits into two parts on which Ty, ¢ acts seperately. Whenever
we restrict the map to one of those parts we get a map that is ergodic. In this
way we get four different ergodic maps which are discussed in this chapter. We
will see that we can find the invariant measure for two of them. Two of them
will have finitely many digits and two of them will have infinitely many digits.
For one of the maps with finitely many digits we could not find the invariant
measure (even though we know it exists due to the results in Chapter . We
will discus a classic theorem of Gauss and Kuzmin and give a new method
of approximating the density of the invariant measure of this map. This new
approximation method will only be usable for expansions with finitely many
digits. But first we start with the two maps having F' = ().

11.1 A 2-expansion, part 1

The first map we will discuss with F' = ) has as domain [v/2 — 1,v/2]. Rather
than giving the set L we will define it on each of its fundamental intervals. Note
that these intervals are different from D;.

Let T(x) : [v2 —1,v/2] = [V/2 — 1,4/2] be defined by
%4 for 2(vV2-1) <2<+V2
229 for 2-v2 <x<2v2-1)

= -3 for 1(6-2v2) <x<2-2
X

2.4 for V2-1 <z<1(6-2v2).
X

(6]



V2 -1 2 - V2 2(v2 — 1) \/5
Figure 11.1: A 2-expansion on the interval [v/2 — 1,v/2].

A graph of this map is shown in Figure[T1.1] Note that on the fundamental inter-

val [v2—1), 1(6—2v/2)] the map is not full (which means that 7" ([v2 — 1), £(6 — 2v/2)])
is not the entire domain). Still we can find the invariant measure for this map

by using the method as in Section [3.1] adjusting the domain. Also note that we

could not use Lemma to prove ergodicity. Though it is easy to check that,
whenever you take the fundamental intervals as partition, the system is Markov

and therefore ergodic by using Lemma[7.40 When making the natural extension

as in Section we find the following equations for A, B and C:

2 2 2

11 C 5vc MMY=113

A
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T(A)
pal Asl Ay Aq 7L

T(Az)
. ) T(ay)
A A“mw

Figure 11.2: Q and T.(9).

This results in A = $(v/33—5), B = $(v33—3) and C = 3(v/33 —3). We find
the following density up to an integration constant

V33-3 V33-5
foy = TR wves orVRol<esaas
V333 __ v/33-3 for 2(\/§ -1 <z< V2

4+(v33=3)x  12+(V/33-3)z
The graph of the density is shown in Figure

Figure 11.3: A simulation of the 2-expansion on [v/2 — 1,v/2].

In the next section we will see the map with F = () which has [v/2 — 1,v/2]¢ as
domain.

7



11.2 A 2-expansion, part 2
For the map which has the domain [\/§ -1, \@]C and has F' = () we have that

L=100,v2-1]n{z: T y(z) € [V2 —1,v/2]}. This gives a 2-expansion without
digits 2 and 3. A graph of the map is shown in Figure

§| JR—

o
=~

Figure 11.4: A non-ergodic 2-expansion on [v/2 — 1,/2]°.

Again we can use Lemma [7.4] to prove ergodicity since this map is Markov.
Now we would like to find the natural extension. However the method at in
Section did not give any results. Whenever we simulate the domain of the
natural extension we get the domain as in Figure [I1.5]

Figure 11.5: A simulation of the domain of the extension of the 2-expansion on

(V2 —1,v2°.

Observe that it has a lot of holes and therefore it is not surprising we could
not find the natural extension. The program for simulating the domain can be

found in Appendix
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11.3 The ‘tiny flip’

In this section we will choose L and F in such a way that T}, p(z) < 3. This
yields T, r(z) € [0, 3] for all z € [0,2] so we will take [0, 1] as our domain. Note
that the digits 1,2 and 3 are omitted. For digit 4 we have that ¢ = 1 and for

the remaining digits € can be both positive and negative.

1
2

4
1

an)
W=
—
(SN
Ol
N[

Figure 11.6: The tiny flip map.
To obtain the invariant measure we will use the method of Section [3.1] again.
Adjusting the boundaries A and B, we see that for A we have the equation

2

A=A?’4+54+4+2=0 andforB, B= ——.
4+ A

Now for A it turns out A = 1 (v/17 — 5) is the right choice to pick. This yields
B = 3(v/17 — 3) and we find the following invariant measure

Ha)=C VIT-3  J1T-5
= 4+ (V17-3)z 4+ (V17 -5)z

0_1:1n<5+\/ﬁ> .

with

34+ V17
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In Figure[11.7] we can see that the density is almost uniform. We may expected
this when looking at Figure [I1.6]

Figure 11.7: A simulation of the density for the tiny flip.
In the next section we will see the ergodic map with L = 0 and has [§,1] as
its domain. Since the natural extension is not found and the map has finitely
many digits we can use an approximation method based on the idea behind the
Gauss Kuzmin Theorem. This method is also explained in the next section.

: ) 1
11.4 A ‘tiny flip’ on [3, 1]
In this section we will study the map mentioned in Chapter [7] which has as
domain [3,1] with L = () and F = [1, 2] U [£,1]. Note that for this map d(z)
only attains the values 2, 3, 4.

1

(SIS
=31
wWIN
Uty
—_

Figure 11.8: An expansion map on [%, 1]

Unfortunately, we were not able to obtain the invariant measure by finding
the appropriate domain for the natural extension. Again we can simulate the
natural extension which gives a not very promising result (see Figure [11.9).
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Figure 11.9: A simulation of the domain of the extension for the ‘tiny flip’ on
(3. 1].

Fortunately we can use Gauss Kuzmin Theorem to approximate the density.

Theorem 11.1 (Gauss Kuzmin). Let T be the regular continued fraction map,u
the Gauss measure and A the Lebesgue measure.
Then for any measurable set A we have

AT™"(A)) = pu(A)
as n — oo.

Note that this is not the exact same theorem because in the origional theorem
there is a speed of convergence given as well. This theorem was stated as
an hypothesis by Gauss in his diary and was proven by Kuzmin in 1928 and
(independently) by Paul Lévy in 1929. A proof can be found in [9]. Now
this Theorem is stated and proved for the regular continued fraction expansion.
We believe it is true for the new family of continued fraction expansions as
well. Because the proof is long and fairly complicated we did not proof the
theorem for this new family. Instead we will show a simulation of a case where
it works perfectly. This will give us reason to believe it is also true for the
new continued fraction maps. The idea of the theorem being applicable for
other expansions is not new. In fact, a lot of work has been done to prove the
theorem (or similar theorems) for other expansions then the regular one. For
example in [I7] the theorem is proved for #-expansions and in [§] it is proved for
a normal flipped expansion having only odd digits. The latter is closely related
to the new continued fraction expansions.

In Figure [I1.10] we can see that this methods approximation of the density is
close to the simulation of random points. In the next chapter we will see an
example of an expansion of which we know the invariant measure and we will
see that this method gives such a good approximation that the density and the
approximation coincide in a graph. Note that the estimate given by the “Gauss
Kuzmin” approximation is much smoother then the one we got by simulation.
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225 T

055 06 065 o7 075 08 085 09 095 1

Figure 11.10: An approximation using the Gauss Kuzmin method on the at-
tractor together with a simulation of the density of the ‘tiny flip’ on [%, 1].
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Chapter 12

Other mappings giving
finitely many digits with
N =4

In the previous chapter we ended with an expansion with finitely many digits.
This expansion both had even and only odd digits. In this chapter we will make
an expansion with N > 2 allowing us to have expansions with finitely many
digits with either only even or only odd digits. We will see three examples of
expansions with finitely many digits with NV = 4. First we will see an expansion
with digits {1,2} then, by flipping, we will find an expansion with digits {4, 2}
and then the last one will have digits {5,1}. In all three cases we will give a
approximation of the density by using the Gauss-Kuzmin method as in [I1.4]
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12.1 A 4-expansion with digits 1 and 2
Let T': [1,2] — [1,2] be defined as

4
——1 for ze (3,2
e =1 4
——2 f 1,3
- or z el 3]

—_
ST
[N}

Figure 12.1: A 4-expansion with digits 1 and 2.

For this expansion we can find the natural extension my using the method as
in Section We find the following equations for A and B

4

B=——
and T4

T 92+B

which gives us A =1 and B = 2. So the invariant density is

f<$):c(2ix_4ix>

with C~1 = In(42).

Now if we apply the method of Gauss-Kuzmin we find a very good approxima-
tion. In Figure both the theoretic and the approximation are shown. In
the Gauss-Kuzmin method only 10 iterations are used. Note that with these
axis the difference can hardly be seen by the eye! If we calculate difference in
2-norm we get

( /1 (f@) - F@)y dxf’ 1123551077

where f(z) is the true density and f(z) the approximation. In Figure we
zoomed in a lot to show there are indeed two functions plotted.
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Figure 12.2: An approximation of the density for a 4-expansion with digits {1, 2}
and the density.

Figure 12.3: Zoomed in on a part of Figure [12.2

12.2 A 4-expansion with digits 2 and 4

In this section we will see an expansion with only even digits by using the map
as in previous section but then flipping it on the first fundamental interval. Let

T:[1,2] — [1,2] be defined as

4
4—; for =€ (3,2]
4

T(z) = \
——2 f 1, 3.
- or z €l 3]

—_
N
)

Figure 12.4: A 4 -expansion with digits 2 and 4.
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When using method as in Section we find the equations for A and B:

—4 4
= — d B=—.
1ra M 2+ A
Now the first equation gives us A = —2 which results in a division by zero in

the equation for B. If we set B = oo then we find that our natural extension is
bijective. For the density f(z) we find

note that f(z) — oo as * — 2 and indeed we have a o-finite infinite invariant
measure. In Figure[12.5|an approximation is found by using the Gauss Kuzmin
method. We can see it is tending to infinity in 2 but not that strong.

Figure 12.5: An approximation using the Gauss Kuzmin method for a 4-
expansion with digits {2, 4}

12.3 A 4-expansion with digits 1 and 5

Let T : [1,2] — [1,2] be defined as

4
——1 f 3.2
- or z€(3,2]

T(x) =

4
5—— f €1, 3.
- or z el 3]

Again we will find a natural extension. This time the equations for A and B
are A A

= d B= ——

514 1+A

which gives A = —1 and we set B = oo as before. Which leads to the density

fa=c(5+ 1)

with C~1 = In(3).
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Figure 12.6: A 4 -expansion with digits 1 and 5.

Again we see the method of Gauss-Kuzmin is very good in approximating the
density (see Figure [12.7))

-

Figure 12.7: An approximation of the density for a 4-expansion with digits {1,5}
and the density.

This was the last expansion that is discussed in this thesis. There is still a lot
of things that can be studied concerning the expansions studied in this project.
But before we give suggestions on things to study in the future we will reflect
on what we did in this thesis since a lot of results have been obtained during
this project.

87



88



Chapter 13

Conclusion

Before this study on the new family of continued fraction maps started we
did not expect to find so many invariant measures. The method of making a
natural extension and then integrate over the second coordinate turned out to
be extremely powerful. We have seen a large variety of shapes in the domains of
different natural extensions. Initially the new family of continued fraction maps
was introduced to find infinitely many continued fraction maps with only even
or only odd digits. Since the new family of continued fractions almost always
have 4 maps to choose from there is a lot of freedom. This resulted in having
infinitely many maps with only odd or only even digits instead of finding two
maps with only odd digits and two maps for only even digits. On the other
hand, we could only find one way of choosing F' for which the flipped map is not
ergodic and one way of choosing L for which the 2-expansion was not ergodic
and infinitely many ways of choosing L and F' for which the map 77, r was not
ergodic. At first glance, we did not expect this.

It was unfortunate that one of the mapping for which we could not find the
invariant measure was the regular even expansion with F' = [1,2]. Still it was
interesting to see that the corresponding density seemed to be symmetric and
if it was symmetric then it was the same density of the mapping of switching
digits by using Lemma[8.1} The lemma we used in the chapter on the 3 divisible
expansion.

The map in Section looked easy at first. Though, we could not find the
invariant measure by using the natural extension. Simulations gave interesting
insight in how the domain of the natural extension would look like. The simu-
lations showed that the natural extension would look rather complicated. The
Gauss-Kuzmin method looked promising. The simulation of random points and
the approximation found by using the Gauss-Kuzmin method where very close.
In the cases where we did know the density and had finitely many digits the
Gauss-Kuzmin method gave a very good approximation.

In this project we encountered a wide variety of things. Some parts where harder
then expected and others where far easier then expected. When looking back,
I think it was really rewarding and interesting to look into. Still a lot of open
questions and ideas are there yet to be studied.
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Chapter 14

For future study

We have seen a lot of different expansions in this thesis. Though most of them
are discussed briefly. More study on those can be done (for example calculating
constants of Khinchine and almost sure percentages of digits occurring in a
continued fraction). For the Ty p we found exactly one F' for which we had a
non-ergodic map. A natural question would be: Is this the only F' which T p is
not ergodic? If it is, a prove of that might be hard. On the other hand, if it is
not the only F' then a description of all choices for F' for which the map is not
ergodic might be a nice result. We can ask the same question for the mappings
Ty, ¢ since we only found one non-ergodic map as well.

It was good to see we found so many invariant measures. Still one might wonder
why we did not find the ones we could not find. What made these maps so
different from the others? And can we give some criteria for {L, F'} in such a
way we can say, in advance, whether the method of making a natural extension
will work to find the invariant measure? Two maps of which we could not
find the density seemed to be the same density and seemed to be symmetric
(The even regular map with F' = [1,2] and the switching digits map). Two
other maps had a symmetric density which where the same (3-divisible and his
spouse). Are these 2/4 mappings the only mappings which have a symmetric
density? For flipped N-expansions with N > 2 we might find more dynamical
systems with a symmetric density. These dynamical systems can be a topic of
a study.

A study on other flipped N-expansions can be done. In particular n-divisible
expansions for n = 1,2,... N + 1. Note that for n = 1,2,... N we can always
find infinitely many maps which give digits that are only n-divisible. and for
n = N + 1 we will find exactly one map with digits only n-divisible.

A chapter that was initially in the thesis was a chapter on robustness of the
density of a continued fraction map. Since for the even regular 2-expansion
without flip it was easy to find the density and with flip we could not. We
wondered why, by flipping one fundamental interval, everything changes. So
the question arose of how the density changes if L or F' is slightly changed.
Eventually the chapter deviated too much from the thesis, but could be the
base of a new study.
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The method of Gauss-Kuzmin looked very promising. Though, the way it works
uses the fact that you only have finitely many digits. An idea is to adjust the
method in such a way that you can find a good approximation for expansions
with infinitely many digits. Also a proof of the theorem for our new continued
fraction maps is not yet been made.

In this thesis a study on approximation properties is left out. Study on approxi-
mation coefficients can still be done. A classical result for the regular continued
fraction expansion is that whenever we have when

P ()

where 275 is the nth convergent then

. 1
min{0,_1(x), 0n(x), Opi1(x)} < % .
This is a result from Borel found in 1903. It would be interesting to see what
kind of bounds on the 6,,’s we could have if we do not use the regular continued
fraction map but use maps which are studied in this thesis instead.

Another result for the regular continued fraction is that a continued fraction
expansion of x € [0,1] is periodic if and only if it is a quadratic irrational i.e.
a solution to ax? + bx + ¢ = 0 for a,b,c € N. To prove that for each periodic
expansion the number it represents is a quadratic irrational is easy but the other
way around is hard. In [7] a lot of information on quadratic irrationals is found.
For other mappings the same theorem seems to be hard to prove. In our case
questions concerning quadratic irrationals are:

1. Can we choose L, F' in such a way every quadratic irrational is periodic
and if so is there only one way or are there multiple ways?

2. Can we choose L, I in such a way no quadratic irrational is periodic and
if so is there only one way or are there multiple ways?

3. For specific L, F' how can you determine if every quadratic irrational is
periodic?

These are hard questions but are interesting to say the least.
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Appendix A

The regular continued
fraction expansion

In this first appendix the regular continued fraction expansion is explained to-
gether with concepts belonging to the field of ergodic theory and dynamical
systems. Almost everything that is included in this first appendix can be found
in [4] and also in [I0] which is in Dutch.

A.1 Introducing the map for the
regular continued fraction expansion

The regular continued fraction expansion is the most well-known fraction ex-
pansion there is. It is also the oldest continued fraction expansion and could be
considered the mother of all continued fraction expansions. A regular continued
fraction expansion is an expansion of a number z € R of the form

1

T =doy+ i

i+ —
dy + —

Where d,, € N for all n. The numbers d,, are called the digits of x. Sometimes
we use the shorthand notation & = [dy; dy,da, . . ..

For all z € R we can find the digits by using a map.
Let T:[0,1) — [0,1)

T(x)_gl:—BJ ifz#0 and T(0)=0

We now define do(z) = d(x) = | %] and d,(z) = d(T"(z)). Without loss of
generality we can choose dg = 0 and look at x € [0,1] only. We can write z as

follows:
1 1

dz)+T() d+T(x)"

xr =
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Now

gives us

—_

+ -
"y + T ()
In general we can write, if T%(x) # 0 for 0 < k < n,

1

d o
2t L T (@)

We can now define the nth convergent of = as

Pn () 1
cn(x) = = T .
qn(x) dy + ——
ds + a
with short hand notation [0;dy,ds,...,d,]. We have that ¢, — x as n — oo in

Appendix [AT1] this is proved and recurrent relationships are found. But first
we will prove that rational numbers have a finite expansion.

Suppose rational numbers have an infinite expansion. Let Z—S with pg,q0 € N
and py < go. Note that T(QnN[0,1]) = QN 0, 1] so we can define T"({;—g) = %
with pn, ¢, € N, relatively prime and p,, < ¢q,. Now

JEEES M Can gy 0P

n % % Dn an Pn Qn+1

gives us ppy1 < qp — pnd(Z—") < pn, because we divided by the greatest common

divisor and because the rational is in [0, 1]. This result is obtained for all n € N
which gives us an infinite strictly decreasing sequence

~--<pn+l <Pn<...<Po

which is impossible for a sequence with values in N so we find that every rational
number has a finite expansion.

A.1.1 Convergence and recurrence formulas

We will prove that the convergents of a given number = € [0,1] will indeed
converge to x. This is done by using a Mobius transformation and matrices. It
is basically the same proof as in [I0] but in English instead of Dutch.

Let

A= H H with det(A) £ 0.

96



We define
ar +b

Al) = cx+d’

which is a Mobius transformation. Furthermore we define

0 1
An:{l an} and M, = A1Ay---A,

where a,, are the digits of . Now note that we have

1
ML0) = (140 =Moo ()
1 1
= My A 1(—)=My 3 | ——
an
Gn—1 + —
= Cn
and ¢, = ‘zgj:p" so let us write M,, = [ 'n Pn ] . On the other hand
qn Sn Q4n

M :M A — TW/71 pnfl 0 1
n n—141n Sn_1 Q1 1 an

— Pn—1 GnPn-—1 + rn—1
qn—1 AnQn—1 + Sn—1

which gives us that
T = pn—1 (which leads to r,—1 = pp_2)

Sn = qn—1 (which leads to s,—1 = ¢n—2)
and
Pn = GnPpn—1 + Pn—2
Qn = QnPn—1 + qn—2 -

We will now write a matrix that will give x as the mobius transform of 0.
Let

. 0 1 .  m
Mn—Mnl[1 an+Tn:| with T, = T"(z) .

This will give us

M (0) = T =zx.

n




We can now find an appropriate expression for x

0 1
1 a,+7T, } (0)

— Pn—2 DPn-1 1
dn—2 qn-1 an + Ty

Pn—2

n

x = M*(O):Mnl[

a1,

dn + Gn-1

-2 an + T,
Prn—2 + pn_1(an +Ty)
Qn—2 + Qn—l(an + Tn)
Pn+ Pn—1Th
In + qn-1Tn

This enables us to find an expression for the difference of x and the convergent
Cn

Pn + Dn—1Ty _ Pn
In+ tn1Tn  Gn
@ (P + Pn—1Tn) = (qn + @n-1T0)pn
(qn + Tnanl)Qn
(Prn—1Gn — Pndn-1)Tn
n(@n + Tngn-1)

Now note that
DPrn—-1qn — Pndn—1 = det(M,,) = det(A;) det(Ag) - - -det(A4,) = (—=1)"
and by using this we find

(=1)"Tn
Qn(q'n + Tnanl) '

T —cCp =

This gives us
T, 1

= < —
Qn(q'n + Tnanl) Q%

so the faster ¢, grows the better estimate we find. The number which converges
the slowest is the one with a,, = 1 for all n. This is the number %\/5 — %
From the recurrent formulas we can see that for this number ¢, will still grow

exponentially fast which gives us that

|z — cn

cpn— —zasn—oo forall zel[0,1].

In the next appendix we will see what an invariant measure is.
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A.1.2 Invariant measures

The existence of an invariant measure is very helpful in dynamical systems. A
lot of machinery evolved around it so in this appendix we will give the definition.
But before we can introduce the invariant measure the definition of a o-algebra
and the definition of a measure is given.

Definition 1. Let F be a set of subsets of a set X. Then F is said to be a
o-algebra if the following conditions hold

e X e F
o if A F, then A€ F

o if A1, Ay,... € F then A=U02 A, € F .

Now the pair (X, F) is called a measure space. We will now define a measure.

Definition 2. Let (X, F) be a measure space.
A function p: F — [0,00) satisfying (@) =0 and

p(Unt i Ap) = Z 1(An)

n=1
for all Ay, As, ... € F which are pairwise disjoint is called a measure on (X, F).

Furthermore we call o a probability measure if u(X) = 1. And (X, F,u) a
probability space. The sigma algebra generated by intervals on R is called the
Borel o-algebra. How to make the o-algebra from the intervals is explained
in [4]. Now whenever we define A([a, b]) = b— a we can extend A to the Borel o-
algebra which will give you the Lebesgue measure. This measure is well known
and often used. Without going into any integration theory note that if we have
a measure space (X,B) where B is the Borel measure on X and we have a
function f: X — Ry then we can define y as

w(A) = /Af(a:)dx for all A € B.

Now if f is a density function we find that p is a probability measure. We will
now give the definition of an invariant measure.

Definition 3. Let (X, F,pu) be a probability space and let T : X — X be a
map. Then p is said to be invariant (or T-invariant) if u(T~1(A)) = u(A) for
all A e F.

Sometimes we say that for a given probability space the map T is p-invariant.
For the continued fraction map T : [0,1] — [0, 1] defined by

T(x):i_m if2£0 and T(0)=0

Gauss found that whenever B is the borel measure on [0,1] then p : B — R

given by
(4)= — / —
B = In(2) Jal+x “
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is a T-invariant measure (a proof of the invariantness of this measure is given
n [I0] in Dutch). This measure is called the Gauss measure. A historical
sidenote is that nobody knows how Gauss came up with this measure.

A.1.3 Ergodicity and Birkhoffs Theorem

In ergodic theory it is not surprising that ergodicity plays the most important
role. Ergon means work and odos means path in Greek. Heuristically a function
T : X — X is ergodic when you have for almost all points z € X that if you let
T work on z then the path T™(z) comes everywhere in X. Formally we have
the following definition:

Definition 4. Let (X, F) be a measure space,u a probability measure on that
space and T : X — X a map. Then T is ergodic if for every A € F satisfying
T~Y(A) = A we have that u(A) € {0,1}.

For more characterisations see [4].

The following theorem plays an important role in ergodic theory and is on its
strongest when applied to an ergodic function. It is named after George David
Birkhoff.

Theorem A.1. Let (X, F,un) be a probability space and T : X — X. Then, for
any f in L'(u),

n—1

Jim =S foTia) = (@)

exists a.e. is T-invariant and fX fdu = fX f*du. If moreover T is ergodic,
then f* is a constant a.e. and f* = fX fdu

It is well known that the map for the regular continued fraction is ergodic
(see [4] for a proof). With Birkhoffs Theorem we can, for example, calculate
how often a certain digit occurs in a continued fraction. Remember that we had
d(z) = || and d,,(z) = d(T"!(z)). So if we want to calculate the percentage
of occurrence of 1 we have to see how often T"(z) is in the interval [1,1]. Since
the map is ergodic this gives the same number for almost all € [0,1]. Now
if we take the characteristic function Ly and use Birkhoffs theorem we will

calculate exactly that and find

n—1
.1 , 1
Jim_ E‘—o Ly yoT'(z) = /X Ly gy dp = u([§, 1]) = 0.415037...
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A.1.4 Natual extentions

A usefull tool in ergodic theory is the notion of the natural extension. First we
will give the definition of a dynamical system. Then we will give the definition
of a factor and after that we can give the definition of an extension which
finally leads to the definition of the natural extension. Now the definition of a
dynamical system is as followed

Definition 5. A dynamical system is a quadruple (X, F,p,T) where X is a
non empty set, F is a o-algebra on X, p is a probability measure on (X, F) and
T : X — X is a surjective p-measure preserving transformation. Furthermore
if T is injective the system is called an invertible dynamical system.

An example of such a system is ([0, 1], B, 4, T) where B is the Borel o-algebra,
1 the gauss measure and T the regular continued fraction map. We will now
give the definition of a factor.

Definition 6. Let (X, F,pu,T) and (Y,C,v,S) be two dynamical systems. Then
(Y,C,v, S) is said to be a factor of (X, F,u,T) if there exists a measurable and
surjective map ¥ : X — Y such that

e ~IC C F (s0 preserves the measure structure)
o YT = Sy (so 1) preserves the dynamics)

o u(~rE) =v(E) for all E € C (so 1 preserves the measure).

The dynamical system (X, F,u,T) is called an extension of (T,C,v,S) and
1s called a factor map.

We can finally give the definition of a natural extension.

Definition 7. Let (Y,C, v, S) be a non invertible dynamical system then (X, F, u,T)
is called a natural extension of (Y,C,v,S) if Y is a factor of X and the factor
map P satisfies
(oo}

\/ TyTle=F .

m=0
Rohlin showed in [I5] that natural extensions are unique up to isomorphisms.
This allows us to talk about the natural extension of 7. For the continued

fraction map we have that whenever ([0, 1], B, u, T) is the dynamical system as
above. The natural extension 7 : [0,1] x [0,1] — [0,1] x [0, 1] is given by

1

1
B

x
Note that T (z,0) = (t,, v, ) where t,, = [dy11,dpyo,...Jand v, = [dy, dp-1,...,d1]
so in a sense t, captures the future while v, captures the past. In [12] 03]

Nakada, Ito and Tanaka proved that the invariant measure for this natural
extension is given by

T(z,y) = | T(x),

1 1
Hay(A) = ) / T+ ay)?
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with A € B® B where B is the Borel o-algebra on [0, 1] and ® is the tensor
product. Furthermore they proved that this function is indeed ergodic with
respect to this measure. Note that ¢ is given by ¢ (z,y) = (z,0) which is a
projection onto the x coordinate.
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Appendix B

The programming

The program used for my bachelor’s project worked well and is written in a
way it can be changed easily to be applicable for other map (see [I0]). Therefor
there I did so. The program can be used on any ergodic map T'. It can iterate a
lot of points from [0, 2) over T'. For all simulations of the density in this thesis
the following procedure is done. In phase 1 we sample 2500 uniform points from
[0,2) which we iterate 20 times over T. We repeat this process 400 times and
find a density of 20 million points. Phase 2 is almost the same but instead of
sampling uniformly from [0,2) we will sample from the density just found in
phase 1. For an error analysis also see [10].

Not only the densities are simulated. A lot of other different scripts have been
made. All the scripts for simulating densities will be given first and then the
other programs used. For each script theres a description written as comment.
Also they are ordered in a way that a script is only using other scripts that are
previously explained.

B.0.5 The density machinery

function [y] = TDL(x)

%the function T(x) for different lazy and flipped sets.
To apply

%one specific function just uncomment it . DO NOT FORGET
TO COMMENT THE OLD

JONE.

y=zeros (length (x) ,1);

%lazy expansion
Ty=2./x—floor (2./x) + (x>=0 &x <=1);

%lazy backward
% for i=l:length (x)

% it 0<= x(i)&& x(i)<=1
% y(i)=2+floor (2/x(i))—2/x(1);
% else
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44

45

46

47

48

49
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51

52

53

54

55

56

57

58

59

60

61

62

% y(i)=2/x(i)-1;
% end

%

% end

%lazy backward with F=[0,2]

% for i=1:length(x)

% if O0<= x(1)&& x(i)<=1

% y(i)=2+floor (2/x(i))—-2/x(1);
%o else

% y(i)=2-2/x(i);

%o end

%

% end

Y%regular odd
% for i=1:length (x)

% if floor (floor(2/x(i))/2)=floor (2/x(i))/2 %
gives if floor(2/x) is even

% y(i)=2/x(i)—floor (2/x(i))+1;

% else

% y(i)=2/x(i)—floor (2/x(1));

%o end

%

% end

Y%regular odd but with flip on non lazy [0,1]
% for i=1:length(x)

% if floor (floor(2/x(i))/2)=floor (2/x(i))/2 %
gives if floor(2/x) is even

? 1 y(i)=2/x(i)—floor (2/x(i))~+1;

% y(i)=2/x(i)—floor (2/x(1));

% end

%

% end

%odd flipped
% for i=1l:length (x)

% if floor (floor(2/x(1))/2)=floor(2/x(i))/2-0.5
%gives if floor(2/x) is odd

% y(i)=2/x(i)—floor (2/x(1));

% else

% y(i)=floor (2/x(i))—2/x(i)+1;

% end

%

Yend

%even flipped
% for i=1l:length(x)

104



63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

% if floor (floor (2/x(i))/2)=floor (2/x(i))/2 %
gives if floor(2/x) is even

%o yv(i)=2/x(i)—floor (2/x(i));

%0 else

% y(i)=floor (2/x(i))—2/x(i)+1;

% end

%

% end

Joregular even with F=[1,2]
% for i=1:length (x)

% if 1<= x(1)&& x(i)<=2

% y(1)=2-2/x(1);

% elseif floor (floor(2/x(i))/2)=—floor (2/x(1))
/2—-0.5 %gives if floor (2/x) is od

g) : y(i)=2/x(i)—floor (2/x(i))+1;

% y(i)=2/x(i)—floor (2/x(i));

%o end

%

% end

%o0dd expansion with F=[0,1]
% for i=1:length (x)

% if 1<= x(1)&& x(1i)<=2

70 y(i)=2/x(i)-1;

% elseif floor (floor(2/x(i))/2)=floor (2/x(1))
/2—0.5 %gives if floor(2/x) is od

Z) 1 y(i)=floor (2/x(i))+2-2/x(i);

% y(i)=floor (2/x(i))—2/x(i)+1;

% end

%o

% end

%odd expansion with L=[0,1]
% for i=1:length (x)

% if 1<= x(1)&& x(i)<=2

% y(1)=2/x(i)-1;

% elseif floor (floor(2/x(1))/2)=floor (2/x(1))
/2—0.5 %gives if floor(2/x) is odd

g) : y(i)=floor (2/x(i))+2-2/x(1);

% ¥ (1)=2/x(1)~(floor (2/x(i))~1):

%o end

%

% end

Y%even expansion with F=[0,2]
% for i=1:length (x)
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148

149

150

151

152

%
%
%

if 1<= x(1)&& x(1)
1)=2-2/x(1)

elseif floor(floo

y (

<=2

/2—0.5 %gives if floor(2/x) is odd
floor (2/x(1))+1-2/x(1);

=—2/x(i)+(floor (2/x(i))+2);

%
%
%
%
%
% end

else

end

y(i)=
y (i)

%even expansion with L=[0,1]
% for i=1:length (x)
if I<= x(1)&& x(i)<=2

%
%
%o

%
%
%
%
%
% end

%even expansion with L=

v (

1)=2-2/x(1);

(2/x(1)) /2)=floor (2/x(i))

elseif floor (floor(2/x(i))/2)=floor (2/x(1))
/2—0.5 %gives

else

end

y(i)
y (i)

if floor(2/x) is

odd

=2/x(1i)—floor (2/x(1))+1;

=—2/x(1)+(floor (2/x(i))+2);

% for i=1:length(x)
if I<= x(1)&& x(i)<=2

%o
%o
%

%
%
%
%
%
% end

v (

1)=2/x(i)-1;

[0,1]but no flip on [1,2]

elseif floor (floor (2/x(i))/2)=floor(2/x(1))
/2-0.5 %gives

else

end

%large flip
% for i=1:length (x)

if floor ((floor(2/x(i))
/4 %gives if floor(2/x) is 1lmod4

%

%o
%o

%
%

%o
%o
%

y (i)
y(i)

y (i)

if floor(2/x) is

odd

=2/x(i)—floor (2/x(i))+1;

==2/x(i)+(floor (2/x(1))+2);

=2/x(i)—floor (2

—1)/4)=floor (2/x(i)—-1)

/x(1));

i
elseif floor ((floor (2/x(i))—2
—2)/4 %gives 2mod 4

y (i)

=2/x( floor (2

i)-
elseif floor ((floor(2/x
—3)/4 %3mod4

else

y(i)=

y(i)=

/())
(i1))-3)

) /4)—floor (2/x (1)

/ )—floor (2/x(1)

floor (2/x(1))4+2-2/x(1);

floor (2/x(1))
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153

154

155
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170
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174

175

176

178

179

180

181

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

%
%
%o

end

end

%tiny flip
% for i=1:length (x)

%

%o
%
%
%
%
%o
%o

if floor

(floor(4/x(i))/2)=floor (4/x(i))/2-0.5 %

gives if floor (4/x) is odd

else
y (i)

end

end

%3 divisible
% for i=1:length (x)

% if floor ((floor(2/x(i))—1)/3)=floor(2/x(i)-1)/3 &
x(1)<1 %gives if floor(2/x) is 1mod3

% y(i)=2/x(i)—floor (2/x(i))+1;

% elseif floor ((floor(2/x(i))—2)/3)=floor (2/x(1)—-2)
/3 && x(1)<1 %gives if floor(2/x) is 2mod3

g 1 y(i)=floor (2/x(i))+1-2/x(1);

% y(i)=2/x(i)—floor (2/x(i));

% end

% end

%switchingdigits

% for i=1:length(x)

% if x(i)>1

% y(i)=2/x(i)—floor (2/x(i));

% elseif floor (floor(2/x(i))/2)==floor(2/x(i))/2-0.5
%gives if floor(2/x) is odd

% y(i)=2/x(i)—floor (2/x(i))+1;

% else

% y(i)=floor (2/x(i))—2/x(1i)+1;

% end

% end

y(i)=floor (2/x(i))—2/x(i)+1;

=2/x(i)—floor (2/x(i));

%spouse odd expansion F=[0,1]
% for i=1:length (x)
if 1<= x(1)&& x(i)<=2

%
%
%o

%
%
%

elseif floor (floor (2/x(i))/2)=floor (2/x(1))

y(1)=2-2/x(1);

/2—0.5 %gives if floor(2/x) is odd

else

y(i)=floor (2/x(i))+2-2/x(i);
y(1)=2/x(i)~floor (2/x(i))
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198

199

200

201

202

203

204

205

206

207

208

% end
%

% end

Y%spouse 3 div

% for i=1:length(x)
if 1<= x(1)&& x(i)<=2

%
%
%
/3
%
%
/3
%
%
%
%
% end

elseif floor ((floor(2/x(i))—1)/3)=floor(2/x(i)-1)
&& x(1)<1 %gives

elseif floor ((floor(2/x(i))—2)/3)=floor (2/x(i)-2)
&& x(i)<1 %gives if floor(2/x)
v(1)=2/x(1)—Floor (2/x(1))

y(i)=floor (2/x(i))+1-2/x(i);

else

end

y(i1)=2-2/x(1);

if floor(2/x)

is 1mod3

yv(i)=2/x(i)—floor (2/x(i))+1;

Y%L=[2/4,2/3] F=L"c on [0,1]
% for i=1:length(x)
if 1<= x(1)&& x(i)<=2

%
%
%
%
%
%
%
% end
%

elseif 1/2<= x(1)&& x(1)<=2/3

else

end

y(1)=2/x(i)-1;

y(1)=2/x(i)-2;

is 2mod3

y(i)=floor (2/x(i))+1-2/x(i);

Y%experiment blz 3204 niels vd wekken artikel
% for i=1:length(x)
if x(i)<=0.25
y(1)=9/(x(i)+2)—4;
elseif x(i)>1

%
%
%
%
%
%
%
% end

else

end

y(i)=x(i)~1;

y(1)=9/(x(i)+2)=3;

Y%another with 2e part flipt
% for i=1:length (x)
if x(i)<=0.25
y(1)=9/(x(1)+2)—1;
elseif x(i)>1

%
%
%
%
%
%

else

y(1)=x(i) -1

y(1)=4-9/(x(1)+2);
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246 % end

247 % end

248

240 %another one with with first part flipped
250 % for i=1:length(x)

251 % if X(i)<:0.25

252 % y(l):579/(X(1)+2)
253 0 elseif X(i)>1

254 % y(i)ZX(i)—l;

255 %0 else

256 0 y(1)=9/(x(1)4+2)—-3;
257 % end

258 % end

259

260 %another one with second part flipped
261 % for i=1l:length (x)

262 /0 if X(i)<:1/3

263 % y(i):4/(x(i)+1)—3;
264 0 elseif x(i)>1

265 %0 y(i)=x(i)-1;

266 %0 else

267 0 y(l):374/(X(1)+1)
268 % end

269 % end

270

o1 %one with first part flipped
2r2 % for i=1l:length (x)

213 % if X(i)<:1/3

274 0 y(i)=4-4/(x(i)+1);
25 % elseif x(i)>1

276 %0 y(i)=x(i)-1;

277 % else

278 % y(i):4/(X(i)+1)72;
279 % end

280 % end

282 Yatractor [0.5 1]
283 for i=Il:length (x)

284 if X(i)<:0.5

285 y(i)ZX(i)+0.5;
286 elseif X(i)<= 4/7
287 y(i)=2/x(i)-3;
288 elseif X(i)<=2/3
289 y(i):4—2/x(i);
290 elseif X(l)<=4/5
291 y(i):2/x(i)—2;
292 elseif X(i)<:1

203 y(1)=3-2/x(1);
294 else

295 y(1)=05*x(1),
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296

297

298

299
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303

304

305

306

307

309

310

311

312

314

315

316

317

319

320

321

322

324

325

326

327

329

330

331

332

333

end

end

Y%non ergodic map 2—expansion
% for i=1:length(x)

%o
%o
%
%
%o
%o
%o
%
%
%o
%o
%o
%
%
%o
%o

Y%mon ergodic map 2—expansion only [a,b]"c

end

if x(i)<=sqrt(2)-1
it 2/x(i)—floor(2/x(1))<(sqrt(2)—1)
y(1)=2/x(1)=floor (2/x(1));

y(i)=2/x(i)—floor (2/x(i))+1;

else

end

elseif x(i)<=1

else

end

if 2/x(i)—floor(2/x(i))<(sqrt(2)-1)
y(i)=2/x(i)—floor (2/x(i))+1;

y(1)=2/x(i)tloor (2/x(i));

else

end

y(i)=2/x(i)-floor (2/x(i))

% for i=1l:length (x)

%o
%o
%o
%
%
%o
%o
%o
%
%
%
%o
%o

end

if x(i)<=sqrt(2)-1
if 2/x(i)—floor (2/x(1))<(sqrt(2)-1)
Y (1)=2/x(1)-floor (2/x(1))

y(i)=2/x(i)—floor (2/x(i))+1;

elseif x(i)<=sqrt(2)
v(i)=(sqrt(2)—1)sx(i)+2*sqrt (2)—3;

else

end

else

end

y(i)=2/x(i)-1;
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function [A] = Matmakers(n,x)

Y%makes a matrix with in the n”"th column TDL n(x).
m = length (x);

A = zeros(m,n);

A(:,1)=x;
for j= 2:n
A, )= TDL(A(: ,j-1));
end
function [x] = randmakers(d,n)

Z%makes a collum vector of length n with random numbers
between 0 and 2. You

%can also determine the number of digits it will generate
for each number.

digits (d);

x=rand (n,1) *2;

function [A] = ketsims(d,n,m)

%performs m iterations of TDL(x) on n random points with
d number of

%digits. Returns the matrix A with all the paths of the
points in a row.

digits (d)

x =vpa(randmakers(d,n));

A =Matmakers (m, x) ;
vpa(A);
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function [s]= kollomtellers (x)

%counts how much values in x are between 0 and 0.01
between 0.01 and 0.02

%etc. Up to between 1.99 and 2.00

s = zeros(200,1);

1 = length (x);

t = 0;

for n = 1:200
for 1 =1 : 1

(

t

if ((n—1)/100 < x(i,1) && =x(i,1) < n/100)
= t+1;
end
end
s(n,1) = t;
t = 0;

end

function [sc] =mattellers (A)

%applies kollomtellers to every column of A and adds all
the results then

%scales it back.

1 = size(A);

S = zeros (200,1(1));

%on every column kollomtellers is applied
for i = 1: 1(2)

S(:,1) =kollomtellers (A(:,1));
end

% now we need to add the rows of S and scale back
s= zeros (10,1);
for i = 1:200
s(i,1)=sum(S(i,:));
end
sc = 1/sum(s)*s;
sc =100x*sc;

function [S] = ketsimpros(d,n,m,N)

%Applies ketsims(d,n,m) N times calculates the density of
all points and

%plots the results.

B = zeros (200,N);
for i = 1:N
A = ketsims(d,n,m);
B(:,i) =mattellers(A);
end
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S = zeros(200,1);

for 1 = 1:200

S(i) =(1/N)xsum(B(i,:));
end

xe= [0.01:0.01:2]’;

plot (xe,S)

function [v]= samplefromfs(n, f)
%takes n samples from the density f.

v= zeros(n,1);
1 = length (f);
m=1;
for i=1:1
k=floor (((2%f(i))/1)*n);%determines how many samples
there should be from an interval

for j= 1:k
v(m)=(2/1)*rand (1)+(i—1)/(0.5%1);
m=m-+1;

end

end

%here the empty spots are removed from v.

a=n;
while v(a) = 0

a = a—1;
end

function [A] = ketsimfromfs(d,n,m,f)

%performs m iterations of TDL(x) on n random points with
d number of

%digits. Returns the matrix A with all the paths of the
points in a row.

%But instead of sammpling uniform from [0,2] we now
sample from the density

%t .

digits (d)

x =vpa(samplefromfs (n,f));

A =Matmakers (m, x) ;
vpa(A);

113



function [S] = ketsimprofromfs(d,n,m,N, )

%Applies ketsimfromfs(d,n,m,f) N times calculates the
density of all points and

%plots the results.

B = zeros (200,N);

© X N e oA W
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for i = 1:N
A = ketsimfromfs(d,n,m, f);
B(:,i) =mattellers(A’);

end

S = zeros (200,1);

for i = 1:200

S(i) =(1/N)ssum(B(i,:));

end

xe= [0.01:0.01:2]"

plot (xe,S)

B.0.6 The natural extention program

The TDL2D will just specify the natural extention map. In itTDL2D random
points will be itereated over this map gets and all the paths are stored. Then it
will plot all the points ever visited. The program works quiet fast. For example
to iterate 25000 points a 100 times will take only half a second.

function [z] = TDL2D(x,y)

%function TDL, 2epsilon/(d(x)+y) note that d(x) and
epsilon are domain

%dependend! therefor specified here.

'S
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z=zeros (length (x) ,

z(:,1

%atractor

for i=1l:length (x)
if x(i)<=4/7
z(1,2)=2/(3+y(i));
elseif x(1)<=2/3
z(1,2)==-2/(4+y(1));
elseif x(i)<=4/5
1 z(1,2)=2/(2+y(i));
z(1,2)==2/3+y(i));
end
end
%even regular flipped [1,2]
% for i=1l:length (x)
% it x(i)>=1
% z(1,2)==2/(2+y(i));
% elseif floor(floor(2/x(i))/2)==floor(2/x(i))/2-0.5
% z(i,2)=2/(floor (2/x(i))—1+y(i));

)=IDL(x);
[1/2,1]

2);
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% else

% 2(1,2)=2/(floor (2/x(1))+y (1))
% end

% end

Y%switching digits
% for i=1:length (x)

% if x(i)>=1

% 2(i,2)=2/(14y (i)

% elseif floor (floor(2/x(i))/2)=floor(2/x(i))/2-0.5
%gives if floor(2/x) is odd

% )= ([floor (2/x()) 1y (1)

%o z(1,2)==2/(floor (2/x(i))+1+y(i));

% end

% end

%odd F=[0,1]
% for i=1l:length (x)

% if I<= x(1)&& x(i)<=2

% 2(i,2)=2/(14y (1))

% elseif floor (floor(2/x(i))/2)==floor(2/x(i))/2-0.5
%gives if floor(2/x) is od

%o z(1,2)==2/(floor (2/x(i))+2+y(i));

% else

% z(i,2)==2/(floor (2/x(1))+1+y(i));

% end

% end

Y%mid atractor 2—expansion
% for i=1:length (x)

% if 2x(sqrt(2)—1)<=x(1) && x(i)<=sqrt(2)

70 2(1,2)=2/(14y(1));

%o %1

%o elseif (2—sqrt(2))<=x(1i) && x(i)<=2+(sqrt(2)-1)
7o 2(1,2)=2/(2+y(1));

% elseif 2/(sqrt(2)+3)<=x(1) && x(i)<=(2-sqrt(2))
70 2(1,2)=2/B+y(1));

%o %3

%o else

7o z(1,2)=2/(4+y(1));

% end

% end

%2expansion atractor complement
% for i=1:length(x)

% if 2/x(i)—floor (2/x(i))<(sqrt(2)-1)
i el =(Heor(2/x(1 ) ()
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% 2(i,2)=2/(floor (2/x(i))+H+y(i)):
% end
% end

9%3—div as a check
% for i=1l:length (x)

% if floor ((floor(2/x(i))—1)/3)=floor (2/x(i)-1)/3 &&
x(1)<1 %gives if floor(2/x) is 1mod3

% z(1,2)=2/(floor (2/x(1))—1+y(i));

% elseif floor ((floor(2/x(i))—2)/3)=floor(2/x(1)-2)
/3 & x(i)<1 %gives if floor(2/x) is 2mod3

% z(i,2)==2/(floor (2/x(i))+1l+y(i));

% else

% z(1,2)=2/(floor (2/x(1))+y(i));

% end

% end

%lazy backward as a check in case y=0 is not in the
domain

% for i=1:length(x)

% if 0<= x(1)&& x(i)<=1

%o z(1,2)==2/2+floor (2/x(1))+y(i));

% else

% z(1,2)=2/(14+y(1));

% end

% end

%even expansion L=[0,1]
% for i=l:length (x)

% if x(i)>=1

o z(1,2)==2/(24y(1));

% elseif floor(floor(2/x(i))/2)==floor(2/x(i))/2-0.5
%gives if floor(2/x) is odd

Z) 1 z(1,2)=2/(floor (2/x(1))-1+y(i));

% z(1,2)==2/(floor (2/x(1))4+2+y(i));

%o end

% end

%

%large flip
% for i=1l:length (x)

% if floor ((floor(2/x(i))—-1)/4)=floor (2/x(i)-1)
/4 %gives if floor(2/x) is 1lmod4

% z(1,2)=2/(floor (2/x(1))+y(i));

% elseif floor ((floor(2/x(i))—2)/4)=floor (2/x(1)
—2)/4 %gives 2mod 4

% z(1,2)=2/(floor (2/x(i))-14+y(i));
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% elseif floor ((floor(2/x(i))—3)/4)=floor (2/x(1)
—3)/4 %3mod4

(éc 1 z(i,2)==2/(floor (2/x(1))+2+y(i));

% N /Z(i,2):72/(f1()()1‘(2/X(i))+1+y(i))‘,

%o end

%o

% end

function []=itTDL2D (m,n)

%iterates over TDL2D n times and puts the x values in Al
and y values in A2 starting

%points are from [1/2,1]! m is the number of random
starting points

x0=rand (m,1) /24+0.5;
Al=zeros (m,n);

A2=zeros (m,n);
AT(:,1)=x0;
%A2(:,1)=rand (m,1) %0.2;

for i=2:n
z=IDL2D (A1 (:,i—1) ,A2(:,i-1));
Al(:,1)=z(:,1);
A2(:,1)=z(:,2);

end

plot (A1,A2, .7, "MarkerSize 1)

B.0.7 The program for Gauss Kuzmin method

These programs work relatively fast for 10 iterations of a vector with length
200 (z in gausskuzminvcalc) it will be done in less then a tenth of a second and
already will give a good approximation.

function [s]=gausskuzminv (z,n)

%this function calculates the lebesgue measure of the set
T {-n}([0,7])

%it will iterate a vector with in the first collum a_i
and second b_i when

%the intervals are [a_i,b_i]

%where T is the atractor on [0,0.5]

itv=[2/(3+2),2/(4—2);2/(24+2),2/(3—2) ];
A=zeros (2,8);
1

for i= 1l:n—
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15 A(:,1)=2./(34+itv (:,2));

16 A(:,2)=2./3+itv (:,1));

17 A(:,3)=2./4—itv (:,1));

18 A(:,4)=2./4—itv (:,2));

19 A(:,5)=2./(24+itv (:,2));

20 A(:,6)=2./(24+itv (:,1));

21 A(:,7)=2./(3—itv (:,1));

22 A(:,8)=2./(3—itv (:,2));

23 lI=length (A(:,1));

24 itv (:,1:2)=A(:,1:2);

25 itv (141:2%«1,1:2)=A(:,3:4);
26 itv (2%141:3%x1,1:2)=A(:,5:6) ;
27 itv (3x141:4%1,1:2)=A(:,7:8);
28 A=zeros (4x1,8) ;

20 end

a0 length (itv);
s s=sum (itv (:,2))—sum(itv (:,1));

1 function [s]=gausskuzminv2 (z,n)
2 %this function calculates the lebesgue measure of the set
T {-n}([0,2])
s %it will iterate a vector with in the first collum a_i
and second b_i when
+ %the intervals are [a_i,b_i]
s %where T is the atractor on [1,2] with N=4 having digits

{12}

© ® N o

10 itV:[1,4/(5—Z);4/(1—|—z) ’2];

12

13 A=zeros (2,4);

1 for i= 1l:n-—1

15 A(:,1)=4./(14+itv (:,2));
16 A(:,2)=4./(1+1tv (:,1));
17 A(:,3)=4./(5—itv (:,1));
18 A(:,4)=4./(5—-itv (:,2));
19 I=length (A(:,1));

20 itv (:,1:2)=A(:,1:2);

21 itv (141:2%1,1:2)=A(:,3:4);
22 A=zeros (2x1,4);

25 end

22 length (itv);

sssum (itv (:,2))—sum(itv (:,1));

N}
o

118



function [y]=gausskuzminvcale(x,n)

%calculates gausskuzminv for each value of x when you

iterate n times.
y=zeros (length(x),1);
for i=1:length(x)
%y (1,1)=gausskuzminv (x(i) ,n);
y(i,l)=gausskuzminv2(x(i),n);
end

%if we want the density
yb=zeros (length (y) ,1);
yb(2:length(y))=y(1l:length(y)-—1);

y=(y=yb) /(x(2)—x(1));

Zoy (1,1)=y(2,1);
plot(x,y, 'red”)
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