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Abstract

Atrial fibrillation (AF) is the most commonly occurring arrhythmia in clinical practice and can have a
significant impact on the current and future wellbeing of the patient. By placing an unipolar sensor
array directly on the epicardium during an open-heart surgery to measure the electrical activity of the
atrium, more insight about this disease can be obtained. One method to obtain these insights is by
applying common signal processing models to the measured electrogram (EGM). This thesis further
investigates this application and argues why the most common array processing signal models are
fundamentally incompatible with this application and proposes two different signal models to rectify the
identified discrepancies. The proposed signal models are subsequently analyzed and the conclusion
is drawn that both novel signal models better fit the EGM signals, but one signal model in particular
shows promising results. This potential is exemplified by using this signal model to formulate a novel
LAT estimation technique that can compete with state of the art LAT estimation methods in terms of
estimation accuracy and execution time. This result shows the potential of the proposed signal model
and opens the door to explore more applications in the future.
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Abbreviations

AA Atrial activity.

AF Atrial fibrillation.

AP Action potential.

AV Atrioventricular.

ECG Electrocardiography.

EGM Electrogram.

ESPRIT Estimation of signal parameters via rotational invariance techniques.

EVD Eigenvalue decomposition.

FFT Fast-Fourier transform.

ICA Independent component analysis.

LAT Local activation time.

MSE Mean square error.

NCC-2 Time-domain cross-correlation method over second-order neighbours.

NSR Normal sinus rhythm.

SA Sinoatrial.

SD Steepest deflection.

SNR Signal-to-noise ratio.

SPS Signal Processing Systems department of TU Delft.

SVD Singular value decomposition.

ULA Uniform linear array.

VA Ventricular activity.

3



Contents

Abbreviations 3

1 Introduction 6

2 Background 7
2.1 Functioning of the heart in normal conditions . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Electrical conduction through the heart . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 AP propagation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Atrial fibrillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Cardiac measurements and processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Electrogram (EGM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Local activation time (LAT) estimation . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Array signal processing and AF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 General array processing signal model . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Autocorrelation matrix and source enumeration of general signal model . . . . . . 14
2.4.3 Eigenvalue decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.4 VA and AA separation in ECG and EGM signals . . . . . . . . . . . . . . . . . . . 16

3 Applying signal models to epicardial EGM signals during AF 18
3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Incompatibilities between general signal model and cardiac system . . . . . . . . 18
3.1.2 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Definition of cardiac and spectral signal model . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Cardiac signal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Spectral model definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Theoretical analysis of cardiac signal model in AF environments . . . . . . . . . . . . . . 23
3.4.1 Normal sinus rhythm (NSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 AF remodeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.3 AF ectopic foci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.4 Conclusion theoretical analysis of cardiac signal model . . . . . . . . . . . . . . . 26

3.5 Theoretical analysis of spectral signal model in AF environments . . . . . . . . . . . . . . 27
3.5.1 Normal sinus rhythm (NSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.2 AF remodeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.3 Ectopic foci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.4 Conclusion theoretical analysis of spectral signal model . . . . . . . . . . . . . . . 30

3.6 Analysis of novel signal models in AF environments using physiological simulations . . . 30
3.6.1 Simulation implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6.2 Simulation results cardiac system model . . . . . . . . . . . . . . . . . . . . . . . 33
3.6.3 Simulation results spectral signal model . . . . . . . . . . . . . . . . . . . . . . . 34
3.6.4 Conclusion of physiological simulations . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Estimating LAT using signal spectra 37
4.1 Used signal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 ESPRIT algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.2 ESPRIT algorithm extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4



Contents 5

4.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Conclusion and future work 46
5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Bibliography 48



1
Introduction

According to the World Health Organization (WHO) cardiovascular diseases are the leading cause of
death globally, representing 32% of all deaths worldwide [1]. As the life expectancy increases, the
amount of patients suffering from these diseases is only expected to increase in the future [2], [3].

Although the list of cardiovascular diseases is vast, this thesis focuses on the most commonly occuring
arrhythmia in clinical practice: atrial fibrillation (AF) [4]–[6]. Atrial fibrillation is a cardiac condition during
which the atrial cells in the heart no longer fire synchronous to the centralized cardiac pacemaker: the
sinoatrial node [7]. This causes an irregular or abnormal heart rate, which can have a significant impact
on the current and future wellbeing of the patient. According to a study in Rotterdam approximately
24% of people older than 50 years are expected to obtain AF, which is shown to have a 1.5 to 1.9-
fold mortality risk [3], [5]. These numbers depict the enormous benefits that can be gained by better
understanding the mechanisms and treatments of AF.

Although the issue of AF is extensively looked at from a medical perspective, the Signal Processing
Systems (SPS) department from the TU Delft, and by extension this thesis, approaches the problem
from a different perspective: a signal processing perspective. Applying signal processing models to AF
is not new, as will be discussed in the literature review of Chapter 2, but little research is performed on
the precise consequences of applying standard signal processingmodels to this application. This thesis
is therefore first concerned with obtaining a better theoretical understanding of applying general signal
models to cardiac measurements. This topic is discussed in Chapter 3. In this chapter, three different
signal models are compared and extensively looked at, from which one shows especially promising
theoretical results.

This signal model is subsequently used in Chapter 4 in an estimation problem in which the activa-
tion times of the cardiac cells are obtained. The estimated values of the novel estimation techniques
are compared to state of the art estimation techniques and a conclusion is drawn about the practical
feasibilities of the novel techniques and signal models.
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2
Background

This background section aims to summarize the current state of affairs around the important subjects
of atrial fibrillation and the connection with signal processing. The content described in this chapter
will form the foundation of the identified research questions and how the subsequent research of this
thesis is shaped.

This background first discusses the anatomy and normal operation of the heart in Section 2.1. Then the
atrial fibrillation condition will be discussed in more detail in Section 2.2. Subsequently, the connection
between atrial fibrillation and signal processing will be explored in Section 2.3. The chapter will end
with a description surrounding the field of array processing in particular in Section 2.4.

2.1. Functioning of the heart in normal conditions
The heart is responsible for pumping blood through the body. It does this using its four chambers: two
atria and two ventricles, one of each on the left and right side of the heart as depicted in Figure 2.1 [8].
The atria hereby act as a receiving chamber to push blood into the ventricles, which are responsible for
the final “push” of the blood into the pulmonary or systemic circuits of the body [8]. This contraction of
the cardiac muscle cells is controlled by an electric impulse that propagates through the tissue, which
is initiated in the sinoatrial (SA) node. This principle is more precisely elaborated upon below.

Figure 2.1: The anatomy and conduction system of the heart. Source: [8]
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2.1. Functioning of the heart in normal conditions 8

2.1.1. Electrical conduction through the heart
Individual cardiac muscle cells have the ability to autonomously initiate a periodic electrical impulse that
causes the cell to contract. When multiple cardiac muscle cells are connected, they all follow the cell
with the highest inherent impulse rate. The impulse subsequently travels from the faster to the slower
cells in the tissue to trigger a contraction [8].

The electrical impulses propagate through the cardiac muscle tissue as a membrane potential that
is caused by ion concentration differences between the intra- and extracellular environments. This
membrane potential impulse is called an action potential (AP). An action potential shape is independent
of the stimulus, and is induced when the membrane voltage reaches the threshold voltage of the cell in
which case the cell “fires”, creating a self-sustaining AP. Ion channels on the cell membrane selectively
allow the in and out flow of electrically charged ions, which influences the membrane voltage and
ultimately allows an action potential to exist and propagate across the tissue [9]. Figure 2.2 depicts
how such an action potential is created in cardiac muscle cells using the voltage-gated ion channels in
the cell membrane.

Figure 2.2: Creation of the action potential in cardiac contractile cells. Source: [8]

The two important phases of the AP are the depolarization and repolarization phases. The depolariza-
tion phase is characterized by a rapid increase in the membrane potential due to an inward current of
positively charged ions into the cell. The repolarization phase subsequently equalizes the membrane
voltage by allowing an outflux of positive ions. The time between the two phases is the refractory pe-
riod. During this period the cell is not susceptible to a new stimulus to create another AP. This refractory
period ensures the impulse cannot propagate backwards and that the muscles have time to relax [7]–
[9].

As mentioned above, the fastest cell in the cardiac tissue determines the overall rate of the contraction.
Within the heart this normal cardiac rhythm is established by the sinoatrial (SA) node. The SA node is
a clump of tissue near the right atrium with the highest firing rate and is thus responsible for maintaining
the normal sinus rhythm (NSR) of the heart [8].

Starting at the SA node, the electrical impulse propagates across both atria, guided by the atriaven-
tricular septum, which prevents the AP from propagating into the ventricles. The only path towards
the ventricles is via the atrioventricular (AV) node, which delays the signal by approximately 100 ms,
before letting the signal through towards the atrioventricular bundle from where the impulse branches
out through the ventricles [8]. This propapation path is also depicted in Figure 2.1.

2.1.2. AP propagation model
Accurate models for the generation and propagation of action potentials through atrial cells are of
high value to cardiologists and AF research in general. Many of such models were therefore created,
first based on animal cell measurements, which were later expanded to also include human atrial cell
measurements [10]–[12]. Especially the model developed by Courtemanche et al. [12] still seems to
be used extensively in research today. This model models the cell membrane voltage 𝑉𝑚 of a single
cell as a capacitor with capacitance 𝐶𝑚 that is controlled by ionic and stimulus currents, 𝐼𝑖𝑜𝑛 and 𝐼𝑠𝑡
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respectively, as
𝛿𝑉𝑚
𝛿𝑡 = −(𝐼𝑖𝑜𝑛 + 𝐼𝑠𝑡)

𝐶𝑚
. (2.1)

Courtemanche et al. [12] subsequently give expressions for twelve different ionic currents that in total
make up the ionic currents 𝐼𝑖𝑜𝑛.
When modelling the propagation of the membrane potential over multiple cells, typically the diffusion
of the membrane potential is added through the transmembrane current 𝐼𝑡𝑚 that is governed by the
Poisson-based, reaction-diffusion equation

𝐼𝑡𝑚 = 𝑆−1𝑣 ∇ ⋅ 𝚺∇𝑉𝑚 , (2.2)

where 𝑆𝑣 is the cellular surface-to-volume ratio, 𝚺 contains the intracellular conductivities, and 𝑉𝑚 is
the membrane potential [13], [14]. The ∇-symbol is used as a divergence and gradient operator re-
spectively. The complete AP propagation model over a two-dimensional tissue can then be expressed
as

𝐶𝑚
𝛿𝑉𝑚
𝛿𝑡 = 𝐼𝑡𝑚 + 𝐼𝑠𝑡 − 𝐼𝑖𝑜𝑛 , (2.3)

where 𝐼𝑡𝑚 is the transmembrane current as described by Equation (2.2), 𝐼𝑠𝑡 is the stimulus current, and
𝐼𝑖𝑜𝑛 is the total ionic current as described by the model of Courtemanche et al. [12], [13], [15].

2.2. Atrial fibrillation
Atrial fibrillation arises when the electrical conduction in the atria is disturbed, in which case atrial cells
can fire asynchronously to the normal sinus rhythm. Although the immediate effects of AF do not have
to be life-threatening, long-term AF can have serious adverse consequences [7].

The precise mechanisms that lie underneath AF are currently not yet fully understood and are of great
interest to the medical community. According to the examined literature, three hypotheses currently
exist that can explain AF. Any of these mechanisms, or a combination thereof, is expected to lie at the
foundation of AF [7], [16], [17]. These hypotheses are:

1. Ectopic foci: Locations outside of the SA node exist that cause an undesired AP, as depicted in
Figure 2.3A.

2. Atrial remodeling: Any change in atrial structure or function that can lead to atrial arrhythmia.
Atrial remodeling can be caused by a multitude of conditions, under which also AF. This explains
the progressive nature of the condition. Figures 2.3CD show two examples of atrial remodeling
causing chaotic impulse propagation in atrial tissue.

3. Re-entry circuits: Specifically conditioned cardiac tissue that results in a self-maintained circu-
lation of electrical impulses, as depicted in Figure 2.3B. This mechanism is a specific case of
atrial remodeling and is sometimes also referred to as rotors.

Figure 2.3: Four possible mechanisms that are expected to lie at the foundation of AF. C and D both correspond to the atrial
remodeling hypothesis. Source: [18, p.14]
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It is currently still unclear to what extent each of these individual mechanisms contribute to the over-
all AF condition of a patient. Which mechanism contributes the most can have a significant impact
on which therapy is the most effective. For example, if a single ectopic foci is the cause of the arry-
thmia, the ablation of this malfunctioning tissue should be an effective treatment. However, if AF is
the consequence of re-entry circuits, an effective treatment might be to divide the cardiac tissue into
smaller, isolated zones instead [7]. It is also likely that the precise mechanisms of AF vary from person
to person. Currently, arrhythmia mechanisms are generally not yet evaluated on an individual basis,
but there exists a desire in the medical field to start assessing individual atrial structures and electrical
properties to provide patient-specific treatment of AF [16], [17].

2.2.1. Treatments
As of 2018, two approaches for the treatment of AF exist: medicine-based and ablation-based. Both
treatments are suboptimal and have a high reccurance rate (30% to 80% for medicine, and 40% to 60%
for ablation) [16]. Until recently the ablation method was restricted to standardized ablation of certain
tissue, but because of developments in mapping the electrical impulses in the heart it becomes increas-
ingly possible to target patient-specific cardiac tissue for ablation, hereby also increasing the efficacy
of the treatment [16], [19]–[21]. Although the first clinical application of these patient-specific ablation
technologies have happened already, the technology is still in its infancy [16], [17]. The computations
can take several days, and the imaging resolution is not high enough to properly identify faulty tissue
with a high enough accuracy [16]. Improving these technologies therefore is one of the main research
directions within AF.

2.3. Cardiac measurements and processing
The desire to increase the general understanding about AF attracts the interest of multiple academic
fields, under which the signal processing community, due to the complicated mechanisms underlying
AF. Signal processing is of particular interest to AF, because many important and desired cardiac tissue
and impulse propagation properties are not easily observable. Sensor measurements therefore often
require extensive processing before useful conclusions can be made. How to most accurately estimate
these important parameters is an ongoing task within the biomedical signal processing field.

One of the most popular measurement techniques in use today is electrocardiography (ECG). ECGs
are measurements taken from up to 12 electrodes placed on predetermined locations on the body, each
measuring the electrical activity of the heart. A typical ECG first shows the depolarization of the atria
in the P-wave, after which follows the de- and repolarization of the ventricles in the QRS-complex and
T-wave respectively, as shown in Figure 2.4 [8]. A wide range of signal processing applications to this
measurement technique exists. Some applications include but are not limited to the detection of the
QRS-complex, noise elimination, atrial and ventricular source separation, and automatic arrhythmia
classification [22]–[24].

Figure 2.4: A typical ECG waveform. Source: [8]
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2.3.1. Electrogram (EGM)
Although ECGs have proven to give useful information about AF, its information is still rather limited
when compared to measuring atrial activity directly from the cardiac tissue using more invasive meth-
ods. Mapping atrial activity using catheter based sensingmethods has been explored withmixed results
[19], [25]–[27]. More recently, the Erasmus Medical Center has created a novel approach to obtain high
resolution mapping of the electrical activity in the atria; using a 192 unipolar electrodes sensor array
that is placed directly on the atrial epicardial tissue during an open-heart surgery [28]. This sensor array
and an example electrogram (EGM) it generates is depicted in Figure 2.5. This thesis focuses on the
usage of EGMs in particular in order to extract useful information about AF. Specifically the usage of a
unipolar sensor array placed on the atrium is assumed throughout the rest of this thesis when referring
to EGM measurements.

(a) (b)

Figure 2.5: (a) The used unipolar electrode array by the ErasmusMedical Center. Source: [28, p.222]. (b) Generated electrogram
(EGM) signal from unipolar electrode when an impulse propagates underneath. Source: [18, p.12]

EGM model
An electrogram can be modelled by assuming it measures the sum of the electrical activity of the
surrounding cells, weighted inversely with the distance between each cell and the electrode [13], [29].
When assuming a two-dimensional surface 𝐴 consisting of cardiac cells, the measured EGM voltage
at location 𝐲 can thus be modeled as

𝜙(𝐲, 𝑡) = 1
4𝜋𝜎𝑒

∬
𝐴

𝐼𝑡𝑚(𝐱, 𝑡)
‖𝐲 − 𝐱‖ 𝑑𝐱 , (2.4)

where 𝜎𝑒 is a constant extracellular conductivity, and 𝐼𝑡𝑚(𝐱, 𝑡) is the transmembrane current at location
𝐱 as described by Equation (2.2). This forward model can subsequently be used to formulate inverse
problems to estimate important tissue parameters such as cell conductivities, anisotropy ratios, and
activation times [13], [30], [31].

2.3.2. Local activation time (LAT) estimation
An accurate estimation of the local activation time (LAT) of the cells in atrial tissue is of great signifi-
cance, because it can lead to the estimation of other tissue properties and can give an intuitive under-
standing about the impulse propagation through the tissue [31]–[33]. Typically, the activation time of a
cell is defined as the moment when the cell depolarizes [33], [34]. An example of an activation map is
depicted in Figure 2.6.



2.4. Array signal processing and AF 12

Figure 2.6: An example of an activation map of cardiac tissue. Source: [31, p.827]

Multiple LAT estimation techniques have been proposed in literature. One of the most commonly ap-
plied algorithms today is the Steepest Deflection (SD)method. This algorithm simply takes theminimum
derivative of the EGM signal as the moment of activation [30], [34]. Given an EGM time series 𝜙(𝑡),
the moment of activation 𝜏 is thus estimated as

𝜏 = argmin
𝑡

𝛿𝜙(𝑡)
𝛿𝑡 . (2.5)

Although this method is easy to implement and produces reliable results in low noise conditions, the
algorithm is quite sensitive to noise and (far-field) signal artifacts [32], [33]. Because of these problems,
multiple suitable alternatives for the SD algorithms have been explored in literature. The literature
review of Cantwell et al. [33] does an excellent job of enumerating these alternatives.

An SD algorithm alternative that shows especially promising results, is the algorithm proposed by
Kölling et al. [32] using a time-domain cross-correlation method over higher-order neighbours. This
algorithm first identifies neighbours to each sensor that are at most 𝑃 hops away and subsequently es-
timates the time delay of the AP between all defined neighbours. This time delay is estimated using the
time domain cross-correlation between two neighbouring sensors 𝑥𝑖(𝑘) and 𝑥𝑗(𝑘), which is calculated
as

𝜌(𝑖,𝑗)(𝑠) =∑
𝑘

(𝑥𝑖(𝑘) − 𝜇𝑖) (𝑥𝑗(𝑘 − 𝑠) − 𝜇𝑗)

√𝜎2𝑖 𝜎2𝑗
, (2.6)

where 𝜇𝑖, 𝜇𝑗 are the means and 𝜎2𝑖 , 𝜎2𝑗 are the variances of 𝑥𝑖(𝑘) and 𝑥𝑗(𝑘) respectively. The time delay
between the two sensors 𝑖 and 𝑗 is then estimated as

𝜏(𝑖,𝑗) = argmax
𝑠

𝜌(𝑖,𝑗)(𝑠) . (2.7)

Lastly, Kölling et al. [32] use a least squares solution to transform the relative time delays between
sensor-pairs to absolute time delays that are referenced to the same sensor.

In this thesis, this algorithm with only second order neighbours will be discussed, so 𝑃 = 2, and this
algorithm will be referred to as the NCC-2 algorithm in the continuation of this thesis.

2.4. Array signal processing and AF
Array signal processing is a subset of the signal processing field which focuses on signals conveyed
by propagating waves that are measured by an array of sensors with distinct spatial locations [35], [36].
The ultimate goal of array processing is to extract as much information from these waves as possible
using spatio-temporal processing techniques, also called beamforming [35]. Array processing has
many applications, such as radio astronomy, radar imaging, audio processing, and telecommunication.

Within array processing a typical goal is to separate multiple statistically independent sources that are
mixed in the measured signals [35]. This process is also referred to as source separation. Multiple
existing source separation techniques are currently in existence.
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These source separation techniques have also been applied to both ECG and EGM cardiac measure-
ments, mostly to separate the measured atrial activity from the ventricular activity [22]–[24], [37]–[39].
The ventricular activity can namely obscure important information about the atrial activity.

An important assumption these array processing based implementations rely on is that the atrial and
ventricular activity (AA & VA) are decoupled and are thus statistically independent processes. Although
this assumption may not fully be correct from a physiological perspective (see section 2.1), array pro-
cessing techniques have generally proven to increase the estimation of the atrial activity, especially
when no arrhythmia are present [38], [39].

A description about a typical array processing model, how that model is used for source enumeration
purposes, and how it has been used to separate AA from VA is described in the sections below.

2.4.1. General array processing signal model
Typically, array processing models assume 𝐷 spatially different source signals being transmitted over
a linear medium to𝑀 sensors placed in a specific spatial configuration [35], [36]. A typical sensor array
geometry is the uniform linear array (ULA), which places 𝑀 identical sensors a constant distance Δ
apart in a straight line. Figure 2.7 shows a depiction of such a model.

Figure 2.7: Typical far-field array processing model with 𝐷 = 1 and ULA sensor configuration. Source: [40]

Each sensor thus measures a superposition of the individual transmitted sources up to a temporal
convolution difference. Assuming each source 𝑑 is an independent stochastic process with realisation
𝑠𝑑(𝑡), with ℎ𝑖,𝑑(𝑡) the corresponding impulse response from source 𝑑 to the 𝑖th sensor, the measure-
ments for the 𝑖th sensor 𝑥𝑖(𝑡) can be modelled as

𝑥𝑖(𝑡) =
𝐷−1

∑
𝑑=0

ℎ𝑖,𝑑(𝑡) ∗ 𝑠𝑑(𝑡) , (2.8)

where ∗ denotes the convolution operator. Stacking all𝑀 sensor measurements in a vector 𝐱(𝑡) ∈ ℝ𝑀×1
the model can thus be expressed as

𝐱(𝑡) =
𝐷−1

∑
𝑑=0

𝐡𝑑(𝑡) ∗ 𝑠𝑑(𝑡) , (2.9)

where 𝐡𝑑(𝑡) is the vector stacking all impulse responses ℎ𝑖,𝑑(𝑡) from the 𝑑th source to the sensor
array. Vector 𝐡𝑑 can also be referred to as the steering vector or transfer function, because it “steers”
the source signal 𝑠𝑑(𝑡) to each sensor; thereby taking into account all influences the propagation path
has on the source signal (e.g. damping and time delay of the signal).
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By assuming that the measurements can be split into time frames such that 𝑠𝑑 is stationary and er-
godic across the time frames, Equation (2.9) can be transformed into the frequency domain and the
convolution operation can be replaced by simple multiplication. The model for the measurement vector
𝐱(𝜔) ∈ ℂ𝑀×1 subsequently becomes

𝐱(𝜔) =
𝐷−1

∑
𝑑=0

𝐡𝑑(𝜔)𝑠𝑑(𝜔) = [𝐡0(𝜔) 𝐡1(𝜔) ⋯ 𝐡𝐷−1(𝜔)]
⎡
⎢
⎢
⎣

𝑠0(𝜔)
𝑠1(𝜔)
⋮

𝑠𝐷−1(𝜔)

⎤
⎥
⎥
⎦
= 𝐇(𝜔)𝐬(𝜔) , (2.10)

where 𝜔 denotes the angular frequency. The elements 𝑠𝑑(𝜔) in the vector 𝐬(𝜔) are assumed to
be independent realisations of the corresponding complex-Gaussian, stationary stochastic process
𝑆𝑑(𝜔) ∼ 𝒞𝒩(𝜇𝑑(𝜔), 𝜎2𝑑(𝜔)). In practice, any complex stochastic process can be assumed here, and
this is merely chosen for simplicity purposes.

As a final addition to the model the measurement noise is added as independent realisations 𝐧 ∈ ℂ𝑀×1
of the identical zero-mean multivariate random variable 𝑁 ∼ 𝒞𝒩(𝟎, 𝜎2𝑛𝐈), where 𝟎 is the𝑀-dimensional
zero vector, 𝜎2𝑛 the noise variance, and 𝐈 the 𝑀-dimensional identity matrix. This leads to the final
expression of a general array processing or ICA signal model

𝐱(𝜔) = 𝐇(𝜔)𝐬(𝜔) + 𝐧(𝜔) , (2.11)

where 𝐇(𝜔) ∈ ℂ𝑀×𝐷 denotes the transfer matrix and 𝐬(𝜔) ∈ ℂ𝐷×1 the source signals at frequency 𝜔
[36], [41]. Also note that the noise realisations 𝐧(𝜔) are assumed to be independent across frequencies
𝜔. Equation (2.11) will henceforth be referred to as the general signal model.
A typical beamforming problem is to construct a matrix 𝐖 such that an estimation of the individual
source signals �̂�(𝜔) can be obtained from the measurement vector 𝐱(𝜔) as [24], [36]

�̂�(𝜔) = 𝐖𝐱(𝜔). (2.12)

2.4.2. Autocorrelation matrix and source enumeration of general signal model
Any spatio-temporal correlation between the sensor measurements can be investigated by the auto-
correlation matrix 𝐑𝑥(𝜔), which is calculated as

𝐑𝑥(𝜔) = 𝐸[𝐱𝐱𝐻], (2.13)

where 𝐸[⋅] denotes the expected value operator, and 𝐻 denotes the Hermitian transpose. This auto-
correlation matrix can be used to estimate the amount of sources 𝐷, as will be elaborated upon in this
section. The process of estimating the number of sources is also referred to as source enumeration.

In order to obtain an intuitive expression for the autocorrelation matrix of the general signal model, the
stochastic process 𝑆𝑑(𝜔) underlying the source signal realisations of Equation (2.11) is first separated
into a deterministic variable 𝜇𝑑(𝜔), describing the expected value 𝐸[𝑆𝑑(𝜔)] = 𝜇𝑑(𝜔), and a new zero-
mean stochastic process ℰ𝑑(𝜔) ∼ 𝒞𝒩(0, 𝜎2𝑑(𝜔)) as

𝑆𝑑(𝜔) = 𝜇𝑑 + ℰ𝑑, (2.14)

where the dependence of both 𝜇𝑑 and ℰ𝑑 on the frequency 𝜔 is omitted for increased readability. This
omission will also be done in future expressions in this thesis in the same manner.

Denoting the independent realisations of the process ℰ𝑑(𝜔) by 𝜀𝑑, the signal model of Equation (2.11)
can now be expressed without loss of generality as

𝐱(𝜔) =
𝐷−1

∑
𝑑=0
(𝜇𝑑 + 𝜀𝑑)𝐡𝑑 + 𝐧 , (2.15)

where 𝜇𝑑 is the deterministic term of the 𝑑th source signal, 𝜀𝑑 is the zero-mean stochastic component
of the 𝑑th transmitted source signal, 𝐡𝑑 is the steering vector corresponding to the 𝑑ts source, and 𝐧
denotes the measurement noise.
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When calculating the autocorrelation matrix of the general signal model defined above in Equation
(2.15), it can be rewritten to group the deterministic and stochastic terms together to give

𝐱(𝜔) = (
𝐷−1

∑
𝑑=0

𝜇𝑑𝐡𝑑)
⏝⎵⎵⎵⏟⎵⎵⎵⏝
deterministic

+ (
𝐷−1

∑
𝑑=0

𝜀𝑑𝐡𝑑)
⏝⎵⎵⎵⏟⎵⎵⎵⏝

stochastic

+𝐧 = 𝐯 +𝐰+ 𝐧 , (2.16)

where 𝐯 is the vector containing all deterministic terms from the model, and 𝐰 is the vector containing
the stochastic terms coming from the sources. The vector 𝐧 still denotes the measurement noise.
Using Equation (2.16) and the observation that all stochastic variables are uncorrelated, the autocor-
relation matrix 𝐑𝑥 can subsequently be expressed as

𝐑𝑥(𝜔) = 𝐸[𝐱𝐱𝐻] = 𝐯𝐯𝐻 + 𝐸[𝐰𝐰𝐻] + 𝐸[𝐧𝐧𝐻]

= 𝐯𝐯𝐻 +
𝐷−1

∑
𝑑=0

𝜎2𝑑𝐡𝑑𝐡𝐻𝑑 + 𝜎2𝑛𝐈 ,
(2.17)

where 𝐯 is the deterministic component of Equation (2.16),𝐷 is the number of sources, 𝜎2𝑑 is the variance
of the 𝑑th source signal, 𝐡𝑑 the transfer function corresponding to the 𝑑th source, 𝜎2𝑛 is the noise
variance, and 𝐈 denotes the identity matrix. The autocorrelation matrix can subsequently be split into

𝐑𝑥 = 𝐑𝑠 + 𝐑𝑛 , (2.18)

where 𝐑𝑠 = 𝐯𝐯𝐻 + ∑𝐷−1𝑑=0 𝜎2𝑑𝐡𝑑𝐡𝐻𝑑 is the signal contribution to the matrix, and 𝐑𝑛 = 𝜎2𝑛𝐈 is the noise
contribution.

When only considering 𝐑𝑠, a lower limit of the amount of sources 𝐷 can be estimated from the rank of
the autocorrelation matrix 𝐑𝑠. Namely, using the general property that for any matrix 𝐀 and 𝐁

rank(𝐀 + 𝐁) ≤ rank(𝐀) + rank(𝐁) , (2.19)

and that for any vector 𝐠
rank(𝐠𝐠𝐻) = 1 , (2.20)

the following conclusion about the rank of 𝐑𝑠 can be obtained:

rank(𝐑𝑠) ≤ 1 + 𝐷 . (2.21)

Or equivalently,
𝐷 ≥ rank(𝐑𝑠) − 1 . (2.22)

The relation that Equations (2.21) and (2.22) show, are believed to lie at the core of most source
separation algorithms. Most literature namely assume that the rank of the autocorrelation 𝐑𝑥 is related
to the amount of sources present in the system [37]–[39].

How these expressions can be used to estimate the number of sources 𝐷 in the presence of noise is
described in the next section.

2.4.3. Eigenvalue decomposition
Because of the noise term in Equation (2.17), 𝐑𝑥(𝜔) will always be full rank. Therefore a method to
differentiate the noise contribution from the signal contribution is required. This can done by using the
eigenvalue decomposition (EVD) of 𝐑𝑥.
Because 𝐑𝑠 is Hermitian and positive semi-definite, the EVD of 𝐑𝑠 can be written as

𝐑𝑠 = 𝐔𝚲𝐔𝐻 , (2.23)
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with 𝐔 being a unitary matrix whose columns are the eigenvectors of 𝐑𝑠, and 𝚲 is a diagonal matrix
whose elements are the corresponding eigenvalues of 𝐑𝑠. Because of Equation (2.21), 𝚲 has at most
𝐷 + 1 nonzero diagonal elements.
Because the noise 𝐧 is an independent, identically distributed (i.i.d.) process with autocorrelation matrix

𝐑𝑛 = 𝜎2𝑛𝐈 = 𝜎2𝑛𝐔𝐔𝐻 , (2.24)

𝐑𝑥 can be written as
𝐑𝑥 = 𝐔(𝚲 + 𝜎2𝑛𝐈)𝐔𝐻 , (2.25)

which is the eigenvalue decomposition of 𝐑𝑥. Note that the eigenvalue decomposition has 𝑑+1 “large”
eigenvalues of size 𝜆𝑖 + 𝜎2𝑛 , where 𝜆𝑖 is a nonzero element of 𝚲. The other “small” eigenvalues are of
size 𝜎2𝑛 . By detecting the amount of large eigenvalues of 𝐑𝑥 the rank of 𝐑𝑠, and thus the lower limit of
sources 𝐷, can be estimated. In this thesis, this principle will be used in the same manner to estimate
the rank of the 𝐑𝑠 matrix, using the only available 𝐑𝑥 matrix.

2.4.4. VA and AA separation in ECG and EGM signals
When considering the separation of the ventricular and atrial activity, most observed literature assume
that the VA and AA are decoupled and they can directly apply the general signal model expressed by
Equation (2.11) by defining two sources 𝐷 = 2, one for the atrial activity and the other for the ventricular
activity [22], [37], [39]. Using these assumptions, the implied model can subsequently be expressed
as

𝐱(𝜔) = 𝐡𝑎(𝜔)𝑠𝑎(𝜔) + 𝐡𝑣(𝜔)𝑠𝑣(𝜔) + 𝐧(𝜔) , (2.26)

where 𝐡𝑎(𝜔) and 𝑠𝑎(𝜔) are respectively the transfer function and source signal of the atrial activity,
and 𝐡𝑣(𝜔) and 𝑠𝑣(𝜔) are the transfer function and source signal of the ventricular activity. The vector
𝐧 denotes the measurement noise.
The autocorrelation matrix of this model is therefore expressed as

𝐑𝑥(𝜔) = 𝐯𝐯𝐻 + 𝜎2𝑎𝐡𝑎𝐡𝐻𝑎 + 𝜎2𝑣𝐡𝑣𝐡𝐻𝑣 + 𝜎2𝑛𝐈 , (2.27)

where 𝐯 denotes the expected value 𝐸[𝐱(𝜔)] of Equation (2.26), 𝜎2𝑎 and 𝜎2𝑣 denote the variance of the
atrial and ventricular source signals respectively, 𝐡𝑎 and 𝐡𝑣 denote the transfer functions of the atrial
and ventricular source signals respectively, 𝜎2𝑛 denotes the measurement noise variance, and 𝐈 denotes
the 𝑀 × 𝑀 identity matrix. The EVD of this autocorrelation matrix is expected to contain three large
eigenvalues corresponding to the deterministic part 𝐯 and the transfer functions 𝐡𝑎 and 𝐡𝑣, because
they are all linearly independent from each other. This occurrence is believed to allow the subsequent
ICA and source separation methods used in literature [39], [41]. Note that both transfer functions only
add a large eigenvalue to 𝐑𝑥(𝜔), because of their corresponding variances 𝜎2𝑎 and 𝜎2𝑣 . Without these
variances, 𝐡𝑎 and 𝐡𝑣 would become part of the deterministic part 𝐯, which would make it impossible to
distinguish the two sources from the EVD of the autocorrelation matrix.

As mentioned before, the application of this model on EGM and ECG measurements can success-
fully increase the estimation accuracy of the atrial parameters. However, when noise or arrhythmia
are present, the performance can significantly drop again. This can have multiple reasons, such as
statistical dependence between the VA and AA, misassumptions about the medium, or the presence of
more than one atrial or ventricular component [39]. An interesting hypothesis hereby is that the atrial
signal becomes too complex when arrhythmia are present to be accurately represented with a single
source variable 𝑠𝑎, and multiple atrial sources thus are required. It would therefore be logical to extend
the above signal model to 𝐷 atrial sources so that the model becomes

𝐱(𝜔) =
𝐷−1

∑
𝑑=0

𝐡𝑎,𝑑(𝜔)𝑠𝑎,𝑑(𝜔) + 𝐡𝑣(𝜔)𝑠𝑣(𝜔) + 𝐧(𝜔) , (2.28)

where 𝐡𝑎,𝑑(𝜔) and 𝑠𝑎,𝑑(𝜔) now denote the transfer function and source signal of the 𝑑th atrial impulse
source respectively. It can subsequently be hypothesized that this extended EGM signal model better
reflects the EGM signals under AF conditions. This would also have significant effects when considering
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the autocorrelation matrix of this extended model, because now the amount of large eigenvalues of the
autocorrelation matrix is directly dependent on the amount of sources 𝐷 in the model, which is again
dependent on AF. This theoretically should lead to a correlation between the presence of AF and the
amount of large eigenvalues of the autocorrelation matrix, which could result in an effective feature to
classify AF from EGM measurements.

However, as the next chapter will discuss, this extended EGM signal model actually is believed to be
incompatible with cardiac electric impulses and this notion is therefore unfortunately not observable in
practice. This idea will be further elaborated upon in the next chapter.



3
Applying signal models to epicardial

EGM signals during AF

Following the reasoning at the end of the previous chapter, a better understanding of applying the
general signal model to AF EGM signals would be desirable. However, while obtaining this theoretical
understanding, it becomes clear that the general signal model of the previous chapter is not capable
of representing the atrial EGM signals with sufficient accuracy under AF conditions. Why the general
signal model is theoretically incompatible with EGM signals is elaborated upon in Section 3.1.

In this chapter two novel signal models are therefore formulated with the goal to better fit the EGM
signals during AF. These novel signal models are defined in Section 3.3. Thereafter, their application to
EGM signals is first theoretically analyzed in Sections 3.4 and 3.5, before applying them to physiological
simulations in Section 3.6. From the two performed analyses, one of the novel signal models eventually
shows promising results in its ability to properly represent epicardial EGM measurements during AF.
This signal model will subsequently be used in Chapter 4 to estimate the activation times of the cells
underneath the sensors.

3.1. Problem formulation
The literature shows that the application of the general signal model to atrial, epicardial EGM mea-
surements can be useful to separate the ventricular signal from the atrial signal when no arrhythmia
are present. This leads to the observation that, when no arrhythmia are present, atrial signals can be
accurately depicted using the single source signal 𝑠𝑎 in Equation (2.26). However, when arrhythmia
are present, the general signal model of Equation (2.26) seems no longer able to accurately depict the
electrical impulses in the atrium. Within the literature the hypothesis was made to increase the amount
of atrial sources in the signal model to rectify this. However, this section will discuss why this extension
theoretically is incorrect as well as why the application of the general signal model of Equation (2.11)
to atrial electrical impulses in general is believed to be theoretically unsound and can therefore not
be used as expected to extract information about AF from epicardial EGM signals, especially when
arrhythmia are present.

3.1.1. Incompatibilities between general signal model and cardiac system
The general signal model of Equation (2.11) is not designed to model the propagation of action poten-
tials in cardiac tissue, because their underlying mechanisms are fundamentally incompatible. When
comparing the physiological mechanisms of electrical impulse propagation in cardiac tissue, as ex-
plained in Section 2.1, with the assumptions underlying the general signal model, as explained in
Section 2.4.1, two key differences between the systems are namely identified. These two identified
differences are discussed in the paragraphs Problems 1 and 2 below. After discussing these two
fundamental problems in the underlying mechanisms, also a more practical problem of applying the
general signal model to AF is identified, which will be explained below in problem 3.

18
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Problem 1 - Independent sources do not exist in cardiac tissue as they exist in the general signal
model
The general signal model assumes that the transmitted signals are directly measured up to a scalar
multiplication in the frequency domain. Within cardiac tissue however, each cell creates its own action
potential causing each cell in cardiac tissue to be regarded as its own source. This has significant
effects on the application of the general signal model, because, when regarding the AP coming from
a stimulation location of the tissue as the source, the independent variations of the source will be
hidden from the measurements, causing the measured variation in the cardiac EGM signals to be
indistinguishable from the independent measurement noise contribution.

This leads to the second term of the autocorrelation matrix expressed in Equation (2.17), ∑𝐷−1𝑑=0 𝜎2𝑑𝐡𝑑𝐡𝐻𝑑 ,
to disappear. This subsequently removes the dependence of the autocorrelation matrix on the amount
of sources𝐷, removing all correlation between the amount of sources and the rank of the autocorrelation
matrix (without noise). This dependence is believed to be crucial when applying the general signal
model to any ICA or (blind) source separation problems, as mentioned in Section 2.4.4. This also
leads to the conclusion that simply adding more atrial source signals, as hypothesized in Section 2.4.4,
is futile, because the rank of the autocorrelation matrix will not be influenced.

Problem 2 - Non-linear behaviour of the system
Another difference between the general signal model of Equation (2.11) and cardiac tissue is the non-
linear behaviour of the cardiac system. When two wavefronts meet in the general system model,
they superpose. Within cardiac tissue however, this superposition is impossible due to the inherent
physiology of action potentials, and two meeting wavefronts in cardiac tissue will cancel each other
out.

Although this difference also has significant effects on the application of the general signal model to
cardiac impulses, the consequences are believed to not be as far reaching as for the first identified
problem. As will be discussed in Section 3.3.1, this difference can actually be incorporated in the
general signal model without much difficulty and far reaching consequences.

Also the refractory period in cardiac cells inhibits a non-linear factor, because it enforces a bound on the
firing frequency of each cell. This difference is however not believed to be influential in this particular
application, because this property can simply be incorporated in the transmitted source signals.

Problem 3 - Non-stationary behaviour of cardiac signals
The last identified problem is the reliance of the general signal model on the stationary behaviour of the
source signals. The autocorrelation matrix of the general signal model that is expressed in Equation
(2.17) in practice namely needs to be estimated over 𝐾𝑤 time frames as

�̂�𝑥(𝜔) =
1
𝐾𝑤

𝐾𝑤−1

∑
𝑖=0

𝐱(𝜔, 𝑖)𝐱(𝜔, 𝑖)𝐻 , (3.1)

where 𝐱(𝜔, 𝑖) is the measurement vector of size 𝑀 for frequency bin 𝜔 and the 𝑖th time frame. Note
that the above equation can only add a rank-1 contribution to �̂�𝑥(𝜔) from each time frame. The mea-
surements 𝐱(𝜔, 𝑖) are therefore required to be stationary between the time frames in order to obtain
the theoretical autocorrelation matrix of Equation (2.17) where the independent variations between the
time frames increase the rank of �̂�𝑥(𝜔). In practice this assumption is however very difficult to uphold,
especially under AF environments, because heartbeats tend to be different from each other.

Therefore, when estimating the autocorrelation matrix using Equation (3.1), non-ideal effects will sig-
nificantly influence the estimation process, especially when each time frame has a realisation of a
non-stationary process, which will add a linearly independent eigenvector to the matrix �̂�𝑥(𝜔) each
time frame, regardless of the cardiac properties.

3.1.2. Research question
These three identified problems make the application of the general signal model of Equation (2.11) to
fibrillating epicardial EGM measurements quite dubious. This chapter therefore explores if a suitable
alternative for this signal model can be formulated that better fits epicardial EGMmeasurements during
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AF and if the alternative can subsequently be used to classify AF using the EVD of their autocorrelation,
or any suitable alternative, matrix.

3.2. Methodology
To find a better signal model, two models are formulated in this chapter. The first signal model being an
extension of the general signal model discussed in Section 2.4.1 and is referred to as the cardiac signal
model. The other signal model uses a different approach by expressing the entire measurement spectra
to each other, and will be referred to as the spectral signal model. Both models will first be defined
below, in Section 3.3. The signal models are subsequently analyzed under different environmental
assumptions, with the goal to obtain features from the signal models that successfully differentiate the
scenarios. Three different scenarios are hereby formulated, each scenario representing a different
physiological cardiac tissue structure from which two are connected to AF. The analyzed scenarios
are:

1. Normal sinus rhythm (NSR): Normal heart operation with a single stimulation location and ho-
mogeneous tissue.

2. AF remodeling: Non-homogeneous tissue properties are present resulting in atypical heart func-
tion.

3. AF ectopic foci: Ectopic foci are present on the cardiac tissue, resulting in more than one stim-
ulation location. The tissue is again considered homogeneous.

For all scenarios, a cardiac tissue that consists of a two-dimensional array of connected cardiac cells
is assumed.

The subsequent performed analysis is twofold: first a theoretical analysis is done that investigates the
rank of matrices that are formulated from the models. This theoretical analysis is discussed in Sections
3.4 and 3.5. Thereafter, the theory is validated in Section 3.6 using a physiological simulation in which
the EVD and SVD of the defined matrices are investigated under the three different scenarios.

3.3. Definition of cardiac and spectral signal model
In this section two models are defined with the goal to better fit atrial EGM signals to the actual mecha-
nisms in cardiac tissue. The first model is a generalization of the general signal model of the previous
chapter that incorporates the first two problems mentioned in Section 3.1. The other model uses a dif-
ferent approach by expressing the measured signal spectra, instead of the individual samples. The first
defined model will be referred to as the cardiac system model, and the second model as the spectral
signal model in the continuation of this thesis.

An important assumption that is hereby added for both signal models is that only the AP impulse of the
cell directly underneath the sensor is modelled. Far-field effects and spatial averaging of AP’s are thus
not taken into account. Although this assumption is quite improper, it is believed that useful conclusions
can still be obtained with this assumption, because, as will become clear later in this section, the AP
signal shapes denoted by the variable 𝐬 in the signal models could be replaced with an EGM signal
impulse shape. Secondary effects of the spatial averaging, e.g. superposition of opposing wavefronts,
are lost in this assumption however. In Section 3.6 the true consequences of this assumption will
become more clear, because in this section the actual EGM signals are used in the analysis.

Both models are derived below.

3.3.1. Cardiac signal model
To be able to apply the identified differences between the general signal model of Equation (2.11) and
cardiac electrical impulse propagation, the general signal model is modified. As mentioned before, this
modified model is referred to as the cardiac system model and will be derived in this section from the
general signal model. This means that the general signal model will be used as a starting point from
which the two key identified differences (problems 1 and 2 in Section 3.1) will be integrated.

The third problem of the problem formulation of Section 3.1 unfortunately could not be incorporated
in the general signal model without changing its core structure. Integrating problem 3 into a practical
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signal model is left to the spectral signal model defined in the next section.

Incorporating problem 1 - Each cell is its own source:
In order to integrate the idea that in cardiac tissue every cell is its own source, a slight paradigm shift
and generalization from the general model is required.

It is assumed that each sensor 𝑖 now measures its own independent realisation 𝑠𝑖(𝜔) of the same
stochastic process 𝑆(𝜔) with mean 𝜇(𝜔) and variance 𝜎2(𝜔), instead of each sensor measuring the
same realisation of the source signal (but convoluted). Here, 𝜇(𝜔) represents the shape of a non-
delayed action potential propagating under the sensor, and 𝜎2(𝜔) the signal shape deviations each
cell can have due to creating its own independent AP. Any random distribution with the mentioned
mean and variance can be assumed on the stochastic variable 𝑆(𝜔).
We then stack the independent AP shape realisations of all 𝑀 sensors into the vector 𝐬(𝜔) ∈ ℂ𝑀×1 as

𝐬(𝜔) =
⎡
⎢
⎢
⎣

𝑠1(𝜔)
𝑠2(𝜔)
⋮

𝑠𝑀(𝜔)

⎤
⎥
⎥
⎦

(3.2)

and incorporate the sensor-specific delay of this shape in the steering vector

𝐡(𝜔) =
⎡
⎢
⎢
⎣

𝑒𝑗𝜔𝜏1
𝑒𝑗𝜔𝜏2
⋮

𝑒𝑗𝜔𝜏𝑀

⎤
⎥
⎥
⎦
, (3.3)

where 𝜏𝑖 represents the delay from the non-delayed AP signal shape 𝜇(𝜔) to the 𝑖th sensor. Since the
non-delayed AP signal shape is expected to occur at the stimulation location of the AP, the variable 𝜏𝑖
can also be regarded as the delay from the AP between the stimulation location and sensor 𝑖. Note
that a damping variable in the steering vector is unnecessary, because each cell is expected to create
its own AP.

Combining both expressions allows the cardiac system model to be expressed as

𝐱(𝜔) = 𝐬(𝜔)⊙ 𝐡(𝜔) , (3.4)

where the⊙-operator denotes the element-wise (or Hadamard) vector product. Note that the element-
wise multiplication is required, because the AP signal shape can not be factored out, due to the AP
shape being independent realisations between the sensors. This essentially allows each sensor to be
regarded as their own source.

By splitting the realisations 𝑠𝑖(𝜔) into its deterministic variable 𝜇(𝜔) and zero-mean stochastic variable
𝜀(𝜔), the model can be rewritten as

𝐱(𝜔) = (𝜇𝟏 + 𝜺)⊙ 𝐡 = 𝜇𝐡 + 𝑑𝑖𝑎𝑔(𝜺)𝐡 , (3.5)

where 𝜇 can now be considered as the shared, non-delayed AP signal shape between the sensors, and
𝜺 is the sensor-dependent AP shape variation that is characterized as a realisation of the zero-mean
multivariate complex random variable ℰ(𝜔) ∼ ℱ(𝟎, 𝜎(𝜔)2𝐈), where ℱ(𝟎, 𝜎(𝜔)2𝐈) is any 𝑀-dimensional
distribution with mean 𝟎 and covariance 𝜎(𝜔)2𝐈. The measurement noise is omitted in this model.
Incorporating problem 2 - No superposition in cardiac tissue
The absence of superposition in the cardiac system is only noticed when multiple sources are present.
Within the cardiac system this corresponds to having multiple stimulation locations on the tissue. When
this is the case, the lack of superposition can be modelled by checking which AP wavefront reaches
the sensor first, and only simulating that AP. So, when considering two stimulation locations, 𝑎 and 𝑏,
on the tissue, the 𝑖th element of the steering vector 𝐡(𝜔) can be chosen as

ℎ𝑖(𝜔) = {
𝑒𝑗𝜔𝜏𝑖,𝑎 , 𝜏𝑖,𝑎 < 𝜏𝑖,𝑏
𝑒𝑗𝜔𝜏𝑖,𝑏 , 𝜏𝑖,𝑏 < 𝜏𝑖,𝑎

, (3.6)
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where 𝜏𝑖,𝑎, 𝜏𝑖,𝑏 denote the time delay from the stimulation location 𝑎 and 𝑏 to the 𝑖th sensor respectively.
Above expression can also be generalized to more than two stimulation locations by always choosing
the smallest 𝜏𝑖.
This results in the completed cardiac system model as

𝐱(𝜔) = 𝜇𝐡 + 𝑑𝑖𝑎𝑔(𝜺)𝐡 , (3.7)

where 𝜇(𝜔) denotes the shared, non-delayed AP signal shape, 𝐡(𝜔) denotes the steering vector as
expressed in Equation (3.6), and 𝜺(𝜔) denotes the AP shape variations between the sensors.

This model can intuitively be understood by considering 𝜇(𝜔) as a typical AP signal shape that is
delayed by the steering vector 𝐡(𝜔) to each sensor individually. Because each cell realizes an in-
dependent AP, this is incorporated in the zero-mean stochastic variable 𝜺(𝜔). Figure 3.1 depicts a
graphical representation of this cardiac system model.

Figure 3.1: A visual representation of the cardiac system model.

3.3.2. Spectral model definition
The second defined signal model will consider the entire signal frequency spectrum measured in a
time frame of sample size 𝐹. This differs significantly from the general and cardiac signal model,
where each individual measurement sample was steered to each sensor. Instead of steering spatially
different samples, this model explores what happens if entire spatially different spectra are steered to
the sensors.

To investigate this, the measurement vector 𝐱𝑖 now denotes an 𝐹-sized column vector representing the
measured signal spectrum at sensor 𝑖. This vector 𝐱𝑖 is modelled to consist of the uniformly scaled,
time-delayed version of a reference AP signal spectrum 𝐬 ∈ ℂ𝐹, plus a sensor-dependent deviation
vector 𝜺𝑖 ∈ ℂ𝐹×1. The expression for the spectrum-based signal model thus becomes

𝐱𝑖 = 𝐬⊙ 𝐡𝑖 + 𝜺𝑖 = 𝑑𝑖𝑎𝑔(𝐬)𝐡𝑖 + 𝜺𝑖 , (3.8)

where 𝐬 denotes the reference non-delayed AP signal shape, 𝐡𝑖 denotes the transfer function that
delays the reference AP shape to the 𝑖th sensor, the ⊙-operator denotes the element-wise vector
product, and 𝜺𝑖 represents the sensor-specific deviations from the reference AP spectrum. Note that
𝜺𝑖 is not assumed to be a realisation of a zero-mean stochastic process in this model, as done in
the cardiac signal model. The vector 𝜺𝑖 instead denotes all deviations from the purely time-delayed
reference AP signal and is considered deterministic. Furthermore, this model also assumes that only
one AP of the cell directly underneath the sensor is measured and no spatial averaging of AP’s occurs.

Because the spectral signal model only models a delay of a reference AP signal, the transfer function



3.4. Theoretical analysis of cardiac signal model in AF environments 23

𝐡𝑖 of Equation (3.8) has the form

𝐡𝑖 = 𝜁𝑖

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
𝑒𝑗2𝜋

1
𝐹 𝜏𝑖

𝑒𝑗2𝜋
2
𝐹 𝜏𝑖

⋮
𝑒𝑗2𝜋

𝐹−1
𝐹 𝜏𝑖

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 𝜁𝑖

⎡
⎢
⎢
⎢
⎣

1
𝜙𝑖
𝜙2𝑖
⋮

𝜙𝐹−1𝑖

⎤
⎥
⎥
⎥
⎦

, with 𝜙𝑖 = 𝑒𝑗2𝜋
1
𝐹 𝜏𝑖 , (3.9)

where 𝜁𝑖 is an attenuation factor that is uniform over the spectrum, 𝐹 is the sample size of the time
frame, and 𝜏𝑖 is the delay between the reference AP signal 𝐬 and the sensor 𝑖. Note that, when no time
delay on the reference signal 𝐬 is assumed, 𝜏𝑖 represents the moment of activation of the underlying
tissue. A visual representation of the spectral signal model is given in Figure 3.2.

Figure 3.2: A visual representation of the spectral signal model.

The combination of Equations (3.8) and (3.9) is henceforth referred to as the spectral signal model.
The application of this model to AF is analyzed further in Sections 3.5 and 3.6 of this chapter.

3.4. Theoretical analysis of cardiac signal model in AF environ-
ments

For each of the three mentioned scenarios in Section 3.2 an expression for the autocorrelation ma-
trices 𝐑(1)𝑥 , 𝐑(2)𝑥 and 𝐑(3)𝑥 , and autocovariance matrices 𝐂(1)𝑥 , 𝐂(2)𝑥 and 𝐂(3)𝑥 of the cardiac signal model
described in Equation (3.7) is derived. These matrix expressions are subsequently used to conclude
to what extend AF has an effect on the EVD of these matrices.

Each scenario relies on different mathematical assumptions regarding the homogeneity of the tissue
and stimulation locations that are imposed on the cardiac signal model defined in section 3.3.1. These
scenario-specific assumptions are integrated in the cardiac signal model to obtain a tailored expression
for the measured signals. Using this new expression, the autocorrelation and autocovariance matrices
are obtained for each scenario, which will subsequently be used to analyse the EVD of these matrices.

3.4.1. Normal sinus rhythm (NSR)
For the NSR scenario, a single stimulation location is assumed within a homogeneous tissue. This
assumption essentially makes the cardiac signal model of Equation (3.7) directly applicable to this
scenario. With 𝜇(𝜔) representing a non-delayed, shared AP signal shape, and 𝜺(𝜔) representing the
independent AP variation between the sensors.

Therefore, the autocorrelation matrix 𝐑(1)𝑥 (𝜔) of the signal model can be derived instantly from Equation
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(3.7) as

𝐑(1)𝑥 (𝜔) = 𝐸[𝐱𝐱𝐻] = 𝐸[|𝜇|2𝐡𝐡𝐻 + 𝜇𝐡𝐡𝐻(𝑑𝑖𝑎𝑔(𝜺 + 𝜺)) + 𝑑𝑖𝑎𝑔(𝜺)𝐡𝐡𝐻𝑑𝑖𝑎𝑔(𝜺)]
= |𝜇|2𝐡𝐡𝐻 + 𝜎2𝑑𝑖𝑎𝑔 (𝐡⊙ 𝐡) ,

(3.10)

where ⊙ denotes the element-wise (or Hadamard) vector product and the bar denotes the complex
conjugate operator.

The autocovariance matrix 𝐂(1)𝑥 is subsequently derived as

𝐂(1)𝑥 = 𝐑𝑥 − 𝐸[𝐱]𝐸[𝐱]𝐻 = 𝜎2𝑑𝑖𝑎𝑔 (𝐡⊙ 𝐡) . (3.11)

Exploiting the structure of 𝐡(𝜔) given in Equation (3.6) by substituting it in Equation (3.11) allows the
expressions to be simplified to

𝐑(1)𝑥 (𝜔) = |𝜇|2𝐡𝐡𝐻 + 𝜎2𝐈 (3.12)
and

𝐂(1)𝑥 = 𝜎2𝐈 , (3.13)
where 𝜇(𝜔) denotes the shared non-delayed AP impulse shape, 𝐡 the steering vector as described in
Equation (3.6), and 𝜎 the variance of the zero-mean stochastic variable 𝜺.
EVD of model in NSR scenario
Analyzing Equations (3.13) and (3.12), it is clear that the shared signal shape term |𝜇|2𝐡𝐡𝐻 gives a
rank-1 contribution to the autocorrelation matrix, which amounts to one large eigenvalue in 𝐑𝑥. So,
when no sensor-dependent deviations of the action potentials exist (so 𝜎 = 0), the autocorrelation
matrix is simply expected to be rank-1.

The independent variations between the sensors therefore cause the rank of the autocorrelation and
autocovariance matrix to increase to full-rank. This is depicted in the expected eigenvalue pattern
as 𝑀 − 1 smaller eigenvalues of size 𝜎2. This eigenvalue pattern is comparable to the eigenvalue
pattern of the autocorrelation matrix constructed from the general signal model with a single source
with independent measurement noise that is expressed in Equation (2.17).

3.4.2. AF remodeling
To analyse the AF remodeling scenario, it is assumed that two disjoint tissue parts exist: part A and
part B. The APs generated in each tissue part are by definition different from each other.

So, the signal shape realisations 𝑠𝑖(𝜔) of Equation (3.2) are now assumed to be independent realisa-
tions of random variable 𝑆(𝑖, 𝜔), which is now dependent on the sensor 𝑖 and consists of two different
independent stochastic variables as

𝑆𝑖(𝜔) = {
𝑆𝐴 ∼ ℱ(𝜇𝑎(𝜔), 𝜎𝑎(𝜔)2), 𝑖 ∈ 𝐴
𝑆𝐵 ∼ ℱ(𝜇𝑏(𝜔), 𝜎𝑏(𝜔)2), 𝑖 ∈ 𝐵 , (3.14)

where ℱ(𝜇, 𝜎2) is any random distribution with mean 𝜇 and variance 𝜎2, 𝑖 denotes the sensor, and 𝐴
and 𝐵 denote the disjoint sets of sensors in part A and B of the tissue respectively.

Incorporating the above changes in the model expressed by Equation (3.7) and separating the deter-
ministic and stochastic terms of Equation (3.14) in the same manner as done in Equation (2.14), the
cardiac signal model can now be written as

𝐱(𝜔) = 𝐡𝑎𝜇𝑎 + 𝐡𝑏𝜇𝑏 + 𝑑𝑖𝑎𝑔(𝜺𝑎)𝐡𝑎 + 𝑑𝑖𝑎𝑔(𝜺𝑏)𝐡𝑏 , (3.15)

where 𝜇𝑎,𝑏 and 𝜺𝑎,𝑏 depict the shared signal shape sample and variations respectively for tissue type
A and B, and 𝐡𝑎,𝑏 ∈ ℂ𝑀×1 depict the time delay to each sensor and are complementary to each other
so that the 𝑖th element ℎ𝑖,𝑎/𝑏 in 𝐡𝑎 and 𝐡𝑏 is

ℎ𝑖,𝑎 = {
𝑒𝑗𝜔𝜏𝑖 , 𝑖 ∈ 𝐴
0, otherwise

and ℎ𝑖,𝑏 = {
𝑒𝑗𝜔𝜏𝑖 , 𝑖 ∈ 𝐵
0, otherwise

, (3.16)
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where 𝜏𝑖 denotes the time delay of the non-delayed AP to the sensor 𝑖, and 𝐴 and 𝐵 are the disjoint
sets denoting in which tissue each sensor is. The vectors 𝐡𝑎 and 𝐡𝑏 are thus of the same size, but the
non-zero elements in 𝐡𝑎 are zeroes in 𝐡𝑏, and vice versa.
Using Equation (3.15), the autocorrelation matrix is subsequently derived as

𝐑(2)𝑥 (𝜔) = 𝐸[𝐱𝐱𝐻] = 𝜇2𝑎𝐡𝑎𝐡𝐻𝑎 + 𝜇2𝑏𝐡𝑏𝐡𝐻𝑏 + 𝜎2𝑎𝑑𝑖𝑎𝑔(𝐡𝑎𝐡𝐻𝑎 ) + 𝜎2𝑏𝑑𝑖𝑎𝑔(𝐡𝑏𝐡𝐻𝑏 ) + 2𝜇𝑎𝜇𝑏(𝐡𝑎𝐡𝐻𝑏 + 𝐡𝑎𝐡𝐻𝑏 )
= 𝐯𝐯𝐻 + 𝜎2𝑎𝑑𝑖𝑎𝑔(𝐡𝑎⊙𝐡𝑎) + 𝜎2𝑏𝑑𝑖𝑎𝑔(𝐡𝑏⊙𝐡𝑏) ,

(3.17)

where 𝐯 = 𝐡𝑎𝜇𝑎 + 𝐡𝑏𝜇𝑏 is the deterministic part of the signal model of Equation (3.15). The autoco-
variance matrix of this model can now be derived as

𝐂(2)𝑥 (𝜔) = 𝜎2𝑎𝑑𝑖𝑎𝑔(𝐡𝑎⊙𝐡𝑎) + 𝜎2𝑏𝑑𝑖𝑎𝑔(𝐡𝑏⊙𝐡𝑏) . (3.18)

By exploiting the complementary structure between the 𝐡𝑎 and 𝐡𝑏 vectors described by Equation (3.16),
the autocovariance matrix can more intuitively be expressed as

[𝐂(2)𝑥 ]𝑘𝑙 = {
𝜎2𝑎 , 𝑘 = 𝑙 ∈ 𝐴
𝜎2𝑏 , 𝑘 = 𝑙 ∈ 𝐵
0 , otherwise

, (3.19)

where [𝐂(2)𝑥 ]𝑘𝑙 denotes the element at the 𝑘th row and 𝑙th column of 𝐂(2)𝑥 (𝜔), 𝐴 and 𝐵 denote the disjoint
sets of tissue. Note that 𝐂(2)𝑥 (𝜔) is a diagonal matrix.
EVD of model in AF remodeling scenario
Analyzing Equation (3.17) and (3.19), two interesting aspects are noticed. Firstly, the amount of large
eigenvalues of the autocorrelation matrix of Equation (3.17) is still one; the single eigenvalue caused by
the deterministic part 𝐯𝐯𝐻 of 𝐑(2)𝑥 . Secondly, the difference between the tissue parts only comes forward
in the autocorrelation and autocovariance matrices through the difference in variances 𝜎2𝑎 and 𝜎2𝑏 . The
actual difference in signal shape does not have an influence on the eigenvalues of these matrices.
Although, from Equation (3.19) it theoretically would still be possible to identify atypical cardiac tissue,
if the atypical nature of the tissue results in a difference in AP shape variations.

The above result can also be generalized tomore than two tissue parts: the amount of large eigenvalues
of the autocorrelation matrix remains one, and only the difference in variances of the resulting AP signal
shapes between the tissue parts has an influence on the eigenvalue pattern of the autocorrelation and
autocovariance matrix.

3.4.3. AF ectopic foci
This scenario will investigate how multiple stimulation locations can be modeled using the cardiac
system model of Equation (3.7).

When following the paradigm used for the reference signal model, we would like to be able to write the
measurements 𝐱(𝜔) ∈ ℂ𝕄×𝟙 as the sum of the AP impulses coming from the 𝐷 different stimulation
locations as

𝐱(𝜔) =
𝐷−1

∑
𝑑=0

(𝜇𝐡 + 𝑑𝑖𝑎𝑔(𝜺)𝐡))𝑑 =
𝐷−1

∑
𝑑=0

𝑑𝑖𝑎𝑔(𝜇𝑑𝟏 + 𝜺𝑑)𝐡𝑑 , (3.20)

where 𝜇𝑑(𝜔) is the 𝑑th AP stimulation source on the tissue, 𝜺𝑑 are the corresponding AP variations,
and 𝐡𝑑(𝜔) is the steering vector that delays the 𝑑th source from the stimulation location to the sensor
accordingly.

However, as was already discussed at the end of section 3.1, different wavefronts do not superpose
in cardiac tissue and each cell acts as its own source. The shape and variations of the measured
AP signals thus do not change in this scenario when compared to the NSR scenario of Section 3.4.1.
Therefore the expected signal shapes for each source are

𝜇0 = 𝜇1 = ⋯ = 𝜇𝐷−1 = 𝜇
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and the random variables underlying the realisations 𝜺𝑑 are also
ℰ0 = ℰ1 = ⋯ = ℰ𝐷−1 = ℰ

which allows the 𝜇𝑑 and 𝜺𝑑 of Equation (3.20) to be factored out. Therefore Equation (3.20) can now
be rewritten as

𝐱(𝜔) =
𝐷−1

∑
𝑑=0

𝑑𝑖𝑎𝑔(𝜇𝑑𝟏 + 𝜺𝑑)𝐡𝑑 = 𝑑𝑖𝑎𝑔(𝜇𝟏 + 𝜺)(
𝐷−1

∑
𝑑=0

𝐡𝑑) = 𝜇�̃� + 𝑑𝑖𝑎𝑔(𝜺)�̃� , (3.21)

where �̃� = ∑𝐷−1𝑑=0 𝐡𝑑, with each 𝐡𝑑 being complementary to each other as expressed in Equation (3.6).
The autocorrelation matrix of this scenario can now be expressed as

𝐑(3)𝑥 (𝜔) = |𝜇|2�̃��̃�𝐻 + 𝜎2𝐈 , (3.22)

where 𝜇(𝜔) is the shared AP signal shape sample between the sensors, �̃�(𝜔) is the summation of
the complementary 𝐡(𝜔)-vectors corresponding to each stimulation location, as expressed above, and
𝜎2(𝜔) is the variance of the sensor-dependent realisations on the received AP signal shape.

The autocovariance matrix can lastly be derived as

𝐂(3)𝑥 (𝜔) = 𝜎2𝐈 , (3.23)

where 𝜎2(𝜔) is the variance of the sensor-dependent variations on the received signal shape.
EVD of model in ectopic foci scenario
Analyzing Equations (3.22) and (3.23), they look very similar to thematrices derived in the NSR scenario
in section 3.4.1. The same eigenvalue pattern as in the NSR scenario is therefore expected in this
scenario. Which means that one large eigenvalue is expected in the autocorrelation matrix 𝐑(3)𝑥 (𝜔),
and 𝐂(3)𝑥 consists of 𝑀 amount of equal eigenvalues of size 𝜎2.

3.4.4. Conclusion theoretical analysis of cardiac signal model
Summarizing the results of the obtained expressions of the autocorrelation and autocovariance matri-
ces, the cardiac signal model might behave differently than expected from the ideas behind the gen-
eral signal model. The autocorrelation matrices 𝐑(1)𝑥 , 𝐑(2)𝑥 and 𝐑(3)𝑥 namely always have only one large
eigenvalue, regardless of the amount of stimulation locations and non-homogeneous tissue properties.
This is counter intuitive when following the general signal model paradigm in which the amount of large
eigenvalues is correlated with the amount of sources. The number of large eigenvalues of both the au-
tocorrelation and autocovariance matrices thus cannot give any useful information regarding AF from
epicardial EGM measurements.

One interesting aspect that did come forward in the analysis is in the AF remodeling scenario. In
that scenario the tissue properties do come forward in the eigenvalues of the matrices, which can
provide useful information about the heart. However, because these eigenvalues are dependent on
the variance of the signals and the third problem of Section 3.1 (non-stationary behaviour of cardiac
system) is not remedied, the many practical problems to estimate this variance still exist. Within a
single heartbeat, it is actually impossible to estimate this parameter at all.

This leads to the conclusion that the eigenvalue pattern of the autocorrelation matrix of the defined
cardiac system model, in which the measurements are expressed per frequency bin 𝜔, does not incor-
porate much information about AF, especially when extracting information from data measured within a
single heartbeat. When extending the measurements to multiple heartbeats, and finding a way to prop-
erly handle the non-stationary behaviour of the heart, it theoretically is possible to extract information
about cardiac tissue properties from the eigenvalue pattern of the autocorrelation or autocovariance
matrix.

This conclusion causes a desire for a signal model that can give useful expressions about impulse
and/or tissue properties from measurements taken within a single heartbeat and is therefore not reliant
on themeasured variances of the signals. This desire led to the spectral signal model defined in Section
3.3.2. Its behaviour during the same three defined scenarios is analyzed in the next section.
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3.5. Theoretical analysis of spectral signal model in AF environ-
ments

The same theoretical analysis as performed in the previous section for the cardiac signal model is now
performed for the spectral signal model. This analysis is done for the same three scenarios that are
defined in Section 3.2. A crucial difference however is that not the autocorrelation matrix 𝐑𝑥 = 𝐸[𝐱𝐱𝐻]
is hereby calculated, but a new matrix 𝐁 is formulated on which the analysis is performed. This new
matrix 𝐁 ∈ ℂ𝐹×𝑀 is formed by stacking the 𝑀 measured spectra 𝐱𝑖 to give

𝐁 = [𝐱1 𝐱2 ⋯ 𝐱𝑀] . (3.24)

Furthermore, next to analyzing the rank of the matrix 𝐁, also an analysis on the matrix

|𝐁| = [|𝐱1| |𝐱2| ⋯ |𝐱𝑀|] (3.25)

is performed, where | ⋅ | denotes an element-wise absolute value operator. This is done, because this
removes the phase information from the model, resulting in a method to only analyze the morphology
of the measured signals. This allows the |𝐁| matrix to be a lower rank when no AF is present and the
signal morphologies are similar. It is hypothesized that when AF is present, more variance in the signal
morphologies between the sensors exists, resulting in a |𝐁| matrix of a higher rank. This hypothesis is
further explained in this section and tested in the physiological simulation performed in Section 3.6.

Just as in the previous section, each scenario will rely on different mathematical assumptions that are
imposed on the spectral signal model. Expressions for the 𝐁 and |𝐁|matrices are subsequently derived
and analyzed to show how the rank of these matrices are influenced under the different assumptions.

Unlike the cardiac signal model, the spectral signal model does not require the use of stochastic pro-
cesses in the signal model definition in Section 3.3.2 and only deterministic variables are therefore
used. This means that an analysis of the rank of the derived matrices is sufficient, instead of requiring
an analysis of the singular value decomposition (SVD) of the matrices.

Lastly, in this analysis the assumption is also made that only one AP of the cell directly underneath the
sensor is measured and no spatial averaging of APs occurs.

3.5.1. Normal sinus rhythm (NSR)
In this scenario, a single stimulation location again is assumed on a homogeneous tissue. Because
the tissue is homogeneous it is therefore also assumed that all measured signal spectra are the same,
up to a single time delay. This allows the removal of the 𝜺𝑖 term of Equation (3.8) so that the signal
spectrum from sensor 𝑖 can simply be modelled as

𝐱𝑖 = 𝐬⊙ 𝐡𝑖 = 𝑑𝑖𝑎𝑔(𝐬)𝐡𝑖 , (3.26)

where 𝐬 is the non-delayed reference AP signal spectrum and 𝐡𝑖 denotes the time delay of this AP
signal to the 𝑖th sensor, as described in Equation (3.9).
The matrix 𝐁 can now be expressed as

𝐁 = [𝐱1 𝐱2 ⋯ 𝐱𝑀] = 𝑑𝑖𝑎𝑔(𝐬)𝐇 , (3.27)

where 𝐬 is the reference AP signal and 𝐇 = [𝐡1 𝐡2 ⋯ 𝐡𝑀] being the steering vectors responsible
for the time delay.

Note that, because 𝑑𝑖𝑎𝑔(𝐬) is full-rank and diagonal, the rank of the 𝐁 matrix is directly dependent on
the rank of 𝐇. By definition, the rank of the matrix 𝐇 is equal to the amount of linearly independent
column vectors 𝐡𝑖. Because the equation

𝛼𝐡𝑎 + 𝛽𝐡𝑏 = 0, 𝑎 ≠ 𝑏, 𝑎, 𝑏 ∈ {1, 2, ..., 𝑀}, 𝛼, 𝛽 ∈ ℝ (3.28)

only has a solution when 𝜏𝑎 = 𝜏𝑏, where 𝜏𝑎,𝑏 denote the different time delays 𝜏 in Equation (3.9)
corresponding to the different sensors. It is therefore concluded that the matrix 𝐁 is full rank, unless no
time delay between the measured spectra is present.
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When considering only the magnitude of the measured vectors, the |𝐁| matrix can be expressed as

|𝐁| = [|𝐱1| |𝐱2| ⋯ |𝐱𝑀|] = 𝑑𝑖𝑎𝑔(|𝐬|)|𝐇|. (3.29)

From the expression above it becomes clear that the rank of |𝐁| now is equal to the rank of |𝐇| =
[|𝐡1| |𝐡2| ⋯ |𝐡𝑀|]. Because of the purely time-delay model assumption of Equation (3.9), the
absolute value of each vector |𝐡𝑖| = 𝜁𝑖 𝟏, and the |𝐇| matrix thus becomes

|𝐇| = [𝜁1𝟏 𝜁2𝟏 ⋯ 𝜁𝑀𝟏] , (3.30)

where 𝟏 denotes the all-ones column vector. Equation (3.30) clearly shows that |𝐇| is a rank-1 matrix.
Therefore, it is concluded that the rank of the matrix 𝐁 will always be full, unless the AP reaches two or
more sensors at exactly the same time. Furthermore, when only measuring the magnitude spectrum
of a purely time-delayed AP, the rank of the matrix |B| will always be one.

3.5.2. AF remodeling
Just as in Section 3.4.2, in order to analyze the behaviour of the spectral model in the AF remodeling
scenario, it is assumed that two disjoint tissue parts exist: part A and part B. The APs generated in
each tissue part are by definition different from each other, but are assumed to be the same within each
set.

The measured signal spectra are therefore modelled to be dependent on the location of sensor 𝑖 on
the tissue as

𝐱𝑖 = 𝑑𝑖𝑎𝑔(𝐬)𝐡𝑖 + 𝜺𝑖 , where 𝜺𝑖 = {
𝟎, if 𝑖 ∈ 𝐴
𝜺𝑏 , if 𝑖 ∈ 𝐵 , (3.31)

where 𝟎 denotes the 𝐹-sized zero vector, 𝐬 denotes the non-delayed, AP signal morphology created
in tissue part A, 𝜺𝑏 denotes the difference between the AP signals generated in part B of the tissue
compared to part A, and sets 𝐴 and 𝐵 denote the two disjoint sets of sensors in part 𝐴 and 𝐵 of the
tissue respectively.

Stacking all 𝑀 signal spectra into the matrix 𝐁, it can be expressed as

𝐁 = [𝐱1 𝐱2 ⋯ 𝐱𝑀] = 𝑑𝑖𝑎𝑔(𝐬)𝐇 + 𝐄 , (3.32)

where
𝐇 = [𝐡1 𝐡2 ⋯ 𝐡𝑀] and 𝐄 = [𝜺1 𝜺2 ⋯ 𝜺𝑀] . (3.33)

Note that all non-zero elements of 𝐄 are in the columns that denote the locations that are part of set 𝐵
and consists of the 𝜺𝑏 columns. Because the matrix 𝐄 can only consist of the column vectors 𝜺𝑏, the
rank of 𝐄 is therefore automatically one.
Now considering the rank of the 𝐁matrix, an upper limit can be obtained using the property of Equation
(2.19) as

rank(𝐁) ≤ rank(𝐇) + rank(𝐄) . (3.34)

It is already established in Section 3.5.1 that the rank of 𝐇 is full (or 𝑀). Therefore, the addition of the
rank-1 𝐄 matrix, can, in theory, reduce the rank of the 𝐁 matrix to be less than full-rank. However, this
only happens when the addition of the 𝜺𝑏 vector in 𝐁 to the linearly independent column vectors of 𝐇 is
exactly as such that they become linearly dependent. Without proof, it is expected that this is unlikely
to happen, causing the 𝐁 matrix in this scenario to be expected to be full-rank.

Now considering the absolute value of the measurements |𝐱𝑖|, the matrix |𝐁| can be expressed as

|𝐁| = |𝑑𝑖𝑎𝑔(𝐬)𝐇 + 𝐄| . (3.35)

Now an expression for the upper limit of the rank of the |𝐁| matrix needs to be obtained. Unfortunately,
it is impossible to express the upper limit of the rank of |𝐁| as

rank(|𝐁|) ≤ rank(|𝐇|) + rank(|𝐄|) , (3.36)
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because |𝐁| ≠ |𝑑𝑖𝑎𝑔(𝐬)𝐇| + |𝐄|. Therefore, the equality is used that
rank(|𝐁|) = rank(|𝐁|∘2) (3.37)

and an expression for the matrix |𝐁|∘2 is obtained as
|𝐁|∘2 = |𝑑𝑖𝑎𝑔(𝐬)𝐇|∘2 + |𝐄|∘2 + 𝑑𝑖𝑎𝑔(𝐬)𝐇⊙ 𝐄 + 𝑑𝑖𝑎𝑔(𝐬)𝐇⊙ 𝐄 , (3.38)

where the ⋅∘2-operator denotes an element-wise power of 2, and⊙ denotes an element-wise multipli-
cation.

An upper limit to the rank of |𝐁| can now be obtained as

rank(|𝐁|) = rank(|𝐁|∘2) ≤ rank(|𝑑𝑖𝑎𝑔(𝐬)𝐇|∘2) + rank(|𝐄|∘2) + rank(𝑑𝑖𝑎𝑔(𝐬)𝐇⊙ 𝐄)
+ rank(𝑑𝑖𝑎𝑔(𝐬)𝐇⊙ 𝐄) ,

(3.39)

where it is already known that

rank(|𝑑𝑖𝑎𝑔(𝐬)𝐇|∘2) = rank(|𝐇|) = 1
and

rank(|𝐄|∘2) = rank(|𝐄|) = 1 .

Furthermore, because for any matrix 𝐗

rank(𝐗) = rank(𝐗) and 𝑑𝑖𝑎𝑔(𝐬)𝐇⊙ 𝐄 = 𝑑𝑖𝑎𝑔(𝐬)𝐇⊙ 𝐄 ,
the last two terms of Equation (3.39) are equal and the upper limit can thus be expressed as

rank(|𝐁|) ≤ 2 + 2 ⋅ rank(𝑑𝑖𝑎𝑔(𝐬)𝐇⊙ 𝐄) . (3.40)

As a final step, the structure of the 𝐄matrix, which only has |𝐵| (cardinality of set 𝐵) amount of non-zero
columns, is used. Because of the elementwise multiplication, this property of the 𝐄 matrix thus also
limits the rank of 𝑑𝑖𝑎𝑔(𝐬)𝐇⊙ 𝐄 to |𝐵|. This allows the upper limit of the rank of |𝐁| to be written as

rank(|𝐁|) ≤ 2 + 2|𝐵| , (3.41)

where |𝐵| denotes the cardinality of set 𝐵, or, in other words, the amount of sensors that measure a
different magnitude signal spectrum than set 𝐴.
The result obtained above, where only two different AP signal shapes were assumed, can be general-
ized to environments where more than two different AP signal shapes are measured by replacing the
cardinality of set 𝐵 in Equation (3.41) with the amount of sensors that measure a different AP than the
reference AP signal morphology expressed by 𝐬.
From Equations (3.34) and (3.41) it therefore is concluded that the rank of the matrix 𝐁 is at most full-
rank and is also expected to be full-rank, and that the rank of the |𝐁|matrix is dependent on the amount
of sensors that measure a different magnitude spectrum than the reference AP signal expressed by 𝐬.

3.5.3. Ectopic foci
The last scenario will analyse the behaviour of the spectral signal model under the assumption that a
homogeneous tissue is stimulated at multiple stimulation locations. Following the same reasoning as
explained in the theoretical analysis of the cardiac signal model in Section 3.4.3, it is assumed that each
sensor still measures exactly the same AP, but now coming from more than one stimulation location.
The measured signal spectra are therefore modelled similar as in the NSR scenario as

𝐱𝑖 = 𝐬⊙ 𝐡𝑖 = 𝑑𝑖𝑎𝑔(𝐬)𝐡𝑖 , (3.42)

where 𝐬 still denotes the reference non-delayed AP signal and 𝐡𝑖 denotes the moment of arrival of that
reference AP signal. Because the vector 𝐡𝑖 depends only on the time-delay 𝜏𝑖, Equation (3.42) can
simply be extended to more stimulation location by always choosing the steering vector 𝐡𝑖 that belongs
to the lowest 𝜏𝑖. This extension does not change the expression of Equation (3.42), and because
Equation (3.42) is equal to Equation (3.26) derived in Section 3.5.1, the same conclusions about the
rank of the 𝐁 and |𝐁| matrices are drawn. Namely that the rank of the matrix 𝐁 will always be full in this
scenario, and the rank of the matrix |𝐁| will always be one.
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3.5.4. Conclusion theoretical analysis of spectral signal model
The theoretical analysis that is performed in this section focused on obtaining expressions for the rank
of the matrices 𝐁 and |𝐁| that are both constructed from the spectral signal model that is defined in
Section 3.3.2 for each of the three defined scenarios of Section 3.2.

From the performed analysis, a couple of interesting conclusions are drawn. First, it is observed that
the rank of 𝐁 will always be full, regardless of the analyzed phenomena that occur in the cardiac tissue.
Therefore, no information about AF can be extracted from this metric alone using the spectral signal
model.

However, when considering the rank of the |𝐁| matrix, it shows interesting results, because the rank
of |𝐁| can vary depending on the analyzed scenario. The above analysis has namely shown that the
rank of |𝐁| is one, except for in the AF remodeling scenario, where the upper limit of the rank of |𝐁| is
dependent on the amount of different measured signals. This gives a theoretical reason for this signal
model to give interesting insights about AF by analyzing the SVD of the |𝐁| matrix. However, because
only an upper limit of the rank of |𝐁| could be obtained for the AF remodeling scenario, it has to be
further investigated whether this theoretical result is useful in practice. This is done in the next section
of this chapter.

Another interesting conclusion from the performed analysis is that no difference in the rank of the 𝐁
and |𝐁|matrices were found between the NSR and ectopic foci scenarios. For both of these scenarios,
the model expressed by Equations (3.26) and (3.42) are namely similar. This is the same behaviour as
was found for the cardiac signal model and again outlines the difference between the actual behaviour
of these cardiac models and the behaviour that is expected from the general array processing signal
models.

The last important conclusion from the performed theoretical analysis of this model is that the use of
stochastic variables could successfully be avoided during the analysis. This makes the estimation of
the 𝐁 and |𝐁| matrices practically more feasible, because no stationarity assumptions were required
during the performed analysis and the analyzed matrices do not have to be estimated over multiple time
frames. This essentially solves all three problems that are stated in the problem formulation (Section
3.1), which makes the application of the spectral signal model to epicardial EGM measurements to
fibrillation heart tissue theoretically promising.

3.6. Analysis of novel signalmodels in AF environments using phys-
iological simulations

In order to test the theoretical results obtained in the previous sections, a physiological simulation is
performed in Matlab that calculates the eigenvalues of the autocorrelation matrix 𝐑𝑥(𝜔) of the cardiac
signal model and the singular values of the 𝐁 and |𝐁| matrices of the spectral signal model for the
three different cardiac scenarios described in Section 3.2. A visual representation of the performed
simulation methodology is shown in Figure 3.3 below.

EGM signal
simulation

Estimating
    corresponding

matrices

Perform
EVD/SVD

Analyze
results

Figure 3.3: Implemented simulation methodology

This section first discusses how the physiological simulations are implemented. Thereafter, the result-
ing eigenvalues of the autocorrelation matrices for the cardiac signal model and the resulting singular
values of the 𝐁 and |𝐁| matrices of the spectral signal model are shown respectively. The results of
the physiological simulations are lastly concluded in Section 3.6.4.
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3.6.1. Simulation implementation
The physiological simulation of the AP impulses in cardiac tissue is done using the model created by
Courtemanche et al. [12] that is discussed in Section 2.1. The diffusion equation of Equation (2.2) is
subsequently used to model the propagation of this AP between the cells. From this tissue model the
EGM signals are lastly simulated using Equation (2.4). It is hereby assumed that each sensor measures
the electrical activity of each simulated cell, weighted inversely with the distance to the electrode.

All simulations consider a single heartbeat on a tissue of 90 x 90 cells with a sampling frequency of
20 kHz. An EGM sensor size 𝑀 = 25 is used for the EGM simulation and the sensors are placed in a
5-by-5 array geometry. As a last step, measurement noise is added as independent realisations from a
zero-mean Gaussian random variable with variance 𝜎2𝑛 , or𝒩(0, 𝜎2𝑛). The noise variance 𝜎2𝑛 is chosen
as such that an SNR of 20 dB is achieved when compared to the signal measured at the first electrode.

For each scenario a different simulation approach was implemented. Each of which is briefly discussed
below.

Scenario 1 - NSR:
The normal sinus rhythm simulation is implemented using a single stimulation location in the top left
corner of the tissue. The tissue conductivity was furthermore left homogeneous at a value of 𝜎𝑒 = 2.4
nS/µm/pF.

Scenario 2 - AF remodeling
The remodeling of the cardiac tissue is simulated by changing the cell conductivities of certain parts
of the tissue to 0.01𝜎𝑒. This decrease in conductivity functions as a propagation block, which radically
changes the propagating path of the AP impulse. For this scenario the same stimulation location was
chosen at the top left corner of the tissue. The conductivity map of this scenario is created manually
and can be distinguished from the center image of Figure 3.5.

Scenario 3 - Ectopic foci
The existence of ectopic foci is simulated by adding another stimulation location on the tissue. This
second stimulation location is on the bottom right corner of the tissue. The conductivities of the tissue
are left homogeneous at 𝜎𝑒 = 2.4 nS/µm/pF.
Simulation results:
The resulting signals that are simulated using the methodology described above are shown below in
Figures 3.4 to 3.6.

(a) (b) (c)

Figure 3.4: Simulated time domain EGM signal for all 𝑀 electrodes.
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(a) (b) (c)

Figure 3.5: LAT of all 90 by 90 simulated cells.

(a) (b) (c)

Figure 3.6: LAT of each EGM electrode.

Constructing matrices
Using the simulated EGM measurements, the autocorrelation matrix for each frequency bin 𝐑𝑥(𝜔)
is calculated. This is done by first framing the measurements into 𝐾𝑤, 50%-overlapping Hamming
windows. Each window is subsequently transformed to the frequency domain using an FFT. Within the
frequency domain the autocorrelation matrix for each frequency 𝐑𝑥(𝜔) is then estimated as

�̂�𝑥(𝜔) =
1
𝐾𝑤

𝐾𝑤−1

∑
𝑖=0

𝐱(𝜔, 𝑖)𝐱(𝜔, 𝑖)𝐻 , (3.43)

where 𝐱(𝜔, 𝑖) is the measurement vector of size 𝑀 for frequency bin 𝜔 and the 𝑖th timeframe. Four
different values for the amount of time frames 𝐾𝑤 are hereby applied to explore the impact this metric
has on the results.

To construct the 𝐁matrix, the𝑀 simulated EGM signals are first transformed into the frequency domain
as a whole, so without framing and windowing, and are subsequently stacked columnwise into the 𝐁
matrix as described in Equation (3.24). Only the frequencies between 0 Hz and 100 Hz are hereby
taken into account.

The |𝐁| matrix is lastly constructed by calculating the absolute value of every element in the 𝐁 matrix.

Analysing the EVD and SVD of matrices
The last step of the simulation analysis entails obtaining the eigenvalues and singular values of the
constructed 𝐑𝑥, 𝐁, and |𝐁|matrices. This is done in Matlab using the build-in eig () and svd() functions.
The eigenvalues and singular values are subsequently sorted from largest to smallest. Lastly, the
eigenvalues and singular values are normalized to the first, largest value as

𝜆𝑖 =
𝜆𝑖
𝜆1

, (3.44)

where 𝜆𝑖 denotes the 𝑖th singular- or eigenvalue.
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3.6.2. Simulation results cardiac system model
Using the methodology described above, the eigenvalues of the autocorrelation matrices of the cardiac
signal model are simulated for all three discussed scenarios. In these simulations four different amount
of time frames 𝐾𝑤 ∈ {4, 10, 20, 40} are used to show the dependence of the eigenvalue pattern on this
parameter. The results are shown below in Figures 3.7 to 3.10.

(a) NSR scenario (b) AF remodeling scenario (c) Ectopic foci scenario

Figure 3.7: Resulting eigenvalue patterns of each scenario for frequencies 0 < 𝜔 < 50Hz with amount of time frames 𝐾𝑤 = 4.
Only the first 10 eigenvalues are depicted.

(a) NSR scenario (b) AF remodeling scenario (c) Ectopic foci scenario

Figure 3.8: Resulting eigenvalue patterns of each scenario for frequencies 0 < 𝜔 < 50Hz with amount of time frames 𝐾𝑤 = 10.
Only the first 10 eigenvalues are depicted.

(a) NSR scenario (b) AF remodeling scenario (c) Ectopic foci scenario

Figure 3.9: Resulting eigenvalue patterns of each scenario for frequencies 0 < 𝜔 < 50Hz with amount of time frames 𝐾𝑤 = 20.
Only the first 10 eigenvalues are depicted.
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(a) NSR scenario (b) AF remodeling scenario (c) Ectopic foci scenario

Figure 3.10: Resulting eigenvalue patterns of each scenario for frequencies 0 < 𝜔 < 50Hz with amount of time frames 𝐾𝑤 = 40.
Only the first 10 eigenvalues are depicted.

When analyzing the results presented in this section, a couple of observations are made. First, the
amount of large eigenvalues seems to increase with the chosen amount of time frames 𝐾𝑤. Secondly,
the amount of large eigenvalues of the AF remodeling scenario is consistently equal to or higher than in
the NSR scenario. Thirdly, the amount of large eigenvalues of the ectopic foci scenario is consistently
equal to or smaller than in the NSR scenario. Lastly, the differences between the scenarios seem to
decrease as the length of the time frames increases (𝐾𝑤 decreases).

All these observation can be explained by the non-ideal effects of estimating the autocorrelation matrix.
Specifically the length and amount of time frames seem to have a big effect on the presented results.
Equation (3.43) shows that each timeframe can only add a rank-1 contribution to �̂�𝑥(𝜔). By increasing
𝐾𝑤, the length of each time frame becomes smaller, which increases how many time frames overlap
with the AP impulse on the EGM. The high energy signal of the AP impulse, combined with the different
shapes of the EGM signal between the time frames, results in a new linearly independent eigenvector
with a significantly large corresponding eigenvalue. Thus, the more time frames overlap with the im-
pulse, the higher the amount of large eigenvalues of �̂�𝑥 will be. This also explains why the amount of
large eigenvalues in the AF remodeling scenario is consistently higher: The impulse takes longer (as
Figure 3.4b shows), thus more time frames overlap with the impulse. The opposite effect explains the
consistently lower amount of large eigenvalues of the ectopic foci scenario; it is because the impulses
last shorter in this scenario.

These effects are the result of the stationarity assumption of the cardiac signal model that can not be
held in this application. The autocorrelation matrix expressions of Section 3.4 assume that the mea-
sured signals between the time frames are stationary, and that statistically independent variations of
the sources between the time frames increase the rank of the autocorrelation matrix. In practice how-
ever, this assumption does not work, because the cardiac electrical impulses are guaranteed not to be
stationary with one heartbeat, and even across multiple heartbeats stationarity is not likely, especially
when arrhythmia are present. This unavoidably leads to the results in which the theoretical autocorre-
lation matrix can not properly be estimated and no significant differences between the scenarios can
be distinguished.

3.6.3. Simulation results spectral signal model
The spectral signal model is analyzed using the same physiological simulations as for the cardiac signal
model. However, now the 𝐁 and |𝐁| matrices are used to extract information about AF. These matrices
are simulated for the three scenarios discussed in Section 3.2. The resulting normalized singular values
of the matrices are shown below in Figures 3.11a and 3.11b.
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(a) Normalized singular values of the 𝐁 matrix. (b) Normalized singular values of the |𝐁| matrix.

Figure 3.11: Results of the physiological simulation analysis of the 𝐁 and |𝐁| matrices from the spectral signal model. Results
are obtained with an SNR of 20 dB.

From the theoretical analysis performed in Section 3.5 it was expected that the 𝐁 matrix always is full-
rank and the |𝐁| matrix is rank-1, except for in the AF remodeling scenario, where it can become a
higher rank. Analyzing the singular values presented in Figure 3.11, a clear distinction of the singular
value patterns between the scenarios is observed across both figures. The singular values of the ec-
topic foci scenario are namely consistently the lowest, and the singular values corresponding to the AF
remodeling scenario are consistently the highest. This observation can currently not yet be fully ex-
plained. It is possible that this result is caused by a difference in total signal energy, or impulse duration
of the EGM measurements between the scenarios. It might be an interesting topic for future research
to explore this effect further and whether it can provide information about AF from EGMmeasurements.
According to the theoretical analyses of Sections 3.4 and 3.5, no such theoretical foundation has as of
yet been found. This observation on its own is therefore not used to validate the theoretical analysis.

However, a more interesting observation of the results can be found in the comparison between the
shapes of the singular values between the two figures. The singular values of the 𝐁 matrix presented
in Figure 3.11a namely in general seem to increase in negative slope, while the singular values of the
|𝐁| matrix gradually seem to decrease in negative slope. This overall increase in slope as shown in
Figure 3.11a is believed to indicate a higher rank matrix, and the overall decrease in slope of Figure
3.11b to indicate a lower rank matrix.

Analyzing the singular values of the 𝐁 matrix further, it seems that the shape of the singular value
pattern for each scenario is very similar, although the singular values from the AF remodeling sce-
nario consistently have a higher amplitude. This consistency in shape is believed to indicate that all 𝐁
matrices are of a high rank, as would also be suggested by the theoretical analysis of Section 3.4.

When analyzing the singular values of the |𝐁| matrix, the distinction in the shape between the AF re-
modeling scenario and the other scenarios is more apparent. The shape of the singular values in Figure
3.11b corresponding to the NSR and ectopic foci scenarios is comparable to a negative exponential
function shape, while the AF remodeling singular values seem to decrease more linearly. This differ-
ence indicates that the |𝐁|matrix from the AF remodeling scenario is of a higher rank than the |𝐁| of the
NSR and ectopic foci scenarios, especially when considering that the singular values are expressed in
logarithmic scale. This observation also agrees with the performed theoretical analysis of Section 3.5
and shows the potential in using the singular values of the |𝐁| matrix as a classification feature for AF.

3.6.4. Conclusion of physiological simulations
The main goal of the physiological simulations was to validate the theoretical analysis that is performed
in Sections 3.4 and 3.5. This is done by simulating the epicardial, atrial EGM measurements using its
physiological mechanisms and then applying the knowledge of the two defined signal models of Sec-
tion 3.3 to these measurements. From the presented results, the physiological simulations seem to
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agree with the performed theoretical analysis, even though the assumption was made in the theoret-
ical analysis that each sensor only measures one AP of the cell directly underneath the sensor. As
was expected and is also apparent from Figure 3.4, this assumption is incorrect. However, because
the obtained expressions of the theoretical analyses are only dependent on signal shapes, they can
relatively easily be generalized to also agree with the spatially averaged EGM sensor measurements.

This leads to the conclusion that the performed physiological simulations validate the theoretical results,
which state that the eigenvalue pattern of the autocorrelation matrix of the cardiac signal model is
expected to give little insight into AF from epicardial EGM measurements, while the spectral signal
model can be used to construct matrices of which the rank is correlated to AF.

3.7. Chapter conclusion
In this chapter a closer look at the theoretical understanding of applying a signal model to cardiac EGM
measurements is obtained. This is done by first discussing why the ideas behind the general signal
model of the literature are theoretically incompatible with cardiac AP impulse propagation. From this
observation two updated signal models are subsequently derived that should theoretically be more
compatible with the cardiac environment. These two defined models are the cardiac signal model,
which can be considered a generalization of the general signal model, and the spectral signal model,
which expresses the entire measured spectra. These two signal models are analyzed to investigate
their behaviour under different cardiac environments. From the three performed analyses presented
above, it is concluded that the amount of large eigenvalues of both the autocorrelation and autoco-
variance matrices of the cardiac signal model is expected to give little useful information regarding AF
from epicardial EGM measurements, because the non-ideal effects from estimating the autocorrela-
tion matrix can not be neglected and are too influential. Therefore, although the first two problems of
the problem formulation (Section 3.1) could be solved by the cardiac signal model and the model is
thus in theory able to accurately depict cardiac impulse propagation, the third problem still causes the
application of this signal model to be troublesome for the investigated application.

The𝐁 and |𝐁|matrices of the second signal model however, the spectral signal model, can be estimated
from a single time frame, solving the main problem of the cardiac signal model. From the performed
analyses of that signal model it is concluded that this model successfully solves all three problems
posed in the problem statement. The analyses of this model also show that the |𝐁|matrix of this model
can be used to detect AF from epicardial EGM measurements, although more research is still required
to bring the current theory into practice. The spectral signal model also seems to be able to properly
represent the cardiac impulses. This ability, with the fact that it can provide useful information from a
single heartbeat, led to the example application discussed in the next chapter. Here, the model is used
to estimate the local activation times (LAT) of the cells underneath each electrode.
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Estimating LAT using signal spectra

In the previous chapter an in-depth analysis is performed to investigate the behaviour of multiple sig-
nal models applied to epicardial EGM measurements. The chapter concludes that the cardiac signal
model shows limited practical potential in the investigated applications of AF, especially when limiting
the measurements to a single heartbeat. However, the spectral signal model could satisfy all three
problems posed by the problem formulation in Section 3.1, also with measurements taken from a sin-
gle heartbeat. The large potential that comes with this conclusion is exemplified in this chapter, where
the spectral signal model is applied to a practical estimation problem that is desired for AF diagnostics:
estimating the local activation times (LAT) of the cells.

To achieve this, first the spectral signal model is summarized again in Section 4.1 for readability pur-
poses. Thereafter, the exact research question this chapter investigates is discussed in Section 4.2.
The novel algorithms to solve the problem are subsequently discussed in Section 4.3 and the validation
process of the designed algorithms is explained in Section 4.4. The results of the validation are lastly
enumerated in Section 4.5 from which the final conclusion of this chapter is drawn that is depicted in
Section 4.6.

4.1. Used signal model
The spectral signal model that is defined in Section 3.3.2 is used in this chapter to estimate the LAT
of the cells underneath each electrode. This spectral signal model expresses the measured signal
spectrum of sample size 𝐹 from electrode 𝑖 as

𝐱𝑖 = 𝐬⊙ 𝐡𝑖 + 𝜺𝑖 + 𝐧 = 𝑑𝑖𝑎𝑔(𝐬)𝐡𝑖 + 𝜺𝑖 + 𝐧 , (4.1)

where 𝐬 denotes the reference, non-delayed AP signal spectrum, 𝐡𝑖 denotes the transfer function that
delays the signal 𝐬 to the 𝑖th electrode, the⊙-operator denotes the element-wise vector product, 𝜺𝑖 rep-
resents the sensor-specific deviations from the reference spectrum 𝐬, and 𝐧 denotes the measurement
noise. The measurement noise 𝐧 is assumed to be independent realisations of a zero-mean complex
Gaussian stochastic variable. The 𝐡𝑖 vector still is assumed to have the form

𝐡𝑖 = 𝜁𝑖
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⎢
⎢
⎢
⎢
⎣

1
𝑒𝑗2𝜋
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𝑒𝑗2𝜋
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⋮
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⎦

= 𝜁𝑖

⎡
⎢
⎢
⎢
⎣
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𝜙𝑖
𝜙2𝑖
⋮

𝜙𝐹−1𝑖

⎤
⎥
⎥
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⎦

, with 𝜙𝑖 = 𝑒𝑗2𝜋
1
𝐹 𝜏𝑖 , (4.2)

In this chapter, instead of considering 𝐬 as a reference AP, it is considered as a reference EGM impulse.
This reference EGM impulse is subsequently delayed to each sensor. Other effects that occur through
the spatial averaging of APs to the electrode are hereby not taken into account. Note that the desired
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parameter for estimation is the single 𝜏𝑖 variable in the steering vector 𝐡𝑖, because it denotes the time-
delay from the reference impulse to the 𝑖th sensor, which corresponds to the activation time of the
measured signal at sensor 𝑖.

4.2. Problem formulation
The goal of this chapter is to exemplify a practical application of the spectral signal model by estimating
the LAT of the cells using a novel LAT estimation algorithm based on the spectral signal model defined
in section 3.3.2 and summarized again in the previous section. An estimation of the LAT of the tissue
underneath the EGM sensors hereby needs to be obtained by estimating the variable 𝜏𝑖 in the steering
vector 𝐡𝑖.
The accuracy of the novel LAT estimation algorithm will subsequently be compared with the two state
of the art LAT estimation algorithms discussed in Section 2.3.2: the steepest deflection (SD) algorithm
and the NCC-2 algorithm developed by Kölling et al. [32].

4.3. Methodology
In order to apply the spectral signal model to this LAT estimation problem, three implementations of
the existing ESPRIT algorithm are formulated. The first implementation being a pure, unchanged ap-
plication of ESPRIT on the EGM data, and the second and third being an extended version of ESPRIT.
What ESPRIT entails and how it is applied to the formulated problem is the topic of this section.

4.3.1. ESPRIT algorithm
According to Roy and Kailath [42], ESPRIT (Estimation of Signal Parameters via Rotational Invari-
ance Techniques) is an algorithm designed for array processing applications that uses the inherent
shift-invariance structure of the sensor array. This shift-invariance property can be exploited to obtain
different signal parameter estimates from the data, such as angle of arrival, time-delay, and frequency
[42].

First a general description of the ESPRIT algorithm will be given based on the article of Roy and Kailath
[42]. This description is thus not yet applied to the formulated problem of this chapter, but solely is
depicted as an explanation of the ESPRIT algorithm. After the general ESPRIT algorithm is explained,
the application of the ESPRIT method to the spectral signal model defined in Section 4.1 is discussed.

General ESPRIT algorithm description
In order to describe the algorithm it is convenient to split a sensor array into two subarrays of equal
size 𝑀: 𝐙𝑥 and 𝐙𝑦, which are identical to each other except for a physical displacement. The signals
received at each subarray can now be expressed using the typical array processing signal model as

𝐱(𝑡) = 𝐀𝐬(𝑡) + 𝐧
𝐲(𝑡) = 𝐀𝚽𝐬(𝑡) + 𝐧 , (4.3)

where 𝐀 ∈ ℂ𝑀×𝑑 is the steering matrix that steers the 𝑑 source signals 𝐬(𝑡) ∈ ℂ𝑑×1 to the 𝑀 sized
measurement vectors 𝐱(𝑡) and 𝐲(𝑡), and 𝐧 denotes independent random measurement noise. The
diagonal matrix 𝚽 ∈ ℂ𝑑×𝑑 denotes the difference in attenuation and time delay of the source signal
between the two subarrays, due to their physical displacement. This matrix can be expressed as

𝚽 =
⎡
⎢
⎢
⎣

𝜙0
𝜙1

⋱
𝜙𝑑−1

⎤
⎥
⎥
⎦
, (4.4)

where 𝜙𝑖 denotes the extra attenuation and time delay for the 𝑖th source signal to travel to the subarray
𝐙𝑦, compared to 𝐙𝑥.
Stacking the measurements 𝐱 and 𝐲 in a vector 𝐳 allows it to be written as

𝐳 = [𝐱𝐲] = �̃�𝐬(𝑡) + 𝐧𝑧 (4.5)
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with
�̃� = [ 𝐀𝐀𝚽] . (4.6)

Denoting the subspace spanned by the columns of �̃� as 𝐔𝑧, which can be estimated from the data, the
parameter matrix 𝚽 can be estimated from the EVD of

𝐔†𝑥𝐔𝑦 = 𝐓−1𝚽𝐓 , (4.7)

where 𝐔𝑥 and 𝐔𝑦 are the first and last 𝑀 rows of 𝐔𝑧 respectively, and † denotes the Moore-Penrose
pseudo-inverse operator. The eigenvalues of𝐔†𝑥𝐔𝑦 thus represent the estimated values �̂�0, �̂�1, … , �̂�𝑑−1.
The exploitation of the structure of �̃� to obtain an estimate of 𝚽 is considered the core mechanism of
the ESPRIT algorithm.

ESPRIT algorithm applied to AF signal spectrum model
Applying the above technique to the spectral signal model as described by Equation (4.1), it is first
assumed that all measured signal spectra are purely time-delayed versions of each other. Therefore
the sensor-specific deviation vector 𝜺 = 𝟎 in Equation (4.1). The desired ESPRIT structure of Equation
(4.6) can now be found in the measurements via the steering vector 𝐡𝑖. To obtain the estimate of the
steering vector 𝐡𝑖, the following minimization problem is formulated:

min
𝐡𝑖

𝐸 [‖𝐱𝑖 − 𝑑𝑖𝑎𝑔(𝐬)𝐡𝑖 − 𝐧)‖
2
2] , (4.8)

where 𝐱𝑖 is the measured signal at sensor 𝑖, 𝐬 is a reference AP signal shape, 𝐡𝑖 the steering vector
as depicted in Equation (3.9), and 𝐧 the measurement noise. The measurement noise is assumed to
be independent realisations of a zero-mean complex stochastic variable.

Solving this minimization problem leads to the optimal steering vector estimate

�̂�𝑖 = 𝑑𝑖𝑎𝑔(𝐬)−1𝐱𝑖 . (4.9)

Note that this expression can be regarded as a deconvolution operation between signals 𝐬 and 𝐱𝑖 in
the frequency domain.

Now a choice for the reference signal shape 𝐬 needs to be made. It is theoretically possible to use a
standard, a priori EGM AP impulse shape for this variable, but for the purposes of this thesis the choice
is made to use the first sensor signal 𝐱1 as reference. This leads to the estimate �̂�1𝑖 being a relative
transfer function between the first sensor and sensor 𝑖. Incorporating this decision in the equation
above leads to the final expression for the estimate �̂�1𝑖 as

�̂�1𝑖 = 𝑑𝑖𝑎𝑔(𝐱1)−1𝐱𝑖 , (4.10)

where �̂�1𝑖 denotes the estimate of the relative transfer function that describes the delay of the AP signal
from sensor 1 to sensor 𝑖. The structure of 𝐡1𝑖 can be expressed as

𝐡1𝑖 = 𝜁1𝑖

⎡
⎢
⎢
⎢
⎣

1
𝜙𝑖
𝜙2𝑖
⋮

𝜙𝐹−1𝑖

⎤
⎥
⎥
⎥
⎦

, with 𝜙𝑖 = 𝑒𝑗2𝜋
1
𝐹 𝜏1𝑖 , (4.11)

where 𝜁1𝑖 denotes a possible relative attenuation that is uniform over the entire spectrum, 𝜏1𝑖 denotes
the relative time delay between the signal from sensor 1 to sensor 𝑖, and 𝐹 denotes the sample size of
the spectra.

With the estimate of the relative transfer function, the ESPRIT algorithm can be applied. This is done
by splitting the vector 𝐡1𝑖 into two overlapping vectors 𝐡𝑥 and 𝐡𝑦, as depicted in Figure 4.1
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Figure 4.1: Splitting the relative transfer function 𝐡1𝑖 into two overlapping vectors 𝐡𝑥 and 𝐡𝑦

Observe that the following relation between 𝐡𝑥 and 𝐡𝑦 now applies:

𝐡𝑦 = 𝐡𝑥𝜙𝑖 , (4.12)

where 𝐡𝑥 is the vector containing the top 𝐹 − 1 elements of 𝐡1𝑖, 𝐡𝑦 the vector containing the bottom

𝐹−1 elements of 𝐡1𝑖, and 𝜙𝑖 = 𝜁1𝑖𝑒𝑗2𝜋
1
𝐹 𝜏1𝑖 contains the corresponding relative attenuation 𝜁1𝑖 and time

delay 𝜏1𝑖 of the entire AP.
Using the relation of Equation (4.12), an estimate of the relative 𝜙𝑖 between sensor 1 and 𝑖 can be
obtained as

�̂�𝑖 = 𝐡†𝑥𝐡𝑦 , (4.13)

where 𝐡𝑥 and 𝐡𝑦 are the top and bottom subvectors of the estimated relative transfer function �̂�1𝑖
respectively.

The final estimate for the relative time delay 𝜏1𝑖 between the first and 𝑖th sensor can now be calculated
from �̂�𝑖 as

�̂�1𝑖 = ∠(�̂�𝑖)
𝐹
2𝜋 , (4.14)

where ∠(�̂�𝑖) denotes the angle of �̂�𝑖 with the positive real axis in the complex plane.
By applying this method to each measured signal spectrum 𝐱𝑖, the relative time delay between all sen-
sors to the first sensor can be found. This concludes the implemented method of the ESPRIT algorithm
in this thesis. This implementation of ESPRIT is referred to as the unmodified ESPRIT implementation.
The extended ESPRIT implementation is described in the next section.

4.3.2. ESPRIT algorithm extension
Next to implementing the unmodified ESPRIT algorithm that is described in the section above, this
algorithm is also extended to be better applicable to AF environments. The unmodified ESPRIT algo-
rithm namely relies on the assumption that the signal shapes of 𝐱1 and 𝐱𝑖 are merely time delayed and
equal on all other fronts. In other words, the assumption is made that 𝜺 = 𝟎. In practice this will most
likely not be the case, especially during AF. This will cause the spectral deconvolution step of Equation
(4.10) to become inaccurate and the estimate of the relative transfer function �̂�1𝑖 will not contain the
desired structure.

Therefore, the addition of an extra separation step that splits the signal spectra into 𝑘 disjoint sets
before the ESPRIT algorithm is proposed. This leads to the following three step process:

1. Classify the 𝑀 signal spectra into 𝑘 disjoint sets of similar morphology.
2. Perform the ESPRIT algorithm separately on each set.

3. Merge the sets.

Each step is further explained below.

This methodology mostly relies on the hypothesis that the signal shape variations between the sensors
are discrete and can therefore be categorized into the 𝑘 different sets of signal shapes.
Step 1 - Separating into 𝐤 disjoint sets
In this step the signal shapes coming from the 𝑀 different sensors need to be separated into 𝑘 disjoint
sets with the goal to combine similar looking signal shapes in each set. This signal classification is
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done using only the magnitude of the measured signal spectra, disregarding the phase information. In
other words, how to find 𝑘 disjoint sets 𝒮𝑗 ⊆ 𝒜 where 𝒜 = {1, 2, … ,𝑀} is the whole set containing all
sensors as such that the magnitude spectra from each sensor in 𝒮𝑗 are most similar?
Two methods were implemented that might achieve this goal:

• Classification based on the k-means clustering algorithm

• Classification based on dot product similarity

The k-means clustering classification algorithm is an old and popular algorithm that aims to partition
the𝑀 measurement vectors |𝐱𝑖| into 𝑘 sets by minimizing the Euclidian distances between each vector
to the mean of the sets. Algorithm 1 shows the pseudo-code of the implemented k-means algorithm,
based on Loyd’s algoritm.

Algorithm 1 K-means clustering algorithm. Source: [43], [44]
Require: 𝐱1, 𝐱2, … , 𝐱𝑀 ∈ ℝ𝐹 � Denote the measured magnitude spectra
Ensure: 𝝁1, 𝝁2, … , 𝝁𝑘 ∈ ℝ𝐹 � Initialize the 𝑘 cluster centers
𝑖 ← {1, 2, … ,𝑀}
𝑗 ← {1, 2, … , 𝑘}
repeat

for all 𝑖 do
𝑐(𝑖) ∶= argmin𝑗 ‖𝐱𝑖 − 𝝁𝑗‖2 � Assign cluster labels based on Euclidian distance

end for
for all 𝑗 do

𝝁𝑗 ∶=
1
∑𝑝 1

∑𝑝 𝐱𝑝, ∀𝑝, where 𝑐(𝑝) = 𝑗 � Calculate new cluster centers

end for
until no more label changes or maximum amount of iterations is reached

The dot-product based classification method is created for the purposes of this thesis and uses the
inner product, or dot product, as a metric to quantify the similarity between two vectors. By calculating
the dot product between themagnitude spectra for all𝑀 sensor combinations with the reference sensor,
a division between similar and non-similar magnitude spectra can be made. The threshold between
similar and non-similar spectra is hereby based on the median of the obtained inner products, thus
splitting the distribution of dot products in half.

By doing this division 𝑘 − 1 times, 𝑘 disjoint sets can hereby be achieved. The created dot-product
classification algorithm is described below in Algorithm 2.

Algorithm 2 Dot-product separation algorithm into 𝑘 sets
Require: 𝐱1, 𝐱2, … , 𝐱𝑀 ∈ ℝ𝐹 � Denote the measured magnitude spectra
𝑖 ← {1, 2, … ,𝑀} � Set containing all sensors
𝑗 ← {1, 2, … , 𝑘 − 1}
for all j do

for all i do
𝑝(𝑖) ← 𝐱1 ⋅ 𝐱𝑖 � Calculate dot product of all sensor spectra of set 𝑖

end for
thres ← median(𝑝) � Calculate threshold
𝑆(𝑗) ← {𝑖 | 𝑝(𝑖) > 𝑡ℎ𝑟𝑒𝑠} � 𝑆(𝑗) denotes the sensors that belong to set 𝑗
𝑖 ← 𝑖 ⧵ 𝑆(𝑗) � Remove labeled sensors from set 𝑖

end for
𝑆(𝑘) ← 𝑖 � The last set gets all remaining sensors

Both algorithm 1 and 2 result in 𝑘 disjoint sets of sensors, each denoted by 𝒮𝑗, on which the ESPRIT
algorithm can subsequently be applied to.
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Step 2 - Perform ESPRIT
On each obtained set from the previous step, the ESPRIT algorithm as described in section 4.3.1 is
performed separately in order to obtain an estimate about the relative time delays between the sensors
in each set. This implementation of ESPRIT is unchanged. The estimated time delays for set 𝒮𝑗 are
henceforth denoted as 𝝉𝑗.
Step 3 - Merging the sets
Now the time delays between the sensors in each set is estimated, these time delays need to bemerged
in order to express them to a single reference. Changing the reference sensor of a set involves simply
adding an offset to all the time delays of that set. So, if the offset value between the sets can be found,
the sets can be merged so that all time delays are relative to the same reference sensor. However,
because the classified sets are disjoint, this problem is not unambiguous.

The proposed solution to this problem involves using the ESPRIT algorithm of the whole set𝒜 (contain-
ing all sensors), as done in the unmodified implementation of ESPRIT described above, as a reference
from which the offsets can be estimated. The estimation of the offset 𝛼𝑗 between the estimated LATs of
the whole set 𝝉𝒜 ∈ ℝ𝑀 and the LATs 𝝉𝑗 ∈ ℝ|𝒮𝑗| from subset 𝒮𝑗 is done using the minimization problem

�̂�𝑗 = argmin
𝛼𝑗

‖𝝉𝒜(𝒮𝑗) − 𝝉𝑗 + 𝟏𝛼𝑗‖
2
2 , (4.15)

where 𝝉𝒜(𝒮𝑗) denotes the time delays from the sensors of 𝒮𝑗 obtained from the ESPRIT estimates of
the whole set, and 𝟏 denotes the all-ones column vector of size |𝒮𝑗|.
Solving this minimization problem leads to the optimal solution

�̂�𝑗 =
1
|𝒮𝑗|

𝟏𝑇(𝝉𝑗 − 𝝉𝒜(𝒮𝑗)) , (4.16)

where |𝒮𝑗| is the cardinality of set 𝒮𝑗, 𝜏𝑗 are the LATs of the sensors in set 𝒮𝑗, and 𝝉𝒜(𝒮𝑗) denotes the
time delays from the sensors of 𝒮𝑗 obtained from the whole set. Note that Equation (4.16) is simply the
mean of the elements in the vector 𝝉𝑗 − 𝝉𝒜(𝒮𝑗).
With the estimate �̂�𝑗, the LATs of each set 𝒮𝑗 can subsequently be offset to be referenced to the same
reference sensor using

�̂�𝑗 = 𝝉𝑗 + �̂�𝑗𝟏 , (4.17)
where �̂�𝑗 contains the final estimated LATs of set 𝒮𝑗 relative to the reference sensor of 𝒜. By applying
Equations (4.16) and (4.17) to all 𝑘 sets, the LATs of the extended ESPRIT algorithm are obtained.

4.4. Validation
The algorithms set out in the previous section are validated using the same physiological simulation
as performed in Section 3.6. This means that three scenarios are again simulated: an NSR, AF re-
modeling, and ectopic foci scenario, with the same parameters as discussed in Section 3.6. From
the simulated EGM measurements, independent measurement noise is subsequently added to obtain
a range of SNR’s. The measurement noise is simulated as independent realisations of a zero-mean
Gaussian distribution with variance 𝜎2𝑛 . For each SNR, the noise variance 𝜎2𝑛 is calculated as such that
the desired SNR is achieved when compared to the signal power of the signal measured at the first
electrode. All simulations parameters are furthermore exactly the same as outlined in Section 3.6.

After the physiological EGM signal simulation for each desired SNR, five LAT estimation techniques
are applied to the measurements:

• SD algorithm: steepest deflection algorithm as described in Section 2.3.2

• NCC-2 algorithm: time-domain cross-correlation over second-order neighbours algorithm (with
𝑃 = 2) as described in Section 2.3.2

• ESPRIT: the unmodified ESPRIT algorithm as described in Section 4.3.1

• ESPRIT-kmns: the extended ESPRIT algorithm using the k-means classification algorithm, as
described in Section 4.3.2
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• ESPRIT-dots: the extended ESPRIT algorithm using the dot product classification algorithm, as
described in Section 4.3.2

For the three ESPRIT based algorithms, the EGM signals first need to be transformed into the frequency
domain. This is done using the FFT (Fast-Fourier Transform) algorithm in Matlab. Subsequently,
only the frequency components between 10 Hz and 100 Hz are selected to be used for the ESPRIT
algorithms. The lower limit of 10 Hz is specifically chosen to filter out any low frequency components of
the EGM signals and to focus the algorithms on the higher frequency signal components instead. The
upper limit of 100 Hz is chosen, because it is believed that no signal information is present in higher
frequency bands. After the Fourier transform, the ESPRIT algorithms can be applied as described in
Sections 4.3.1 and 4.3.2.

For each of the five estimated LAT’s, the mean square error (MSE) with the actual activation times of
the cells is lastly calculated as

𝑀𝑆𝐸 = 1
𝑀

𝑀−1

∑
𝑖=0

(�̂�(𝑖) − 𝜏(𝑖))2 , (4.18)

where �̂�(𝑖) is the estimated LAT for sensor 𝑖, and 𝜏(𝑖) is the actual LAT of sensor 𝑖. The MSE is used as
the final metric to compare the five different LAT estimation methods. The resulting MSE’s are shown
in the next section.

4.5. Results
Using the validation methodology outlined in the previous section, the mean square error (MSE) be-
tween the five applied LAT estimation methods and the true LAT is calculated for the three defined
scenarios. The calculated MSE’s are shown in Figure 4.2. Figure 4.3 shows a zoomed in version to
emphasize the results in the SNR range between -15 dB and 20 dB.

(a) NSR scenario (b) AF remodeling scenario (c) Ectopic foci scenario

Figure 4.2: Mean square error between the actual LAT and the estimated LAT from the SD, NCC-2, ESPRIT, ESPRIT-kmeans,
and ESPRIT-dots algorithms for the three described scenarios.

(a) NSR scenario (b) AF remodeling scenario (c) Ectopic foci scenario

Figure 4.3: Mean square error between the actual LAT and the estimated LAT from the SD, NCC-2, ESPRIT, ESPRIT-kmeans,
and ESPRIT-dots algorithms for the three described scenarios zoomed in towards interesting SNR values.
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From Figures 4.2 and 4.3, a couple of observations are made. Firstly, the sudden decline in accuracy of
the SD algorithm that occurs around 40 dB is noticed. This shows that the SD algorithm is less resilient
to high-noise conditions, which is in agreement with the literature.

Furthermore, in low-noise conditions no significant difference between the five investigated algorithms
is found, except for the NCC-2 algorithm during the ectopic foci scenario. For this scenario the NCC-2
algorithm performs significantly worse than the others. An explanation for this can be that wavefronts
travelling in opposite directions cause a radically different morphology from each other in the EGM
signal. This can cause the time-domain cross-correlation between the electrodes to become inaccu-
rate. This observation however needs to be investigated further to pinpoint the precise reason of this
occurrence.

The accuracy of the algorithms between the different scenarios is also interesting to note. The AF
remodeling scenario causes the lowest accuracy of all three scenarios, which can be explained by the
high variance of signal morphologies between the sensors in this scenario. All five applied algorithms
however still have a similar accuracy in low-noise conditions for this scenario, which shows that the SD
algorithm for low-noise conditions is still unrivaled.

For higher noise conditions the potential of the novel ESPRIT-based algorithms becomemore apparent.
The ESPRIT-based and NCC-2 algorithms are creating accurate results until an SNR of approximately
10 dB is reached from where the accuracy of the algorithms start to decline. During this declination, as
shown in Figure 4.3, the NCC-2 algorithm seems to slightly outperform the ESPRIT-based algorithms.

It is also interesting to see that no significant difference is found between the accuracy of the imple-
mented unmodified ESPRIT, ESPRIT-kmns, and ESPRIT-dots algorithms. Only in very rare instances
do the extended ESPRIT algorithms outperform the unmodified ESPRIT estimations, and practically
zero difference between the ESPRIT-kmns and ESPRIT-dots estimation accuracy is found across all
presented results. This observation is further confirmed by Figure 4.4, that shows that the MSE of the
ESPRIT-kmns and ESPRIT-dots algorithms are almost identical, and that the increase in the amount
of sets 𝑘 also has little to no effect on the accuracy of the algorithms.

(a) ESPRIT-kmns algorithm (b) ESPRIT-dots algorithm

Figure 4.4: MSE of extended ESPRIT algorithms vs. amount of sets 𝑘 with SNR = 80 dB

Lastly, the processing times of the five implemented algorithms are measured and presented in Table
4.1.
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Table 4.1: Average execution times of the five implemented algorithms. Sample size of averaging is displayed in third column.

Algorithm Average execution
time (s) Sample size

Steepest Deflection (SD) 0.0048 66
NCC-2 212.05 4
unmodified ESPRIT 0.018 66
ESPRIT-kmns 0.055 66
ESPRIT-dots 0.051 66

Table 4.1 shows that, although the accuracy of the NCC-2 algorithm is very high, the execution time
of this algorithm is the main drawback of this algorithm. The execution times of the ESPRIT based
algorithms are still significantly higher than the SD algorithm, however the argument can be made that
the increase in accuracy compensates the increase in execution times. This argument is harder to
make for the NCC-2 algorithm.

4.6. Chapter conclusion
The goal of this chapter was to exemplify an application of the spectral signal model defined in Section
3.3.2. For this purpose the choice is made to design a LAT estimation algorithm and subsequently
compare that algorithm to two state of the art LAT estimation techniques that are discussed in Section
2.3.2: the SD algorithm, and the NCC-2 algorithm. For the novel estimation technique three novel
approaches based on the existing ESPRIT method were formulated and subsequently validated using
physiological simulations.

When comparing the results of five implemented estimation methods, it is concluded that the ESPRIT
based methods perform significantly better in noisy conditions compared to the SD algorithm, although
the NCC-2 algorithm still has a slight advantage in accuracy. This is however counterbalanced by
the significantly longer execution time that is required for this algorithm. In low noise condition, no
significant difference between the accuracy of the implemented algorithms is found, although the NCC-
2 algorithm seems fundamentally incapable of accurately estimating the LAT during the ectopic foci
scenario. The precise reason for this remains a topic for future research.

Lastly, the designed extensions to the unmodified ESPRIT algorithm do not seem to have significant
effects on the accuracy of the algorithm. Also increasing the amount of disjoint sets 𝑘 seem not to have
much effect. The benefits of these extensions therefore are questionable and currently do not seem
beneficial to the overall estimation process.

However, the simulation results still show that it is entirely possible to create a LAT estimation algorithm
based on the spectral signal model that can compete with state of the art algorithms. This shows the
potential the spectral signal model has in this application and is also believed to solidify the performed
analysis of the previous chapter.



5
Conclusion and future work

This thesis project started with studying the application of general array processing signal models to
cardiac electric impulse propagation. During this study multiple inconsistencies between the underlying
mechanisms of the two systems were identified which are set out in Section 3.1. Because of these
inconsistencies, it was quickly concluded that the ideas behind the general models of the literature
are theoretically incompatible with cardiac AP impulse propagation. This led to the proposal of two
modified signal models: the cardiac signal model and the spectral signal model. The cardiac signal
model is hereby regarded as a generalization to general array processing models that incorporates the
two identified fundamental system differences. The spectral signal model however takes a different
approach by expressing entire signal spectra, instead of individual samples.

Chapter 3 was subsequently concerned with analyzing both models to investigate their behaviour under
different cardiac environments. Especially any possible correlation between the eigenvalues of the
autocorrelation matrix of the cardiac signal model, and the singular values of the 𝐁 and |𝐁| matrices of
the spectral signal model with AF was hereby explored. This is done using both a theoretical analysis
and a physiological simulation.

From the analysis of the cardiac signal model, it is concluded that it can represent electrical cardiac
impulses better than the general signal model, although the reliance on signal stationarity make the
practical potential of this signal model limited, especially when limiting the measurements to a single
heartbeat. Furthermore, it is concluded that the eigenvalue pattern of the autocorrelation matrix is ex-
pected to give little useful information regarding AF from epicardial EGM measurements, also because
of the stationarity assumptions of the model that can not be uphold in practice.

From the performed analyses of the spectral signal model in Chapter 3 however, it is concluded that
this signal model can successfully solve all three problems posed by the problem formulation of Section
3.1. The analyses furthermore also show that the |𝐁| matrix of this model can theoretically be used to
classify AF from epicardial EGM measurements.

The promising results from the spectral signal model led to the example application of this model that
is presented in Chapter 4. In this chapter, the spectral signal model is used as a framework to estimate
the activation times of the cells. This is done by applying and modifying the existing ESPRIT method-
ology to this application. Three novel estimation techniques are eventually proposed in this chapter:
an unmodified, direct application of ESPRIT, and two extended ESPRIT based algorithms. From the
performed validation of the proposed algorithms it is concluded that the novel algorithms can compete
with state of the art LAT estimation methods in terms of estimation error and execution time. This result
is believed to acknowledge the performed theoretical research of this model and shows the potential
benefits the spectral signal model has in the future.

46
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5.1. Future work
The performed research in this thesis is mainly focused on the theoretical aspects of the analysed
signal models. During this theoretical analysis, the influence of spatial averaging of AP’s are mostly
neglected, although it has a significant impact on the measurements. It is therefore recommended that
the theoretical influence of this assumption is more precisely looked at in future research. Furthermore,
next to the performed theoretical analyses, more focus can be put on the practical side of applying the
proposed signal models and algorithms to epicardial EGM measurements. The application of the pro-
posed methods to real EGM data is for example not yet investigated. The performed simulations can
also be expanded to include more, and more accurate AF scenarios. Also the inclusion of a stochastic
nature in the physiological simulations should be considered, with the goal to assign statistical signifi-
cance to the results. Lastly, as Chapter 4 is just an example application of the spectral signal model,
more applications of the explored signal models exist. These applications include but are not limited to
DOA estimation of stimulation location, conduction block detection, and conduction velocity estimation.
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