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Abstract

The application of Computational Fluid Dynamics to model and simulate flows around flexible
and moving objects has grown in the last decades fueled by new technological challenges in
particular in the aerospace engineering field because of the introduction of highly deformable
materials and complex moving systems.

Existing body-fitted mesh methods such as the Arbitrary Lagrangian Eulerian (ALE) ap-
proach have been proposed to simulate the flow around moving and deforming structures but
their applicability is limited because of the issues arising in deforming the computational grid
constrained to the moving/deforming structure.

This thesis focuses on the verification, and validation of an Embedded Boundary method
(developed at Stanford University by Prof. Farhat research group) for the solution of fluid-
structure interaction problems involving large and complex structural motions and deforma-
tions. The Embedded Boundary method works on non-body fitted grids, by using a tracking
algorithm is able to impose the effects of an ’immersed’ moving and deforming surface mesh
on the fixed Eulerian fluid mesh. For this reason this method is gaining popularity because
it simplify a number of issues ranging from codes coupling (fluid-structure solvers) to for-
mulating and implementing algorithms for applications that involve very large and complex
motions-deformations and for which ALE algorithms are unfeasible.
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“The purpose of computation is insight, not numbers.”
— Richard Hamming, Numerical Methods for Scientists and Engineers (1962)





Chapter 1

Introduction

The application of Computational Fluid Dynamics (CFD) to simulate flows around rigid ob-
stacles or predict the Fluid-Structure Interaction (FSI) of flexible bodies with the surrounding
flow has grown tremendously in the last decades fueled by new technological challenges and
applications in a wide range of engineering fields.

In FSI the evolution of each entity (fluid and flexible structure) depends on the evolution of
the other and a coupling phenomenon may appears. The aerodynamic forces influence the
movement and deformation of the structure and on the other hand the movement and defor-
mation of the structure affect the fluid flow and thus the aerodynamic loads. During the 20th
century, with the advent of digital computer, CFD and finite element methods (FEM), FSI
has been initially investigated in the field of aeroelasticity to predict potentially catastrophic
phenomena such wing flutter and limit-cycle oscillation (LCO). At a later stage FSI gained a
prominent role also in other engineering fields. Examples include parachute dynamics, turbo-
machinery, vibrations of bridges and buildings induced by the wind, deformation of morphing
race-car wings to enhance the downforce and reduce the drag, deformation of the heart and
the relative blood flow and the flapping flight of insects and birds (Fig.1-1).

During the last decade, the continuous emphasis on innovative materials and parallely on the
design of lighter and morphing airplanes and thinner, highly deformable wings, has raised
the level of interest in accurate, reliable and robust CFD-based FSI methods to predict and
simulate the flow-structure coupling effects but also optimize existing aerospace systems.
Inspired by flying birds and insects, flapping wings can be recommendable for small vehicles
operating at low speed, generally designed for surveillance purposes, because of the high
maneuverability and small dimensions. Higly deformable and flexible wings are currently
employed for high altitude long endurance (HALE) flights. To achieve high efficiency at high
altitude, their wings are characterized by large aspect ratio and low weight. As a result, they
exhibit high flexibility in flight. One example of such aircrafts is the Helios prototype vehicle
(Fig.1-2), a solar and fuel-cell powered unmanned aerial vehicles (UAV).

During a test flight in preparation for an endurance test the Helios Prototype broke up and
fell into the Pacific Ocean. According to the investigation report: "the aircraft encountered
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(a) F1 morphing rear wing with Drag Reduction System

(b) Deformation of F1 front wing (c) Tacoma bridge collapse

(d) Flapping fruit fly (e) Blood flow in an elastic artery

Figure 1-1: FSI domains of application
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Figure 1-2: NASA Helios Prototype

turbulence and morphed into an unexpected, persistent, high dihedral configuration. As a result
of the persistent high dihedral, the aircraft became unstable in a very divergent pitch mode in
which the airspeed excursions from the nominal flight speed about doubled every cycle of the
oscillation. The aircraft’s design airspeed was subsequently exceeded and the resulting high
dynamic pressures caused the wing leading edge secondary structure on the outer wing panels
to fail and the solar cells and skin on the upper surface of the wing to rip off. The aircraft
impacted the ocean within the confines of the PMRF test range and was destroyed." [17]

The investigation report identified a two-part root cause of the accident:

• Lack of adequate analysis methods led to an inaccurate risk assessment of the
effects of configuration changes leading to an inappropriate decision to fly an aircraft
configuration highly sensitive to disturbances.

• Configuration changes to the aircraft, driven by programmatic and technological con-
straints, altered the aircraft from a spanloader to a highly point-loaded mass distribution
on the same structure significantly reducing design robustness and margins of safety.

An extensive study of such problems remains an open challenge due to their strong non-
linearity and multidisciplinary nature. Analytical solutions are often impossible to obtain
and experiments are usually limited in scope, complex and very expensive, thus numerical
simulations are generally needed to investigate the fundamental physics and predict the mu-
tual interaction between rigid or flexible moving objects sometimes subjected to topological
changes in a surrounding (and/or internal) flow. Up to these days, FSI problems have been
studied for many engineering applications, however in spite of the actual maturity of CFD
and the computational power available, several key issues such as the lack of robustness,
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accouracy, flexibility and computational requirments for coupled problems still prevent the
analysis and the simulation of certain aerospace systems.

The Arbitrary Lagrangian Eulerian (ALE) approach gained a lot of interests because it com-
bines the advantages of Lagrangian representation and those of the Eulerian formulation and
allow solving the Navier-Stokes (or Euler) equations in a moving and deformable domain.
Unfortunately ALE methods works well for FSI problems as long as the deformations or
translation of the solid remains within certain limits. When these limits are exceeded the
mesh elements become ill shaped and ALE fails (Fig.1-3).

Figure 1-3: Mesh deformation for a rotating cylinder

In the literature a variety of non conform mesh methods, such as the Embedded Boundary
Methods (EBM), are still developed to overcome some of the above-mentioned limitations
and issues of "body fitted mesh methods" by using a mathematical formulation that allow to
impose the effects of an "immersed" moving and deforming body mesh on a fixed fluid mesh.
For this reason these methods are very attractive because they simplify a number of issues
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ranging from codes coupling to formulating and implementing algorithms for applications
that involve very large motions and deformations and topological changes, and for which
alternative ALE algorithms are unfeasible. However in case of large motion-deformation the
mesh requirements (in particular for viscous flows) limit the applicability of such methods for
real full scale engineering problems.

The present work highlights these recent developments, shows the flexibility and the robust-
ness of these class of methods for problems involving large motion-deformations and topolog-
ical changes and proposes new directions to overcome the above mentioned limitations of the
EBM.

Master of Science Thesis Michele Pisaroni
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Chapter 2

State-of-the-art

Numerical techniques designed for handling the interaction of a fluid and moving (deforming)
body(es) can be divided into two main classes depending on whether the CFD grid moves
(deforms) according to the motion (deformation) of the immersed object. The first class
of methods, that we denote as Body-Fitted (BF) mesh methods, include the dynamic mesh
method [18] [28] [4], the co-rotational approach [8] [24] and the ALE method [40] . The second
class of methods, that we denote as Non-body-fitted (NBF) mesh methods, includes the im-
mersed boundary, embedded boundary, immersed interface, fictitious domain, and Cartesian
methods.

2-1 Body-fitted mesh methods

The main feature of the BF mesh methods is that they operate on dynamic, body-conforming
CFD grids and a particular algorithm take care of the mesh motion (deformation) to acco-
modate the body motion (deformation) and maintain a conformal CFD dynamic wet surface
of the solid body.

2-1-1 Dynamic mesh method

The dynamic mesh method is based on a Lagrangian flow formulation, and dynamic finite
element meshes. The dynamic wet interfaces are treated with a material flow description to
avoid the tracking of the moving boundaries. However the dynamic meshes that propagate
with the flow become distorted and should be regenerated at each time step. This approach
was successfully appied to large-scale simulations of flows with numerous cellular bodies [18],
inviscid aerodynamic analysis [4], sloshing problems [28] and in the field of hemodynamics but
it is impractical for high Reynolds number viscous engineering problems that require large
(and fine) meshes because of the computational expensive remeshing procedure needed at
each time step.
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8 State-of-the-art

2-1-2 Co-rotational approach

In the co-rotational approach the equations for the fluid are represented in multiple moving
(translating and rotating) reference frames attached to the nodes of the moving solid body.
Such approach allow the simulation of maneuvering wings or wing-body configurations under-
going rigid motions [8]. If the solid moving-defornimg body is represented by a FE model and
the reference frames are connected to the discretized structure, a rigid aeroelastic simulation
can be performed without explicitly moving the grid nodes. However if the elastic deformation
of the structural body is included, an additional (expensive for large deformations) algorithm
is needed to update the position of the nodes [24].

2-1-3 The Arbitrary Lagrangian Eulerian (ALE) method

The ALE method combines the advantages of the Lagrangian representation (well defined
interface and facility in imposing the boundary conditions) with those of the Eulerian for-
mulation (possibility of handling deformation) [40]. In this apporach the solid body moves
relative to the mesh as in a Eulerian framework, but the external (wet) shape of the grid vol-
umes is controlled by the boundary conditions of the problem as in a Lagrangian formulation.
A direct consequence of this mixed formulation is that the Navier-Stokes (Euler) equations are
solved in a moving and deforming domain and hence an additional convection term is needed
to take into account the velocity of the mesh (not known a priori). A formal theory for the
time-accuracy for ALE schemes was derived by Farhat et al. [19]; the so called Geometric
Conservation Law (GCL)/Discrete Geometric Conservation Law (DGCL), based on the fact
that the scheme should be able to exactly integrate a uniform flow for any mesh motion, must
be satisfied to ensure numerical stability.
In addition to the solution of the fluid and structure equations, a mesh motion algorithm is
needed to deform the fluid domain grid. Different mesh motion algorithms designed for struc-
tured and unstructured grids were proposed, the two main classes are the grid connectivity
schemes that exploit the connectivity of internal grid points and the point by point schemes
that move each grid point based on its position in space using a radial basis function interpo-
lation [2] . One of the most widely used grid connectivity scheme for unstructured meshes is
the structure analogy; the grid is considered as a truss structure and the edges or the nodes
of the finite volumes are modeled as network of fictitious linear, torsional [11] or ball vertex
[36] springs (Fig.2-1), a linear system is solved at each iteration and the position of the grid
nodes is updated based on the solution of the pseudo-structural problem.
The main disadvantage of this approach is that for large deformation and topological changes
some pseudo-structural edges can penetrate their neighboring triangles and produce negative
volume elements, in these occasions the simulation fails and an expensive and time consuming
remeshing step is usually needed. The three-field (fluid, structure and fluid grid) formulation
[25] was successfully used to simulate high performance military aircraft transonic flutter
[6]. In that regime, the popular k and p − k procedure, based on linear flow theory, for
subsonic regime and the piston theory for supersonic regime are not reliable. The three-
field formulation where the flow is modeled by the ALE fomulation of the fluid equations
and the structure by a nonlinear FE model hence become the only available choice and
gradually substitued the expensive and time consuming experimental wind tunnel flutter
testing procedure in the design of these fighters: "The results of a finite number of CFD
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2-1 Body-fitted mesh methods 9

(a) Pseudo-structure with lineal springs

(b) Pseudo-structure with torsional springs

Figure 2-1: Structure analogy mesh motion-deformation approaches
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10 State-of-the-art

solutions could be used as a replacement for wind tunnel testing, assuming a validated code
was available."[7]. The ALE methods can naturally accommodate spatially high-order schemes
at the fluid-structure interface, and allow a high mesh resolution for boundary layers in viscous
flows, however "most successes have been encountered so far either for complex geometries but
inviscid grids, or viscous grids but simple geometries" [10]. Achieving efficiency, robustness,
and high mesh quality requires extreme care when the motion and deformation of the solid
body is large and undergoes some kind of topological change.

2-2 Non-body fitted mesh methods

In contrast with BF methods, the NBF methods operate on fixed, non body-conforming CFD
grids (Fig:2-2).

(a) BF grid (b) BF (unstructured) grid of a NACA airfoil

(c) NBF grid (d) NBF (unstructured) grid of a NACA airfoil

Figure 2-2: Comparison of BF and NBF CFD grids

2-2-1 Immersed Boundary (IB)

The methodology and the term Immersed Boundary (IB) was introduced by Peskin in 1972
[32]. He developed mixed Eulerian-Lagrangian approach, based on fixed Cartesian mesh
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2-2 Non-body fitted mesh methods 11

for the Eulerian fluid variables and moving curvilinear mesh for the Lagrangian variables
linked by interaction equations, to simulate the FSI of the blood flows through the elastic
heart valves. The Cartesian grid, generated with no regard to the solid body surface, is cut
by the ’immersed’ surface grid and a modification of the governing equations is needed in
the vicinity of the boundary to incorporate the appropriate boundary conditions. Different
approaches were proposed to enforce the boundary conditions in a non-body conforming
framework depending on the problem under consideration.

Continuous forcing approach

In the continuous forcing approach, particulary suitable for elastic boundaries, the force ap-
plied by the IB to the fluid is distributed over a set of cells around each Lagrangian grid point
and than used in the momentum equations of the neighbouring nodes [33].

Virtual boundary method approach

The virtual boundary method approach [38], for rigid boundaries, treats the body surface as
a virtual boundary that applies force on the fluid to accomodate the no-slip condition at the
interface (flow at rest at the surface). The distributed lagrangian multiplier method [31] is
based on the same idea but introduce Lagrange multipliers (the body force) on the IB to
satisfy the no-slip condition.

Direct forcing approach

The direct forcing approach, based on the idea of mirroring (the grid nodes inside the IB
have a opposite flow field to the external grid nodes) build implicitly the forcing term by
calculating the difference between the interpolated velocities at the boundary nodes and the
required boundary velocity [27]. The above mentioned approach were successfully tested for
low and moderate Reynolds number problems involving complex flow past 2D and 3D bluff
bodies [20] [22].

Ghost cell approach

For high Reynolds number the accouracy required in the boundary layer region around the
IB assume a great imporance; to avoid the spreading of the effect of the IB (the previous
approches emply a smooth forcing term) and increase the local accuracy a particular treatment
of the cells near the IB is needed. The ghost cell approach [16] [15] implicitly incorporates
the boundary condition on the IB by using an interpolation (linear, quadratic or linear in
the tangential direction and quadratic in the normal direction) between the ’ghost cells’, cells
that are inside the solid region and have at least one neighbour in the fluid domain, and the
fluid cells. Such approach is particulary suitable for high Reynolds number problems because
it can generate a sharp representation of the IB and and hence limits the spreading of the
effect of the IB in the boundary layer.
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Cut-cell methodology

All of the above mentioned approaches derived form the original Peskin’s IB method are not
designed to guarantee the conservation laws for the cells in the vicinity of th IB. The only
way to re-enstablish the conservation of the mass and momentum is to built a variant of the
standard finite-volume apprach based on the cut-cell methodology [23]. In this approach, the
cells that are cut by the IB are reshaped by removing the portions that lie inside the solid
domain if their centers lie inside the fluid domain or are reshaped by removing their solid
portions and merged with their neighbouring fluid cells if their centers lie in the solid domain.

After ensuring the accuracy of the above mentioned non-body conforming methods in solving
problems that involve flow around fixed [37] [30], moving [23] [39] and deformable [26] [12]
objects, the present research trend is to develop hybrid methodologies that gather togheter
some of the capabilities of the above mentioned approach and employ them to solve FSI
problems with large structural motions, deformations and topological changes [5], for which,
as explained in the first section, the ALE apprach fails.

2-2-2 Embedded Boundary Method (EBM)

A particular interesting approach, called Embedded Boundary Method (EBM), designed for
computations on unstructured grids, was recently developed by Prof. Charbel Farhat research
group at Stanford University.

The lack of a representation of the structural wet surface in the unstructured CFD grid re-
quire a particular treatment of the boundary conditions and the fluid-structure transmission
conditions that are required in FSI simulations. The continuity condition, similar to the
velocity boundary condition for rigid obstacles can be enforced by using one of the above
mentioned approaches (interpolation, mirroring, ...). However to enforce the equilibrium con-
dition, balance between the fluid and structural surface tractions, it is required to compute the
flow-induced load on the wet surface of the structure that is not represented in the CFD grid.
Instead of relying for this purpose on interpolation or extrapolation as the existing methods
[29] [15], the EBM enforces the appropriate value of the fluid velocity at the wall and recov-
ers the value of the fluid pressure via the exact solution of local, one-dimensional Riemann
problems between the ghost and fluid nodes [35] [12] (velocity and pressure conditions on the
’embedded’ interfaces are treated simultaneously).

Two consistent and conservative methodologies, the reconstructed surface approach and the
control volume approach are employed to evaluate flow-induced forces and moments on rigid
and flexible embedded interfaces. The first one is based on local reconstruction of the em-
bedded discrete interfaces an the other is based on the level set concept [12].

The tracking of the position of the embedded interface with respect to the non body-conforming
CFD grid is a key part of immersed/embedded approaches. Most computational methods have
been mainly focused on closed embedded interfaces. However, this assumption is limiting as
many FSI problems, like flapping wings or membranes, involve open thin shell surfaces. The
EBM is equipped with two interface tracking algorithms. The FRG algorithm is based on
a projection approach, it is very fast but it is restricted to closed interfaces and resolved
enclosed volumes. The PhysBAM algorithm is based on a collision approach derived from
computational graphics [14] [1] is slower than the previous approach but can handle open
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2-3 Thesis motivation 13

shell surfaces and underresolved enclosed volumes [13].

The mesh generation procedure is undoubtedly simplified in non-body fitted approaches be-
cause there are no particular constraints determined from the geometry of the solid boundary
and the grid quality is not affected by the complexity of the geometry as in BF grid. However,
in a viscous simulation, as the Reynolds number increases, the size of the grid increases faster
than a corresponding BF grid because the informations of the solid surface grid, that are
generally used to control the mesh resolution in the vicinity of the body, are not available in
the CFD grid [21]. In some cases this increase in grid size does not directly imply a corre-
sponding increase in computational cost because a large part of the grid points can be inside
the solid body where the flow equations are not solved. However, for large 3D problems at
high Reynolds number (with very fine mesh in the boudary layer) the generation of a grid
designed without any information of the immersed geometry is computationally expensive
and can become impractical.

2-2-3 Immersed volume method

To overcome the above mentioned issue, some methods were designed to operate on unstruc-
tured grids and in some case also equipped with mesh adaptaton algorithms. An example
is the immersed volume method [9] that is able to immerse and represent complex moving-
deforming geometries inside a unique CFD mesh.

Starting form the initial geometry, a signed distance function (levelset) is computed for each
node of the mesh, then the latter is refined anisotropically at the interface between the fluid
domain and the structural domain using the gradient of the distance function. The level set
function assume a positive value in the fluid domain, a negative value inside the structural
domain and zero value at the interface. If multiple structural domains are present in the
same fluid, a level set function is defined for each domain. The physical and mechanical
properties can then be determined on the whole domain in terms of the level-set function.
For the elements crossed by the level-set functions and the their neighbours, a smoothed
Heviside function is used to determine the element effective properties. The anisotropic mesh
adaptation, by make use of the information of the level set function, improve the accouracy of
the solution at the interface by stetching the elments and reducing the dissipation of the effects
introduced by the smooth Heaviside function (sharply define the interface) and drastically
reduce the size of the mesh required to represent and approximate complex geometries. The
mesh adaptation algorithm is very efficient in reducing the mesh size and hence the degrees
of freedom of the problem but can slow down the calculation because the level set functions
should be recomputed once the solid boundary moves and deform.

2-3 Thesis motivation

By looking at the actual need of accurate and reliable computational methods to simulate,
design and optimize aerospace systems with complex geometries, moving parts and highly
deformable matherials the immersed/embedded boundary methods are gaining popularity for
the flexibility due to the fact that they operate on non-conformal grids. They are a perfect
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(a) Immersed disk (b) Immersed square (c) Zoom if the refined interface

Figure 2-3: Anisotropic refined fluid-solid interface of an immersed disk (left), an immersed
square (center) and a zoom on the refined interface (right).

candidate to link the gap between the thecnological challenges that are present in today’s most
demanding aerospace applications and the rigorous and expensive design process needed to
guarantee the highest safety standards.

The main intent of this thesis work it to show the the advantages, disadvantages and per-
formances of the EBM developed by Prof. Farhat research group at Stanford University to
solve problems involving moving, deforming and flapping structural objects in laminar and
turbulent flows and propose new directions to optimize the meshing procedure by employing
the informations of the embedded geometry in the design of the fixed CFD grids through level
set functions.

In addition an hybrid method based on the co-rotational approach and the mesh deformation
algorithm generally used in body-fitted simulations is tested to further reduce the mesh size
required in the CFD grid to simulate moving and deformable objects.
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Chapter 3

Problem Formulation

This chapter is dedicated to the description of the mathematical models used to describe and
analyze the behavior of FSI problems.

Let us consider a fluid domain Ω ∈ R3 with external boundaries ∂Ω. Inside this domain, a
structural body B is "immersed"; let ∂B be the boundary of B (Fig.3-1). A mathematical
model for this FSI problem involves:

• the governing equations for the fluid domain Ω(t) ∈ R3,

• the governing structural dynamics equations for the solid domain B(t) ∈ R3,

• transmission conditions at the fluid-structure interface ∂B(t)

• Dirichlet and/or Neumann boundary conditions at the remaining fluid and structural
domain boundaries,

• initial conditions (t = 0) for the fluid and structural state vectors.

First we will describe the fluid (3-1) and the structure (3-2) sub problems separately and than
we will introduce the modeling of the interaction of those sub problems across the interface
(3-3).

3-1 Fluid domain

The domain Ω is filled with a compressible fluid1 governed by the equations of conservation of
mass (continuity), conservation of momentum and conservation of energy. Depending on the
proprieties of the problem under consideration and the flow regime, we may need to represent
the fluid using the viscous Navier-Stokes equations, equipped with a turbulence model in case
of high Reynolds number, or with the inviscid Euler equations.

1Most aerospace problems are in the
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16 Problem Formulation

Ω	  

∂Ω

∂B
BΩ

Figure 3-1: The fluid domain Ω, its boundary ∂Ω, the immersed body B and the structure
interface ∂B.

3-1-1 Viscous Compressible Fluid

If the domain Ω is filled with a viscous compressible fluid, the flow dynamics is governed by
the Navier-Stokes equations:

∂ρ

∂t
+ ∂

∂xi
(ρvi) = 0

∂

∂t
(ρvi) + ∂

∂xj
(ρvivj + pδij − τji) = 0

∂

∂t
(ρE) + ∂

∂xj
[ρvjE + vjp− viτij + qj ] = 0

(3-1)

where ρ is the mass density, v the velocity, δ the Kronecker delta, p the gas pressure, τ the
fluid stress tensor, E = e+ vkvk

2 is the total specific energy of the gas and q is the heat flux.
Indices i, j equal 1, 2, 3 2.

The above mentioned set of equations is completed by thermodynamic relationships, consti-
tutive relationship, expressions for transport coefficients, initial and boundary conditions.

2Repeated indices are summed over.
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3-1 Fluid domain 17

In this thesis we assume that the gas satisfies the ideal gas equation of state p = ρRT and
behaves as a perfect gas 3:

e = CvT = p

(γ − 1)ρ
h = e+ p

ρ
= CpT = γp

(γ − 1)ρ

(3-2)

The constitutive relations provide expressions for the fluid stress and the heat flux in terms
of other fluid quantities. For a Newtonian fluid 4 the viscous stress are given by:

τij = 2µS∗ij where S∗ij = 1
2

(
∂vi
∂xj

+ ∂vj
∂xi

)
− 1

3
∂vk
∂xk

δij (3-3)

The heat flux is given by the Fourier’s law:

qi = −k ∂T
∂xi

(3-4)

where µ is the dynamic viscosity and k is the thermal conductivity coefficient of the gas.

The transport coefficient µ and k are functions of pressure and temperature. In this thesis
we used the Suntherland’s Law to determine the viscosity as function of the temperature:

µ = µref

(
T

Tref

) 3
2 Tref + S

T + S
(3-5)

where Tref is a reference temperature and µref is the viscosity at the Tref reference temper-
ature, S is the Sutherland temperature (S = 110.4[K]). The Prandtl number, Pr ≈ 0.7 for
many gasses, can than be used to relate µ and k:

Pr = µCp
k

(3-6)

At the solid boundary ∂B the following boundary conditions should be imposed:

~v = 0 (no− slip)
T = Twall (fixed T ) or ~∇T · ~n = 0 (adiabatic wall)

(3-7)

The above set of Navier-Stokes equations can be solved directly, Direct Numerical Simulation
(DNS), without any turbulence model. In this case the whole range of the turbulent sta-
tistical fluctuations at all relevant physical scales (from the smallest dissipative Kolmogorov
microscales, up to the integral scale) must be resolved. This approach is very computational
demanding because the number of computational grid points needed to satisfy the resolution

3Constant specific heats, Cv and Cp and hence specific heat ratio γ
4assuming Stokes Law for mono-atomic gasses

Master of Science Thesis Michele Pisaroni



18 Problem Formulation

requirements is typically very high and grows very fast with the Reynolds number 5. In case
of realistic Reynolds number (105− 107) the DNS approach becomes prohibitively expensive.

Two options have been proposed and are nowadays employed to compute the turbulent flow
around fixed and moving obstacles: the Large Eddy Simulation (LES) and the Favre-averaged
Navier-Stokes (FANS).

The LES is based on the idea of reduce the range of lenght scales of the turbulence spectrum
contained in the solution of the Navier-Stokes equations. This is accomplished by filtering the
Navier-Stokes equations to remove the smallest scales of the solution, below that scale (subgrid
scale) the turbulence is modeled by semi-empirical laws. By doing so the computational cost
and the number of grid points is dramatically reduced. The unresolved small scales (smaller
than a cutoff filter width) are modeled 6 instead of directly resolved as in the DNS approach.
The lowest identified scales are related to the mesh size. Since the large turbulent fluctuations
are directly simulated, the computational requirements of LES are still very high 7.

On the other hand the FANS ignores the turbulent fluctuations and aims at calculating
only the turbulent averaged flows. Through the Reynolds decomposition (separation of a
variable in mean and fluctuating component) the set of incompressible Navier-Stokes equations
is simplified into the RANS equations. Since we are considering the compressible form of
the Navier-Stokes equations (3-1), in addition to the classical Reynolds time averaging we
need also to use a density weighted time averaging, the Favre time averaging, to avoid the
introduction of higher-order terms 8 in the averaged Navier-Stokes equations:

(Reynolds averaging) Φ = 1
T

∫
T

Φ(t)dt, Φ′ = Φ− Φ

(Favre averaging) Φ̃ = ρΦ
ρ
, Φ′′ = Φ− Φ̃

(3-8)

The time-averaged version of the Navier-Stokes equations (3-1), using the standard Reynolds

5The size of the smalles turbulent scales related to the turbulent dissipation (Kolmogorov scales) is in-
versely proportional to Re3/4. A resolution of n points per unit length of the smallest eddy determine a total
number of mesh points of n3 ·Re9/4. The time step is determined by the smalles turbulent time scales which
are proportional to Re3/4. In conclusion the total computational effort for DNS is proportional to Re3 for
homogeneous turbulence.

6The two most common sub-grid scale models are the Smagorinsky model (SGS) and the Germano dynamic
model (DSGS).

7The total computational effort for LES is proportional to Re9/4

8Products of fluctuations between density and other variables
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3-1 Fluid domain 19

averaging for ρ and p and the Favre averaging for u and E are:

∂ρ

∂t
+ ∂

∂xi
(ρṽi) = 0

∂

∂t
(ρṽi) + ∂

∂xj

ρṽiṽj + pδij + ρv′′i v
′′
j︸ ︷︷ ︸

(1)

−τ̃ji − τ ′′ji︸︷︷︸
(2)

 = 0

∂

∂t

(
ρẼ
)

+ ∂

∂xj

ρṽjẼ + ṽjp+ Cpρv′′j T︸ ︷︷ ︸
(3)

+ ṽiρv′′i v
′′
j︸ ︷︷ ︸

(4)

+
ρv′′j v

′′
i v
′′
i

2︸ ︷︷ ︸
(5)

−Cp
µ

Pr

∂T̃

∂xj
− Cp

µ

Pr

∂T ′′

∂xj︸ ︷︷ ︸
(6)

−ṽiτ̃ij − v′′i τij︸ ︷︷ ︸
(7)

− ṽiτ ′′ij︸ ︷︷ ︸
(8)

 = 0

(3-9)

This new set of equations contains unknown terms (marked in red) that have to be modeled.
The term (2) and (8) can be neglected if |τ̃ij | >> |τ ′′ij | (valid for all flows). Term (3), corre-
sponding to turbulent transport of heat, can be modeled using the gradient approximation
for the turbulent heat-flux:

qturbj = Cpρv′′j T ≈ −Cp
µt
Prt

∂T̃

∂xj
, P rt ≈ 0.9 (3-10)

Term (5) and (7), corresponding to turbulent transport and molecular diffusion of turbulent
energy, can be neglected if, kt << h̃ = C − pT̃ , turbulent energy is small compared to
the enthalpy (valid below hypersonic regime). Term (6), related to heat conduction effects
associated with temperature fluctuations, can be neglected if

∣∣∣∣∂2T̃
∂x2
j

∣∣∣∣ >> ∣∣∣∣∂2T ′′

∂x2
j

∣∣∣∣ (valid for all
flows).

Term (1) and (4) contain the Favre-Averaged Reynolds stress tensor ρv′′i v′′j . Using the Bussi-
nesq assumption for the Reynolds stress tensor:

τ turbij = −ρv′′i v′′j ≈ 2µtS̃∗ij −
2
3ρktδij (3-11)

where µt is the turbulent viscosity. The latter is unkown and should me modeled with a
turbulence model.

Turbulence Model: Spalart-Allmaras

In the framework of this thesis we decided to use the Spalart-Allmaras model [3], a one
equation linear eddy viscosity model specifically designed for aerospace applications, which
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20 Problem Formulation

solves a transport equation for a viscosity-like variable ν̃ (Spalart-Allmaras variable):

νt = ν̃fv1, fv1 = χ3

χ3 + C3
v1
, χ = ν̃

ν

∂ν̃

∂t
+ ∂

∂xj
(ν̃vj) = Cb1 [1− ft2] S̃ν̃ + 1

σ

[
∇ · [(ν + ñu)∇ñu] + Cb2|∇ν|2

]
−[

Cw1fw −
Cb1
k2 ft2

](
ν̃

d

)2
+ ft1∆U2

S̃ = S + ν̃

k2d2 fv2, fv2 = 1− χ

1 + χfv1

(3-12)

where

S =
√

2ΩijΩij

Ωij = 1
2

(
∂vi
∂xj
− ∂vj
∂xi

)

fw = g

[
1 + C6

w3
g6 + C6

w3

]1/6

, g = r + Cw2(r6 − r), r = ñu

S̃k2d2

ft1 = Ct1 exp

(
−Ct2

ω2
t

∆U2 [d2 + g2
t d

2
t ]
)

(d = distance to the closest surface)

ft2 = Ct3 exp(−Ct4χ2)

(3-13)

The constants are:

σ = 2
3

Cb1 = 0.1355
Cb2 = 0.622

k = 0.41

Cw1 = Cb1
k2 + (1 + Cb2)

σ
Cw2 = 0.3
Cw3 = 2
Cv1 = 7.1
Ct1 = 1
Ct2 = 2

Ct3 = 1.1
Ct4 = 2

(3-14)

Since we are considering a compressible flow, the turbulent viscosity, needed to close the
FANS system of equation, is than obtained from the Spalart-Allmaras variable as:

µt = ρν̃fv1 (3-15)

where ρ is the local density.
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3-1 Fluid domain 21

3-1-2 Inviscid Compressible Fluid

If we neglect the viscous effects the Navier-Stokes equations (3-1) are simplified and substi-
tuted by the Euler equations:

∂ρ

∂t
+ ∂

∂xj
(ρvj) = 0

∂

∂t
(ρvi) + ∂

∂xj
(ρvivj + pδij) = 0

∂

∂t
(ρE) + ∂

∂xj
[vj (ρE + p)] = 0

(3-16)

where:

E = p

γ − 1 + 1
2ρ|v|

2 (3-17)

The closure of the above mentioned system of equations is obtained with the equation of state
(EOS):

p = ρRT (Ideal gas) (3-18)

The strong conservative form in Eulerian9 formulation of the Euler equation (3-16) can be
written as:

∂W

∂t
+−→∇ ·

(−→
F (W )

)
= 0 (3-19)

where

W = (ρ, ρvx, ρvy, ρvz, E)T ,
−→
∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)T
,

−→
F (W ) = (Fx(W ),Fy(W ),Fz(W ))T ,

(3-20)

Fx =


ρvx

p+ ρv2
x

ρvxvy
ρvxvz

vx(E + p)

 , Fy =


ρvy
ρvxvy
p+ ρv2

y

ρvyvz
vy(E + p)

 , Fz =


ρvz
ρvxvz
ρvyvz
p+ ρv2

z

vz(E + p)

 (3-21)

9Eulerian representation : an observer fixed in an inertial reference
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3-2 Structure domain

The linear elastodynamic behaviour of the structural domain B (Fig. 3-2) can be described
using the following equilibrium and compatibility conditions:

∂

∂xi
σji + fextj − ρ0üj = 0 in B(0)

tj = niσij = tj on ∂Bt ⊂ ∂B,
σij = σji

εij = 1
2

(
∂uj
∂xi

+ ∂ui
∂j

)
uj = uj on ∂Bu ⊂ ∂B

(3-22)

where σji is the stress tensor, xi = [x1, x2, x3] the Cartesian coordinates of a given point of
the undeformed body, fextj applied body forces, ui(xj , t) = [u1, u2, u3] the displacement field
observed at any point (ūj the displacement imposed on the Dirichlet boundary ∂Bu), ρ0 the
mass density of the body, tj the surface tractions (t̄j is the surface traction applied on the
Neumann boundary ∂Bt), ni the direction cosines of the outward normal to the surface and
εkl is the strain tensor.
To close the system, a constitutive law that express the stress tensor in terms of displacement
and velocity is required. The structures considered in this thesis can be modeled using linear
elasticity, as permanent deformations are usually negligible:

σij = Cijklεkl (3-23)

where Cijkl are the elastic coefficients of the material.
We rewrite (3-22) in vector form:

ρsüs −∇x · σs(us, u̇s) = fexts , in B(0)
σsn

t = t̄ on ∂Bt ⊂ ∂B,
u = ū on ∂Bu ⊂ ∂B

(3-24)

3-3 Interface conditions

To describe and model the interaction between the external fluid domain Ω and the immersed
solid structual domain B a set of interface condition must be enforced on the boundary ∂B.
If the structure or a subset of it is flexible and is immersed in an inviscid fluid, these interface
conditions are applied:

Continuity condition : u̇ · n = −→v · n on ∂B (3-25)

Equilibrium condition : σs · n = −pn on ∂B (3-26)

In the case of a boundary ∂B fixed in time (u̇ ·n = 0) the Continuity condition reduce to the
slip-wall boundary condition for an inviscid flow:

−→v · n = 0 on ∂B0 (3-27)
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u

B(t)

B0

nt

t∂Bt

fs
ext

∂Bu

∂B = ∂Bu + ∂Bt

Figure 3-2: The solid structure domain B, its surface boundary ∂B is decomposed in ∂Bu

where the displacement ū is imposed and ∂Bt where the surface traction t̄ is applied.
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Chapter 4

Embedded Computational Framework

The main components of the Embedded Boundary Methods (EBM) presented in this thesis
are: a computational algorithms for tracking the fluid-structure interfaces with respect to
the fixed (or moving/deforming) non body-conforming CFD grid, an algorithm based on
the exact solution of local 1D fluid-structure Riemann problems to enforce the continuity
interface condition at the fluid-structure interface and a consistent and conservative algorithm
to enforce the equilibrium transmission condition and compute the loads at the interface.
First we will introduce the Computational Structural Dynamics (CSD) solver (4-1) needed
to compute the displacement and velocity of the fluid structure interface, than the CFD
solver (3-1), equipped with a tracking algorithm (4-2), the local 1D Riemann solver and a
load computation algorithm (4-4), will be presented. At the end of the chapter the complete
algorithm will be discussed and explained.

4-1 Structure FE solver

Under the assumption that the displacement field of the structure is assumed to be continuous
in space and time the equations for the structural domain B are discretized using finite element
method. Considering Eq. (3-24), multiplying by a test function and integrating by part, we
obtain a weak formulation for the structural problem:

Find u(x, t) ∈ U = {u(x, t)|u(x, t) ∈ H1(B),u = ū on ∂Bu} such that

∀δu(x) ∈ U0 = {v(x, t)|v(x, t) ∈ H1(B),v = 0 on ∂Bu}, it satisfies∫
B
δu · ρsüs dV −

∫
B
∇δu · σs(us, u̇s) dV =

∫
B
δu · fexts dV +

∫
∂Bt

δu · t̄ dS
(4-1)

The structural domain B is discretized into non-overlapping elements ei, i = 1, ..., Ne.
The approximate solution of (4-1) is found in a finite-dimensional subspace of U:

Ū = {u(x, t) =
Nn∑
I=1

NI(x)uI(t),u(x, t) = ū on ∂Bu} (4-2)
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and the test functions in a subspace of U0:

Ū0 = {v(x, t) =
Nn∑
I=1

NI(x)vI(t),v(x, t) = 0 on ∂Bu} (4-3)

where Nn is the number of nodes and NI(x) ∈ H1(B) with I = 1, ..., Nn is the set of prescribed
shape functions.

By plugging u(x, t) =
∑Nn
I=1NI(x)uI(t) and δu(x) = NI(x), I = 1, ..., Nn in (4-1), it can be

shown that the nodal displacement vector u = [u1(t), ..., uNn ]T satisfies a nonlinear system
that can be written as:

Mü+ f int(u, u̇) = fext (4-4)

whereM denotes the symmetric positive definite FE mass matrix, f int the vector of internal
forces and fext the vector of external forces1.

The nonlinear system (4-4) can be linearized in the well known form:

Mü+Cu̇+Ku = f (4-5)

where C and K respectively represent the damping and stiffness matrix.

To advance the semi-discretized system (4-5) in time from tn to tn+1 the family of Newmark
schemes is employed:

(M + γ∆tnC + β(∆tn)2K)ün+1 = fn+1 −C(u̇+ (1− γ)∆tnün)
−K(un + ∆tnu̇n + (0.5− β)(∆tn)2ün)

u̇n+1 = u̇n + (1− γ)∆tnün + γ∆tnün+1

un+1 = un + ∆tnu̇n + (∆tn)2(0.5− β)ün + (∆tn)2βün+1

(4-6)

Depending on the choice of two parameters α and β, the integration scheme can be explicit
or implicit. In the following table the most common integration schemes are presented (4-1).

The purely explicit scheme is not used in practice, since it always unstable. The cental
difference (explicit) scheme is conditionally stable and the time-step required for using this
scheme is very small, however it is widely used for problems where a small time step is
also required to solve for high frequency phenomenon such as wave propagation and impact
response. The Fox and Goodwin algorithm with a periodicity error of the third order is also
conditionally stable. The average constant acceleration algorithm is an unconditionally stable
scheme (no limitation to the time step) and has the lowest periodicity error. The modified
average constant acceleration algorithm is also unconditionally stable and introduce numerical
damping to modes of higher frequencies.

1We can also write that fext = fF (W ) + fEXT and define fF (W ) as the vector of flow-induced forces
and fEXT as the vector of external forces that are not related with the flow interaction.
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6.4. ONE-STEP FORMULAS: NEWMARK’S FAMILY 131

Stability Amplitude Periodicity
limit error error

Algorithm γ β ωh ρ− 1 ∆T
T

Purely explicit 0 0 0
ω2h2

4

Central difference 1
2

0 2 0
−ω2h2

24

Fox & Goodwin 1
2

1
12

2.45 0 O(h3)

Linear acceleration 1
2

1
6

3.46 0
ω2h2

24

Average constant acceleration 1
2

1
4

∞ 0
ω2h2

12

Average constant acceleration 1
2

+ α (1+α)2

4
∞ −αω

2h2

2

ω2h2

12
(modified)

Table 6.1: Integration schemes of the Newmark family

ii The Fox and Goodwin algorithm leads to a periodicity error of the third order, but
is conditionally stable.

iii The average constant acceleration algorithm is the best unconditionally stable scheme.

vi The modified scheme for the average constant acceleration introduces damping which
increases with the frequency.

From Table 6.1 it is possible to gather some interesting information concerning the choice
of the integration time step depending on the method.

• The modified constant average acceleration scheme is an unconditionally stable scheme
that introduces numerical damping to modes of higher frequencies in the model (see
also section 6.4.3).

• For the average constant acceleration method, γ = 1/2, β = 1/4, the time step may be
given any value as far as the stability is concerned. In practice, however, the time step
is generally taken as h ≤ T/4 in order to accurately compute the contribution of the
highest frequency oscillator and thus be able to represent its oscillating contribution
to the response curve. Let us note that when γ = 1/2, β = 1/4, one can write the

Figure 4-1: Integration schemes of the Newmark family. h is the integration step, ω is the
highest frequency contained in the model, ρ is the amplitude of the response obtained after one
step of the time integrator and ρ−1 is the amplitude error, T is the period of the free oscillation,
Tcom is the period of the computed response, the periodicity error is than Tcom−T

T = ∆T
T
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4-2 Track the embedded surface

Let Dh denote the discretization (primal mesh) of the extended fluid domain Ω∗ = Ω ∪B by
an arbitrary non body-fitted unstructured triangular Eulerian grid and DE

h the discretization
of the fluid-structure interface (does not need to coincide with the wet subset of the discretiza-
tion of ∂B). In an embedded boundary method the Eulerian grid Dh does not contain the
representation of the fluid-structure interface (Fig. 4-2). Two algorithms are presented in this
section to track the position of the discrete embedded interface DE

h and collect the following
information that are usually directly available in a body-fitted grid:

• status of each grid point inDh (grid point belongs to the fluid domain in red or structural
domain in black in Fig.4-2);

• location of the closest points of DE
h to a selected set of points in Dh;

• intersection of the edges of Dh with DE
h (in green in Fig.4-2)

Dh Dh
E

Figure 4-2: Discretization by an arbitrary non body-fitted Eulerian triangular mesh Dh and
embedded surface discretization DE

h .

4-2-1 FRG - Projection-based approach

The first interface tracking algorithm presented is based on the following assumptions:
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• only the edges of the Eulerian grid Dh connecting a node in the fluid domain Ω and a
node in the structural domain B intersect the embedded discrete surface DE

h ,

• DE
h has an interior and an exterior =⇒ the embedded interface is a closed surface,

• the (interior) volume enclosed by DE
h is resolved by the Eulerian CFD grid Dh

2.

PROJECTION-BASED ALGORITHM

1. ∀ Vi ∈ Dh construct an axis-aligned bounding box bi defined as the smallest axis-aligned
box containing Vi and its adjacent nodes.

2. Construct an axis-aligned bounding box hierarchy BE which stores the triangles of DE
h .

3. ∀ Vi ∈ Dh, determine if it lies close to DE
h , and if it does, find the location of its closest

point on DE
h and determine the status si of Vi.

(a) status of Vi unknown =⇒ si = −1
(b) using BE find the set of candidate triangles C(Vi) ⊂ DE

h that may contain s the
closest point to Vi denoted V ′i

(c) if C(Vi) 6= ∅, find the location of V ′i and compute the signed distance φ(V ′i , Vi) from
V ′i to Vi.
i. If φ(V ′i , Vi) > 0, Vi is inside the fluid domain Ω =⇒ si = 0
ii. If φ(V ′i , Vi) ≤ 0, Vi is inside the structure domain B =⇒ si = 1

4. Determine the status of all remaining grid points using a "flood-fill" algorithm: ∀ Vi ∈Dh,
if si 6= −1, loop through its adjacent nodes N(Vi), ∀ Vi ∈ N(Vi), if sk = −1, set sk = si.

5. Compute the intersections between the edges of Dh and the elements of DE
h : for each

edge (Vi, Vj), if si 6= sj , identify this edge as fluid-structure intersecting edge. Than
cast a ray form Vi and Vj and find the intersection point of DE

h .

The critical components of the Projection-based algorithm presented above are:

• Search the closest V ′i ∈ V E
i to a given grid point Vi

The closest point to Vi lying in each triangle Tk ∈ C(Vi) denoted V
(k)
i is first determined.

Vi is projected onto the plane containing Tk and the projection point is uniquely deter-
mined by its barycentric coordinates (ξA, ξB, ξC) with respect to Tk (A, B, C denote the
vertices of Tk) (Fig.4-3). If all the coordinates are non-negative, the projection point is
V

(k)
i . If one or two coordinates are negative, the projection point lies outside Tk; V

(k)
i

is located either on the line containing an edge of Tk or at one of its vertices. Vi is
reprojected in this case onto each edge of Tk corresponding to a negative coordinate. If
the projection point ends up on an edge of Tk, it is V (k)

i . Otherwise, the vertex of Tk
that has the maximum distance to Vi is V (k)

i . Finally, V ′i ∈ DE
h is identified as:

V ′i = arg min
Tk∈ C(Vi)

||Vi − V (k)
i ||2 (4-7)
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Figure 4-3: Signs of the barycentric coordinates of the projection point in different regions.
discretization DE

h .

• Calculation of the signed distance φ(V ′i , Vi)
Once V ′i has been determined, the magnitude of φ(V ′i , Vi) is simply
||Vi − V

(k)
i ||2. To determine the sign of this distance, three different cases must be

treated separately:

– V ′i is inside a triangle Tk ∈ C(Vi) =⇒ sign(φ(V ′i , Vi)) is determined as the sign of
the dot product −→n k ·

−−→
V ′i Vi, where

−→nk is the unit outward normal to Tk and
−−→
V ′i Vi is

the spatial vector connecting V ′i and Vi.
– V ′i is not inside a triangle Tk ∈ C(Vi) but is the projection of Vi onto an edge the

triangle =⇒ sign(φ(V ′i , Vi)) is determined using the information from the two tri-
angles of DE

h sharing this this edge. First Vi is projected onto the plane determined
by one of the two triangles that is not coplanar with it (Fig. 4-4). The following
quantities are introduced:

sv = −−−→PViVi ·
−→n r; sc = −−→PCC · −→n r (4-8)

∗ If svsc > 0 (Fig. 4-4 left) =⇒ sign(φ(V ′i , Vi)) is determined as sign(−sv)
∗ If svsc < 0 (Fig. 4-4 right) =⇒ sign(φ(V ′i , Vi)) is determined as sign(sv)

– V ′i is a vertex of C(Vi) (Fig.4-5). The set of triangles adjacent to V ′i is denoted byNi
and away from V ′i , these triangles form and infinite open surface Ñi. Considering
the plane crossing Vi and orthogonal to

−−→
V ′i Vi, for any point on this plane sufficiently

far from Vi, its closest point on Ñi is either on a face or on an edge. Hence this point
Ṽi, falls into the above mentioned cases, therefore sign(φ(V ′i , Ṽi)) can be computed
as explained above and the sign(φ(V ′i , Vi)) is determined as the sign(φ(V ′i , Ṽi)).

2This means that a membrane with a thickness that is smaller than the CFD grid element cannot be solved
with this approach.
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CHAPTER 4. TRACKING THE EMBEDDED FLUID-STRUCTURE INTERFACE65
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Figure 4.3: Determination of the signed distance �(V 0
i , Vi) when V 0

i , the closest point
to Vi on DE

h , lies on an edge of a triangle.
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Figure 4.3: Determination of the signed distance �(V 0
i , Vi) when V 0

i , the closest point
to Vi on DE

h , lies on an edge of a triangle.

Figure 4-4: Determination of the signed distance sign(φ(V ′i , Vi)) when V ′i lies on an edge of a
triangle.

4-2-2 PhysBAM - Collision-based approach

When the embedded discrete surface DE
h is an open surface or a closed surface and the volume

it encloses is not resolved (or partially resolved) by a fluid grid, the previous projection-
based approach should be substituted by a more sophisticated point-simplex collision based
algorithm.

COLLISION-BASED ALGORITHM

1. ∀ Vi ∈ Dh construct an axis-aligned bounding box bi

2. Construct an axis-aligned bounding box hierarchy BE which stores the triangles of DE
h .

3. Using BE find ∀ Vi ∈ Dh the set of triangles C(Vi) ⊂ DE
h whose bounding boxes intersect

bi

(a) Thicken each triangle Tk ∈ C(Vi) by a numerical tollernace ε. If Vi lies inside the
thickened wedges =⇒ flag it as occluded.

(b) if C(Vi) 6= ∅, find the location of V ′i and compute the signed distance φ(V ′i , Vi) from
V ′i to Vi.
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Figure 4.4: Determination of the signed distance �(V 0
i , Vi) when V 0

i , the closest point
to Vi on DE

h , is the vertex of a triangle.
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Figure 4.4: Determination of the signed distance �(V 0
i , Vi) when V 0

i , the closest point
to Vi on DE

h , is the vertex of a triangle.

Figure 4-5: Determination of the signed distance sign(φ(V ′i , Vi)) when V ′i is the vertex of a
triangle.

i. If φ(V ′i , Vi) > 0, Vi is inside the fluid domain Ω =⇒ si = 0
ii. If φ(V ′i , Vi) ≤ 0, Vi is inside the structure domain B =⇒ si = 1

4. For every edge (Vi, Vj), cast the rays rij from Vi to Vj and rji from Vj to Vi against the
triangles in C(Vi) ∩ C(Vj) using the point-simplex algorithm:

(a) If both rij and rji intersect a triangle in DE
h =⇒ classify (Vi, Vj) as a fluid-structure

intersecting edge and store the intersection points.

(b) If either Vi or Vj is occluded =⇒ classify (Vi, Vj) as a fluid-structure intersecting
edge and store the occluded node as the intersection point.

5. Determine the node status ni using geometric means and its value at the previous
time-step. If C(Vi) = ∅ then keep ni unchanged.

(a) For every triangle Tk ∈ C(Vi) use the point-simplex algorithm to determine if Tk
crosses over Vi during the given time-step. The point is fixed in space and the
simplex travels from its position at tn to its position at tn+1. If any simplex
crosses over Vi =⇒ set ni = −1 indicating that the status may have changed and
therefore must be redetermined.
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(b) ∀ Vi ∈ {Vi ∈ Dh : ni = −1}, search for adjacent nodes Vj with nj 6= −1. If such
node is found =⇒ ni = nj and repeat this procedure until the status of every node
has been determined or no further updates are possible. Flag any remaining node
Vi with status ni = −1 as being inside the structural domain B.

The main differences between the two algorithms presented above can be observed by ana-
lyzing the three cases illustrated in Fig. 4-6.

• CASE I: the discrete embedded surface is a closed surface and the enclosed volume is
resolved by the Eulerian grid =⇒ both algorithms give the same results.

• CASE II: the discrete embedded surface is a closed surface but the enclosed volume
is not fully resolved by the Eulerian grid (similar to the trailing edge of an airfoil)
=⇒ projection-based algorithm misses two edges that intersect the embedded interface
twice; collision-based algorithm is able to detect the double intersection.

• CASE III: the discrete embedded surface is an open surface =⇒ projection-based
algorithm fails to detect the intersections; collision-based algorithm is able to detect the
intersections.

CHAPTER 4. TRACKING THE EMBEDDED FLUID-STRUCTURE INTERFACE71

Case I,  ALGORITHM 4.1

Case I,  ALGORITHM 4.2

Case II,  ALGORITHM 4.1

Case II,  ALGORITHM 4.2

Case III,  ALGORITHM 4.1 (fail)

Case III,  ALGORITHM 4.2

E

E
E

E

E

E

D h

D h

D h

D h D h

D h

Figure 4.5: Illustration of Algorithm 4.1 and Algorithm 4.2 for three distinctive
cases. A point in green (blue) color represents a CFD grid point lying the fluid
(structure) region of the computational domain. An edge in red represents a fluid-
structure intersecting edge.

implicitly using a local distance function. In a fluid-structure coupled computation,

the connectivity of each new phantom element is sent to the fluid solver, which then

updates DE
h accordingly. The values of the local distance function at its nodes are

also sent to the fluid solver and store there.

Algorithm 4.2 is then modified as follows. In Step 4, if the detected intersection

point is located in a phantom element in DE
h , the local distance function, denoted

by �, is interpolated at this point. If � � 0, the intersection point is located in

the real region of the phantom element, and considered as a valid intersection point

(Figure 4.6–left). If � < 0, this intersection is ignored as it is located in the phantom

Projec'on-‐based	  algorithm	  

Collision-‐based	  algorithm	  

CASE	  I 	  	  	  	  	   	   	   	   	   	  CASE	  II	   	   	   	   	   	   	  CASE	  III	  

CASE	  I 	  	  	  	  	   	   	   	   	   	  CASE	  II	   	   	   	   	   	   	  CASE	  III	  

Dh Dh Dh

Dh Dh Dh

Dh
E

Dh
E

Dh
E

Dh
E

Dh
E

Dh
E

Figure 4-6: Illustration of the results obtained with the projection-based algorithm and the
collision-based algorithm for three different cases.
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i

Di

∂Ci

Ci

Ci

Cj
∂Cij

i

j

Figure 4-7: Primal mesh Di in red and the dual cell Ci in grey with boundary surface ∂Ci. On
the right the details of the interface between two neighboring dual cells.

4-3 Finite Volume Solver

Depending on the information obtained from the tracking algorithms presented above we need
to solve a fluid-fluid problem if both the nodes belong to the fluid domain Ω or a fluid-structure
problem if the edge (Vi, Vj)∈ Dh intersects the embedded interface DE

h .

In order to apply Finite Volume variational-like formulation, a cell-centered mesh D∗h (dual
mesh) is built over the primal mesh Dh. For a node i, we denote by Di the set of triangles (or
tetrahedra in 3D) that contains node i in the primal mesh Dh, and by Ci the cell associated
to i with boundary surface ∂Ci (Fig. 4-7).

Using the standard characteristic function associated with the control volume Ci, a standard
variational approach and integration by parts we can rewrite the Euler equation (3-16) as:∫

Ci

∂Wh

∂t
dV

+
∑

j∈K(i)

∫
∂Cij

−→
F (Wh) · −→nij dS < 1 >

+
∫
∂Ci∩DEh

−→
F (Wh) ·

−→
nE dS < 2 >

= 0

(4-9)

Wh represents the discrete approximation of the state vector W , K(i) is the set of adjacent
vertices of Vi, ∂Cij is the segment of ∂Ci (defined as ∂Cij = ∂Ci ∩ ∂Cj (Fig. 4-7)), −→nij is the
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unit outward normal to ∂Cij and
−→
nE is the unit outward normal to DE

h .

The computation of the previous equation can be performed in one-dimensional fashion by
evaluating the fluxes along normal directions to the boundaries of the control volumes.

We can express the first flux < 1 >in (4-9) as:

∑
j∈K(i)

∫
∂Cij

−→
F (Wh) · −→nij dS =

∑
j∈K(i)

ΦFij (Wi,Wj ,
−→nij)

with Wi = 1
|Ci|

∫
∂Ci

Wh dV, Wj = 1
|Cj |

∫
∂Cj

Wh dV

(4-10)

with ΦFij we indicate the numerical flux evaluated for example with a first-order upwind
scheme as Roe’s approximate Riemann solver 3:

ΦFij (Wi,Wj ,
−→nij) = 1

2
(−→

F (Wi) +−→F (Wj)
)
− |
−→
λ (Wi,Wj) · −→nij |

2 (Wj −Wi) (4-11)

−→
λ represents the vector of Jacobian matrices defined as:

−→
λ =

(
∂Fx
∂W

,
∂Fy
∂W

,
∂Fz
∂W

)T
(4-12)

The computation of the second flux < 2 > in (4-9) involve the continuity transmission con-
dition (3-25) in the case of dynamic or flexible embedded interface or the slip boundary
condition (3-27) in the case of static embedded interface.

We indicate here with L and R the grid points, in the Eulerian grid, on the left and on the
right of the embedded discrete interface DE

h . V L
i and V R

i respectively denote the the first-
layer grid point on the left and on the right of DE

h connected via V LR
i . MLR

i is the point
where the edge V LR

i intersect the control volume boundary ∂CLRi = CLi ∩ CRi (Fig. 4-8).

For the sake of explanation we assume now that the flow occurs only on one side of DE
h (left

in this case).

ALGORITHM

For each CLi and V LR
i intersecting DE

h

1. If the considered region of DE
h correspond to a dynamic embedded interface, compute

the velocity u̇M = u̇(MLR
i ) of DE

h at MLR
i by interpolation, extrapolation or (combi-

nation of both) of the discrete velocity field u̇ obtained from the solution of the discrete
structural equations (4-5). If DE

h correspond to a static embedded interface u̇ ·
−−→
nEM = 0

with
−−→
nEM =

−→
nE(MLR

i ).

3For second order MUSCL (Monotonic Upwind Scheme Conservation Law) scheme, the linearly recon-
structed states at the mid-edges are used instead of Wi and Wj .
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Figure 4-8: Illustration of two control volumes on the left and on the right of the discrete .
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2. Assume that at the pointMLR
i the boundary facet ∂CLRi andDE

h coincide4 and compute
at this point the exact solution W L

M of the one-sided Riemann problem:
∂W
∂t + ∂

−→
F (W )
∂s = 0

W (s, 0) = W L
i if s ≥ 0

v(u̇M ·
−−→
nEM t, t) = u̇M ·

−−→
nEM ∀0 ≤ t ≤ ∆t

(4-13)

where s is the abscissa along a local axis whose origin is MLR
i and runs in the opposite

direction of
−−→
nLRi . We denote with v(u̇M ·

−−→
nEM t, t) the instantaneous velocity of the fluid

at s = 0. The normal component of the structural velocity atMLR
i denoted as u̇M ·

−−→
nEM

is assumed to be constant for 0 ≤ t ≤ ∆t.

3. Evaluate each component of term < 1 > in (4-9) as:∫
∂CLRi

−→
F (Wh) ·

−−→
nLRi dS = ΦFLRi (WL

i ,W
L
M ,
−−→
nLRi ) (4-14)

If the flow occurs on both sides of the discrete embedded surface DE
h the above mentioned

algorithm is applied twice:

1. for CLi and V LR
i =⇒ ΦFLRi (WL

i ,W
L
M ,
−−→
nLRi )

2. for CRi and V RL
i =⇒ ΦFRLi (WR

i ,W
R
M ,
−−→
nRLi ).

4-3-1 Enforce the continuity condition: Fluid-structure Riemann problem

The system (4-13) is a left fluid-structure Riemann problem (also known as the piston prob-
lem) that considers a 1D inviscid compressible flow with a moving wall. In this thesis it is
used to enforce the continutiy condition (3-25) and recover the fluid pressure at the fluid
structure interface. Given the fluid state W L and the wall velocity vw = u̇M ·

−−→
nEM , the

fluid-structure Riemann problem is defined as follows: considering the 1D time-dependent
fluid domain Ω(t) = (−∞, vwt], find the solution W (x, t) to the 1D Euler equations:

∂W

∂t
+ ∂
−→
F (W )
∂x

= 0 (4-15)

W =

 ρ
ρv
E

 , F(W ) =

 ρv
ρv2 + p
v(E + p)


with initial condition:

W (x, 0) = W L, for x ∈ Ω(0) = (−∞, 0]
v(vwt, t) = vw, at the wall, for t ≥ 0

(4-16)

4This assumption introduces a first-order spatial error in the computation of the numerical flux across the
embedded surface
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(ρL ,vL , pL )

1-‐wave	  
(rarefrac,on)	  

Moving	  
wall	  

x = vwt(ρL
* ,vw , p
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Figure 4-9: A typical solution structure of a fluid-structure Riemann problem with a left rar-
efraction wave (red).

The solution of the problem consist of a shock wave or rarefaction wave (1-wave) moving
from the origin and propagating to the left. At t ≥ 0 the flow to the left of the 1-wave is
unperturbed and the flow between 1-wave and the wall is determined by the intermediate
state (ρ∗L, vw, p∗). The solution of the problem is obtained by:

• determine if 1-wave is rarefraction or shock

• relate the intermediate state (ρ∗L, vw, p∗) toW L (Fig. 4-9) using the Riemann invariants
(if it is a rarefraction) or using the Rankine-Hugoniot jump condition (if it is a shock).

• solve the system obtained at the previous step for ρ∗L and p∗.

• determine the shock speed using the Rankine-Hugoniot jump conditions or the structure
of the solution through the rarefraction waves using the Riemann invariants.

Time integration

We can rewrite in compact form the semi-discretized Euler equation for the discretization Dh

of the fluid domain Ω as:
dW

dt
+ F (W ) = 0 (4-17)

whereW and F indicate respectively the cell-averaged state vector and numerical flux vector.
To advance the semi-discretized system (4-17) in time from tn to tn+1, the Second-order
implicit three point backward difference scheme is employed:

3W n+1 − 4W n +W n−1

2 = ∆tnF (W n+1) (4-18)
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4-3-2 Viscous Term

As already mentioned in the previous chapter, to account for the viscous effects, the Euler
equations (3-16) are substituted with the Navier-Stokes equations (3-1). The viscous terms,
in contrast with the inviscid term 5, is discretized on the primal mesh using piecewise linear
continuous representation of the numerical solution. In other words the contribution of the
viscous terms to the scheme is given by a Galerkin variational formulation over the elements
of the primal mesh as:

Vi = −
∫
Di

K ·
−−→
∇W ·

−−→
∇φi dx, (4-19)

K is the fourth order diffusive tensor such that
−−→
FV (W ,

−−→
∇W ) = K ·

−−→
∇W (4-20)

and φi is a Lagrangian basis function at node i.
By adding the viscous contribution (4-19) to (4-9) we can write:

dWh

dt
+ |Ci|

∑
j∈K(i)

ΦFij (Wi,Wj ,
−→nij) +

∫
Di

K ·
−−→
∇W ·

−−→
∇φi dx = 0 (4-21)

4-4 Load computation

After solving the discretized Euler equation, as presented in the previous section, we need
to compute the flow-induced loads on the discrete embedded surface DE

h by enforcing the
equilibrium condition (3-26) and send them to the CSD solver. However, as already said, the
representation of the discrete embedded surface where the loads need to be computed is not
available Eulerian CFD grid Dh. In addition, the structural solver does not have direct access
to the pressure field computed in the Eulerian CFD grid Dh. For this reason a consistent and
conservative approach is presented here to calculate the localized flow-induced force load in
an embedded boundary method.

4-4-1 Local reconstruction of the embedded surface

Let denote τq the set of elements of the embedded discrete interface DE
h .

DE
h =

Nτ⋃
q=1

τq (4-22)

Let Ik denote the intersections of DE
h with Dh computed using the projection-based or the

collision-based tracking algorithms presented in Sect.4-2, the we can reconstruct the embedded
discrete surface DE

h as the union D̃E
h of a collection of triangular elements τ̃q obtained by

connecting the intersection points Ik:

D̃E
h =

Nτ̃⋃
q=1

τ̃q (4-23)

5Due to the parabolic nature of the viscous terms, there do not exists a truly Finite Volume treatment of
the right hand side of (3-1)
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Dh Dh
E
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Figure 4-10: Representation of the reconstructed embedded surface.

LOCAL RECONSTRUCTION ALGORITHM

For each element Eh in Dh

• inspect the status of the vertices of the Eh

– if all status are positive or all the status are negative =⇒ Eh does not cross DE
h .

– otherwise =⇒ Eh crosses DE
h

1. initialize a list LE of intersection points
2. loop on the edges of the Eh =⇒ for each edge intersecting DE

h identify Ik and
add to LE

3. connect all the points of LE to form one or more elements τ̃q.

We assume now, for simplicity, that DE
h is the discretization of the wet surface of the structure

domain ∂B. Let ξqk denote the natural coordinates of the computed intersection point Ik in
τq. We can interpolate at each intersection point Ik the displacement and velocity of the
reconstructed discrete surface D̃E

h :

u(Ik) =
∑
j

N q
j (ξqk)uj , u̇(Ik) =

∑
j

N q
j (ξqk)u̇j (4-24)
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N q
j is the FE shape function associated with node V q

j of the element τq containing Ik (these
shape functions satisfy the partition of unity propriety), uj and u̇j are the displacement and
velocity of DE

h at node V q
j of element τq.

Let pk and vk denote the computed fluid pressure and velocity vector at Ik (from the solution
of the Riemann problem). On the reconstructed interface D̃E

h the fluid pressure and velocity
vector are approximated at each −→x ∈τ̃q as:

ph(−→x ) =
3∑

k=1
Ñ q
k (η(−→x ))pk, −→v h(−→x ) =

3∑
k=1

Ñ q
k (η(−→x ))vk (4-25)

Ñ q
k is the FE shape function associated with node Iqk of τ̃q, and η(−→x ) are the natural coordi-

nates of the points −→x in τ̃q.

The discretized version of the continuity transmission condition (3-25) is than:

vk
−→
ñqE = u̇(Ik)

−→
ñqE (4-26)

where
−→
ñqE is the normal to an element τ̃q of D̃E

h connected to Ik.

Let NE denote the total number of vertices in DE
h . Using the same methodology developed

for computing the generalized flow-induced load in the the ALE framework, we can compute
the load vector fFi at the node Vi of the structural model by applying the virtual power
principle at the reconstructed fluid-structure interface D̃E

h :

NE∑
i=1
fFi δu̇i = −

∑
τ̃q

∫
τ̃q

(−ph(−→x ))ñqEδ
−→v h(−→x ) dτ

=
∑
τ̃q

∫
τ̃q

[ 3∑
k=1

Ñ q
k (η(−→x ))pkñqE

3∑
k=1

Ñ q
k (η(−→x ))δvk

]
dτ

=
∑
τ̃q

∫
τ̃q

 3∑
k=1

Ñ q
k (η(−→x ))pkñqE

3∑
k=1

Ñ q
k (η(−→x ))

∑
j

N q
j (ξqk)δu̇j

 dτ
(4-27)

δ denote the virtual quantity. The virtual power of the FE structure loads acting on DE
h is:

δPS =
NE∑
i=1
fFi δu̇i (4-28)

and the virtual power principle at the fluid-structure interface implies that:

δPF = δPS (4-29)

Using the previous equation and the partition of unity of the shape functions N q
i and Ñ q

k :

fFi =
∑

τ̃q/∃Ik∈τ̃q , Ik∈(τq3Vi)

∫
τ̃q

3∑
k=1

Ñ q
k (η(−→x ))pkñqE

3∑
k=1

Ñ q
k (η(−→x ))N q

i (ξqk) dτ (4-30)
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and

fF =
NE∑
i=1
fFi

=
NE∑
i=1

∑
τ̃q/∃Ik∈τ̃q , Ik∈(τq3Vi)

∫
τ̃q

3∑
k=1

Ñ q
k (η(−→x ))pkñqE

3∑
k=1

Ñ q
k (η(−→x ))N q

i (ξqk) dτ

=
∑

τ̃q∈D̃Eh

∫
τ̃q

3∑
k=1

Ñ q
k (η(−→x ))pkñqE

3∑
k=1

Ñ q
k (η(−→x ))

NE∑
i=1

N q
i (ξqk) dτ

=
∑

τ̃q∈D̃Eh

∫
τ̃q

3∑
k=1

Ñ q
k (η(−→x ))pkñqE

3∑
k=1

Ñ q
k (η(−→x )) dτ

=
∑

τ̃q∈D̃Eh

∫
τ̃q

3∑
k=1

Ñ q
k (η(−→x ))pkñqE dτ

(4-31)

If the embedded discrete interface DE
h does not coincide with the discretization of the wet

surface of the structural domain ∂B that we denote as ∂Bh:

1. a projection of DE
h onto ∂Bh is computed in a pre processing stage,

2. the natural coordiantes of each projected point ofDE
h in the elements of BS

h are collected,

3. u and u̇ in (4-24) are interpreted in DE
h and are computed by interpolating the nodal

displacement and velocities of ∂Bh using the projections and natural natural coordinates
collected in the previous steps,

4. the generalized load vector fFi in (4-30) is also interpreted on DE
h and not on ∂Bh,

5. fFi is redistributed on the nodes of the FE structural model ∂Bh using again the virtual
power principle but with the natural coordinates of the points of the projection of DE

h

onto ∂Bh.

4-5 Summary

The Embedded Boundary method presented above is based on the following steps:

1. In the Computational Structural Dynamics (CSD) solver (4-1), send the updated dis-
placement and velocity of the fluid structure interface to the CFD solver.

2. In the CFD solver (3-1), update the position of the interface DE
h and track it with

respect to the Eulerian grid Dh (4-2). For each edge (Vi, Vj) in Dh connecting the
vertices Vi and Vj compute the fluid-fluid and fluid-structure fluxes as follow:

• if both Vi and Vj belong to the fluid domain Ω and the edge (Vi, Vj) does not
intersect the embedded interface DE

h =⇒ compute fluid-fluid flux between Vi and
Vj .
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• if only one of the two vertices belongs to Ω, declare that (Vi, Vj) intersects DE
h =⇒

solve a one-dimensional fluid-structure Riemann problem between the active vertex
and the interface. Than compute a fluid-structure flux using the fluid interface
state obtained from the Riemann solver.
• if both Vi and Vj belong to the fluid domain Ω and the edge (Vi, Vj) intersects DE

h

=⇒ solve one-dimensional fluid-structure Riemann problem between each vertex
and the interface, than compute a fluid-structure flux on each side of the interface.
• if neither Vi nor Vj belongs to Ω =⇒ do not perform any computation.

3. In the CFD solver integrate the semi-discretized fluid equations form tn to tn+1 (4-3-
1), compute the fluid-induced load on a surrogate surface (4-4), distribute it on the
fluid-structure intersection points and send the load to the CSD solver.

4. in the CSD solver, integrate the semi-discretized structural equations form tn to tn+1

using the loads received from the CFD solver.

Master of Science Thesis Michele Pisaroni



44 Embedded Computational Framework

Michele Pisaroni Master of Science Thesis



Chapter 5

Computational Results

In this chapter, we present the computational results obtained with the Embedded Boundary
Method presented in the previous chapters.

5-1 Airfoil with moving flap

One of the main advantage of the non-body fitted mesh methods is that large and complex
motions of rigid structures can be accommodated without additional mesh motion algorithms
and without the needs of expensive remeshing steps needed if the computational grid volumes
becomes highly stretched like in the ALE approach.

In this section, the problem of computing the unsteady viscous low past a rigid airfoil with
moving flap (Fig. 5-1) is considered.

Figure 5-1: Airfoil with flap.

The unstructured Eulerian grid is composed by 3,285,154 nodes (6,569,866 elements) and
is designed to ensure that the non-dimensional distance based on local cell fluid velocity
y+ = u∗y

ν = 1 (u∗ is the friction velocity at the wall, y is the distance to the wall and ν the
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kinematic viscosity) in the region where the airfoil and the flap embedded surfaces move1

(Fig.5-2).

Figure 5-2: Eulerian and embedded grid of the airfoil and flap (in red).

The viscous air flow is modeled using the Navier-Stokes equations with Spalart-Allmaras
turbulence model. The free-stream conditions are set to M = 0.3, Re = 500, 000. The
sinusoidal prescribed motion of the flap with frequency f = 0.5 [Hz] is presented in Fig.5-3.

Using the three-point backward difference time-integrator (4-3-1) an implicit numerical simu-
lation based on the FRG - Projection-based approach (4-2-1) to track the embedded moving
surfaces and the local reconstruction algorithm (4-4-1) to compute the flow induced loads
on the embedded surface produced the following unsteady results for the airfoil with moving
flap.

The Embedded Boundary method simulation of the wing with moving flap was performed on
256 processors cluster. The simulation took 38, 526 [sec].

1The grid spacing in the rectangular region around the airfoil and flap was derived using the following
formula: ∆y = Ly+√74Re−13/14

L where L is the flow characteristic length scale and ReL is the Reynolds
Number based on the problem characteristic length scale
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5-1 Airfoil with moving flap 47

(a) Flap position at t=0 (b) Flap position at t=0.25

(c) Flap position at t=0.5 (d) Flap position at t=0.75

(e) Flap position at t=1

Figure 5-3: Flap position at different time steps.
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(a) Pressure profile at t=0 (b) Pressure profile at t=0.25

(c) Pressure profile at t=0.5 (d) Pressure profile at t=0.75

(e) Pressure profile at t=1

Figure 5-4: Non-dimensional pressure profile at different time steps.
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(a) Velocity profile at t=0 (b) Velocity profile at t=0.25

(c) Velocity profile at t=0.5 (d) Velocity profile at t=0.75

(e) Velocity profile at t=1

Figure 5-5: Non-dimensional velocity profile at different time steps.
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The non-dimensional lift and drag history of the airfoil and flap are presented in the following
figures:
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Figure 5-6: Non-dimensional lift and drag of the airfoil and moving flap.
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An interesting feature of the non-body fitted mesh methods is that the Eulerian CFD grid
can be re-used for different problems without the need of recomputing and design a new
mesh for each problem. For this reason this class of methods are particular attracting for
optimization and design purposes since can dramatically reduce the time needed to compute
and design an efficient CFD mesh. Once an initial Eulerian CFD mesh is designed based
on the flow characteristics and the dimensions of the problems under consideration it can be
used as a ’background’ mesh for different embedded grids. Indeed, generating a high-quality
body-fitted grids around a complex geometry is usually both time-consuming and tedious.
For example the above presented Eulerian grid, used to simulate the flow around an airfoil
and moving flap, can be used to compute the flow around a completely different airfoil with
slat and flap (Fig.5-5).

(a) DLR Airfoil with flap

(b) AGARD airfoil with slat and flap

Figure 5-7: The same Eulerian CFD grid can be used with different embedded surfaces.

However as can be observed from the previous figures a large number of grid volumes that lie
inside the embedded surface and in the refinment rectangular box are not needed for the flow
computation. In case of 3D problems (in particular for viscous mesh) the computational load
due to the large number of grid volumes becomes tremendously high and different strategies,
proposed and tested in the following sections, are needed to design the Eulerian grid and
compute the flow around moving embedded surfaces.
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5-2 Missile Drop

The simulation of fluid flow around moving objects in relative motions is particularly challeng-
ing with body-fitted mesh methods because the computational grid volumes becomes highly
stretched in the region between the objects since the grid nodes are constrained to the moving
surfaces.

In this section, a verification of the proposed embedded boundary method is performed in the
context of an unsteady, inviscid flow around a 3D wing with a dropping missile. The complex
geometry of this system (Fig.5-8) and the relative motion of the missile with respect to the
wing indicates that the embedded boundary method can be a perfect candidate for studying
the aerodynamic properties of the wing in presence of the moving missile.

Figure 5-8: Wing with missile (Type A).

To reduce the number of grid volumes required to accurately simulate the flow around the
wing and the moving missile we decided to create a body-fitted grid around the fixed wing
and ’immerse’ in the Eulerian grid only the embedded surface of the moving missile (Fig.5-9).

The inviscid flow around the wing and dropping missile is modeled using the Euler equations.
The free-stream conditions are set to M = 0.3. The missile is set in forced motion in per-
pendicular direction to the wing. Using the three-point backward difference time-integrator
(4-3-1) an implicit numerical simulation based on the PhysBAM - Collision-based approach
(4-2-2) to track the embedded moving surfaces and the local reconstruction algorithm (4-4-1)
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5-2 Missile Drop 53

(a) Body-fitted mesh around the wing

(b) Body-fitted mesh around the wing (red)

(c) Rectangular refinment region around the embedded missile
surface.

Figure 5-9: Body-fitted mesh for the wing and embedded mesh for the moving missile (section
view)
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to compute the flow induced loads on the embedded surface produced the following unsteady
results for the wing with dropping missile.

(a) Pressure profile at t=0

(b) Pressure profile at t=0.05

(c) Pressure profile at t=0.1

(d) Pressure profile at t=0.2

Figure 5-10: Non-dimensional pressure profile at different time steps and in different sections
perpendicular to the wing

The Embedded Boundary method (computational grid with 2,546,692 nodes) simulation of
the wing with dropping missile was performed on 256 processors cluster. The simulations
took 15, 237.43 [sec].
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(a) Velocity profile at t=0

(b) Velocity profile at t=0.05

(c) Velocity profile at t=0.1

(d) Velocity profile at t=0.2

Figure 5-11: Non-dimensional velocity profile at different time steps and in different sections
perpendicular to the wing
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(a) Streamlines at t=0 (b) Streamlines at t=0.05

(c) Streamlines at t=0.1 (d) Streamlines at t=0.2

Figure 5-12: Streamlines around the wing and moving missile and pressure contour lines on the
wing surface at different time steps.
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As already said in the previous case the Eulerian grid designed for a particular case can
be used in the design process to test different configurations or in particular for this case
different shapes of the missile. This is very useful because reduce the time spent in design
the computational grid that has to be recomputed for each shape in case of body-fitted mesh
methods.

(a) Missile type B

(b) Missile type C

Figure 5-13: Two different shapes of the missile that can be used in the same Eulerian grid.
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5-3 Heaving AGARD Wing

In this section, the problem of computing the unsteady inviscid flow past a rigid wing in
heaving motion is considered. The wing is the AGARD Wing 445.6 (Fig.5-14) (root chord
length Lc = 22.0 [in], a semi-span Ls = 30.0 [in], a tip chord length Lt = 14.5 [in], a quarter-
chord sweep angle of 45 deg, panel aspect ratio is equal to 1.65 and its taper ratio is equal
to 0.66). Its airfoil section is the NACA 65A004 with a maximum thickness of approximately
0.9 [in].

Figure 5-14: Top and side view of the AGARD Wing 445.6 .

The wing is set in a prescribed harmonic heaving motion with an amplitude A = 3 [in] and
a frequency h = 100 [Hz]. The inviscid flow around the wing is modeled using the Euler
equations. The free-stream conditions are set to M = 0.3, ρ∞ = 9.357255 108 [(lb/in4)sec2]
and p = 14.5 [psi].

We will compare the computational results obtained with the body-fitted mesh using the ALE
approach and with the Eulerian grid using the Embedded Boundary Method. The Eulerian
grid used with the Embedded Boundary method is obtained from the body-fitted grid by
meshing the interior of the wing; the Embedded surface of the wing is obtained from the
surface discretization of the wing in the body-fitted grid (Fig.5-15).
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(a) Body-fitted grid (b) Eulerian gird

(c) Surface grid/Embedded surface grid of the wing (red)

Figure 5-15: Two different shapes of the missile.

Since the wing its quite thin we will use the PhysBAM - Collision-based approach (4-2-2)
that is able to accurately track the embedded moving surface even if the volume enclosed by
the surface is not fully resolved. All the simulations are initialized with a uniform flow at the
free-stream condition specified above.
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The lift of the heaving Agard wing obtained with the ALE approach (considered as reference)
and the Embedded Boundary methods is presented in the following figure:
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Figure 5-16: Lift time-history of the AGARD Wing 445.6 in heaving motion.

As it is possible to observe from the previous plot the lift computed using the Embedded
Boundary method looks quite inaccurate in particular at the peaks of the oscillation. This is
because we are no more using an Eulerian grid designed for the Embedded Boundary method
with a refinment in the region of the motion of the embedded surface but a computational
mesh derived from a typical body fitted grid. The ALE approach thanks to a mesh motion
algorithm (corotational approach) is able to move the entire fluid grid and follow the motion of
the wing. By doing so the refined region is always in proximity of the wing. In the Embedded
Boundary method the Eulerian grid is fixed and the embedded surface moves form a fine to
a coarse region in the grid. The tracking algorithm and the load computation algorithm are
no more able to accurately reconstruct the surface of the wing and compute the loads on it.

As already said in the previous sections, one of the main problem in the Embedded Boundary
method is that the Eulerian grids for 3D problems with moving surfaces require a large
number of computational grid volumes. This limit the applicability of the method because of
the computational load required to treat large meshes.

By looking at the above mentioned issues we wonder if was possible to introduce a prescribed
motion, as in the ALE approach, also to the ’background’ grid in the Embedded Boundary
method to keep the embedded surface always in the refined region without having to create
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large refined region in the computational grid. The results of the Embedded boundary method
with an a grid that moves with the heaving wing are presented in the following figure.
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Figure 5-17: Lift time-history of the AGARD Wing 445.6 in heaving motion.

As it is possible to observe the Embedded Boundary method with a moving grid that ’follows’
the motion of the heaving wing is much more accurate and match the lift predicted with the
ALE approach.

The ALE method (computational grid with 101,623 nodes) and the Embedded Boundary
method (computational grid with 105,030 nodes) with and without mesh motion simulations of
the AGARD wing in heaving motion were performed on 16 processors cluster. The simulations
took 11, 322.92 [sec] with the ALE approach, 13, 055.12 [sec] with the standard Embedded
Boundary method and 16, 236.33 with the latter equipped with mesh motion algorithm.
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5-4 Mesh deformation and mesh adaptation

Motivated by the results obtained for the heaving AGARD wing we wonder if was possible
to further improve the quality of the mesh needed to accurately compute the flow around a
complex moving surface using the Embedded Boundary method and to limit the number of
computational grid volumes.

As already said, in the Embedded Boundary method the Eulerian grid does not contain the
information of the embedded surface. For this reason it is usually quite difficult to design
an efficient grid that does not contain a large number of grid volumes that lie inside the
embedded surface and hence are not needed in the computation. In addition, for viscous
problems that require a boundary layer mesh one option is to create a very fine mesh, as
in the case presented in the previous section for the arifoil with moving flap, around the
embedded surface and in the region of the motion of the latter. However for 3D problems this
approach may lead to tremendously large mesh that require an huge computational power.

We tested the mesh deformation algorithm based on the torsional spring, widely used in
the ALE approach to deform the computational grid around a moving/deforming object, to
deform the background grid in the Embedded Boundary method. By doing so, as in the
previous case of the AGARD wing, it should be possible to reduce the computational grid
size by restrict the refined regions of the mesh only in the vicinity of the embedded grid
and deform and move such regions accordingly to the motion and the deformation of the
embedded surface. The deformation of the background mesh is driven by the information
of the embedded grid however the nodes are not constrained to that surface as in the body-
fitted methods. This reduce the stretching of the computational volumes and does not produce
degenerated elements in the mesh. Such hybrid Embedded-ALE approach was successfully
tested in simulate the unsteady flow around a cylinder with a flapping beam.

The deforming grid around the embedded surface of the cylinder with flapping beam is pre-
sented in Fig.5-18. As it is possible to observe the grid volumes in the refined region are not
constrained to he embedded surface but they deform and move to follow the deformation of
the flapping beam.

In Fig.5-19 the non-dimensional pressure contour around the cylinder with flapping beam,
computed using the Embedded Boundary method equipped with the FRG - Projection-based
approach (4-2-1) to track the embedded moving surfaces and the local reconstruction algo-
rithm (4-4-1) to compute the flow induced loads on the embedded surface, is presented.
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(a) Grid and embedded surface at t=0 (b) Grid and embedded surface at t=0.25

(c) Grid and embedded surface at t=0.5 (d) Grid and embedded surface at t=0.75

Figure 5-18: Mesh deformation and embedded surface of the cylinder with flapping beam.
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(a) Pressure at t=0 (b) Pressure at t=0.25

(c) Pressure at t=0.5 (d) Pressure at t=0.75

Figure 5-19: Non-dimensional pressure around the cylider with flapping beam.
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The Immersed Volume Method (2-2-3) is designed to operate on unstructured grids and it is
also equipped with mesh adaptation algorithm that refine anisotropically the computational
mesh around the moving surfaces using a levelset fuction. By using such mesh adaptation
algorithm it is possible to control the mesh size in a non-body fitted grid by employing the
information obtained form the level set function defined around the embedded surface. In
other words the dimensions of the grid volumes can be controlled by looking at the level
set function defined in the computational domain. In the case of the Embedded Boundary
method it is possible to increase the size of the grid volumes inside and far from the embedded
surface and at the same time refine only the region around such surface. By doing so the mesh
size is dramatically reduced and the quality of the grid in the region where the embedded
surface will be immersed is as high as possible.

We tested this mesh adaptation algorithms for the grid generation around a very complex
3D surface: the F22 Raptor fighter. As it is possible to observe in Fig.5-22, the fighter is
represented by 9 separate embedded surfaces (8 control surfaces and the aircraft body). A
level set fuction is defined for each surface and the informations are than used to define the
mesh density in the background CFD grid. The fine boundary layer mesh is prescribed only
in the vicinity of the embedded surface and the grid volumes that lie inside the surface are
imposed to be as large as possible.

The mesh obtained with the above mentioned algorithm is presented in Fig.5-21

Figure 5-20: F22 Raptor geometry and embedded surface grid.
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(a) Side view

(b) Front view

(c) Top view

Figure 5-21: Different view of the non-body fitted mesh obtained using the mesh adaptation
algorithm.
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The above presented grid was not fully tested at realistic flow conditions because of the lack
of reliable data and because of the computational load required to simulate the high Reynolds
flow around such large 3D fighter. However few calculations were done to test the Embedded
Boundary method with a grid obtained with the mesh adaptation algorithm. The following
figure shows the streamlines around and inside the duct of the fighter computed using the
Embedded Boundary method equipped with the PhysBAM - Collision-based approach (4-2-
2) to track the embedded moving surfaces and the local reconstruction algorithm (4-4-1) to
compute the flow induced loads on the embedded surface.

Figure 5-22: F22 Raptor geometry and embedded surface grid.
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Chapter 6

Conclusions

This thesis presents an Embedded Boundary method computational framework for the solu-
tion of fluid-structure interaction problems involving large and complex structural motions
and deformations developed at Stanford University by Prof. Farhat research group. The Em-
bedded Boundary method solves compressible viscous and inviscid flows around moving and
deforming structures on non body-conforming CFD grids. The proposed method is equipped
with two robust computational algorithms for tracking the discrete embedded interface with
respect to arbitrary non body-conforming CFD grid and an algorithm to compute the loads
on the structure based on the local reconstruction of the embedded surface.

This method is gaining popularity because it looks a perfect candidate to simulate the flow
around complex geometries, moving parts and highly deformable materials that are nowadays
used in many aerospace systems and that cannot be modeled using the existing body-fitted
mesh methods like the ALE approach.

The flexibility of the method in treating moving structures is demonstrated with the solution
of several challenging problems in the fields of aeronautics and an hybrid methodology based
on the motion and deformation of the background grid is presented to reduce the grid size
needed to simulate the flow around moving and deforming embedded structures. In addition
a strategy to design an optimal Eulerian CFD grid for Embedded Boundary method using
the level set method is presented and tested for the complex geometry of the F22 Raptor
fighter.
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