
Faculty of Electrical Engineering, Mathematics and Computer Science

Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ens.ewi.tudelft.nl/

CAS-2019-4518888

M.Sc. Thesis

Area Minimization of the DTB Multiplexer

Reynaldi Cangga Putra B.Sc.

Abstract

The DTB Multiplexer is a component within an NXP chip called
the BAP3. DTB Multiplexer provides a testing functionality for
the chip. This component is purely combinational, and requires
no clock, however this makes the component wiring-costly. This
high wiring requirement leads to the area constraint imposed by the
wiring demand rather than cell area, and this also leads to the DTB
multiplexer reducing the placement area available for other modules.
With this method, the wiring area is going to be estimated as the
amount of congestion, which would cause detour in the design which
results in extra wiring. Here, the DTB multiplexer is placed by
external method instead of using the place and route tools usually
used by the design team. Instead, the placement is done on MATLAB
which is later ported to the place and route tools using script. The
placement algorithm implemented in MATLAB is primarily based
on two algorithm, Dplace for initial preplacement, which in turn
utilizes diffusion preplacement algorithm, and modified C-ECOP for
the congestion reduction. More detailed congestion estimation done
by using an additional routing estimation algorithm which is based
on One-Steiner routing algorithm. The result indicates that the
modified C-ECOP can be used to reduce congestion, thus wiring area
when paired with a good initial placement algorithm, but the initial
placement algorithm and detailed congestion estimation algorithm
with One-Steiner could be further improved, and further work is
needed to integrate the result with commercial place and route tools.

Keywords: placement, wiring area, congestion, overflow,
quadratic placement, wirelength

Area Minimization of the DTB Multiplexer
A Chip Component with High Wire Density and Congestion

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Computer Engineering

by

Reynaldi Cangga Putra B.Sc.
born in Bandung, Indonesia

This work was performed in:

Circuits and Systems Group
Department of Microelectronics & Computer Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft University of Technology

Copyright © 2019 Circuits and Systems Group
All rights reserved.

Delft University of Technology
Department of

Microelectronics & Computer Engineering

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “Area Minimization of the DTB Multiplexer” by Reynaldi Cangga
Putra B.Sc. in partial fulfillment of the requirements for the degree of Master of
Science.

Dated: March 29, 2019

Chairman:
prof.dr.ir. A.J. van der Veen

Advisors:
prof. dr. ir. Rene van Leuken

ir. Paul Wielage

Committee Members:
prof. dr. ir. Arjan van Genderen

ir. Arjan Leeuwenburgh,

iv

Abstract

The DTB Multiplexer is a component within an NXP chip called the BAP3. DTB
Multiplexer provides a testing functionality for the chip. This component is purely
combinational, and requires no clock, however this makes the component wiring-costly.
This high wiring requirement leads to the area constraint imposed by the wiring
demand rather than cell area, and this also leads to the DTB multiplexer reducing the
placement area available for other modules. With this method, the wiring area is going
to be estimated as the amount of congestion, which would cause detour in the design
which results in extra wiring. Here, the DTB multiplexer is placed by external method
instead of using the place and route tools usually used by the design team. Instead,
the placement is done on MATLAB which is later ported to the place and route
tools using script. The placement algorithm implemented in MATLAB is primarily
based on two algorithm, Dplace for initial preplacement, which in turn utilizes
diffusion preplacement algorithm, and modified C-ECOP for the congestion reduction.
More detailed congestion estimation done by using an additional routing estimation
algorithm which is based on One-Steiner routing algorithm. The result indicates that
the modified C-ECOP can be used to reduce congestion, thus wiring area when paired
with a good initial placement algorithm, but the initial placement algorithm and
detailed congestion estimation algorithm with One-Steiner could be further improved,
and further work is needed to integrate the result with commercial place and route tools.

Keywords: placement, wiring area, congestion, overflow, quadratic place-
ment, wirelength

v

vi

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my advisor Prof.
dr. Ir. Rene van Leuken for the continuous support of my master thesis study and
research, for his patience and generosity such that I was able to complete my thesis
despite my unsuccessful effort in the first year.

I would also like to thank my NXP supervisor Ir. Paul Wielage for his patience
guidance while I was in NXP such that I gained a lot more knowledge in ASIC design,
again despite the previously unsuccessful effort.

Besides my advisors, I would like to thank Ir. Arjan Leeuwenburg. for providing
me the chance to do my internship at NXP for my thesis, and thoroughly helped me
out during the worst times during my thesis, provided me a new outlook, and gave me
a second chance to complete my thesis at NXP Semiconductos.

I would also like to thank my thesis committee member including Prof. dr. Ir.
Arjan van Genderen for providing me the opportunity to defend my thesis by giving
me questions and comments.

Last but not the least, I would like to thank my parents, my family, and my friends
for supporting me, financially and emotionally throughout my entire study program in
Delft University of Technology,

Reynaldi Cangga Putra B.Sc.
Delft, The Netherlands
March 29, 2019

vii

viii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Background . 1
1.2 Goal . 1
1.3 Brief Hardware Description . 2

1.3.1 Digital Section of BAP3 . 2
1.4 Resources needed for placement and routing 6

1.4.1 Resource used by routing and how it affects area 6
1.5 Problem description . 6
1.6 Brief DTB Hardware description . 7

1.6.1 The Observe Module . 7
1.6.2 The Control Module . 8

2 Literature Research 9
2.1 ASIC EDA workflow . 9
2.2 Scope of the discussion . 11
2.3 Placement . 11

2.3.1 Placement Objectives . 12
2.3.2 Placement Steps . 14
2.3.3 Dplace Global Placement Algorithm 17

2.4 Routing . 26
2.4.1 Types of Global Routing . 27
2.4.2 Spanning Tree Approach . 28

2.5 Congestion and Area Requirement . 31
2.5.1 Congestion Minimization with C-ECOP 31

3 Methodology and Implementation 39
3.1 Cost Function . 39
3.2 Placement Algorithm Selection . 39
3.3 Quadratic preplacement . 40
3.4 Diffusion Preplacement and wirelength reparation 41
3.5 Congestion Estimation and Reparation 42
3.6 Congestion Re-estimation using One-Steiner Routing Estimation 45
3.7 Encounter Implementation . 46

4 Results 47
4.1 MATLAB Results . 47
4.2 Encounter Routing Results . 51

ix

5 Conclusion and Recommendations 55

x

List of Figures

1.1 BAP3 circuit blocks illustration[29] . 3
1.2 BAP3 simplified floorplan diagram. The powerstages are arranged to-

gether at the top and right side. These powerstages receives input from
the digital section of the chip. There are some digital IP at the bottom
section of the chip, namely several ADCs and ISR. 4

1.3 The DTB multiplexer contain input and output pins. Here the pins can
be seen as the yellow o and x markers within the DTB modules, with
x being input for the DTB and o being output of the DTB, with red
lines representing net connections. o and x markers outside the DTB
represents driver pins or pins driven by the DTB respectively. 4

1.4 Simplified diagram of DTB multiplexer data flow. 5
1.5 DTB Multiplexer block diagram.[29] 7
1.6 DTB Multiplexer observe module block diagram. 8

2.1 ASIC EDA Flowchart . 9
2.2 Physical Design Steps Flowchart . 10
2.3 A circuit consisting of two pads, two movable cells, and, and three two-

pin nets, connecting P1 to C1, C1 to C2, and C2 to P2. The net between
C1 and C2 are weighted twice that of the other nets. 18

2.4 (a) four-cell circuit circuit with each cell connected to its adjacent neigh-
bors and (b) its Laplacian matrix representation 20

2.5 (a) A graph representation of a 4-cell circuit connected with a single
degree-4 net, and its transformation to clique net model (b) its Laplacian
matrix representation . 20

2.6 (a) Reduction of the length of a net with stringent timing constraint
by increasing the weight of the net. (b) its Resulting Laplacian matrix
representation . 21

2.7 (a) A four-cell circuit where more than a single cell is connected to one
pad. (b) Weighting of the Laplacian matrix A and b vectors based on
connections to the cell. The elements of both b vectors are obtained by
summing the product of the weight of each net connected to a pad and
the corresponding cell and the x or y position of each of the connected
pad. 21

2.8 Bin velocity is determined by the gradient of the bin density. 23
2.9 Cell velocity fine tuning using the cell position in relation to the bin

center position. 24
2.10 A circuit with 4 cells, 4 2-degree net connections between the cells, form-

ing a clique, and 4 pads. (b) its wirelength-minimization equation matrix
representation . 26

2.11 The same circuit as Figure 2.10a, but with star net representation (b) its
wirelength-minimization equation matrix representation, the dimension
has increased by 1 on both axis, but the matrix became much sparser . 26

xi

2.12 Anchor-cell implementation based on star-net representation (b) its
wirelength-minimization equation matrix representation, the dimension
is the same as in Figure 2.10, but a weighted constant has been added
to the elements of the b vector. 27

2.13 MRST result of routing 5-pin net. The resulting wirelength in this ex-
ample is 16 units. 28

2.14 (a): Hanan grid of the same 5 cells connected by a net, (b) the resulting
possible Steiner points marked by ♦ which are the intersections of the
Hanan grid. (c): The resulting MRST routing with an additional Steiner
point. The wirelength cost for this routing is only 9 unit. 29

2.15 shows the example of One-Steiner algorithm, nodes from cells are marked
by •, unexplored Steiner points are marked by ♦, and used Steiner points
are marked by �. While One-Steiner is a relatively fast routing algo-
rithm, its time complexity is still O(N3), for a net with high degree,
this can take a very long time to complete. A batched variant of the
algorithm also exists with a time complexity of O(N2log(N)). 30

2.16 Multiple possible routes to connect two cells in two non-adjacent bins . 32
2.17 C-ECOP algorithm flow.[6]. 34

3.1 Full workflow of the proposed method. 40
3.2 The pad position of the DTB multiplexer represented as blue markers,

while the original cell position of the DTB multiplexer represented as red
markers. The red-shaded area represents the original DTB multiplexer
placement area. 41

3.3 flowchart of diffusion placement process. 42
3.4 Anchor cell wirelength reparation process flowchart. 43
3.5 Flowchart of the modified C-ECOP algorithm used. 44
3.6 Example of failure in ILP-based cell movement. (a) The center-upper-

right bin in the placement are is the maximum congested bin, not only
because of the cells contained within but also wires crossing it from other
bins, even if all the cells are moved out to (b), the bin still end up the
most congested. The ILP will have no more cells to move and is stuck. 44

3.7 One-Steiner two-pin transformation improving C-ECOP congestion pre-
diction. In Figure (a), C-ECOP needs to calculate the net crossing prob-
abilities of all the bins shaded, whereas in (b), the net has been trans-
formed into two-pin nets with the addition of a Steiner point marked by
♦, thus C-ECOP only needs to calculate the crossing probabilities of the
the first two rows as the crossing probability of all the bins between and
containing the Steiner point and the bottommost cell are 1. 45

3.8 One-Steiner Virtual Net algorithm designed to replace connections be-
tween degree 2 and a select threshold with actual routing estimation
using One-Steiner algorithm. 46

4.1 (a): Horizontal Congestion estimation of original DTB multiplexer place-
ment without One-Steiner routing prediction and (b) with One-Steiner
routing prediction. 47

xii

4.2 (a): Horizontal Congestion estimation of DPlace placement result with-
out One-Steiner routing prediction and (b) with One-Steiner routing
prediction . 47

4.3 (a): Horizontal Congestion estimation of C-ECOP congestion reparation
result without One-Steiner routing prediction and (b) with One-Steiner
routing prediction. 48

4.4 (a): Horizontal Congestion estimation of original DTB multiplexer place-
ment without One-Steiner routing prediction and (b) with One-Steiner
routing prediction. 48

4.5 (a): Horizontal Congestion estimation of DPlace placement result with-
out One-Steiner routing prediction and (b) with One-Steiner routing
prediction . 48

4.6 (a): Horizontal Congestion estimation of C-ECOP congestion reparation
result without One-Steiner routing prediction and (b) with One-Steiner
routing prediction. 49

4.7 (a) A degree-3 net connecting 3 cells. The bin crossings are denoted by
parallel lines. In this case, we expect 2 bin crossings, thus both the upper
left bin and upper right bin will have 1 horizontal crossing, while both
the upper left bin and lower right bin will have 1 vertical crossing. (b)
By adding Steiner points, the routing become more determined, however
due to C-ECOP net-center method (denoted by red dots), the nets are
practically only half the length of what it should be, thus resulting in C
where the vertical crossing between upper-left and lower-left bins is gone. 50

4.8 First trial place and route in EDI 14.27, the DTB Multiplexer is high-
lighted in red. 52

4.9 Complete routing failure immediately after route stage. 52
4.10 Spacing violations, almost exclusively caused by DTB Multiplexer cells. 53
4.11 200% scale placement of DTB Multiplexer. 53
4.12 Extremely sparse DTB Multiplexer placement with no cell overlap. . . 54
4.13 The 200% scaling placement still result in extremely high spacing vi-

olation caused by DTB Multiplexer, albeit the number is reduced by
half. 54

xiii

xiv

List of Tables

1.1 Portion of the datasheet of the BAP3 chip.[29] 5

4.1 Total estimated wirelength and total overflow results 49
4.2 Cell density and maximum overflow results 49

xv

xvi

Introduction 1
1.1 Background

Today’s automotive industry products such as cars are highly computerized, and
the chips made for automotive industries require a high degree of robustness and
reliability, as failure of any of a chip’s components might result in injury or even death
of the occupants of a vehicle equipped with said chip. One of the heavily computerized
components in a car is its entertainment systems. Entertainment systems use power
amplifier to give the desired level of audio output. These amplifiers are controlled by
digital chips as well, and in order to achieve the desired level of reliability, the chips
must possess a measure of testability and diagnostics. In the event of failure, the
failure must be identified through root cause analysis thus some measures are required
to enable root cause analysis.

Root cause analysis, can be done invasively or non-invasively. To do this invasively
would mean to cut-open the chip itself, which takes a lot of time, while delivering
the root cause analysis result is often time-critical. It is desirable to have a means
to pinpoint the point of failure quickly and non-invasively, similar to the idea of the
implementation of built-in-self-test capability. In the BAP3 chip design, one of the
implementations of this measure for the digital section of the chip is the use of Digital
Test Bus (DTB). Unfortunately, the use of DTB will incur additional costs, particularly
the die area wire density.

1.2 Goal

In many chips, it is desirable to have a capability to perform tests in the chip as part
of the debugging purposes and root cause analysis. The more test and diagnostics
measures we can implement to the chip, the more reliable the chip will be. However,
it will also incur more resource cost for the chip, and minimizing test and diagnostics
cost while maintaining as much testability as possible is a balancing act and is subject
to research.

There are two methods to implementing the test and diagnostics measures: Invasive
and non-invasive. Invasive methods involve prying open the chip, thereby destroying
it, while non-invasive uses hardware built into the chip. These measures however, are
not always interchangeable, and some of them needs to complement each other, and
for running a test and diagnostics of design behavior, there is a need for non-invasive
measure built into the chip.

1

In our case, this built-in non-invasive test and diagnostics measures has created a
significant resource requirement problem for the design of the chip, and we would like
to minimize the cost of our test and diagnostics measure implementation on our chip.

The obvious advantage to doing this of course, is the reduction of the required size
for the floorplan, thus increasing production yield. If the floorplan has been designed,
it is no longer possible to increase the yield per wafer, however, the benefit that comes
with saving area requirement can still manifest elsewhere.

With reduced resource requirement for this, we can expand the capability of the
test and diagnostics measure, increasing the observability of the chip. With smaller
area required by the test and diagnostics block, we can also allocate more area to other
modules, and we can implement more reliability measures on other blocks, such as
more decap cells, increasing reliability and potentially allowing higher clock frequency.

This thesis will explore methods to reduce the cost imparted by the DTB on the chip.
This thesis consist of 5 main sections: Introduction, Literature Research, Methodology
& Implementation, Results, and Conclusions.

1.3 Brief Hardware Description

The BAP3 is a multi-channel audio power amplifier with digital input and diagnostics
capabilities for automotive usage. The chip contains both analog and digital elements.
The middle section of the chip contains the digital section of the chip. Digital section of
the chip in Figure 1.3 shows the layout of the original BAP3 chip. The DTB multiplexer
is marked by the blue ellipse.

1.3.1 Digital Section of BAP3

The BAP3 chip can be broken down to three main components: Digital section,
Analog Mixed Signal Section, and Analog section, where the amplifiers are located,
and are built in several powerstages.

Our main interest lies in the digital section of the chip. The digital section of the
chip consists of many modules controlling the Analog and Analog Mixed-Signal IPs in
the chip. Each of the analog powerstages are controlled by a single control loop in the
digital section of the chip which, again, consists of several submodules.

These control loops are connected to a manager which can be programmed to control
the chip as whole. The manager can also determine the operating mode of the chip,
and as part of the testability measure, the manager incorporate a test mode in order
to diagnose the fault within the chip.

2

Figure 1.1: BAP3 circuit blocks illustration[29]

1.3.1.1 Implementation of Debugging Functionality

In a test mode, the chip has to be able to diagnose the fault within the design. We
would like to be able to pinpoint defects in our chips to be able to debug the chip in
case of a failure in our Root Cause Analysis. The measure is implemented in the form
of test bus. There are two kind of test buses in the chip: Digital Test Bus and Analog
Test Bus, as the name implies implemented as measure as test and debugging for the
analog section and the digital section of the chip respectively.

The focus of this thesis is the digital test bus. The test bus has to be able to
provide input for every module meant to be tested and output the result in real time.
This requires a combinational asynchronous module that is connected to every testable
module.

3

Figure 1.2: BAP3 simplified floorplan diagram. The powerstages are arranged together at
the top and right side. These powerstages receives input from the digital section of the chip.
There are some digital IP at the bottom section of the chip, namely several ADCs and ISR.

Figure 1.3: The DTB multiplexer contain input and output pins. Here the pins can be seen
as the yellow o and x markers within the DTB modules, with x being input for the DTB

and o being output of the DTB, with red lines representing net connections. o and x
markers outside the DTB represents driver pins or pins driven by the DTB respectively.

• DTB Multiplexer For this application, it is desired to have a real-time ability
to test the input of the modules in the chip, so we have a complete Data-Test Bus
(DTB) that feeds input and takes output to and from each of the desired modules

4

Table 1.1: Portion of the datasheet of the BAP3 chip.[29]

in the chip, this data test bus serves as an alternate input or output to or from
the intended modules. The relationship between the test buses and the test buses
are depicted in Figure 1.4.

Figure 1.4: Simplified diagram of DTB multiplexer data flow.

Depending on the number of modules we want to test, this relationship might get
significantly more complicated as the number of inputs and outputs increases accord-
ingly.

5

1.4 Resources needed for placement and routing

Looking at the chip from another perspective, we have to keep in mind that a chip is
also constrained by the size of the die it is etched on. The die of the chip is 47mm2

and out of this, the area allocated for the digital core of the chip is around 7mm2. The
BAP3 uses 5 routing layers, 2 horizontal and 2 vertical layers with last 1 layer used for
power distribution. And the chip needs to fit with all these constraints. We are also
not allowed to alter the floorplan of the chip.

1.4.1 Resource used by routing and how it affects area

While routing is not done on the substrate level, its presence above the cells does affect
cell placement. Each cell has a predetermined position of pins to be used as contacts.
The presence of such pins might affect the routability of the lowest layer of the metal,
and the effect will propagate to the metal on higher layers as well. This in turn will
affect the viability of placing other cells close to the aforementioned cell. A cell with
plenty of nets above it might not necessarily need a lot of substrate area to occupy, but
other cells might not be able to be placed close to it due to the presence of many nets
routed above it.

1.5 Problem description

Digital Test Bus is an important component contributing to reliability in BAP3 chips
as explained earlier. But it is important to realize that this component does not
contribute to the actual functionality of the chip itself. In a way the Digital Test
Bus can be seen as merely an overhead, which is a dead weight in terms of actual
functionality and the resource taken by the chip, thus we want to minimize the resource
required by the Digital Test Bus as much as possible.

The Digital Test Bus can be broken down into two modules. The control module
and the observe module. The Digital Test Bus is highly problematic as it involves long
wiring and major congestion points. The cell density of this module is much lower
than other modules thus we want to address the constraint imposed by wiring area,
so we can increase the cell density, thus making better use of the placement area and
reducing the overall size of the module.

We first need to find a metric that can quantify the possible area savings from an
improved design. This is important because we are not allowed to alter the floorplan
in any shape or form.

The issue with the DTB multiplexer is, due to the nature of its combinational
design involving thousands of multiplexer with several hundred inputs, the design is
wiring-intensive. The consequence to this is that DTB requires larger-than-desirable
routing area, whilst its cell placement are utilization is vastly below average (around

6

20-30% instead of 60+% average) which reduces the area available for other modules.

Our objective is then is to reduce the area requirement imposed by the routing
requirement so that it more closely matches the area needed by the cells alone, thus
improving utilization and freeing up additional resources to be used by other modules
in the chip.

1.6 Brief DTB Hardware description

Figure 1.5: DTB Multiplexer block diagram.[29]

The DTB multiplexer consist of two primary modules: Control Module and Observe
module. As the name implies, during the test mode, Control module serves as the
module that provides the input to each module that we want to test, overriding the
original input to the module under test, while the Observe module is used to observe
the output of the module that we want to test. In the current BAP3 chip, there are
six sets of control and observe modules so that it is possible to monitor or control 6
modules concurrently. These modules receive input or gives output via 6 IO pads that
are connected to both modules.

Each DTB multiplexer pads can be controlled by a 9 bit selection-line, as there are
six sets of DTB, the whole selection line bus is 54 bit wide, with each dtb corresponds
to dtb sel<0:8>, dtb sel<9:17> etc. If the selection bus, dtb sel, of a pin is set to all
zero, then the pin set to functional mode where functional signals, are routed straight
to the output pads.

Both the pads and observe and control modules are equipped with enable signals.
6 bits for the pads, and 9 bits for both control and observe module.

1.6.1 The Observe Module

The structural description of the observe module is in essence a multiplexer tree. Each
of the 418 input signals come from different modules in the digital part of the chip and

7

multiplexed into a single output at the end.

To observe the signal of a pin, the enable signal of the corresponding pin which
is one of the six dtb en pins must first be set to 1, and dtb sel must have an input
other than all zeros. The desired signal can then be observed in the output pad of the
selected DTB.

To observe high speed signals a virtual ground output pad can be selected, with
dtb sel vg, instead of the normal MFIO pad. A maximum of 6 signals can be observed
and/or controlled in parallel. A functional input signal is tied to a fixed value, via
dtb fix, if the functional pin is used as debug output pin.

Figure 1.6: DTB Multiplexer observe module block diagram.

1.6.2 The Control Module

The control module enables overriding an input to certain chip component under test
to observe the component behavior in real-time.

If the selection bus for a pin does not equal zero and this pin is set to debug input (for
example, for pad 6, dtb en<6> =1), the selected debug signal, dtb control<selection>,
can be controlled by a debug pin. If the corresponding dtb sel man zi bit is enabled
for this pin the manager can control the selected debug pin.

The selection between normal functional control and control from the pin can be
done inside the dtb mux, or inside the functional block. If the debug mux is in the
functional block, signal dtb control enabled<selection> must be used to control this
mux.

8

Literature Research 2
2.1 ASIC EDA workflow

As the number of transistors goes up, it is becoming less and less practical to design
a chip manually at transistor level. At VLSI level, Electronic Design Automation was
devised to tackle this issue. The Electronic Design Automation or EDA follows a
top-down procedure consisting of several steps which can be seen in Figure 2.1 [1].

Figure 2.1: ASIC EDA Flowchart

• System requirement definition
System requirement definition involves collecting data from customers and busi-
ness plan alike to come up with the broad solution to the issue presented.

• Electronic System Level
Electronic System Level (ESL) design involves defining which component of the
solution belongs to the hardware or the software, and in addition to this, ESL
involves performing simulations and cost estimations along with design-space ex-
ploration in order to come up with a solid knowledge basis for making informed
design decisions.

• Register-Transfer-Level
Register-Transfer-Level (RTL) design involves translating the hardware compo-
nent defined in ESL design stage into a design language that can be processed by
the EDA tools. RTL design level has two possible input: structural description of
a design, or behavioral description of a design

9

– Structural description of a design describes the interconnection between the
component of a design. The result of this translation is known as a netlist.

– Behavioral description of a design describes the reaction of a design given a
specific input or stimuli. This description is given in an algorithmic way. RTL
translation of this description would describe the behavior of the design in a
flow, clock cycle by clock cycle, this way, EDA tools are able to understand
the behavioral description of the design.

• Logical Level Design
Logical Level Design involves translating the RTL description into logic gates.
Design of this level is mostly done automatically by EDA tools which use their
own specific algorithms. This level consists of two steps:

– Synthesis
This process translates RTL description into gate description that is inde-
pendent of the technology used in the physical implementation.

– Mapping
This process maps the gates described in synthesis results into corresponding
cells, or components that are available in the technology used, and would
match the functionality of the gates in question.

• Physical Design Level
Physical Design Level is a really important step in EDA flow as this highly influ-
ences the area and power requirement of the final design, as well as the overall
performance. A great amount of research has been dedicated into this aspect of
EDA due to its importance. This level can be further broken down into several
steps, as can be seen in Figure 2.2.

Figure 2.2: Physical Design Steps Flowchart

– Floorplanning
Floorplanning involves partitioning a into several areas of which only certain
modules can be placed within. Floorplanning gives the designer an early
feedback for chip area, delay, and congestion estimates.

10

– Placement
Placement involves placing components on the chips substrate. This is an
extremely important step as it heavily affects routability, performance, heat
distribution and power requirement.

– Routing
Routing process determines the exact path the wire connections (nets) be-
tween cells take on the metal layers above the placed cells. Routing must
abide to a set of rules given by foundries in order for the chip to be able to
be manufactured. A well-routed chip must have 100% routability in the final
result, as well has minimizing wirelength and meeting timing requirements.

– Extraction and Verification
Extraction and Verification involves evaluating the chip based on the given
design rules and checking its full functionality [1].

2.2 Scope of the discussion

In order to achieve an acceptable result within the given time limit, we need to focus
on only select aspects of EDA design flow. We will not delve deeper into ESL design
level, nor the System Requirement Definition, as these pertain to the functionality of
the chip, and our effort is geared towards minimizing our design objective without
altering the functionality of the chip itself.

We will also not delve deeper into Logic-Level Design step. Although altering
the gate structure of the BAP3 might produce a better result, most of the synthesis
algorithm that has been researched pertain to timing and cell area optimization, in
addition to this, the combinational nature of the structure of the DTB multiplexer
leaves little room to be altered as seen on Figure 1.6, thus the time available should be
better spent researching other aspects that can be more easily improved.

We will thus focus on the Physical design level of the EDA flow. However we will
not delve deeper into Floorplanning level as the floorplan of the BAP3 chip is already
fixed. We will also not focus on routing as the routing algorithm used by EDA tools
are proprietary and we dont have any means to alter the algorithm. However, we will
use some aspect of the routing process in order to improve our effort in the Placement
stage, which is where our effort will be primarily focused on, as placement and routing
are heavily intertwined with each other.

2.3 Placement

Placement is an important step in the ASIC VLSI design flow. Placement heavily
affects both the performance and cost of the chip. A chip with good placement will
have shorter interconnect thus lowering delay and increasing possible clock speed.
A good placement also improves the routability of a chip, which means we can
increase the number of cells contained in a single chip, improving yield. Routability

11

is the most important metric here as will be obvious later. Furthermore, as men-
tioned before, placement also affects heat distribution and power consumption of a chip.

Placement can be divided into 3 steps: Global placement, Legalization, and Detailed
Placement [1].

• Global placement
In global placement, cells are placed in a flexible manner, and the aim for the
placement is to come up with an optimal rough placement of the cells within
the chip. As such, the wirelength model used are correspondingly simpler to
improve efficiency of this process, thus the resulting placement result might not be
immediately routable, possibly having design rule violations such as overlapping
cells.

• Legalization
Legalization makes minute adjustment to the position of placed cells or modules
in order to meet Design Rule Checks. Legalization does not take cost functions
minimization into account, it is only geared towards meeting design constraints.

• Detailed placement
Detailed placement is mostly an iterative process limited to cells or modules on a
specific region. The cells and modules inside this local region are further perturbed
to achieve optimization while maintaining the solutions within design constraints.
All of these are done while cells and modules on other regions are kept fixed.

2.3.1 Placement Objectives

Placement as a process requires some metric in order to evaluate the quality of the
process. There are several methods to evaluate the quality of the placement of a chip.
Some of the more commonly used ones are total wirelength. Wirelength is always going
to be an important placement objective regardless of the design goals of a chip. This
is because wirelength optimization often (although not necessarily always) indirectly
leads to better optimization of routability, performance, and power consumption [1].

2.3.1.1 Wirelength

Wirelength is commonly used as an objective for placement as it often leads to better
optimization of other objective. Wirelength optimization often (though not necessarily
always) results in better timing and less power consumption and better routability. A
highly routable design will require less detours, and thus will result in less wiring area
requirement. Over the years there have been several wirelength models devised, with
each offering different advantages in terms of accuracy and computational complexity.

• Half-Perimeter Wirelength
The simplest and least computationally intensive wirelength model, HPWL pre-
dicts that the wirelength of a net is simply half the total perimeter length of a
box enclosing all the pins of a net. This prediction is accurate for nets with only

12

2 or 3 pins, but not very accurate for nets with larger number of pins as it tends
to underestimate the wirelength of these nets.

• Minimum Rectilinear Spanning Tree (MRST)
MRST predicts that the wirelength of a net is the sum of all shortest possible
Manhattan distances between each pins (nodes) required to connect them all. It
is more accurate than the HPWL, but it requires more complex computation,
with the best achieved time complexity of O(NlogN) [16]. MRST also still falls
short in terms of accuracy. Like the HPWL, it is accurate for nets with two pins,
but is inaccurate for 3-pin nets or more. Contrary to HPWL, this approach tends
to overestimate net length.

• Steiner Rectilinear Minimum Spanning Tree(SMRST)
This approach is derived from MRST. Instead of simply trying to estimate the
Manhattan distance of the minimum wirelength needed to connect all the pins,
this approach adds virtual pins (nodes), called Steiner nodes/points. This points,
when placed in correct location, can trunk wires to connect different nodes instead
of connecting the nodes in a roundabout way, which results in detours.

More importantly, Steiner Rectilinear Minimum Spanning Tree (SMRST) is able
to predict more accurately how nets are going to be routed through the bins in
the chip. This way, we will have a better picture of how much routing resources
will be needed by the connections between cells. This can be a powerful tool in
predicting how the routing can contribute to the overall size of a module in a chip.

The disadvantage of both the MRST and SMRST is that both metrics basically
overlap with the routing domain in physical design stage. This means that, to cal-
culate these metrics, one has to use the same techniques used in the routing stage,
which means more computational complexity is going to be incorporated in the
placement stage. For example, calculating SMRST using One-Steiner algorithm
which will be presented in later section, requires a time complexity of O(N2logN)
compared to O(N)[7] for HPWL which simply calculates the Manhattan distance
of a net.

2.3.1.2 Routability

Routability is an objective that is very hard to quantify, as it depends on the routing
algorithm used to route a design, and the resulting routing solution. A way to get a
good measurement for this metric is to simply perform global routing, but this is too
computationally expensive for early placement process, which often involves multiple
iterations. By using MRST or SMRST, we can get a rough idea of how the eventual
routing result will look like without having to run a full routing, and we can use it as
the basis for our optimization effort.

Congestion is a metric that partially quantifies routability. Once we obtained a
routing estimation result from MRST or SMRST, we can then evaluate how many
wires cross any given area at once. If a particular area of a chip is subject to high
amount of wire crossing beyond the available routing resources (metal layers) around

13

its vicinity, then the area is said to be congested. Congestion is measured in overflows
in both vertical and horizontal directions. Overflow is the amount of excess nets that
cannot be routed due to the lack of wiring resources. Congestion also determines the
area requirement for wiring as detours caused by congestion will result in increased
wiring area requirement.

A net between two cells that would nominally be crossing a congested area will be
forced to take a detour around it. This complicates the routing effort and affects area
requirement negatively. One possible approach to reduce congestion is by allocating
white space on the floorplan. White space is a placement directives which gives lower
module density cap to regions that are expected to see more wire crossings (more
congestion). However allocating white space requires changes to the floorplan, thus
another method is needed to reduce congestion.

2.3.1.3 Other Objectives

Aside from the two objectives mentioned above, placement also affects interconnect
delay, power consumption, and heat distribution. Cell placement directly impacts the
interconnect between cells and thus affecting delay, the DTB multiplexer however, is not
subject to timing constraints, thus this aspect is can be overlooked. Besides, there are
plenty of other factors affecting the delay as well, such as routing and driver strength,
thus making accurate performance estimation impossible at placement stage.

2.3.2 Placement Steps

Placement is an NP-complete problem as demonstrated by Garey and Stockmeyer [17],
that even placing two cells connected by a degree-2 net in a straight line is already
an NP-complete problem, thus the available solutions to placement problem is usually
heuristic. Devising a heuristic solution for the entire placement process is decidedly
unwise, thus placement process is divided into several steps as to allow for better
results and reducing the complexity of the process itself. Placement is divided into 3
steps: Global Placement, Legalization, and Detailed Placement.

2.3.2.1 Global Placement

Global placement is arguably the most important and influential step in the whole
placement process. In global placement, the cost function of the placements objectives
are minimized. To do this, global placement algorithm deals with the entire circuit,
and is not constrained by more detailed constraints such as module overlaps. Global
placement can be roughly divided into 3 technique classifications: Stochastic placers,
bipartitioning placer, and analytical placer.

• Stochastic Placers
This placement method uses randomized approach such as simulated annealing
to prevent the placer from getting stuck in local minima. The placer starts with
randomized cell placement, and moves the cell position based on simulated an-
nealing. One of the most well-known example of this approach is Timberwolf. [25]

14

This method produces excellent results for smaller circuits, but is very inneficient
for larger circuits.

• Bipartitioning Placers
Bipartitioning placer recursively divides a chip into two, and the dividing line
between the two new partition is called the cut line. How the chip is divided is
determined by the cut cost. Cut cost is basically the number of connection that
would cross the cut line and the placer will try to find a position for a cutline that
will minimize the amount of connections crossing the cut line. This indirectly
minimize the wirelength and congestion [26][27].

This type of placers are generally seen as fast but simplistic, requiring less com-
putation but producing less desirable results than stochastic placer or analytical
placer. One example of this type of placer is Capo. Capo is optimized for conges-
tion minimization but utilizes white space thus requires changes to the floorplan
[4].

• Analytical Placers
Analytical placement method attempts to describe the placement problem in an
analytical way, such that it describes the cost function and constraints as equations
which describe the cells and modules’ position in a coordinate system. The cost
function used is the wirelength, while the constraints are imposed by module
overlap and other design rules specific to the design. To use analytical placement
approach, however, a simple HPWL wirelength model is not applicable. This is
because HPWL is not convex nor smooth, thus cannot be used to find minima.
The non-overlapping constraint is also non-convex and not differentiable.

A way to tackle this issue is by using wirelength model other than HPWL. The
wirelength model used needs to be convex and differentiable. Analytical placers
can thus be broadly be classified into two class, based on the wirelength model
used: Quadratic Wirelength Placers and Non-linear Placement model [27][28],
which uses to Log-Sum-Exp wirelength model [20].

– Quadratic Placers
Quadratic placers uses quadratic wirelength model as its cost function. As
the cost function is quadratic, it is convex and differentiable, and can be
reduced to a set of linear equations that can be efficiently solved by LP
solvers. A disadvantage of using quadratic wirelength is that it frequently
overpenalizes long wires, and this is not always desirable depending on the
design objectives, such as when routability is preferred over performance.

– Non-Overlapping Constraints
Another problem to be tackled in building an analytical placer is satisfying
overlap constraints. This is a more complex task than to find a convex
differentiable wirelength model for the cost function. Many placers have
their own unique way to address this problem and often more ingenuity can
be found in this aspect of placement algorithm than the wirelength model
aspect. There are several methods used to satisfy this constraints. One of
most popular one is the Move and Hold Forces.

15

∗ Move and Hold Forces
One method to satisfy non-overlapping constraint is by using Move and
Hold Forces. Hold force is defined as a constant force that serves as
the inertia of a cell that makes them less prone to be moved when the
placement is redone.

Move force on the other hand is meant to move and diffuse the module
from dense area to less dense area. The strength of the force is dependent
on the density of the region the modules are in. The denser the region,
the stronger the move force is. This can be derived using Poisson
distribution to model the density distribution [15].

The Move and Hold Force however, can also be substituted with other
means, such as Diffusion Process [6].

– Net model for higher-pin nets in analytical placement
Analytical placers are naturally easy to implement for nets with only two
pins, but for any net with more than 2 pin, a representative net model is
required to transform the net into a set of two-pin connections that can be
used by the minimization equations. The two basic net models that are often
used are clique and star model. A combination of both is called the hybrid
net model.

∗ clique model
In clique model, all the pins in a net are connected to each other, forming
a complete subgraph. The weighting on each of the link must be set
properly to represent the actual edges coming out of the pins of the net,
for example, a n-pins net with weight w must adjust the weight of its
constituent 2-pin nets to n/(w − 1) [10].

∗ star model
In Star model, one virtual node is created in the middle of all the pins.
With a proper net weights, this can represent the same net as clique
model [11][12]. The star model increases the number of nodes in the net
representation, thus increasing the number of linear equations to solve,
however, it eliminates a great number of the edges used to represent the
net. This is especially useful in solving nets with especially large number
of pins.

Using a matrix representation of the linear equations, it can be seen
that the matrix representation of star network is much sparser than
the clique network representation. This can have favorable effect of
reducing the runtime of a solver as linear-programming solver is often
much more affected by how sparse the matrices are than the dimension
of the matrices themselves.

∗ hybrid model

16

Taking the equivalence of both models into consideration, a hybrid net
model [12] uses the clique model for nets with 2 or 3 pins and star model
for more pins. This serves as the basis of anchor cell in DPlace.

2.3.3 Dplace Global Placement Algorithm

Luo and Pan came up with a quadratic placement algorithm called DPlace [2]. Dplace is
optimized for wirelength and overlap minimization, both of which positively contributes
towards reducing wire density in our design.

2.3.3.1 Overview

As explained earlier, quadratic placement seeks to minimize the quadratic wirelength
cost function. This however will result in significant amount of cell overlap. Most
quadratic placers employs force in its placement to overcome this problem. This force
is interpreted as adjustments in either the A matrix or b vector of the quadratic
equation, which will be explained later in section 2.3.3. Force directed placement can
be divided into two categories: Constant Forces placement and Fixed Point Forces
placement.

Constant Forces placement only makes adjustments to the b vector of the quadratic
equation. This is advantageous in terms of runtime complexity, as the A matrix only
needs to be calculated once at the beginning. Constant Force placement however can
be quite unstable depending on the A matrix, and can often produce a really large
shift that push cells out of the chip bounds.

Fixed Point forces Placement addresses some of the problem with the Constant
Forces placement by adding virtual fixed connection between cells, thus producing
a more stable result, however, this method is both computationally intensive as it
involves recalculating the A matrix every iteration, and if the virtual net requires
careful weighting. If the virtual net is weighted too heavily, it will immobilize the
cells connected to it, whereas if the net is weighted to lightly, it will basically produce
similar result to Constant Forces placement with added computational cost

Like most other quadratic placement algorithm, Dplace uses quadratic wirelength
model instead of the simpler HPWL as its primary cost function. Unlike most other
quadratic placement algorithm, however, Dplace does not use force to address the
overlapping issue, freeing it from possibly troublesome issue of net weighting. Instead,
DPlace uses diffusion preplacement and anchor cells.

2.3.3.2 Quadratic Placement Method

As mentioned in the previous section, quadratic placers uses quadratic wirelength as
a cost function for its placement. Quadratic Wirelength has been briefly discussed
in section 2.3, but here we shall delve into the deeper details. Quadratic wirelength
between cells i and j, is defined as wij((xi−xj)2 + (yi− yj)2) where wij is the weight of

17

the net between i and j. To illustrate this, suppose we have a circuit consisting of two
pads, two movable cells, and, and three two-pin nets, as seen on Figure 2.3

Figure 2.3: A circuit consisting of two pads, two movable cells, and, and three two-pin nets,
connecting P1 to C1, C1 to C2, and C2 to P2. The net between C1 and C2 are weighted

twice that of the other nets.

As there are three nets, we have three sets of quadratic equation:

Qwl1 = 1((xc1 − 0)2 + (yc1 − 0)2)

Qwl2 = 2((xc2 − xc1)2 + (yc2 − yc1)2)
Qwl3 = 1((xc2 − 1)2 + (yc2 − 1)2)

(2.1)

It should be noticed that there are no terms containing x multiplied by y. This is
means that the x terms and y terms can be separated, and regrouped according to their
axes.

QwlX = 1(xc1 − 0)2 + 2(xc2 − xc1)2 + 1(xc2 − 1)2

QwlY = 1(yc1 − 0)2 + 2(yc2 − yc1)2 + 1(yc2 − 1)2
(2.2)

To find the minimum value of these equations, we simply need to find their deriva-
tives, and thanks to the fact that there is no term containing x multiplied by y, this

18

can be done rather easily with partial derivatives

(∂QwlX)/(∂xc1) = 2(xc1) + 4(xc2 − xc1)(−1) + 0

= 6xc1 − 4xc2 = 3xc1 − 2xc2

= 0

(∂QwlX)/(∂xc2) = 0 + 4(xc2 − xc1)(1) + 2(xc2 − 1)

= 6xc2 − 4xc1 − 2 = 3xc2 − 2xc1 − 1

= 0

(∂QwlY)/(∂yc1) = 2(yc1) + 4(yc2 − yc1)(−1) + 0

= 6yc1 − 4yc2 = 3yc1 − 2yc2

= 0

(∂QwlY)/(∂yc2) = 0 + 4(yc2 − yc1)(1) + 2(yc2 − 1)

= 6yc2 − 4yc1 − 2 = 3yc2 − 2yc1 − 1

= 0

(2.3)

These system of linear equations can be written in matrix form as[
3 −2
−2 3

] [
xc1
xc2

]
=

[
0
1

]
[

3 −2
−2 3

] [
yc1
yc2

]
=

[
0
1

] (2.4)

Solving these equations will yield xc1 = yc1 = 0.4 and xc2 = yc2 = 0.6. Instead
of having to write all the quadratic equations for each net and evaluating the partial
derivative of each equation, the matrix form above can actually be obtained from the
Laplacian matrix of the circuit and the coordinates and weight of the pad connections.
Thus the minimization function can very simply be written as

Ax = bx and Ay = by (2.5)

Where A is the Hessian(Laplacian) matrix obtained from the netlist, x and y are
the cell position vector to be obtained on their respective axes. And bx and by is the
pad vector which is obtained by element-wise multiplication the pads position on their
respective axes and the weight of their connection to movable cells.

To start, a netlist is turned into a hypergraph with cells represented by nodes and
nets represented by edges. This can in turn be represented by Laplacian matrix such
as the one in Figure 2.4

A problem with hypergraph and matrices is that matrices cannot represent a net
with more than two degrees succinctly, thus multi-degree nets are often represented

19

(a)


2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2


(b)

Figure 2.4: (a) four-cell circuit circuit with each cell connected to its adjacent neighbors and
(b) its Laplacian matrix representation

by other net models that are briefly discussed in section 2.3. Traditionally, nets are
represented by the clique model, whereas every cells connected to a single multi-degree
nets are represented as being connected to one another, essentially forming a complete
subgraph for the cells.

(a)


3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3


(b)

Figure 2.5: (a) A graph representation of a 4-cell circuit connected with a single degree-4
net, and its transformation to clique net model (b) its Laplacian matrix representation

• Connection weighting
Important nets that have stringent timing constraint should be placed close to-
gether, and this can be represented by increasing the weight of the nets in question.
This means the net has higher cost and will be minimized more extensively than
nets with less weight.

• Pad location vector
The bx and by vectors are primarily obtained from the pad location on the circuit.
They represent the constants in the derivative equations. Each row of the vector
corresponds to a cell in the Hessian matrix, and we obtain the value of each row by
multiplying all the x(for bx) and y(for by) position of the pads connected to the
cell corresponding to the row in the b vector with the weight of their connections.
The example of this can be seen in Figure 2.7

For a circuit with a million cell, then we need an Ay matrix with a dimension of a
million by a million as well as a by vector one million element long as well. This might

20

(a)


3 −2 −1 0
−2 3 0 −1
−1 0 2 −1
0 −1 −1 2


(b)

Figure 2.6: (a) Reduction of the length of a net with stringent timing constraint by
increasing the weight of the net. (b) its Resulting Laplacian matrix representation

(a)

A =

[
(2 + 2 + 1) −2
−2 (2 + 1)

]
Bx =

[
1(0) + 2(1)

1(1)

]
By =

[
1(0) + 2(0.5)

1(1)

]
(b)

Figure 2.7: (a) A four-cell circuit where more than a single cell is connected to one pad. (b)
Weighting of the Laplacian matrix A and b vectors based on connections to the cell. The
elements of both b vectors are obtained by summing the product of the weight of each net

connected to a pad and the corresponding cell and the x or y position of each of the
connected pad.

seem big, but the since a single net rarely has more than a few hundred connections at
most, the resulting matrix will be sparse, thus despite solving for the position vector
by means of matrix inversion should require a time complexity of O(N2logN)[30], the
number of actual data processed not all the elements of the N by N matrix, but the
number of nonzero elements in the matrix, and thus for computer solvers such as
MATLAB, the complexity is scaled accordingly[31].

2.3.3.3 Diffusion Preplacement

• Overview
Diffusion preplacement is a crucial component in Dplace placement algorithm.
Diffusion Preplacement allow cells to spread out and reduce overlaps from the
quadratic placement result. Diffusion preplacement was proposed by Ren et al.
[5]. The diffusion preplacement is inspired by other processes common in semicon-

21

ductor industry such as dopant-diffusion process on chip substrate [19]. In diffu-
sion process, materials from a high-concentration area moves to low-concentration
areas.

Cells in diffusion moves based on the gradient of the cell concentration of their
current position. A good analogy to this is how a ball rolls down a hill based
on the slope of the steepness of its position. The diffusion process is expected to
reach a steady-state once the particle distributions are evenly uniform [5].

A similar gradient-based cell-spreading method has also been tested by the de-
velopers of DPlace [21], and it yields similar result in terms of maintaining cell
order, but DPlace uses this diffusion preplacement method instead.

• Diffusion Process
The relationship between the particle concentration and the diffusion process can
be described with the following partial differential equation

∂dx,y(t)/∂t = D∇2dx,y(t) (2.6)

dx,y(t)y is the particle concentration at point x,y at time (t) D is the diffusivity
constant which dictates the speed of the discussion. For the sake of brevity, D
will be assumed to be 1 for the rest of the document

The above equation gives us a mean to calculate the instantaneous velocity of
each cell in the diffusion process. The velocity vector of a cell in a 2-dimensional
diffusion process at any given time is given by the following equations:

vHx,y(t) = −((∂dx,y(t))/∂x)/dx,y(t)

vVx,y(t) = −((∂dx,y(t))/∂y)/dx,y(t)
(2.7)

Where vector Vx,y of a particle in a diffusion process consist of horizontal velocity
element vHx,y and vertical velocity element vHx,y.

From the equation above, it is then clear that we can calculate the position of
each particle at any given time simply by integrating them in respect to . This is
given in the following equation:

x(t) = x(0) +

∫ t

0

vH
x(t′),y(t′)

(t
′
)dt

′

y(t) = y(0) +

∫ t

0

vV
x(t′),y(t′)

(t
′
)dt

′
(2.8)

The equations above are enough to model a diffusion process in a continuous
environment, however, in practice, we will need to discretize these equation to a
form that can be readily accepted by computer simulation such as MATLAB.

22

• Discretization

Figure 2.8: Bin velocity is determined by the gradient of the bin density.

A problem with this method is that multiple particles, or cells, can have different
position inside a bin, and ideally, each should have different diffusion velocity. This
method however, applies the same velocity vector to each and every cells contained
in a single bin, which does not lend itself well to the objective of driving the particle
away from each other, especially if the number of bins used are relatively low.

Furthermore, two cells that are positioned relatively close towards each other,
but happen to be contained on different bins (both located close to a boundary
between bins), could have very different velocity vector, and heavily alters the
original ordering of the cells, which could give unforeseen results.

To address this problem, this algorithm employs a method called Cell-Velocity
Interpolation. With this method, the velocities of the cells that fall within the
same bin would be adjusted according to their locations relative to bin center
position of the bins they are in, and the bin centers of the adjacent bins closest
to the cell.

For the sake of the argument, we will assume all bins to have width and length 1.
If a cell has a position of xc and yc, and the center of the bin the cell is in is xi,j
and yi,j, then if xc > xi,j and yc > yi,j, then the four nearest bin centers to the
cell belong to bin (i,j); (i+1,j); (i,j+1); and (i+1,j+1), conversely, if xc < xi,j and
yc < yi,j, then the four nearest bin center to the cell belongs to bin (i,j); (i-1,j);
(i,j-1); and (i-1,j-1).

If we let α = x+ 0.5−bx+ 0.5c and β = y+ 0.5−by + 0.5c, we can use α and β
to determine the offset of the cell in question in respect to the bin center it is in.
We can then use these offsets to implement a finer adjustment to the velocity of
the cell by calculated the weighted mean of the velocity of the cell given by the
bin center velocity combined with the velocity of the other 3 nearest bin centers.

23

These offsets will serve as weighting for each bin in the mean calculation. So the
final cell velocity in the case of xc > xi,j and yc > yi,j is given by:

vHc = vHi,j + α(vHi+1,j − vHi,j) + β(vHi,j+1 − vHi,j) + αβ(vHi,j + vHi+1,j+1 − vHi+1,j − vHi,j+1)

vVc = vVi,j + α(vVi+1,j − vVi,j) + β(vVi,j+1 − vVi,j) + αβ(vVi,j + vVi+1,j+1 − vVi+1,j − vVi,j+1)

(2.9)

Or in case of xc < xi,j and yc < yi,j

vHc = vHi,j + α(vHi−1,j − vHi,j) + β(vHi,j−1 − vHi,j) + αβ(vHi,j + vHi−1,j−1 − vHi−1,j − vHi,j−1)

vVc = vVi,j + α(vVi−1,j − vVi,j) + β(vVi,j−1 − vVi,j) + αβ(vVi,j + vVi−1,j−1 − vVi−1,j − vVi,j−1)

(2.10)

To illustrate this we can take a cell in bin(3,3). If the cell in question has a position
of x=3.6 and y = 3.8, then the closest 4 bin centers are: its own bin center; bin
center of bin(3,4); bin center of bin(4,3); and bin center of bin(4,4).

Figure 2.9: Cell velocity fine tuning using the cell position in relation to the bin center
position.

vH3,3 = 0; vV3,3 = 1

vH3,4 = 0.707; vV3,4 = 0.707

vH4,3 = 0.707; vV4,3 = −0.707

vH4,4 = 0.707; vV4,4 = 0.707

(2.11)

From Figure 2.9, we can calculate α = 3.6 + 0.5 − b3.6 + 0.5c = 0.1 and β =
1.8 + 0.5− b1.8 + 0.5c = 0.3.

24

So using equation 2.9 we can calculate the cell velocity of cell c as

vHc = vH3,3 + 0.1(vH4,3 − vH3,3) + 0.3(vH3,4 − vH3,3) + 0.03(vH3,3 + vH4,4 − vH4,3 − vH3,4)
vHc = 0 + 0.1(0.707− 0) + 0.3(0.707− 0) + 0.03(0 + 0.707− 0.707− 0.707) = 0.26159

vVc = vV3,3 + 0.1(vV4,3 − vV3,3) + 0.3(vV3,4 − vV3,3) + 0.03(vV3,3 + vV4,4 − vV4,3 − vV3,4)
vVc = 1 + 0.1(−0.707− 0) + 0.3(0.707− 0) + 0.03(1 + 0.707 + 0.707− 0.707) = 1.19261

(2.12)

Thus the cell velocity vc is now
[
0.26159 1.19261

]
instead of

[
0 1

]
from the one

given by the cell bin velocity.

2.3.3.4 Wirelength Reparation with Anchor Cells

Diffusion reduces the overlaps between the cells inside the placement area. However,
this process counteracts the effort of the quadratic placement itself, as spreading cells
apart will inevitable increase wirelength, and this is not desirable as we want to start
our congestion reduction process from the smallest wirelength possible, minimizing the
amount of work we need to do later on.

One way to address this is to repair the diffusion result with the quadratic solver
again, but doing this alone means that the cells will collapse back to their pre-diffused
state. One solution to this is to fix a number of cells so it will serve as an anchor
to prevent too many cells from getting pulled back to their original position before
diffusion.

Another way to do this is to use a virtual cell as an anchor instead of actual cell.
This method is based on the star net model, where a net can be represented as an
extra cell, thus extra elements in the hessian matrix. This way, instead of having a
net represented as a complete graph in the hessian matrix, the net is represented as a
single cell with two-degree connection to each and every single cell connected to the
net in question.

Originally this net model was devised to decrease the amount of computation
on the quadratic solver, as it makes the matrix much sparser despite increasing the
dimension of the matrix slightly. DPlace utilizes the virtual cell of the star net model
[14] not to decrease computational load, but as the anchor instead of actual cells, in
practice making the nets the anchor instead of the cells.

As these anchor virtual cells are static, they do not have to be represented in the
hessian matrix. Instead, adding static cells is simply equivalent to adding pads in the
middle of the placement area instead of around it. This means, for every cell connected
to a certain net, we need to add a value to their corresponding elements in bx and by

vector to reflect the fact that they are now connected to additional pads.

25

(a)


5 −1 −1 −1
−1 5 −1 −1
−1 −1 5 −1
−1 −1 −1 5



x1
x2
x3
x4

 =


p1
p2
p3
p4


(b)

Figure 2.10: A circuit with 4 cells, 4 2-degree net connections between the cells, forming a
clique, and 4 pads. (b) its wirelength-minimization equation matrix representation

(a)


5 0 0 0 −1
0 5 0 0 −1
0 0 5 0 −1
0 0 0 5 −1
−1 −1 −1 −1 4



x1
x2
x3
x4
s

 =


p1
p2
p3
p4
0


(b)

Figure 2.11: The same circuit as Figure 2.10a, but with star net representation (b) its
wirelength-minimization equation matrix representation, the dimension has increased by 1

on both axis, but the matrix became much sparser

Not all nets are used as anchors however, as this could make the placement too
static. Only nets with degree larger than a certain threshold will be used as anchors.
The position of the anchors are calculated as the geometric mean of all the cells
connected to the net, and a new hessian matrix and bx and by vectors will be created.

The additional value added to the elements of bx and by vectors is determined
by the position of the anchor cell, which was in turn determined by the geometric
center of the net, and the weighting of the anchor, which is equal to the degree of the
net minus 1 multiplied by position of the net center.

2.4 Routing

After a chip has been placed, then the components need to be connected to each other
according to the netlist. Routing can be classified into two stages, Global routing and
Detailed routing. Global routing seeks to create tiles within the circuit containing the
cells/module such that each tiles can be routed to each other, while at the same time
optimizing the cost function and meeting constraints. After global routing is done,
then detailed routing is supposed to actually assign the tracks and vias for the nets.

26

(a)


5 0 0 0
0 5 0 0
0 0 5 0
0 0 0 5



x1
x2
x3
x4

 =


p1 + wC
p2 + wC
p3 + wC
p4 + wC


(b)

Figure 2.12: Anchor-cell implementation based on star-net representation (b) its
wirelength-minimization equation matrix representation, the dimension is the same as in

Figure 2.10, but a weighted constant has been added to the elements of the b vector.

Algorithm 1 Anchor-cell construction algorithm

for net(i) = 1 to number of nets do
Find the position of the center of net(i)
if degree of net(i)) > anchor net degree threshold then

for all cell connected to net(i) do
Add the cells corresponding element in C vector with ((net degree 1) * position of
the center of net(i))

end for
end if

end for

Routing are constrained by both Design Rule Constraint (DRC) and performance
constraints. DRC usually pertains to the technology used in the routing while per-
formance constraints will usually pertain to the speed, determined by the critical nets
within the circuit/subcircuit in question.

2.4.1 Types of Global Routing

• Sequential Global Routing
Sequential global routing is simple and straightforward, it sequentially route all
the nets in the circuit based on a specific order. Sequential routing however,
owing to its sequential nature, does not take consideration of the possible ill-
effect caused by the routing of the net currently being routed on the routability
of other nets. Evidently, the solution quality highly depends on the order of the
nets to be routed. Due to its simplicity, it can be run quickly, but will usually
yield less desirable routing result compared to concurrent global routing.

• Concurrent Global Routing
As sequential global routing result is highly dependent on the order of nets being
routed, there is a desire for another method that is not affected by order of the
routing. This method is known as concurrent global routing.

27

Concurrent global routing with two-pins nets is often modelled as 0-1 Integer linear
programming. The objective of the programming is to achieve a routing scheme
where all the cells can be routed according to the netlist and the nets involved
does not require more tracks than each edge provides. This problem is known
to be NP-hard and there are approximation using regular Linear Programming
approach by replacing the binary variable of whether a track is required or not (0
or 1) with a real variable that can contain any value in between 0 and 1.

• Global Routing for higher-pin nets
For nets with more than 2 pins, one approach is to decompose the nets into several
two-pin connections, and iteratively routing them one by one. One of the sim-
plest way of doing this is by using Minimum Rectilinear Spanning Tree (MRST).
Computing MRST can be done with modified Prims or Kruskals algorithm, and
this can be done in polynomial time. MRST however, connects all the pins in
successive manner, and this way each net will only have a degree of two. This
is obviously suboptimal, and simply not realistic to be used as an actual routing
algorithm.

Figure 2.13: MRST result of routing 5-pin net. The resulting wirelength in this example is
16 units.

2.4.2 Spanning Tree Approach

2.4.2.1 Minimum Rectilinear Steiner Spanning Tree

A refinement of the MRST is the Steiner Minimum Rectilinear Spanning Tree
(SMRST) which connects all the points but with the addition of several virtual
nodes known as Steiner points. In hindsight, depending on the size of the circuit
and cell positions, there is potentially an infinite number of Steiner points to be
considered. Fortunately, Hanan’s theorem proved that there are only a limited
number of Steiner points that are worth considering, and these lies within the
so-called Hanan grid [8], and we can enumerate all the possible routes through all the
Steiner points in the Hanan grid to find the best possible routing scheme. Unfortu-
nately, for higher-degree nets, this would still prove to be too computationally intensive.

28

(a) (b) (c)

Figure 2.14: (a): Hanan grid of the same 5 cells connected by a net, (b) the resulting
possible Steiner points marked by ♦ which are the intersections of the Hanan grid. (c): The

resulting MRST routing with an additional Steiner point. The wirelength cost for this
routing is only 9 unit.

MRST construction, is an NP-complete problem, however, and many heuristics
method have been devised to construct MRST. One of the fastest one is the One-
Steiner approach [7].

Algorithm 2 One-Steiner Algorithm

C = nodes from all the cells in the design
S = all Steiner points in the design
Create MRST using Prim or Kruskal's algorithm
while C is not empty do

Find wirelength of (C ∪ x), x ∈ S
if SMRST wirelength decreases then
C = (C ∪ x)
delete x from S
remove all Steiner points already in C with degree ≤ 2

end if
end while
Output = MRST(C)

• One-Steiner Approach
Based on the Steiner points approach, Kahng and Robins proposed a fast SMRST
construction method called the One-Steiner approach. In this case, the routing
starts with normal MRST construction with either Prim or Kruskals algorithm,
One-Steiner algorithm adds an extra Steiner point to the points already used
in creating the MST (cells connected to the net). With the added extra Steiner
points, the SMRST length will decrease to the point that if there is no more Steiner
points that can be added will give any reduction in length, then the process will
be terminated [7]. The general algorithm of the One-Steiner approach is described
in Algorithm 2.

29

Current routing length =
14 units

Add one Steiner point, re-
sulting length = 12 units
< 14 units, this Steiner
point is kept. Current
length is now 12 units

Add another Steiner
point, resulting length
= 13 units > 12 units
, this Steiner point is
discarded.

Add another Steiner
point, resulting length
= 12 units (no improve-
ment) , this Steiner point
is discarded.
It must be noted that
even if this point was
to be added, it will be
deleted later anyway as
the degree is ≤ 2

Add one Steiner point, re-
sulting length = 10 units
< 12 units, this Steiner
point is kept. Current
length is now 10 units

Figure 2.15: shows the example of One-Steiner algorithm, nodes from cells are marked by •,
unexplored Steiner points are marked by ♦, and used Steiner points are marked by �.

While One-Steiner is a relatively fast routing algorithm, its time complexity is still O(N3),
for a net with high degree, this can take a very long time to complete. A batched variant of

the algorithm also exists with a time complexity of O(N2log(N)).

30

2.5 Congestion and Area Requirement

With the advances in VLSI design, the number of cells and wiring ever increases. As
wires are routed over the cell, this presents another constraints which is wire density,
or in other words, congestion, which is separate from the cell density. Routing overflow
sometimes contributes to area requirement more than the cells themselves. It is possible
to implement heuristics method to improve congestion at the placement level, and this is
key to improving routability of the design, and eventually reducing the area requirement
imposed by wiring detours [7]. There has been other congestion estimation method
based on bounding-box routing model and supply and demand model [22][23][24], but
the result has not been very satisfactory[6].

2.5.1 Congestion Minimization with C-ECOP

Wiring area is intrinsically tied to congestion. We need to know the congestion to
accurately determine the area required by wiring. By actually doing a trial routing on
the design, this method can produce an accurate model on congestion, and thus wire
density. However, as have been demonstrated by the One-Steiner wire routing model,
the computational cost is too prohibitive to be of practical use in our case. Instead, we
need to use a simplified wire crossing model that can still provide an adequate picture
of the congestion in the design.

Li et al. proposed a congestion-driven placement method called the C-ECOP for
standard cell placement. The method relies on a new routing model and cost function,
and relies on ILP for the actual placement stage [6].

2.5.1.1 Routing Model and Cost Function

C-ECOP uses the global bin concept to estimate congestion cost. In this concept, the
chip is partitioned into multiple bins during the global placement stage, hence global
bins. A wire crossing the edges of this bins will contribute towards the congestion of
the design, thus the congestion calculation is tied to each bin. The more bins we have
in the calculation, the more accurate the result would be, as would be clear later.

The simplest utilization of the global bin concept is to simply place a design, and
let a simple trial router such as bounding box router to try route a placement result.
This can give us the general idea of where the wires are going to be, thus the wire
crossings between the bins can be calculated and thus we have a rather rudimentary
result on congestion in our design.

We can think of each edge of a bin of having a finite amount of routing resource
supply, and each wire crossing an edge will impose demand on the said edge. An edge is
said to be congested when the routing demand exceeds the routing supply on the par-
ticular edge. The congestion of a bin with this method is thus calculated as the sum of

31

the congestions of all four edges of the bin in question, as seen in Equation 2.13 and 2.14.

[6]

2.13

[6]

2.14

However this method is not particularly accurate, especially over larger number
of bins, as a simple router such as bounding box router does not have any means to
ascertain which bins are crossed when a wire between two cells that are not adjacent to
each other needs to cross multiple bins to connect them, as can be seen in Figure 2.16

Figure 2.16: Multiple possible routes to connect two cells in two non-adjacent bins

Simple estimation like bounding box router does not take this into account, thus it
cant give an accurate prediction on where the congestion is going to be, and on the
other hand, as have been mentioned before, running a Steiner-tree routing is too costly
for an iterative placement method [9].

Instead of resorting to either of those methods, C-ECOP uses a probability routing
that allocates distribution of a wire based on the bin containing the cells that its
connected to. Each edge of a bin will have a probability of whether a wire crosses it
or not.

To illustrate this we can take an example of a single bin k. This bin is located in
an area where all the bins in it have a non-zero probability of being crossed by a wire

32

going from cell 0 to cell 1. The probability of the left edge of this particular bin being
crossed by a wire going from cell 0 to 1 is given in Equation 2.15 .

[6]

2.15

Where Wkl is the probability of the left edge of bin k being crossed by a wire. The
generalization of this probability calculation for both left and right direction and taking
account of no crossing at all, is given in Equation 2.16.

[6]

2.16

Wkl is the probability of the left edge of bin k being crossed by a wire,
Wkr is the probability of the right edge of bin k being crossed by a wire.
ik is the horizontal index of bin k
jk is the vertical index of bin k
i0 is the horizontal index of bin 0, where cell 0 is located
j0 is the vertical index of bin 0, where cell 0 is located
i1 is the horizontal index of bin 1, where cell 1 is located
j1 is the vertical index of bin 1, where cell 1 is located

proof: In global placement, wires are assumed to be traversing the bins in a greedy
way in a taxicab geometry, that is given horizontal bin index i and vertical bin index j,
the wire will go through these index in a non-descending fashion. This means, if a wire
starts from bin (i,j), i = 1 and j = 1, the wire can either go to bin(1,2) or bin(2,1) but
not both. This means for a wire traversing n bins horizontally and m bins vertically,
we have a set i ∈ {1, 2, .., n} and j ∈ {1, 2, ..,m} thus the number of unique paths a

wire can traverse is either

[
n− 1

(n− 1) + (m− 1)

]
or

[
m− 1

(n− 1) + (m− 1)

]
.

Finding a probability of a an edge of a bin k being crossed by a wire going

33

from cell c0 to c1 is simply a matter of enumerating all the possible wiring routes going
from bin 0 to bin k, and multiplying it with all the possible wiring routes going from
bin k to bin 1, and then dividing it over the number of total routes from bin 0 to bin 1.
This can be done with the previous equation. The difference of probabilities between
left and right (and top and bottom) sides is merely 1 bin, which is represented with
the -1 on either the first or second term of the equations.

2.5.1.2 Higher-Degree Net Representation

The congestion cost model used in C-ECOP poses a problem. It can only be used on
nets with degree of two. There have been other representations of net model other
than clique such as star model which replaces the complete-graph representation of the
clique model with two-cell connections with the addition of a single virtual cell. Hou et
al. uses this star representation to create a routing model which represents a net as a
collection of 2-degree connections between a cell and a virtual cell called the net center.
The net centers position is calculated as the geometric mean of all the cells connected
to that particular net. C-ECOP uses this net model to break down nets in the design
into two-degree connections thus enabling the use of its cost function [13].

2.5.1.3 ILP-based Congestion Reduction

Minimizing congestion after a placement usually means trading off wirelength for
routability. Thus we need to achieve a good balance between wirelength and con-
gestion. This problem however, is NP-hard, and we need a heuristic method to find
a good enough solution. The core of this problem is, that unlike cell overlap problem
described in diffusion preplacement, the data available here are not points, but a set
of probability of the possible wirings given a set of placement, which means we cant
simply use similar gradient-based diffusion as before in a straightforward manner.

C-ECOP uses an iterative method to reduce congestion. It takes input from a
placer, such as DPlace, and estimates the congestion using the method described in
section 2.5.1.1. A parameter called cell flow tendency is then calculated, which will be
used in the ILP placement, where the placement result will be recalculated again for
its congestion, and fed back to the ILP until a desirable result is obtained.

Figure 2.17: C-ECOP algorithm flow.[6].

34

• Cell flow tendency
Like diffusion preplacement, cells in a heavily congested bin should be moved
out in order to reduce congestion in the bin in question, thus reducing routing
demand and reducing wire density. The problem is knowing where the cells
should be moved to. In diffusion preplacement, cell density gradient provides a
direction which the cell would follow at any given iteration, however this is not
the case with C-ECOP.

Instead C-ECOP calculates the direction via cell flow tendency. This parameter
indicates how likely it is for a cell to be moved out of the bin it is currently in.
Cell flow tendency of a cell ck in bin(i,j) is calculated as:

xflowl(ck) =
∑
netkl

pl(k)−
∑
netkr

pr(k)−
∑
netkc

xflowr(ck) =
∑
netkr

pr(k)−
∑
netkl

pl(k)−
∑
netkc

(2.17)

For horizontal component, and

yflowt(ck) =
∑
netkt

pt(k)−
∑
netkb

pb(k)−
∑
netkc

yflowb(ck) =
∑
netkb

pb(k)−
∑
netkt

pt(k)−
∑
netkc

(2.18)

For the vertical component

netkl denotes nets whose net centers lie within the bin to the left of bin(i,j), netkr
denotes nets whose net centers lie within the bin to the right of bin(i,j), netkt denotes
nets whose net centers lie within the bin on top of bin(i,j), and finally netkb denotes
nets whose net centers lie within the bin below bin(i,j).

xflowl indicates the likelihood of having a reduction of net crossings on the left
edge of bin(i,j) from moving the cell from bin(i,j) to bin(i-1,j). A positive xflowl mean
moving the cell in question to the left will result in decreased net crossing in the left
edge of bin(i,j), which means a reduction in overflow in that particular edge.

Likewise, a positive xflowr, xflowt, or xflowb means a probable reduction in
overflow in their respective edge on bin(i,j) if the cell is moved according to their
respective direction. A negative cell flow tendency, however, indicates that moving the
cell in the particular direction would probably not result in reduced congestion.

While calculating the cell flow tendency does gives us the information on where the
cells can be moved in order to reduce congestion, this does not necessarily mean that
the cell should be moved in the particular direction indicated by its cell flow tendency.
If two or more cell have a flow tendency that suggest they should move to the same
bin, it is possible that the bin they are moved into ends up being more congested

35

than the bins the cells originated from. This calls for an arbitrative mechanism that
can distribute the cell in a way that would reduce congestion in highly congested bins
without causing congestion elsewhere.

Cell movement can be modeled as linear equation where the movement of a cell is
described as a term in an integer linear equation. In order to construct this equation,
we need to know how much improvement we gain by moving a cell in a particular
direction. The probable gain can be calculated as:

gainh(ck) =
∑
netkl

pl(k) +
∑
netkr

pr(k)

gainv(ck) =
∑
netkt

pt(k) +
∑
netkb

pb(k)
(2.19)

Aside from the gain itself, we need to know where the cell should move exactly
before constructing the equation. Cell flow tendency which direction the cells should
be moved in one axis, as we can see in Equation 2.19, only one flow in either horizontal
or vertical component can be positive at any given time.

For example, when xflowl is positive, then xflowr has to be negative, which
means the cell should only be moved to the left. The same goes for the vertical
component yflowt and yflowb. If a cell only have one direction with positive flow
in the horizontal axis and none in the vertical axis, the answer is clear cut. How-
ever, if this was not the case, we need to determine which axis the cell should be around.

For a cell to be moved around on particular axis, a cell must have a positive cell
flow tendency in either direction. Thus, in mathematical terms we can describe it as:

xk = (xflowl(ck) > 0 or xflowr(ck) > 0) (2.20)

For horizontal axis and,

yk = (yflowt(ck) > 0 or yflowb(ck) > 0) (2.21)

For the vertical axis.

This conditions however, were described to be overly rigorous and prevented
many of the cell movement from happening at all, thus from experimental result
performed by Li et. al, they decided to lower the condition from 0 to a negative
threshold Th and Tv. This way, the ILP accepts possible small increase of maximum
congestion over the affected bins, in exchange for possibly better results in the next

36

iteration. The ILP can then mathematically be described as

minimize Cmax subject to

conh(binij) =
∑
Ck

mkij(k)xkgainh(Ck) ≤ Cmax

conv(binij) =
∑
Ck

mkij(k)ykgainv(Ck) ≤ Cmax

xk + yk ≤ 1

xk, yk ∈ {0, 1}
xkij ∈ {−1, 0, 1}

(2.22)

Where j = 1, 2, ..., N and k = 1, 2, ...,M . Cmax is the maximum congestion of any
bins in the placement, and mkij(k) is the integer to be determined by the ILP.

37

38

Methodology and
Implementation 3
3.1 Cost Function

Wiring area is usually obtained after performing the final routing of the design. This
is problematic not only because chip routing takes a long time, we also do not have the
ability to modify the routing algorithm used by many EDA place and route tools, which
in our case, is Cadence Encounter EDI 14.27. Congestion, however, can be estimated
early in the placement stage and can provide a good indication of how routable the
design is. A design with lower congestion for the same cell area will likely require
less wiring area than another circuit with same functionality and cell area but higher
wirelength and congestion count. Thus our primary metrics to be used in this thesis is
wirelength and congestion.

As mentioned in the previous chapter, our focus will be the placement stage, and
our objective is congestion minimization.

3.2 Placement Algorithm Selection

Several global placement algorithms have been reviewed, namely DPlace, Capo and
Dragon [3]. Capo is a congestion-driven placement method which might sound like the
best solution, however Dragon and Capo requires changes to the floorplan which rules
it out of the solution space [3][4].

Instead of relying on Dragon or Capo, another method was devised where a separate
process is used to move the cells around to minimize congestion.

So instead we now focus on both Dplace and Kraftwerk. DPlace and Kraftwerk
are both a quadratic placers. Quadratic placers tend to yield the best preplacement
result when it comes to wirelength and this should give us a good starting point [18].
Kraftwerk yields better HPWL result and was the winner of ISPD 2005/2006 placement
contest. Kraftwerk implementation in MATLAB however, did not yield workable result
as the spreading mechanism did not work as intended, and took too much CPU time
in MATLAB, thus given limited time constraint, we will use DPlace instead.

The algorithm proposed in this effort is designed to minimize wire density by min-
imizing wiring congestion and wirelength. The flowchart of the algorithm can be can
be seen in Figure 3.3.

We will use DPlaces algorithm for our quadratic placement, as DPlace provides good
wirelength minimization and should provide a good starting point for minimizing our
congestion. To implement our Dplace algorithm, we need to obtain the pad position
and the Laplacian matrix.

The pad position in this context refers to the position of the cells on modules outside
the DTB Multiplexer which is connected to a net that is also connected to the cells

39

Figure 3.1: Full workflow of the proposed method.

of the DTB multiplexer. The cells outside DTB multiplexer are treated as pads (non-
movable objects), as we only want to modify the DTB multiplexer, and they provide
a reference point to where the DTB multiplexer should be placed, thus they are going
to be used in the b vector on the wirelength minimization equation. In total there are
693 pads connected to the DTB multiplexer.

3.3 Quadratic preplacement

We obtain the hessian matrix required for the quadratic placement from the netlist
available from the BAP3 synthesis result. A netlist is then turned into a Laplacian
matrix using a MATLAB script. As there are no timing constraint in the DTB
multiplexer, no different weighting for net between cells needs is used, thus all the
edges in the A matrix will have weight of -1, whereas the diagonal will be the negative
sum of all the edges weight, plus the sum of the weight of the pads connected to the
cell corresponding to the element in the diagonal matrix, as explained in section 2.3.3.

The weight of the cell-pads connection, however, needs to be adjusted to create a
placement result that would have a similar cell-area as the original DTB multiplexer
cell placement. Experimental results show pad-cell net weight of 0.5 should suffice

40

Figure 3.2: The pad position of the DTB multiplexer represented as blue markers, while the
original cell position of the DTB multiplexer represented as red markers. The red-shaded

area represents the original DTB multiplexer placement area.

to create a placement result which would occupy similar cell area to original BAP
placement which is around 0.93mm2 This weight is then multiplied element-wise with
the pad position of both axes to obtain vector bx and by. These vectors are then
divided by hessian matrix A to obtain the quadratic preplacement vector X and Y.

3.4 Diffusion Preplacement and wirelength reparation

After the initial quadratic placement has been performed, we will have a placement re-
sult that is highly overlapped. In order to reduce overlap, we need to perform diffusion
preplacement on the placement result. The first step to this is to compute the gradient.
Dplace uses Forward-Time-Centered-Space (FTCS) method to compute the gradient.
However, MATLAB has a built-in function to find bin gradients, thus instead of us-
ing the FTCS equation, we can simply substitute it with MATLABs gradient command.

Determining the bin size can be tricky. If the bins are too small, then both the
memory requirement and process time increases. Bin size that is too small will also
contain too few cells to accurately calculate the gradient if a bin. An extreme example
of this would be if the bins are smaller than the smallest cell size, then each bin will
only count as being filled by one cell, thus we wouldnt be able to calculate the gradient
of the bins. On the other hand, bins that are too large will give a very inaccurate result.

Based on experimentations, a bin size that yields acceptable runtime and accuracy
is 30µm. All the cells used by the DTB multiplexer from the default synthesis and
mapping ranges from 1.024µm ∗ 3.584µm to 9.728µm ∗ 3.584µm, which corresponds to

41

Figure 3.3: flowchart of diffusion placement process.

an area of 3.67µm2 and 4.86µm2, and the mean size of the cells are 8.72µm2. Thus for
the cell overlap to be satisfactory, we will set a condition that all bins should contain
no more than b(10µm)2/8.72µm2c = 11 cells.

In between iterations, to prevent nets from getting too long, we use anchor cells to
repair the wirelength by bringing cells closer to their net centers. The details of this is
explained in section 2.3.3, and the flowchart of this process is given in Figure 3.4.

3.5 Congestion Estimation and Reparation

Using the method explained in Section 2.5.1, we will then use the placement result
from the D-place flow to calculate the congestion. The C-ECOP method however
encounters a problem during the ILP stage. The heaviest congestion of the DTB
multiplexer occurs in the right-bottom region of placement area. ILP moved all the
cells out of the most congested bin. This reduced the congestion of the bin, but the
bin still ended up being the most congested bin in the entire placement area.

As the cost function of the ILP is actually defined as a constraint conh(binij) =

42

Figure 3.4: Anchor cell wirelength reparation process flowchart.

∑
Ck
mkij(k)xkgainh(Ck) ≤ Cmax and conv(binij) =

∑
Ck
mkij(k)ykgainv(Ck) ≤ Cmax

while the parameters are cell movement, this means if there is no more cell to be
moved in a bin, there is nothing that the ILP can do.

Instead we will use diffusion method similar to the one used on Dplace. Cells
are moved according to their congestion gradient. Fortunately, instead of having to
calculate the gradient, we already know the direction of the cell movement from the
cell flow tendency. We will use this instead to move our cells instead of using the ILP.
We still move the cells based on the same movement parameters as the ILP, namely
the cell flow tendency and cell gain.

As cells are spread, less and less cells will be advantageous to move. At one point
no more cells will have cell flow tendency greater than the movement threshold defined
in section 2.5.1, thus we stop the cell movement process, and start repairing the overlap
and wirelength using the anchor cell and cell diffusion from Dplace. The flowchart of
this process is given in Figure 3.5.

The overflow is then calculated by subtracting the excess of possible wire crossing
from the wiring resource available per edge. The technology used in BAP3 utilizes 5
metal layers. 2 vertical, 2 horizontal for net routing, and 1 for power supply. As we
are not dealing with power supply, our congestion will be focused only on the four
routing layers.

43

Figure 3.5: Flowchart of the modified C-ECOP algorithm used.

(a) (b)

Figure 3.6: Example of failure in ILP-based cell movement. (a) The center-upper-right bin
in the placement are is the maximum congested bin, not only because of the cells contained
within but also wires crossing it from other bins, even if all the cells are moved out to (b),
the bin still end up the most congested. The ILP will have no more cells to move and is

stuck.

The pitch for all four layers is 0.512µm wide. On the other hand, each bin in the

44

C-ECOP measures 40µm by 40µm, which is the smallest practical bin size that the PC
used in simulation could handle. Thus a single edge can theoretically route at most 78
net crossings, or 156 total net crossing can be handled by a single bin on each axis. As
each axis has two layers, this number is doubled to 312 nets. Thus an X or Y overflow
of a single bin on means any bin the amount of net crossing subtracted by 312.

3.6 Congestion Re-estimation using One-Steiner Routing Es-
timation

The congestion of the placement result after C-ECOP cell movement is then going
to be evaluated again. This time, in addition to the congestion estimation method
of the C-ECOP itself, we will also use the One-Steiner method to perform a routing
estimation to give us a more accurate congestion estimation result.

Nets between degree of two and a certain threshold will be routed by the One-Steiner
method, thus transforming all those specific nets into two-pin connections. This way,
instead of relying on the geometric net center, we will have a set of Steiner points which
will aid routing prediction thus improving the accuracy of routing estimation.

Figure 3.7: One-Steiner two-pin transformation improving C-ECOP congestion prediction.
In Figure (a), C-ECOP needs to calculate the net crossing probabilities of all the bins

shaded, whereas in (b), the net has been transformed into two-pin nets with the addition of
a Steiner point marked by ♦, thus C-ECOP only needs to calculate the crossing

probabilities of the the first two rows as the crossing probability of all the bins between and
containing the Steiner point and the bottommost cell are 1.

An algorithm has been devised to create this new graph, called the OSVN
(One-Steiner Virtual Nets). As the C-ECOP estimation algorithm takes input in
form of netlist (not adjacency matrix), this can easily be altered. This algorithm
deletes all nets with degree between 2 and a preset threshold, and replaces them with
a greater number of two-degree nets. The flowchart of this process is given in Figure 3.8.

The reason why there is a threshold on net degree used is due to the time complexity
of the One-Steiner method which is O(N3) which means it will take a really long runtime
for high-degree nets, and its relative inaccuracy for high-degree nets, making it not so

45

Figure 3.8: One-Steiner Virtual Net algorithm designed to replace connections between
degree 2 and a select threshold with actual routing estimation using One-Steiner algorithm.

advantageous over the net-center method. Based on experimental result, a threshold
degree of 15 is used as this gives a reasonable runtime.

3.7 Encounter Implementation

The MATLAB placement result will be placed in encounter flow after the init stage of
the BAP3 place and route script, which means the cells are placed before the automated
placement is done by encounter. All the cells will be set as SOFTFIXED to allow
encounter to perform detailed placement and legalization according to its DRC while
retaining their general order retaining most of the MATLAB placements wirelength
and congestion result.

46

Results 4
4.1 MATLAB Results

We use MATLAB for most our algorithm implementation including the DTB Multi-
plexer placement, while we use Cadence EDI 14.27 to place the rest of the chip and
also obtain the final actual routing.

(a) (b)

Figure 4.1: (a): Horizontal Congestion estimation of original DTB multiplexer placement
without One-Steiner routing prediction and (b) with One-Steiner routing prediction.

(a) (b)

Figure 4.2: (a): Horizontal Congestion estimation of DPlace placement result without
One-Steiner routing prediction and (b) with One-Steiner routing prediction

47

(a) (b)

Figure 4.3: (a): Horizontal Congestion estimation of C-ECOP congestion reparation result
without One-Steiner routing prediction and (b) with One-Steiner routing prediction.

(a) (b)

Figure 4.4: (a): Horizontal Congestion estimation of original DTB multiplexer placement
without One-Steiner routing prediction and (b) with One-Steiner routing prediction.

(a) (b)

Figure 4.5: (a): Horizontal Congestion estimation of DPlace placement result without
One-Steiner routing prediction and (b) with One-Steiner routing prediction

48

(a) (b)

Figure 4.6: (a): Horizontal Congestion estimation of C-ECOP congestion reparation result
without One-Steiner routing prediction and (b) with One-Steiner routing prediction.

Placement Total Es-
timated
Wire-
length
(HPWL),
µm

Total
Hori-
zontal
Overflow
(C-ECOP
estima-
tion)

Total
Hori-
zontal
Overflow
(C-ECOP
+ One-
Steiner
estima-
tion)

Total
Vertical
Overflow
(C-ECOP
estima-
tion)

Total
Vertical
Overflow
(C-ECOP
+ One-
Steiner
estima-
tion)

Original 3.08094e+06 5971.89 5437.01 915.91 270.81

Dplace 4.43033e+06 5991.83 4832.36 1184.36 1081.12

Dplace + C-ECOP 4.35496e+06 5498.83 4789.35 691.61 609.99

Table 4.1: Total estimated wirelength and total overflow results

Placement Maximum
number of
cells per
(10µm ∗
10µm bin),
must not
be > 11

Maximum
Hori-
zontal
Overflow
(C-ECOP
estima-
tion)

Maximum
Hori-
zontal
Overflow
(C-ECOP
+ One-
Steiner
estima-
tion)

Maximum
Vertical
Overflow
(C-ECOP
estima-
tion)

Maximum
Vertical
Overflow
(C-ECOP
+ One-
Steiner
estima-
tion)

Original 10 420.77 354.19 139.09 91.42

Dplace 11 335.94 332.99 271.77 271.77

Dplace + C-ECOP 11 813.27 820.33 95.93 96.29

Table 4.2: Cell density and maximum overflow results

Results indicate that C-ECOP cell rearrangement improves upon the DPlace

49

placement result, with 8.22% reduction in horizontal congestion, and 41.6% reduction
vertical congestion when measured with C-ECOP congestion estimation. With added
routing estimation using One-Steiner Algorithm, the difference is less impressive with
0.89% reduction in horizontal congestion and 43.57% reduction in vertical congestion.

The maximum horizontal congestion after the C-ECOP rearrangement has risen
considerably. This is caused by the replacement of the ILP in the C-ECOP algorithm
with diffusion-based cell rearrangement based on cell-flow tendencies, which means
there is a possibility that in the process of moving cells away from congested region,
too many cells are moved in into a same non-congested region, subsequently making
that region congested. However, this is an acceptable alternative to the ILP which
is unable to deal with congested regions with no cells to be moved out, as has been
explained in section 3.5.

The disparity in horizontal congestion measurement can be attributed to the fact
that One-Steiner algorithm’s routing estimation decomposes higher-degree nets into
two-degree nets that are shorter in length than the original net. As the C-ECOP
probability calculation uses geometric net center as a point of reference, this means
if a Steiner point of a net connecting closely-positioned cells fall inside the same bin
of one cell, the number of connections are going to be vastly reduced, as given in the
example in Figure 4.7.

This is not a problem if the bins are sufficiently small, however given our memory
limitation, the bin size we used did not lend itself well to this issue. This will require
modification to the algorithm to use the position of the Steiner point as the net center
instead of the net center of a two pin nets. However, this could not be implemented in
time.

Figure 4.7: (a) A degree-3 net connecting 3 cells. The bin crossings are denoted by parallel
lines. In this case, we expect 2 bin crossings, thus both the upper left bin and upper right
bin will have 1 horizontal crossing, while both the upper left bin and lower right bin will

have 1 vertical crossing. (b) By adding Steiner points, the routing become more determined,
however due to C-ECOP net-center method (denoted by red dots), the nets are practically

only half the length of what it should be, thus resulting in C where the vertical crossing
between upper-left and lower-left bins is gone.

50

Between the DPlace + C-ECOP placement result and the original DTB multiplexer
placement, measured by C-ECOP congestion estimation, the DPlace + C-ECOP place-
ment resulted in 7.9% reduction in horizontal congestion, and 24.47% reduction in ver-
tical congestion. However, when estimated using C-ECOP + One-Steiner congestion
estimation, this resulted in 11.91% reduction in horizontal congestion, but 225.24% in-
crease in congestion. Again, this is due to unreliability of the C-ECOP + One-Steiner
method for large binsize.

It must also be noted that despite being able to achieve lower congestion, the result-
ing wirelength is greater than the original of the DTB multiplexer original placement.
This can have negative effect on the actual wiring area as less wirelength means, even
though a net has to take a detour due to congestion, the resulting area requirement
will be lower. For the time being, this can only be tested by performing routing using
actual place and route tool.

4.2 Encounter Routing Results

Encounter placement using EDI 14.27 yields disappointing results. The cells placed
after init stage and before placement stage could not be routed due to spacing violation
on virtually all BAP3 component despite all cells having been set to SOFTFIXED and
theoretically EDI should be able to move the cells around to conform it to its DRC,
however this does not seem to be the case.

Several enlarged version of the placement (simply by scaling the distance between
the cells) also failed. Fencing the area around the DTB multiplexer also did not yield
any better result. More investigation is needed to ascertain the cause of this issue

51

Figure 4.8: First trial place and route in EDI 14.27, the DTB Multiplexer is highlighted in
red.

Figure 4.9: Complete routing failure immediately after route stage.

52

Figure 4.10: Spacing violations, almost exclusively caused by DTB Multiplexer cells.

Figure 4.11: 200% scale placement of DTB Multiplexer.

53

Figure 4.12: Extremely sparse DTB Multiplexer placement with no cell overlap.

Figure 4.13: The 200% scaling placement still result in extremely high spacing violation
caused by DTB Multiplexer, albeit the number is reduced by half.

54

Conclusion and
Recommendations 5
• The modified C-ECOP algorithm is an effective method to reduce congestion in

a wiring-intensive design. It was able to reduce congestion on a placed circuit by
8.22% reduction in horizontal direction, and 41.6% reduction vertical direction
when measured with C-ECOP congestion estimation. While we cannot directly
estimate the resulting wiring area savings from this result, it is likely to be reduced
as the congestion reduction did not impact the wirelength negatively.

• C-ECOPs ILP method is unable to deal with a heavily congested bin if most of
its congestion did not originate from the bin itself. This is caused by the current
cost function which is implemented as a form of constraint. Recommendation for
further research is to find a better cost function that combines both the maximum
congested bin with neighboring bins to provide cell movement in the event of no
movable cells remaining in the most congested region.

• The C-ECOP + One-Steiner congestion estimation algorithm needs further refine-
ment as the current algorithm uses net centers as point of reference to determine
wire crossing. Modified algorithm using Steiner points as the point of reference
might result in a more accurate estimation, but this algorithm could not be im-
plemented in time due to time constraint. Future recommendation aside from
using using Steiner points as reference is a better optimized, batched version of
the algorithm that can accommodate even larger degree nets in the prediction,
thus improving estimation accuracy even further.

• The Placement algorithm used produced a sub-optimal wirelength. With a better
placement tool, it is possible to obtain both wirelength and congestion improve-
ment. Kraftwerk [15] offers better wirelength result compared to Dplace accord-
ing to ISPD2005 placement contest result [26], given enough time, this could have
been implemented instead, thus recommendation for future research is the use of
Kraftwerk instead of Dplace to obtain initial placement result.

• More research is needed to know the routing algorithm used by Place and Route
tools like Cadence Encounter to prevent total routing failure. Given the propri-
etary nature of the routing algorithm, it is hard to implement an external place-
ment in the cadence EDI environment, thus recommendation for future research
is to perform more routing trial using cadence EDI to come up with a placement
solution that does not result in spacing errors.

55

56

Bibliography

[1] Wang et.al Electronic Design Automation Elsevier inc. 2009. Burlington, MA, USA.

[2] T. Luo, D.Z. Pan Dplace2.0: A stable and efficient analytical placement based on
diffusion, in 2008 Asia and South Pacific Design Automation Conference.

[3] M. Wang, X. yang and M. Sarrafzadeh, Dragon2000: Standard-cell-placement tool
for large-Industry circuits, in proc. Int. conf. on Computer Aided Design, 2000.

[4] J.A Roy, D.A Papa, S.N. Adya H.H. Chan, A.N Ng, J.F. Lu, and I. L. Markov
Capo: A robust and scalable min-cut Floorplacer. In proc. ACM/IEEE Interna-
tional Symposium on Physical Design, 2005.

[5] H. Ren, D.Z. Pan, C.J. Alpert, and P. Villarubia, Diffusion-based placement migra-
tion, in proc. Design automation conf, June 2005.

[6] Z. Li, W. Wu, X. Hong, Congestion driven incremental placement algorithm for
standard cell layout, in Proceedings of the ASP-DAC Asian and South Pacific Design
Automation Conference, 2003.

[7] A. Kahng, G. Robins, A new class of Steiner tree heuristics with good performance:
the iterated One-steiner approach,” IEEE International Conference on Computer
Aided-Design, 1990.

[8] M. Hanan, On Steiners problem with rectilinear distance, SIAM J Appl. Math vol
14, pp 255-265, 1966.

[9] G. Meixner, U. Lauther, ”Congestion-driven placement using a new multi-
partitioning heuristic”, In Proc. Int. Conf. Computer-Aided Design, November 1990.

[10] J Kleinhans, G. Sigl, F.M. Johannes, and K. Antreich, GORDIAN: VLSI placement
by quadratic programming and slicing optimization,IEEE Transaction on Computer
Aided Design of Integrated Circuit and Systems,vol. CAD-10, march 1991.

[11] H. Eisenmann and F.M. Johannes, Generic global placement and floorplanning, in
Proc. Design Automation Conference, 1998.

[12] N. Vishnawatan and C.C.N. Chu; FastPlace: Efficient analyitical placement using
cell shifting, iterative local refinement, and hybrid net model, In Proc. Int Symp on
Physical Design, pp 26-33, 2004.

[13] Wenting Hou, Hong Yu, Xianlong Hong, Yici Cai, Weimin Wu, Jun Gu, W.H.
Kao, ”A new congestion-driven placement algorithm based on cell inflation”, Design
Automation Conference 2001. Proceedings of the ASP-DAC 2001, pp. 605-608, 2001.

[14] F. Mo, A. Tabbara, and R.K Brayton, A force-directed macro-cell placer in proc,
nt. conference on computer aided design,p4, EECS, UC Berkeley, November 2000.

57

[15] P. Spindler and F,M. Johannes, Kraftwerk: A fast and Robust Quadratic Placer
Using and Exact Linear Net Model, in proc. Int. Conf. on Computer Aided Design,
2006.

[16] L. J. Guibas, B. Chazekke, D.T. Lee, The power of geometric duality in 24th
annual Symposium on Foundations of Computer Science, 1983.

[17] M.R. Garey, L.J. Stockmeyer, D.S. Johnson, Some Simplified NP-Complete Prob-
lems, roc of the 6th Annual Symp. On Theory of Computing, 1974.

[18] C.J. Alpert The ISPD98 Circuit benchmark suite, In Proc. International Sympo-
sium on Physical Design, pp.80-85 1998.

[19] Z J. D. Plummer, M. D. Deal, P. B. Griffin, Silicon VLSI Technology: Fundamen-
tals Practice and Modeling, NJ, Englewood Cliffs: Prentice-Hall, 2003.

[20] W.C. Naylor, R. Donnely, and L. Sha, Non-Linear Optimzation System and
Method for Wirelenght and Delay Optimization for Automatic Electric Circuit
Placer, US Patent 6,301,693,2001.

[21] T. Luo, H. Ren, C. J. Alpert, D. Z. Pan, ”Computational geometry based place-
ment migration”, Proc. Int. Conf. Comput.-Aided Des., pp. 41-47, 2005.

[22] M. Wang, X. Yang, M. Sarrafzadeh, ”Congestion minimization during placement”,
Computer-Aided Design of Integrated Circuits and Systems. IEEE Transactions,
[22]vol. 19, no. 10, pp. 1140-1148, Oct. 2000.

[23] M. Wang, M. Sarrafzadeh, ”Modeling and minimization of routing congestion, ”
Design Automation Conference 2000. Proceedings of the ASP-DAC 2000 pp. 185-
190, 2000.

[24] M. Wang, M. Sarrafzadeh, ”On the Behavior of Congestion Minimization During
Placement,” International Symposium on Physical Design, pp. 145-150, April 1990.

[25] C. Sechen, A. Sangiovanni-Vincentelli, ”The TimberWolf Placement and Routing
Package,” IEEE Journal of Solid-State Circuits Vol.20, Issue 2 , April 1985.

[26] G. J. Nam, C.J. Alpert, P. Villarubia, B. Winter and M. Yildiz, The ISPD2005
Placement Contest and Benchmark Suite, in Proc. Nternational Symposium on
Physicla Design[26], (New York, NY, USA), ACM, 2005.

[27] M.C. Yildiz and P.H. Madden, Improved Cut Sequences for Partitioning-Based
Placement, in proc. International Conference on Computer Aided Design, 2000.

[28] T. Chan, J. Cong, and K. Sze, Multilevel Generalized Force-Directed Method for
Circuit Placement, in Proc. International Symposium on Physical Design, 2005.

[29] NXP Semiconductors, ”DTB Mux Component Requirement Specification” BAP3
Product Specification, April 2013 [Revised April 2013]

[30] Tveit, Amund., ”On the Complexity of Matrix Inversion. ”, 2003.

58

[31] Mathworks, ”Sparse Matrix Operations: Computational Complex-
ity,” MATLAB R2019b documentation, 2019. [online]. Available:
https://nl.mathworks.com/help/matlab/math/sparse-matrix-operations.html
[Accessed April 15, 2019]

59

	Abstract
	Acknowledgments
	Introduction
	Background
	Goal
	Brief Hardware Description
	Digital Section of BAP3

	Resources needed for placement and routing
	Resource used by routing and how it affects area

	Problem description
	Brief DTB Hardware description
	The Observe Module
	The Control Module

	Literature Research
	ASIC EDA workflow
	Scope of the discussion
	Placement
	Placement Objectives
	Placement Steps
	Dplace Global Placement Algorithm

	Routing
	Types of Global Routing
	Spanning Tree Approach

	Congestion and Area Requirement
	Congestion Minimization with C-ECOP

	Methodology and Implementation
	Cost Function
	Placement Algorithm Selection
	Quadratic preplacement
	Diffusion Preplacement and wirelength reparation
	Congestion Estimation and Reparation
	Congestion Re-estimation using One-Steiner Routing Estimation
	Encounter Implementation

	Results
	MATLAB Results
	Encounter Routing Results

	Conclusion and Recommendations

