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P R E FA C E

All models are wrong, but some are useful - George E. P. Box

Breathing is something that most healthy individuals do not give a second thought;
it is almost effortless and regulated automatically. There are, however, several dis-
eases that cause breathing problems and in some cases lead to respiratory failure;
the individual is not able to breathe without the assistance of a mechanical venti-
lator. Mechanical ventilation does not come without risks. The aim of mechanical
ventilation is to provide gas exchange but limit ventilation induced lung injury, also
known as VILI. The effects of mechanical ventilation on the lung and actually the
entire body are complex. Understanding lung pathology and mechanical ventila-
tion is of utmost importance for safe and effective treatment. Computational lung
models have been widely used to understand and gain new insights about (me-
chanical) ventilation and to explore new techniques or algorithms for mechanical
ventilation. Lung models allow for so called in silico studies; the use of simulation
to study and answer research questions. Unfortunately, the lung models used in
literature are not open source and thus do not allow for us to explore these models
and perform in silico studies. This thesis describes the development and use of
linear models of respiratory mechanics during mechanical ventilation. The aim of
the model is firstly to educate the physicians and nurses of the Intensive Care Unit
(ICU) in the Leiden University Medical Centre (LUMC). By usage of the models to
visualize the effects of mechanical ventilation we hope to better educate the team
of the ICU about the relation between respiratory mechanics and mechanical venti-
lation. Second, the model will be used to perform in silico studies. Many aspects
of mechanical ventilation and interaction with the lung tissue are yet unknown. We
hope to better understand this interaction to further optimise mechanical ventilation
for better patient outcomes.

Chapter 1 gives an introduction to the thesis by discussing the most important
aspects of mechanical ventilation at the ICU and mathematical modelling. Chapter
2 is a short overview of the most important respiratory mechanics relevant to the
development of the models in this thesis. Of course, the respiratory mechanics are
far more complicated than discussed in this thesis. Modelling in this thesis is split
in to two parts: system identification (chapters 3 - 6) and simulation (chapter 7).
Chapter 3 lays out the principles of system identification. System identification in
this thesis will be done with the use of state space design and transfer functions.
Chapter 4 explains state space design and the application to the first order linear
model of the respiratory, thorax and lung mechanics. Chapter 5 discusses the re-
sults of system identification of the first order linear model. Chapter 6 describes
the application of transfer functions for system identification of the first order lin-
ear model which is also described with the state space design. This chapter also
elaborates on additional characteristics which can be explored using the transfer
function. Lastly, the second order linear model is described and discussed. With
chapter 7 the second part of the thesis begins. This chapter describes simulation of
respiratory, thoracic and lung mechanics. These models are especially useful for the
educational purposes described before. This chapter shows models with different
levels of complexity and simulation examples of each model. Chapter 8 discusses
the most important implications for future research. It elaborates on further valida-
tion, application and development of modelling.
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N OTAT I O N

abbreviations

Abbreviation Definition

A state matrix of state space design
ARDS acute respiratory distress syndrome
B input matrix of state space design
BMI body mass index
C output matrix of state space design
COPD chronic obstructive pulmonary disease
COVID-19 coronavirus disease 2019

CT computed tomography
D feed-through matrix of state space design
E elastance
E1 elastance of first compartment of two compartment model
E2 elastance of second compartment of two compartment model
ECW chest wall elastance / thorax elastance
EL lung elastance
ERS respiratory system elastance
ETh chest wall elastance / thorax elastance
F Laplace transform of time domain function f
FRC functional residual capacity
G transfer function
I inertia
IRS respiratory system inertia
ICU intensive care unit
K steady state gain
LIP lower inflection point
LUMC Leiden University Medical Centre
M model or real system
MIMO multiple input multiple output
MSE mean square error
N real system
N number of samples
P0 resting pressure
Palv alveolar pressure
Patm athmospheric pressure
PAW airway pressure
PCW transmural pressure of chest wall / thorax
Pes oesphageal pressure
PL transpulmonary pressure
Ppl pleural pressure
Pplat plateau pressure
PEEP positive end expiratory pressure
R resistance
R1 resistance of first compartment of two compartment model
R2 resistance of second compartment of two compartment model
Rcommon common resistance
RCW chest wall resistance / thorax resistance
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viii

RL lung resistance
RRS respiratory system resistance
RS respiratory System
s seconds
SE standard error
SISO single input single output
SNR signal to noise ratio
t time
TOP threshold opening pressure
u input
u input vector
U Laplace transform of input
UIP upper inflection point
V volume
V̈ acceleration of flow
V̇ flow
V̇1 flow of first compartment of two compartment model
V̇2 flow of second compartment of two compartment model
V0 1 resting volume of first compartment of two compartment model
V0 2 resting volume of second compartment of two compartment model
V

0 Th resting volume of thorax
V0 resting volume
V1 volume of first compartment of two compartment model
V2 volume of second compartment of two compartment model
VN cost function
VILI ventilation induced lung injury
x state vector
ẋ derivative of the state vector x
y output
ŷ estimated output
y output vector
Y Laplace transform of output
yss steady state value
θ parameter vector of real system
ε error function
θ̂ estimated parameter vector of model
σ standard deviation
τ time constant

conventions
For equations, a bold uppercase letter represents a matrix and bold lowercase is a
vector.

The unit for pressure is cm H2O which is commonly used in mechanical ventila-
tion (1 cm H2O = 0.098 kPa). The pressures are referenced to atmospheric pressure,
Patm = 0 cm H2O. Volume is expressed in litres (L). Flow is expressed in litres per
second, (L s-1). Positive values of flow indicate inspiratory flow and negative values
of flow indicate expiratory flow. The elastance is a pressure per unit volume: cm
H2O L-1. The resistance is given in cm H2O s L-1. Inertia is expressed as cm H2O s2

L-1.
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Part I

I N T R O D U C T I O N





1 B A C KG R O U N D

1.1 mechanical ventilation

Nearly 500 years ago, Andreas Vesalius was the first to suggest positive pressure as
a method for ventilation of the lung for resuscitation [1]. It was not until the 20th
century that mechanical ventilation was seen as a widely useful technique. The
amount of patients in need for respiratory support during the polio epidemic in
the 1950s lead to the first intensive care units (ICU) and mechanical ventilators as
used today [2]. Over the past 70 years, safety and technology behind mechanical
ventilators and insights of mechanical ventilation have increased majorly. Today,
mechanical ventilation is one of the most frequently used techniques in intensive
care medicine. It is a life-sustaining treatment for respiratory failure by reducing
the work of breathing and providing gas exchange [2].

Ventilation is the process of moving air into and out of the lung to facilitate gas
exchange of oxygen and carbon-dioxide. In healthy subjects, this process is primar-
ily established through contraction of the diaphragm. The lung is attached to the
thoracic cage and diaphragm by membranes: the pleurae. During an inhalation,
the diaphragm contracts causing a negative intrapleural pressure. This negative
intrapleural pressure causes a decrease in the intrapulmonary pressure or alveolar
pressure. Difference between alveolar pressure and airway pressure causes air to
flow in to the lung, until alveolar pressure and airway pressure are equal again. At
the end of an inspiration the diaphragm relaxes, increasing alveolar pressure which
causes air to flow out of the lung. This a form of negative pressure ventilation: the
flow of air is created due to negative pressure [3]. The mechanical ventilators of
today use positive pressure ventilation; they generate a pressure which increases
the airway pressure resulting in a pressure difference between airway and lung.
A mechanical ventilator can either replace (controlled ventilation) or support the
ventilation of the patient. In this report, only controlled ventilation without any
spontaneous muscle activity of the patient will be discussed. In the Netherlands,
the most common used form of controlled ventilation is pressure controlled ventila-
tion, where the observer determines the maximum pressure allowed [4].

A mechanical ventilator can produce higher volumes and pressures across the res-
piratory system than usually occur in healthy physiological breathing. The forces
acting on (affected) lung tissue can be much greater due to inhomogeneous venti-
lation, i.e. the applied pressure and volume are not equally distributed across the
respiratory system [5]. This can result in very high local pressures inducing lung
injury. This ventilation induced lung injury (VILI) is one of the most important
subjects in mechanical ventilation [2]. In 2000, The Acute Respiratory Distress Syn-
drome Network published a trial that showed the importance of lung protective
ventilation [6]; by limiting the volumes delivered to the lung, the mortality rate de-
creased. It is therefore important to not only achieve adequate gas exchange but
also to limit the VILI by limiting the amount of pressure and volume applied to the
lung tissue.
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4 background

1.2 mathematical modelling
Breathing and mechanical ventilation are mechanical processes. The pressure, flow
and volume during a breathing cycle are dependent on the mechanical properties of
the respiratory system of each individual. Respiratory mechanics play an important
role in occurrence of VILI. Through understanding of these respiratory mechanics,
the effects of mechanical ventilation on lung tissue can be better understood [7].
Because mathematical models have potential to increase understanding of systems,
the use of models of respiratory mechanics are thought to improve mechanical
ventilation.

A model in the widest sense is a simplified representation of reality. The models
in this thesis refer to mathematical models that are used in engineering and science
to study physical systems. A system is an object where external stimuli - input
signals - interact and produce observable signals - output signals [8]. Mathematical
models describe the relation between input and output signals using mathematics.
Complexity of a model is determined by the purpose of the model. For each re-
search equation, it should be determined if the model is accurate enough to answer
the research question.

There are roughly two ways of designing a model: system identification and
simulation [8]. System identification will be used to determine accuracy of model
structures and explore additional properties of the system. Simulation allows for
easy visualisation of the effects of respiratory mechanics on mechanical ventilation.
Simulation also allows to include theoretical concepts of respiratory mechanics de-
scribed in literature, which can not be identified with the use of system identi-
fication. In the following chapters both methods are used for the modelling of
respiratory mechanics.



2 T H E R E S P I R ATO R Y M E C H A N I C S

The respiratory system is not as such a black box but rather a grey box; there is
some knowledge about the respiratory mechanics and thus about the structure of
the model. The most important aspects of respiratory mechanics will be discussed.

2.1 balloon-pipe model
The respiratory mechanics describe the motion and deformation of tissue in relation
to the flow of air. The relation between pressure, volume and flow can be described
with the second order differential equation [7, 9]:

PAW(t) = P0 + ERS · (V(t) - V0) + RRSV̇(t) + IRSV̈(t) (2.1)

PAW is the airway pressure and P0 is the pressure of the system at end expiration,
which is considered to be the resting state of the system. The component of the
respiratory system that is resistive to the acceleration of the flow, inertia, is depicted
with parameter IRS. Inertia is ought to be a parameter only of importance in high
frequencies. Physiological respiratory frequencies are very low. Inertia is therefore
seen as negligible, which is why the respiratory system is often depicted as a first
order linear system [9]:

PAW(t) = P0 + ERS · (V(t) - V0) + RRSV̇(t) (2.2)

This system can be visualized as a balloon-pipe model, figure 2.1 [7]. The bal-
loon represents the functional part of the lung - i.e. the alveoli which provide gas
exchange - and the pipe represents the airways which connect the lung to the out-
side world. In mechanical ventilation the single pipe is connected to the mechanical
ventilator. The respiratory airways are considered to be flow resistive. With each
breath, the flow of air has to overcome the resistive forces of the respiratory airways.
The lung tissue is volume-elastic, which causes the lung to inflate due to increase
of pressure. Elastance (ERS) and resistance (RRS) are properties of the respiratory
system [10]. These properties differ between age, sex, build and can change due
to different pathologies or positioning. Asthma or chronic obstructive pulmonary
disease (COPD) for example cause airway obstruction resulting in an increase of
resistance. These are so called obstructive diseases. COPD often includes lung em-
physema which causes lung elastance to decrease. Restrictive pathologies such as
pulmonary oedema, lung fibrosis and pneumonia cause an increase of lung elas-
tance [11]. In mechanical ventilation P0 is not equal to the atmospheric pressure but
is positive to prevent end expiratory collapse of the lung. This pressure is called
positive end expiratory pressure (PEEP).

5



6 the respiratory mechanics

Figure 2.1: The respiratory system as a balloon-pipe model. The pipe represents the respira-
tory airways which are flow resistive and the balloon represents the lung which
is volume-elastic. End expiration is considered the resting state of the system
with resting volume V0 and resting pressure P0. PAW is the airway pressure. In
mechanical ventilation, airway pressure is increased to generate a flow (V̇). This
increases alveolar pressure, thereby inflating the lung with a certain volume (V).

2.2 double balloon-pipe model

In reality, the lung is connected to the thoracic cage with pleurae. Airway pressure
is dependent on the combination and interaction between thorax and lung. Both
lung and thorax have volume-elastic properties. The simple balloon-pipe model
can be expanded with a thoracic cage: the double balloon-pipe model, figure 2.2.

From this model, lung elastance (EL) and thorax elastance, also known as chest
wall elastance (ECW), can be individually determined, equation 2.3 and 2.4:

PL(t) = P0 + EL ·
(

V (t) −V0

)
with

PL = Palv - Ppl

(2.3)

and

PCW(t) = P0 + ECW ·
(

V (t) −V
0 Th

)
with

PCW = Ppl - Patm

PCW = Ppl - 0

(2.4)

where PL is transpulmonary pressure: the transmural pressure of the lung. PCW
is the transmural pressure of the thorax. V0 is the resting volume of the lung i.e.
transpulmonary pressure is zero. For the thorax, V

0 Th is the volume when pleural
pressure is zero. The thoracic cage has an elastic recoil directed outwards while
the lung has its elastic recoil directed inwards. When the forces of the two are in
equilibrium, the transpulmonary pressure is zero. The corresponding volume of
this transpulmonary pressure is the function residual capacity (FRC) [3, 10].



2.3 two compartment model 7

Figure 2.2: The pressures of the respiratory system. PAW is the airway pressure. In positive
pressure ventilation PAW is increased to generate a pressure difference which
allows ventilation. Palv is the alveolar pressure or intrapulmonary pressure and
Ppl the pleural pressure. The transmural pressures of the lung (PL) and chest
wall (PCW) are the pressure differences across the tissues.

2.3 two compartment model

The models above assume that the lung has a single elastance and pleural pressures
are similar across the thorax. This assumption is incorrect; there is a physiological
pressure gradient of pleural pressures. The gravity pulls the lung downward, creat-
ing a greater vacuum at the top of the lung - the apex - resulting in a more negative
pleural pressure. This results in different transpulmonary pressures across the lung
with the same alveolar pressure [3]. Transpulmonary pressure differences can also
occur in pathological lungs due to heterogeneity. The lung consists of many alve-
olar units, each with its own elastance. Total lung elastance is a summation of all
individual alveolar units [7]. In a homogeneous lung, alveolar units are ought to
have the same elastance. Many pathological lungs contain lung regions which are
fully collapsed, full with fluid and lung regions which contain healthy lung tissue,
see figure 2.3.

Figure 2.3: Computed Tomography (CT) of lungs: black indicates aerated tissue. Left:
healthy lung tissue. Right: Affected lung tissue of ARDS with diffusely dis-
tributed deviations as well as pleural effusion. From Radiopaedia.org.



8 the respiratory mechanics

These differences in regional properties can be described with a two (or more)
compartment model. The model describes a common resistance, from where the
respiratory airways are divided in to two parts each with different resistance con-
nected to lung tissue with different elastance. Local pressures can differ for each
region; the effect of mechanical ventilation can therefore be different for each lung
region. Total respiratory system elastance, resistance, volume and flow are a sum-
mation of the individual compartments:

PAW(t) = PEEP + (E1 + E2) ·
(

Vtotal (t) −V0

)
+ (R1 + R2)V̇total(t)

PAW(t) = PEEP + E1 ·
(

V1 (t) −V0 1

)
+ E2 ·

(
V2 (t) −V0 2

)
+ R1V̇1(t) + R2V̇2(t)

(2.5)

2.4 nonlinear lung mechanics

Both elastance and resistance of the respiratory system do not behave as linear
systems. The summation of the two results in the pressure-volume relationship of
the respiratory system, figure 2.4.

The pressure-volume relationship of the lung is shown in figure 2.5. At high
pressures, the slope of the graph decreases indicating increase of elastance caused
by overdistension of the lung tissue [3]. In restrictive diseases the elastance is in-
creased resulting in less volume with the same transpulmonary pressure. Diseases
such as emphysema decrease elastance resulting in more volume with the same
transpulmonary pressure.

Figure 2.4: Pressure-volume relationship of thorax and lung. The summation of thorax and
lung (red dashes lines) result in the pressure-volume relationship of the respira-
tory system (black line). The transpulmonary pressure is zero where the inward
force of the lung is equal to the outward force of the thorax. The volume cor-
responding with a transpulmonary pressure of zero is the functional residual
capacity (FRC) of the lung.

Figure 2.5 portrays the lung as a purely elastic material. In reality, both lung
and thorax are not purely elastic materials but rather visco-elastic. Due to these
properties the inspiratory and expiratory leg of the breathing cycle do not have the
same pressure-volume relationship [12].



2.4 nonlinear lung mechanics 9

Figure 2.5: Pressure-volume relationship of healthy and affected lung. For both healthy and
affected lung elastance increases at high pressures due to overdistension of the
lung tissue. In restrictive diseases such as fibrosis the elastance increases result-
ing in less volume with the same transpulmonary pressure. Diseases such as
emphysema decrease elastance resulting in more volume with the same transpul-
monary pressure.

Due to this hysteresis, the actual volume at a given pressure depends on the direc-
tion from which that pressure is reached. The inspiratory leg shows high elastance
at low transpulmonary pressures. This is assumed to be the result of collapsed
alveoli, which have a high elastance. By increasing transpulmonary pressure, these
collapsed alveoli are opened, i.e. recruited, resulting in an overall decrease of elas-
tance. The point at which the elastance changes from high to low is called the
lower inflection point (LIP). At the upper inflection point (UIP) the opened alveoli
are assumed to be overdistended, resulting in a higher elastance. The expiratory
leg shows lower elastance at same transpulmonary pressures due to the recruited
alveoli during inspiration. In reality, recruitment and overdistension are not limited
to the inflection points but occur during a breath.

Figure 2.6: Pressure-volume relationship of the lung during inspiration and expiration. The
inspiratory leg shows a lower inflection point (LIP), where elastance decreases
due to recruitment of collapsed alveoli. At high transpulmonary pressures, the
alveoli are overdistended resulting in higher elastance identified with the upper
inflection point (UIP). The expiratory leg shows lower elastance at same transpul-
monary pressures due to the recruited alveoli during inspiration.
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3 B A C KG R O U N D

3.1 system identification and parameter estima-
tion

System identification is the process in which dynamic models are built based on
measured input and output data. Figure 3.1 shows a schematic block diagram of
system identification. The real physical system is described as system N with input
u(t) and output y(t). The relation between input and output is determined by the
structure and parameters of the system, represented with the parameter vector θ,
equation 3.1. The mathematical model of system N is model M with simulated
output ŷ(t). The calculation of ŷ(t) depends on the estimated parameter vector θ̂ of
M, equation 3.2:

y(t) = N (θ, u(t)) (3.1)

ŷ(t) = M
(
θ̂, u(t)

)
(3.2)

In pressure controlled mechanical ventilation, the respiratory system is the real
physical system N with pressure as input signal and volume as output signal.

Figure 3.1: Block diagram of system identification. The real system is N with pressure as
input u(t) and volume as output y(t). The relation between input and output
is determined by the structure of the system and the parameters of the system,
represented with the parameter vector θ. The estimated parameter vector θ̂ and
the structure of M determine the simulated output ŷ(t).

The relation between pressure and volume at each point in time is dependent
on the respiratory mechanics of the individual. The aim is to find a model that
accurately simulates ŷ(t) with the least amount of parameters [13]. The difference
between estimated and measured output is described with the error function, equa-
tion 3.3:

ε(θ) = y(t)− ŷ(θ, t) (3.3)

The performance of the model is evaluated with the use of the cost function which
is the time average of the mean-square error (MSE) of the error function:

VN

(
M, θ, u (t)

)
=

1
N

N

∑
t=1

(
y(t)− ŷ (θ, t)

)
2 (3.4)

The objective of system identification is to minimise VN by finding the optimal θ̂,
given the model structure and measured data:

θ̂ = arg min VN (θ, u(t)) (3.5)

13



14 background

The system identification problem can be solved manually or with the use of it-
erative search algorithms. Iterative search algorithms are algorithms that for each
iteration change θ̂ until the system identification problem, equation 3.5, is solved
or rather minimised. If θ̂ contains two parameters then a two dimensional plane
describing each possible combination of parameter values is searched by the algo-
rithm. [8].

3.2 parameter accuracy

After finding parameter vector θ̂ that minimizes VN, it should be evaluated if the
model is valid. The data sets are split is to two sets. The first set is used to de-
termine the parameters (training data). The second data set is used to validate the
model (validation data). With the identified parameters from the training data set,
the output can be predicted using the input signal from the validation data set. The
validation data set will be used to solve the cost function VN, equation 3.4 to deter-
mine the accuracy of the model. To determine if the parameters are accurate, the
standard error is calculated with the standard deviation:

SE =
1√
N

σ (3.6)

Even though the respiratory system is nonlinear, a linear model might be ac-
curate enough to understand global mechanisms and simulate mechanical ventila-
tion. Throughout the modelling of ICU patients it must be remembered that the
estimated parameters from the system identification procedures are true for that
moment in time. Due to development of the affected lung, hemodynamic changes,
fluid balance, drug interactions or even the positioning of the patient in bed, the
respiratory mechanics continuously change over time.



4 S TAT E S PA C E D E S I G N

4.1 modelling respiratory mechanics

The respiratory system as a first order linear system as shown in equation 2.2 with
parameters E and R can be represented with a state space model. State space models
express nt-order differential equations as systems with coupled first-order differen-
tial equations in matrix form. Figure 4.1 shows the block diagram corresponding to
the state space model. The general form of state space models with p inputs and q
outputs is shown in equation 4.1:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(4.1)

Here x(t) is the state vector containing n elements for a nth order system which
describes the state of the system. The input matrix A is a n × n system matrix.
The input matrix B is a n × p matrix and output matrix C is a q × n matrix. The
direct feed-trough matrix D is a q × p matrix. The input vector u(t) contains all the
input signals and y(t) contains the output signals. State space models are especially
convenient for describing multiple-input multiple-output (MIMO) systems [14].

Figure 4.1: Block diagram of the state space model. The state matrices A, B, C and D contain
the variables of the system. The input vector u contains all input signals and the
output vector y contains all output signals.

The model of the respiratory system is a single-input single-output (SISO) system,
where input is pressure applied by the mechanical ventilator and output is volume
measured by the mechanical ventilator. By rewriting the first order differential
equation as shown in equation 4.2, the state space representation of the balloon-
pipe model can be deduced as can be seen in equation 4.3:

PAW(t) = P0 + E · (V(t) - V0) + RV̇(t)

RV̇(t) = PAW(t)− P0 − E · (V(t) - V0)

V̇(t) = −E
R
· (V(t) - V0) +

1
R
·
(

PAW (t) − P0

) (4.2)

15



16 state space design

ẋ(t) = Ax(t) + Bu(t)

ẋ(t)︷︸︸︷
V̇(t) = −E

R︸︷︷︸
A

·

x(t)︷ ︸︸ ︷
(V(t) - V0) +

1
R︸︷︷︸
B

·

u(t)︷ ︸︸ ︷(
PAW (t) − P0

)
y(t) = Cx(t) + Du(t)

y(t) =

x(t)︷ ︸︸ ︷
(V(t) - V0)

(4.3)

For the first order linear model of the respiratory system, the input is PAW-P0 and
the output is V-V0. The parameter matrices A and B are scalars in SISO systems.
Parameter R can be directly extracted with the estimation of B:

B =
1
R

R =
1
B

(4.4)

With the estimation of A and R, E can be deduced:

A =
−E
R

E = −A · R
(4.5)

The output of the system, y(t), is equal to volume difference, x(t), making the
C matrix equal to 1. The input has no direct influence on the output but rather
through the state equation, making the D matrix equal to zero.

4.1.1 Modelling from step experiment

In pressure controlled ventilation, the pressure wave forms are similar to multiple
unit step functions. A unit step function is a function where the values are 0 for t
< 0 and 1 for t > 0, as can be seen in figure 4.2. The volume is thus a step response
function, figure 4.3.

Figure 4.2: A unit step function. For t < 0, y is 0 whereas for t > 0 y is equal to 1.

For a linear state space model the step response is described by equation 4.6 [15]:

y(t) = CA−1eAtB︸ ︷︷ ︸
transient

+D−CA−1B︸ ︷︷ ︸
steady state

(4.6)
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Figure 4.3: Example of step response function with a transient state and a steady state.

The first term, CA-1eAtB, represents the transient response and determines how fast
the steady state is reached. In a stable system this term decays to zero as t reaches
the steady state. The second term, D - CA-1B, determines the amplitude of the
steady state response.

For the linear model described in equation 4.3 the step response is dependent on
the parameters as follow:

y(t) =
−1
E

e
−E
R t +

1
E

(4.7)

The steady state value can be manually extracted from experimental data. From
there E can be calculated:

yss =
1
E

(4.8)

With the calculated elastance value, the resistance can be calculated; a point in
time is chosen when the steady state value is not yet reached (t < tSteadyState). For
example, t

60% is the time where y is at 60 % of the steady state value:

y(t60%) =
−1
E

e
−E
R t60% +

1
E

(4.9)

For this point in time R can be solved. This automatically means that the value of
R is dependent on the time point chosen by the observer. To increase accuracy of
the estimation of R, equation 4.9 can be solved for multiple time points each with
a different value for R. For each estimation of R the cost function can be drawn.
The most accurate estimation of R is depicted with the smallest MSE of all cost
functions.

Note that in this model, E is directly differentiated from the volume at the end
of an inspiration. This suggests that at end inspiration the output - i.e. volume - is
only dependent on elastance. When looking at equation 2.2, this is only true when
the flow reaches zero end inspiration; the term RV̇ decays to zero too. Only then
is E directly related to the end inspiratory volume. In an ideal situation, the step
input is long enough to let the system reach a steady state. In many individuals
during mechanical ventilation, the flow does not decay to zero at the end of inspi-
ration. The steady state value is not reached. Calculation of elastance assuming
that the end inspiratory volume is the steady state value leads to a systematic error
in the estimation of E and therefore the estimation of R. Elastance is systematically
overestimated and thus is resistance underestimated. In addition, in this model,
parameters E and R are estimated solely from the inspiratory cycle of one breath.
However inspiration is active whereas expiration is passive, leading to different
flow patterns and thus different resistances. Modelling from the step experiment
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estimates inspiratory resistance rather than a mean resistance for the entire respira-
tory cycle. In addition, modelling from the step experiment is both time consuming
and can easily lead to systematic errors (biased estimation). For this reason, op-
timisation algorithms are used to estimate the parameters. Automatic estimation
in this report is done with the use of the Identification Toolbox of MATLAB 2019b
(Mathworks, Natick, Massachusetts, United States of America).

4.2 modelling thoracic and lung mechanics
To determine individual properties of the thorax and lung described by equation
2.3 and 2.4, pleural pressures should be measured to determine thoracic properties
and transpulmonary pressures for lung properties. The oesophageal pressure, Pes,
is used in mechanical ventilation as a representation of pleural pressure [16, 17]. If
Ppl ≈ Pes, the model of the thorax can be deduced with the use of equation 2.4 and
the model of equation 4.3:

ẋ(t) = −ECW

RCW
x(t) +

1
RCW

u(t)︸︷︷︸
Pes

y(t) = x(t)

(4.10)

With the oesophageal pressure curves the representation of the transpulmonary
pressure can be calculated: PL ≈ PAW - Pes. For the lung model, this calculated
transpulmonary pressure is used as input:

ẋ(t) = −EL

RL
x(t) +

1
RL

u(t)︸︷︷︸
PAW - Pes

y(t) = x(t)

(4.11)

Parameters ECW and EL are considered to be the elastance of the thorax and lung.
Parameters RCW and RL are not considered to be purely flow resistive components
as is the case in the respiratory system where respiratory airways are purely flow
resistive. RCW and RL are resistive components due to viscous properties, whereas
elastance represents elastic properties. Combining the two results in the the visco-
elastic properties of the thorax and lung as discussed in chapter 2.

4.3 parameter accuracy
To detect systematic errors the estimated elastance can be compared with the man-
ually measured values of the elastance. In mechanically ventilated patients, the
respiratory system elastance can be calculated:

ERS =
Pplat - PEEP

∆V
(4.12)

Pplat is the plateau pressure, which is the airway pressure during an inspiratory
occlusion manoeuvre. This causes the flow to decay to zero thereby eliminating
pressure needed to overcome the resistive forces. Note that this is a static elastance
measured at that moment in time. In the models described above estimated elas-
tance will be an average elastance over time. It is expected that these two values
have some differences. This is however a sufficient approach to evaluate if θ̂ is
biased.



5 PA R A M E T E R E S T I M AT I O N R E S U LT S

5.1 data acquisition
Data were extracted for five COVID-19 adult patients from the first of April until
June 31

st at the ICU in the Leiden University Medical Centre (LUMC). All patients
were sedated and received neuromusculair blockades. The patient characteristics
relevant for respiratory mechanics are shown in table 5.1.

Table 5.1: Patient characteristics of five patients with COVID-19 pneumonia for system iden-
tification. BMI = body mass index, RS = respiratory system

Subject # BMI Prone positioning Pulmonary history Elastance RS
1 31.8 No None 36

2 30.8 No Asthma 35

3 26.8 No Asthmatic bronchitis 20

4 19.4 No None 45

5 31.4 Yes None 30

Patient characteristics are included to determine if estimated parameters are in
agreement with pathophysiological processes of the respiratory mechanics. Patient
2 and 3 have a history of asthma and asthmatic bronchitis. This can lead to a higher
airway resistance. However, when treated properly the respiratory resistance can
be normal as is the case in these subjects. No patients had a history of affected
lung tissue. It is therefore expected that all patients have normal to increased lung
elastance due to COVID-19 pneumonia. Body mass index (BMI) and prone position-
ing have a possible influence on elastance of the thorax. A high BMI can indicate
obesity, which can result in increased thoracic elastance due to the amount of extra
mass that should be inflated with each breath and/or increased abdominal pressure
[18]. Prone positioning also leads to an increase of thoracic elastance [19].

For each patient, data files were extracted from the mechanical ventilator. All
patients had an oesophageal balloon in situ, allowing for system identification of
thorax and lung. Oesophageal balloons were positioned and calibrated by the in-
vestigator. All data files were analysed and cut by the investigator to exclude any
artefacts for system identification procedures. The prepped pressure, flow and vol-
ume curves are shown in Appendix B. Elaboration of the MATLAB scripts for the
preprocessing steps and system identification procedures can be found in Appendix
C.

Static elastance of thorax and lung were not measured. Reference values for
thorax and lung elastance are adapted from literature. In the study of van der Zee
et al. [20] the mean lung elastance for COVID-19 pneumonia was 12 (9-23) cm H2O
L-1 and for thorax elastance 8 (5-19) cm H2O L-1.

5.2 respiratory system
The results of system identification and parameter estimation of the respiratory
system with automatic optimisation procedures are shown in table 5.2.

MSE and fit percentage are calculated with the use of validation data. The MSE
values are small which means that the model can accurately simulate the volume

19
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Table 5.2: Estimation results of system identification of the first order linear model of the
respiratory system. MSE = mean square error. SE = standard error.

Respiratory System
Subject # MSE Fit % Elastance (SE) Resistance (SE)

1 0.0029 64 32 (1.4) 18 (0.9)
2 7.4-04

82 37 (0.7) 10 (0.3)
3 1.1-04

93 23 (0.04) 10 (0.03)
4 0.0011 75 50 (0.9) 12 (0.5)
5 6.0-04

83 35 (0.2) 12 (0.1)

response during mechanical ventilation. Patient 1 shows a MSE of 0.0029, meaning
that the mean error is 29 millilitres which is a very small amount, however the fit
in this patient is low. This is due to the fact that the human respiratory system is
not an ideal system. In figure 5.1 measured and simulated volume of subject 1 is
shown. The most probable reason of the bad fit can be seen in the end expiratory
phase. This figure shows that for this subject, expiratory volume is smaller than
inspiratory volume. Therefore, the expiratory limb does not return to zero. The
model is an ideal system where inspiratory and expiratory volume are the same.
This results in a difference between the model and the real system. Figure 5.2 shows
the results of subject 4, which shows also a low fit due to the expiratory limb. In
this case however, expiratory volume is larger than inspiratory volume. This leads
to the expiratory limb to become negative leading to a difference between measured
volume and simulated volume.

Figure 5.1: Measured volume (solid black line) and simulated volume (dashed red line). Ex-
piratory volume of the measured data is smaller than inspiratory volume. This
causes the expiratory limb to not return to zero leading to a decrease of overall
fit.

Differences between inspiratory and expiratory volume can be due to multiple
reasons. First, measured volume includes only volume which flows across the flow
sensor which is located at the end of the endotracheal tube. In some cases, the flow
of air leaks around the breathing circuits and thus does not cross the flow sensor,
resulting in a smaller expiratory volume. Second, inspiratory air is usually at a
different temperature than the temperature of the patient. Although the flow of
air is warmed up before it reaches the patient, it loses heat due to the flow through
breathing circuits. When the air reaches the patient, it is warmed up by body heat of
the patient. According to the ideal gas law, an increase of temperature of gas leads
to an increase of volume and/or pressure. This can result in a larger expiratory
volume than inspiratory volume. Lastly, composition of air is also different due to
gas exchange that occurs in the lung, leading to a volume difference. To increase
the fit of the model, these phenomena should be taken in to account. However,
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Figure 5.2: Measured volume (solid black line) and simulated volume (dashed red line). Ex-
piratory volume of measured data is larger than inspiratory volume. This causes
the expiratory limb to become negative whereas the simulated volume returns to
zero. This causes overall fit to decrease.

these are very complex and nonlinear components. It is therefore more preferable
to evaluate the bad fit percentages manually. If the shape (transient response) of
inspiratory and expiratory leg of the volume curve have a good fit, the linear model
approaches respiratory mechanics with high accuracy. Absolute volume differences
can usually be explained by causes which are not related to respiratory mechanics.
If the shape of simulated inspiratory or expiratory limb is different, the linear model
is not sufficient. A possible reason for this can be that non-linearity of respiratory
mechanics plays a more prominent role in the system.

The standard errors of estimated parameters are very small meaning that the es-
timation of the parameters are accurate. The agreement of the measured static elas-
tance and estimated elastance is shown with a Bland-Altman plot, figure 5.3. The
number of patients included is too small to determine if the agreement between the
two measures is sufficient. It does allow for a clear visualisation of discrepancies.
The mean of the difference between the two measures is -2 cm H2O L-1, mean-
ing that estimated elastance is overall higher than measured elastance. Measured
elastance was calculated with the use of expiratory volume. As described above,
expiratory volume is usually larger than inspiratory volume. The model tends to fit
to inspiratory volume since expiratory volume gets negative which is not possible
in the ideal system of the model. Due to this difference, volume used in the mea-
sured elastance tends to be higher resulting in a lower elastance value. For patient
1, measured elastance is lower than estimated elastance. In this patient, expiratory
volume is smaller resulting in a higher measured elastance. It is most likely that
estimated elastance is more accurate for this patient since the calculated elastance
does not take the air leak in to account.
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Figure 5.3: Bland-Altman plot of measured static elastance and dynamic estimated elastance
of the respiratory system. The mean of the difference between the two measures
is -2 cm H2O L-1, meaning that estimated elastance is overall higher than mea-
sured elastance.

5.3 thorax and lung
The results of system identification and parameter estimation of the thorax and lung
with automatic optimisation procedures are shown in table 5.3 and 5.4.

Table 5.3: Estimation results of system identification of the first order linear model of the
thorax. MSE = mean square error. SE = standard error.

Thorax
Subject
#

MSE Fit % Elastance (SE) Resistance (SE)

1 0.0029 64 9 (0.2) 1 (0.1)
2 8.6-04

80 11 (0.2) 1 (0.07)
3 0.0076 42 6 (0.10) 1 (0.06)
4 0.0087 30 10 (0.7) 1 (0.1)
5 0.01 29 5 (0.2) 1 (0.2)

Table 5.4: Estimation results of system identification of the first order linear model of the
lung. MSE = mean square error. SE = standard error.

Lung
Subject
#

MSE Fit % Elastance (SE) Resistance (SE)

1 0.0012 77 29 (0.6) 15 (0.5)
2 0.0011 77 26 (1.0) 10 (0.4)
3 2.3-04

90 20 (0.07) 10 (0.04)
4 0.0011 75 50 (1) 12 (0.7)
5 9.1-04

79 34 (0.3) 12 (0.1)

Estimated elastance values of the thorax do appear to be similar to the values of
the study of van der Zee et al. [20]. Elastance values of the lung seem to be too
high.

The assumption is made that both lung and thorax behave linear. The respiratory
system is then a summation of the two systems. However in all subjects except
for subject 2, summation of elastance values of thorax and lung does not result
in the elastance value of the total respiratory system. The difference between the
summation of thorax and lung and respiratory system is visualised with Blant-
Altman plots, figure 5.4.
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Figure 5.4: Bland-Altman plots of difference between estimated resistance and elastance of
the respiratory system and the summation of estimated thorax and lung elastance
and resistance. If the systems are estimated accurately and behave linear, the two
values should agree.

As described before, it can be concluded that the estimation of the respiratory
system is accurate which means that the error of summation lies within estimation
using oesophageal pressures or the systems do not behave linear.

The discrepancies are most likely due to the noisy signals of the oesophageal
pressures. Figure 5.5 shows oesophageal pressure curves of subject 4. Oesophageal
pressure increase caused by alveolar pressure increase are indicated with red arrows.
The other peaks identified with red dots are due to increase of pressure due to
cardiac activity, also known as cardiac noise. In this case, cardiac noise is half the
amplitude of the signal amplitude resulting in a low signal-to-noise ratio (SNR).
Figure 5.6 shows input and estimated output signals of subject 2; the input signal
has a better SNR leading to a better estimation of parameters and simulation of
output.

To increase fit, oesophageal pressure curves can be filtered to increase SNR. With
this, estimation results should improve. If not, there are additional reasons for a
bad fit. It is possible that a linear model is not accurate enough to approach the
non-linearity of the lung and/ or thorax. Therefore summation of elastance and
resistance of thorax and lung do not add up to the estimated values of the respi-
ratory system. It is also assumed that the oesophageal balloon gives an accurate
approximation of pleural pressure across the lung. This can differ for each patient.
In addition, positioning and calibration of the balloon can be difficult.

Even though oesophageal signals are also used to estimate lung parameters, the
fit of the lung model is overall better than the model of the thorax. This is due to the
fact that airway pressure curves have better signal-to-noise ratio than oesophageal
pressure curves. Transpulmonary pressure is a resultant of the two signals thereby
increasing SNR compared to oesophageal pressure curves. Even though SE of the
parameters are small, estimated elastance values of the lung are almost equal to
elastance values of the respiratory system for each subject. This would mean that
all pressure applied to the respiratory system is applied to the lung and no pressure
is applied to the thorax, which is not physiologically not possible. It can therefore
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Figure 5.5: Upper figure: oesophageal pressure curves of subject 4. Pressure peaks indicated
with arrows show increase of pressure due to increase of alveolar pressure during
an inspiration. Pressure peaks indicated by red dots are due to cardiac activity
also known as cardiac noise. The amplitude of cardiac noise is approximately half
the amplitude of the pressure peaks of the inspiration resulting in a low signal-to-
noise ratio. Lower figure: measured (black solid line) and estimated (red dashed
line) volume. Noisy input signals lead to a bad estimation of parameters and bad
simulation of output.

be concluded that the lung model is also not an accurate representation of lung
mechanics.

Main findings:

• The first order linear model of respiratory mechanics is an accurate rep-
resentation of the respiratory system of COVID-19 patients.

• Lung and thoracic mechanics can not be modelled with the first order
linear model due to noisy input signals from the oesophageal pressure
curves.
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Figure 5.6: Upper figure: oesophageal pressure curves of subject 2. Lower figure: measured
(black solid line) and estimated (red dashed line) volume. In comparison with
subject 4, figure 5.5, signal-to-noise ratio is much better resulting in a better esti-
mation of parameters and output.
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6.1 modelling respiratory mechanics
For linear models with one input and one output, the system can also be repre-
sented with a transfer function, figure 6.1. Transfer functions describe the relation
between input and output in the Laplace domain, equation 6.1. Background theory
of the Laplace transform can be found in Appendix A.

Figure 6.1: Block diagram of the transfer function. U(s) is the Laplace transform of input
signal u(t) and Y(s) is the Laplace transform of output signal y(t). G(s) represents
the transfer function of the system.

Y(s) = U(s)G(s) (6.1)

Y(s) is the Laplace transform of y(t), U(s) the Laplace transform of u(t) and G(s) is
the transfer function. For a first order linear differential equation the general form
of the transfer function is:

G(s) =
b0

s + a0

(6.2)

The transfer function of the balloon-pipe model with parameters E and R can be
deduced to the general form of equation 6.2:

U(s) = ERSY(s) + RRSsY(s)

U(s) = (ERS+RRSs)Y(s)
Y(s)
U(s)

=
1

RRSs + ERS
Y(s)
U(s)

=
1/RRS

s + (ERS/RRS)

(6.3)

System identification estimates the values of b0 and a0 of equation 6.2. After
parameter estimation the numerator (b0) is directly related to parameter R and
parameter E can be deduced from the denominator. The first order linear model of
thorax and lung can also be expressed with transfer functions as follow:

Y(s)
U(s)

=
1/RCW

s + (ECW/RCW)
(6.4)

Y(s)
U(s)

=
1/RL

s + (EL/RL)
(6.5)

6.1.1 Modelling from step experiment

Transfer functions of linear first order differential equations can also be determined
with the step experiment as described before in section 4.1.1. To estimate parameters

27
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Figure 6.2: Step response of first order linear system. τ can be determined at 63% of the
steady state, K. In this example, τ is 0.5 seconds.

from the step experiment it is convenient to use another general form for describing
a first order linear model:

G(s) =
K

τs + 1

where a0 =
1
τ

and b0 =
K
τ

(6.6)

K is the steady state value of the step response and τ the time constant of the system.
The transient state of the step experiment is dependent on τ. After τ seconds, the
system is at 63% of the steady state value, as can be seen in figure 6.2. The steady
state value is reached after five times the value of τ [15]. With use of equation 6.3
and 6.6, the relation between τ and K and parameters E and R can be determined,
as can be seen in equation 6.7 and 6.8.

a0 =
E
R

=
1
τ

τ =
R
E

(6.7)

and
b0 =

1
R

=
K
τ

R =
τ

K

K =
1
R
· R

E
=

1
E

(6.8)

Equation 6.8 shows that the steady state value is directly dependent on elastance,
which is also stated in the step experiment of the state space model. The estimated
value of E will again lead to a systematic error, because the steady state value is
usually not reached at the end of inspiration. The transient response is dependent
on both elastance and resistance since τ is dependent on both parameters. In com-
parison with the step experiment from the state space model, the step experiment
with the transfer function gives more insight of the influence of the parameters in
the transient state. For example, an increase of resistance or a decrease of elastance
results in a higher τ, which means that it takes longer to reach the steady state.

6.2 frequency response
The results of chapter 5 suggest that the first order linear model is accurate for
simulation of the respiratory system. With the transfer function, the model can
be further explored to research characteristics about the respiratory system which
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could be relevant for mechanical ventilation. The transfer function allows for anal-
ysis of the system in the frequency domain. In controlled ventilation, the clinician
determines respiratory frequency. Understanding the frequency response of the
system can therefore be useful in decision making of ventilator settings.

When s is replaced by jω, G(s)→ G(jω), the frequency response can be evaluated.
Frequency response is often analysed with the use of a Bode plot. Additional back-
ground information of the Bode plot can be found in Appendix A. An example of a
Bode plot of the first order linear model of the respiratory system is shown in figure
6.3. This figure shows that for all frequencies the magnitude is negative, meaning
that input amplitude is reduced by the system. The higher the frequencies become,
the more the input amplitude is reduced. The phase plot shows that the output lags
the input, meaning there is some time delay in the response of the system.

Figure 6.3: Example of Bode plot with magnitude in dB and phase in degrees. The mag-
nitude for all frequencies is negative, meaning that amplitude of the input is
reduced in the output. With higher frequencies, the magnitude becomes more
negative. The phase plot shows a phase difference between input and output. A
negative phase means that the output lags the input. Cut-off frequency is the
frequency in which the magnitude is decreasing with a steady slope.

For mechanical ventilation frequencies of interest are respiratory frequencies. In-
put signals for Bode plots are sinusoidal waves, whilst input signals in mechanical
ventilation are a pulse train. Every periodic signal can however be manufactured
with a summation of sinusoidal waves with different frequencies. Figure 6.4 is the
Fourier spectrum of the input in mechanical ventilation. A Fourier spectrum shows
sinusoidal frequencies of which the signal is made out of. The fundamental fre-
quency is the lowest frequency. In the pulse train for mechanical ventilation the
fundamental frequency is the respiratory frequency and has the highest amplitude
and thus has the most influence during mechanical ventilation. Figure 6.4 shows
that all frequencies in input signals for mechanical ventilation are low. For pressure
controlled ventilation the range of fundamental/respiratory frequencies lie within
the range of 0.3 - 0.6 Hz.

Bode plots of all five COVID-19 patients are shown in figure 6.5. Figure 6.5 shows
that cut-off frequencies lie within the range of physiological respiratory frequencies,
meaning that volume decreases with higher frequencies in mechanical ventilation.
Figure 6.6 shows Bode plots zoomed in for respiratory frequencies. The magnitude
before cut-off frequencies is primarily dependent on elastance of the respiratory
system. Patient 3 had a low elastance resulting in a less negative magnitude in
comparison with the other patients, while patient 4 with a high elastance has a more
negative magnitude. Cut-off frequency is dependent on τ; a higher time constant
will lead to a lower cut-off frequency. At this frequency the phase difference also
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Figure 6.4: Example of Fourier spectrum of pressure waves used as input signal in mechan-
ically ventilated patient in pressure controlled ventilation. X-axis is the frequen-
cies. Y-axis is the amplitude of corresponding frequency. In this example, the
patient was ventilated with a respiratory frequency of 21 breaths per minute or
0.35 Hz which has the highest amplitude. This means that the respiratory fre-
quency.

Figure 6.5: Bode plots of the five patients with COVID-19 pneumonia. Differences in Bode
plot are explained by differences in respiratory mechanics. Before the cut-off
frequency, magnitude is determined by elastance; a high elastance leads to a
more negative magnitude. After the cut-off frequency the magnitude becomes
more negative with a steady slope.

Figure 6.6: Bode plots zoomed in for the respiratory frequencies.
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starts. This means that in respiratory frequencies higher than the cut-off frequency
volume will decrease with a steady slope, as can be seen in figure 6.5. There will also
be a delay between applied pressure and built up of volume. Time constants shown
in table 6.1 are calculated with the use of estimated parameters from chapter 5. With
a higher time constant, the system needs more time to reach steady state. If these
subjects breath with higher respiratory frequencies, the system cannot reach steady
state resulting in lower magnitude of output signal. Patients with spontaneous
breathing activity will therefore prefer low respiratory frequencies to allow for full
inflation of lung. Figure 6.6 shows that patient 1 with a high time constant is
more sensitive for higher frequencies due to the low cut-off frequency. This is
important to be aware of in the clinical setting. When there is a need for more
alveolar ventilation, for example due to high levels of carbon-dioxide, respiratory
frequency can be increased. However, an increase of respiratory frequency also
leads to a decrease of tidal volume. There is a balance between optimum tidal
volume and respiratory frequency. In controlled ventilation, a clinician should be
alert of the time constant to determine if the subject is sensitive for high respiratory
frequencies. For patients with a high time constant this optimum will lie with
lower respiratory frequency. Increasing respiratory frequency in these patients will
be counter productive and thus will result in less effective treatment.

Table 6.1: Time constant calculated with the estimated values of elastance and resistance
according to equation 6.7 and table 5.2.

Subject # Time constant (s)
1 0.56

2 0.27

3 0.43

4 0.24

5 0.34

6.3 second order linear model
Until now the respiratory system is approached as a first order linear system. In-
ertia is assumed to play a non significant role in low respiratory frequencies. This
conclusion is based on experiments with healthy subjects [21]. Influence of inertia in
patients can be explored with the second order linear model. The transfer function
of this model is as follow:

Y(s)
U(s)

=
1

IRSs2 + RRSs + ERS
Y(s)
U(s)

=
1/IRS

s2 + (RRS/IRS)s + (ERS/IRS)
(6.9)

Parameters can again be extracted from the identified system. Inertia of the res-
piratory system can be extracted from the numerator. Resistance can be deduced
with the second term of the denominator and elastance with the third term of the
denominator using the estimated value of inertia.

6.3.1 Estimation results

Estimation of the second order linear model introduces some extra difficulties. In
the first order linear model, air leak result in an estimation error. By manually eval-
uating this error, the model is still concluded to be accurate. In the second order
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linear system this air leak prevents identification of the system, figure 6.7. There-
fore, the data set is further preproccesed by interpolation of end expiratory phase.
This prepocessing step is explained in Appendix D. Note that this interpolation de-
creases tidal volume; about 100 ml of volume will be cut away from the signal. This
will lead to an overestimation of elastance since the same pressure will result in less
volume. The system was identified with the interpolated data.

Figure 6.7: Second order linear system of patient 1 with known air leak (expiratory volume
is lower than inspiratory volume). This causes the system to be unidentifiable
(upper figure). By interpolation of end expiratory phase, the effect of air leak is
lifted, resulting in an identifiable system (lower figure).

Results of the second order linear model are shown in table 6.2. The good fit
and small SE of parameters suggest that the identified models are able to simulate
the system response. A rare case is subject 2 which shows a good fit but a very
poor accuracy of estimated parameters. This is an example of the complexity of a
second order model. Adding more parameters to a model allows for more degrees
of freedom, making it more difficult to get an accurate estimation of parameters. In
the first order models, accuracy of parameters and goodness of fit was enough to
determine if the model was a good approach of the respiratory system. It is thus
important to further analyse characteristics of the identified models to determine if
the identified models are indeed a good approach of the respiratory system.

Characteristics of models can be evaluated with poles and zeros. Background
information of poles and zeros can be found in Appendix A. The pole and zero
map of all identified second order models is shown in figure 6.8. This figure shows
that all poles have a negative real part, which means that all systems are stable.
The dominant pole - i.e. the part of the system which has the most influence on
the system response - are the poles closest to the imaginary axis. These poles de-
termine how fast the system responds, comparable with time constants of the first
order linear model. More interestingly, patient 1, 2 and 4 have imaginary poles: the
identified models are underdamped. This would mean that by applying an input
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Table 6.2: Estimation results of system identification of the second order linear model of the
respiratory system. MSE = mean square error. SE = standard error.

Respiratory System
Subject # MSE Fit % Elastance (SE) Resistance (SE) Inertia (SE)

1 2.1-04
90 54 (0.9) 16 (1) 1 (0.06)

2 5.5-04
84 39 (1) 11 (1) 0.8 (0.1)

3 1.0-04
93 23 (2+5) 10 (2+5) 6

-04 (2+4)
4 6.4-04

81 58 (1) 12 (1) 0.8 (0.09)
5 4.0-04

86 36 (3) 12 (3) 0.6 (0.2)

the respiratory system will oscillate before reaching steady state. The respiratory
system then has an eigenfrequency or natural frequency. The natural frequency
is the frequency which a system oscillates with when it is moved from an equilib-
rium position and then released [14]. An example of this phenomenon is seen with
a tuning fork; by striking a tuning fork, it will oscillate with a certain frequency.
Since the 1950s, oscillatory behaviour of the respiratory system has been studied
[21, 22]. This subject however exceeds the scope of this thesis. Notable is that not
all identified models show the same characteristics in terms of damped or under-
damped. It is possible that the negative end expiratory phase as shown in figure 5.2
has a greater influence in the second order model in comparison with the first order
model. Further preprocessing similar to figure 6.7 is needed to accurately identify
the respiratory system. It has to be kept in mind that input and output data are
heavily influenced by both the human body and mechanical ventilator. The input
signal is not a perfect pulse train. Applied pressure is continuously measured dur-
ing an inspiratory cycle and flow is adapted to try maintain the set pressure. This
causes for a noisy input signal and can results in wrongful system identification
similar as seen in identification of thorax and lung in chapter 5. In future research,
the second order linear model should be further evaluated to determine if and why
the system is wrongly identified.

Main findings:

• System identification with transfer functions gives more information about
the characteristics of the identified system in comparison with the state
space design.

• The time constant is dependent on both elastance and resistance. It is
important to be aware of the time constant to understand effects of respi-
ratory frequency on the tidal volume.

• The second order linear model of the respiratory mechanics should be fur-
ther researched to determine if the respiratory system can be accurately
modelled as a second order linear system.
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Figure 6.8: Poles and zeros plot of the second order linear model of the respiratory mechan-
ics of the five COVID-19 patients. The second order model has two poles and
no zeros. Patient 1, 2 and 4 have imaginary pole indicating that those identified
system are underdamped.
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7 M O D E L D E S I G N

For educational purposes, it is interesting to visualize the models of the respiratory
system and mechanical ventilation for different values of parameters of elastance
and resistance in a way that is similar to the clinical setting. The models in this
part can also visualize properties of the system which can not be measured in
the real system such as alveolar pressure. For simulation of these models MAT-
LAB/Simulink 2019b (Mathworks, Natick, Massachusetts, United States of Amer-
ica) is used. The Simulink models are displayed in Appendix E.

Properties of the mechanical ventilator, resistance and elastance can be manually
adapted. In healthy adults, resistance of the respiratory system is between 0.5 and
2 cm H2O s L-1 [9]. For individuals with obstructive diseases, resistance can in-
crease to 15 cm H2O s L-1 [23]. Physiological elastance of the respiratory system is
between 4 and 8 cm H2O L-1. Properties of elastance and resistance in mechanical
ventilation are different than in physiological breathing. Resistance is increased up
to 10-15 cm H2O s L-1 due to artificial airways needed for mechanical ventilation
[24]. In patients with COPD, airway resistance can increase up until 22 cm H2O s
L-1 or higher [24]. Elastance also increases to approximately 15-20 cm H2O L-1 in
healthy subjects undergoing mechanical ventilation. In restrictive diseases such as
ARDS elastance can be increased to 30 and in COPD elastance can be decreased to
13 [24]. Arnal et al. [24] researched typical parameter calues during mechanical
ventilation. Results of this study can be used for parameter selection in simulation,
table 7.1. Parameter values can also be randomly chosen or estimated parameter
values acquired from system identification procedures can be used. V0 is usually
around 2 litres [9].

Table 7.1: (Patho)physiological parameter values of elastance and resistance of the respira-
tory system in mechanical ventilation for healthy and pathological lung. The pa-
rameter values can be used for simulation of respiratory mechanics. From Arnal
et al. 2017

Parameter Healthy Lungs ARDS COPD
Elastance 15-23 20-31 13-23

Resistance 10-15 9-14 16-33

7.1 model 1: model of respiratory system
Most simple model to simulate is the first order linear model as shown in part
I. Models in part I describe the relation between pressure difference and volume
difference. To simulate this PEEP is set to zero, figure 7.1. The figure shows that
alveolar pressure is not equal to airway pressure at the end of inspiration. This can
also be seen in the flow curve; the flow is not zero. This indicates that there is still
a pressure difference between lung and airway. For clinicians this is important to
be aware of since transpulmonary pressure is the resultant of alveolar pressure and
pleural pressure. Since alveolar pressure cannot be measured in vivo, an inspiratory
or expiratory hold manoeuvre should be done. With these manoeuvres, the valves
of the mechanical ventilator are closed to let the flow decay to zero. It is then
thought that the pressures measured at the airway are equal to alveolar pressure.
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Figure 7.1: Simulation of the first order linear model. To simulate the relation between pres-
sure, flow and volume difference as is done in system identification, PEEP is set
to zero. In this example, elastance is 15 cm H2O L-1, resistance is cm H2O s L-1.
PAW is airway pressure and Palv is alveolar pressure. X-axis represents the time
in seconds.

By setting PEEP > 0, the effect of PEEP can be evaluated. By setting PEEP, end
expiratory lung volume will not return to zero but is positive, as can be seen in
figure 7.2.

Figure 7.2: Simulation of first order linear model with PEEP. End expiratory lung volume
increases to approximately 0.35 L. In this example, elastance is 15 cm H2O L-1,
resistance is cm H2O s L-1. PAW is airway pressure and Palv is alveolar pressure.
X-axis represents time in seconds.

7.2 model 2: model of thorax and lung
Model 1 can be expanded with thoracic elastance and lung elastance as separate
compartments. With this model pleural pressure and transpulmonary pressure
can be visualized as shown in figure 7.2. By increasing PEEP end expiratory lung
volume increases. This results to a higher intrathoracic volume and thereby higher
pleural pressure. Pleural pressure becomes positive when intrathoracic volume is
larger than the resting volume of the thorax (VV0 Th). V

0 Th is in physiological cases
around 4.6 litres [25].
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Summation of thoracic elastance and lung elastance results in elastance of the
respiratory system. In healthy individuals elastance of thorax and lung are similar,
resulting in an equal distribution of aplied pressure across the two systems. In
certain pathologies such as ARDS pressure distribution can be greatly disturbed;
thoracic elastance can be up to 4 times smaller or 4 times larger than lung elastance
[18]. Thoracic elastance can be increased due to increased body weight, an increase
of abdominal pressure by abdominal fluid (ascites) or intestinal distension [18].

Figure 7.3: Simulation of first order linear model with thoracic and lung elastance. Summa-
tion of thorax and lung elastance results in elastance of respiratory system. PAW
is airway pressure, Palv is alveolar pressure, Ppl is pleural pressure and PL is
transpulmonary pressure. X-axis represents time in seconds.

7.3 model 3: model of heterogeneous lung
In chapter 2 the concept of heterogeneity is explained. Pathological lungs are often
heterogeneous where different lung regions have different elastance and/or resis-
tance values. To simulate this, the lung is divided in to two compartments, equation
7.1:

PAW(t) = PEEP + E1 · (V1 - V0) + E2 · (V2 - V0) + R1V̇1(t) + R2V̇2(t)

PAW(t) = PEEP + (E1 +E2) · (V - V0) + (R1 + R2)V̇(t)
(7.1)

From a clinical perspective, it is very interesting to determine local respiratory
mechanics. In mechanical ventilation only one volume and one flow is measured.
This results in to an infinite amount of possibilities of both the two elastance values
and the two resistance values to solve equation 7.1. System identification of this
model is therefore insolvable. With simulation however this is not a problem; the
observer can manually choose elastance and resistance values of the different com-
partments. The total lung elastance is a summation of the two individual elastance
values of the separate compartments. Resistive components are built in parallel,
lowering the total respiratory resistance:

1
RRS

=
1

R1

+
1

R2

(7.2)

This means that individual resistive components have to be greater when more
compartments are set parallel to obtain the same respiratory resistance as used in
model 1 or 2. The model allows for the visualisation of volume, flow and pressure
for each compartment as well as total flow, volume and pressure, figure 7.4. In this
model, it is assumed that pleural pressure is the same across the lung.
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Figure 7.4: Simulation of the two compartment linear model with different resistance and
elastance values of separate compartments. Compartment 2 (purple line) has a
lower resistance and elastance allowing for more volume. Compartment 1 has
less volume due to less flow but has similar transpulmonary pressure caused by
the higher elastance in comparison with compartment 2. PAW is airway pressure,
Ppl is pleural pressure, PL1

and PL2
are the transpulmonary pressures of the

separate compartments. X-axis represents time in seconds.

7.4 model 4: heterogeneous lung with recruit-
ment

The pressure gradient due to gravitational forces and recruitment can be modelled
with threshold opening pressures (TOP). When the TOP is reached, elastance of that
alveolar compartment changes from a high elastance to a low elastance, allowing
inflation and decreasing total lung elastance. Figure 7.5 shows the effect of recruit-
ment on the pressure-volume relation. When the transpulmonary pressure - by
an increase of airway pressure or decrease of pleural pressure - of a closed alveolar
compartment reached the TOP, the compartment is recruited: the elastance switches
from high to low.

The models described above can extended with more compartments to create a
more smooth response. Total lung elastance is a summation of all parallel alveolar
compartments:

EL =
n

∑
i=1

Ei (7.3)

For all parallel respiratory airways, total respiratory resistance can be calculated:

RRS = Rcommon +
n

∑
i=1

1
Ri

(7.4)
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Figure 7.5: Effect of threshold opening pressure (TOP) for pressure-volume relationship in
two compartment linear model. The black line represents pressure-volume rela-
tionship when both compartments are recruited: a low elastance for all pressures.
The red line represents pressure-volume relationship when one compartment has
to be recruited through higher pressures. Before recruitment, total respiratory
elastance is low. When the second compartment is recruited, this compartment
contributes to the ventilation thereby decreasing the total respiratory elastance.
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8.1 future research
This thesis gives an overview of the most important respiratory mechanics and
modelling of these respiratory mechanics. Even though the models described in
this thesis have been extensively researched and applied [9, 11, 26], system identi-
fication of these models have shown there is still a need for further research. This
can be explained by the input and output signals used for system identification,
which need more prepocessing and/ or filtering. As discussed before, oesophageal
pressure curves need additional preprocessing in the form of filtering of cardiac
noise to allow for accurate estimation of parameters. It is also possible to use sys-
tem identification techniques which encounter for noisy input signals. Additional
preprocessing might also benefit system identification of the second order linear
model.

Chapter 5 has shown the first order linear model as an accurate representation
of the respiratory system. This conclusion is drawn from validation of five patients
with the same pathology, mostly showing restrictive respiratory mechanics. To
further validate the model, it should be evaluated if different types of pulmonary
diseases with different respiratory mechanics can also be accurately identified. The
database should at least include healthy lungs, additional restrictive diseases such
as lung fibrosis and pulmonary oedema and obstructive diseases such as asthma
and COPD. All these patients are part of the ICU population which receive me-
chanical ventilation and should therefore be included in further application of the
models.

After further validation, the models can be used to perform in silico studies. A
possible application can be to research the optimal ventilation settings in controlled
mechanical ventilation. In 2016 Gattinoni et al. [27] proposed mechanical power
as a parameter directly correlated with VILI. This mechanical power describes the
energy that is applied to the respiratory system by the mechanical ventilator. The
last years the hypothesis has arisen that the mechanical power should be minimised.
The first order linear model can help to understand and determine optimal venti-
lation settings by limiting mechanical power given a set minute volume. It is also
possible that the pressure wave forms in pressure controlled ventilation are not the
ideal wave form to minimise mechanical power. With the use of the models, other
waves forms can be explored to optimise ventilation strategies.

8.2 further model development
In chapter 2 it is discussed that the respiratory system behaves as a nonlinear sys-
tem. Because the first order linear model shows good accuracy, it is most likely
that nonlinear behaviour is small during the range of pressures used in mechanical
ventilation. From a clinical perspective, it is interesting to research if nonlinear be-
haviour is present when there are setting changes applied to mechanical ventilation.
It is expected that for example a change of PEEP leads to a change in elastance
which is important to evaluate for lung protective ventilation. This possible nonlin-
ear behaviour makes it difficult to predict the result of ventilator setting changes at
bedside. By identification of nonlinear behaviour in models, it might be possible for
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clinicians to get better in predicting effects of ventilator settings. The expectation
is that more insight will lead to more lung protective ventilation with better pa-
tient outcomes. To explore possible nonlinear behaviour with system identification,
input signals should include changes in ventilator settings. If the linear model is
still an accurate representation of the system, nonlinear behaviour is negligible. If
not, the role of non-linearity can be explored. This can be done by approaching the
system as a black box - i.e. with no prior knowledge of the structure of the system,
with the use of so called Volterra series [15]. With this approach, parameters of the
system are not estimated, but rather parameters of linear and nonlinear components
between input and output. Parameters describing non linearity gives an indication
of the magnitude of nonlinear behaviour.

In mechanical ventilation, respiratory mechanics are not the only aspect that
should be understood and encountered for in the clinical setting. The respiratory
mechanics influence gas exchange and hemodynamics of an individual. A complete
image of the effects of mechanical ventilation should therefore include the respira-
tory mechanics, gas exchange and hemodynamics. The ventilation is set in such a
way that is beneficial for lung protective ventilation but has negative effects on gas
exchange or hemodynamics of the patient. The understanding of the interaction
between respiratory mechanics, gas exchange and hemodynamics is thus of great
importance for adequate treatment of patients.

The respiratory mechanics are much more complex than described in this thesis.
For example, nonlinear resistance, time dependent recruitment and derecruitment
are not discussed. However, it is important to evaluate if more complexity leads to
a more accurate model. As shown in chapter 6 introduction of more complexities
such as from a first order model to a second order model, will introduce extra
difficulties. The level of complexity for system identification will be limited. For
simulation, there are not really limitations to the complexity of the models that can
be made. It is however difficult to evaluate the accuracy of these models. Without
system identification, the structure of the system will be theoretical and cannot be
validated with experimental data.
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A P P E N D I X A : L A P L A C E T R A N S F O R M ,
B O D E P LOT A N D P O L E S A N D Z E R O S

laplace transform
The Laplace transform is an integral transform that transforms a signal to the s-
domain which is a complex variable with a real part σ and a complex part jω.

F(s) =
∫ ∞

0
f (t)e−stdt

where s = σ + jω

The Laplace transform is a mathematical tool which allows for transforming dif-
ferential equations in to algebraic equations. For example, differentiation becomes
multiplication and integration becomes division. The Laplace transform is conve-
nient in system identification; it allows for analysis of characteristics of the system
both for transient response as for steady state response.

bode plot
The frequency response of a system can be found by substituting s with jω:

G(s) =
1

s + k
→ G(jω) =

1
jω + k

With this, magnitude and phase of the system as response to a sinusoidal input
signal with frequency ω:

M =

∣∣∣∣ 1
jω + k

∣∣∣∣ and φ = −tan-1
(ω

k

)
The magnitude is essentially the amplitude ratio between input and output value.
A negative magnitude indicates that the amplitude of the input signal is reduced. A
positive magnitude indicates that the amplitude of the input is signal is increased.
Magnitude and phase difference between input and output is shown in the figure
below. The output is half the input amplitude, which means that the magnitude
M is -2. A full sinusoidal phase is 360 degrees. The output is a quarter of a phase
behind, which means that the phase is -90 degrees. A negative phase means that
the output signal lags the input signal. The Bode plot visualizes magnitude and
phase for different frequencies [14].
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Visualisation between magnitude and phase difference between input (black) and output
(red). The magnitude is -2 meaning that the amplitude of the input is reduced with a factor
2. The output is a quarter phase behind the input signal, which corresponds with a phase
difference of -90.

poles and zeros
The poles and zeros of a system characterise its behaviour. The poles (p) can be
deduced from the denominator and the zeros (z) from the numerator of the transfer
function:

G(s) =
s − z
s − p

Zeros are found by setting the numerator equal to zero and then solving the
equation for s. This is repeated for the denominator to find the poles. The following
example contains one zero at s = -2 and two poles at s = -2 and s = -3:

G(s) =
s+1

s2 + 5s +6

=
s+1

(s + 3)(s + 2)

zero→ s + 1 = 0→ s = -1

poles→ (s + 3)(s + 2) = 0→ s = -3, s = -2

Poles and zeros can be plotted in the s-plane. The locations of poles and zeros in
this plane give insight in the response characteristics. A pole location is indicated
with a cross, ×. The influence of the pole location is shown in the figure below. The
two imaginary poles are complex conjugates; the positive and negative imaginary
part are equal to cancel each other out since the system is real valued. If the real
part of a pole is negative, the system is stable meaning that it reaches steady state.
If the real part of a pole is positive, the system is called unstable meaning that the
system does not reach steady state. When the poles are imaginary with either a
negative or a positive real part, the systems response is underdamped resulting in
oscillations. The location of zeros is a little more complicated. A zero close to a pole
location reduces the influence of that pole on the output response. The effect of a
zero on the system response is thus dependent on its relation to a pole. [14].



The influence of pole locations on time functions. A stable system has its poles on the
negative part of the real axis. When the poles are imaginary with either a negative or a
positive real part, the systems response is underdamped. An imaginary pole is a complex
conjugate: for a real value the imaginary part is equal negative and positive.
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A P P E N D I X B : M E A S U R E D PAT I E N T
DATA A N D P R E P R O C E S S I N G

Patient data files were extracted from the mechanical ventilation and preprocessed
for system identification. Airway pressure (PAW), flow, volume and oesophageal
pressure Pes curves were directly extracted from the mechanical ventilator. Transpul-
monary pressure curves (PL) were acquired by subtracting the oesophageal pressure
from the airway pressure: PL = PAW - Pes. The raw data includes artefacts, changes
in mechanical ventilation settings and drifts of the pressure curves mainly from Pes.
For system identification, a time frame was cut from raw data. This time frame con-
tains a stable signal without any artefacts. To increase accuracy of the model, the
time frame is as long as possible. To acquire pressure differences as an input, resting
pressure (P0) is subtracted from the pressure curves. From the time frame a single
inspiratory leg is extracted for system identification using the step experiment. The
input of the step response is the unit step function which has an amplitude of 1. The
step response should therefore be normalised; the step response is divided by the
pressure difference of PAW. Results of raw and preprocessed data of each patient
are shown below.

Flowchart of preprocessing steps for system identification.
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patient 1: raw and prepocessed data files
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Single inspiratory leg of a breath used for system identification using the step experiment.
The volume curve is normalised by dividing the signal with the pressure difference of airway
pressure.



patient 2: raw and prepocessed data files
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Single inspiratory leg of a breath used for system identification using the step experiment.
The volume curve is normalised by dividing the signal with the pressure difference of airway
pressure.
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patient 3: raw and prepocessed data files
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Single inspiratory leg of a breath used for system identification using the step experiment.
The volume curve is normalised by dividing the signal with the pressure difference of airway
pressure.



patient 4: raw and prepocessed data files
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Single inspiratory leg of a breath used for system identification using the step experiment.
The volume curve is normalised by dividing the signal with the pressure difference of airway
pressure.
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patient 5: raw and prepocessed data files
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Single inspiratory leg of a breath used for system identification using the step experiment.
The volume curve is normalised by dividing the signal with the pressure difference of airway
pressure.



A P P E N D I X C : I N S T R U C T I O N M A N U A L
M AT L A B S C R I P T S : S Y S T E M
I D E N T I F I C AT I O N

All MATLAB files can be found on: https://github.com/Amne96/Lung-Model.git
Patient data files are included in the MATLAB files for system identification. Both

raw data and preprocessed data for system identification described in Appendix B
are included in the patient files.

elaboration of matlab scripts
• Main.m: the main file for system identification. Patient data files are loaded

and the system identification algorithm (Sys Iden.m) is run.

• Sys Iden.m: function which runs all the different system identification meth-
ods described in this thesis. Function splits data files in train and validation
data.

• Step est.m: function for system identification using the step experiment. Func-
tion returns calculated parameters E and R with corresponding MSE of iden-
tified system.

• Step opt.m: optimisation of system identification using the step experiment.
The function returns the calculated E and R of the system with the smallest
MSE.

• Blackbox.m: system identification of state space model, where the respiratory
system is considered a black box. This allows for state matrices to be estimated
without estimation value boundaries. This estimation leads to not physiologi-
cal values for E and R. Function returns identified system, fit percentage, MSE,
estimated parameter values and SE of estimated parameters.

• Grey est.m: system identification of state space model, where the respiratory
system is considered a grey box with parameters E and R to be estimated.
These parameters are limited to a physiological range. Functions returns three
identified models: respiratory system, lung and thorax. Each model contains
identified system, fit-percentage, MSE, estimated parameter values and SE of
estimated parameters. The model is identified with training data. Fit percent-
age, MSE and SE are determined with validation data.

• TF est.m: system identification with a transfer function for the respiratory
system. Function returns fit-percentage, MSE, estimated parameter values
and standard error of estimated parameters. Estimation with transfer func-
tion or state space design are the same since both use the same optimisation
algorithm. The model is identified with training data. Fit percentage, MSE
and SE are determined with validation data.
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A P P E N D I X D : I N T E R P O L AT I O N O F
E X P I R ATO R Y L E G O F A B R E AT H

Due to air leak, expiratory volume is smaller than inspiratory volume. The ventila-
tor resets the volume to zero for each new breath. This causes a large drop between
the last sample of the first breath and the first sample of the breath after. The end of
the expiratory phase can therefore be easily detected by taking the absolute value
of the differential of the volume.

Interpolation of volume curve (black) of patient 1 where expiratory volume is smaller than
inspiratory volume due to air leakage. The end of the expiration is identified using the
absolute value of the differential of the volume curve (grey). The data samples with a lower
value than the identified point (red cross) will be replaced with the value of the identified
point. This results in the interpolated signal.

All data points with a lower value than the identified point are replaced with
the value of the identified point. Note that inspiratory volume becomes smaller
because the first 100 ml are cut away. To correct the offset of the interpolated signal,
the offset value is subtracted from the curve.

Result of volume curve after interpolation (black). The off set is subtracted (red) for system
identification.
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A P P E N D I X E : S I M U L I N K M O D E L
D E S I G N

All MATLAB and Simulink files can be found on: https://github.com/Amne96/Lung-
Model.git

Model.m contains all model parameters which should be run before running the
simulation.

mechanical ventilator

Simulink model of mechanical ventilator for pressure controlled mechanical ventilation. Pos-
itive end expiratory pressure (PEEP) is a constant. Inspiratory pressure waves are created
with a pulse generator.

model 1

Model 1: Simulink model of first order linear model of the respiratory system. Elastance,
resistance and resting volume are constants.
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model 2
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model 3
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model 4
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