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Abstract

Over the course of the last decade, an interest has emerged in nearest neighbor constraints for quantum cir-
cuit design. The challenge herein is to both minimize the running time of a circuit and to modify it such that
quantum gates only act on adjacent qubits while leaving the desired computational operation intact. These
modifications involve the insertion of SWAP gates, which introduces computational overhead. Several exact
and heuristic methods have been developed to determine the minimal number of required SWAP gates. Until
now, the model sizes of exact methods scale superexponentionally in the number of qubits of the quantum
circuit. The main research goal of this project was to develop an integer linear program that instead scales
polynomially both in the number of qubits and the number of quantum gates in the quantum circuit.

First, qubits located on a linear array were considered. The resulting integer linear program proposed re-
quires O (n2m) variables and constraints, where n denotes the number of qubits and m denotes the number
of quantum gates of the quantum circuit under consideration. Second, qubits located on a two- or three-
dimensional grid were considered. The programs both require O (n4m) variables and O (n3m) constraints.

Subsequently we prove that, for a fixed quantum circuit, the optimal objective value of the one-dimensional
problem is an upper bound for the optimal objective value of the corresponding two- and three-dimensional
problems. Using CPLEX’s Branch & Bound method, 131 benchmark instances of various circuit sizes were
evaluated. The largest of which contained either eighteen qubits and sixteen quantum gates, or five qubits
and 112 quantum gates.

Furthermore, we identify problems on the interface of nearest neighbor compliant quantum circuit design
and distributed quantum computing. Integer linear program formulations are provided for these additional
problems.
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lunch breaks, drinking coffee with the employees and other interns of TNO, driving tanks around and testing
new weapons in the lunch breaks at the Oude Waalsdorperweg, walking around the Malieveld during lunch,
walking between the tractors during the farmer’s protest, playing soccer with TNO during the preparation
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1
Introduction

The first known use of the word “computer” was in 1613, by the English writer R. Braithwait. Back then, the
term referred to a human computer, a person who carried out calculations or computations. The word con-
tinued to have this meaning until the mid-20th century, when it began to indicate a machine that carries
out calculations. Since the development of the Turing machine [76] during the Second World War, the pro-
grammable digital electronic computer has taken the human race into a new era, the Information Age. The
computational power of the computer has increased exponentially since the 1970’s, following the predictions
of G.E. Moore [60]. Technological progress has allowed engineers to place transistors ever closer together,
until the effects of quantum physics, such as tunneling, brought an end to the exponential improvements.

Instead of interpreting quantum physics merely as an obstacle, a new type of computer has been conceptual-
ized, the quantum computer. The rules that govern physical interactions in a quantum setting allow quantum
computing to provide algorithms with a better complexity scaling than their classical counterparts for many
naturally arising problems. Exploiting phenomena such as superposition and entanglement, one can search
in a database [32], factor integers [71] or estimate a phase [63] more efficiently than previously possible.

There are two main types of quantum computers, on the one hand the quantum annealer, such as D-Wave [6],
and on the other the gated quantum computer, such as IBM Q [13] and Quantum Inspire [67]. The quantum
annealer is a computer in which problems can be modeled in terms of a specific Hamiltonian, after which the
computer performs the quantum analog of the simulated annealing heuristic [43], which is in turn a digital
analog of slowly cooling down metals to enhance certain properties [37]. The quantum annealer does so in
order to find the feasible solution to the modeled problem, with the lowest energy, which correponds to an
objective function. The biggest limitations in this area are the interaction capabilities between the qubits and
the requirements on the form of the provided Hamiltonian. Gated quantum computers are universal and can
perform any computation that a classical machine would be able to perform [58, 63]. On a gated quantum
computer, a calculation is performed by executing a quantum circuit, consisting of quantum bits (qubits)
and quantum gates (hence the name). There are multiple technologies that could potentially form the basis
of such a gated quantum computer.

The many advantages of quantum computing come at the price of physical limitations in circuit design. First,
coherence times indicate that information on qubits is perturbed or even lost after some time due to a qubit’s
interaction with its environment [23]. It is therefore, for a fixed number of qubits, desirable to do calculations
with as few gates as possible. A second limitation is posed by nearest neighbor constraints, where two-qubit
quantum gates can only be applied to a pair of qubits when the qubits are physically adjacent to each other.
This restriction greatly impacts quantum circuit design, since no longer only the function of a circuit matters,
but also the manner in which it is implemented. Many proposed methods consider already designed circuits
that do not comply with nearest neighbor constraints. In these approaches, SWAP gates, which interchange
the location of two adjacent qubits, are inserted into the circuit. The goal herein is to minimize the overhead,
i.e., the number of required SWAP gates, to make the whole circuit compliant.

Nearest neighbor constraints have long been a subject of great intersest in a wide variety of fields. First of
all, nearest neighbor constraints have been considered in proposals for a range of potential technological

1



2 1. Introduction

realizations such as ion traps [4, 50, 62], nitrogen-vacancy centers in diamonds [62, 87], quantum dots emit-
ting linear cluster states linked by linear optics [20, 35], laser manipulated quantum dots in a cavity [40] and
superconducting qubits [24, 53, 64].

Second, they are also considered in realizations of specific circuits types such as surface codes [78], Shor’s
algorithm [28], the Quantum Fourier Transform (QFT) [74], circuits for modular multiplication and expo-
nentiation [55], quantum adders on the two-dimensional NTC architecture [16], factoring [66], fault-tolerant
circuits [52] and error correction [29].

Third, nearest neighbor constraints have been considered in a range of qubit architectures. In this context,
what it means for qubits to be adjacent is dependent on the topology of the architecture. A variety of archi-
tectures have been considered: qubits are placed on a linear array in [8, 15, 36, 48, 52, 57, 65, 68, 75, 82, 83],
on a two-dimensional grid in [2, 7, 16, 22, 33, 54, 66, 70, 72], on a three-dimensional grid in [27], and, more
recently, on the IBM QX architectures in [25, 84, 89, 90].

Until now, the design of quantum circuits consists of manual work in elementary cases and for specific cir-
cuits. As the complexity of the algorithms increases, however, manual synthesis will no longer be feasible.
When constructing a circuit from scratch, using only the set of elementary gates, even without considering
nearest neighbor constraints, one is solving specific instances of the PSPACE-complete Minimum Generator
Sequence problem [39], where the group consists of all unitary matrices and the elementary gate operations
form the set of generators. Here, one tries to find the shortest sequence of generators to map an input to a
given output. A lot of work was done in this area using boolean satisfiability [31], template matching [56, 68]
and methods for reversible circuits [3, 81] as all quantum gates perform unitary operations [63].

The early quantum computers have a (very) limited number of qubits [79]. It is possible to connect multi-
ple quantum computers to form a network and do computations together. This is, analogously to current
methods in ICT, called distributed quantum computing [11, 19]. In such a system we require the network to
be able to share both classical and quantum information. If the network is set up correctly, the collection
of quantum computers will behave as one big computer [88], and thus greatly increase the possibilities and
practical instances that it can be used for.

To act as one big quantum computer, two quantum computers are connected by an entangled pair of qubits.
Depending on the topology of the network, we may have a situation where two computers are not connected
directly, but indirectly, via other computers in the network. We can apply a method called entanglement
swapping [45] to create an entangled pair of qubits between these computers. Computers that perform en-
tanglement swapping will need two extra qubits to store and measure information. If we want to perform a
calculation on a distributed quantum computer, we have to partition the calculations into parts and assign
those parts to the individual quantum computers, in such a way that communication between parts of the
calculation is possible and can be done efficiently. The nearest neighbor constraint is one of the important
considerations that needs to be taken into account.

In the research area of nearest neighbor compliant quantum circuit design, we recognize four approaches
that each consider the problem of minimizing calculation overhead from a different perspective. Global and
local reordering split the domain into two, where both can be considered on a single quantum computer, or
in the context of distributed quantum computing. The four areas of research are indicated in Table 1.1.

Table 1.1: Four areas of research.

Local Global
Single I II
Distributed III IV

The local reordering problem concerns the minimization of the number of SWAP gates that are inserted into
a circuit to make the circuit comply with the nearest neighbor constraints. The local reordering problem
allows for any change in the qubit order before each gate, resulting in a vast feasible region, even for small
instances. The more general problem of SWAP minimization where qubits are placed on a coupling graph
(two qubits can share a gate if their corresponding nodes share an edge) is shown to be NP-Complete [73]
via a reduction from the NP-complete Token Swapping problem [9, 42]. The problem we consider, where the
graph is a simple path, is widely believed to be NP-complete. This was conjectured in [36], but to the best of
the author’s knowledge, no formal proof was given as of yet.
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To the best of the author’s knowledge, the problem of local reordering was thusfar only considered in the
context of a single quantum computer (Area I). Many heuristics have been developed in this area, includ-
ing receding horizon [36, 48, 69, 83], greedy [2, 36], harmony search [2] and OLA on parts of the circuit [65].
Only a few works have dared to approach the problem with exact methods, all of which embody an explicit
factorial scaling in the number of variables or processed nodes, either through the use of the adjacent trans-
position graph [57], exhaustive searches [22, 36] or explicit cost enumeration for each permutation [82]. The
exact approaches have delivered small benchmark instances to compare the heuristics’ results to. The size of
these benchmark instances typically does not exceed circuits of about five qubits and sixteen gates due to the
superexponential scaling of the number of variables in the optimization model.

Global reordering determines the initial layout of the qubits such that there are as few as possible SWAP
gates required in the remainder of the circuit. In order to elude the micromanagement that local reordering is
concerned with, the global reordering problem is generally approximated with the NP-complete [30] problem
of Optimal Linear Arrangement (OLA) on the interaction graph of the circuit with edge weights taking the
Nearest Neighbor Cost [47]. Here, the gate sequence is either disregarded [70] or encoded in the weights [49].
To the best of the author’s knowledge, the global reordering problem is, so far, only considered in the context
of a single quantum computer (Area II).

On the interface of distributed quantum computing and nearest neighbor compliance (Areas III & IV), some
interesting combinatorial problems naturally emerge. In the combination of local reordering and distributed
quantum computing (Area III), qubits are only allowed to interact with their nearest neighbors on the same
computer. SWAP operations are once again inserted to make circuits nearest neighbor compliant, and are
now also allowed, at a higher cost, between neighboring quantum computers. The global reordering problem
is also extended to this context (Area IV), and can be interpreted in two ways. If we are interested in the order
of all qubits on all quantum computers, we have Complete Distributed Global Reordering. This can be seen
as global single reordering with two different cost values for the SWAP gates between qubits on different
computers and SWAP gates between qubits on the same computer. We will not consider this variation of the
problem in this work since it is only a slight extension when compared to the global reordering problem on
a single quantum computer. Next we have, as we will call it, the Celestial Reordering problem. In celestial
reordering, the goal is to find an initial allocation of the qubits to the computers, such that the number of
interactions between computers is minimized. This is done due to the high costs that come with setting
up the required entanglement between the computers. The order of the qubits within the computers is not
considered. The problem is related to the well known graph partitioning problem.

In the field of quantum circuit design, it is not clear how to modify quantum circuits in a computationally
tractable manner, such that they comply with nearest neighbor constraints. Our research question states:
“How can we effectively convert quantum circuits by inserting SWAP gates, such that the converted circuits
comply with the nearest neighbor constraints?” In order to give an encompassing answer to this question,
three sub-questions will be answered throughout this thesis:

1. How can we model the nearest neighbor compliance problem such that the size of the model scales
polynomially in the input, instead of exponentially, while retaining exact solutions?

2. How does the nearest neighbor compliance problem for two- and three-dimensional architectures re-
late to the nearest neighbor compliance problem on a linear array?

3. What are the main advantages and disadvantages of exact solution methods for the nearest neighbor
compliance problem?

In this work, we attempt to answer these question by considering three qubit architectures. The main focus
of this work will be on exact solution methods in research Area I, the local reordering problem on a single
quantum computer. The philosophy behind this focus is that small circuits are often incorporated again
and again into larger circuits. Obtaining optimal implementations of small circuits can therefore indirectly
contribute greatly to the implementation of larger circuits. Furthermore, evaluating benchmark instances
with exact solution methods can provide insights into how to develop heuristic methods (that can in turn
evaluate large circuits) in the future. The entire contribution of this work can be summarized in fourfold.

First of all, in this work we propose a new model where the Nearest Neighbor Compliance problem (from now
on abbreviated as NNC) is formulated as a Single Pair Shortest Path problem on the adjacent transposition
graph. Formulating this model and solving it for instances scales very poorly, as O (n!), where n denotes the
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number of qubits in the circuit. The running time, however, experiences only linear scaling in the number of
gates. The model might therefore, in instances with very few qubits and many gates, be preferred over other
exact methods whose computation times scale worse in the gate count. The approach has a lot in common
with the work of [33, 57], where the adjacent transposition graph is used to 1) navigate between permutations
of the qubits and 2) count the number of required SWAP gates. We do not evaluate benchmark instances with
this model but instead regard it as an intuitive introduction to NNC where qubits are placed on a linear array.

Second, we will, for the first time in the literature, provide an exact integer linear programming (ILP) formu-
lation of the nearest neighborhood compliance problem that does not entail a factorial scaling in the number
of qubits, by implicitly counting the number of required SWAP gates at each reordering step (before each
quantum gate). The power of the commercial solver CPLEX is used to optimally solve NNC on a linear ar-
ray for 131 benchmark instances from the RevLib library [80]. The considered benchmark instances include
the largest circuits to be exactly solved up to this point. They, for example, include the QFT for 10 qubits,
and even a circuit with 18 qubits. The evaluation of the larger benchmarks finally allows for heuristics to be
compared to exact solutions on larger circuits. Because most heuristics have some strategic flaw that makes
them unsuitable for general, large instances, evaluating larger instances exactly might give insights into how
to improve current heuristic strategies.

Third, the problem of nearest neighbor compliance will be defined in the setting where qubits are located on
two-dimensional and three-dimensional grids instead of on a linear array. In this context, it is significantly
harder to count the number of required SWAP gates when moving from one qubit order to another, since
there are multiple ways to do it, and it is not trivial to recognize which of the options results in using the
fewest SWAP operations. The problem is modeled as a binary integer linear program and solved for a subset
of the benchmark instances that were also used in the case of the linear array. In addition to the experimental
results, we investigate theoretical results on the comparison between the optimal values in the cases of NNC
on a linear array, a two-dimensional grid, and a three-dimensional grid.

Finally, a fruitful collaboration with Roy van Houte, a fellow TU Delft Applied Mathematics student and TNO
colleague, has resulted in the discovery of two interesting problems on the interface of nearest neighbor
compliance and distributed quantum computing. These related problems, along with the Global Reorder-
ing problem, are interesting in their own regard but do not contribute toward the main focus of this work.
They will be discussed in a separate part, at the end of the thesis. A case is made for the applicability of the
problems in the near future and we provide ILP models for each one of them.

The proposed integer linear programs and their sizes in terms of the number of variables and the number of
constraints are shown in Table 1.2.

Table 1.2: The order O (·) of variables and and constraints of each model is shown. Here, n resembles the number of qubits, m is the
number of quantum gates, and M is the number of quantum computers. The grid sizes, where applicable, are indicated by m1 and m2.
The dimension of the grid is denoted by p.

ILP model sizes for different problems
Research area Network/qubit architecture Variables Constraints

Area I
Linear array n2m n2m
Two-dimensional grid n4m n3m
Three-dimensional grid n4m n3m

Area II Linear array [70] n2 n2

Area III Linear array n2m +nMm n2m +nMm

Area IV

Complete nM +n2 Mn2

General n2M 2 n2M 2

Linear array n2 n2 +M
Two-dimensional grid nM +n2(m1 +m2) n2(m1 +m2)M
General grid nM +n2pM (p−1)/p M +n2pM (p−1)/p

This report is divided into two parts. To provide the reader with the required background knowledge on the
quantum computing application of the problem, Chapter 2 introduces the topic. In Part I, we discuss the
NNC problem in the setting of a single quantum computer, corresponding to research area I. Chapter 3 is
concerned with the problem definition of NNC on a linear array, and a literature review. In Chapter 4, the
shortest path translation of the problem is presented. Next, the ILP formulation is constructed in Chapter 5.
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The problem definition of NNC, where qubits are placed on a grid, is given in Chapter 6. An ILP formulation
of NNC on both two- and three-dimensional grids is provided in Chapter 7. The proposed models from Part
I will be used to evaluate a number of benchmark instances, and the obtained results are presented in Chap-
ter 8. Each of the other research areas indicated in Table 1.1 are discussed in Part II. The first of the related
problems that is discussed in the second part is the Global Reordering problem on a linear array (Area II), in
Chapter 9. Then, we make a connection with distributed quantum computing. A problem on the interface of
local reordering and distributed quantum computing (Area III) is formulated in Chapter 10. We introduce the
Celestial Reordering problem (Area IV), which is defined and discussed for multiple architectures in Chap-
ter 11. Concluding statements and suggestions for future work can be found in Chapter. 12.

This research constitutes a Master Thesis of 42 ECTS for the purpose of obtaining a Master degree in Applied
Mathematics at the Delft University of Technology and is combined with a nine month, full time internship
at the Dutch research institute TNO.





2
Background for Quantum Computing

The author would like to stress that the topic of the thesis is not the physics involved in quantum computing
(abbreviated as QC). To introduce the problem at hand, the topic of QC will be introduced in a brief man-
ner. All the concepts needed for a basic intuition will be addressed in this chapter. In the first section some
introductory notation will be introduced. The assumed background knowledge of the reader will be speci-
fied, together with references as to where this knowledge could be acquired. A mathematical introduction
into QC will be provided in the second section. After that, we discuss physical limitations, quantum gate
decomposition and different cost metrics.

2.1. Preliminaries
To understand the basic theory of QC, the reader will be assumed to have knowledge about the most basic
concepts from linear algebra and probability theory. Following this chapter, some knowledge about mathe-
matical optimization and complexity theory is assumed. Concepts of (integer) linear programming, problem
reduction, complexity classes, and algorithmic design should be familiar to a reader pursuing an in-depth
understanding of this work. Information about integer programming can be found in [85].

2.1.1. Graph theory
Here we introduce some of the basic concepts in graph theory that will be used later on, mostly in Chapter 4.
For the interested reader, more information on this topic can be found in [21].

A graph is a pair G = (V ,E) of sets that satisfy E ⊂ [V ]2, so the elements of E form a subset of pairs of elements
of V . The elements of V are called vertices, or nodes of the graph G . The elements of E are called the edges
of the graph G . If an edge has a starting node and an end node, we call the edge directed. If all of the edges
are directed, we say the graph is directed, and we speak of a digraph. Directed edges are also referred to as
arcs. When we speak of a digraph, we say H = (V , A), where A is the set of arcs. Usually, a graph is illustrated
by drawing a dot for each node, and a line between each two nodes if there is an edge in E that consists of the
pair of these nodes. The locations of the nodes and edges is not important. All the information that matters
is which pairs of nodes are connected by an edge, and which are not.

7
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Alice

Bob

Charlie

Diny

Eve

Ferdi

Gerda

IgorJoris

Figure 2.1: An example of a graph on a network of people. The nodes represent the people, the edges could represent friendship relations.

Two vertices x, y ∈ V are called adjacent if there is an edge {x, y} ∈ E . For a fixed node x, the number of
adjacent pairs of vertices x, y is called the degree of x.

2.1.2. Group theory
A few concepts from group theory are introduced in this subsection. A group is a set, H , together with an
operation ◦, called the group law of H , that combines two elements a,b from the group to form another
element a ◦b. The combination (H ,◦) must satisfy four conditions, known as the group axioms, to qualify as
a group:

1. Closure For all elements a,b ∈ H , the result of the operation a ◦b is also an element of H .

2. Associativity For all elements a,b,c ∈ H , the equality (a ◦b)◦ c = a ◦ (b ◦ c) holds.

3. Identity element There exists an element e ∈ H such that for all elements a ∈ H , the equalities a ◦ e =
e ◦a = a hold. This element e is unique and is called the identity element.

4. Inverse element For each element a ∈ H , there exists an element a† such that a ◦a† = a† ◦a = e, where
e is the identity element of H . We call a† the inverse of a.

The order of a group is equal to the number of elements it contains.

Perhaps the most well known example of a group is the symmetric group Sn , we will also make use of this
group later on in the thesis. The symmetric group on a finite set X is the group whose elements are all bijective
functions from X to X , with the group law of function composition. We also refer to the bijective functions
as permutations. The symmetric group of degree n is the symmetric group on the set X = {1,2, . . . ,n}. Since
there are n! ways to permute the numbers in the set {1,2, . . . ,n}, the order of the symmetric group of degree n
is equal to n!. As for notation, we will let an elements τ1 and τ2 of the symmetric group be denoted as

τ1 = (12)(34)(5) = (12)(34) =
(
1 2 3 4 5
2 1 4 3 5

)
(2.1)

and

τ1 = (124)(35) =
(
1 2 3 4 5
2 4 5 1 3

)
. (2.2)

Here, the top row of the matrices is the order of the numbers before the permutation is applied, and the
bottom row is the order of the numbers after the permutation is applied. The permutation τ1 interchanges
the numbers 1 and 2 with each other, and it interchanges the numbers 3 and 4 with each other. τ2 maps 1 to
2, 2 to 4 and 4 back to 1. τ2 also interchanges the numbers 3 and 5. The function composition t1 ◦τ2 is given
by

τ2 ◦τ1 = (1)(2354) =
(
1 2 3 4 5
1 4 2 5 3

)
. (2.3)
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2.1.3. Linear algebra
We use the complex numbers to represent of qubit states and the interactions they have with each other
through quantum gates. We denote a vector[α

β

]
:=α[

1
0

]+β[
0
1

]= |v〉 ∈C2, (2.4)

where α and β are both complex numbers.

The complex numbers are equipped with a bilinear map, the inner product. The inner product 〈·|·〉 of two

complex vectors |v1〉 =
[
α1
β1

]
and |v2〉 =

[
α2
β2

]
is defined as

〈v1|v2〉 =α1α2 +β1β2, (2.5)

where x denotes the complex conjugate of x.

As is usual in linear algebra, we define an orthonormal basis in which we are working through the vectors

|0〉 := [
1
0

]
(2.6)

|1〉 := [
0
1

]
. (2.7)

They form a basis for C2 and are in the area of QC referred to as the computational basis.

A square matrix U is called unitary if its conjugate transpose is also its inverse. Equivalently, U is called
unitary if U commutes with its conjugate transpose and the norm of the eigenvalues of U is 1.

The identity matrix of dimension d will always be denoted by Id , or simply I , if the dimension is implied by
the context.

2.2. Components of quantum computing
The terminology that is used in QC is directly related to the terminology that is used classical computing. The
quantum analogs of qubits, quantum gates and quantum circuits can be directly related to the original clas-
sical concepts of bits, gates and circuits respectively. The theory of QC relies upon the composition of these
building blocks, and they will each have their separate introduction. The definitions required to describe the
problem formally, and to set up a mathematical model, will be introduced in Chapter 3. This section simply
highlights some common topics, useful for intuition and understanding of the context.

2.2.1. The single qubit
The quantum bit (qubit) is the counterpart of the classical bit. Whereas classical bits have a binary value, 0 or
1, a qubit is more nuanced.

The information that qubits hold is represented by a state, denoted by a vector in C2. Since |0〉 and |1〉 form a
basis of C2, the state can be expressed as a combination of the computational basis. Qubits do not have to be
in exactly one of the two states, but instead, can be in certain linear combinations of the two basis states.

In general, a state |φ〉 of a qubit is displayed as a combination of the computational basis states

|φ〉 =α|0〉+β|1〉. (2.8)

We say that the qubit is in (a) superposition if it is not in just one of the basis states. If we were to inquire the
qubit’s information through measuring its state, |0〉 would be obtained with probability |α|2 and |1〉 would be
obtained with probability |β|2. Since probabilities of disjoint events of which the union is the entire proba-
bility space have to add up to one, the constraint

|α|2 +|β|2 = 1 (2.9)

restricts |φ〉 to be on the complex unit circle.
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2.2.2. Multiple-qubit states
To combine the states of two qubits |φ1〉, |φ2〉 ∈C2 into one system state |ψ〉 ∈C22

, a tensor product is used. If
two qubits are in states |φ1〉 = |0〉 and |φ2〉 = |1〉, the combined state is

|ψ〉 = |φ1〉⊗ |φ2〉 =: |φ1φ2〉 = |01〉. (2.10)

If we have two qubits that are both in a superposition of the basis states, we can write the combined state as

(α0|0〉+α1|1〉)⊗
(
β0|0〉+β1|1〉

)=α0β0|00〉+α0β1|01〉+α1β0|10〉+α1β1|11〉. (2.11)

Or instead, invoking vector notation, they can also be written as the complex vector

ψ=α00|00〉+α01|01〉+α10|10〉+α11|11〉 =:

[α00
α01
α10
α11

]
. (2.12)

Here αi j = αiβ j . Note that probability theory tells us that the probabilities of all the states must still add up
to one.

In general, an n-qubit state is represented as a complex vector of dimension 2n . A binary representation is
often used to resemble the states. In the two-qubit case the binary representation of the computational basis
states represents the binaries from zero up to three, |00〉, |01〉, |10〉 and |11〉.
If a system state can be written as a single tensor product of single-qubit states, the system state is called pure.
The two-qubit state

|ψ〉 = 1

2
(|00〉+ |01〉+ |10〉+ |11〉) (2.13)

is a pure state since it can be written as

|ψ〉 = 1p
2

(|0〉+ |1〉)⊗ 1p
2

(|0〉+ |1〉) . (2.14)

This is a tensor product of two single qubit states.

If the system state is not a pure state, so if it cannot be expressed as a single tensor product of single-qubit
states, the state is called entangled. For instance, the state

|ψ〉 = 1p
2

(|00〉+ |11〉) (2.15)

is an entangled state. Intuitively, a state is called entangled if the following holds: if we would measure one
qubit’s state, it would tell us something about the other qubits’ states. In the provided example in Equa-
tion 2.15, if the first qubit were to be measured, the value of the second qubit is instantaneously clear as the
two qubits must be in the same state.

Imagine two qubits that have entangled quantum states. Now we physically remove them form each other
while leaving their states unchanged. Now if one of the qubit’s state is measured, the information about the
other qubit’s state is instantly available (without a delay due to the speed of light). This phenomenon was
referred to as “spooky action at a distance” by Einstein [26] and used in [34], where the qubits were separated
by as much as 1.3 kilometers!

2.2.3. Quantum gates
Similar to classical computing, where the values of classical bits are adjusted by gates, qubits states are trans-
formed by quantum gates. This is the manner in which computations are done on a quantum computer.

Whereas qubit states are represented by complex vectors |φ〉, quantum gates are represented by complex,
unitary matrices U . The action of a gate on a qubit state is simply the matrix vector product U |φ〉.
Say we have a quantum gate U that acts only on one qubit q1, in a two-qubit system. Then the action of the
gate on the total system is given as the tensor product

Uq1 |ψ〉 =U |φ1〉⊗ I2|φ2〉. (2.16)
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Let us look at some examples of elementary quantum gates. First, there is the Pauli X gate, the quantum
analog to the classical NOT gate. Its matrix representation is

X =
[

0 1
1 0

]
. (2.17)

Given a single qubit state |φ〉 =
[
α0

α1

]
, then the X gate has the action

X |φ〉 =
[

0 1
1 0

][
α0

α1

]
=

[
α1

α0

]
. (2.18)

It flips the probabilities for finding |0〉 or |1〉 when measuring the state.

Other well known examples of single-qubit gates, together with their corresponding matrix representations,
are shown in Figure 2.2.

Figure 2.2: These are the elementary quantum gates, together with their depictions and the corresponding matrices. Note that in the last
gate, φ can be any real number. Figure from [17].

Quantum gates are always reversible (|det(U )|2 = 1 so U has an inverse). Consequently, there is no quantum
analog for the AN D , OR and XOR gates. Since quantum gates have an inverse, a gate that has two qubits as
an input, must also have two qubits as an output, and their mapping must be both injective and surjective.
Fortunately, unitarity is preserved under tensor products.

We will now discuss a few examples and properties of two-qubit gates. The most common example is a
controlled gate, where there is one control qubit and one target qubit. If the first qubit is in the state |1〉, the
gate U is applied to the second qubit, otherwise nothing happens. The general expression is

C (U ) =


1 0
0 1

0 0
0 0

0 0
0 0

U

 .

Therefore, if U is the Pauli-X-gate we have what is called a controlled NOT gate, CNOT in short. The CNOT
gate is depicted in Figure 2.3.

q1 •
q2

Figure 2.3: Example of a controlled NOT gate. Qubit q1 is the control qubit and q2 is the target qubit.
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Another common example is the SWAP gate. This gate will be of utmost importance in the rest of this work,
so it will be explored in a bit more detail.

The SWAP gate interchanges the states of two qubits. Given two qubits q1, q2 with the system state |φ1φ2〉, let
the matrix

USWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


be the matrix corresponding to the SWAP gate. The action of USWAP on the combined state is

USWAP|φ1φ2〉 = |φ2φ1〉. (2.19)

This can be easily checked by investigating the action on the computational basis.

USWAP|00〉 = |00〉
USWAP|01〉 = |10〉
USWAP|10〉 = |01〉
USWAP|11〉 = |11〉.

The map linearly extends to any superposition of the basis states.

The CNOT gate is used to construct the SWAP gate by placing three CNOT gates consecutively, such as in
Figure. 2.4.

q1 • • q2

q2 • q1

⇔ q1 × q2

q2 × q1

Figure 2.4: A decomposed and composite SWAP gate. The operations are equivalent, the gates interchange the states of two qubits.

2.2.4. Quantum Circuits
A quantum circuit is a cascade of gates acting on an array of qubits. They can be used to calculate all sorts of
things, in the same way as classical computers can.

Quantum circuits with n qubits are depicted as n parallel horizontal lines. Each gate has its own symbol or
indicative letter to show its function. The gates are places on the horizontal lines from left to right, where
the leftmost gate is applied first and the rightmost gate is applied last. Gates acting on more than one qubit
connect the corresponding horizontal lines vertically. An example is provided for clarity in Figure 2.5.

a • • • a

b • • b

c V V † V c

Figure 2.5: Example of a quantum circuit.

In this example, three qubits a,b,c are acted upon by a set of gates. In order, the first gate C (V ) is a gate
controlled by the qubit b that acts on qubit c. Next, a controlled NOT gate has a as control qubit and b as
target qubit. Then, the gate C (V †) is applied using qubits b and c, etc. This circuit is equivalent to a NOT gate
with two control qubits a and b, and target qubit c.

2.3. Physical limitations
In physical implementations of quantum computers, one of the two limiting factors is that qubits are only
stable for a very short amount of time [23]. After a while, their state is perturbed by the environment, the
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information is lost and the still ongoing calculation becomes useless. It is therefore paramount that the cal-
culations are done as fast as possible. This means that the number of gates should be as small as possible,
since it takes time to apply a gate.

The other limitation will be the focus point of this thesis. An issue with quantum gates is that they can only
be applied to adjacent qubits. States on qubits can be interchanged, as we saw, using SWAP gates, so there
is a way to deal with this problem. However, since there is an incentive to use as few gates as possible, this
also imposes a limitation on the number of SWAP gates to be used. It only makes sense to speak of nearest
neighbor interaction constraints if the considered gates act on exactly two qubits. In the next section we show
how one can decompose gates into two-qubit gates.

To clarify this with an example, the circuit in Figure. 2.5 is made nearest neighbor compliant by inserting a
SWAP gate. As a result, all gates now act only on adjacent qubits, while the function of the circuit remains
unaltered.

a • • × b

b • • × • a

c V V † V c

Figure 2.6: Equivalent circuit to Figure 2.5, but now nearest neighbor compliant. A SWAP gate is introduced so that the gates only act on
adjacent qubits while leaving the calculation intact.

2.4. Decomposing multi qubit gates
Many circuits make use of composite gates, resembling entire systems themselves. They are often performed
on more than two qubits at once, take for example the Quantum Fourier Transform (QFT) which can act on
any number of qubits [63]. In order to describe what it means for a gate to act on adjacent qubits, it only
makes sense to consider two-qubit gates. To achieve this without changing the function of the circuit, we
have to do a modification in two cases.

1. Gates that only act on a single qubit are ignored for the rest of this research. These gates are of no inter-
est in this context because a gate acting on only one qubit always complies with the nearest neighbor
interaction constraints.

2. Gates that act on more than two qubits are decomposed into two-qubit gates. The fact that this is
always possible is discussed in [63].

The second point can be implemented in a great variety of ways and doing this “optimally" is outside the
scope of this work. We therefore make two straightforward design choices: 1) we only consider circuits using
multiple-control Toffoli gates, Peres gates and multiple-control Fredkin gates up to a certain size. 2) we always
decompose a given circuit in the same way. There is clearly room for improvement here but the search space
we consider is large enough as it is. We ignore all single-qubit gates during the modification to a nearest
neighbor compliant circuit. The most standard decompositions are presented in the following subsections.

2.4.1. Toffoli gate decomposition
The Toffoli gate is a quantum gate that works on three qubits at the same time. The operation it performs is
that of a controlled NOT gate with an extra control qubit. The Toffoli gate’s decomposition can be found in
[5] in the section “Three-Bit Networks" and is illustrated in Figure 2.7.

q0 •
q1 •
q2

→

q0 • • •
q1 • •

q2 V V † V

Figure 2.7: The decomposition of the standard Toffoli gate with two control qubits and one target qubit into only two-qubit gates. Here
we have V 2 = X where X is the usual Pauli-X gate.

So every Toffoli gate that makes an appearance in the benchmark instances later on, will be replaced by this
circuit of two-qubit gates. The Peres gate has a lot in common with the Toffoli gate, it only misses the last gate
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in the decomposed circuit. The decomposition can also be found in the circuit “peres_8.real" from RevLib
[80]. Notice that these decompositions are not unique, nor are they optimized over. If others use a different
gate decomposition method, the instance that is solved differs and the results may vary even if both instances
are solved to optimality.

2.4.2. Multiple-control NOT gate decomposition
The decomposition of a three-control Toffoli gate is also shown in [5], in the section “n-Bit Networks". The de-
composition of the four-control Toffoli is the direct extension of the previous decompositions. An illustration
of the decomposition for the NOT gate with three control qubits is shown in Figure 2.8.

q0 •
q1 •
q2 •
q3

→

q0 • • • • •
q1 • • • •
q2 • • • •

q3 V V † V V † V V † V

Figure 2.8: The decomposition of a Toffoli gate with three control qubits and one target qubit into only two-qubit gates. Here we have
V 4 = X where X is the usual Pauli-X gate.

We remark that the length of the circuit almost doubles for each extra control qubit within the same gate. It
is for this reason that the decomposition for the four-control NOT gate is omitted.

2.4.3. Fredkin gate decomposition
The Fredkin gate operates on three qubits as a controlled SWAP operation. It is decomposed as in the circuit
“fredkin_5.real", also from RevLib. In Figure 2.9, its decomposition is depicted.

q0 •
q1 ×
q3 ×

→

q0 • • •
q1 • • •

q2 V † V † V •

Figure 2.9: The decomposition of the Fredkin gate, or controlled SWAP gate. Here we have V 2 = X where X is the usual Pauli-X gate.

The two-qubit controlled Fredkin gate is decomposed into a controlled-NOT gate, a Toffoli gate and another
controlled-NOT gate as shown by [3]. Larger composed gates do not make an appearance in the circuits that
are considered in this work.

2.5. Cost metrics
There are many possible implementations of a given calculation. Some circuit implementation require more
qubits than others, others require more, or different quantum gates. To distinguish between implementations
such that an optimal implementation can be determined, multiple cost metrics exist. Each of these metrics
focuses on a different aspect of circuit design, some are more generally applicable and others are centered
on specific problems. Most of the cost metrics that we introduce here, are commonly used in the field of
quantum circuit design.

1. Quantum Cost is a cost metric that describes the total number of elementary quantum gates that a
quantum circuit consists of. The elementary gates such as the CNOT gate and the gates listed in Fig-
ure 2.2 all have a quantum cost of one. To evaluate the quantum cost of composite gates, one decom-
poses them into elementary gates and evaluates the sum of the quantum costs of those elementary
gates.

2. The number of SWAP gates is another metric that is widely used to describe the cost of a quantum
circuit. The required number of SWAP gates to make a quantum circuit nearest neighbor compliant are
costs that need to be added to the circuit in order to make it physically possible to run the circuit on
hardware. SWAP gates are seen as overhead that is needed to do the real calculation. This overhead
needs to be kept minimal in size.
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3. Nearest Neighbor Cost was proposed in [47]. It gives an estimate of how much quantum cost is re-
quired, to make a circuit nearest neighbor compliant given an initial qubit configuration. This will be
discussed further in Chapter 9.

4. Cost of entanglement is a cost metric that is rarely used in the context of nearest neighbor compliance.
The cost of setting up entanglement between two qubits in different quantum computers emerges in
the topic of distributed quantum computing, where computations are performed using multiple quan-
tum computers. This cost will be further discussed in Chapter 11.

The quantum cost of a circuit is often compared to the quantum cost of the modified circuit where its function
remains the same but where all the gates act on adjacent qubits only. Evaluating the extra quantum cost that
is needed for such a modification is a more precise way of determining the cost than the other cost metrics.
In this precise setting, however, gate decomposition methods are often optimized as well. This is beyond the
scope of this research. The nearest neighbor cost is often considered when one is trying to find an optimal
initial qubit order. This problem, referred to as Global Reordering, will be discussed in Chapter 9. In this
work, we will instead focus on the number of SWAP gates. This is the most common metric and also allows
for clear mathematical formulations.
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3
Problem Definition: The Linear Array

Part I concerns research area I, as indicated in Table 1.1. In this chapter, the NNC problem will be formalized.
To clarify the problem definition, an example is provided. An analogy to a non-quantum setting is made,
and we review the theoretical complexity of the problem. A summary of the current literature on the NNC
problem on a linear array is included as well.

3.1. Nearest neighbor compliance on a linear array
Due to the limitation that a gate can only be applied to two adjacent qubits, the problem of Nearest Neighbor
Compliance (NNC) arises. For the problem of Nearest Neighbor Compliance, the actual operation corre-
sponding to a gate that is used, is not of importance. Only on which qubits the gate acts matters. First, we
need to introduce definitions.

Definition 3.1. The coupling graph H = (V ,E) of a linear array consists of a set of nodes V and a set of edges E .
The set V contains one node for each location. An edge {v1, v2} ∈ E is present if the corresponding locations
are adjacent (differ by 1).

The coupling graph of a linear array qubit architecture is illustrated in Figure 3.1.

1 2 . . . n

Figure 3.1: The coupling graph for a linear array qubit architecture. There is one node for each location. All the nodes, except for node 1
and node n, have degree 2.

We denote the vector Q of n qubits as the integers Q = (1, . . . ,n). Since the qubits each occupy one physical
location on a linear array, the locations are numbered as L = (1, . . . ,n). To keep track of the location of each
qubit before every gate, the notion of a qubit order is introduced.

Definition 3.2. Let Sn be the permutation group. Then a qubit order is a permutation τ ∈Sn of the locations
τ : L → L denoted by the vector τ(L). We call τt the qubit order before gate g t .

Example 3.3. In the case where the qubit order τ is given as:

τ= (12)(345) =
(
1 2 3 4 5
2 1 4 5 3

)
, (3.1)

would mean that qubit 1 is at position 2, qubit 2 is at position 1, qubit 3 is at position 4, qubit 4 is at position
5, and qubit 5 is at position 3. We say τ(i ) = j if qubit is at position j .

Now that the qubit orders are defined, one requires a way of altering such an order. This is accomplished via
the previously mentioned SWAP gates. A SWAP gate interchanges two adjacent locations’ qubits.

Definition 3.4. A SWAP gate is an adjacent transposition τ ∈Sn that permutes a qubit order,

τ= (i i +1) for 1 ≤ i < n, (3.2)

19
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by interchanging two locations.

It is interesting to know how many SWAP gates one minimally requires to sort a permutation into order (or
into any other permutation). There is a metric that tells us exactly how many SWAP gates are required to do
so.

Definition 3.5. Given two permutations τ1,τ2 ∈Sn for some fixed n, then the Kendall tau distance between
τ1 and τ2 is defined as

I (τ1,τ2) := ∣∣{(i , j ) | 1 ≤ i , j ≤ n,τ1(i ) < τ1( j ),τ2(i ) > τ2( j )
}∣∣ . (3.3)

We also provide the definition of inversions, a concept which will be used hereafter.

Definition 3.6. Given two permutations τ1,τ2 ∈Sn for some fixed n, then an inversion between τ1 and τ2 is
a pair of elements (i , j ) that are pairwise in a different order in τ1 compared to τ2.

1 ≤ i , j ≤ n : τ1(i ) < τ1( j ),τ2(i ) > τ2( j ). (3.4)

Note that the Kendall tau metric counts the number of inversions between two permutations. The number
of SWAP gates one minimally requires to change one qubit order into another is equal to the Kendall tau
distance between the corresponding permutations.

The next theorem tells us that counting the number of inversions is equivalent to counting the number of
required SWAP gates to sort one permutation to the other.

Theorem 3.7. Given a permutation τ ∈ Sn working on the integers (1, . . . ,n), let I (τ,e) = ρ be the number
of inversions in τ with respect to the identity permutation e. Then ρ SWAP operations are needed to sort
(τ(1), . . . ,τ(n)) into ascending order.

Proof. Note that for ρ = 0 no SWAP operations are needed, as τ= e.
Suppose ρ > 0 and τ 6= e. We make two statements, both of which we show to be false:

1) Every two integers that are mapped to consecutive integers in the image of τ, are in ascending order, so
for all (τ(i ),τ(i )+1) we have i < τ−1(τ(i )+1);

2) All integers are mapped to the image of τ in ascending order, so i < j implies τ(i ) < τ( j ).

Now note that 1) implies 2), and in turn, 2) implies τ= e. Therefore, statement 1) is false. So there must exist
a pair of integers in the image of τ of which the corresponding inverses are not in ascending order. In other
words, there must exist integers j > k such that τ( j )+ 1 = τ(k). Then we construct τ′ where we SWAP the
images of j and k such that we obtain τ′(i ) = τ(i )+1 and τ′(τ−1(τ(i )+1)) = τ(i ).

One SWAP operation was performed and this resulted in the elimination of one inversion, τ was altered to τ′
with I (τ′,e) = ρ−1. By the principle of mathematical induction, this completes the proof.

We remark that the Kendall tau metric is left-invariant, so for any τ1,τ2,τ ∈Sn we have

I (τ1,τ2) = I (τ◦τ1,τ◦τ2). (3.5)

Therefore, if τ= τ−1
2 in Equation 3.5, we obtain

I (τ1,τ2) = I (τ−1
2 ◦τ1,e) (3.6)

The result of Theorem 3.7 thus extends to any pair of permutations. This result will be exploited in Chapter 5.
To clarify Theorem 3.7, we provide the reader with an example.

Example 3.8. Suppose we are given five qubits Q = (1,2,3,4,5), five locations L = (1,2,3,4,5), and a qubit
order τ : L → L, where

τ= (1234)(5) =
(
1 2 3 4 5
2 3 4 1 5

)
(3.7)

The number of inversions between τ and the identity permutation e, is equal to three. Theorem 3.7 states
that τ can be changed to e by applying three SWAP operations. The proof argues that there always exists an
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inversion such that the two inverted qubits are adjacent in the qubit order. In this case, the qubits 1 and 4
induce an inversion (w.r.t. e) and are also adjacent in the qubit order τ. Therefore, the SWAP gate s1 = (12)
acts on adjacent qubits and interchanges the locations of the qubits. We obtain

s1 ◦τ= (1)(234)(5) =
(
1 2 3 4 5
1 3 4 2 5

)
. (3.8)

Again, two qubits that induce an inversion are adjacent in the qubit order, this time the SWAP gate s2 = (23)
resolves one inversion. The result is

s2 ◦ s1 ◦τ=
(
1 2 3 4 5
1 2 4 3 5

)
. (3.9)

Finally, the SWAP gate s3 = (34) interchanges those qubits’ locations, that induce the remaining inversion.
After applying three SWAP operations, the three inversions have been removed. The resulting qubit order is

s3 ◦ s2 ◦ s1 ◦τ=
(
1 2 3 4 5
1 2 3 4 5

)
= e. (3.10)

The nearest neighbor interaction constraints can only be formulated once the concept of quantum gates has
been properly introduced in this setting.

Definition 3.9. Let i , j ∈ Q be two qubits such that i 6= j . Let gi j be an unordered pair g = {i , j }. Then we
say that gi j is a quantum gate, or simply a gate, that acts on qubits i and j . When the specific qubits do not
matter in the context, the subscripts might be omitted. When multiple gates are present and their order is
important, this will be reflected with a superscript as g t .

Please note that this definition only allows for quantum gates that act on pairs of qubits, if a “gate" acts on
more qubits, or on only one, we do not refer to it as a gate in the sense of Definition 3.9.

To describe an entire quantum circuit, multiple gates are needed, and their order is of importance. To this
end, the concept of a gate sequence is introduced.

Definition 3.10. Let g 1, . . . , g m be m gates. Let G be the finite sequence of gates G = (g 1, . . . , g m), then we say
G is a gate sequence of size m.

Note that the superscripts are simply used to keep track of the sequence of the gates, they do not resemble
powers for example. In this work, for any instance, we assume the gate sequence to be given and fixed.
Allowing changes in the gate order when some commutative rules are satisfied, as was done in [33, 38, 57], is
beyond the scope of this thesis.

We can now introduce the concept of a quantum circuit more formally.

Definition 3.11. Let Q be the set of qubits and G be a gate sequence. Let Γ be a tuple of the set of qubits and
the gate sequence Γ= (Q,G). Then we say that Γ is a quantum circuit.

At the core of the problem are the nearest neighbor (NN) constraints. These constraints are what make the
NNC problem interesting in the first place.

Definition 3.12. Given are a gate g t
i j and a qubit order τt before that gate. We say that the gate complies with

the NN constraints if ‖τ(i )−τ( j )‖ = 1, i.e., if the qubits on which the gate acts are adjacent. If, given a qubit
order for each gate, all the gates in a quantum circuit’s gate sequence comply with the NN constraints, we say
that the quantum circuit complies with the NN constraints.

Here, ‖ · ‖ simply denotes the absolute difference. Now that all these concepts have been formalized, we can
continue with defining the problem of NNC.

NEAREST NEIGHBOR COMPLIANCE PROBLEM (LINEAR ARRAY )

Input: A quantum circuit Γ= (Q,G) with |Q| = n qubits and |G| = m gates and an integer k ∈Z≥0.

Question: Do there exist qubit orders τt , t ∈ [m], one before each gate of Γ, such that the sum of the
Kendall tau distances between consecutive qubit orders satisfies

∑m−1
t=1 I (τt ,τt+1) ≤ k and

such that Γ complies with the NN constraints?
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In the minimization version of the problem, which we model in the next section, we seek to find the smallest
integer k such that the NNC problem is still answered affirmatively. Considering the problem in this manner,
the final qubit order is not required to be equivalent to the initial qubit order. Neither do we allow for changes
in the gate order, and we also do not optimize over different ways of decomposing multi-qubit quantum gates.
The objective function in the minimization problem simply counts the required number of SWAP gates.

Note that calculating the Kendall tau distance between two permutations can be naively done in O (n2) time,
following the steps of the bubble sort algorithm [44]. A faster computation of the distance, in O (n

√
logn)

time, can be found in [14].

We will, however, not be concerned with explicitly listing the Kendall tau distances for all n! permutations.
In order to avoid the listing process, the metric should be implicitly calculated in the model. The objective
function, variables and constraints that allow us to do so, will be introduced in Chapter 5.

Now, we provide the reader with an example.

Example 3.13. A circuit that does not comply with the nearest neighbor constraints can be modified by in-
serting SWAP gates to change the qubit order in between gates. Two possible modifications are shown in
Figure 6.3. The top circuit has more inserted SWAP gates than the bottom circuit.

Figure 3.2: Three circuits that perform the same calculation. The circuit on the left does not comply with the NN constraints. The circuits
on the right do.

The left circuit does not comply with the nearest neighbor constraints and should be modified in order to do
so. The top right circuit is a realization of such a modification, and does comply with the NN constraints. The
modification is, however, very poor compared to the modification that the bottom right circuit has under-
gone. There, only one SWAP gate was inserted instead of the eight SWAP gates used by the top right circuit.

3.1.1. Analogy in a non-quantum setting
The problem can also be envisioned in a non-quantum setting. We consider the following analogy.

Let there be n people, standing side-by-side in a line. There is a piece of paper. On it, a sequence of pairs of
names (of the people standing in the line) is written. Starting with the first pair, the two must shake hands,
which they can only possibly do when standing next to each other. Then the second pair of people on the list
need to shake hands, so on and so forth until every pair in the sequence has shaken hands. Of course, shaking
hands with someone is limited by the reach of your arms, so one can only shake hands with direct neighbors.

Now comes the special rule, the people in the line can swap places, but only with their direct neighbors. The
goal: finish the list by letting the people swap places as few times as possible.

In this analogy, the people represent the qubits, the line is the one dimensional architecture of the physical
implementation of the quantum computer, the list of names represents the list of gates, where every pair of
names specifies which two qubits are acted upon by the corresponding gate.
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Note that the problem is equivalent to the NNC minimization problem. If we had any feasible solution to the
problem above we could translate the place swap of two people to applying a SWAP gate to the two corre-
sponding qubits and obtain a feasible solution to NNC.

3.2. Complexity of NNC and the Token Swapping Problem
Recently, the complexity of a more general form of NNC was studied. The problem of SWAP minimization
does not have the qubits on a linear array necessarily, but the coupling between qubits is encoded in a “cou-
pling" graph. Two qubits are considered to be adjacent if their corresponding nodes in the graph share an
edge. In this setting, the problem is shown to be NP-complete [73] via a reduction from the NP-complete
Token Swapping problem [9, 42].

An application of the Token Swapping problem is the ladder lottery, or “Amidakuji”, in Japan. The lottery is
often used to match children to roles, as per the following example. Imagine an elementary school teacher has
to assign two cleaning duties among four students. The teacher might choose a ladder lottery as a means of
assigning the tasks in a fair manner. The teacher first draws four vertical lines on a blackboard. Then, several
horizontal lines between two consecutive vertical lines, as in Figure 3.3(a). The teacher chooses any two
vertical lines, and draws check marks at their bottom ends. The vertical lines are then hidden or covered up.
Each student chooses a vertical line and writes their name (or, in this case, a letter) at the top end, as shown in
Figure 3.3(b). The vertical lines are then revealed to the students. The students each follow a path down the
ladder, starting at the name or letter they chose. The path takes every right and left turn it encounters. Such
routes are illustrated with the dotted lines in Figure 3.3(c). The students whose paths end up at a check mark
at the bottom are the ones who will perform the cleaning duties. In this case students B and C were chosen.

Figure 3.3: How a ladder lottery, or Amidakuji, is used in Japan. Figure from [86].

In the token swapping problem, a graph G = (V ,E) is given, with |V | = n nodes. Also n tokens are already
placed, each on a distinct node of G . We wish to transform the initial token placement f0 to a target placement
ft . The tool available to do so, is the swapping of two tokens that are placed on two nodes that are connected
by an edge in the graph.

TOKEN SWAPPING PROBLEM

Input: A graph G = (V ,E), with |V | = n, an initial token placement f0, a target token placement ft

and an integer k.

Question: Is it possible to transform the initial token placement f0 to the target token placement ft with
at most k token swapping operations?

An illustration of the token swapping problem and its relation to the ladder lottery is provided in Figure 3.4.
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Figure 3.4: How a ladder lottery relates to Token Swapping. Figure from [86].

The token swapping problem is solvable in polynomial time if the graph is a simple path. It is therefore not
clear if NNC in this case, where qubits are located on a linear array, is also NP-complete. To the author’s
best knowledge, there is no formal proof available to show this, it is however widely believed that the NNC
problem is indeed NP-complete. This was also conjectured in [36].

Another closely related problem is that of makespan minimization, where the total number of time steps
(where one time step resembles the duration of a gate) is minimized. This problem is also NP-complete [10].
Again, the result applies to general coupling graphs and does not trivially extend to planar coupling graphs.

3.3. Literature review
The problem of NNC has been studied extensively in the last decade. Two main categories of coping with the
NN constraints have been considered in the literature so far. The first approach is often referred to as global
reordering, on which we will elaborate in Chapter 9. The second approach to the problem, the one discussed
in depth here, in Part I, is called local reordering. This approach allows for reordering qubits on the gate-
level. Here we will discuss the literature on the problem of NNC in the context where qubits are placed on a
one-dimensional array. Exact approaches will be discussed first, after which we will discuss some heuristics.

3.3.1. Exact approaches
Only few works have developed exact solution approaches to evaluate the problem of nearest neighbor com-
pliance.

The problem of local reordering has been solved exactly for instances up to ten qubits and five gates using
an exhaustive search method [36]. Here, all possibilities are enumerated and the one with the best objective
value is returned as the optimal solution. The complexity of searching all qubit orders grows as the factorial of
the number of qubits in the considered circuit. The method does therefore not scale well at all as the problem
size increases.

Another exact solution method consists of an algorithm making use of Pseudo-Boolean Optimization [82].
Optimal solutions were obtained for circuits up to five qubits and sixteen gates. The boolean satisfiability
model introduced by the authors, enumerates the costs for all of the permutations of the qubits and thus
scales poorly as the number of qubits increases. Their model does, however, pave the way for the integer
linear program (from now on abbreviated as ILP) that we introduce later on, in Chapter 5. They also com-
pare global reordering to local reordering and conclude that local reordering obtains better results due to the
bigger search space it allows for.

In [57] an adjacent transposition graph is used. The graph has qubit orders as its nodes, and links two qubit
orders with an edge if one can be obtained from the other when applying one SWAP gate. The solution then
comes in the form of a path though the adjacent transposition graph. The authors use a gate dependency
graph to indicate whether gates can be applied in a different order, an option that will not be considered in
this thesis. A breadth first search algorithm is used as a solver. The results indicate that the method finds
optimal results quickly in circuits of up to seven qubits and fourteen gates. When the instance size increases
to ten qubits, the computation time seems to approach practical limits. For 25 qubits, the solution is no
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longer reported. These circuits are already quite large when compared to other exact methods. The problem
that is inherent to usage of the adjacent transposition graph, is that the number of nodes scales linearly with
the number of qubit orders, which again results in a factorial scaling in the number of qubits.

Another method, from [68], also uses the fact that quantum gates can be interchanged if certain commutation
conditions are met, e.g., if two consecutive gates do not act on the same qubits, they can be interchanged in
the gate sequence. This results in a yet bigger search space. Compared to a naive method, their results are
much better in terms of number of required SWAP gates to transform the quantum circuit into an equivalent
nearest neighbor compliant circuit.

3.3.2. Heuristic approaches
A large number of heuristic approaches has been developed for the local reordering approach. The heuristics
have been tested on benchmark instances with exact solutions for small circuits and compared to each other
in larger instances. The proposed methods include: greedy searches where one qubit is simply moved toward
another [36], random permutations are chosen after which the number of SWAP gates are counted [36], a
greedy heuristic similar to 2-opt in [1], Sliding Window Search heuristics where only the next fixed number of
gates are considered for the reordering [8, 36, 48, 52], and a Fast Sliding Window Search where, additionally,
only a restricted number of qubit orders are considered [36]. Another Sliding Window approach uses the
concept of the circuit tail [83], in which only part of the tail is used to determine local optimal solutions, which
are later on combined to obtain a complete strategy. Other attempts include the use of templates for circuits
in the Multiple Control Toffoli (MTC) library [15]. A divide and conquer technique, where the circuit is split
into clusters that are considered separately, was developed in [65]. In [75], a solution method is proposed,
based on a combination of MTC library templates and the heuristic method of [48].

3.3.3. Our contribution
In the current literature, the lack of an ILP formulation for the local reordering problem is surprising. Multiple
models are presented in this work. In Chapter 4 a Single Pair Shortest Path formulation of the problem is
presented. This formulation uses the adjacent transposition graph, just as in [57], but traverses multiple
instances of it to find optimal solutions without considering the possibility of using a different gate order. The
model serves perfectly as an intuitive tool to get a grasp on the problem at hand. In practical use, however,
the size of the model quickly scales out of control. In order to solve the problem for instances beyond tiny
ones, an ILP model is developed in Chapter 5. The model scales polynomially in size, which is the first one to
do so in the current literature. We evaluate a range of benchmark instances by feeding the model to CPLEX’s
Branch & Bound algorithm. For the first time, instances with up to eighteen qubits and sixteen gates or five
qubits and over 100 gates are solved to optimality. Finally, the newly obtained exact solution can serve as a
first mean to assess the quality of the existing heuristic solution methods.





4
Shortest Path Formulation

In graph theory, the problem of finding a shortest path between two nodes is a well studied problem. There
are many application that require this in practice, the most well known of which is navigation. Imagine you
want to travel from point A to point B. The question of how to get there as quickly as possible, is answered by
many navigation systems every day. Whenever a package is to be delivered, or when someone wants to go on
vacation, one resorts to a navigation system for the shortest route to their destination.

Many different variants of the problem have been studied. In some cases the edges are considered to go only
one way or are equipped with weights. The weights often represent distances, travel times or costs. In other
variants of shortest path problems, the goal is to find the shortest path between each pair of locations. In this
chapter, we consider the first research question: "How can we model the nearest neighbor compliance problem
such that the size of the model scales polynomially in the input, instead of exponentially, while retaining exact
solutions?". We will try to model the NNC problem such that the size of the model scales as a polynomial
in the number of qubits and gates, by making use of concepts in graph theory. Throughout this chapter, we
attempt to formulate the NNC problem as a Single Pair Shortest Path problem.

4.1. Single Pair Shortest Path
In this case, a simple form of the shortest path problem will suffice. First, we provide the reader with a short
introduction into graph theory. Then, a reduction will be done from the NNC problem to the shortest path
variant that we discuss.

4.1.1. Formulation of SPSP
In the context of this thesis, we only consider finite graphs H = (V ,E), meaning V and E (or A if we speak of a
directed graph) have a finite number of elements. We start out by introducing paths.

Definition 4.1. A finite sequence of edges which connects a sequence of vertices is called a path. A path is
called a directed path, or a dipath if all the arcs are directed in the same direction.

A dipath with v1 as its starting node, and v2 its end node, is called a v1 − v2 dipath.

Definition 4.2. A path that does not contain the same vertex twice, i.e., a path without cycles, is called a
simple path.

The decision version of the Single Pair Shortest Path (SPSP) problem is given as

SINGLE PAIR SHORTEST DIRECTED PATH WITH BINARY WEIGHTS

Input: Let G = (V , A) be a digraph with the vertex set V that includes a starting node s and end node
t . Let w be a binary weight function on the arcs, w : A → {0,1}A . Let k be a non-negative
integer k ∈Z≥0.

Question: Does there exist an s − t dipath P = (as,i , · · · , a j ,t ) such that
∑

a∈P wa ≤ k?

27
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In the minimization version of the problem, which is considered in the remainder of this chapter, we seek to
find the smallest k for which Problem 4.1.1 is still answered affirmatively. The fact that the path is directed
and the weights are binary, will be implicit unless explicitly noted otherwise.

4.1.2. ILP formulation of SPSP
The SPSP problem can also be formulated as an ILP. The decision variables xa , one for each arc a ∈ A, are
introduced. They indicate, for each arc, if the arc is part of the path.

xa =
{

1 if arc a is part of the path

0 otherwise.
(4.1)

Then the integer linear program corresponding to the SPSP problem is the following:

minimize
∑

a∈A
wa xa

subject to
∑

v∈V
xi ,v −

∑
v∈V

xv,i =


1 if i = s

−1 if i = t

0 else

∀i ∈V

xa ∈ {0,1},∀a ∈ A.

(4.2)

The corresponding linear programming (LP) relaxation, where the variables are allowed to take on any real
value between 0 and 1, is actually integral. This means that every basic optimal solution has each variable
equal to 0 or 1.

4.2. Translation of NNC to SPSP
In this section, we introduce the concept of Cayley graphs, we provide a reduction from NNC to SPSP. An (I)LP
formulation is therefore available for the NNC problem. The number of variables does, however, increase
rapidly as the number of qubits increases. Besides the bad theoretical scaling, this is the first step towards a
structured solution method for the NNC problem.

4.2.1. Cayley graphs
A central tool in combinatorial and geometric group theory is the Cayley (color) graph. A Cayley graph cap-
tures the structure of an algebraic group in, as the name suggests, a graph.

Definition 4.3. Suppose Z is a group and S is a generating set of Z . The Cayley graph ζ= ζ(Z ,S) is a colored
directed graph, constructed as follows:

1. Each element z ∈ Z is assigned a vertex.

2. Each generator s ∈ S is assigned a color cs .

3. For any z ∈ Z and s ∈ S, the vertices corresponding to the elements z and zs are joined by a directed
edge of color cs . Thus, the edge set E(ζ) consists of pairs of the form (z, zs), where s indicates the color
of the edge.

The set S is assumed to be symmetric and does not contain the identity element of the group Z .

An example on the dihedral group D4 is given.

Example 4.4. Consider the dihedral group Z = D4 with its two generators a,b ∈ S. Here, the action of a
constitutes a clockwise rotation of π

2 radians. The action of b is mirroring in the vertical axis. Mapping the
structure of D4 using a Cayley graph results in the graph in Figure 4.1. Notice that b is self-inverse. The blue
edges, those corresponding to b, are therefore undirected. Equivalently, the blue edges {i , j } ∈ E , could be
replaced with two arcs, one going from i to j , and one going from j to i .

Qubit orders are elements of the symmetric group Sn . The adjacent transpositions are a set of generators of
the symmetric group, corresponding to the action of SWAP gates. The structure of the symmetric group, with
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Figure 4.1: The Cayley colored graph corresponding to the dihedral group D4 acting on the capital letter F. The arcs corresponding to the
action of generator a are colored red. The edges corresponding to the action of generator b are colored blue.

as its generator set the set of adjacent transpositions, can also be mapped onto a Cayley graph. We omit the
colors and use uncolored Cayley graphs instead.

4.2.2. Graph construction
Translating the NNC problem into a corresponding SPSP formulation, requires the construction of a graph H .
The construction contains several steps, which are outlined throughout this section. Let the quantum circuit
Γ= (Q,G) be given, where |Q| = n and |G| = m.

First, all the arrangements the n qubits can be in, are permutations τ ∈ Sn applied on the array (1, . . . ,n).
There are n! different permutations of the vector, since |Sn | = n!.

For each gate g t , a Cayley graph H t is constructed, that has a node for each qubit order. Thus, H t contains n!
nodes.

Since SWAP gates can be applied before each gate, the qubit order can be altered in each subgraph. SWAP
gates can only interchange the position of two adjacent qubits. For each node, an arc to another node is
added if and only if the qubit order which that node represents can be obtained by interchanging two adjacent
qubits in the qubit order corresponding to the current node. In other words, for each two qubit orders τ1,τ2,
the corresponding nodes v1, v2 are connected if and only if there exists a SWAP gate s such that s ◦τ1 = τ2.
These arcs are all given a weight of one. The weights are equal to one, because moving between two nodes in
the graph corresponds to altering the qubit order by applying one SWAP gate.

To illustrate the Cayley graph in the case of three qubits, a subgraph H t is shown in Figure 4.2.
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Figure 4.2: A subgraph showing the construction of the subgraph H t for three qubits. The qubit orders are shown in the nodes. Two
nodes are connected via arcs if the qubit order in one node can be obtained from the qubit order in the other node by applying one
SWAP gate.

As mentioned before, since the qubit order can be adjusted before every gate, this subgraph is duplicated
for every gate. We next describe the manner in which subgraphs are connected to each other. Consider two
subgraphs, H t and H t+1, corresponding to consecutive gates. Only nodes that correspond to qubit orders
τt ,τt+1 for which the gate g t complies with the NN constraints are connected with an arc from τt to τt+1. The
cost on these arcs is equal to zero, since it does not cost any SWAP gates to apply the gate g t itself.

To illustrate this, another example is given in Figure 4.3. The example uses three qubits and the gate g 1
2,3.
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Figure 4.3: The two subgraphs H t (on the left) and H t+1 (on the right) are connected. Only certain qubit orders are allowed to “pass
through” the gate. The dashed red line represents the gate.

Finally, the addition of two auxiliary nodes completes the construction. Let s and t be nodes such that s has
an arc from it to every node in H 1 and let an arc go from every node in H m−1 that would have an arc to H m by
the construction, to t instead. The subgraph H m is removed from H . All the arcs from s and to t have a cost
of zero since the starting configuration can be chosen freely and the final configuration does not have to be
the same as the starting one.

4.2.3. Example of graph for a given circuit.
Consider the quantum circuit with three qubits and three gates, shown in Figure 4.4.

The corresponding graph H is shown in Figure 4.5.

From the starting node s, all edges are drawn toward the nodes in H 1 with zero cost, indicating that every
initial qubit order is free of costs. Then, arriving in H 1 there is the option of using SWAP gates to move to
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q1 g 2 • q1

q2 g 1 • q2

q3 • g 3 q3

Figure 4.4: This quantum circuit does not comply with the NN constraints.

s

123

132

312

321

231

213

123

132

312

321

231

213

123

132

312

321

231

213

t

0

0

0

0

0

0

1

1

11

1

1 1

1

11

1

1 1

1

11

1

1

0

0

0

0

0

0

0

0

0

0
0

0

g 1
{2,3} g 2

{1,2} g 3
{1,3}

Figure 4.5: Any feasible s − t path in this graph corresponds to a feasible solution to the NNC minimization problem. The total weight of
the path is equal to the number of SWAP gates in the corresponding circuit.

a different node in H 1. In some initial qubit orders it is possible to apply gate g1 and move directly to H 2,
without the use of a SWAP gate.

4.2.4. Problem reduction
The anticipated moment has arrived, the NNC problem is now equivalent to solving an SPSP problem from s
to t in the constructed graph H . The arcs the path traverses that have a cost of zero, indicate no changes to
the qubit order. The edges with a cost of one in the subgraph H t indicate the use of a SWAP gate to alter the
qubit order τt , before gate g t . When traversing the path, the nodes correspond to the current qubit order τ.
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Figure 4.6: Any feasible s − t path in this graph represents a NN compliant circuit. An example of a feasible s − t path is the orange
path. It traverses different nodes, corresponding to different qubit orders. A SWAP gate is used before the second gate to ensure the gate
complies with the NN constraints.
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Two paths are shown in the graph in Figure 4.6. The orange path is a feasible s − t path that uses one SWAP
gate to reconfigure the qubits. This way, no gates act on two non-adjacent qubits in the corresponding circuit,
so the circuit complies with the NN constraints. The corresponding circuit is also given in Figure 4.7. The blue
path corresponds to the circuit in 4.4. Just before the final gate can be applied, a change in the qubit order
has to be made in order for the last gate to comply with the NN constraints. Therefore, the blue path cannot
continue to the endpoint t without going to a different qubit order first.

q1 × g 3 q3

q3 • × g 2 • q1

q2 g 1 • q2

Figure 4.7: This circuit is a NN compliant version of 4.4. Only a single SWAP gate is used.

Next, an example will be presented in Figure 4.8. Here, a feasible, but clearly non-optimal path, is taken in
the graph. The result is an excess number of SWAP gates. The same circuit of three qubits and three gates is
used as before. The initial qubit order is different, and so is the use of SWAP gates.

q3 × g 2 × q2

q1 × • × • × • q1

q2 g 1 × g 3 q3

Figure 4.8: This circuit is equivalent to 4.4. Three SWAP gates are used instead of only one.

The s − t path corresponding to the circuit in Figure 4.8 is shown in orange in Figure 4.9.
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Figure 4.9: The orange path has a total weight of three. The corresponding circuit also contains three SWAP gates.

The number of nodes per subgraph is n!, and there is one subgraph for each gate. Thus, also counting the
auxiliary nodes, the total number of nodes is equal to |V | = n!(m −1)+2. Within each subgraph, the number
of edges is equal to n!(n −1), and the number of arcs between subgraphs is 2 · (n −1)!. Together with the arcs
from s to the first subgraph, the total number of arcs is |A| = n!+n!(n − 1)m + (n − 1)! · 2m. The size of the
SPSP problem scales extremely rapidly with the number of qubits, but only experiences linear scaling in the
number of gates.

Example 4.5. To illustrate the rapid scaling to the reader, we show the Cayley graph corresponding to the
qubit orders and SWAP gates for only four qubits in Figure 4.10.
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Figure 4.10: The Cayley graph corresponding to S4 with the adjacent transpositions as generators of the symmetric group. The label i j
on an edge indicates that the qubits on locations i and j are interchanged by a SWAP gate. The graph has 24 nodes. Figure from [51].

The graph for five qubits already contains |V | = 120 nodes.

4.2.5. Reducing the size of the graph
Fortunately, a useful symmetry is present in the problem. The only limitation on any qubit order before a
gate, is that the adjacency constraint is satisfied. Notice, that if a qubit order were inverted, so if the first
element is interchanged with the last element, the second element with the second to last element, etc., then
compliance with the NN constraints is not influenced.

If we were to merge pairs of nodes that represent these inverted configurations, the number of nodes per
subgraph H t , is reduced by a factor of two and becomes n!

2 . This symmetry was also pointed out in [82],
where it was used to halve the number of variables in their SAT formulation of NNC. Notice that the number
of arcs is also halved when this symmetry is exploited.

Example 4.6. Consider the example depicted in Figure 4.6. We can reduce the size of the graph significantly
by using the symmetry. The nodes 321 and 123, for example, correspond to symmetrical qubit orders. We
construct a reduced graph in Figure 4.11.
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Figure 4.11: The graph H where the symmetry argument is exploited. The number of nodes and the number of arcs have both been
halved when compared to the initial construction.

The same optimal solution as in Figure 4.6 is colored orange.
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Even though the number of nodes and edges has been halved, their abundance still scales with a factorial in
the number of qubits in the corresponding quantum circuit.

4.2.6. Computation time
To have an indication of how the scaling of the model translates to computation times, we perform a short
analysis. Since we consider a connected graph, the number of nodes is never bigger than the number of arcs,
|V | ≤ |A|. The weights on the edges are all binary, the problem can therefore be transformed in the following
way:

1. Contract all nodes that are connected by an arc a if wa = 0.

2. Ignore the remaining costs altogether.

The last step can be performed since the remaining arcs all have a weight of one. The remaining problem
is on an unweighted graph. A Breadth First Search (BFS) algorithm essentially divides the nodes into levels,
starting from the starting node s. It visits vertices in order of increasing distance from s by visiting each edge
exactly once. Solving a SPSP problem with binary weights can thus be achieved in O (|A|) time.

Note, that since the NNC problem is (believed to be) NP-Complete and the shortest path problem is solvable
in polynomial time, finding a polynomial time problem reduction of NNC to the SPSP problem would mean
that either NNC is in the complexity class P, or it would mean that complexity classes P and NP are equal,
solving one of the six remaining millennium problems in mathematics. In this case, the reduction time scales
as a factorial in the number of qubits. Even though we can solve the SPSP problem in linear time in the
number of nodes and arcs, we still acquire a factorial scaling in the computation time due to the number of
qubits. We therefore regard this chapter as an intuitive approach to the NNC problem, that clearly illustrates
the inherent difficulties in the scaling. We will not use this model to solve the problem for specific instances.
For that, we introduce an ILP model in the next chapter.
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In this chapter, we will again consider the research question: "How can we model the nearest neighbor com-
pliance problem such that the size of the model scales polynomially in the input, instead of exponentially, while
retaining exact solutions?" We attempt to construct a model for the NNC problem that both scales polynomi-
ally in size and also allows for the use of exact solution methods. The reason to choose an ILP formulation
instead of a SPSP formulation, might seem strange to the reader at first. After all, solving a SPSP problem
is easy and solving an ILP is in general not. A motivation and the idea leading up to the change in problem
reduction, are presented in the next section. After that, the ILP formulation itself is presented and explained.
Next, the scaling of the model is addressed. Finally, we will provide some insight into relaxations of those
constraints that require the variables to take integer values. Throughout the chapter, we will assume to be
given a quantum circuit consisting of n qubits and m two-qubit quantum gates. A paper on the results of this
chapter has been submitted for possible publication [61].

5.1. Motivation and idea
One of the great shortcomings of the SPSP formulation in Chapter 4 is that the number of nodes in the ad-
jacent transposition graph is of order O (n!m). Even though the SPSP problem is solvable in linear time in
the number of variables, it still scales out of control as the corresponding quantum circuit increases in size.
Furthermore, when initializing the instance, one has to initialize the variables in some manner. Doing so
explicitly, already takes linear time in the number of variables and nodes. We therefore aim to reduce the
size of the model while increasing the complexity of solving a problem with it. We illustrate the trade-off in
Figure 5.1.

NNC instance

Shortest Path Model

ILP Model

Optimal Solution

|V |+ |A| =O (n!m)

# vars. + constr. =O (n2m)

O (|A|)

NP-hard

Figure 5.1: The trade-off between a large model with linear solve time and a small model with a bigger solve time. The instance has n
qubits and m quantum gates.

5.1.1. Representation of the permutations
The drive behind the n! scaling is the enumeration of all of the different qubit orders. In the SPSP formulation,
all permutations were given a node and there are n! different qubit orders for a circuit of n qubits. This

35
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number could be reduced by a factor of two due to a symmetry argument but that does not affect the factorial
scaling. Therefore, representing the permutations in some other way than enumeration would be a step in
the right direction. At first, an attempt was done to use the traveling salesman problem (TSP) with some, to be
specified, weights in order to represent the optimal ordering of qubits before each gate. Note that an ordering
of n items can be represented by a vector of length n, instead of listing all possible permutations and keeping
track of the applicable one. There are two disadvantages with using n variables to represent the permutation.

1. The variables are no longer binary.

2. To make sure that no two qubits are present at the same position, a “not equal to” constraint has to be
added for every pair of qubits, introducing both O (n2) new variables and linear constraints.

The qubit order is therefore first represented using a permutation matrix which also requires n2 variables,
however the variables are all binary. Later in this chapter we will still switch to the vector notation because
the disadvantages do not weigh up against the advantages of the concise description that the vector notation
enables.

5.2. ILP formulation
In this section, we introduce the ILP formulation of the NNC problem. First, the decision variables will be
explained, followed by the constraints and the objective function. After these core topics have been discussed,
the complete ILP formulation will be presented.

The quantum circuit is cut up into m “time” steps, one for each gate. During each of these steps, any number
of SWAP gates can be applied (up to the number of pairs of qubits). The total number of SWAP gates is
counted by making use of variables that keep track of the pairwise ordering of the qubits, and variables that
keep track of the changes made in the pairwise orderings. The corresponding metric between qubit orders
is the Kendall Tau distance between permutations, which was introduced in Definition 3.5. We elaborate on
this further, in the paragraphs about the objective function. Throughout the chapter, we use the shorthand
notation [n] := (1, . . . ,n).

5.2.1. Decision variables
For every time step t ∈ [m] the binary decision variable x t

i j is introduced, such that

x t
i j =

{
1 if qubit i is at position j at time t

0 otherwise.
(5.1)

Thus, for every combination of qubit, location and time step, a variable is introduced, indicating if that qubit
is at that location, at that time step. In other words, x t

i j = 1 if and only if τt (i ) = j , where τ is the qubit order

before gate g t .

To keep track of the ordering of qubits, binary variables y t
i l are introduced for each pair of qubits (i , l ) with

i < l and each time step t ∈ [m] such that

y t
i l =

{
1 if, at time step t , qubit i comes later in the ordering than qubit l at time t

0 otherwise.
(5.2)

Furthermore, binary variables k t
i l are introduced to count the number of inversions between two consecutive

qubit orders. k t
i l is calculated by taking the absolute value of the change of order of two qubits from one time

step to the next.

k t
i l =

∣∣y t
i l − y t+1

i l

∣∣={
1 if qubit i and qubit l change pairwise order when going from time t to time t +1

0 otherwise.

(5.3)
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This is, however, not a linear equation. The manner in which this is taken care of, will be explained in sub-
section 5.2.3.

5.2.2. Constraints
To make sure that the variables actually correspond to a feasible solution of the NNC problem, some con-
straints are required. First, two constraints are used to ensure that, at each time step, the variables represent
a permutation of the qubits, i.e. every qubit can only be at one position at a time, and every position can only
be occupied by a single qubit at a time. The corresponding permutation constraints are

∑
j∈L

x t
i j = 1 ∀i ∈Q, t ∈ [m] (5.4)∑

i∈Q
x t

i j = 1 ∀ j ∈ L, t ∈ [m]. (5.5)

The adjacency constraints require the qubits that are acted upon by a gate, to be adjacent. This is encoded in
the following constraints:

x t
i j ≤


x t

l ( j−1) +x t
l ( j+1) if j ∈ (2, . . . ,n −1)

x t
l ( j+1) if j = 1

x t
l ( j−1) if j = n

∀g t
i l ∈G , j ∈ L. (5.6)

Equation 5.6 is trivially satisfied if x t
i j = 0. The constraints require one of the locations j −1 and j +1, to be

occupied with qubit l if location j is occupied by qubit i .

Next, two big-M type constraints are added. The function of these ordering constraints is twofold. On the
one hand, the constraints achieve that the y t

i l -variables correspond to the values indicated in Equation 5.3.
As a result, constraints make sure that the positions of two qubits cannot be equal to each other. On the other
hand, the y t

i l -variables keep track of the pairwise ordering of the qubits.

∑
j∈L

j x t
i j −

∑
j∈L

j x t
l j ≤ M y t

i l −1 ∀i , l ∈Q, i < l , t ∈ [m] (5.7)∑
j∈L

j x t
l j −

∑
j∈L

j x t
i j ≤ M(1− y t

i l )−1 ∀i , l ∈Q, i < l , t ∈ [m]. (5.8)

Taking M = n+1 suffices as a large enough value. A summation in the Expressions 5.7 and 5.8 sums up to the
location of the qubit, i.e., ∑

j∈L
j x t

i j = τt (i ), (5.9)

where τt is the qubit order at time t . Note, that one of the two constraints in the Expressions 5.7 and 5.8 is
always trivially satisfied. Which one that is, depends on the value of y . This way, y t

i l keeps track of which of
the two qubits comes first in the qubit order.

Furthermore, all variables are required to take binary binary values.

x t
i j ∈ {0,1} ∀i , j ∈Q, t ∈ [m] (5.10)

y t
i l ∈ {0,1} ∀i , l ∈Q, i < l , t ∈ [m]. (5.11)

(5.12)

The constraints for the k-variables are introduced alongside the objective function, in the next subsection.



38 5. ILP Formulation

5.2.3. Objective function
With the introduction of the y t

i l -variables, we can now keep track of the pairwise ordering of the qubits. As
was shown in Theorem 3.7, the number of inversions between two qubit orders is equal to the number of
required SWAP gates to change one qubit order into the other. The Kendall tau distance counts the number
of inversions by definition.

I (τ1,τ2) = ∣∣{(i , j ) | 1 ≤ i , j ≤ n,τ1(i ) < τ1( j ),τ2(i ) > τ2( j )
}∣∣= ∑

i ,l∈[n]
i<l

I i ,l (τ1,τ2), (5.13)

where

I i ,l (τ1,τ2) =
{

1 if i and l are in a different order in τ1 when compared to τ2

0 otherwise.
(5.14)

The number of inversions between two qubit orders is counted by the y t
i l -variables. The equation

I i ,l (τt ,τt+1) = ∣∣y t
i l − y t+1

i l

∣∣ (5.15)

is a consequence of the construction. Equation claims that the absolute value of the change in pairwise order
of two qubits between two qubit orders is equal to one if the qubits changed order, and equal to zero if they
did not. Because the absolute value is not a linear function, a common trick is applied.

In general, let y ∈ Rd be a variable vector and F ⊂ Rm the feasible region. Then the program

minimize
y

‖y‖1

subject to y ∈F
(5.16)

constitutes a nonlinear optimization problem. However, a linear optimization problem exists, which has the
same optimal value. It requires one extra variable for each dimension of x. The corresponding problem is
given in Equation 5.17.

minimize
y,k

d∑
i=1

ki

subject to yi ≤ ki ∀i ∈ [d ]

yi ≥−ki ∀i ∈ [d ]

y ∈F ,k ∈ Rd

(5.17)

Here, the yi -variables are upper and lower bounded by the ki -variables.

The same linearization is applied in our case. Instead of minimizing the sum of all absolute values of differ-
ences pairs of consecutive yi l -variables, they are bounded by two extra constraints,

y t
i l − y t+1

i l ≤ k t
i l ∀i , l ∈Q, i < l , t ∈ [m −1] (5.18)

y t
i l − y t+1

i l ≥−k t
i l ∀i , l ∈Q, i < l , t ∈ [m −1] (5.19)

The objective function now becomes
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minimize
m−1∑
t=1

∑
i ,l∈Q

i<l

k t
i l . (5.20)

(5.21)

The inner summation of the variables k is now used to count the number of inversions when changing from
the qubit ordering at time t to the one at time t +1. The outer summation simply adds the contributions of
all time step together.

5.2.4. ILP formulation
Now that all of the variables, constraints and the objective function have been properly introduced, the com-
plete formulation is presented in Equation 5.22. The objective function counts the number of SWAP gates
that are required to change each qubit order into the next qubit order. However, the objective function does
not unveil the order in which SWAP gates should be applied. Fortunately, this can be easily determined.

minimize
∑

i ,l∈Q
i<l

m−1∑
t=1

k t
i l

subject to
∑
j∈L

x t
i j = 1 ∀i ∈Q, t ∈ [m]∑

i∈Q
x t

i j = 1 ∀ j ∈ L, t ∈ [m]

x t
i j ≤


x t

l ( j−1) +x t
l ( j+1) if j ∈ (2, . . . ,n −1)

x t
l ( j+1) if j = 1

x t
l ( j−1) if j = n

∀g t
i l ∈G , j ∈ L

∑
j∈L

j x t
i j −

∑
j∈L

j x t
l j ≤ M y t

i l −1 ∀i , l ∈Q, i < l , t ∈ [m]∑
j∈L

j x t
l j −

∑
j∈L

j x t
i j ≤ M(1− y t

i l )−1 ∀i , l ∈Q, i < l , t ∈ [m]

y t
i l − y t+1

i l ≤ k t
i l ∀i , l ∈Q, i < l , t ∈ [m −1]

y t
i l − y t+1

i l ≥−k t
i l ∀i , l ∈Q, i < l , t ∈ [m −1]

x t
i j ∈ {0,1} ∀i ∈Q, j ∈ L, t ∈ [m]

y t
i l ∈ {0,1} ∀i , l ∈Q, i < l , t ∈ [m]

k t
i l ∈ {0,1} ∀i , l ∈Q, i < l , t ∈ [m −1].

(5.22)

5.2.5. Model size
In the ILP model, there are n2m variables of type x t

i j , (n2 −n)m variables of type y t
i l and (n2 −n)(m − 1)

variables of type k t
i l . This results in a total of n2(3m −1)−n(2m −1) =O (n2m) variables.

There are 2nm constraints to make sure that the x-variables represent a permutation, m gate adjacency
constraints, 2(n2 − n)m constraints to keep track of the pairwise order of qubits in the qubit order, and
2(n2−n)(m−1) constraints to circumvent the absolute value in the objective function. In total, this results in
4n2m −2n(m −1)+m =O (n2m) constraints.

This is a lot better than the O (n!m) scaling, which we encountered in the SPSP model in Chapter 4.

5.3. Further improvements
To further reduce the number of variables, a concession is made. The x t

i j -variables are replaced by variables

that are no longer required to be binary, as was mentioned in Section 5.1.1. Instead, we will use variables that
directly indicate the position of a qubit at a certain time step.
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x t
i =

∑
j∈L

j x t
i j = τt (i ). (5.23)

Example 5.1. As an example, consider a fixed time step t . We have 4 qubits. Their locations are indicated by
the matrix

X t =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

= {x t
i j }, (5.24)

where the x t
i j -variables would correspond to the old variables in such a way that the qubits are placed in

order of ascending location (q1, q4, q3, q2). The new variable vector is the vector of locations of the qubits,
ordered in ascending qubit number: (x t

1 = 1, x t
2 = 4, x t

3 = 3, x t
4 = 2).

The permutation constraints are no longer required since the old x t
i j variables are no longer in use. The new

variables can only take one value each. Furthermore, some adjustment are made to the other constraints. To
ensure adjacency of a pair of qubits when a gate is applied to them, the new gate adjacency constraints:

x t
i −x t

l ≤ 1 ∀g t
i l ∈G (5.25)

x t
i −x t

l ≥−1 ∀g t
i l ∈G , (5.26)

are introduced. The ordering constraints already contained the position of the qubits as a function of the old
variables. The locations are simply replaced by the new variables. The new ordering constraints1 become

x t
i −x t

l ≤ M y t
i l −1 ∀g t

i l ∈G (5.27)

x t
l −x t

i ≥ M(1− y t
i l )−1 ∀g t

i l ∈G . (5.28)

Again, M = n+1 suffices. The counting constraints remain unchanged. After combining the binary ILP model
in the previous section with the new variables, we obtain the following formulation:

minimize
∑

i , j∈Q
i< j

m−1∑
t=1

k t
i l

subject to x t
i −x t

l ≤ 1 ∀g t
i l ∈G

x t
i −x t

l ≥−1 ∀g t
i l ∈G

x t
i −x t

l ≤ M y t
i l −1 ∀i , l ∈Q, i < l , t ∈ [m]

x t
l −x t

i ≤ M(1− y t
i l )−1 ∀i , l ∈Q, i < l , t ∈ [m]

y t
i l − y t+1

i l ≤ k t
i l ∀i , l ∈Q, i < l , t ∈ [m −1]

y t
i l − y t+1

i l ≥−k t
i l ∀i , l ∈Q, i < l , t ∈ [m −1]

x t
i ∈ {0, . . . ,n −1} ∀i ∈Q, t ∈ [m]

y t
i l ∈ {0,1} ∀i , l ∈Q, i < l , t ∈ [m]

k t
i l ∈ {0,1} ∀i , l ∈Q, i < l , t ∈ [m −1].

(5.29)

The number of variables in the model is equal to

#variables = n2m − n2 −n

2
(5.30)

1Note that these constraints are similar to the Miller-Tucker-Zemlin constraints for the Traveling Salesman Problem [59].
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and the number of constraints in the ILP is equal to

#constraints = 2(n2 −n)m −n2 +n +2m, (5.31)

which are both polynomial in the number of qubits and in the number of gates. In other exact solution
methods, the size of the model already scales exponentially with the number of qubits [57, 82]. The ILP is
harder to solve than the SPSP problem, but we have eluded the factorial scaling inherent to initializing the
SPSP problem. The new scaling in the number of variables is quadratic in the number of qubits and linear in
the number of gates.

5.4. Relaxations
In order to find lower bounds or to improve running times, it is common practice to relax some or all of the
variables to assume not only integer, but also continuous values within the outer limits of their respective
domains.

5.4.1. Mixed Integer Linear Program
In relation to the ILP formulation, we state the following theorem.

Proposition 5.2. Relaxing the x t
i -variables and the k t

i l -variables in Equation 5.29 to take continuous variables
does not change the objective value of the optimal solution. Thus, there still exists an optimal solution with
integer valued variables.

Proof. The x-variables must take values that are pairwise separated from each other by at least 1 due to con-
straints Equations 5.27 and 5.28. There are n variables that all have to take a value in a connected interval of
length n, all spaced at least 1 from each other. This can only be done if the x’s are all integer and all integer val-
ues are taken. The k-variables are constrained by Equations 5.18 and 5.19. Since the y-variables are binary,
their difference is also binary (or −1, in which case k = 0 is allowed and optimal). Since we are minimiz-
ing over the k-variables, their value will always equal the smallest possible allowed value by the constraints,
which is always integer.

For this Mixed Integer Linear Program (MILP), the solver CPLEX has improved running times in practice. The
optimal value is still the same as that of the exact solution to the original problem.

5.4.2. LP relaxation
Understandibly, one could be tempted to relax the y t

i l -variables to assume continuous values as well. If all
variables are relaxed to take continuous values, we speak of the Linear Programming (LP) relaxation of the
problem. This method is often applied in order to obtain a lower bound for the original problem, since linear
programming problems are polynomially solvable. In this case, our experience with the LP relaxation tells
us that optimal values always provide trivial lower bounds of zero SWAP gates. This occurs as a result of
the relaxation of the restriction on the pairwise ordering of the qubits. A similar phenomenon occurs in the
Market Split problem [18], where one looks for a binary solution vector to a linear system of equations. If the
solution is no longer required to assume integer values, the obtained answer contains almost no information
about the problem in the non-relaxed setting.





6
Problem Definition: The Grid

In this chapter, we introduce the NNC problem in the context where we no longer take a linear array as the
qubit architecture one can embed a circuit on, but instead we turn to two- and three-dimensional grids. In
this chapter and in the next one, we investigate the third research question: "How does the nearest neighbor
compliance problem for two- and three-dimensional architectures relate to the nearest neighbor compliance
problem on a linear array?"

The reason for the change of qubit architecture is increase of the degree of the qubits in the coupling graph
of the grid structures. Intuitively, the required number of SWAP gates will be less when qubits have more
neighbors to interact with freely. We prove that this intuition is indeed correct.

First, we introduce a few definitions in order to formulate the problem formally in the settings of two- and
three-dimensional grid architectures. Then, we remark on observations and we state four theorems that
relate the optimal objective value of the NNC problem on a linear array with those of the NNC problem on
the grids. Finally, we discuss the literature that already addresses the NNC problem in the context of grid
architectures.

6.1. Nearest Neighbor Compliance on a two-dimensional grid
The new grid architectures extend the meaning of nearest neighbors to the higher-dimensional case. Qubits
can, in this setting, interact with neighbors in multiple directions. Therefore, the number of connections each
qubit has, increases.

Some definitions are introduced. Denote the set Q of n qubits as the set of integers Q = {1, . . . ,n}. The qubits
all have one physical location in a two-dimensional n1×n2 grid of at least n locations, the locations are given
coordinates L = ((1,1), . . . , (n1,n2)). If the number of qubits is not divisible by n1 and n2, auxiliary qubits are
added to fill up the grid. The resulting set of qubits is denoted by Q∗. For example, if we have a set of three
qubits Q = {1,2,3} and a 2×2 grid, a fourth qubit is added to fill up the remaining location. We then obtain
Q∗ = {1,2,3,4}. Note that there will be no gates applied to these auxiliary qubits. We start with the coupling
graph in this setting.

The definition of a qubit order in this context is

Definition 6.1. A qubit order τ : L → L, τ ∈ Sn is a permutation on the locations. We call τt the qubit order
before gate g t .

Changing a qubit order is now possible in more ways since qubits have more neighbors in a grid as opposed
to a linear array. The SWAP gate can still interchange two adjacent qubits.

Definition 6.2. A SWAP gate is a permutation τ ∈Sn on the locations, τ : L → L, that has the form

τ= (i j ), i , j ∈ L (6.1)

such that ‖i − j‖1 = 1. Here, ‖ ·‖1 denotes the usual 1-norm.
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Figure 6.1: The coupling graph for a two-dimensional grid qubit architecture. There is one node for each location. All the nodes, except
for those in a corner or on the edge of the architecture, have degree 4.

Notice that this exactly coincides with the adjacency of the coupling graph in Figure 6.1. The definitions of
quantum gates, gate sequences, quantum circuits and nearest neighbor compliance for gates and circuits
are exactly the same as in Chapter 3. In inherent difficulty of counting the number of SWAP gates that are
needed to change one qubit order into another in the setting of a two-dimensional grid, is the lack of an
easily calculable Kendall tau-like metric. For now, we will simply call J (τ1,τ2) the number of SWAP gates that
are needed to change τ1 to τ2, without providing a manner in which to calculate J . We remark that J is a
metric on the qubit orders.

Now that all these concepts have been formalized, we can continue with defining the problem of NNC.

NEAREST NEIGHBOR COMPLIANCE PROBLEM (2D GRID)

Input: A quantum circuit Γ = (Q,G) with |Q| = n qubits and |G| = m gates, locations L on a n1 ×n2

grid, and an integer k ∈Z≥0.

Question: Do there exist qubit orders τt , t ∈ [m], one before each gate of QC , such that the sum of the re-
quired number of SWAP gates J between consecutive qubit orders satisfies

∑m−1
t=1 J (τt ,τt+1) ≤

k and such that the quantum circuit complies with the NN constraints?

In the minimization version of the problem, which we model in the next Chapter, we seek to find the smallest
integer k such that Problem 1 is still answered affirmatively. Considering the problem in this way, we still do
not require the qubits to end up in the same qubit order as they started out in, nor do we allow for changes in
the gate sequence.

We shed some light on the newly defined setting, by making use of the following example:

Example 6.3. To see the translation of a circuit embedded on a linear array to a two dimensional grid, we
use the following illustrations. First, the circuit that does not comply with the nearest neighbor constraints,
in both architectures.

The circuits require the insertion of SWAP gates in order to comply with the NN constraints. Next, we present
a feasible solution to the NNC problem for both architectures. Note that these solutions are not optimal, the
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Figure 6.2: A quantum circuit consisting of four qubits and four gates. The gates do not comply with the nearest neighbor constraints.
The circuit is embedded on a linear array (top) and on a two-dimensional grid (bottom).

qubit order can still be adjusted such that the first SWAP gate, g1, can be left out.

6.2. Nearest Neighbor Compliance on a three-dimensional grid
Only a few changes are required to modify the problem such that it applies to the three-dimensional grid
architecture. The qubits now all have one physical location in a three-dimensional n1 ×n2 ×n3 of at least n
locations which are given the coordinates L = ((1,1,1), . . . , (n1,n2,n3)). Once again, auxiliary qubits are added
to fill the grid if n1n2n3 6= n. The definitions in the previous section naturally extend to the case of the three-
dimensional grid.

NEAREST NEIGHBOR COMPLIANCE PROBLEM (3D GRID)

Input: A quantum circuit Γ= (Q,G) with |Q| = n qubits and |G| = m gates, locations on a n1×n2×n3

grid, and an integer k ∈Z≥0.

Question: Do there exist qubit orders τt , t ∈ [m], one before each gate of QC , such that the sum of the re-
quired number of SWAP gates J between consecutive qubit orders satisfies

∑m−1
t=1 J (τt ,τt+1) ≤

k and such that the quantum circuit complies with the NN constraints?

6.3. Observations and claims
In this section we would like to point out some observations regarding the NNC problem. We relate the prob-
lems for architectures to each other, and provide the reader with some insights. Let I be an instance of the
NNC problem and let OPT1D(I ), OPT2D(I ) and OPT3D(I ) be the optimal objective value to the correspond-
ing minimization version of the NNC problem in the setting of the linear array, the 2D grid and the 3D grid,
respectively.

Intuitively, it seems like an optimal embedding of the qubits on a 2D or 3D grid should require less (or at least
not more) SWAP operations than on a linear array. To show this is actually the case for any grid sizes and any
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Figure 6.3: A feasible solution to the instance in Figure 6.2 for both architectures. The embedding on the linear array (top) has ten gates,
of which six are SWAP gates. The embedding on the two-dimensional grid has six gates of which two are SWAP gates. Neither of the
implementations of the circuit correspond to optimal solutions of the corresponding NNC problems.

quantum circuit, we prove the following theorem.

Theorem 6.4. For any fixed instance I of the NNC minimization problem, with any dimensions of the 2D grid,
the optimal value of the NNC problem on a linear array is an upper bound for the optimal value of the NNC
problem on a two-dimensional grid,

OPT1D(I ) ≥OPT2D(I ). (6.2)

Proof. We show that every feasible solution of the NNC problem on a linear array can be mapped to a feasible
solution of the NNC problem on a 2D grid and that the solution of the 2D grid has at most the same objective
value as the solution the the problem on the linear array. First we make the observation that a qubit order on
a linear array can be embedded onto the 2D grid in a snake-like pattern. For an n1 ×n2 grid where n1n2 ≥ n,
let f : L1D → L2D be a mapping from the locations on the linear array to those on the 2D grid. We construct f
as

f : x 7→


(
((x −1) mod n1)+1,

⌈
x

n1

⌉)
if d x

n1
e is odd(

n1 − ((x −1) mod n1) ,
⌈

x
n1

⌉)
if d x

n1
e is even.

(6.3)

Here mod denotes the modulo function. Figure 7.1 clarifies the mapping. For any two adjacent locations
x−1, x ∈ L1D in the linear array, the reader can check that ‖ f (x−1)− f (x)‖1 = 1, so the corresponding locations
on the 2D grid are also adjacent. Let x1 be a sequence of qubit orders for the NNC problem on the linear array.
For every qubit order τt of x1, construct a qubit order f (τt ) where f is applied on each location. Note that
this results in a sequence of qubit orders x2 on the 2D grid. Also note that x2 is a feasible solution to the NNC
minimization problem on the 2D grid.

We pause for the following intermediate result

Lemma 6.5. Let τ1,τ2 be two qubit orders as defined in Chapter 3. Let f be defined as in Equation 6.3. For
any qubit order τ in the linear array setting, let f (τ) be a qubit order in the 2D grid setting by applying f to
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each location. The number of required SWAP gates to change τ1 to τ2 is at least as much as the number of
SWAP gates required to change f (τ1) to f (τ2), i.e.

I (τ1,τ2) ≥ J ( f (τ1), f (τ2)). (6.4)

Proof. Let us be given a minimal sequence of SWAP operations in the setting of the linear array which trans-
forms τ1 into τ2, we generate a sequence of SWAP operations for the 2D grid that transforms f (τ1) into f (τ2).
For each SWAP operation in the sequence that exchanges the qubits on locations l1, l2, apply a SWAP opera-
tion to the qubits located at f (l1), f (l2) in the 2D grid setting. This sequence of SWAP operations transforms
f (τ1) into f (τ2) and uses the same number of SWAP operations as in the case for the linear array.

Continuing, by the lemma we find that the number of required SWAP operations on the linear array is at
least as much as the number of required SWAP gates in the 2D grid setting. This in turn means that for every
feasible solution of the NNC minimization problem on the linear array, there exists a feasible solution with at
most the same objective value for the NNC minimization problem on the 2D grid.

1

2

3

4

5

6

(1,1)=f(1)

(1,2)=f(4)

(1,3)=f(5)

(2,1)=f(2)

(2,2)=f(3)

(2,3)=f(6)

f

Figure 6.4: An illustration of the mapping f that relates every location on the linear array on the left to a location on the 2D grid on the
right. Pairs of adjacent locations in the linear array are mapped onto adjacent locations in the 2D grid. In this case n = 6 locations are
present, a 2×3 grid is used.

Theorem 6.6. For a fixed instance I of the NNC problem, for all possible dimensions of the 3D grid, the optimal
value of the NNC problem on a linear array is an upper bound for the optimal value of the NNC problem on a
three-dimensional grid,

OPT1D(I ) ≥OPT3D(I ). (6.5)

The proof is analogous to the proof of Theorem 6.4 where the snake-like mapping is now extended to a 3D
grid. Explicitly giving the mapping would not result in an increased understanding of the proof, the entire
proof is therefore omitted. Solving the NNC problem in the setting of a linear array qubit architecture thus
provides a feasible solution to the NNC problem for the two-dimensional and three-dimensional cases. In
the two-dimensional case, the mapping is given in the proof of Theorem 6.4. For the three-dimensional case,
the mapping extends naturally from the two-dimensional case.

Theorem 6.7. For a fixed instance I of the NNC problem, if at least one of the dimensions of the grids of the
two-dimensional grid corresponds with one of the dimensions of the three-dimensional grid, then the optimal
value of the NNC problem on a two-dimensional grid is an upper bound for the optimal value of the NNC
problem on a three-dimensional grid. So for grids n1 ×n2 and N1 ×N2 ×N3,

∃(i , j ) ∈ {1,2}× {1,2,3} s.t. ni = N j =⇒ OPT2D(I ) ≥OPT3D(I ). (6.6)

Once again, the proof is analogous to that of Theorem 6.4, where now the dimension in which the grids have
the same size extend the 1D and 2D grids to the 2D and 3D grids respectively.
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Theorem 6.8. Let I be an instance of the NNC problem with n = 3 qubits. The optimal value of the NNC
problem on a linear array is then equal to that of the NNC problem on any grid.

Proof. Notice that we are in either of the following two disjoint scenarios:

1. The grid is a linear array.

2. The grid contains a 2×2 grid of locations.

If the grid is a linear array we are done. If the grid contains a 2×2 grid, we show that an embedding of the
qubits on the 2×2 grid is no better than the embedding on the linear array. It is clear that if qubits are placed
further away from each other throughout the circuit, a solution cannot get any better than the embedding on
the 2×2 grid.

From each qubit order on the 2×2 grid, two of the three pairs {{q1, q2}, {q1, q3}, {q2, q3}} of qubits are adjacent.
Using one SWAP gate, every other combination of two pairs can be made adjacent in the next qubit order.
This can, however, also be done in the case of the linear array.

6.4. Literature review
In this section we review the literature that has already examined the NNC problem on grid architectures.
Most of the research is focused on two-dimensional grid architectures.

The authors of [54] consider a two-dimensional grid and solve the problem with an exact method for small
instances, using Pseudo-Boolean Optimization. The size of the model they use experiences factorial scaling
in the number of qubits for both the number of variables and the number of constraints. Their benchmarks
are taken from the online library Revlib [80].

A Harmony-search heuristic algorithm is used in [2]. Harmony-search is a meta heuristic that balances factors
such as randomness, experience and variation in the search. Their heuristic can quickly evaluate huge circuits
of, for example, 16 qubits and almost 19.000 quantum gates. Their algorithm finds better results than the
iterative look-ahead method proposed in [83], and similar results to the joint look-ahead method from the
same paper.

The authors of [7] take a novel approach. Their heuristic method proposed consists of three stages. In the first
stage they gather and summarize information about each qubit’s interactions, in the second stage they place
the qubits on a two-dimensional grid, and in the third stage, SWAP gates are inserted where needed. The
method has similar results to the two-stage priority stack method of [72], where first an initial placement of
the qubits is determined using the number of interactions to determine the order in which qubits are placed,
and second, the required SWAP gates are inserted. Both of these methods outperform the global reordering
take on the problem, which is presented in [70]. In their work, an initial placement of the qubits is optimized,
and necessary deviations from the initial placement are covered by inserting SWAP gates, after which more
SWAP gates are inserted to return to the initial placement.

The total number of quantum gates in a circuit is minimized in [22]. They map the problem to a boolean
satisfiability problem and use a solver that performs an exhaustive search. The method scales poorly for
larger circuits. They circumvent the huge search space that a large circuit would bring, by optimizing sub-
circuits. Doing so, their algorithm outperforms the harmony-search method discussed in [2] on circuits of up
to ten qubits and 76 quantum gates.

The authors of [33] utilize the fact that under specific commutation conditions, the gate sequence can be
changed. They explore different gate orders and divide the circuit into sub-circuits such that SWAP gates
are not required inside the sub-circuit. Then they use the A∗ algorithm to connect the qubit orders from
consecutive sub-circuits with as few SWAP gates as possible. Due to their unorthodox benchmark instances,
the method has only been compared to the PAQCS method [52], which it outperforms easily.

A look-ahead heuristic is presented in [49]. Here, weights are assigned to gates, the earlier in the sequence
a gate is, the higher its weight. Then, a global reordering technique is used to find a good initial placement
of the qubits. To accommodate for deviations in the initial placements, a random sequence of SWAP gates is
chosen such that a specific qubit order is attained. The main advantage of the method is its running time, as
it can handle circuits of up to 97 qubits and 300 quantum gates, or ten qubits and just over 130.000 quantum
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gates. This method, similar to the PAQCS method and the method of [33], get outperformed by the method
proposed in [27]. There, the authors combine a spectral clustering algorithm and graph theory, both suit-
able for very large scale networks (in this case of up to 39 qubits and almost 170.000 quantum gates or 161
qubits and 50.000 quantum gates), to construct a three-stage algorithm. In the first stage, a priority queue is
constructed by using the entries of the eigenvector corresponding to the second smallest eigenvalue of the
Laplacian matrix of the interaction graph. In the second stage, qubits are placed on a three-dimensional grid
considering both the qubits that are already placed and those that still need to be placed. In the third stage,
a look-ahead method is used to determine a routing procedure, inserting SWAP gates where necessary. This
final method seems to be the most effective heuristic in literature to date.





7
ILP Formulations on the Grid

Now we have defined of the NNC problem in the context where qubits are placed on a two-dimensional or
three-dimensional grid. The main advantage of this viewpoint is that in grid architectures, the qubits have
more connections to neighboring qubits. As we saw in the previous chapter, the optimal objective value in
the case of a grid is always at least as good as the optimal objective value when considering the linear array
as qubit architecture. Since the main goal of this work is to minimize the overhead, we analyze the grid
architectures in this chapter. Even though the objective value is at least as good as in the case of the linear
array, it might be much harder to get to the optimal solution when considering two- and three-dimensional
grids. To solve the nearest neighbor compliance problem where qubits are placed on a grid instead of a linear
array, we return to the technique of integer linear programming.

7.1. Two-dimensional grid model
In the case where qubits are placed on a linear array, we were able to count the number of required SWAP
gates when adjusting a qubit order implicitly, through the use of big-M constraints. There, we implicitly
calculated the Kendall tau distance for permutations. In this case, however, where the qubits are placed on a
two-dimensional grid, such a simple way of counting the number of required SWAP gates is not available.

We will still subdivide the circuit into time steps. Note that the total number of SWAP gates that acts on any
fixed qubit between two gates is at most n −1, since a pair of qubits never have to be swapped a second time
before the next gate is applied (in that case, both swaps could be left out to get the same result). This means
that the total number of SWAP gates that are required to convert any qubit order into any other qubit order

is at most γ := n2−n
2 , avoiding double counts. We will therefore introduce γ time steps in between every two

consecutive gates. In each time step, only one pair of adjacent qubits is allowed to SWAP once. As before, we
let [x] := (1, . . . , x)

7.1.1. Decision variables
First, we consider the variables. In order to keep track of the location of each qubit, binary variables x are
introduced.

x t
i uv =

{
1 if qubit i is at position (u, v) at time t

0 else.
(7.1)

We also introduce binary variables U and V in order to know whether a qubit has swapped position since the
last gate was applied. Since there are now two directions qubits can be swapped in, two variables are needed
to keep track of the changes. For SWAP gates between qubits that are neighbors vertically we introduce vari-
ables U ,

U t
i =

{
1 if qubit i is swapped vertically at time t

0 else,
(7.2)

51
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while for SWAP gates between horizontal neighboring qubits the variables V are used

V t
i =

{
1 if qubit i is swapped horizontally at time t

0 else.
(7.3)

In the next section we will introduce the constraints that these variables have to satisfy.

7.1.2. Constraints
In this section the constraints that are required for the ILP formulation are presented and explained. We will
come across permutation constraints, SWAP counting constraints and gate adjacency constraints.

First up are the permutation constraints. Since every qubit has to be at a location at every time step, we
introduce the following constraints. ∑

(u,v)∈L
x t

i uv = 1 ∀i ∈Q∗, t ∈ [γm] (7.4)

There can at most be one qubit at a location at a time. We, however, introduce dummy qubits on which no
gate operations are applied to fill up all of the locations. The binary variables x must abide∑

i∈Q∗
x t

i uv = 1 ∀(u, v) ∈ L, t ∈ [γm]. (7.5)

The qubits are restricted in their movement through the grid in such a way that only two of the qubits can
interchange positions once with an adjacent qubit (each other).

To keep track of vertical movement, changes in x are related to the variables U

∑
(u,v)∈L

u
(
x t

i uv −x t+1
i uv

)≤U t
i ∀i ∈Q∗, t ∈ [γm] (7.6)∑

(u,v)∈L
u

(
x t

i uv −x t+1
i uv

)≥−U t
i ∀i ∈Q∗, t ∈ [γm] (7.7)

and for horizontal movement the variables V are used.∑
(u,v)∈L

v
(
x t

i uv −x t+1
i uv

)≤V t
i ∀i ∈Q∗, t ∈ [γm] (7.8)∑

(u,v)∈L
v

(
x t

i uv −x t+1
i uv

)≥−V t
i ∀i ∈Q∗, t ∈ [γm] (7.9)

There is a problem with allowing all of the combinations of these movements. This is demonstrated in the
following example.

Example 7.1. Let a grid of size 2×2 be given, with four qubits. If we start with any qubit order and want to
rotate every qubit one position clockwise, we need three SWAP gates to do so (SWAP one qubit in counter-
clockwise direction three times). If we, however, count SWAP gates as is allowed by Equation 7.26, we can
simply “move" all qubits clockwise one time. This results in 4 of the U and V variables to become 1, which
corresponds with a cost of only 2.

(1,1)

(1,2)

(2,1)

(2,2)

(1,1)

(1,2)

(2,1)

(2,2)

1st

2nd

3rd

Figure 7.1: On the right: the phenomenon described in the example. The qubits all change position by moving at the same time. They
obey the permutation constraints as well as the movement constraints. The situation is however not allowed since moving qubits re-
quires the use of a SWAP gate, which does not operate in this way. On the left: the SWAP gates that are required to effectively rotate all
qubits one spot. The sequence of the SWAPs is indicated by the edge labels.
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To exclude the phenomenon in the example from occurring, we introduce the limitation∑
i∈Q∗

U t
i +V t

i ≤ 2 ∀t ∈ [γm], (7.10)

which makes sure that the operations that we count using the U and V variables are actually SWAP gates.

The gate adjacency constraints are up next. They limit the possible qubit orders when a gate is applied such
that the gate always acts on qubits that are adjacent. Note that a qubit now has four neighbors (if it is not on
the edge).

xγt
i (u−1)v +xγt

i (u+1)v +xγt
i u(v−1) +xγt

i u(v+1) ≥ xγt
j uv ∀g t

i j ∈G , (u, v) ∈ L (7.11)

Terms corresponding to non-existent locations can simply be omitted form the constraint.

7.1.3. Objective function
The objective function is defined such that it counts every time when two qubits are swapped. Minimizing
the objective function therefore minimizes the movement of the qubits, in particular the number of SWAP
gates that are used throughout the circuit. Every SWAP gate results in the movement of two qubits, therefore
only half of the changes in position are counted in the objective function. The goal is formally

min
∑

i∈Q∗

∑
t∈[γm]

U t
i +V t

i (7.12)

Notice that this objective function is closely related to the objective function of the one dimensional case.
The differences are simply the increase in the number of time steps and counting the movement in the extra
dimension.

7.1.4. ILP formulation
Collecting the variables, constraints and objective function into one ILP, we obtain the following program:

minimize
∑

i∈Q∗

∑
t∈[γm]

U t
i +V t

i

subject to
∑

(u,v)∈L
x t

i uv = 1 ∀i ∈Q∗, t ∈ [γm]∑
i∈Q∗

x t
i uv = 1 ∀(u, v) ∈ L, t ∈ [γm]∑

(u,l )∈L
u

(
x t

i uv −x t+1
i uv

)≤U t
i ∀i ∈Q∗, t ∈ [γm]∑

(u,l )∈L
u

(
x t

i uv −x t+1
i uv

)≥−U t
i ∀i ∈Q∗, t ∈ [γm]∑

(u,l )∈L
v

(
x t

i uv −x t+1
i uv

)≤V t
i ∀i ∈Q∗, t ∈ [γm]∑

(u,l )∈L
v

(
x t

i uv −x t+1
i uv

)≥−V t
i ∀i ∈Q∗, t ∈ [n2m]∑

i∈Q∗
U t

i +V t
i ≤ 2 ∀t ∈ [γm]

xγt
i (u−1)v +xγt

i (u+1)v +xγt
i u(v−1) +xγt

i u(v+1) ≥ xγt
j uv ∀g t

i j ∈G , (u, v) ∈ L

x t
i uv ∈ {0,1} ∀i ∈Q, (u, v) ∈ L, t ∈ [γm]

U t
i ∈ {0,1} ∀i ∈Q, t ∈ [γm]

V t
i ∈ {0,1} ∀i ∈Q, t ∈ [γm].

(7.13)

7.1.5. Model size
The ILP model contains substantially more variables and constraints than was the case for the linear array
qubit architecture. The number of variables is

#variables = n4 −n3

2
m +2n3m. (7.14)
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The number of constraints is
#constraints = 3m(n3 −n2)+nm. (7.15)

Clearly, the size of the model grows faster than was the case for the ILP model of Chapter 5, where the number
of variables and the number of constraints only scaled as O (n2m).

7.2. Three-dimensional grid model
Now that the ILP model for the two-dimensional grid has been established, we turn our focus to the case
in which qubits are placed on a three-dimensional grid. In a three-dimensional grid, the connectivity of the
qubits is even more promising than is the case in the two-dimensional grid. The model in the previous section
extends naturally to encompass a higher dimension.

As usual, we model the problem for a quantum circuit with n qubits and m quantum gates. The locations,
now described by three variables, are denoted by coordinates (u, v, w) ∈ L. Similar to the previous chapter, we
use γm time steps to model the problem, where only one SWAP gate is allowed per time step.

7.2.1. Decision variables
The variables in this model will, once more, all be binary. We start out with declaring variables x t

i uv w that
keep track of a qubit’s location (u, v, w).

x t
i uv w =

{
1 if qubit i is at location (u, v, w) at time t

0 else.
(7.16)

In order to keep track of qubits’ movement in all three dimensions, we introduce binary variables for each
qubit and each time step. Counting qubit location changes in the first dimension is identified by making use
of the variables U t

i .

U t
i =

{
1 if qubit i is swapped with a qubit that has a different first coordinate at time t

0 else.
(7.17)

In order to identify a change in a qubit’s location related to movement in the second dimension, the variables
V t

i are used:

V t
i =

{
1 if qubit i is swapped with a qubit that has a different second coordinate at time t

0 else.
(7.18)

Analogous to the U t
i and V t

i variables, a change in a qubit’s location related to the third dimension is captured
with variables W t

i :

W t
i =

{
1 if qubit i is swapped with a qubit that has a different third coordinate at time t

0 else.
(7.19)

We next introduce the constraints that are required to enforce the above definitions.

7.2.2. Constraints
In this section the constraints that are required for the ILP formulation are presented and explained. We will
come across permutation constraints, SWAP counting constraints and gate adjacency constraints.

First up are the permutation constraints. Since every qubit has to be at a location at every time step, we
introduce the following constraints.

∑
(u,v,w)∈L

x t
i uv w = 1 ∀i ∈Q∗, t ∈ [γm] (7.20)

There can at most be one qubit at a location at a time. Following the example of the model for the two-
dimensional grid, we introduce dummy qubits on which no gate operations are applied to fill up all of the
locations. The binary variables x must abide
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∑
i∈Q∗

x t
i uv w = 1 ∀(u, v, w) ∈ L, t ∈ [γm]. (7.21)

The qubits are restricted in their movement through the grid in such a way that only two of the qubits can
interchange positions once with an adjacent qubit (each other).

To keep track of movement in the first dimension, changes in x are related to the variables U ,∑
(u,v,w)∈L

u
(
x t

i uv w −x t+1
i uv w

)≤U t
i ∀i ∈Q∗, t ∈ [γm] (7.22)∑

(u,v,w)∈L
u

(
x t

i uv w −x t+1
i uv w

)≥−U t
i ∀i ∈Q∗, t ∈ [γm]. (7.23)

For movement in the second dimension, the variables V are used,

∑
(u,v,w)∈L

v
(
x t

i uv w −x t+1
i uv w

)≤V t
i ∀i ∈Q∗, t ∈ [γm] (7.24)∑

(u,v,w)∈L
v

(
x t

i uv w −x t+1
i uv w

)≥−V t
i ∀i ∈Q∗, t ∈ [γm]. (7.25)

Finally, for movement in the third dimension, the variables V are used,∑
(u,v,w)∈L

w
(
x t

i uv w −x t+1
i uv w

)≤W t
i ∀i ∈Q∗, t ∈ [γm] (7.26)∑

(u,v,w)∈L
w

(
x t

i uv w −x t+1
i uv w

)≥−W t
i ∀i ∈Q∗, t ∈ [γm]. (7.27)

We limit the movement of the qubits in such a way that only two qubits can move in such a way that they
interchange their respective positions.

∑
i∈Q∗

U t
i +V t

i +W t
i ≤ 2 ∀t ∈ [γm], (7.28)

which makes sure that the operations that we count using the U , V and W variables are actually SWAP gates.

The gate adjacency constraints are up next. They limit the possible qubit orders when a gate is applied such
that the gate always acts on qubits that are adjacent to each other. Note that a qubit now has six neighbors (if
it is not on an edge or in a corner of the grid).

xγt
i (u−1)v w +xγt

i (u+1)v w +xγt
i u(v−1)w +xγt

i u(v+1)w +xγt
i uv(w−1 +xγt

i uv(w+1) ≥ xγt
j uv w ∀g t

i j ∈G , (u, v, w) ∈ L (7.29)

If a subscript refers to a non-existent location, the corresponding variable is left out of the constraint or,
equivalently, set to zero.

7.2.3. Objective function
The objective is to minimize the movement of the qubits, in particular the number of SWAP gates that are
used throughout the circuit. Every SWAP gate consists of the movement of two qubits, therefore only half of
the changes in position are counted in the objective function. The goal is formally

min
∑

i∈Q∗

∑
t∈[γm]

U t
i +V t

i +W t
i (7.30)
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7.2.4. ILP formulation
Collecting the variables, constraints and objective function into one ILP, we obtain a complete ILP model for
the NNC problem on a two-dimensional grid:

minimize
∑

i∈Q∗

∑
t∈[γm]

U t
i +V t

i +W t
i

subject to
∑

(u,v,w)∈L
x t

i uv w = 1 ∀i ∈Q∗, t ∈ [γm]∑
i∈Q∗

x t
i uv w = 1 ∀(u, v, w) ∈ L, t ∈ [γm]∑

(u,v,w)∈L
u

(
x t

i uv w −x t+1
i uv w

)≤U t
i ∀i ∈Q∗, t ∈ [γm]∑

(u,v,w)∈L
u

(
x t

i uv w −x t+1
i uv w

)≥−U t
i ∀i ∈Q∗, t ∈ [γm]∑

(u,v,w)∈L
v

(
x t

i uv w −x t+1
i uv w

)≤V t
i ∀i ∈Q∗, t ∈ [γm]∑

(u,v,w)∈L
v

(
x t

i uv w −x t+1
i uv w

)≥−V t
i ∀i ∈Q∗, t ∈ [γm]∑

(u,v,w)∈L
w

(
x t

i uv w −x t+1
i uv w

)≤W t
i ∀i ∈Q∗, t ∈ [γm]∑

(u,v,w)∈L
w

(
x t

i uv w −x t+1
i uv w

)≥−W t
i ∀i ∈Q∗, t ∈ [γm]∑

i∈Q∗
U t

i +V t
i +W t

i ≤ 2 ∀t ∈ [γm]

xγt
i (u−1)v w +xγt

i (u+1)v w +xγt
i u(v−1)w +xγt

i u(v+1)w +xγt
i uv(w−1) +xγt

i uv(w+1) ≥ xγt
j uv w ∀g t

i j ∈G , (u, v, w) ∈ L

x t
i uv w ∈ {0,1} ∀i ∈Q∗, (u, v, w) ∈ L, t ∈ [γm]

U t
i ∈ {0,1} ∀i ∈Q∗, t ∈ [γm]

V t
i ∈ {0,1} ∀i ∈Q∗, t ∈ [γm]

W t
i ∈ {0,1} ∀i ∈Q∗, t ∈ [γm].

(7.31)

7.2.5. Model size
The size of this model scales once again polynomially in the number of qubits and quantum gates. The
number of variables in this model is

#variables = n4 −n3

2
m +3n3m. (7.32)

The number of constraints in the model is

#constraints = 4n3m −2n2m +nm. (7.33)

Notice that the smallest three-dimensional grid is of size 2×2×2. This can already accommodate for eight
qubits. In practice, this will result in too many variables and constraints already.



8
Experimental Results and Discussion

The integer linear programming models that were introduced in Chapters 5 and 7, model the NNC problem in
the cases of a linear array, the two-dimensional grid, and the three-dimensional grid. The former two of those
models are used to find exact solutions to 131 benchmark instances. The size of the formulation that models
the NNC problem on a three-dimensional grid scales too rapidly to evaluate any benchmark instances. Note
that a quantum circuit can only make use of the third dimension if we consider eight or more qubits.

In this chapter, the exact solutions provided by the proposed models are compared to the previous best exact
approaches in terms of instance size they can cope with, as well as state-of-the-art heuristic approaches in
terms of attained objective value.

The mathematical models, as described in previous chapters, have been implemented in Python and solved
with the commercial solver CPLEX 12.7 through the Python API1. All but the Quantum Fourier Transform
(QFT) instances2, which were constructed following the circuit of [63], were obtained form the RevLib [80]
website. The evaluations were conducted using up to 16 threads of 2.4 GHz each, working with 16 GB of RAM
in total. Optimal solutions were acquired for all of the evaluated instances.

8.1. Results: Linear array
The benchmark instances are divided over four tables, according to the number of qubits in the addressed
quantum circuit. In the first column of each table, the name of the circuit is provided, in the second column,
n denotes the number of qubits in the circuit. In the third column, |G| denotes the number of two-qubit gates
present in the circuit after gate decomposition and after the removal of single-qubit gates. The optimal value
of the local reordering problem, i.e., the minimum number of SWAP gates needed to make the circuit nearest
neighbor compliant, is provided in the fourth column. The column “Time” denotes the running time of our
approach, in seconds. The column titled “Time E” denotes the running time of other exact methods, also
in seconds. Exact running times with subscript a are from [82], subscript b from [57]. The objective value
of heuristically determined solutions are presented in the last column, denoted by “# SWAPS H”. Here, the
subscript c indicates the results are from [49], subscript d from [69], subscript e from [1], subscript f from
[48], subscript g from [83], and subscript h from [7]. An asterisk as superscript indicates that for the other
exact solution methods, either the objective value differs, or the number of gates differs or they both differ.
For the heuristic results, the asterisk indicates that the number of gates differs or the objective value of the
heuristic is lower than that of the proposed exact method. These anomalies are believed to have their roots
in differing gate decomposition methods, resulting in slightly different instances.

The running time that is required to solve an instance depends heavily on three factors:

1. The number of qubits in the quantum circuit,

2. The number of gates in the quantum circuit,

1See: https://www.ibm.com/analytics/cplex-optimizer
2The nearest neighbor compliant circuit that resulted from evaluating the QFT circuit on five qubits, is showcased on the frontpage of

this work.
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3. The minimal number of required SWAP gates.

The number of qubits and gates is expected to influence the running time heavily. The number of qubits is
the term that influences the run time the most. This is due to the fact that the number of feasible solutions
scales factorially in the number of qubits. Surprisingly, the run time also scales quite badly with the number
of required SWAP gates. During the Branch & Bound tree search, the upper bound determined by CPLEX,
which is the best feasible solution found up to that point, converges to the optimal value (or close to it) rather
quickly. The best known lower bound, however, takes a long time to improve. When the number of required
SWAP gates increases, the time that is needed to improve the lower bound all the way to the optimal value
increases as well. This phenomenon is analyzed for two of the benchmark instances that require a lot of SWAP
gates:

1. mod8-10_177 The search method found a feasible solution with an objective value within 10% of the
optimal value in 2.4 ·106 iterations, found an optimal solution in 4.0 ·107 iterations, and proved opti-
mality by finding a matching lower bound after 1.7 · 108 iterations. Completing the search took 3650
seconds.

2. decod24-enable_126 The search method found a feasible solution with an objective value within 10%
of the optimal value in 5.3 ·106 iterations, found an optimal solution in 1.0 ·107 iterations, and proved
optimality by finding a matching lower bound after 5.8·107 iterations. Completing the search took 1954
seconds.

If a 10% optimality gap would suffice, only less than 2% of the total number of iterations would be needed in
the first case, and 10% in the second case. This observation indicates that running an incomplete Branch &
Bound algorithm might be an interesting and easy-to-implement heuristic algorithm.

The 131 evaluated benchmark instances are listed in the Tables 8.1, 8.2, 8.3 and 8.4. The improvement in
computation time with respect to previous exact methods is significant. The results show exact solutions that
are obtained for much larger circuits than previously held possible. The largest instance with respect to the
number of qubits has as much as 18 qubits. Furthermore, for the first time, NNC has been solved to optimality
for circuits with more than 100 quantum gates.
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Table 8.1: Benchmark instances with three or four qubits, evaluated on a linear array.

Benchmark n |G| # SWAPS Time Time E # SWAPS H

QFT_QFT3 3 3 1 0.02 - -
peres_10 3 4 1 0.14 0.1a -
peres_8 3 4 1 0.06 0.1a -
toffoli_2 3 5 1 0.12 0.2a -
toffoli_1 3 5 1 0.1 0.1a -
peres_9 3 6 1 0.02 2463a -
fredkin_7 3 7 1 0.16 - -
ex-1_166 3 7 2 0.08 0.1a -
fredkin_5 3 7 1 0.15 0.1a ,0.1∗b -
ham3_103 3 8 2 0.04 - -
miller_12 3 8 2 0.14 745.6a ,0.1b -
ham3_102 3 9 1 0.05 0.1∗a -
3_17_15 3 9 2 0.04 630.2a ,0.1∗b -
3_17_13 3 13 3 0.12 0.1∗a 4∗c ,4d ,3e ,6g ,6h

3_17_14 3 13 3 0.15 0.1∗a -
fredkin_6 3 15 3 0.06 4.6a -
miller_11 3 17 4 0.15 0.1∗a -
QFT_QFT4 4 6 3 0.17 - -
toffoli_double_3 4 7 1 0.11 0.9a ,0.1∗b -
rd32-v1_69 4 8 2 0.16 0.1a -
decod24-v1_42 4 8 2 0.12 7.7a ,0.1∗b -
rd32-v0_67 4 8 2 0.07 1.6a 2c ,2d ,4h

decod24-v2_44 4 8 3 0.07 0.1∗b -
decod24-v0_40 4 8 3 0.06 0.1∗b -
decod24-v3_46 4 9 3 0.09 0.1a ,0.1∗b 3c ,3d

toffoli_double_4 4 10 2 0.07 2002
a -

rd32-v1_68 4 12 3 0.24 0.4∗a -
rd32-v0_66 4 12 0 0.09 0.4∗a -
decod24-v0_39 4 15 5 0.53 0.5a -
decod24-v2_43 4 16 5 0.23 0.1∗a -
decod24-v0_38 4 17 4 0.57 19.2a -
decod24-v1_41 4 21 7 0.5 - -
hwb4_52 4 23 8 0.97 - 9c ,10d ,9e ,9 f ,9h

aj-e11_168 4 29 12 5.36 - -
4_49_17 4 30 12 6.1 - 12∗c ,12d ,16e ,15∗h
decod24-v3_45 4 32 13 6.25 - -
mod10_176 4 42 15 7.94 - -
aj-e11_165 4 44 18 9.36 - 36d ,33∗g ,33∗h
mod10_171 4 57 24 27.18 - -
4_49_16 4 59 22 24.23 - -
mini-alu_167 4 62 27 23.7 - -
hwb4_50 4 63 23 17.61 - -
hwb4_49 4 65 23 21.64 - -
hwb4_51 4 75 28 75.09 - -
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Table 8.2: Benchmarks with five qubits, evaluated on a linear array.

Benchmark n |G| # SWAPS Time Time E # SWAPS H

4mod5-v1_25 5 7 1 0.26 11705.3a -
4gt11_84 5 7 1 0.06 16.6a 1c ,1d ,1e ,4h

4gt11-v1_85 5 7 1 0.09 - -
4mod5-v0_20 5 8 2 0.08 45.5a -
4mod5-v1_22 5 9 1 0.08 548.8∗a -
QFT_QFT5 5 10 6 0.41 1.6a 7c ,6d

mod5d1_63 5 11 2 0.12 - -
4mod5-v0_19 5 12 3 0.84 55.3∗a -
4gt11_83 5 12 3 0.15 9∗a -
4mod5-v1_24 5 12 3 0.28 - -
mod5mils_65 5 12 4 0.26 - -
mod5mils_71 5 12 2 0.15 - -
alu-v2_33 5 13 4 0.45 - -
alu-v1_29 5 13 4 0.61 - -
alu-v0_27 5 13 4 0.48 - -
mod5d2_70 5 14 5 0.43 - -
alu-v3_35 5 14 5 0.38 - -
alu-v4_37 5 14 5 0.37 - -
alu-v1_28 5 14 4 0.26 - -
4gt13-v1_93 5 15 5 0.69 489.3∗a 7∗c ,6d ,4∗e ,9∗h
4gt13_92 5 15 6 0.53 - -
4gt11_82 5 16 6 0.89 - -
4mod5-v0_21 5 17 8 2.84 - -
rd32_272 5 18 7 0.94 - -
alu-v3_34 5 18 4 0.4 - -
mod5d2_64 5 19 6 1.81 - -
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Table 8.3: Benchmarks with five qubits, evaluated on a linear array.

Benchmark n |G| # SWAPS Time Time E # SWAPS H

alu-v0_26 5 21 8 3.56 - -
4gt5_75 5 21 6 1.1 - 9∗c ,12d ,13∗h
4mod5-v0_18 5 23 8 3.35 - -
4mod5-v1_23 5 24 9 5.06 - 9c ,9d ,15e ,15h

one-two-three-v2_100 5 24 7 5.37 - -
one-two-three-v3_101 5 24 7 2.96 - -
rd32_271 5 26 11 7.37 - -
4gt5_77 5 28 10 6.2 - -
4gt5_76 5 29 10 5.45 - -
alu-v4_36 5 30 9 6.34 - 15∗c ,18d ,17e ,16∗h
4gt13_91 5 30 8 4.46 - -
4gt13_90 5 34 12 6.77 - -
4gt10-v1_81 5 34 13 12.38 - 18∗c ,20d ,16e ,24∗g ,22∗h
one-two-three-v1_99 5 36 15 17.27 - -
4gt4-v0_80 5 36 19 43.45 - 34d ,33 f ,32∗h
4mod7-v0_94 5 38 12 12.83 - -
alu-v2_32 5 38 16 22.05 - -
4mod7-v0_95 5 38 14 14.59 - 19∗c ,21d ,22e ,22∗h
4mod7-v1_96 5 38 14 13.49 - -
one-two-three-v0_98 5 40 15 15.67 - -
4gt12-v0_88 5 41 20 34.01 - -
4gt12-v1_89 5 44 22 52.36 - 35d ,26e ,32 f ,33∗h
sf_275 5 46 18 21.42 - -
4gt4-v0_79 5 49 22 80.16 - -
4gt4-v0_78 5 53 26 167.03 - -
4gt4-v0_72 5 53 24 49.7 - -
4gt12-v0_87 5 54 22 45.88 - -
4gt4-v1_74 5 57 29 84.87 - -
4gt12-v0_86 5 58 26 108.35 - -
mod8-10_178 5 68 37 389.47 - -
one-two-three-v0_97 5 71 32 76.8 - -
4gt4-v0_73 5 89 40 699.65 - -
mod8-10_177 5 93 48 3650.26 - 72d ,71∗h
alu-v2_31 5 100 49 2906.35 - -
hwb5_55 5 101 48 2264.0 - 59c ,63d ,60e ,66g ,64∗h
rd32_273 5 104 50 4631.7 - -
alu-v2_30 5 112 55 13558.87
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Table 8.4: Benchmarks with six or more qubits, evaluated on a linear array.

Benchmark n |G| # SWAPS Time Time E # SWAPS H

graycode6_47 6 5 0 0.02 - -
graycode6_48 6 5 0 0.02 - -
QFT_QFT6 6 15 11 7.43 - 11c ,12d

decod24-enable_124 6 21 5 1.86 - -
decod24-enable_125 6 21 5 1.83 - -
decod24-bdd_294 6 24 7 9.37 - -
mod5adder_129 6 71 34 534.38 - -
mod5adder_128 6 77 36 1103.51 - 45∗c ,51d ,46∗g ,53∗h
decod24-enable_126 6 86 37 1954.28 - -
xor5_254 7 5 3 0.61 - -
ex1_226 7 5 3 0.25 - -
QFT_QFT7 7 21 16 28.26 - 28c ,26d ,18g ,18h

4mod5-bdd_287 7 23 7 4.3 - -
alu-bdd_288 7 28 8 20.65 - -
ham7_106 7 49 28 495.43 - -
ham7_105 7 65 34 1613.33 - -
ham7_104 7 83 42 3238.82 - 56∗c ,66∗h
QFT_QFT8 8 28 23 334.6 - 32c ,33d ,31g ,31h

rd53_139 8 36 11 76.29 - -
rd53_138 8 44 11 100.86 - -
rd53_137 8 66 35 6271.11 - -
QFT_QFT9 9 36 30 1482.53 - 52c ,54d ,49g ,42h

QFT_QFT10 10 45 39 39594.99 - 64g ,60h

mini_alu_305 10 57 23 1711.75 - -
sys6-v0_144 10 62 19 887.71 - -
rd73_141 10 64 21 845.05 - -
parity_247 18 16 14 5762.29 - -
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8.2. Results: Two-dimensional grid
In this section, a subset of the benchmark instances that were evaluated in Section 8.1, are evaluated for the
two-dimensional grid architecture. The benchmark instances are divided into three categories, dependent
on the number of qubits in the quantum circuit. The grid that was used, is presented in the final column
of the tables. The largest instances in the two-dimensional case are substantially smaller than the largest
instances in the case where qubits are placed on a linear array. By Theorem 6.4, the optimal objective value
that is obtained in the two-dimensional case, is always bounded from above by the optimal objective value
that was obtained in the case of the linear array. Theorem 6.8 states that the results in Table 8.5 have the same
optimal objective value as the results corresponding to circuits with three qubits in Table ??.

Table 8.5: Benchmark instances with three qubits, evaluated on a two-dimensional grid.

Benchmark n |G| # SWAPS Time Grid

QFT_QFT3 3 3 1 0.16 2×2
peres_10 3 4 1 0.25 2×2
peres_8 3 4 1 0.23 2×2
toffoli_2 3 5 1 0.29 2×2
toffoli_1 3 5 1 0.28 2×2
peres_9 3 6 1 0.34 2×2
fredkin_7 3 7 1 0.64 2×2
ex-1_166 3 7 2 0.64 2×2
fredkin_5 3 7 1 0.51 2×2
ham3_103 3 8 2 0.8 2×2
miller_12 3 8 2 0.7 2×2
ham3_102 3 9 1 0.89 2×2
3_17_15 3 9 2 0.91 2×2
3_17_13 3 13 3 3.8 2×2
3_17_14 3 13 3 4.18 2×2
fredkin_6 3 15 3 5.26 2×2
miller_11 3 17 4 9.04 2×2

In Table 8.5 we see that solving the problem for benchmark instances that have three qubits, using the model
for the two-dimensional architecture, is done in under ten seconds as long as the gate count is not too large.
We see, in Table 8.6, that the running time already approaches practical limits for the benchmark instances
with the most gates. The optimal objective value in the two-dimensional case is much better than the one
in the one-dimensional case of the NNC problem. For example, the circuit “4_49_17” only requires six SWAP
gates when implemented on a two-dimensional grid while the same circuit requires twelve SWAP gates when
implemented on a linear array.

The circuits that also benefit from being implemented on a higher-dimensional grid, are the famous Quan-
tum Fourier Transform (QFT) circuits. The QFT for five qubits only requires four SWAP gates when imple-
mented on a two-dimensional grid, where we require six SWAP gates when implementing it on a linear array.

8.3. Discussion
The fourth research question: "What are the main advantages and disadvantages of exact solution methods
for the nearest neighbor compliance problem?" is discussed in this section. We explore advantages and dis-
advantages of our methods and argue why certain choices have been made in this work.

The exact solution methods that we use, also have drawbacks. A major disadvantage is that they can only
evaluate small circuits. Even though their solutions might not be (proven to be) optimal, heuristic meth-
ods can evaluate much larger benchmark instances. As we have seen in the literature review, even on three
dimensional architectures, circuits of 39 qubits and 170.000 quantum gates, or as much as 161 qubits and
50.000 quantum gates can be evaluated. The quality of the solutions is hard to predict, but a solution is ob-
tained nonetheless. Notice that the incomplete Branch & Bound search in the previous section was used to
evaluate a circuit of only five qubits and 93 quantum gates.
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Table 8.6: Benchmark instances with 4 qubits and up to 30 gates, evaluated on a two-dimensional grid.

Benchmark n |G| # SWAPS Time Grid

QFT_QFT4 4 6 2 0.46 2×2
toffoli_double_3 4 7 1 0.53 2×2
rd32-v1_69 4 8 2 1.27 2×2
decod24-v1_42 4 8 0 0.35 2×2
rd32-v0_67 4 8 2 1.13 2×2
decod24-v2_44 4 8 0 0.31 2×2
decod24-v0_40 4 8 0 0.34 2×2
decod24-v3_46 4 9 2 0.94 2×2
toffoli_double_4 4 10 2 1.06 2×2
rd32-v1_68 4 12 2 2.47 2×2
rd32-v0_66 4 12 2 2.64 2×2
decod24-v0_39 4 15 5 41.47 2×2
decod24-v2_43 4 16 5 43.28 2×2
decod24-v0_38 4 17 4 13.56 2×2
decod24-v1_41 4 21 7 133.52 2×2
hwb4_52 4 23 6 106.04 2×2
aj-e11_168 4 29 9 1126.04 2×2
4_49_17 4 30 6 182.27 2×2

Table 8.7: Benchmark instances with 5 and 6 qubits, evaluated on a two-dimensional grid.

Benchmark n |G| # SWAPS Time Grid

4mod5-v1_25 5 7 1 55.17 2×3
4gt11_84 5 7 1 91.49 2×3
4gt11-v1_85 5 7 1 56.93 2×3
4mod5-v0_20 5 8 1 101.4 2×3
4mod5-v1_22 5 9 1 130.63 2×3
QFT_QFT5 5 10 4 4885.45 2×3
mod5d1_63 5 11 1 154.42 2×3
4gt11_83 5 12 1 256.4 2×3
4mod5-v1_24 5 12 2 2499.35 2×3
4mod5-v0_19 5 12 3 8593.68 2×3
graycode6_47 6 5 0 2.77 2×3
graycode6_48 6 5 0 2.84 2×3

Another discussion point of our exact method, is that it produces exact solutions to a problem that considers
limited options. We distinguish three aspects of quantum circuit design that we disregard in our optimization
methods.

First, we do not optimize over the different gate decomposition possibilities. Multi-qubit gates can be de-
composed into two-qubit gates in many ways. If we were to take this option into consideration, we obtain an
instance of the Minimum Generator Sequence problem. Here, the calculation done by a circuit corresponds
to a group element of C2n×2n

, where n is the number of qubits. The generators of the group would in that
case be the unitary matrices corresponding to the operations of two-qubit gates acting on adjacent qubits.
The number of feasible solutions grows rapidly as the calculation performed by a quantum circuit becomes
more complex, therefore, the only circuits that can be evaluated would likely be even smaller compared to
the current method.

Second, we do not take into account different gate sequences while it could sometimes be advantageous to
do so in terms of how many SWAP gates are required. In some cases, the gate sequence can be changed.
The circumstances under which this is possible, are governed by a set of commutation conditions. If, for
example, two consecutive gates act on disjoint pairs of qubits, the gates might as well be performed in reverse



8.3. Discussion 65

order. Taking changes in the gate sequence into account was already done in [57], but by making use of the
exponentially growing adjacent transposition graph. It is not clear how the option to make changes to the
gate sequence can be efficiently incorporated into the current methodology.

A third aspect of circuit design that is not properly addressed in our methodology is the depth of a circuit. As
mentioned in Chapter 2, the coherence times of qubits are a limiting factor in the time a quantum circuit may
take to complete running. Throughout our research, we have assumed that all gates are applied sequentially.
If, for example, two gates were to act on disjoint pairs of qubits, they could be executed simultaneously in
parallel, saving valuable time. The problem of Makespan Optimization (MO), which was considered by the
authors of [10], minimizes the total time it takes for a circuit to complete running. The MO problem is NP-
complete.
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9
Research Area II: Global Reordering

In this chapter we will discuss the Global Reordering problem, which corresponds to research area II from
Table 1.1. We do not introduce any new concepts, ideas or methods. As such, this chapter can best be thought
of as a review of the currently available literature. We address the problem because it is one of the major
constituents of the field of nearest neighbor quantum circuit design. The current literature is reviewed and
the main results are explained.

9.1. Introduction to global reordering
The problem of global reordering is popular in the field of nearest neighbor quantum circuit design. Global
reordering concerns itself with finding an optimal initial placement of the qubits, such that throughout the
circuit, as few SWAP gates as possible are required. The problem is a simplified version of local reordering
since it eludes the micromanagement of smartly swapping qubits around between gates, with which the local
reordering problem is imbued.

The biggest advantage of global reordering over local reordering is its simplicity (in comparison). The size
of the search space does not grow as rapidly as is the case with local reordering. The complexity does not
depend on the number of gates in a quantum circuit.

In an attempt to keep an edge over local reordering in terms of simplicity, the global reordering problem is
often approximated using the Optimal Linear Arrangement (OLA) problem. In this chapter we will discuss
the model that is used to assess the global reordering problem via an implementation of the OLA problem.

The Linear Nearest Neighbor problem is formulated using Mixed Integer Programming in [70]. In this case,
there is no hard constraint for qubits to be adjacent when a gate acts on them. The objective is instead to
minimize the distance between qubits that interact a lot with each other. This problem can be seen as a
global reordering technique. In general, however, this does not guarantee an optimal initial ordering for the
local reordering approach. A global strategy is devised using an analogy to the Optimal Linear Arrangement
Problem [69],

9.2. Optimal Linear Arrangement problem
In this section we introduce the Optimal Linear Arrangement problem. The decision problem is defined as
follows:

OPTIMAL LINEAR ARRANGEMENT PROBLEM

Input: A graph G = (V ,E) with |V | = n, a function w : E →R and a number k ∈R.

Question: Does there exist a bijection f : V → [n] such that
∑

{u,v}∈E wuv | f (u)− f (v)| ≤ k?
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In the minimization version of the OLA problem, we look for the smallest integer k such that the question is
still answered affirmatively. Notice that the bijection f directly relates to a qubit order. The qubit order can
be thought of as the optimal average qubit order throughout the circuit, from which one can diverge when a
specific gate is not NN compliant given the global qubit order. In the general version of the OLA problem, the
weights on the edges on the graph often represent costs or travel times for example.

9.3. Mathematical Model
The Optimal Linear Arrangement problem requires a graph as input. In this section, we introduce the inter-
action graph and its weights. We then use the OLA problem in such a way that the number of required SWAP
gates matches the objective function.

9.3.1. Interaction graph
The graph that will be used is called an interaction graph. A node is constructed for each qubit in the quantum
circuit. Every two nodes are then connected with an edge. The weight wu,v on edge {u, v} is then calculated
in one of two ways.

The first way to calculate the weights on the edges of the interaction graph is proposed in [47] and counts the
number of gates between the two qubits.

wu,v = #{guv ∈G} =
m∑

t=1
1g t

uv
(9.1)

Here 1g t
uv

is the indicator function, which is one when g t acts on qubits u and v , and zero otherwise. This ap-
proach is intuitively very easy to grasp, but also naive in the sense that the sequence of the gates is completely
disregarded. Qubits may be placed close together initially, solely because they have a lot of gates together near
the end of the circuit. The second proposal [49] circumvents this problem. It makes the sum weighted in such
a way that gates that appear later in the gate sequence have less influence on the edge weights.

w ′
u,v =

m∑
t=1

1g t
uv

t K
(9.2)

for some integer K ≥ 1.

To clarify the graph, an example is given.

Example 9.1. Suppose we are given the graph of Figure 9.1. We want to construct the corresponding interac-
tion graph. For simplicity we stick to the edge weights that do not incorporate the gate sequence. Every qubit
gets its own node in the graph and an edge is placed between every two qubits that share a quantum gate.
Since qubits a and e share three gates, the weight on edge {a,e} is wae = 3.

a • V V •

b • • •

c • • V

d • V •

e V • •

→ e

c

a

d

b
3

2

1

1

2

2

Figure 9.1: A quantum circuit with 5 qubits and 11 quantum gates is shown on the left. The corresponding interaction graph is displayed
on the right. Three quantum gates are applied on the qubits a and e throughout the circuit, so the weight on edge {a,e} is equal to
wae = 3.

9.3.2. Nearest neighbor cost
The goal is to minimize the number of required SWAP gates in the circuit. In order to do so, we link the
objective function of the OLA problem to a cost function. The cost function was introduced in [47] as the
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nearest neighbor cost. Given a qubit order τ ∈ Sn and a gate g = {i , j } ∈ G , the nearest neighbor cost of that
gate is

NNC(g ) = 2(|τ(i )−τ( j )|−1). (9.3)

The function exactly determines how many SWAP gates are required to complete the operation: 1) change the
global qubit τ0 order to a qubit order τ1, where qubits i and j are adjacent, 2) perform gate g , and 3) change
the qubit order τ1 back to the global qubit order τ0. We make the observation that, given a global qubit order
τ0, adding the nearest neighbor costs of all gates together, provides an upper bound on the optimal value of
the local reordering problem in the same context.

Sometimes, it might not be optimal to go back to the global qubit order immediately after applying a gate.
For example, when two gates g t = g t+1 = {i , j } are applied on the same qubits consecutively, less SWAP gates
are required than indicated by the nearest neighbor cost.

9.3.3. Combined model
Combining the nearest neighbor cost, the weighted interaction graph and the OLA problem, we describe the
global reordering problem with the following minimization problem:

minimize
∑

{u,v}∈E
2wuv

(| f (u)− f (v)|−1
)

subject to f : V → [n]

f is a bijective map.

(9.4)

One can see that this is an instance of the OLA minimization problem, by taking the constant 2 and the
constant subtraction of 1 from the absolute difference outside of the minimization.

The nearest neighbor cost has the property that the number of SWAP gates required to diverge from the global
qubit order to make two qubits adjacent, and change back to the global qubit order, is exactly counted for
each gate. Program 9.4 sums this cost for all the gates. We therefore arrive at this intermediate result.

Theorem 9.2. Given a quantum circuit Γ, let G be the weighted (via Equation 9.1) interaction graph corre-
sponding to Γ. Denote the optimal value of Program 9.4 by OPTglo. Denote the optimal value of the NNC
problem on a linear array, considering the same quantum circuit Γ, as OPT1D. Then we find the following
upper bound for OPT1D.

OPTglo ≥OPT1D (9.5)

Continuing, the global reordering problem was formulated as a Quadratic Assignment problem by the au-
thors of [70]. They first define ci j kl = wi k | f ( j )− f (l )|, where i and k represent qubits while j and l represent
locations. Their model then reads

minimize
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

ci j kl xi j xkl

subject to
n∑

i=1
xi j = 1 ∀ j ∈ L

n∑
j=1

xi j = 1 ∀i ∈Q

xi j ∈ {0,1} ∀i ∈Q, j ∈ L

(9.6)

This program was already linearized in [41] and shown to have a minimal number of variables and constraints
in [12]. We define a new variable z.

zi j = xi j

n∑
k=1

n∑
l=1

ci j kl xkl (9.7)
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The resulting mixed integer linear program is equivalent to Program 9.6.

minimize
n∑

i=1

n∑
j=1

zi j

subject to αi j xi j +
n∑

k=1

n∑
l=1

ci j kl xkl − zi j ≤αi j ∀i ∈Q, j ∈ L

zi j ≤ 0 ∀i ∈Q, j ∈ L

(9.8)

Here, αi j = ∑n
k=1

∑n
l=1 ci j kl . We have arrived at a mixed integer linear programming model for the global

reordering problem.
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Research Area III: Local Reordering of

Qubits in a Distributed Quantum Circuit

This Chapter was written in collaboration with Roy v. Houte.

Now we switch our focus to the problem of local reordering in the distributed case. This problem belongs
to research area III, as indicated in Table 1.1. This problem is an extension of the main focus of this thesis to
incorporate the option of performing a quantum circuit using multiple quantum computers. We will consider
the most basic of cases, where each computer has an internal qubit architecture of a linear array, and only the
qubits on the endpoints of the array are connected to the next computer. The computer network thus also
forms a linear array.

In this chapter, we will consider only SWAP operations as viable communication tools between different com-
puters, while in fact any controlled operation could be performed. This assumption is made in order to reduce
the available tool set to the insertion of SWAP gates, a setting we have explored thoroughly so far. Fortunately,
an extension of the framework that was introduced in Chapter 5 to this problem is natural. A paper on the
results of this chapter has been submitted for possible publication [77].

10.1. Model
We start out by introducing notation. Suppose we have a quantum circuit, consisting of m unitary two-qubit
gates gi l ∈G , acting on a total of n qubits {q1, . . . , qn} ≡Q. The physical locations of the qubits are distributed
between N quantum computers in a linear fashion, i.e., locations L1 = (1, . . . ,k1) belong to computer C1 and
locations L2 = (k1 +2, . . . ,k1 +k2 +1) belong to computer C2, locations LN = (k1 + . . .+kN−1 +N , . . . ,k1 + . . .+
kN +N−1) to computer CN , where ki is the qubit capacity of computer Ci . Here, one qubit location is skipped
between every two consecutive computers, we will see that this helps with the modeling later on. Of course,
we also have to comply with nearest neighbor interaction constraints, where gates can only act on two qubits
if the corresponding qubits are physically adjacent, so if their locations are li , li+1 respectively for some i .

The goal in this version of the NNC problem consists of two parts:

1 Minimize the number of SWAP gates between different computers, associated with a cost of α

2 Minimize the number of SWAP gates within each computer, associated with a cost of β

An illustration is provided for clarification in Figure 10.1.

In order to extend the ILP formulation of minimizing the number of SWAP gates in the case of one com-
puter, as was done in Chapter 5, such that it also encapsulates the distributed variant of the local reordering
problem, no big extension is required. The proposed mathematical model is presented below.
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q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

C1 C2 C3cost:α cost:β

Figure 10.1: A line graph on a network of three quantum computers, indicated by the C ’s. The computers each have a capacity of four
qubits that are also connected in a linear array.

10.1.1. Variables and constraints
Let us first introduce integer variables x t

i , indicating the location l ∈∪i∈[N ]Li of a qubit qi just before gate g t

is applied. Note that this also implies on which quantum computer the qubit is located. To count the required
number of SWAP gates when changing the qubit order between gates, binary variables y t

i l are introduced that
keep track of the pairwise ordering of two qubits qi , ql before gate g t .

y t
i l =

{
1 if x t

i > x t
l

0 otherwise.
(10.1)

Changes in the y-variables, when moving from one gate to the next, mean that two qubits have changed their
pairwise order. We, once again, implicitly use the Kendall tau metric on the permutation group to count the
number of inversions and thus the number of required SWAP gates. The nearest neighbor constraints state
that a gate can only act on two adjacent qubits, |x t

i −x t
l | ≤ 1. This constraint is linearized using the inequalities

x t
i −x t

l ≤ 1 ∀g t
i l ∈G , (10.2)

x t
i −x t

l ≥−1 ∀g t
i l ∈G . (10.3)

To keep track of the qubit order and to make sure that the distance between qubits is at least 1, the following
big-M type constraints are added.

x t
i −x t

l ≤ M y t
i l −1 ∀i , l ∈Q, i < l , t ∈ [m], (10.4)

x t
l −x t

i ≤ M(1− y t
i l )−1 ∀i , l ∈Q, i < l , t ∈ [m], (10.5)

where the constant M is chosen to be large enough, in this case M = n +∑
i ki will suffice, to make one con-

straint trivially satisfied. The binary variable y determines for which of the two constraints that holds.

Recall the auxiliary locations left between the quantum computers that were supposed to help us. We will
refer to these locations as “borders”. These borders b are locations indexed by the values

bs = s + ∑
j∈[s]

k j s ∈ [N −1], (10.6)

where bs is the location of the border between quantum computers s and s +1. We want to distinguish be-
tween SWAP gates that are used to interchange qubits’ locations within a computer, and SWAP gates that
interchange two qubits from neighboring computers. To keep track of qubits that are swapped to a different
computer, binary variables y t

i s are introduced.

y t
i s =

{
1 if x t

i > bs

0 otherwise.
(10.7)

They tell us on which side of the auxiliary location between two computers a qubit is located before gate g t . If
the qubit changes order with the auxiliary location, we add a cost to the objective function. The y t

i s -variables
are constrained in the following way:

x t
i −bs ≤ M y t

i s −1 ∀i ∈Q, i < l , t ∈ [m], s ∈ [N −1], (10.8)

bs −x t
i ≤ M(1− y t

i s )−1 ∀i ∈Q, i < l , t ∈ [m], s ∈ [N −1]. (10.9)
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Here, the variable y t
i s is 0 if the location x t

i of qubit qi is smaller than the location of the border between
computers s and s +1. The absolute change (from gate to gate) in the y-variables adds a cost to the objective
function. Here, we again remark that the absolute value is not a linear function, so to cope with this, we
linearize the function by introducing new variables p and r . The p variables are used for costs relating to
SWAP gates within a computer:

p t
i l =

{
1 if the order of qubits i and l changed from gate g t to g t+1

0 otherwise.
(10.10)

The r variables are related to costs regarding SWAP gates between qubits on different quantum computers:

r t
i s =

{
1 if qubit i crossed border bs between gates g t and g t+1

0 otherwise.
(10.11)

To enforce their definitions, we introduce constraints for both new types of variables. The p’s are constrained
as

y t
i l − y t+1

i l ≤ p t
i l ∀i , l ∈Q, i < l , t ∈ [m −1], (10.12)

y t
i l − y t+1

i l ≥−p t
i l ∀i , l ∈Q, i < l , t ∈ [m −1], (10.13)

and the r ’s are constrained as

y t
i s − y t+1

i s ≤ r t
i s ∀i ∈Q, t ∈ [m −1], s ∈ [N −1], (10.14)

y t
i s − y t+1

i s ≥−r t
i s ∀i ∈Q, t ∈ [m −1], s ∈ [N −1]. (10.15)

10.1.2. Objective function
Next, we formulate the objective function. The goal of this entire chapter is of course to minimize the vari-
ables p and r , as they count the changes in qubit order and the qubits swapping to another computer, re-
spectively. Note that every time two qubits on different computers are swapped, both the corresponding r -
and p-variables become 1. Swapping two qubits on different quantum computers should only costα and not
α+β. We therefore subtract β from the r -term in the objective function. The objective function becomes

min
∑

t∈[m−1]


α−β

2

∑
i∈Q

s∈[N−1]

r t
i s

+

β ∑
i ,l∈Q

i<l

p t
i l


 , (10.16)

where the (α−β) term counteracts the extra counting of the SWAP gate with cost α and the factor of one half
prevents us from counting the SWAP over the border between computers twice (once for both qubits). Besides
that, we sum over the r - and p-variables, since they count the number of inversions between consecutive
qubit orders.
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10.1.3. Complete model and size
The complete integer linear program combines the objective function and the constraints. The program
reads

min
∑

t∈[m−1]


α−β

2

∑
i∈Q

s∈[N−1]

r t
i s

+

β ∑
i ,l∈Q

i<l

p t
i l




s.t. x t
i −x t

l ≤ 1 ∀g t
i l ∈G

x t
i −x t

l ≥−1 ∀g t
i l ∈G .

x t
i −x t

l ≤ M y t
i l −1 ∀i , l ∈Q, i < l , t ∈ [m]

x t
l −x t

i ≤ M(1− y t
i l )−1 ∀i , l ∈Q, i < l , t ∈ [m]

x t
i −bs ≤ M y t

i s −1 ∀i ∈Q, t ∈ [m], s ∈ [N −1]

bs −x t
i ≤ M(1− y t

i s )−1 ∀i ∈Q, t ∈ [m], s ∈ [N −1]

y t
i l − y t+1

i l ≤ p t
i l ∀i , l ∈Q, i < l , t ∈ [m −1]

y t
i l − y t+1

i l ≥−p t
i l ∀i , l ∈Q, i < l , t ∈ [m −1]

y t
i s − y t+1

i s ≤ r t
i s ∀i ∈Q, t ∈ [m −1], s ∈ [N −1]

y t
i s − y t+1

i s ≥−r t
i s ∀i ∈Q, t ∈ [m −1], s ∈ [N −1]

x t
i ∈∪i∈[N ]Li ∀i ∈Q, t ∈ [m]

y t
i l ∈ {0,1} ∀i , l ∈Q, i < l , t ∈ [m]

y t
i s ∈ {0,1} ∀i ∈Q, t ∈ [m], s ∈ [N −1]

r t
i s ∈ {0,1} ∀i ∈Q, t ∈ [m −1], s ∈ [N −1]

p t
i l ∈ {0,1} ∀i , l ∈Q, i < l , t ∈ [m −1].

(10.17)

Here, we let M = n+∑
i ki . The size of the ILP model scales as a polynomial in the number of qubits, quantum

gates and quantum computers in the instance. The number of variables and the number of constraints are
both of the order O (n2m+nMm) =O (n2m). The size of the ILP presented in Chapter 5 experiences the same
scaling. The programs are closely related. The main difference is in the weighted objective function that
incorporates costs corresponding two different types of SWAP operations. Another difference is that we have
borders between different quantum computers, of which the order compared to qubits also has to be taken
into account.
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Research Area IV: Celestial Reordering of
Qubits in a Distributed Quantum Circuit

This Chapter was written in collaboration with Roy v. Houte.

In this chapter we will introduce the problem of Celestial reordering, which corresponds to research area IV
from Table 1.1. In Celestial reordering, given a quantum circuit consisting of qubits, quantum gates acting
on the qubits and a number of quantum computers with given capacities, the task is to assign the qubits to
the computers in such a way that the number of gate operations on pairs of qubits on different computers
is minimized. We assume that the cost of setting up entanglement between two computers is significantly
higher than the cost of applying gates within a computer. Therefore, we neglect costs related to gates that are
applied on qubits that are located on the same computer.

It is of great importance how the quantum computers are connected in a network. In this section we consider
the most straightforward geometries: the completely connected network, the general network, the linear
array, the two-dimensional grid and the general grid. For each of the networks, we formalize and visualize
the problem, and model it as an integer linear program (ILP). A paper on the results of this chapter has been
submitted for possible publication [77].

First we introduce some notation that we will use throughout the chapter.

1. n denotes the total number of qubits in the quantum algorithm. In diagrams, vertices that represent
qubits are denoted by circles.

2. M denotes the number of quantum computers. In diagrams, quantum computers are represented by
rounded squares.

3. K is used to denote the effective capacity of each quantum computer. That is, the maximum number
of qubits that an individual quantum computer can use and store in working memory. This does not
include the qubits that are necessary for communication or entanglement swapping. This adds an extra
number of qubits per computer, depending on the network architecture.

Suppose we have a quantum algorithm acting on n qubits, that is represented by a series of unitary gates. We
allow for unitary operations on single qubits or controlled gates on two qubits. The unitary operations on
single qubits will be ignored. All other operations are assumed to be decomposed into this set of gates [63].
One way to ensure sufficient capacity is to take K ≥ dn/Me for every computer. If necessary, this quantity may
vary per computer as long as the total capacity exceeds n.

11.1. Completely connected network
We start out in the setting where we have all-to-all coupling between the different quantum computers.

Consider the complete graph Kn , where the vertices are labelled [n] := {1, . . . ,n} and each vertex corresponds
to a qubit in the algorithms. We can count the number of controlled gates that are applied to each pair of

77
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qubits. Similar to the model of single quantum computer global reordering [46], we create a cost function
c : E(Kn) →Z≥0 by letting ci j = c({i , j }) be the number of controlled gates between qubits i and j . This graph
is called the interaction graph.

Our goal now is to find an assignment of qubits to computers f : {1, . . . ,n} → {1, . . . , M } such that the total
number of controlled gates between all different pairs of computers is minimal.

For a qubit i ∈ [n] and computer k ∈ [M ] let

xi k =
{

1 if qubit i is assigned to computer k

0 otherwise.
(11.1)

For each computer, we thus want to limit the total number of assigned qubits by the computer’s total capacity
K , so

n∑
i=1

xi k ≤ K , ∀k ∈ [M ]. (11.2)

Furthermore, every qubit can be assigned to only one computer, thus

M∑
k=1

xi k = 1, ∀i ∈ [n]. (11.3)

The objective is

min
∑

i , j∈[n]
i< j

ci j
∑

k∈[M ]

|xi k −x j k |
2

, (11.4)

since for a given i , j ∈ [n], i 6= j . The second summation in the objective is given by∑
k∈[M ]

|xi k −x j k |
2

=
{

1 if qubit i and j are assigned to different computers

0 otherwise.
(11.5)

The 2 in the denominator is to compensate for counting twice that a qubit is on a computer where the other
qubit is not. This constant can be taken out of the sums.

We can remove the absolute value in the objective by introducing the variable Li j k and add an extra pair of
constraints −Li j k ≤ xi k −x j k ≤ Li j k for every i , j ∈ [n], i < j and k ∈ [M ]. Since any optimal solution will have
integer values for Li j k , this variable does not necessarily have to be formulated as integer. This gives us an
MILP (mixed integer linear program) of the form

min
1

2

∑
i , j∈[n]

i< j

ci j
∑

k∈[M ]
Li j k

s.t.
n∑

i=1
xi k ≤ K , ∀k ∈ [M ]

M∑
k=1

xi k = 1, ∀i ∈ [n]

xi k −x j k ≤ Li j k

xi k −x j k ≥−Li j k

}
, ∀i , j ∈ [n], i < j ,∀k ∈ [M ]

xi k ∈ {0,1}, ∀i ∈ [n],k ∈ [M ]

Li j k ∈R, ∀i , j ∈ [n], i < j ,∀k ∈ [M ].

(11.6)

The total number of integer variables is nM and the total number of continuous variables is
(n

2

)
m = n(n −

1)m/2. There are M +n +n(n −1)M =O (Mn2) constraints in this problem.

It is possible to extend the celestial reordering model by allowing different capacities of computers. This can
easily be done by replacing the capacity constraints by

n∑
i=1

xi k ≤ Kk ∀k ∈ [M ], (11.7)

where the capacity Kk is now computer specific.
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11.2. General networks of quantum computers
Suppose the network of quantum computers is represented by a connected graph G = (V ,E), where quantum
computers are represented by nodes. A pair of quantum computers can communicate directly if and only
if their corresponding nodes are connected by an edge in the graph. If two quantum computers are not
connected directly, we can indirectly connect them via intermediate connections with other computers. We
can do this by applying entanglement swapping. In this case, we search for the shortest path between the pair
of computers.

We let the vertex set V = [M ] be labeled by the computers and define wk` as the length (i.e. the number of
edges) of the shortest path between vertices k and ` in G . We can therefore consider the problem on the
complete graph KM with edge weights wk` for all k,` ∈ [M ],k 6= `. In Figure 11.1, an example is given for
clarification.

C1 C2

C3C4

1

1

1 −−−→

C1 C2

C3C4

1

1

1

3

2

2

Figure 11.1: The conversion of a general graph to a complete graph with edge weights corresponding to the distance of the shortest path
between each pair of nodes. In this example, the shortest path between C3 and C4 in the left graph is 3, therefore, the weight on the edge
{C3,C4} in the right graph is equal to 3.

Here, we see that for a network of four computers, we can construct a complete graph where every computer
is connected to every other computer. The weights on the edges now indicate the length of the path from one
computer to another. Pairs of qubits that are placed on different computers contribute to the costs if they
interact with each other. The cost per interaction is equal to the distance between the computers on which
the interacting qubits are located, since that counts the number of times that an entangled pair of qubits is
required.

q1 q2

q3q4

q5 q6

q7q8
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C1 C2

C3C4

Figure 11.2: A complete graph on a network of four quantum computers, indicated by the C ’s. The computers each have a capacity of
four qubits.
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We consider the same decision variables xi k , i ∈ [n],k ∈ [M ] as in Section 11.1. Our objective will be

min
∑

i , j∈[n]
i< j

ci j
∑

k,`∈[M ]
k 6=`

wk`xi k · x j`, (11.8)

and since xi k and x j l are both binary, their product is

xi k · x j` =
{

1 if qubit i is on computer k and qubit j is on computer `

0 otherwise.
(11.9)

The contribution of an assigned pair of qubits depends on two factors: the path length between the comput-
ers in the network and the number of interactions in-between the qubits in the algorithms. The product of
these quantities is the number of EPR-pairs that is required for this pair of computers.

The constraints are the same as in the original Program 11.6. We thus obtain a quadratic binary optimization
program. This quadratic problem has nM variables and n +M constraints.

To transform the quadratic program into an ILP, we introduce a variable zi j k` ∈ {0,1} for i , j ∈ [n], i < j and
k,` ∈ [M ],k 6= `, that satisfies the inequality

zi j k` ≥ xi k +x j`−1, ∀i , j ∈ [n], i < j and k,` ∈ [M ],k 6= `. (11.10)

If xi k , x j` or both are equal to 0, then zi j k` ≥ 0 and since we are minimizing over an increasing function this
yields zi j k` = 0. Only if xi k = x j` = 1, then zi j k` = 1 is required. We are left with the equivalent program

min
∑

i , j∈[n]
i< j

ci j
∑

k,`∈[M ]
k 6=`

wk`zi j k`

s.t. zi j k` ≥ xi k +x j`−1, ∀i , j ∈ [n], i < j and k,` ∈ [M ],k 6= `∑
k∈[M ]

xi k = 1, ∀i ∈ [n]∑
i∈[n]

xi k ≤ K , ∀k ∈ [M ]

xi k ∈ {0,1}, ∀i ∈ [n],k ∈ [M ]

zi j k` ∈ {0,1}, ∀i , j ∈ [n], i < j and k,` ∈ [M ],k 6= `.

(11.11)

This is an ILP with nM +(n
2

)
M(M −1) =O (n2M 2) variables and O (n2M 2) constraints. Notice that the number

of variables and constraints has increased by turning the quadratic program into an ILP.

An interesting question is how much the objective can vary as the capacity K of each computer changes. We
can illustrate this with the example of the graphs K6 and K4 that are connected by one edge, see Figure 11.3.

q3

q2 q1

q6

q4 q5

q7

q10

q9

q8

Figure 11.3: Here we see an interaction graph that consists of two complete graphs that are connected to each other by one edge. The
graph contains ten qubits. Each edge represents a single interaction between a pair of qubits for some quantum algorithm on ten qubits.

If we have M = 2 computers, both with capacity K = 5, we are required to make a cut of at least 5 edges. We
partition the interaction graph into {1, . . . ,5} and {6, . . . ,10} forming two computers.
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However, if we were somehow able to increase the capacity of both computers to K = 6 qubits, we can parti-
tion the graph into {1, . . . ,5} and {6, . . . ,10}. This requires a cut of only one edge. This example and generaliza-
tions to more qubits show that the capacity of the computers by a small amount can yield a big difference in
the number of EPR pairs required.

11.3. Linear array
In this section, we consider a different network of quantum computers. In this network all computers are
arranged on a line, and each one of them is connected to its one or two neighboring computers. This network
is a special case of the general network and leads to a reduction in the number of variables and constraints in
the resulting model because of the structure in the network.

If we associate the computers with the numbers {1, . . . , M } then quantum computer k can only communicate
with computers k−1 and k+1, except at the boundaries. An example of such a network is given in Figure 11.4.

q1 q2

q3q4

q5 q6

q7q8

q9 q10

q11q12

q13 q14

q15q16

1 1 1

C1 C2 C3 C4

Figure 11.4: A line graph on a network of four quantum computers, indicated by the C ’s. The computers each have a capacity of four
qubits, corresponding to the circular nodes.

This means that if two qubits are located on computer k and `, then applying a two qubit gate requires us to
make |k −`| non-local interactions by using the computers in-between. This changes the original objective
in Equation 11.4 to an objective that takes the distance between computers into account. For a given pair of
qubits (i , j ) this is given by the equation∣∣∣∣∣ ∑

k∈[M ]
kxi k −

∑
k∈[M ]

kx j k

∣∣∣∣∣=
∣∣∣∣∣ ∑
k∈[M ]

k(xi k −x j k )

∣∣∣∣∣ . (11.12)

Again, we introduce a new variable to encode the absolute value as a linear constraint, analogous to the
completely connected network of Section 11.1. The full mixed integer linear program now reads

min
∑

i , j∈[n]
i< j

ci j Li j

s.t.
n∑

i=1
xi k ≤ K , ∀k ∈ [M ]

M∑
k=1

xi k = 1, ∀i ∈ [n]∑
k∈[M ]

k(xi k −x j k ) ≤ Li j∑
k∈[M ]

k(xi k −x j k ) ≥−Li j

 , ∀i , j ∈ [n], i < j

xi k ∈ {0,1} ∀i ∈ [n],k ∈ [M ]

Li j ∈R ∀i , j ∈ [n], i < j .

(11.13)

This MILP consists of nM integer variables and
(n

2

) = O (n2) continuous variables and has n + M + 2
(n

2

) =
O (n2 +M) constraints.

11.4. Two-dimensional grid
In this section we consider a two-dimensional grid as network topology. Such a network allows for more
connections between computers and directly extends the linear network of Section 11.3. Nevertheless, this
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network also leads to a reduction in the complexity in the assignment of qubits to computers.

We first have to introduce some tools to describe this network. Consider the metric based on the 1-norm1

defined by

d(x, y) = ‖x − y‖1 =
p∑

i=1
|xi − yi |, x, y ∈Zp . (11.14)

We first consider a (square) grid with side length m defined by G2 := [m1]× [m2] ⊆ Z2. Thus the number of
quantum computers equals M = m1m2. We say that two quantum computers are connected if and only if
their distance is 1. A small example of such a network is shown in Figure 11.5.

q1 q2

q3q4

q5 q6

q7q8

q13 q14

q15q16

q9 q10

q11q12

1

1

1

1

C1 C2

C3C4

Figure 11.5: The graph of a two-dimensional grid on a network of four quantum computers, indicated by the C ’s. The computers each
have a capacity of four qubits.

For qubit i ∈ [n] and computer (u, v) ∈G2 we let

xi ,uv =
{

1 if qubit i is assigned to position (u, v)

0 otherwise.
(11.15)

Then, similar to the constraints in Equations 11.2 and 11.3, we have the following constraints:

n∑
i=1

xi ,uv ≤ K , ∀(u, v) ∈G2, (11.16)

and ∑
(u,v)∈G2

xi ,uv = 1, ∀i ∈ [n]. (11.17)

Furthermore, the objective is now a weighted sum. The weights are determined by the number of interactions
between a pair of qubits. The weighted sum consists of terms given by the distance between computers in
the network to which the qubits are assigned. The objective is

∑
i , j∈[n]

i< j

ci j ‖ f (i )− f ( j )‖1 =
∑

i , j∈[n]
i< j

ci j

( ∑
u∈[m1]

∣∣∣∣∣ ∑
v∈[m2]

v xi ,uv −
∑

v∈[m2]
v x j ,uv

∣∣∣∣∣
+ ∑

v∈[m2]

∣∣∣∣∣ ∑
u∈[m1]

uxi ,uv −
∑

u∈[m1]
ux j ,uv

∣∣∣∣∣
)

.

(11.18)

1This metric is also called the taxicab distance or Manhattan distance for its similarity to travelling along the shortest route between two
points in the streets of Manhattan, New York.
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Again, we introduce new variables to encode the absolute values, this is done by two families L(1)
i j ,u and L(2)

i j ,v .

Analogous to the complete linear network described in Section 11.3, these variables can be relaxed to real
numbers. The mixed integer linear program then reads

min
∑

i , j∈[n]
i< j

ci j

( ∑
u∈[m1]

L(1)
i j ,u + ∑

v∈[m2]
L(2)

i j ,v

)

s.t.
n∑

i=1
xi ,uv ≤ K , ∀u ∈ [m1], v ∈ [m2]∑

u∈[m1]

∑
v∈[m2]

xi ,uv = 1, ∀i ∈ [n]∑
v∈[m2]

v(xi ,uv −x j ,uv ) ≤ L(1)
i j ,u∑

v∈[m2]
v(xi ,uv −x j ,uv ) ≥−L(1)

i j ,u

 ∀u ∈ [m1]

∑
u∈[m1]

u(xi ,uv −x j ,uv ) ≤ L(2)
i j ,v∑

u∈[m1]
u(xi ,uv −x j ,uv ) ≥−L(2)

i j ,v

 ∀u ∈ [m1]


∀i , j ∈ [n], i < j

xi ,uv ∈ {0,1}, ∀i ∈ [n],u ∈ [m1], v ∈ [m2]

L(1)
i j ,u ,L(2)

i j ,v ∈R, ∀u ∈ [m1], v ∈ [m2],∀i , j ∈ [n], i < j .

(11.19)

This MILP has nm1m2 = nM integer variables and
(n

2

)
(m1 +m2) =O (n2(m1 +m2)) continuous variables. The

program contains m1m2+n+2
(n

2

)
(m1+m2) =O (n2(m1+m2)+M) constraints. If the grid sizes are similar up

to a constant, then m1 =Θ(m2). Furthermore, if the capacity of each computer is fixed and the least number
of computers is used, then n =O (M), then the number of constraints is O (M 2.5).

11.5. General grid
The two-dimensional network of Section 11.4 was a generalisation of the linear network of Section 11.3. Since
the 1-norm allows for generalisation to any finite dimensional lattice, this section describes the most general
case for grids.

We assume the dimensions of the p-dimensional grid are the same to provide a clearer description. How-
ever, similar to the two-dimensional grid, it is possible to use grids of different spatial proportions. Let
Gp = [m]×·· ·× [m]︸ ︷︷ ︸

p times

, and for u = (u1, . . . ,up−1) ∈Gp−1, r ∈ [d ], v ∈ [m] define

u ⊕r v = (u1, . . . ,ur−1, v,ur , . . . ,up−1) ∈Gp , (11.20)

that is, in the integer string u we insert the number v at place r .

The general objective now becomes

∑
i , j∈[n]

i< j

ci j

( ∑
r∈[p]

( ∑
u∈Gp−1

∣∣∣∣∣ ∑
v∈[m]

v(xi ,u⊕r v −x j ,u⊕r v )

∣∣∣∣∣
))

. (11.21)

Here, we can again introduce a family of variables L(r )
i j ,u for all i , j ∈ [n], i < j , u ∈Gd−1 and r ∈ [m] to linearize
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the absolute value. This gives us the MILP

min
∑

i , j∈[n]
i< j

ci j

( ∑
r∈[p]

( ∑
u∈Gp−1

L(r )
i j ,u

))

s.t.
∑

i∈[n]
xi ,ω ≤ K , ∀ω ∈Gp∑

ω∈Gp

xi ,ω = 1, ∀i ∈ [n]

∑
v∈[m]

u(xi ,u⊕r v −x j ,u⊕r v ) ≤ L(r )
i j ,u∑

v∈[m]
u(xi ,u⊕r v −x j ,u⊕r v ) ≥−L(r )

i j ,u

 ∀u ∈Gp−1,r ∈ [p], i , j ∈ [n], i < j

xi ,ω ∈ {0,1}, ∀i ∈ [n],ω ∈Gp

L(r )
i j ,u ∈R, ∀u ∈Gp−1,r ∈ [p], i , j ∈ [n], i < j .

(11.22)

The number of quantum computers in this network is M = mp . This program contains nM integer variables
and

(n
2

)
pmp−1 =O (n2pM (p−1)/p ) continuous variables. Furthermore, there are mp +n+2

(n
2

)
pmp−1 =O (M +

n2pM (p−1)/p ) constraints. For p = 2 we indeed get the result of the previous section.



12
Conclusion and Future Research

In this thesis, we analyze the NNC problem on a variety of qubit architectures. The main focus is on exact
solution methods for the local reordering problem on a single quantum computer.

12.1. Conclusion
We formulated a research question and decomposed it into three sub-questions. We first answer the three
sub-questions, and provide an answer to the main research question afterwards.

1. How can we model the nearest neighbor compliance problem such that the size of the model scales poly-
nomially instead of exponentially, while retaining exact solutions?
The integer linear program (ILP) introduced in Chapter 5 uses big-M type constraints to implicitly cal-
culate the Kendall tau metric. This circumvents explicitly listing all permutations of the qubits together
with the related costs in terms of SWAP gate use. The proposed model is suitable for exact solution
methods, and larger circuits can be evaluated than in the current literature. The number of variables
and constraints in the ILP is O (n2m), where n denotes the number of qubits and m denotes the number
of two-qubit quantum gates after gate decomposition. This result is submitted for possible publication.

An attempt was made to model the nearest neighbor compliance problem more efficiently by incorpo-
rating concepts of graph theory. Here, the problem was reduced to a single pair shortest path problem
on a Cayley graph of the permutation group, called the adjacent transposition graph. This model does
not scale polynomially in the number of qubits and quantum gates in the considered quantum cir-
cuit. It might be possible to model the nearest neighbor compliance problem differently, as a variant
on the traveling salesman problem for example, such that the number of edges and nodes does scale
polyomially in the number of qubits and quantum gates.

2. How does the nearest neighbor compliance problem for two- and three-dimensional architectures relate
to the nearest neighbor compliance problem on a linear array?
We have formulated an integer linear program to exactly evaluate the two- and three-dimensional grid
variants of the nearest neighbor compliance problem. The number of variables scales in both cases as
O (n4m), and the number of constraints scales in both cases as O (n3m), where n denotes the number
of qubits and m denotes the number of two-qubit gates after gate decomposition. This is clearly worse
than was the case for the linear array. For a fixed quantum ciruit, when considering a two- or three-
dimensional grid, the optimal objective value is always bounded from above by the objective value in
the case of the linear array qubit architecture. A solution to the NNC problem for the linear array can
always be transformed to a solution of the NNC problem on a grid, following the proof of Theorem 6.4.
This solution could be used as a starting point for the Branch & Bound search in the two-dimensional
and three-dimensional cases.

3. What are the main advantages and disadvantages of exact solution methods for the nearest neighbor
compliance problem?
The foremost advantage of an exact solution method in the case of the nearest neighbor compliance

85
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problem, is that optimal SWAP gate insertion in small circuits is carried through to bigger circuits in
which the small circuits are often incorporated. In the bigger circuits, there might be a better way to
combine the small circuits, but it is at least compartment-wise optimal. Another benefit of an exact
solution approach is that heuristic solutions can now be evaluated and compared to exact solutions
for the benchmark instances that we have analyzed. There are several disadvantages to our approach
due to the restrictive assumptions and simplifications that we have made: 1) The gate decomposition
method is fixed for each gate-type, no optimization is done in this area, 2) The gate sequence is fixed
while, under certain commutative conditions, it can be allowed and beneficial to change the gate se-
quence, 3) The depth of a circuit, which is related to the running time on a quantum computer and
which is limited by the coherence times of the qubits, is not taken into consideration directly.

Now that each of the sub-questions have been answered, we provide an answer to the main research question.

How can we effectively convert quantum circuits by inserting SWAP gates, such that the converted circuits com-
ply with the nearest neighbor constraints? The graph theoretical model that we presented mostly functions as
an intuitive introduction to the problem and is unsuited to evaluate circuits with even ten qubits. The frame-
work of integer linear programming enables the implicit calculation of the Kendall tau distance in the case of
a linear array qubit architecture. The resulting model has the capacity to evaluate larger benchmark instances
to the nearest neighbor compliance problem with an exact solution approach than previously possible. In the
case where qubits are placed on two- or three-dimensional grids, the proposed models do not incorporate the
implicit calculation of the number of inserted SWAP gates and require more variables and constraints. Only
taking into account one manner of decomposing multi-qubit gates and a fixed gate sequence, we can hardly
claim that our models provide circuits that are optimal in all regards. However, the results show that in terms
of circuit size, the proposed methods outperform current exact solution approaches in the literature.

Besides the main focus of the thesis, a few other topics have been analyzed. The remaining research areas
as indicated in Table 1.1 were each analyzed in Part II of this thesis. We provided a literature review for the
Global Reordering problem. The other two settings that we have considered in which calculation overhead is
minimized are about distributed quantum computing. We have formulated the nearest neighbor compliance
problem on a linear array of multiple quantum computers as an ILP. Here, we distinguish between SWAP op-
erations that swap qubits between different computers from SWAP operations that swap qubits that are on
the same computer. We have also introduced the Celestial Reordering problem, which concerns the mini-
mization of interactions between different quantum computer by considering the initial qubit placement. In
Celestial Reordering, different computer architectures are considered, and an ILP formulation is provided for
each architecture. The results on the topics regarding distributed quantum computing, have been submitted
for possible publication.

12.2. Future Research
There are several promising areas of research as to how this work can be extended. In this section we suggest
several topics that could lead to potentially interesting theory.

We expect that the most easily obtainable results can be found by looking into patterns regarding quantum
circuits that can have a variable input in the number of qubits. To improve the results for a widely used circuit,
the Quantum Fourier Transform (QFT) for example, one could compare the evaluations on different sizes of
the circuit. Right now, we have evaluated the QFT circuit from three up to ten qubits. Finding a pattern
between the optimal SWAP insertions for the different sizes of the QFT is highly likely and the results can
likely be extended to the more general case of n qubits.

Another interesting research area would be to implement both a Breadth First Search and the A∗ algorithm
to see how the single pair shortest path formulation performs in combination with the heuristic. The most
promising part of this area would be to evaluate quantum circuits that consist of few qubits and a lot of quan-
tum gates. Another approach would be to generate the adjacent transposition graph as it is being explored by
a shortest path algorithm. In that case, not all of the O (n!m) nodes and edges have to be generated explicitly,
but only those considered for the route. Since the number of SWAP gates in most benchmark instances is
very limited, the number of explored nodes and edges should similarly remain small relative to the size of the
entire graph.

Similarly, one could opt for a reduction to the Traveling Salesman problem (TSP) or a variant thereof. We
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expect that the size of the graph in this case, could scale linearly in the number of qubits and gates. A lot of
work was already done to solve the TSP efficiently. The available results on the TSP could then be adapted to
solve the Nearest Neighbor Compliance problem more efficiently than current attempts.

One of the perhaps more challenging directions of research is on the theoretical side. Proving that the Near-
est Neighbor Compliance problem as formulated in this work is NP-complete, would be an achievement. We
suggest to reduce the NP-complete Subgroup Distance problem to the Nearest Neighbor Compliance prob-
lem by introducing quantum gates at the start of a circuit that limit the qubit order to a certain subgroup of
the symmetric group and working from there.

The most interesting and perhaps most challenging research topic regards a metric alike the Kendall tau
metric, but for two- and three- dimensional grid qubit architectures. If such a metric can be implicitly cal-
culated in an integer linear program, the scaling of the size of the proposed models for the two- and three-
dimensional cases can be reduced by a factor of up to n2 variables. A resulting model can be used to evaluate
larger benchmark instances that can in turn be used to evaluate heuristic methods.

Deviating from the main focus, and redirecting attention to the related research areas, which were discussed
in Part II, could also prove worthwhile. Not a lot of attention was focused on the areas involving discrete
quantum computing. Simple heuristics and naive implementations of exact algorithms could already help to
indicate the difficulty of the proposed problems. The problem of Celestial reordering can potentially benefit
from the existing literature on clustering algorithms.
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