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Abstract

The optimality of the kernel number and kernel centers plays a significant role in determining the approximation power of
nearly all kernel methods. However, the process of choosing optimal kernels is always formulated as a global optimization
task, which is hard to accomplish. Recently, an algorithm, namely improved recursive reduced least squares support
vector regression (IRR-LSSVR), was proposed for establishing a global nonparametric offline model, which demonstrates
significant advantage in choosing representing and fewer support vectors compared with others. Inspired by the IRR-
LSSVR, a new adaptive parametric kernel method called WV-LSSVR is proposed in this paper using the same type of
kernels and the same centers as those used in the IRR-LSSVR. Furthermore, inspired by the multikernel semiparametric
support vector regression, the effect of the kernel extension is investigated in a recursive regression framework, and a
recursive kernel method called GPK-LSSVR is proposed using a compound type of kernels which are recommended for
Gaussian process regression. Numerical experiments on benchmark data sets confirm the validity and effectiveness of the
presented algorithms. The WV-LSSVR algorithm shows higher approximation accuracy than the recursive parametric
kernel method using the centers calculated by the k-means clustering approach. The extended recursive kernel method
(i.e. GPK-LSSVR) has not shown advantage in terms of global approximation accuracy when validating the test data
set without real-time updation, but it can increase modeling accuracy if the real-time identification is involved.
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1. Introduction

Seeking optimality in selecting the number and the
centers’ position of the kernel basis functions has been
a defining feature of applying the kernel basis function
based identification method[1][2], particularly those deal-
ing with complex dynamic systems. Given a modeling data
set, the task of determining the centers and the number
of the kernel basis functions becomes a global optimiza-
tion problem, which usually requires a high computational
load especially when the modeling data set is of large
scale[2][3]. Many achievements concerning kernel selec-
tion exist in the literature. Among many examples are the
orthogonal least squares [4], clustering algorithms such
as k-means[2], and more recently, many efforts in reduc-
ing the dependency between the kernel basis number and
the training data number[5][6][3]. Despite the abovemen-
tioned achievements in selecting the centers and number
of the kernel basis functions, a novel type of learning ma-
chine called support vector machine (SVM) has proven to
be a good alternative. As suggested by Bernhard et al.

1Corresponding author: Liguo Sun, Email: L.SUN@Tudelft.nl

[7], the SVM has an advantage in providing high-quality
centers for other kernel methods. In other words, the ker-
nel methods using the centers calculated by SVM enjoy
higher approximation accuracy than the classical radial
basis function (RBF) machine.

Support vector machines (SVMs) proposed basing on
structural risk minimization (SRM) principle are state of
the art learning algorithms for pattern recognition and
function approximation [8][1][2]. To reduce the computa-
tional complexity in training process, one of its branches,
namely least squares support vector machine (LSSVM),
was proposed by Suykens et al.[9] [10]. In LSSVM, only
a linear equation set needs to be solved rather than a
quadratic programming problem as in classical SVMs. How-
ever, LSSVM has also incurred a new problem, that is, its
solution suffers from lack of sparseness and robustness[11].
In LSSVM, all training samples become support vectors
owing to the equality constraints, and its loss function
takes a squared errors form. As a consequence, it needs a
high computational load in training and has bad robust-
ness. To overcome these drawbacks, many efforts have
been made by Suykens[12], De Kruif and De Vries[13],
Hoegaerts[14], Zeng and Chen[15] and Jiao[16] et al. For
large data sets, Brabanter et al.[17] and Karsmakers et
al.[6] recently developed the fixed-size kernel (SVR) mod-
eling method. More recently, a novel and much sparser
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LSSVRmethod named improved recursive reduced LSSVR
(IRR-LSSVR) is proposed by Zhao and Sun et al.[18] af-
ter combining a reduced technique [19] with the iterative
strategy[16]. In each iteration, all the remaining non-
support data points will be evaluated, and the data lead-
ing to a maximum reduction in the overall squared fitting
errors is introduced. Above all, IRR-LSSVR exploits an
improved criterion for selecting optimal support vectors
recursively, which takes into account the adaptation of ex-
isting weights by the will-selected support vectors when
introducing a new support vector. Consequently, IRR-
LSSVR leads to a sparser SVMmodel when compared with
other LSSVRmethods. That is to say, it needs less support
vectors while keeping almost the same approximation ac-
curacy without greatly increasing the computational time
in training[18].

Furthermore, the choice of kernel function type plays a
paramount role in determining the modeling performance
of a kernel method. When the modeling system owns
different data trends in different subdomains, the kernel
method using single kernel commonly cannot lead to a
satisfying result, i.e. the model does not globally fit the
data. Multikernel learning algorithms [20] [21][22][23] have
been intensively investigated during the last decade. Their
superiority of leading to high approximation accuracy and
the necessity has been demonstrated by Ong et al.[22].

The objective of this paper is to present an adaptive
fixed-size kernel method called WV-LSSVR, which takes
advantage of IRR-LSSVR in selecting kernel centers, for
global model real-time identification. Meantime, multik-
ernel effect on the kernel basis function based modeling
method is also investigated, and an online GPK-LSSVR
kernel method is developed by extending the single Gaus-
sian kernel into a compound kernel recommended for Gaus-
sian process regression. Note that, GPK-LSSVR is an im-
proved version of WV-LSSVR.

This paper is structured as follows. In Sec. 2, the pre-
liminaries on reduced LSSVR is briefly introduced. The
new adaptive methods will be developed in Sec. 3. Results
and analysis will be given in Sec. 4. Finally, the paper is
concluded by Sec. 5.

2. Preliminaries on recursive reduced LSSVR

Because the centers of the kernels used in the laterly
proposed kernel method will be calculated using recursive
reduced LSSVR (RR-LSSVR), the preliminaries on RR-
LSSVR is briefly introduced in this section.

2.1. Reduced Least Squares Support Vector Regression

Given a training data set {(xi, di)}
N

i=1
where xi ∈ R

m

is the input with m-dimension and di ∈ R is its corre-
sponding model output. The least squares support vector
regression is solved by solving the following optimization
problem:

min
w,e,b

{

1

2
wTw +

C

2

N
∑

i=1

e2i

}

(1)

s.t. di = wTϕ (xi) + b + ei, i = 1, ..., N . where w is
the normal vector of the hyperplane, b is the offset, e =
[e1, ..., eN ]

T
denotes the prediction residual vector, C ∈

R
+ is the regularization parameter, ϕ (·) is the mapping

from the input space to the feature space. In literature,
this constrained optimization problem is solved by intro-
ducing Lagrangian factors:

L (w, b, e, α) =
1

2
wTw +

C

2

N
∑

i=1

αi

(

di − wTϕ (xi)− b− ei
)

(2)
where α is the Lagrangian multiplier vector. The condi-
tions for optimality are

∂L

∂w
= 0 → w =

N
∑

i=1

αiϕ(xi), (3a)

∂L

∂b
= 0 →

N
∑

i=1

αi = 0, (3b)

∂L

∂ei
= 0 → αi = Cei, (3c)

∂L

∂αi

= 0 → wTϕ (xi) + b+ ei − di = 0, (3d)

Eliminating the vectors w and e, the following linear equa-
tions set is obtained:

[

0 ~1T

~1 K̄

] [

b
α

]

=

[

0
d

]

(4)

where ~1 = [11, ..., 1N ]
T
,d = [d1, ..., dN ]

T
,K̄ij = k (xi, xj) =

ϕ(xi)
Tϕ(xj) + δij/C with

δij =

{

1, if i = j

0, if i 6= j
, i, j = 1, ..., N

k (xi, xj) is the kernel function on the paired input vectors
{(xi, xj) , i = 1, ..., N ; j = 1, ..., N}. The commonly used
kernel function is the Gaussian defined by k (xi, xj) =

exp
(

−‖xi − xj‖
2
/2γ2

)

. After obtaining the solution α

from Eq. 4, for any new testing sample x ∈ R
m, the pre-

dicting value is derived as follows:

f (x) =

N
∑

i=1

αik (xi, x) + b (5)

Assuming that {(xi, di)}
M

i=1
is a reduced subset of orig-

inal training samples, and are used to construct an ap-
proximation to the aforementioned normal LSSVR. From
Eq. 3, the sparse expression of w can be rewritten as
w =

∑

i∈S

αiϕ(xi) with S the index subset of {1, ..., N}.
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After substituting w into Eq. 1, we get the equivalent for-
mulation of the optimization problem[24]:

min
b,αS

{

L (b αS) =
1

2
αT
SKαS +

C

2

N
∑

i=1



di −
∑

j∈S

αj ·

ϕ (xj)
T
ϕ (xi)− b

)2
}

(6)

where Kij = k (xi, xj) , i, j ∈ S, αS denotes the sub-
vector of α indexed by S. Eq. 6 can be reformulated into
the following economy form[24]:

min
b,αS

{

L =
[

b αT
S

]

([

0 ~0T

~0 K/C

]

+
[

~1T K̂
]

[

~1

K̂T

])[

b
αS

]

−2
([

~1T K̂
]

d
)T

[

b
αS

]}

(7)
where K̂ij = k (xi, xj) , i, j ∈ S, ~1 is a vector of all ones in

an appropriate dimension, ~0 is a vector of all zeros in an
appropriate dimension. Let ∂L ∂b = 0 and ∂L ∂αS = 0,
Eq. 7 can reach its optimal value at

(

R+ ZZT
)

[

b
αS

]

= Zd (8)

where

R =

[

0 ~0T

~0 K/C

]

, Z =

[

~1T

K̂

]

By solving Eq. 8, a reduced LSSVR estimator is derived
for a testing sample x:

f (x) =

N
∑

i∈S

αik (xi, x) + b (9)

2.2. Improved algorithm for selecting support vectors

In IRR-LSSVR [18], an improved criterion was devel-
oped for RR-LSSVR. In each iteration, all the remaining
non-support data points will be evaluated, and the data
leading to a maximum reduction in the overall squared fit-
ting errors is introduced. Above all, the adaptation of the
weights by the will-selected support vectors is taken into
account when introducing a new support vector.

3. Parametric kernel methods with their centers

determined by LSSVR

The property of a kernel, a nonlinear mapping function
from the original space to the feature space, directly de-
termines the approximation accuracy of SVM. Meantime,
sparseness plays a crucial role in making the kernel models
enjoy better prediction performance in terms of generaliza-
tion performance and testing time. However, the kernel
center selection process usually has a high computational
time requirement. Since IRR-LSSVR has an superiority

in fastly selecting optimal locations and number of all ker-
nels, it provides a tool for all the general kernel methods to
determine the number and locations of the kernels when
constructing global model. In both kernel methods pro-
posed in this paper, IRR-LSSVR is utilized to deal with
the pre-collected static training data pool to get the opti-
mal support vectors S = {x1, x2, ..., xM}, which are laterly
used as kernel centers.

In many circumstances, like for example in real-time
model identification, an online global kernel method pro-
vides a good alternative to other possible online identi-
fication algorithms. In the remainder of this paper, we
will focus on developing an online kernel method basing
on IRR-LSSVR. As an attempt, a fixed-size online para-
metric kernel method has been developed by introducing
classical weights updation technique after the kernel cen-
ters have been determined using IRR-LSSVR.

As a further step, kernel extention has been studied in-
spired by the multikernel support vector regression, which
has shown its superiority in terms of improving approx-
imation power. As indicated by Zhao et al. [23], apart
from introducing new support vectors, an alternative way
to enhance modeling accuracy is to expand the kernel ba-
sis functions, like for example adding a constant term and
a linear term to the Gaussian kernel. Specially, kernel ex-
tention becomes essential when the local data trend among
different subdomains of the system varies greatly.

3.1. Recursive kernel method using the support vectors

In IRR-LSSVR, a Gaussian kernel was adopted by Zhao
et al.[18] with the expression:

k (xn,xm) = exp

{

−
‖xn − xm‖

2

2γ2

}

(10)

Note that the Gaussian kernels are centered on the se-
lected support vectors as shown in Eq. 9, and the outputs
of the kernel basis functions ker (xi, ·) constitute inputs in
the feature space rather than outputs. As shown in Eq. 9,
the weights α are associated with each of the support vec-
tors. If we want to develop a new online fixed-size kernel
method for identifying global model in real-time, we can
collect abundant modeling data with enough excitation in-
formation at first, and then use IRR-LSSVR to calculate
the centers for the parametric kernel method. Having de-
termined the number and the centers of the kernels, we
can then use classical recursive least squares approach to
update the weights for each kernel basis functions at each
time step. In each iteration, the mapping relationship be-
tween the two input spaces remains the same, but the sur-
face shape of the implicit function defined in the high di-
mensional feature space is always adapted.

In this section, a novel online fixed-size kernel method
is developed. This method employs Gaussian kernels as
well as the kernel number and positions calculated us-
ing IRR-LSSVR. Having chosen the kernel determination
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technique, we can then realize an online regression frame-
work by applying a classical recursive least squares method.
In specific, the weights α are set as initial weights, which
determine the initial shape of the function output surface
in the feature space. Unlike the weights α, the scalar vari-
able b shown in Eq. 9 is not updated at each time step.
Since the weights of the proposed method vary with time,
the method is refered to as weights varying LSSVR (WV-
LSSVR) for short.

Before going further, we need to have a discussion on
the WV-LSSVR. IRR-LSSVR is an offline learning ma-
chine, therefore, we need to collect, in advance, enough
representing modeling data with full coverage of the sys-
tem under identification. Besides, the kernel selection
method (i.e. IRR-LSSVR) is a nonparametric method,
and the scale of the model increases continuously with
the increment of the support vector number. Apart from
the kernel center selection process, the WV-LSSVR be-
comes a parametric online kernel method suitable for iden-
tifying dynamic global model in real-time. In sum, the
WV-LSSVR is a hybrid kernel method, which comprises
two processes: kernel center selection process using pre-
collected modeling samples and recursive identification of
the kernel weights.

3.2. Extension of the kernel basis function

A widely used kernel function for Gaussian process re-
gression is given by the exponential of a quadratic form,
with the addition of constant and linear terms [2] [pp.307]:

k (xn,xm) = an0·exp

{

−
an1 ‖xn − xm‖

2

2

}

+an2+an3x
T
nxm

(11)
where xn is the input vector of the current evaluation data
and xm is one of the support vectors selected offline using
IRR-LSSVR. Note that the term involving θ3 corresponds
to a parametric model that is a linear function of the input
variables.

By introducing an1 = 1

γ2 , we can get

k (xi,xj) = θi1 ·exp

{

−
‖xi − xj‖

2

2γ2

}

+θi2+θi3x
T
i xj (12)

where xi ∈ S, and S = {x1, ...,xn} is the selected sub
set of support vectors calculated using IRR-LSSVR. Once
again, the kernel functions are centered on the selected
support vectors, and the their bandwidth are chosen the
same as those used in IRR-LSSVR. This novel adaptive
kernel method will be referred to as Gaussian process ker-
nel based LSSVR (GPK-LSSVR) in the remainder of this
paper. The parameters of the kernel model that needs to
be recursively updated has the following expression:
c = [θ11, θ12, θ13, · · · , θi1, θi2, θi3, · · · , θM1, θM2, θM3]

⊤
, where

i ∈ [1, · · · ,M ] and M is the number of support vectors. In
what follows, the implementing flowchart of GPK-LSSVR

is depicted in Algorithm 1.

Algorithm 1. GPK-LSSVR

step.1 Basing on the a priori experience of the model, gather
and select offline input-output training data set {(xi, di)}

N

i=1

with as large coverage of the input space as possible.
step.2 Choose the optimal support vector set {(xi, di)}

M

i=1

from {(xi, di)}
N

i=1
and calculate the unknown param-

eters αS , b as shown in Eq. 8 using IRR-LSSVR from
[18].

step.3 Extend the nominal Gaussian kernel shown in Eq. 10
into the kernel shown in Eq. 12. The kernel centers
are determined by the support vector set {(xi, di)}

M

i=1
.

The initial value of θ1 = [θ11, θ21, · · · , θM1] is deter-
mined by αS , and the initial values of θ2 and θ3 are
set to be zero.

step.4 Update the parameters θ1, θ2 and θ3 using recursive
least squares method when evaluating new testing
data. Execute step.4 recursively for each new data.

3.3. Computational complexity

According to [18], both WV-LSSVR and GPK-LSSVR
have the same computational complexity in timeO

(

M ·N2
)

for each iteration in the kernel center determination pro-
cess shown in step.2, where M is the number of selected
support vectors and N is the total number of modeling
data. The computational complexity in recursively updat-
ing the model using a newly available data is tabulated
in Table 2 with m the dimension of the input variables.
As shown in Table 1, the computational complexity of

Table 1: Computational complexity in each time step

algorithms time memory

WV-LSSVR O
(

m ·M +M
2
)

O
(

m ·M +M
2
)

GPK-LSSVR O
(

m ·M + (3M)2
)

O
(

m ·M + (3M)2
)

both methods comprises two parts: kernel basis regres-
sion vector computation O (m ·M), and the parameter
updation using the recursive least squares method O

(

M2
)

or O
(

(3M)
2
)

. According to Table 1, the computational

complexity in evaluating a new data will increase quadrat-
ically if the number of support vectors increases.

4. Experiments and Results

To demonstrate the feasibility and efficiency of WV-
LSSVR and GPK-LSSVR methods, we will carry out a
set of 14 experiments using benchmark data sets and a
data set from a real-world object. Among the benchmark
data sets, motor-UPDRS, total-UPDRS, winequality-red,
winequality-white, concrete, autoMPG, abalone, Boston
housing are from the well-known UCI repository 2, and
stock, delta elevators, delta ailerons, kinematics, cpu-act,
puma8NH are found from the itorgo collection3. In ad-

2Available from URL:http://archive.ics.uci.edu/ml/.
3URL:http://www.liaad.up.pt/ ltorgo/Regression/DataSets.html.
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dition, one data set from a real-world object is also used
to validate the methods, that is, the data from the diesel
engine[25]. All experiments are finished on an Intel i5 CPU
E31270 (3.40 GHz) processor with 16.00 GB RAM in a
Matlab2010b environment.

The rooted mean squared errors (RMSE) and normal-
ized mean squared errors (NMSE) criteria are used to eval-
uate the approximation power of the proposed methods,
where the RMSE is defined as:

RMSE =

√

√

√

√

√

N
∑

i=1

(

d̂i − di

)2

N
(13)

The NMSE is defined as:

NMSE =
1

△2 N

N
∑

i=1

(

di − d̂i

)2

(14)

where

△
2=

1

N − 1

N
∑

i=1

(

di − d̄
)2

with d̄ the mean of the measured values, d̂i the predicted
value, and di the measured value.

4.1. Comparison with the k-means clustering approach

For comparison purpose, a classical k-means clustering
(KMC) based RBF kernel method[2][7] was also imple-
mented. Three kernel methods, named KMC-RBF, WV-
LSSVR and GPK-LSSVR separately, were compared with
each other with special concentration on the optimality
of the selected kernel centers. The aforementioned bench-
mark data sets were applied to validate the performance
of the kernels chosen using IRR-LSSVR and the KMC
method separately. As a first step in the numerical exper-
iments, the training data set was utilized to calculate the
number and centers for all the kernel basis functions. As a
second step, the same training data set was used again to
train the model in a recursive manner. As a third step, the
identified model from the previous process was evaluated
using the testing benchmark data sets. Note that all the
kernel parameters are selected the same as those used in
IRR-LSSVR[18].

Fig. 1 and Fig. 2 depict the effects of the k-means clus-
tering threshold σ and the kernel number on KMC-RBF
basing on the ’total UPDRS’ data set. As can be seen
from Fig. 1, when the threshold σ deceases, RMSE also de-
creases. In addition, once σ is smaller than some value (i.e.
0.01), the influence of its reduction on the approximation
accuracy becomes negligible. In Fig. 1, the RMSE first de-
creases, then increases, and gets its minimum around 750.
Fig. 2 gives the same trend information on NMSE.

Fig. 3 and Fig. 4 give the comparison results of KMC-
RBF, GPK-LSSVR and WV-LSSVR basing on the ’to-
tal UPDRS’ data set. Although IRR-LSSVR is an offline
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Fig. 1: RMSE of KMC-RBF, under different σ, total UPDRS.
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Fig. 2: NMSE of KMC-RBF, under different σ, total UPDRS.
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Fig. 3: RMSE for total UPDRS, γ = 25, C = 2−2, σ = 0.01.
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Fig. 4: NMSE for total UPDRS, γ = 25, C = 2−2, σ = 0.01.

method, it is utilized to provide a baseline for the compari-
son results of the abovementioned methods. The effects of
different kernel number and different kernel centers on the
approximation power are demonstrated. As can be seen
from Fig. 3, GPK-LSSVR enjoys the same level of approx-
imation accuracy as both WV-LSSVR and IRR-LSSVR,
while it has a far more higher approximation accuracy than
KMC-RBF. Due to similarity and limitation of space, ex-
cept for ’total UPDRS’, the comparison results for all of
the other benchmark data sets are tabulated in Table 2.
In all of the following numerical experiments, σ is selected
as 0.01, and other parameters for IRR-LSSVR are chosen
the same as those in [18].

In Table 2, seTime denotes the consumed time for kernel
selection process, and trTime is the time for identifying the
global model recursively. Besides, teTime represents the
evaluation time using the testing samples without model
adaption, while trNum and teNum stand for the number
of training data points and testing data points separately.
Last but not the least, ♯SV gives the number of support
vectors. The numbers of the support vectors are chosen
the same as those used in [18].

According to Table 2, both WV-LSSVR and GPK-
LSSVR enjoy a lower RMSE when compared with the
KMC-RBF method. This indicate that the kernels used
in both WV-LSSVR and GPK-LSSVR methods, which are
determined using IRR-LSSVR, own higher approximation
power than the kernels used in KMC-RBF method, which
are calculated using the KMC algorithm. When compared
with WV-LSSVR, GPK-LSSVR leads to more or less the
same global approximation accuracy.

Furthermore, the seTime of IRR-LSSVR is comparable
to, even if it is not always smaller than, that of the KMC.

4.2. Recursive identification results on extended kernel ba-

sis functions

Indicated by [23], multikernel SVMs have demonstrated
superiority in enhancing approximation power, especially
when the local data trend in one sub domain differs greatly
from that in another sub domain. In view of this, the ef-
fects of extending the kernel basis functions are explored
in a recursive model identification framework. To illus-
trate the benefits of the extended kernel basis function,
the GPK-LSSVR method is compared with WV-LSSVR,
and the results are tabulated in Table 3. This experi-
ment consists of two steps. At the first step, IRR-LSSVR
was utilized to calculate the kernel centers for both WV-
LSSVR and GPK-LSSVR using the benchmark training
data. Subsequently, both of the previous methods were
employed to learn and evaluate the testing benchmark
data sets at the second step. We also should note that
GPK-LSSVR and WV-LSSVR use the same kernel centers
as those of IRR-LSSVR, which warrants a fair comparison.
Fig. 5 and Fig. 6 give the comparison results of IRR-
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Fig. 5: RMSE for total UPDRS, γ = 25, C = 2−2.

RBF, GPK-LSSVR and WV-LSSVR using ’total UPDRS’
data set. WV-LSSVR and GPK-LSSVR methods lead to
a higher approximation accuracy than IRR-LSSVR, which
is mainly because that the testing benchmark data are also
involved in updating the model in the former methods. In
addition, as can be seen from Fig. 5, GPK-LSSVR enjoys a
higher level of approximation accuracy than WV-LSSVR.
This improvment should be ascribed to the extention of
the kernel basis function, since the extended kernel allows
a fast adaptation to higher degree of nonlinearity in lo-
cal data trends and provides higher degree of freedom on
modeling parameters for optimization. Again, due to sim-
ilarity and limitation of space, except for ’total UPDRS’,
the comparison results for all of the other benchmark data
sets are tabulated in Table 3. In all of the following numer-
ical experiments, kernel parameters are chosen the same as
those used in IRR-LSSVR from [18].
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Table 2: Comparison results with the K-means clustering method
data sets algorithms RMSE NMSE seTime[s] trTime[s] teTime[s] trNum teNum ♯SV
motor UPDRS C⋆ = 25 KMC-RBF 6.9765 7.5682E-01 216.3110 47.1279 1.7748 3000 2875 350
γ⋆ = 2−2, 40 inputs WV-LSSVR 6.6354 6.8461E-01 46.3323 48.3603 2.1684 3000 2875 350

GPK-LSSVR 6.6393 6.8542E-01 46.8159 818.0848 5.3196 3000 2875 350
total UPDRS C⋆ = 25 KMC-RBF 9.1513 7.5247E-01 136.8129 23.0257 1.5288 3000 2875 260
γ⋆ = 2−2, 16 inputs WV-LSSVR 8.5437 6.5587E-01 30.1862 25.0226 1.5600 3000 2875 260

GPK-LSSVR 8.5546 6.5753E-01 30.2642 522.6190 3.9312 3000 2875 260
wineequality-red C⋆ = 25 KMC-RBF 9.4202E-01 13.6340E-01 0.2808 0.2652 0.0312 1000 599 19
γ⋆ = 2−1, 11 inputs WV-LSSVR 6.2926E-01 6.0837E-01 1.2324 0.1560 0.0312 1000 599 19

GPK-LSSVR 5.2162E-01 5.9368E-01 1.2324 0.7956 0.3588 1000 599 19
wineequality-white C⋆ = 26 KMC-RBF 7.3611E-01 6.9254E-01 11.4349 3.3072 0.5460 3500 1398 70
γ⋆ = 20, 11 inputs WV-LSSVR 7.1246E-01 6.4875E-01 17.7373 3.4944 0.2808 3500 1398 70

GPK-LSSVR 7.1283E-01 6.4943E-01 17.8465 15.5845 0.6240 3500 1398 70
concrete C⋆ = 26 KMC-RBF 7.2130 19.192E-02 7.8000 1.4352 0.5616 700 330 125
γ⋆ = 2−1, 8 inputs WV-LSSVR 5.8509E-01 12.628E-02 1.1700 1.6848 0.2652 700 330 125

GPK-LSSVR 5.9394 13.013E-02 1.1232 13.7437 0.4212 700 330 125
Boston housing C⋆ = 25 KMC-RBF 4.4051 2.0304E-01 1.7628 0.4992 0.0624 400 106 90
γ⋆ = 2−1, 13 inputs WV-LSSVR 2.6189 7.1766E-02 0.3432 0.6240 0.0468 400 106 90

GPK-LSSVR 2.6397 7.2912E-02 0.3432 3.8064 0.0936 400 106 90
delta elevators C⋆ = 25 KMC-RBF 1.4578E-03 3.7374E-01 3.0576 3.0108 0.7644 6000 3517 36
γ⋆ = 20, 6 inputs WV-LSSVR 1.4505E-03 3.7001E-01 56.2384 2.6208 0.7800 6000 3517 36

GPK-LSSVR 1.4508E-03 3.7017E-01 56.0980 9.0481 1.0452 6000 3517 36
puma8NH C⋆ = 25 KMC-RBF 4.0173 5.1544E-01 41.0751 5.9592 0.9984 4500 3693 90
γ⋆ = 2−1, 8 inputs WV-LSSVR 3.3622 3.6104E-01 31.5122 5.6940 0.9672 4500 3693 90

GPK-LSSVR 3.3633 3.6128E-01 34.4606 49.4991 2.1216 4500 3693 90
cpu act C⋆ = 28 KMC-RBF 4.3084 5.8782E-02 790.4415 22.1989 1.7628 5000 3192 200
γ⋆ = 20, 21 inputs WV-LSSVR 2.5893 2.1231E-02 55.2244 22.9477 1.7940 5000 3192 200

GPK-LSSVR 2.5898 2.1238E-02 66.8464 332.0325 3.7752 5000 3192 200
delta ailerons C⋆ = 25 KMC-RBF 1.6508E-04 3.0721E-01 5.1324 4.3056 0.7332 5000 2129 60
γ⋆ = 2−1, 40 inputs WV-LSSVR 1.6288E-04 2.9906E-01 37.0658 5.1168 0.8424 5000 2129 60

GPK-LSSVR 1.6284E-04 2.9891E-01 37.5650 16.4269 0.6552 5000 2129 60
Ablone C⋆ = 25 KMC-RBF 2.5246 5.6284E-01 0.0780 0.1404 0.0312 3000 1177 15
γ⋆ = 21, 8 inputs WV-LSSVR 2.1808 4.2000E-01 11.6377 0.5304 0.0312 3000 1177 15

GPK-LSSVR 2.1829 4.2080E-01 11.9029 1.8876 0.2808 3000 1177 15
stock C⋆ = 210 KMC-RBF 12.3160E-01 3.6105E-02 2.3868 1.0608 0.3432 600 350 100
γ⋆ = 2−1, 9 inputs WV-LSSVR 8.1528E-01 1.5822E-02 0.6864 0.7956 0.2496 600 350 100

GPK-LSSVR 8.1737E-01 1.5904E-02 0.7020 7.1448 0.6864 600 350 100
AutoMPG C⋆ = 210 KMC-RBF 3.1642 1.4336E-01 0.0156 0.0156 0.0060 350 42 11
γ⋆ = 21, 7 inputs WV-LSSVR 2.6098 0.9753E-01 0.1716 0.0624 0.0240 350 42 11

GPK-LSSVR 2.5320 0.9179E-01 0.1716 0.1248 0.0300 350 42 11
kinematics C⋆ = 24 KMC-RBF 9.8647E-02 14.4530E-02 753.8748 179.9004 3.6504 4500 3693 500
γ⋆ = 2−1, 8 inputs WV-LSSVR 7.9163E-02 9.3077E-02 166.1255 239.1495 3.9312 4500 3693 500

GPK-LSSVR 7.9123E-02 9.2981E-02 162.7090 3851.6335 9.4693 4500 3693 500
diesel engine C⋆ = 210 KMC-RBF 6.7024E-02 1.1151E-03 0.0156 0.0156 0.0156 210 198 15
γ⋆ = 1.69, 3 inputs WV-LSSVR 2.2658E-02 1.2743E-03 0.0936 0.0624 0.0158 210 198 15

GPK-LSSVR 2.2389E-02 1.2442E-03 0.1092 0.1248 0.0514 210 198 15

In Table 3, trTime gives the computational time of
selecting kernel centers using IRR-LSSVR, while teTime
shows the total recursive identification time on the bench-
mark testing data sets. Besides, the column marked with
baseline RMSE shows the RMSE values of the baseline
method (i.e.IRR-LSSVR) when evaluating the testing data
without updating the model. As can be seen from the
RMSE column, the approximation accuracy of both WV-
LSSVR and GPK-LSSVR methods is higher than that of
the baseline method, this is mainly because the testing
data are also used to update the global model in real-
time. Furthermore, If we compare GPK-LSSVR with WV-
LSSVR, it is found that the former enjoys a higher approx-
imation accuracy than the latter in recursive identification
using the aforementioned parametric kernel methods. In

addition, GPK-LSSVR always owns a higher approxima-
tion accuracy than WV-LSSVR though the magnitude of
the improvement varies on different data sets. This is due
to the fact that the Gaussian process kernel provide more
freedom than the single Gaussian kernel for the recursive
parametric kernel method, which allows the kernel model
to track the different data trends among different sub do-
mains. At last, it should also be noted that the computa-
tional time of GPK-LSSVR keeps still comparable to that
of the WV-LSSVR, which is in consistent with the analysis
result shown in Table 1.

5. Conclusions

In the field of SVMs, convincing results have been
achieved on techniques of selecting optimal support vec-
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Table 3: Comparison results concerning the extended kernel functions
data sets baseline RMSE algorithms RMSE NMSE trTime[s] teTime[s] trNum teNum ♯SV
motor UPDRS C⋆ = 25

6.5859
WV-LSSVR 5.7273 5.1004E-01 37.4035 11.3455 3000 2875 350

γ⋆ = 2−2, 40 inputs GPK-LSSVR 5.6997 5.0515E-01 44.6163 722.7526 3000 2875 350
total UPDRS C⋆ = 25

8.5098
WV-LSSVR 7.4859 5.0351E-01 30.6386 27.0350 3000 2875 260

γ⋆ = 2−2, 16 inputs GPK-LSSVR 7.4632 5.0046E-01 28.5638 384.4957 3000 2875 260
wineequality-red C⋆ = 25

6.2870E-01
WV-LSSVR 5.7554E-01 5.0892E-01 1.2324 0.3120 1000 599 19

γ⋆ = 2−1, 11 inputs GPK-LSSVR 5.4157E-01 4.5063E-01 1.0920 0.4992 1000 599 19
wineequality-white C⋆ = 26

7.1215E-01
WV-LSSVR 6.7444E-01 5.8136E-01 17.5501 1.2480 3500 1398 70

γ⋆ = 20, 11 inputs GPK-LSSVR 6.6549E-01 5.6603E-01 18.1429 7.5036 3500 1398 70
concrete C⋆ = 26

5.8783
WV-LSSVR 3.2515E-01 3.9001E-02 1.1076 0.7176 700 330 125

γ⋆ = 2−1, 8 inputs GPK-LSSVR 3.0922 3.5272E-02 1.0608 8.0653 700 330 125
Boston housing C⋆ = 25

2.6354
WV-LSSVR 0.7371 0.5685E-02 0.3900 0.2184 400 106 90

γ⋆ = 2−1, 13 inputs GPK-LSSVR 0.5896 0.3637E-02 0.4680 1.1700 400 106 90
delta elevators C⋆ = 25

1.4503E-03
WV-LSSVR 1.4293E-03 3.5926E-01 38.4889 0.3900 6000 3517 36

γ⋆ = 20, 6 inputs GPK-LSSVR 1.4223E-03 3.5575E-01 53.7423 4.6488 6000 3517 36
puma8NH C⋆ = 25

3.3616
WV-LSSVR 3.1171 3.1032E-01 33.0566 5.7876 4500 3693 90

γ⋆ = 2−1, 8 inputs GPK-LSSVR 3.0954 3.0602E-01 31.1690 35.02094 4500 3693 90
cpu act C⋆ = 28

2.5816
WV-LSSVR 2.2841 1.6521E-02 64.4440 17.0821 5000 3192 200

γ⋆ = 20, 21 inputs GPK-LSSVR 2.2462 1.5977E-02 56.1604 179.8536 5000 3192 200
delta ailerons C⋆ = 25

1.6278E-04
WV-LSSVR 1.5366E-04 2.6617E-01 27.2879 0.5148 5000 2129 60

γ⋆ = 2−1, 40 inputs GPK-LSSVR 1.5238E-04 2.6175E-01 38.5946 6.6768 5000 2129 60
Ablone C⋆ = 25

2.1804
WV-LSSVR 2.1292 4.0037E-01 11.2945 0.3120 3000 1177 15

γ⋆ = 21, 8 inputs GPK-LSSVR 2.0843 3.8365E-01 11.6689 0.6396 3000 1177 15
stock C⋆ = 210

8.1466E-01
WV-LSSVR 5.155E-01 6.3247E-03 0.4277 0.1093 600 350 100

γ⋆ = 2−1, 9 inputs GPK-LSSVR 4.9072E-01 5.7322E-03 0.7332 4.0560 600 350 100
AutoMPG C⋆ = 210

2.6099
WV-LSSVR 2.0339 5.9231E-02 0.1519 0.0624 350 42 11

γ⋆ = 21, 7 inputs GPK-LSSVR 1.8101 4.6914E-02 0.1872 0.0624 350 42 11
kinematics C⋆ = 24

7.8735E-02
WV-LSSVR 5.7416E-02 4.8961E-02 150.0730 153.2242 4500 3693 500

γ⋆ = 2−1, 8 inputs GPK-LSSVR 5.6991E-02 4.8240E-02 152.8338 3414.4875 4500 3693 500
diesel engine C⋆ = 210

2.2034E-02
WV-LSSVR 1.9435E-02 0.93758E-03 0.1092 0.0624 210 198 15

γ⋆ = 1.69, 3 inputs GPK-LSSVR 1.8844E-02 0.8815E-03 0.1092 0.0624 210 198 15
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Fig. 6: NMSE for total UPDRS, γ = 25, C = 2−2.

tors for LSSVR. In specific, the support vector selection
technique employed in IRR-LSSVR has shown its superi-
ority to other methods. To achieve the same level of mod-
eling accuracy, IRR-LSSVR needs fewer support vectors
than other LSSVR methods.

In this paper, we propose a general recursive para-
metric kernel method called WV-LSSVR, which is suit-
able for identifying global model in real-time. In order
to calculate the centers for all kernels, the support vec-

tor selection technique from the field of SVMs is made
use of. Instead of directly solving a global optimization
problem, WV-LSSVR gets all the kernel centers by using
IRR-LSSVR, where support vectors are chosen in a recur-
sive way. In specific, IRR-LSSVR is employed to analyze a
pre-collected modeling data set so as to acquire a suitable
number of support vectors, which are laterly set to be the
centers of the kernels in WV-LSSVR.

For the purpose of improving the approximation ac-
curacy of the global model, especially when considering
different data trends among different subdomains, an im-
proved version of WV-LSSVR called GPK-LSSVR is de-
veloped by extending the kernel basis functions. A ker-
nel basis function recommended for Gaussian process re-
gression is adopted in GPK-LSSVR. The advantage of the
Gaussian process kernel is that it helps to simplify the
implementation of the proposed recursive kernel method.

To demonstrate the efficacy of WV-LSSVR and GPK-
LSSVR, a set of numerical experiments are carried out us-
ing benchmark data sets. At first, classical KMC-RBF is
implemented so as to provide a comparison baseline. Com-
pared with KMC-RBF, the kernel centers calculated using
IRR-LSSVR lead to a higher approximation accuracy in
identifying the global model. Subsequently, GPK-LSSVR
method, in which the Gaussian kernels are extended with
a linear term and a constant term, is compared with WV-
LSSVR in a recursive identification framework. In this nu-
merical experiment, the testing benchmark data are eval-
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uated using WV-LSSVR and GPK-LSSVR while the re-
cursive identification is still going on. The results validate
the hypothesis that a suitable extension of the kernel ba-
sis function helps to enhance the approximation power of
the recursive parametric kernel method. In the future,
techniques about choosing representing modeling data in
advance need to be investigated, because all of the kernel
centers are selected only from the pre-collected modeling
data.
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