


Mojtaba Sabeghi

Runtime Support for
Heterogeneous Multi-core

Systems





Runtime Support for
Heterogeneous Multi-core Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen

op maandag 4 april 2011 om 12:30 uur

door

Mojtaba Sabeghi

Master in Computer Engineering
Ferdowsi University of Mashhad

geboren te Mashhad, Iran



Dit proefschrift is goedgekeurd door de promotor:
Prof.dr.ir H.J. Sips

Copromotor:
Dr. K.L.M. Bertels

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter Technische Universiteit Delft, NL
Prof.dr.ir H.J. Sips, promotor Technische Universiteit Delft, NL
Dr. K.L.M. Bertels, copromotor Technische Universiteit Delft, NL
Prof. Dr. B.H.H. Juurlink Technische Universität Berlin, DE
Prof. Dr. M. Platzner Universität Paderborn, DE
Prof. Dr.-Ing. M. Berekovic Friedrich-Schiller-Universität Jena , DE
Prof.dr.ir. P.F.A. Van Mieghem Technische Universiteit Delft, NL
Dr. T. Stefanov Universiteit Leiden, NL
Prof.dr.ir. P.M. Sarro, reservelid Technische Universiteit Delft, NL

Mojtaba Sabeghi

Runtime Support for Heterogeneous Multi-core Systems

Delft: TU Delft, Faculty of Elektrotechniek, Wiskunde en Informatica - III

PhD Thesis Technische Universiteit Delft.

Met samenvatting in het Nederlands.

ISBN 978-90-72298-15-7

Subject headings: heterogeneous multi-core systems, runtime support, virtualization,
reconfigurable systems, scheduling, profiling.

Cover designed by Javad Ghasemi, Babol. All rights reserved. gigantic.ant@gmail.com

Copyright c© 2011 Mojtaba Sabeghi
This work is licensed under a Creative Commons Attribution-Noncommercial 3.0
Unported License. To view a copy of the full license, please see: http://
creativecommons.org/licenses/by-nc/3.0/legalcode. Copyrights
for components of this work owned by others must be honored.

Printed in The Netherlands

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/legalcode
http://creativecommons.org/licenses/by-nc/3.0/legalcode


To my parents

To my wife





Runtime Support for

Heterogeneous Multi-core Systems
Mojtaba Sabeghi

Abstract
Multi-core processing platforms are one of the major steps forward in offering

high-performance computing platforms. The idea is to increase the performance

by employing more processing elements to perform a job. However, this creates

a challenge for both hardware developers who build such systems and software

designers who program those platforms.

On the hardware side, we can mention the problems on the interconnects

management, memory hierarchies complexities and cache coherency problem.

While on the software side, problems mainly arise in resource management,

resource sharing and synchronization. One more fundamental problem on the

software side is the inability to program such platforms with the conventional

programming models. This is mainly because programming such platforms

requires in-depth knowledge of hardware design.

In this dissertation, we address the software side problems by proposing a com-

prehensive runtime system which is responsible to manage the system resources

and resolve all the conflicting issues when accessing computing resources. Fur-

thermore, the runtime system offers the application developers with APIs and

system primitives that abstract away the platform dependent details, and pro-

vides a consistent programming model. These primitives decouple the process

of software development from hardware design and results in the software to be

independent of the underlying hardware platform.

The proposed runtime system consists of a scheduler, a profiler, a transformer,

a JIT compiler and a kernel library. A detailed description of each component

is presented and the performance of the whole system as well as the imposed

overhead of the component is discussed.

i





Acknowledgements

Over the past years, I have benefited from the help, the inspiration and the

encouragement offered by many people. This thesis in its present form would

not have been possible without their generous support and I would like to take

the chance here to express my appreciation.

First and foremost, I would like to thank my co-promotor, Dr. Koen Bertels

for offering me the opportunity to pursue my PhD studies in Delft. He gave

me the freedom to work on my own research interest and his support was

always there for technical as well as personal problems. I would also like to

thank Prof. Stamatis Vassiliadis for trusting my skills and accepting me in his

research group. Unfortunately, I did not have the chance to use his help and

support during my PhD. I sincerely thank my promotor Prof. Henk Sips for his

help at the final stage of my PhD. I would like to extend my gratitude to my

PhD examination committee for reading my thesis and giving me invaluable

comments. A special thanks goes to Dr. Todor Stefanov and Prof. Ben Juurlink

for their detailed comments on my thesis.

To respect those who first introduced me to the world of computer science

research, I would like to express my gratitude to my former supervisor at

Ferdowsi University of Mashhad, Prof. Mahmoud Naghibzadeh. I would also

like to thank Dr. Hossein Deldari, Dr. Mohsen Kahani and Dr. Mohammad

Hossein Yaghmaee from whom I learned the basics of the computer science.

The most valuable experiences during my PhD studies are associated with the

people I have met in the university. In this spirit, I am very grateful to all the

members of CE lab and especially to the members of the Delft Workbench

iii



team. A very special thanks goes to Mr. Hamid Mushtaq with whom I had the

chance to collaborate as his MSc advisor. I extend my sincere thanks to Dr. Cor

Meenderinck and Mr. Roel Meeuws for helping me to translate the propositions

and the abstract of my thesis into Dutch. I would like to especially thank

Dr. Tariq Abdullah for reading my thesis and giving me detailed comments

to improve my thesis quality. I am also thankful to Mr. Arash Ostadzadeh

for proofreading my thesis. Special thanks go to Dr. Behnaz Pourebrahimi,

Dr. Mahmood Ahmadi, Mr. Arash Ostadzadeh, Mr. Alireza Asadi and Dr.

Mahmood Fazlali for being good friends and supportive whenever I needed

them. I would also like to thank Zubair, Vlad, Razvan, Kamana, Yana, Jae,

Ozana, Luyi and Thomas. My thanks also go to Lidwina, Monique, Bert, Eric

and Eef for the support during these years. I would also like to thank the

relatively large Persian community in Delft and other parts of the Netherlands.

Meeting so many Iranians made me feel at home and gave me an opportunity to

have a great social life in the Netherlands.

I would like to express my deepest thanks to my parents for their unwavering

support, encouragement and trust in my abilities. I am really grateful to my

sister, Narjes, who was always my main source of inspiration and motivation. I

sincerely thank my brothers and sisters for their kindness and support.

Last but not least, I am extremely grateful to my wife for her love, support and

understanding over the years. Without her encouragement and support, this

thesis would not have been possible.

Mojtaba Sabeghi Delft, The Netherlands, April 2011

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Acronyms and Symbols . . . . . . . . . . . . . . . . . . . . . . xv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Dissertation Contribution . . . . . . . . . . . . . . . . . . . . 4
1.3 Dissertation Organization . . . . . . . . . . . . . . . . . . . . 5

2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . 9
2.1 Target Architectures . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 The Xilinx Extensible Processing Platform . . . . . . 10
2.1.2 Convey HC-1 . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Freescale QorIQ P2 Series . . . . . . . . . . . . . . . 12
2.1.4 STMicroelectronics Platform 2012 . . . . . . . . . . . 12
2.1.5 Industrial Reference Platform . . . . . . . . . . . . . 13
2.1.6 hArtes Platform . . . . . . . . . . . . . . . . . . . . . 13
2.1.7 Novo-G . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 MOLEN Hardware Organization . . . . . . . . . . . . . . . . 15
2.3 MOLEN Programming Paradigm . . . . . . . . . . . . . . . . 16
2.4 Design Tool Chain . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Runtime Systems . . . . . . . . . . . . . . . . . . . . . . . . 18

v



2.5.1 BORPH . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.2 Pervasive Parallelism . . . . . . . . . . . . . . . . . . 20
2.5.3 ReconOS . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.4 HybridOS . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.5 ReconfigME . . . . . . . . . . . . . . . . . . . . . . 22
2.5.6 Warp Processing . . . . . . . . . . . . . . . . . . . . 22
2.5.7 UltraSONIC . . . . . . . . . . . . . . . . . . . . . . 23
2.5.8 hthreads . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.9 Other Runtime Systems . . . . . . . . . . . . . . . . 24

2.6 Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 Comparison Methodology . . . . . . . . . . . . . . . . . . . 26
2.8 Open Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Runtime System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Sample Real World Applications . . . . . . . . . . . . . . . . 34
3.3 The Proposed Runtime System . . . . . . . . . . . . . . . . . 35

3.3.1 Scheduler . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Profiler . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.3 Transformer . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.4 Kernel Library . . . . . . . . . . . . . . . . . . . . . 40
3.3.5 JIT Compiler . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Interfacing Components . . . . . . . . . . . . . . . . . . . . . 41
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Task Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 MOLEN Programming Paradigm . . . . . . . . . . . 49
4.1.2 The Runtime Environment . . . . . . . . . . . . . . . 51

4.2 MOLEN Runtime Primitives . . . . . . . . . . . . . . . . . . 51
4.2.1 SET . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.2 EXECUTE . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.3 Dynamic Binding Implementation . . . . . . . . . . . 57

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.1 Overhead in a Single Call . . . . . . . . . . . . . . . 59
4.3.2 Overall Overhead . . . . . . . . . . . . . . . . . . . . 60

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Compile Time Scheduling . . . . . . . . . . . . . . . . . . . 65

vi



5.3 Runtime Scheduling . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.1 The Replacement Policy . . . . . . . . . . . . . . . . 68
5.3.2 Configuration Call Graph . . . . . . . . . . . . . . . . 69

5.4 Longest Distance in the Future . . . . . . . . . . . . . . . . . 75
5.5 Least Frequency in the Future . . . . . . . . . . . . . . . . . 77
5.6 Least Frequency in the Past . . . . . . . . . . . . . . . . . . . 78
5.7 Expected Time Improvement . . . . . . . . . . . . . . . . . . 79
5.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.8.1 Workload for Evaluation . . . . . . . . . . . . . . . . 81
5.8.2 Evaluation Results . . . . . . . . . . . . . . . . . . . 84

5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Fuzzy Real-time Scheduling . . . . . . . . . . . . . . . . . . . . . . 91
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Fuzzy Inference System . . . . . . . . . . . . . . . . . . . . . 94
6.3 The Proposed Fuzzy Model . . . . . . . . . . . . . . . . . . . 96
6.4 The Proposed Algorithms . . . . . . . . . . . . . . . . . . . . 99
6.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 100
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Runtime Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2 Design Choices . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.3 Design And Implementation . . . . . . . . . . . . . . . . . . 110
7.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 113

7.4.1 Instrumentation Overhead . . . . . . . . . . . . . . . 114
7.4.2 Sampling and Daemon Overhead . . . . . . . . . . . 115
7.4.3 Sampling Accuracy . . . . . . . . . . . . . . . . . . . 116
7.4.4 Overall Overhead . . . . . . . . . . . . . . . . . . . . 117
7.4.5 Percentage of Profilable Functions . . . . . . . . . . . 117

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.3 Open Issues and Future Directions . . . . . . . . . . . . . . . 124

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Samenvatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

vii





List of Tables

4.1 Workload Kernels . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Overall Execution Time . . . . . . . . . . . . . . . . . . . . . 61

5.1 Kernel Specifications (ms) . . . . . . . . . . . . . . . . . . . 82

5.2 Workload Set-ups . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 The Tasks Execution Time and Number of Executed Tasks on

RPs in each Set-up . . . . . . . . . . . . . . . . . . . . . . . 84

7.1 Comparison of Different Types of Profilers . . . . . . . . . . . 108

7.2 Instrumentation Overhead (secs) . . . . . . . . . . . . . . . . 115

7.3 Sampling and Daemon Overhead . . . . . . . . . . . . . . . . 115

7.4 Sampling Accuracy of the Proposed Profiler . . . . . . . . . . 116

7.5 Overall Overhead of the Proposed Profiler (secs) . . . . . . . 117

7.6 Percentage of Profilable Functions . . . . . . . . . . . . . . . 118

ix





List of Figures

2.1 Extensible Processing Platforms . . . . . . . . . . . . . . . . 10

2.2 Convey HC-1 . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Freescale QorIQ P2 Series . . . . . . . . . . . . . . . . . . . 12

2.4 Industrial Reference Platform . . . . . . . . . . . . . . . . . . 13

2.5 The hArtes Platform . . . . . . . . . . . . . . . . . . . . . . 14

2.6 MOLEN Hardware Organization . . . . . . . . . . . . . . . . 15

2.7 Design Tool Chain . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Pervasive Parallelism . . . . . . . . . . . . . . . . . . . . . . 20

2.9 ReconOS System Architecture . . . . . . . . . . . . . . . . . 21

3.1 The Runtime Environment . . . . . . . . . . . . . . . . . . . 36

3.2 Runtime System Layers . . . . . . . . . . . . . . . . . . . . . 37

3.3 The Components Interaction . . . . . . . . . . . . . . . . . . 41

3.4 Sequence Diagram of the First Case Study . . . . . . . . . . . 43

3.5 Sequence Diagram of the Second Case Study . . . . . . . . . 44

4.1 The Operation Execution Process . . . . . . . . . . . . . . . . 53

5.1 Compiler Instruction Scheduling . . . . . . . . . . . . . . . . 66

5.2 A Sample CCG . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Execution Time Reduces when Travel Depth Increases . . . . 74

5.4 Percentage of the Tasks Executed on RPs . . . . . . . . . . . 86

5.5 The Obtained Speedup . . . . . . . . . . . . . . . . . . . . . 86

xi



6.1 Inference System Block Diagram . . . . . . . . . . . . . . . . 96

6.2 Fuzzy Sets Corresponding to the External Priority . . . . . . . 97

6.3 Fuzzy Sets Corresponding to Deadline . . . . . . . . . . . . . 98

6.4 Number of Misses . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5 Number of Preemptions . . . . . . . . . . . . . . . . . . . . . 102

7.1 Interaction of Different Parts of the Proposed Profiler with the

Profiled Application and the Scheduler . . . . . . . . . . . . . 111

7.2 Contents of the Profiler Frame . . . . . . . . . . . . . . . . . 112

xii



List of Algorithms

4.1 The SET API . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 The EXECUTE API . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Distance to the Next Call in a Single CCG . . . . . . . . . . . 71

5.2 Frequency of Calls from Current Node in a Single CCG . . . . 71

5.3 LDiF Scheduling Algorithm . . . . . . . . . . . . . . . . . . 76

5.4 LFiF Scheduling Algorithm . . . . . . . . . . . . . . . . . . . 78

5.5 LFiP Scheduling Algorithm . . . . . . . . . . . . . . . . . . . 79

5.6 ExTI Scheduling Algorithm . . . . . . . . . . . . . . . . . . 80

6.1 FGEDF Algorithm . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 FPEDF Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 99

xiii





List of Acronyms and Symbols

API Application Programming Interface

CCG Configuration Call Graph

DSO Dynamic Shared Object

DSP Digital Signal Processor

EDF Earliest Deadline First

ExTI Expected Time Improvement

FIS Fuzzy Inference Systems

FGEDF Fuzzy Global EDF

FGMLF Fuzzy Global MLF

FPEDF Fuzzy Partitioned EDF

FPMLF Fuzzy Partitioned MLF

FPGA Field-Programmable Gate Array

GOT Global Object Table

GPP General-Purpose Processor

HW Hardware

ISA Instruction Set Architecture

JIT Just in Time

LDiF Longest Distance in the Future

LFiF Least Frequency in the Future

LFiP Least Frequency in the Past

MAL MOLEN Abstraction Layer

MLF Minimum Laxity First

OS Operating System

PIC Position Independent Code

RM Rate Monotonic

RP Reconfigurable Processor

SW Software

VM Virtual Machine

XREG Exchange Register

xv





1
Introduction

In this dissertation, we propose a comprehensive runtime system that is inte-

grated in heterogeneous multi-core systems to resolve all the conflicting issues

between the applications running on them. Furthermore, this runtime system

provides application developers with APIs and system primitives that abstract

away platform-dependent details to offer a consistent programming model.

It decouples the process of software development from hardware design and

results in the software to be independent of the underlying hardware platform.

The runtime system consists of a scheduler, a profiler, a transformer, a JIT

compiler and a kernel library. The detailed description of each component is

presented and the performance of the whole system as well as the imposed

overhead by each component is discussed.

1.1 Problem Overview

Employing multiple processing elements on a single chip is now becoming a

trend in a wide range of computing platforms. These processing units can be

homogeneous or heterogeneous. It has been proved [1, 2] that this approach has

several benefits such as lowering the power consumption and improving the

performance.

1



2 CHAPTER 1. INTRODUCTION

It also seems to be a viable solution to keep the Moore’s law alive for a couple

of more years. The reason lies in the fact that increasing transistor densities with

high clock rates demands more power and as a consequent generates more heat,

which limits how fast the processor clock can go. As a result, manufacturers

try to increase the performance of computing systems by increasing number of

execution units on a single chip while keeping the clock fixed or even reducing

the clock frequency.

However, hosting multiple cores on a single chip instead of one core creates

some complexities at the hardware and the software design parts. On the

hardware side, we can mention problems with the interconnects, memory

hierarchies and cache coherency. While on the software side, problems mainly

arise in resource management, resource sharing and synchronization. These

problems are even worse when incorporating multiple heterogeneous cores.

In fact, these problems are forming a new fundamental issue which can be

named as programmability wall. This is due to the fact that programming these

platforms with all the mentioned problems is really a difficult task and requires

in-depth knowledge of the underlying software and hardware.

There are two main issues on the software side. First, how to divide a program

into several parts so that each part can be executed on a separate core. Second,

how to allocate these parts to different cores.

Even after solving these two issues, other problems may arise when multiple

applications are to be executed on the same platform. In such a scenario,

many competitions may exist between the applications. Therefore, the limited

system resources have to be shared in a fair and transparent manner between

the applications. It should be noted that most of these conflicts are only known

at runtime, which means that a design time resource manager can not deal with

these problems.

In our work, we target general purpose heterogeneous multi-core systems. This

is in line with the technology movements towards employing heterogeneous

processing elements in general purpose machines. In such systems, serving

multiple applications which are running concurrently on the same machine is



1.1. PROBLEM OVERVIEW 3

an obvious requirement. To address this requirement, a runtime environment

is needed which is responsible to fully operate the system and address all

the conflicting issues between competing applications. Furthermore, the run-

time system has to offer the programmers with APIs and system primitives

which abstract away the platform dependent details and provides a consistent

programming model.

The proposed runtime system consists of a scheduler, a profiler, a transformer,

a JIT compiler and a kernel library. The scheduler has to decide when and

where a specific task has to be executed. It has to deal with conflicting objective

such as performance, power consumption or cost. In our work, the scheduler,

does not change the order of the tasks execution within an application. It

only decides about the mapping. The runtime profiler analyses the code and

stores statistics about computational intensity and number of referrals as well

as the memory bandwidth being used of different parts of the code, the purpose

of which is to allow the runtime system to identify compute intensive parts,

which if implemented in hardware minimize the execution time of the running

applications. The transformer has to modify the binary by augmenting the calls

to the software version of the task with calls to the hardware implementation in

a specific core. Furthermore, the transformer has to safely resolve and transfer

the parameters required by the hardware implementation to a part of memory

which can be easily accessed by that core. After the results have been calculated,

the appropriate return values have to be safely sent back to the calling thread.

The JIT compiler is actually a binary to binary compiler and is responsible to

generate the binary for the target core from the available binary. Of course as

the JIT process might be costly and time consuming, we can use the help of a

library in which we keep the binaries of the tasks for different cores in order to

avoid JIT compilation.

It should be mentioned, that our system serves multiple applications. Each

application is composed of several tasks. Each task can be mapped to a certain

core, or it can be executed on the general purpose processor. A certain task

might be used in more than one application. To simplify the design and to be in

line with the MOLEN programming paradigm, we assume that a task is in the



4 CHAPTER 1. INTRODUCTION

form of a function in the program code. Therefore, each function in the code is

a task unless it is a very small function.

1.2 Dissertation Contribution

The main task of the runtime system is to decide where, when and how an

application or its constituent parts (i.e. tasks) should be executed. Therefore,

the runtime system has to first analyse the code and extract information about

the program execution. The program execution information includes among

other things the computation intensity and frequency of each part of the code.

Then, the runtime system has to decide which part of the code has to be executed

on which core to achieve the required performance.

As the platform may host heterogeneous processing elements, each core might

have a different binary standard and, therefore, the runtime system should be

able to submit the workload for each core based on the core’s binary stan-

dard. Considering the runtime decision making on the core allocation, this

implementation binding is not known until runtime. Therefore, programmers

need to express operations without knowing the actual implementation. In

other words, the runtime system has to abstract away a task call from its actual

implementation.

Based on the aforementioned criteria, the main contributions of this thesis can

be summarized as follows:

1. We introduce a comprehensive runtime system together with a detailed

discussion of its components and performance evaluation. We provide a

detailed overview of the system layers and show how each layer interacts

with the others. The most important layer is the virtualization layer which

consists of a scheduler, a profiler, a JIT compiler, a transformer and a

kernel library.

2. We define and implement a new task abstraction mechanism which ex-

tends the MOLEN programming paradigm. Using this mechanism, the



1.3. DISSERTATION ORGANIZATION 5

task implementation is separated from the task call. We extend the model

in such a way that it is suitable for multitasking scenarios.

3. We present a detailed discussion of the scheduling requirements for

heterogeneous multi-core systems and present some scheduling policies

together with their performance evaluation. We introduce a number of

new scheduling algorithms. Our scheduling decision making is based on

the distance in the future and frequency in the future as well as expected

speedup. We also introduce the configuration call graph as a viable source

of information for the scheduler.

4. We employ fuzzy logic in the decision making process of the scheduler

for the systems with real-time constraints. We model the inputs of the

scheduler such as laxity and deadline as fuzzy variables and use a Sugeno

inference engine [3] to derive the scheduling priorities.

5. We present a novel runtime profiler whose task is to analyse the running

code and produce statistics about code execution such as the computation

intensity and frequency of the execution. This profiler has to run concur-

rently with other applications on the end user’s machine. Therefore, it

needs to have a low overhead. Our runtime profiler has an overhead of

less than 1.5%.

1.3 Dissertation Organization

This dissertation is organized as follows. Chapter 2 gives an overview on the

background information and the related work. This chapter starts by giving a

few examples of the target architectures. Next, we give a short summary of

the MOLEN and the MOLEN programming paradigm as well as the MOLEN

design tool chain. Then, we briefly describe some of the similar approaches

toward runtime support for heterogeneous multi-core systems, which is followed

by a section that motivates the need for virtualization. Afterwards, we present

our comparison methodology in the thesis. At the end, we point out the open



6 CHAPTER 1. INTRODUCTION

issues and discuss our approach towards solving those issues.

Chapter 3 presents our runtime system. In this chapter, we explain how the

whole system is structured into layers. The system is divided into four layers;

the application layer, virtualization layer, operating system layer, and hardware

platform layer. The hardware platform layer is further divided into the MOLEN

abstraction layer and the physical hardware layer. Furthermore, we explain

the forming components of the runtime system. These components are the

scheduler, the profiler, the transformer, the kernel Library, and the JIT compiler

which are briefly discussed. Then, we explain the interaction mechanisms

between different components. We also include two case study scenarios and

show how the runtime system should react in those scenarios.

Chapter 4 explains how the MOLEN programming paradigm is extended to

support multitasking and multi-application scenarios. Accomplish this, we use

the same idea of MOLEN set and execute instructions to abstract the concept of

a task. In this way, we decouple the task call from the task implementation. We

also propose a binding mechanism to bind a task implementation to each task

call. This is done by introducing the high level SET and EXECUTE APIs. At

the end, we show the overhead of the proposed APIs using some experiments.

Chapter 5 presents our scheduler as a part of the runtime system. In this chapter,

we show how we use a combination of design time and runtime scheduling

in order to optimize the system performance. In the design time, we use the

compiler to perform static task scheduling assuming single thread of execution.

Then at runtime, the runtime scheduler performs the actual task scheduling

having the scheduling decisions from the compiler as a hint. The runtime

scheduler can also use the information provided by the runtime profiler. It

can also use the information transferred from design time in the form of a

Configuration Call Graph (CCG). Then, we present a number of scheduling

policies as case studies and provide performance evaluations. We base our

scheduling decisions on three different parameters. We show that Expected

Time Improvement and Longest Distance in the Future are very good heuristics

for the scheduling.



1.3. DISSERTATION ORGANIZATION 7

Chapter 6 focuses on the conditions in which we have real-time constraints. We

use fuzzy logic to model the real-time constrains and to improve the scheduling

decisions. Using deadline as a fuzzy parameter in real-time scheduling is more

promising than laxity.

Chapter 7 describes the design and implementation of our runtime profiler,

which can be used as a part of the runtime environment. The profiler is a

combination of a sampling profiler and an instrumentation profiler. We discuss

different parts of the profiler namely the extractor, injector, sampler, profiler

frame and daemon. Then, we show the overhead of our profiler from different

aspects. This is done by showing the overhead on instrumentation, sampling

and the overall overhead. Besides, we compare the accuracy of our profiler

with a popular design time profiler , gprof. All the presented results show that

our profiler has very low overhead (less than 1.5%) and is as accurate as design

time profilers.

Chapter 8 summarizes and concludes this dissertation. It gives a summary of

this thesis, its contributions and findings. It then describes the remaining open

issues and future research directions.



8 CHAPTER 1. INTRODUCTION



2
Background and Related Work

The increasing demand for high-performance computing platforms was always

the main driving force for new advancements during the past years of develop-

ment in computing technologies. This is valid in all the areas from high-end

customized special-purpose computing in networking, telecommunications, and

avionics to low-power embedded computing in desktop computing, portable

computing, and video games.

Multi-core processing platforms are one of the major steps forward in offering

high-performance computing platforms. The idea is to increase the performance

by employing more processing elements to perform a job. However, this creates

a challenge for both hardware developers who build such systems and software

designers who program those platforms.

The basic idea of having a multi-core system is to overcome the major hardware

design challenges such as the memory wall problem or the increase in power

consumption. Secondly, to increase the performance by using more processing

elements to execute a task, which is widely believed to be more efficient. These

processing elements can be either homogeneous or heterogeneous.

In this work, we focus on heterogeneous multi-core platforms in which one

or more general-purpose processors are the main processing elements and

some special purpose processors work as coprocessors. Systems employing

9



10 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: Extensible Processing Platforms

reconfigurable processors are our main concern. To clarify the scope and extent

of our work, we give a brief introduction of some examples of the industrial

target architectures in the following section.

2.1 Target Architectures

Our target architecture is heterogeneous multi-core platforms. Such platforms

consist of one or more general-purpose processors and some coprocessors.

There are several industrial examples of such systems. In the following sections,

we give a short introduction on the Xilinx Extensible Processing Platform,

Convey HC-1, Freescale QorIQ P2 Series, STMicroelectronics Platform 2012,

hArtes, and Novo-G platforms.

2.1.1 The Xilinx Extensible Processing Platform

The Xilinx Extensible Processing Platform [4] offers a processor-centric design

and development approach for achieving the processing power required to exe-

cute tasks involving high-performance processing and complex digital signal

processing needed to meet their application-specific requirements, including



2.1. TARGET ARCHITECTURES 11

Figure 2.2: Convey HC-1

lower cost and power. It is an implementation of ARM’s high-performance dual-

core Cortex-A9MPCore processors and Xilinx advanced 28nm programmable

logic. Figure 2.1 shows the block diagram of the Extensible processing plat-

forms.

2.1.2 Convey HC-1

The Convey HC-1 [5] is a heterogeneous computing system based on an

industry-standard Intel processor and a proprietary coprocessor that share virtual

memory and an instruction stream, creating a hybrid-core computing system.

The coprocessor architecture supports user-defined, dynamically loadable in-

struction sets.

It combines the x86 family processors with hardware-based, application-specific

instructions to accelerate HPC applications. The result is a tightly integrated

system that gives many times the performance of a commodity server on key

applications in oil and gas, financial analytics, bioinformatics, and other markets.

Figure 2.2 depicts an overview of such a platform.



12 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.3: Freescale QorIQ P2 Series

2.1.3 Freescale QorIQ P2 Series

The QorIQ P2 communications platform series [6] includes the P2020 and

P2010 communications processors. It delivers high single-threaded perfor-

mance per watt for a wide variety of applications in networking, telecom,

military and industrial markets. The P2 series delivers dual- and single-core

frequencies up to 1.2 GHz on a 45nm technology low-power platform. Figure

2.3 shows the block diagram of the P2 Series.

2.1.4 STMicroelectronics Platform 2012

The P2012 provides flexibility through massive programmable and scalable

architectures by enabling connection of a large number of decoupled STxP70

processors. The Platform 2012 computing fabric is composed of a variable

number of “tiles” that can be easily replicated to provide scalability. Each tile

includes a computing cluster with its memory hierarchy and a communication

engine. The computing fabric operation is coordinated by a fabric controller

and is connected to the SoC host subsystem through a dedicated bridge, having

DMA capabilities. The P2012 computing fabric is connected to a host processor

such as the ARM Cortex A9 via a system bridge.



2.1. TARGET ARCHITECTURES 13

Figure 2.4: Industrial Reference Platform

2.1.5 Industrial Reference Platform

The heart of the Industrial Reference Platform, as shown in Figure 2.4, is an

Intel Atom processor and an ALTERA ARRIA FPGA, connected together PCI

Express to support customer specific interface and logic requirements. The

Industrial Reference Platform is a highly scalable and reconfigurable platform

targeted at low power, high-performance industrial automation applications.

The flexibility of the Industrial Reference Platform also makes this system

a potential platform for military, automotive, and consumer applications re-

quiring the scalable processor performance of the Intel Atom and the re-

programmability of Altera Arria series FPGAs.

2.1.6 hArtes Platform

The hArtes Platform [7], presented in Figure 2.5, provides a number of hetero-

geneous computing sub-systems, such as DSPs, general-purpose processors

and reconfigurable elements. The system is composed of a certain number

of independent blocks. Each block includes a general-purpose RISC proces-



14 CHAPTER 2. BACKGROUND AND RELATED WORK

 

4.1. BCE architecture 

Fig. 2 provides a detailed overview of the BCE. There are 
two main blocks, namely the RISC/DSP processor (the 
D940HF component produced by Atmel) and the recon-
figurable processor based on a high-end FPGA (Xilinx 
Virtex4-FX100 [5]), that carries also two PowerPC 405 
processing cores. 
 The block to the left, the “DCM board”, and the block 
on the right, the “FPGA module”, are logically part of the 
same BCE; they are implemented as two separated boards, 
both placed on a common main board. This configuration 
was chosen to cut development time, since the DCM board 
was already available; no significant limitation comes from 
this solution. This choice adds flexibility to the platform 
itself, as modules may be replaced by a different subsystem 
with a different set of functions (e.g., a video processor for 
multimedia applications). 
 Each of the two elements (DCM module and FPGA 
board) has a private and independent memory bank (“Mem 
1” and “Mem 3” in the figure) boosting overall memory 
bandwidth, needed to sustain a large computational 
throughput. Also, two independent FLASH memory banks 
are present, to keep user data and programs. 
 The FPGA module has also a shareable memory bank 
(“Mem2” in the figure). This bank can be shared at several 
levels, i.e. among all the computing elements of the BCE 
itself (the D940HF component, the reconfigurable fabric of 
the FPGA and the PowerPC CPU inside the FPGA), and by 

the processors of any other BCE available on the system. 
This feature is supported by specific functional blocks con-
figured inside the FPGA. 
 Memory sharing (or any other program-controlled pat-
tern of BCE to BCE communication) is handled by the 
links connecting the BCEs. They have large bandwidth (of 
the order of 200 Mbyte/sec) and short latency (just a few 
clock cycles, the system clock is 125 MHz) making data 
transfers of short data packets very efficient. 
 Additional dedicated data links connect the BCE and all 
streaming audio interfaces. Hardware supports data 
streaming between the interfaces and designated memory 
buffers. Finally, each BCE has several standard 
input/output interfaces (Ethernet, USB, UART), located 
both on the DCM board and on the FPGA module. 
 The FPGA-based processor is reconfigurable “on-the-
fly”: the FPGA is divided in two logically separated do-
mains, using partial reconfiguration features available on 
Xilinx FPGAs. One domain includes the PowerPC cores 
and all relatively stable functional blocks needed for basic 
system support, that is all functions described above that are 
required to run the processor, to access the private and 
shared memories, to move data through the interconnecting 
links and to handle all I/O activities. The second domain is 
reserved for reconfigurable functions. It changes its logic 
structure as required by the running applications; using spe-
cific ports present on the PowerPC core it is possible, for 
instance, to reconfigure that part of the FPGA directly at 
run-time, augmenting the instruction set of PowerPC core, 
or implementing specific co-processor functions. 

Secondary
data link

USB 2.0
Full-

Speed
(1xHost+1xDev.)

High-speed
inter-BCE link

2xUART ARM/
mAgic
JTAG

JTAG

Atmel
D940HF

Xilinx
XC4VFX100

Ethernet
10/100

PHY

Ethernet
10/100/1000

PHY

Mem3
128MB SDRAM

UART

Mem2
256MB SDRAM

Mem1
128MB SDRAM

Control

MemF1
16MB FLASH

BCE’s
logic
boundary

FPGA
config
FLASH

USB 2.0
HS Host

USBSD
card BCE

position
code

CLKRESET

MemF2
16MB FLASH

FPGA

module
DCM

board

I/O FPGA link
(ADAT channels)

ADAT I/O config

USB 2.0
HS Dev.

USB

SRAM interface

 
Fig. 2. Detailed block diagram of  the Basic Configurable Element (BCE). 

441

Figure 2.5: The hArtes Platform

sor, a DSP processor, and an application-specific reconfigurable block. The

application-specific reconfigurable block also incorporates a RISC processor.

Each block is called Basic Configurable Element (BCE).

All the BCEs share the same structure and are able to run any selected thread of

a large application.

2.1.7 Novo-G

With the promise of the reconfigurable computing in offering capability of

one PetaOPS at 10K Watts, it is feasible to consider large scale reconfigurable

supercomputing. Novo-G [8] is such a platform, which is used in Bioinformatics

and other scientific and engineering domains. Novo-G currently features 192

Stratix-III E260 FPGAs in 48 quad-FPGA boards (plus one spare) with 1TB of

memory. Most of the memory is directly attached to the FPGAs (4.25GB per

FPGA) and is supported by 20 Gb/s InfiniBand, quad-core Xeons, GigE, PCIe,

storage, etc.



2.2. MOLEN HARDWARE ORGANIZATION 15

Figure 2.6: MOLEN Hardware Organization

2.2 MOLEN Hardware Organization

In the last section, we briefly introduced some of the hardware platforms that

can be considered as target architecture for our work. One of the main issues

in using those systems is the model of coupling and interaction among all the

different processing elements as well as the memory and IO modules.

The MOLEN hardware organization is such a coupling and interaction model.

MOLEN is established based on the tightly coupled co-processor architectural

paradigm. Within the MOLEN concept, a general-purpose processor is assumed

as the main processor, which controls all the coprocessors. Traditionally,

MOLEN is designed for reconfigurable computers, however, without the loss of

generality, all the MOLEN concepts can be employed effectively and efficiently

in the domain of the heterogeneous multi-core systems.

In the context of reconfigurable systems, the general-purpose core processor

controls the execution and reconfiguration of the reconfigurable coprocessors

and tunes the latter to various application specific algorithms. Figure 2.6

represents the MOLEN machine organization for the reconfigurable systems.

In order to program MOLEN based platforms, the MOLEN programing



16 CHAPTER 2. BACKGROUND AND RELATED WORK

paradigm was introduced. We briefly describe the MOLEN programming

paradigm in the next section.

2.3 MOLEN Programming Paradigm

The MOLEN programming paradigm presents a programming model for re-

configurable computing that allows modularity, general function like code

execution and parallelism in a sequential consistency computational model.

Furthermore, it defines a minimal ISA extension to support the programming

paradigm. Such an extension allows the mapping of an arbitrary function on

the reconfigurable hardware with no additional instruction requirements.

This is done by the introduction of new super instructions for operating the

FPGA from the software. An operation, executed by the RP, is divided into

two distinct phases: set and execute. In the set phase, the RP is configured to

perform the required task and in the execute phase the actual execution of the

task is performed. This decoupling allows the set phase to be scheduled well

ahead of the execute phase, thereby hiding the reconfiguration latency. This

phasing introduces two super instructions; set and execute.

Within the heterogeneous multi-core systems domain, the same super instruction

can be used to manage the process of assigning a task to a special core and to

control the task’s execution on that core.

To facilitate the process of program development, a design tool chain is required.

In the next section we present the design tool chain which is proposed for the

MOLEN based platforms.

2.4 Design Tool Chain

The design tool chain, as shown in Figure 2.7, addresses the difficulty in pro-

gramming heterogeneous multi-core platforms by assuming a single application

execution scenario. It provides a semi-automatic support for the hardware/soft-



2.4. DESIGN TOOL CHAIN 17

Figure 2.7: Design Tool Chain

ware co-design of such systems. The design starts with an application written

in C and the final outcome is an executable with (modified) code mapped onto

a multi-core platform consisting of a general-purpose processor, a DSP and an

FPGA.

The tool chain embeds configuration bit streams for the reconfigurable com-

ponents of the system. Thus providing a complete and operational system

supported both at the software and at the hardware levels. In this way, the tool

chain allows the developers to write applications for heterogeneous systems

without requiring them to have intimate knowledge of the underlying hardware

and its programming. The parallelism and mapping are specified in the code

by using pragmas in the C code. These annotations can either be added manu-

ally by the developers or generated by tools. To specify parallelism, standard

OpenMP pragma directives are used.

The design tool chain comprises of three toolboxes. Each of them takes a

C-code as input and outputs processed files. The processed files are then fed



18 CHAPTER 2. BACKGROUND AND RELATED WORK

to the next toolbox. Figure 2.7 shows the interactions among those toolboxes.

The top-level toolbox namely the Algorithm Exploration Toolbox is optional.

Its purpose is just to generate C code from a Scilab code or from NU-Tech (a

graphical software development tool).

Next is the Design Exploration toolbox whose task is to perform task parti-

tioning and mapping. The task partitioning tool, known as Zebu, generates

an efficient task graph [9] with the help of static profiling to identify the most

efficient paths [10]. Afterwards, it performs transformation on the task graph

to take into account the overhead of managing the parallel tasks. Finally, it

generates a C Code annotated with pragmas for parallelization and mapping.

The mapping tool hArmonic [11] is used to get an optimized mapping solution.

The last tool in the chain is the Synthesis toolbox. It contains a compiler for

each processing element. The source for each processing element is compiled

separately and then linked together to form a single binary. It uses a modi-

fied GCC compiler for the general-purpose processor. That compiler inserts

MOLEN instructions to execute a kernel on FPGA. Moreover, Delft Workbench

Automated Reconfigurable VHDL Generator (DWARV) [12] is used to perform

C to VHDL translation for the FPGA.

2.5 Runtime Systems

The main problem with the design time tool chains is that they are not aware of

the runtime status of the system. For single application scenarios, that is not a

serious limitation. However, when moving towards multi-application scenarios

in which the load of the system varies from time to time and the load is not

known at design time, there should be a runtime system, which is responsible

for the mapping decisions. To perform the mapping, the runtime system can

use all the information provided by the design tool chain.

Due to the inherent complexity of the task assignment on the multi-core systems

and especially on heterogeneous multi-core systems, the proposed runtime



2.5. RUNTIME SYSTEMS 19

system needs to be very comprehensive. Looking at the literature, runtime

systems commonly consist of many components which work together in order to

operate the system and manage the resources. In this part, we give an overview

on the related research on the runtime systems. It should be mentioned that all

these runtime systems can be implemented - at least theoretically - on each of

the target architectures presented in section 2.1.

2.5.1 BORPH

BORPH [13] handles FPGA resources as if they were CPU’s by introducing

the concept of hardware process which behaves just like a normal user program

except it is a hardware design running on a FPGA. The BORPH kernel provides

standard operating system services, such as file system access, to the hardware

processes. This allows hardware processes to communicate with the rest of the

system easily, and systematically [14]. BORPH is based on the Linux kernel.

BORPH introduces the concept of hardware region. A region can be physically,

the entire FPGA in a multi FPGA system, or a partially reconfigurable region

within a FPGA. Hardware processes are spawned in those regions.

A user starts a hardware process by executing a BORPH Object File (BOF).

When a BOF file is executed, the kernel examines hardware configurations

encapsulated in that file. Based on this information, the kernel chooses and

configures one or more suitable hardware regions [15].

The hardware and software components of user designs may run as communi-

cating processes within BORPH’s runtime environment. The familiar language

independent UNIX kernel interface facilitates easy design reuse and rapid appli-

cation development. A Simulink-based design flow that integrates with BORPH

is employed for developing hardware designs,



20 CHAPTER 2. BACKGROUND AND RELATED WORK

The PPL Vision

Parallel Object Language

Hardware Architecture

OOO Cores SIMD Cores Threaded Cores

Scalable
Interconnects

Programmable
Hierarchies

Scalable
Coherence

Isolation &
Atomicity

Pervasive
Monitoring

Virtual
Worlds

Autonomous
Vehicle

Data
Mining

Scientific
Engineering

Physics
DSL

Scripting
DSL

Probabilistic
DSL

Analytics
DSL

Rendering
DSL

Common Parallel Runtime

Explicit / Static Implicit / Dynamic

Figure 2.8: Pervasive Parallelism

2.5.2 Pervasive Parallelism

The goal of the Pervasive Parallelism (PPL) [16] is to make parallelism ac-

cessible to the average software developers so that it can be freely used in all

computationally demanding applications. PPL tries to extend the Java virtual

machine approach by featuring a parallel object language to be executed on a

common parallel runtime system. This way it can map Java language onto the

respective computing nodes. Figure 2.8 gives an overview of the PPL structure.

2.5.3 ReconOS

ReconOS [17] aims at the investigation and the development of a programming

and execution model for dynamically reconfigurable hardware devices. Re-

conOS extends the concept of multithreaded programming to the reconfigurable

logic [18]. Figure 2.9 shows an overview of the ReconOS architecture.

The described multithreaded design process allows accelerating critical system

components through the reconfigurable hardware without sacrificing portability,



2.5. RUNTIME SYSTEMS 21

OS
interface

hw
thread

OS
interface

hw
thread

OS
interface

hw
thread

interrupt
controller

system bus

other
peripherals

memory
controller

DRAM

bus
arbitereCos

kernel

sw
thread

CPU

sw
thread

Fig. 2. ReconOS system architecture

gether with initialization code for system startup and thread
creation, the threads are compiled and linked against the cus-
tomized eCos library, resulting in a single executable image
to be loaded into system memory.

Hardware threads are written in VHDL, using the OS
call mechanisms described in Section 3.1, and connect to the
OS interface as shown in Figure 1. This OS interface con-
tains the busy/blocking handshaking logic and implements
both master and slave interfaces to the system bus, provid-
ing a hardware thread with access to any memory region
or memory mapped peripheral in the system. Thus, hard-
ware threads that access shared memory do not generate any
CPU load. Calling an operating system function, however,
requires the execution of the eCos kernel. To this end, each
OS interface module can raise a hardware interrupt. The OS
interfaces and the interrupt controller module are instanti-
ated automatically by our build system.

At run-time, hardware threads are created similar to reg-
ular software threads. For each hardware thread, a new ded-
icated eCos thread, the delegate, is created and connected to
the corresponding OS interface. Whenever an OSIF raises
an interrupt, the corresponding delegate is scheduled for ex-
ecution. The delegate thread receives the interaction re-
quests from the OS interface, translates them into their eCos
equivalents, and executes them on behalf of the hardware
thread. In our current ReconOS implementation, all hard-
ware threads are statically configured into the FPGA and can
run in parallel. While there is no need to schedule hardware
threads, the priority of a hardware thread is set by assign-
ing a priority to the associated delegate thread and its OSIF
interrupt line.

An example sequence for a semaphore wait OS call is
shown in Figure 3. The hardware task requests the service
by executing the corresponding VHDL procedure, i.e., re-
conos sem wait(), which blocks the hardware thread’s OS
synchronization state machine. The OS interface then raises
an interrupt, which is forwarded to the CPU by the sys-

delegate
thread

eCos kernelhardware thread

running on CPU

OS interface

1. HW thread 
requests OS 
service and

blocks

2. OS interface 
notifies delegate

3. delegate 
executes SW

OS call
4. SW OS 

call returns

5. delegate 
notifies OS 

Interface

6. OS interface 
signals call 

completion and
unblocks thread

reconos_sem_wait() cyg_semaphore_wait()

Fig. 3. OS call sequence

tem’s interrupt controller. There, a corresponding interrupt
handler wakes up the associated software delegate thread,
which queries the OS interface across the system bus as to
which OS call was requested. If the call in question is non-
blocking, the OS interface deasserts the blocking line, allow-
ing the hardware thread to continue. Otherwise, blocking
continues until the request is served. Again, blocking affects
only the OS synchronization state machine – in principle,
parts of the user logic in the hardware thread may run contin-
uously. The OS call is then executed by the delegate thread
using the standard eCos API, e.g., cyg semaphore wait().
After that call returns, the OS interface is notified, deasserts
the blocking signal and thus allows the hardware thread to
continue execution. This execution model provides a great
deal of flexibility and basically enables a hardware task to
use any operating system primitive accessible by software,
albeit at the cost of the OS’ interrupt handling latency and
an additional context switch to the delegate thread.

4. CASE STUDY AND EXPERIMENTAL RESULTS

The efficiency of an application running on an embedded
real-time operating system hinges on the efficiency of the
OS services’ implementations, especially when running ap-
plications with significant inter-thread communication and
synchronization. We have performed intensive tests with
synthetic hardware and software threads performing system
calls. In particular, we have analyzed the average laten-
cies of synchronization operations between several combi-
nations of software and hardware threads using semaphores.
The tests have been conducted on a Xilinx XUPV2P board
equipped with an XC2VP30-7 FPGA. The embedded CPU
has been run at 300 MHz, while the system bus, memories,
peripherals and hardware threads have been run at 100 MHz.
The area overhead introduced by the operating system is
mainly given by the OS interfaces attached to the system
bus. In our implementation, an OS interface including the
system bus interfaces amounts to 1051 slices, which consti-
tutes about 7 % of the used FPGA.

444

Figure 2.9: ReconOS System Architecture

flexibility, and the reusability. ReconOS enables designers to exploit both fine-

grained data parallelism as well as coarse-grained thread-level parallelism [19].

In the ReconOS execution environment, it is possible to synthesize multiple

hardware threads to the same location in the FPGAs reconfigurable fabric.

Using partial dynamic reconfiguration, the operating system is able to load

hardware threads during runtime. This allows hardware multitasking between

different hardware threads [20]

The ReconOS programming model provides the main abstractions for the

application design including the definition of hardware tasks and services

for task synchronization, communication, and scheduling [21]. Its execution

model defines the runtime system which enables multitasking in dynamically

reconfigurable hardware as well as across hardware/software boundaries [22].

2.5.4 HybridOS

HybridOS [23] supports fine-grained reconfigurable accelerators integrated

with general-purpose computing platforms. HybridOS is based on Linux imple-

mented on the Xilinx XUP Boards.

The granularity of the computation on the FPGA is based on multiple data

parallel kernels mapped into accelerators in HybridOS. These are accessed by



22 CHAPTER 2. BACKGROUND AND RELATED WORK

multiple threads of execution in an interleaved and space-multiplexed fashion

[24].

HybridOS provides interface to the runtime system for applications using a

library call approach. In addition, it interfaces the accelerator to plug into hybrid

CPU/accelerator model using an accelerator framework.

2.5.5 ReconfigME

ReConfigME is an operating system for reconfigurable computing that handles

the loading of the IP cores on the FPGA platform [25]. In addition to runtime

resource allocation, other services provided by an operating system such as

abstraction of I/O and inter-application communication provide additional

benefits to the users of a reconfigurable computer [26, 27].

The ReConfigME implementation is structured into three tiers consisting of

user, platform, and operating system. These tiers are connected via a standard

TCP/IP network [28]. The users connect to ReConfigME through a custom-built

client interface, which enables them to load applications, transfer application

data and configuration information, and monitor the reconfigurable computing

platform status.

The application architecture in the ReConfigME consists of a data flow graph

structure, memory based I/O, EDIF application file format, and the associated

software only components.

2.5.6 Warp Processing

Warp processing [29] transforms computing intensive kernels running on a

general-purpose processor to hardware. The Warp profiler is implemented as

hardware and is used to detect kernels at runtime. Within the Warp Processors,

a Dynamic CAD tool is used to map kernels to hardware. In addition, a binary

updater is used to change the binary of the program running on the general-

purpose processors, so that it can uses the FPGA. The Warp Processors can



2.5. RUNTIME SYSTEMS 23

generate code for the FPGA on the fly by using a Just in Time (JIT) compiler.

The Warp processors targets single application execution. All the optimizations

are within one application. However, we target multi-application execution

scenarios. Our kernels are more coarse grain that Warp. The Warp is basically

focusing on the optimization of the loops and small parts within a single

application.

2.5.7 UltraSONIC

UltraSONIC [30] reconfigurable computing platform is designed specifically

for real-time video applications. This platform incorporates a co design environ-

ment with automatic partitioning and scheduling between a host microprocessor

and a number of reconfigurable processors.

It proposes the use of a task manager to combine the runtime support for hard-

ware and software in order to improve modularity and scalability of the design.

The partitioning and scheduling are done automatically. The codes for software

tasks are run in software concurrently (using multi-threaded programming)

with the task manager program which is based on message-passing and event-

triggered protocol [31]. SONICmole [32] is a debugging environment designed

for the UltraSONIC platform.

2.5.8 hthreads

hthreads [33] is a set of cooperating layers of abstraction which form a bridge

from high level programming languages to low level reconfigurable devices.

The first of these layers is the operating system layer, which provides runtime

support to a diverse set of computations. The intermediate layer is built on top

of this layer. It provides a common format for describing computations that run

on the reconfigurable devices. The last layer is the high-level language support

layer, which builds upon the intermediate layer to support languages, which

are easy to use and familiar to most programmers. The programming model is



24 CHAPTER 2. BACKGROUND AND RELATED WORK

similar to POSIX threads [34]

To support the abstraction of the CPU/FPGA component boundary, a Hard-

Ware Thread Interface (HWTI) component is created to free the designer from

specifying and embedding platform specific instructions to form customized

hardware/software interactions [35]. The hardware thread interface supports

the generalized pthreads API semantics, and allows passing of abstract data

types between hardware and software threads.

2.5.9 Other Runtime Systems

An approach to the runtime management of reconfigurable hardware tasks

executing under supervision of a Linux OS is presented in [36]. The proposed

system offers transparent integration of the reconfigurable resources within

the software design and execution flow. In the presented system, the reconfig-

urable resources can be dynamically divided between the executing applications

according to a policy implemented by the application.

Access to the hardware modules is encapsulated into the ghost processes in [37].

This provides a transparent interface for interactions from the kernel and other

processes. The hardware and software processes use FIFOs mapped to the

Linux file system as well as dual-ported memory accessible from both software

and hardware processes for communication purposes. Process networks com-

municating via FIFO queues are a powerful model for real time digital system

design, especially for data streaming applications such as multimedia devices.

FIFOs also form a central part of UNIX and Linux Interprocess Communication

(IPC) architectures, where they are more commonly known as pipes. It is shown

that the combination of embedded Linux, reconfigurable system on chip, and

FIFO communication models provide a compelling platform for efficient de-

sign and runtime implementation of the complex, high performance embedded

systems [38].



2.6. VIRTUALIZATION 25

2.6 Virtualization

As mentioned earlier, the computing platform has to take an active role in the

resource management and resource sharing among different applications. This

is done by abstracting the hardware platform details using an extra virtualization

layer, which offers high level programming primitives to the application [39].

These primitives can be software or hardware implemented. The goal of such a

virtualization is to virtualize all the components of a heterogeneous multi-core

system including the GPP, reconfigurable processors, DSPs, etc [40].

The infrastructure presented in [41] targets the full exploitation of the underlying

hardware of heterogeneous, reconfigurable parallel systems without burdening

the programmer with details of the underlying hardware. Core of this framework

is a lightweight runtime system performing function resolution according to the

current system configuration and adhering to application requirements. This

process is guided by an augmented application description, enabling declaration

of implementation alternatives of individual functions and providing according

meta-data such as required or provided performance data.

A virtualization layer for multi-core environments, especially FPGAs, is pre-

sented in [42] which separates applications to be run from the underlying

hardware. This work is based on the Scalable Dataflow-driven Virtual Machine

(SDVM). The SDVM is evolved to a virtualization layer for multi-core systems

based on FPGAs. This virtualization layer allows for a transparent run time

reconfiguration of the underlying hardware reducing the complexity of the

systems temporal heterogeneity as seen by the application.

The goal of the IBM Lime [43] is to create a single unified programming

language and environment that allows all portions of a system to move fluidly

between hardware and software, dynamically and adaptively. Lime targets

Java applications to be dynamically translated for co-execution on the general-

purpose processors and reconfigurable logic. Another similar work is PPL [16]

which tries to extend the java virtual machine approach by featuring a parallel

object language to be executed on a common parallel runtime system, mapping



26 CHAPTER 2. BACKGROUND AND RELATED WORK

this language onto the respective computing nodes.

A new programming approach leveraging processor virtualization and compo-

nent based software engineering paradigms is shown in [44]. This approach is

intended for increasing the programmability of the multi-core platforms and for

integrating heterogeneous processors efficiently.

2.7 Comparison Methodology

We presented a number of runtime systems in the Section 2.5. Each runtime

system is based on some innovative thoughts and targets heterogeneous recon-

figurable systems. One important open issue here is how one can compare all

these systems. Traditionally in the area of the operating systems, there is always

the question of which operating system has the best performance. However,

there is not always a single best answer to that question.

In our case because most of the related works are research based products,

this question is even more difficult to answer because most of the time there

is no access to a consistent single version of those systems that can fit all

the hardware platforms. One possible approach for comparison is to take the

reported numbers from their publications and make the comparison based on

them. However, some major problems with this approach make the comparison

incorrect.

The most important problem is that in many cases the experiments are performed

using synthetic test cases. Therefore, the results generated from one set of data

are not always comparable with the results generated with another set of data.

Furthermore, the hardware platforms being used for each system are different

from the others. For example, some might use Xilinx platforms; the other used

Altera, etc. In addition, the processors might be PPC, ARM, etc.

Besides, the base operating system used in different approaches is different. For

example, some approaches only used a prototype operating system while some

others are based on Linux (different versions) or eCos. Different operating



2.7. COMPARISON METHODOLOGY 27

systems offer different scheduling algorithms, different binary standards and

different C libraries. The file system being used there also has an important

effect on the gained performance.

Moreover, each research might have used a different set of metrics for the

experimental parts. For example, the experimental results presented for the

ReconOS show the OS primitives and APIs overhead in number of bus cycles.

However, as the presented primitives are unique to the ReconOS, they are not

comparable for example with the primitives of BORPH.

As another example, we can mention BORPH. For the BORPH case, the

experiments are mostly focused on the overhead of File I/O from hardware

processes due to the special design of this system. While for example in

HybridOS, the authors presented the overhead of accessing to the accelerators

from the applications. They have presented four different methods for which

they showed the overhead in number of cycles. Anyhow, their results show that

the most effective access method depends on data transfer size and the number

of times the application will use an accelerator.

Based on the above discussion and based on the trends so far in the similar

researches, we will not compare the runtime system as a whole with the similar

projects. However, for each component inside the runtime system we will try to

compare it with the other similar works.

The metrics we will use in the coming chapters will be overhead of different

components, percentage of the overhead to the total execution time, speedup,

number of tasks executed on cooperating processors, percentage of the tasks

executed on cooperating processors, total execution time, accuracy, response

time, utilization.

We believe that these metrics can give a clear view of the system and it char-

acteristics. Nevertheless, one of the open issues in this area is the lack of a

consistent and uniform comparison methodology to compare similar works as a

whole system. In future research, we will study this problem and provide a set

of qualitative and quantitative metrics for comparisons purposes. Besides, we



28 CHAPTER 2. BACKGROUND AND RELATED WORK

will provide a set of standard real world application workloads that can be used

as the input for the comparisons.

2.8 Open Issues

The main responsibility of the runtime system is to fill the gap between the

application programmers and the hardware architectures. Application program-

mers are usually lacking in-depth knowledge of the hardware design. As a

result, the runtime system has to provide them with the high-level primitives and

services, which abstract away the hardware details. One of the main open issues

in the area of the heterogeneous multi-core systems is the lack of well-defined

programming model and primitives, which give the programmers a transparent

view of the whole system regardless of the underlying hardware.

One major question in this regard is the coupling and interaction model of

the cores in a heterogeneous environment. This has a direct effect on the

programming model and system performance. It also influences the granularity

of the computation, to be addressed by the system. The programming model

should also provide modularity in coding.

Another issue is the binary compatibilities between the cores. The runtime

system has to be able to work with different binaries for different cores. It

needs to know the different binary standards, their loading requirements, code

structure, etc. There is no clear approach to address binary compatibility in

heterogeneous multi-core systems from the surveyed literature.

Furthermore, different vendors provide their own implementations for each

computation on the special cores. This is mainly because they know the com-

putation characteristics of the core form one side and the computation from

another side and consequently, they can provide efficient implementations for

the computation. The runtime system should provide easy and clear interfaces

for incorporating the implementations provided by the third parties. This means

the system should be adaptive in using different implementations based on the



2.9. SUMMARY 29

implementation characteristics.

Another major issue is the resource management. The resource management

techniques and algorithms are still open and need serious attention from the

research community.

In the same line, the other problem is the lack of tools for analysing the programs

binaries at runtime and produce statistics to be used by the scheduling and

resource management algorithms.

The main contribution of this work is presenting an integrated runtime system,

which performs the resource management activities and offers all the required

programming primitives and APIs, which are needed by the programming

model. We present a task abstraction mechanism through which the task

implementation is separated from the task call. This way, we allow modularity,

adaptively and we can easily incorporate third party implementations for each

task.

We also provide a detailed discussion of the scheduling requirements of hetero-

geneous multi-core systems and present some scheduling policies together with

their performance evaluations. To provide the scheduler with information and

to ease the decision making process, we have a novel runtime profiler. The task

of the profiler is to analyse the running code and produce statistics about code

execution such as the computation intensity and frequency of execution.

As mentioned in section 2.7, one of the open issues in this area is the lack of a

consistent and uniform comparison methodology to compare similar works as a

whole system. We do not address this issue in this thesis and it is one of our

future works.

2.9 Summary

In this chapter, we provided an overview on the background knowledge and the

related work. We started with the target architectures. Our work focuses on the

heterogeneous multi-core systems with a special attention to the reconfigurable



30 CHAPTER 2. BACKGROUND AND RELATED WORK

cores. We showed some of the available examples of such platforms.

We briefly discussed the MOLEN hardware organization and the MOLEN

programming paradigm. We continued with a short overview of the current

MOLEN design tool chain, which supports the automatic design, follows for

polymorphic multi core systems.

By motivation why the design tool chain is not enough and there is a need

for employing a runtime system, we gave a summary of the current research

projects with the focus on the runtime systems. Next, we discussed the open

issues in this research area and the motivations behind this work.



3
Runtime System

In the previous chapter, we reviewed the background information and related

work. We showed some of the target hardware platforms as well as some similar

runtime systems. Moreover, we presented the motivation of using a runtime

management and virtualization.

In this chapter, we present an overview of our proposed runtime system. The

runtime system is responsible to manage the system resources and address

all the conflicting issues between applications. It incorporates a number of

components namely the scheduler, the profiler, the transformer, the JIT compiler

and the kernel library. We briefly describe the task of each component, however,

a more detailed discussion on them will be given in the following chapters.

We also show how the system is structured. The whole system is composed of

four layers; the application layer, the virtualization layer, the operating system

layer and the hardware platform layer. Furthermore, we discuss the interaction

and interfacing mechanisms between these components. The most important

interface is the interface between the scheduler and the profiler. Moreover, we

present two case studies which show two different scenarios of cooperation and

interaction of the components.

31



32 CHAPTER 3. RUNTIME SYSTEM

3.1 Introduction

In a heterogeneous multi-core system, to assign the computations to different

cores, a comprehensive runtime system is required. The runtime system detects

the computation intensity of each task and has a general view over the system

load (e.g. number of applications running) and therefore can decide about the

hardware allocation based on all these information. Furthermore, the process of

mapping and allocation has to be transparent for the program developers. The

runtime system provides a powerful interface to exploit multiple cores available

in the system [45–47].

Within the MOLEN Programming paradigm, the execution can take place either

on the General-Purpose Processor (GPP) or on the cooperating processors

based on the runtime dynamic conditions. In this model, the GPP is the master

processor and all the applications executions start on this processor. Later on,

the runtime system might decide to execute some part of each application on the

other cores. This decision is very dependent on the system and the metrics that

need to be optimized. It can be performance, power consumption or a smaller

memory footprint.

To be able to run on the heterogeneous hardware platform, the virtualization

layer needs to inspect, analyse, and do binary modification on the applications.

The layer monitors the programs binary to find the compute intensive tasks.

Furthermore, it determines whether these tasks can run on faster core or not

and then it transforms the binary in such way that the binary can be executed

on that core.

It should be mentioned, that our system serves multiple applications. Each

application is composed of several tasks. Each task can be mapped to a certain

core, or it can be executed on the general purpose processor. A certain task

might be used in more than one application. To simplify the design and to be in

line with the MOLEN programming paradigm, we assume that a task is in the

form of a function in the program code. Therefore, each function in the code is

a task unless it is a very small function.



3.1. INTRODUCTION 33

The extracted tasks have to be complied for that specific core after mapping

those replacements. This can be done either automatically with the help of a

JIT compiler which converts the binary to the bit stream or using an available

implementation from a library.

A JIT Compiler generates a considerable overhead and yet, there is no fast

and reliable JIT compiler to translate the software binary to the reconfigurable

hardware implementation. Therefore, having a library of the common kernels

implemented for each hardware platform is a very good alternative. If a software

uses kernels which are not included in the library, it can add those new kernels

during the software installation process.

One of the problems with the library is the matching between the selected

part in the application and the equivalent kernels in the library offering the

same functionality. There is no good solution for functionality matching so

far. This is proven to be a NP problem. We propose an alternative solution by

assigning each kernel a unique identifier. The matching between the kernel in

the application and the library can be based on this identifier.

The annotation of the source code with the identifiers may impose an extra work

on the programmers. To simplify this, we can also have a software class library

equivalent to the hardware kernel library. Each kernel in the hardware library

has a software implementation in the class library and the programmers can use

this class library during the software development.

Before going any further, we will first give a few examples of real world appli-

cations for such systems. All the following applications need huge computing

power and they are very dynamic at the same time. The computation density

may change according to users input. This means that during the runtime the

platform has to adapt itself to the users’ performance requirements.



34 CHAPTER 3. RUNTIME SYSTEM

3.2 Sample Real World Applications

In this section, we briefly introduce a few applications to motivate the need for

such hardware platforms and runtime systems. Some parts of these applications

are very compute intensive and also power hungry. They also have a very

dynamic nature meaning that their computation intensity might change based

on the user’s input. Therefore, the hardware platform should be able to offer the

required computation power and the runtime system should be able to manage

the dynamicity and flexibility in these applications.

Interactive Multimedia Internet based Testing is similar to the TOEFL iBT

exam. In such a test, several test takers (applicants) are connected to the exam

server. There is a separate process on the server for each test taker. This process

sends the questions containing multimedia features such as voice, video, and

pictures to the corresponding test taker. Each test taker might use his own

machine to connect to the server, therefore, these different machines connected

with the server can have different computing power. Consequently, the server

must send the question in a format, which can be easily decoded by the clients.

Furthermore, the questions have to be encrypted for ensuring the security.

In the listening tests, the server should send image and voice files for each

question to the client. Therefore, the server encodes image and voice files.

Afterwards, the test question is sent to the client. Whenever a user answers the

test, the test answer is sent back to the server. The client encrypts the test answer

file and sends it to the server for ensuring a secure exam. In the speaking tests,

similar to the listening tests, image and voice files inside the test question are

sent to the client. Again, they are encoded and encrypted by the server before

being sent to the client. In the reading tests, the server sends the simple test

to the client and receives the test answer files that are encrypted by the client.

For these different tests, and given that many simultaneous users will perform

similar operations, the encoding and encrypting of the files can be accelerated

by mapping them on the reconfigurable fabric.

Automotive Cognitive Safety System is an on-board digital system for keep-



3.3. THE PROPOSED RUNTIME SYSTEM 35

ing the passengers safe. This system analyses, anticipates, and acts in response

to the ever-changing conditions on board. It uses a number of sensors for

actuating the assisted scenarios such as forward collision warning, automatic

emergency braking, lane change assist, etc. The sensors generate a lot of infor-

mation that needs to be processed in order to take an appropriate action. Some

of the actions might have real-time constrains. The whole scenario needs a lot

of multimedia processing such as image and video coding. These parts together

with the real-time constrains make these systems a suitable candidate to be

implemented on our target architectures and runtime system.

Mobile Devices are now being used for playing HD videos, streaming video

and audio, multitasking, browsing the web, 3D gaming, etc. Mobile devices

need to employ heterogeneous multi-core platforms for further increase the

performance and for extending the battery life.

Multi-View Video refers to a set of N temporal synchronized video streams

coming from cameras that capture the same scene from different viewpoints.

Transmitting of the multi-view video requires much more bandwidth than tradi-

tional video due to the large data volume. Consequently, efficiently compressing

multi-view video becomes more important than any other data. Then, the server

has to synchronize multiple video into one stream and send it to the client [48].

3.3 The Proposed Runtime System

In this work, we propose a four layer architecture; the application layer, the

virtualization layer, the operating system layer, and the hardware platform layer.

Figure 3.1 shows an overview of the runtime system. The top most layer is

the application layer. There might be several applications running at the same

time. Needless to say, these applications are competing for the system resources.

Moreover, they might not have a clear view of which hardware resources are

available. The system has to manage the resource allocation transparently. The

next level is the runtime virtualization layer. This layer is responsible to monitor

the computation intensity of different applications and map the system resources



36 CHAPTER 3. RUNTIME SYSTEM

P
rofiler

Scheduler

Transformer JIT Compiler

Library

App 1 App 2 App n…

Operating System

Hardware Platform

App 3

Figure 3.1: The Runtime Environment

based on the needs of the application and other runtime constrains. After the

virtualization layer, there is the operating system layer on top of the hardware

platform layer. We use the Linux mainstream kernel as our operating system. It

is just the kernel of the Linux and we do not use any special distribution of the

Linux (i.e. RTLinux [49] (real-time Linux)).

The virtualization layer is consisted of the scheduler, the profiler, the JIT

compiler, the transformer, and the kernel library. A detailed description of

each component is given later in this section. The runtime system is designed

as a framework meaning that each component has a generic definition and

can be replaced by a new component provided that the new one offers the

same functionality. In order to achieve this, we have introduced well defined

interfaces for each component to interact with the other components of the

runtime system. For example, the interface between the scheduler and the

profiler is the profiler Frame. If a new profiler is able to store the profiling

information in the profiler Frame, it can easily replace our profiler. This way,

the system components can be plugged in/out based on the user’s preferences.

To show how the operating system and the hardware platform interact, a more

detailed view of the runtime system is depicted in Figure 3.2. As it was



3.3. THE PROPOSED RUNTIME SYSTEM 37

Figure 3.2: Runtime System Layers

mentioned before, our work is based on the MOLEN hardware platform. This

Figure gives more detail on the hardware platform layer which is located at the

bottom of Figure 3.1. As illustrated in the Figure 3.2, the hardware platform

layer is consisted of the MOLEN Abstraction Layer (MAL) and the physical

hardware layer.

MAL is actually managing the low-level hardware mapping. This means that the

virtualization layer is responsible for high-level mapping decisions but it never

communicates directly with the physical hardware. In fact, the virtualization

layer uses the primitives provided by MAL, to do the actual communication



38 CHAPTER 3. RUNTIME SYSTEM

with the hardware.

In MAL, five instructions are required for controlling the hardware. The set

instruction initiates the configurations of the core. The execute instruction

controls the execution of the operations implemented on the core. The break

instruction is utilized as a synchronization mechanism to complete the parallel

execution and the move instructions are used to move the parameters to the ex-

change registers (XREG). The XREGs are used for transferring the parameters.

These are accessible from both GPP and the cooperating cores. The shared

memory is used to keep the data required by the computations. Furthermore,

the second shared memory is used to keep the bit streams.

In the following, we describe the components of the virtualization layer.

3.3.1 Scheduler

The scheduler is responsible for deciding the mapping of the tasks to the cores.

The objective is to identify certain tasks that can be accelerated on the faster

cores and the remaining parts of the application will be executed on a regular

general-purpose processor. We should clarify that in this thesis, a task can be a

whole function or procedure but it can also be any cluster of instructions that is

scattered throughout the application. These tasks can be either identified by the

design tool chain at the compile time or by the runtime profiler at the runtime.

In our work, the scheduler, does not change the order of the tasks execution

within an application. It only decides about the mapping.

The scheduler monitors the applications binary and intercepts the kernels dur-

ing the program execution. It also estimates the potential speedup that can

be achieved when the kernels are executed on the reconfigurable hardware

and estimates the initial cost of a hardware mapping. The scheduler decides

hardware allocation after making the estimates. The hardware allocation is

done according to the scheduling policy and other applications requirements.

Any scheduling policy such as the Most Frequently Used, the Best Speedup

and the Multi Constraint Knapsack presented in [50] can be used.



3.3. THE PROPOSED RUNTIME SYSTEM 39

Within the MOLEN programming paradigm [51], the set and execute instruc-

tions can be effectively used as a mean for instrumentation. However, these

instructions do not configure or execute anything on the hardware although

they are meant to do so. The set just informs the scheduler of a possible future

call to hardware and the execute instruction is a signal to the system to execute

the hardware if that is possible. Both set and execute instructions include the

corresponding kernel identifier. The system invokes the scheduler to decide

about the actual execution after encountering set or an execute instructions.

The scheduler can also utilize more scheduling policies, which are more com-

plex. Those policies can be based on the information from the design time,

information collected at runtime or even some heuristics. A good source of

information from design time is the Configuration call graph (CCG) which

shows the future of the system and can help in finding a near optimal schedule.

The CCG is a directed graph presenting the kernels identified by the profiler.

Each node in this graph contains the kernel identifier, which uniquely identifies

the kernel. The edges of the graph represent the dependencies between the

configurations within the application.

3.3.2 Profiler

The profiler continually tracks the application behaviour and records statistics

such as the number of references to one kernel. These statistics along with the

scheduling policy, are used to determine where, when and how to execute the

tasks. The profiler can also be used to find the kernels. The profiler must log the

collected data in very fast and efficient data structures. Because, the overhead

of retrieving information form the data structures can affect the performance of

the profiler.

3.3.3 Transformer

The transformer replaces the software implementation of the kernel with a

call to the hardware. It uses a binary rewriting mechanism and can again



40 CHAPTER 3. RUNTIME SYSTEM

impose a considerable overhead. This mechanism has to assure the correct

input/output parameters transfer. However, we propose a mechanism within

MOLEN programming paradigm that does not require binary rewriting. This

will be explained in more details in Chapter 4.

3.3.4 Kernel Library

The kernel library is a pre-compiled and pre-synthesized set of kernels imple-

mented for the underlying reconfigurable hardware. For each kernel, there

might be a couple of different versions of implementations (with the same

identifier) in the library. Each version differs with the others in one or more

metrics for example logic size or/and power consumption. It is completely

transparent from the application developers and does not impose any trouble to

them.

Corresponding to each version, the library includes some metadata describing

the kernel’s characteristics such as the configuration latency, execution time,

memory bandwidth requirement, power consumption, and the logic size. These

metadata are mainly used by the scheduler based on the scheduling policy.

Furthermore, it contains the physical mapping location of the kernel on the

FPGA.

This library can be synthesized for each reconfigurable hardware platform

resulting in the applications, independent of the underlying platform. There is a

software wrapper for each operations implementation. The software wrapper is

kept in the form of a Dynamic Shared Object (DSO). The application developer

can also provide his own DSO along with the required metadata.

3.3.5 JIT Compiler

This is a just-in-time compiler that can be used to compile the kernels for which

there is no implementation in the library. The compiler complies the binary

from one architecture to the other architectures. Any just in time compiler can



3.4. INTERFACING COMPONENTS 41

Application Binary

Execution Manager

Scheduler

Profiler

Transformer

JIT CompilerProfiler Frame Library

Figure 3.3: The Components Interaction

be used here nevertheless, there is no efficient one yet available.

3.4 Interfacing Components

The profiler has to communicate with the scheduler at runtime and, therefore, it

needs to use data structures that allow for fast writing and reading of the profiled

statistics. As the interaction between the scheduler and profiler is in real time,

we propose the use of a shared memory and a double buffering mechanism

to store and read the profiled data. The shared memory is shared between the

profiler and the scheduler.

As shown in Figure 3.3, the profiler stores the collected information in the

shared memory and the scheduler reads them. This shared memory is called

Profiler Frame. This data is vital to the scheduler for the decision-making. As

soon as the scheduler decides about mapping a task to a core, it invokes the

transformer asking to transform the binary so that it can execute on that core.

The transformer either performs a just in time compilation or uses an already

existing implementation from the library.

To give a better overview of the sequence of activities happening during the



42 CHAPTER 3. RUNTIME SYSTEM

task scheduling, we present two case studies.

In the first case study, there are three applications and two cores besides GPP.

We present this case study to show the interaction between the application,

the scheduler and the kernel library. In this case study, applications App1 and

App2 require operation Op1 on the core Core1 and application App3 requires

operation Op3 on the core Core3. This case study clearly shows how the

applications are being executed in what order their requests are served. This

case study also clearly shows that the execution on the cooperating cores is non

preemptive.

The sequence diagram of this case study is presented in Figure 3.4. The OS starts

App1 at the beginning. After sometimes, App1 sends a request for operation

Op1 to be executed on core Core1. This request goes to the scheduler and the

scheduler queries the library to check if there is an implementation for this

operation in the library, which suits core1 . The library’s answer to this query

is positive and, therefore, the Core1 is configured with the Op1 and it starts

executing it. Looking at the execution of Op1 on Core1, it is clear that the

execution continues to the end of Op1 and it is not preemptive.

At a later stage, the OS sends a suspend signal to the App1 as its time slice is

finished. Then, the OS starts App2, which needs the Op1. As this operation is

now in busy mode on core one, the App2’s request is rejected. After finishing

App2’s time slice, the App3 starts execution. App3 needs operation Op2 on the

core2. The scheduler therefore, queries the library, which returns a negative re-

sult. As a result, the scheduler asks JIT compiler to produce an implementation

for operation Op2 for core2. Then, the Op2 is configured on core2 and it starts

execution.

The second case study shows the profiler role in the whole execution process. In

this case study, there are two application and two cores. This case study shows

how the profiler recognizes a kernel and interacts with the rest of the system.

Figure 3.5 presents the sequence diagram of the second case study. As it is

shown in the figure, at the beginning, the applications are executing one after



3.4. INTERFACING COMPONENTS 43

App 1App 2App 3OSSchedulerTransformerJITLibCore 1Core 2

Request op1 on Core 1

Op1 Available on Core 1?

Op1 avail on Core1

Isavail

Exec op1 on Core 1

Exec op1 Suspend()

Request op1 on Core 1

Op1 busy()

Suspend

Request op2 on Core 2

Op2 Available on Core 2?

Op2 not avail on Core 2

Compile Op2 for Core 2

Compiled Isavail

Exec op2 on Core 2

Exec op1

Done

Suspend

Run

Run

Run

Done

Figure 3.4: Sequence Diagram of the First Case Study



44 CHAPTER 3. RUNTIME SYSTEM

ProfilerApp 1App 2OSSchedulerTransformerJITLibCore 1Core 2

Exec op1

Suspend

Op1 Available on Core 1?

Op1 is avail on Core 1

Done

Suspend

Suspend

Suspend

Detected Op1 in App1

Transform App1

Run

Suspend

Run

Suspend

Ready()

Done

Exec op1

Run

Run

Run

Run

Run

Run

Figure 3.5: Sequence Diagram of the Second Case Study



3.5. CONCLUSION 45

the other for sometimes. During this period, the profiler is monitoring the

behaviour of these applications. After a while, it can detect that one of a task

in the application App1 is a kernel and can be accelerated on a faster core.

As a result, the profiler sends a signal to the scheduler informing it about

the new kernel. The scheduler then checks the library to see if there is an

implementation available for that operation which is the case in this example.

After that, the scheduler sends a request to the transformer to transform the

App1 binary to be able to use this operation on core1. The transformer has to

suspend the App1 and start modifying its code. After finishing this process,

App1 can use the operation Op1 in its later execution process.

3.5 Conclusion

In this chapter, we presented an overview over our runtime system. The runtime

system is responsible to operate the system and address all the conflicting

issues between the tasks. It incorporates a number of components namely

the scheduler, the profiler, the transformer, the JIT compiler and the kernel

library. We briefly described the task of each component, however, a more

detail discussion on them will be given in the following chapters.

We also discussed the interaction and interfacing mechanisms between these

components. The most important interface is the interface between the scheduler

and the profiler. This interface has to be very fast and efficient to be able to

address the real-time constraint of interaction between the profiler and the

scheduler.

Furthermore, we presented two case studies which show two different scenarios

of cooperation and interaction of the components. Other scenarios can also be

envisioned.





4
Task Abstraction

In the previous chapters, we provided a summary of the MOLEN programming

paradigm. The MOLEN programming paradigm is proposed to offer a general

function like execution of the compute intensive parts of the programs on the

reconfigurable processors. Within the MOLEN programming paradigm, the

MOLEN set and execute primitives are employed to map an arbitrary function

on the reconfigurable hardware. However, these instructions in their current

status are only intended for single application execution scenario.

In this chapter, we extend the semantic of the MOLEN set and execute to have

a more generalized approach and support multi-application and multitasking

scenarios. This way, we propose the runtime SET and EXECUTES as APIs

provided by the runtime system. We show how we use these APIs to abstract

away a task call from its actual implementation.

4.1 Introduction

Within a heterogeneous multi-core system, different operations might be

mapped to different cores. In case of a multi-application scenario, where

the exact configuration of the system load is not known at design time, the task

mapping has to be performed at runtime.

47



48 CHAPTER 4. TASK ABSTRACTION

In our system, each application is composed of several tasks. Each task can be

mapped to a certain core, or it can be executed on the general purpose processor.

A certain task might be used in more than one application. To simplify the

design and to be in line with the MOLEN programming paradigm, we assume

that a task is in the form of a function in the program code. Therefore, each

function in the code is a task unless it is a very small function. Some of these

functions (tasks) are recognized by the compiler as compute intensive tasks.

For calling these tasks, the compiler uses the runtime system’s APIs. However,

there might be other compute intensive tasks which are not recognized as such

by the compiler. These tasks may be identified at runtime by the profiler and

therefore, the runtime system has to change the call to these tasks in such a way

that they use the runtime APIs.

For each task in the system, there might be a variety of different implementa-

tions. There are several reasons for that. First, each core might have different

hardware architecture and therefore, dissimilar binary standards. This means

that a task when mapped on core number one, should use a different binary than

when mapped on core number two. Second, based on the desirable level of per-

formance, each task might have different implementations even for a particular

core, especially when that core is a kind of accelerator such as a FPGA. For

example one implementation is optimized for better power consumption, the

other is faster, etc.

It is obvious that managing all these varieties in implementations needs compli-

cated mechanisms. It is very difficult for the program developers to concentrate

on high-level algorithmic issues and at the same time deal with such complex

matters. To overcome the complexity of handling all these issues, a task ab-

straction mechanism is needed in which the task in its conceptual view should

be abstracted from its actual implementation. In this way, the programmers

can only express the computation in its logical and conceptual view and then at

runtime the actual binding to a certain implementation happens.

The compute intensive operations are usually implemented on the faster cores

for increasing the system performance. Different vendors provide their own



4.1. INTRODUCTION 49

implementation for each specific operation. The main challenge is to integrate

these implementations - whenever possible - in new or existing applications.

Such integration is only possible when application developers as well as hard-

ware providers adopt a common programming paradigm.

The MOLEN programming paradigm [51] is a sequential consistency paradigm

for programming multi-core, polymorphic machines. This paradigm allows

parallel and concurrent hardware execution and is currently intended for sin-

gle program execution. However, the movement towards many applications,

multitasking scenarios adds new design factors to the system such as dealing

with the core as shared resources. These factors prevent using the MOLEN

primitives in their existing form. They should be extended in such a way that

besides offering the old functionalities, they have to resolves the conflicting

issues between different applications at the time of primitive usage. In this

chapter, we present how the MOLEN programming paradigm primitives are

extended and adapted into the proposed runtime system.

The MOLEN hardware organization is established based on the tightly cou-

pled co-processor architectural paradigm. Within the MOLEN concept, a

general-purpose core processor controls the execution and reconfiguration of

reconfigurable coprocessors. A more detailed view on MOLEN is given in

chapter 3. In the next section, we describe the MOLEN programing paradigm.

4.1.1 MOLEN Programming Paradigm

The MOLEN programming paradigm presents a programming model for re-

configurable computing that allows modularity, general function like code

execution and parallelism in a sequential consistency computational model.

Furthermore, it defines a minimal ISA extension to support the programming

paradigm. Such an extension allows the mapping of an arbitrary function on

the reconfigurable hardware with no additional instruction requirements.

The MOLEN programming paradigm introduces new super instructions to

operate the FPGA from the software. An operation executed by the RP is



50 CHAPTER 4. TASK ABSTRACTION

divided into two distinct phases: set and execute. In the set phase, the RP is

configured to perform the required task and in the execute phase the actual

execution of the task is performed. This decoupling allows the set phase to be

scheduled well ahead of the execute phase, thereby hiding the reconfiguration

latency. This phasing introduces two super instructions; set and execute.

The set instruction requires as a single parameter the beginning address of the

configuration microcode. When a set instruction is detected, the Arbiter reads

every sequential memory address until the termination condition is met and

then the Arbiter configures it on the FPGA. After completion of the set phase,

the hardware is ready to be used for the targeted functionality. The execution

of the functionality is done using the execute instruction. This instruction

utilizes as a single parameter the address of the execution microcode. The

execution microcode performs the real operation. This consists of reading the

input parameters, performing the targeted computation, and writing the results

to the output registers.

As it is obvious, these two instructions are based on the assumption of a single

thread of execution. There is no need for changes in the operating system as

long as there is only one application dealing with the FPGA. That is because

there is no competition for the resources and the application has full control

over the FPGA. In case of serving several concurrent applications on the same

system, set and execute cannot be used in the same way as they are used in

the single application paradigm. Each application might issue its own set and

executes which most probably have conflicts with the others set and executes.

The operating system has to resolve all the conflicts in such a scenario.

In this chapter, we extend the semantic of MOLEN set and execute to have a

more generalized approach and support multi-application, multitasking scenar-

ios. This way, we propose the runtime SET and EXECUTES as APIs provided

by the runtime system. In the next section, we review the runtime execution

environment in which the MOLEN primitives are used to operate the FPGA.

After that, we present the runtime primitives in Section 4.2.



4.2. MOLEN RUNTIME PRIMITIVES 51

4.1.2 The Runtime Environment

In chapter 3, we presented the proposed runtime environment. The runtime

environment is a virtualized interface that decides how to allocate the hardware

at runtime based on the dynamically changing conditions of the system. More-

over, this layer hides all platform dependent details and provides a transparent

application development process.

The runtime environment components include a scheduler, a profiler, and a

transformer. It might also incorporate a JIT compiler for on the fly code

generation for the target cores, e.g. FPGA bit streams.

The runtime system also includes a kernel library of a set of precompiled im-

plementation for each known operations. This means, we might have multiple

implementations per operation. Each implementation has different character-

istics, which are saved as metadata and can contain the configuration latency,

execution time, memory bandwidth requirements, power consumption, and

physical location on the reconfigurable fabric.

This library can be synthesized for each reconfigurable hardware platform

resulting in the applications, independent of the underlying platform. There is a

software wrapper for each operations implementation. The software wrapper is

kept in the form of a Dynamic Shared Object (DSO). The application developer

can also provide his own DSO along with the required metadata.

In the next section, we present the runtime primitives. The SET and EXE-

CUTE APIs here are an extension of the MOLEN set and execute instructions

respectively.

4.2 MOLEN Runtime Primitives

To keep the changes in the compiler and design tool chain [52] as limited as

possible and to provide legacy compatibility, we propose the MOLEN runtime

primitives as follows.



52 CHAPTER 4. TASK ABSTRACTION

We proposed two APIs in the runtime system; the SET and EXECUTE. The

functionality of these APIs is almost identical to the original MOLEN set and

execute. Besides the normal MOLEN activities, these APIs also take care of the

sharing of the FPGA among all the competing applications. This means, the

runtime system is responsible to check the availability of the FPGA or targeted

core at the time of the call. Furthermore, it can impose some sort of allocation

policies such as priorities and performance issues.

Figure 4.1 shows the sequence diagram of the operation execution in the pro-

posed runtime system. When an application encounters a call to the SET for

a specific operation, it sends its request to the runtime system (VM). The VM

then checks the library to look for all the appropriate implementations. If no

such implementation is found, it sends a FAIL message back to the application.

The FAIL message means the SET operation cannot be performed. Otherwise,

based on the scheduling policy it selects one of the implementations (IM) and

configures it on the FPGA. The OS driver is the low-level interface between

the operating system and the physical FPGA fabric. Finally, the VM sends the

address of the IM to the application.

Comparing Figure 4.1 with Figure 3.4 and 3.5 in Chapter 3, we should mention

that the VM in this figure is equal to the Scheduler in those figures. The

Scheduler in this figure is actually representing the scheduling policy which

will be explained in the next chapter. Figure 4.1 is actually a more detailed view

of the Exec arrows of the Figure 3.4 and 3.5 in Chapter 3.

Later on, when the application encounters the EXECUTE instruction, the

system checks if the IM is still configured and ready. The execution can start

right away when the IM is configured and ready. The system has to follow the

SET routine again and start the execution when the IM is not configured and is

not ready. If any problem occurs during this process, a FAIL message will be

sent back to the application. A FAIL message received by the application means

the software execution of the operation has to be started. In the following two

sections, we describe the SET and EXECUTE APIs in more detail.



4.2. MOLEN RUNTIME PRIMITIVES 53

Figure 4.1: The Operation Execution Process



54 CHAPTER 4. TASK ABSTRACTION

4.2.1 SET

The SET API receives the operation name as an input. We assume all the

supported operations have a unique name. This assumption is based on the idea

of having a library of a number of different implementations per operation in

the runtime environment. Listing 4.1 shows the pseudo code corresponding to

the SET API.

In Listing 4.1, line 2 creates a list of all the existing implementation for the op-

eration. If the physical location corresponding to any of those implementations

is busy, e.g. another application is using that resource, that implementation is

removed from the list in line 4-1 and the loop continues to the next element in

the list. Some of the implementations might already be configured on the FPGA.

This means there is no need for configuring them again. Those implementations

are added to another list in line 4-2 and the best candidate (here the fastest one

and can be a different one based on the scheduling policy) is return to the main

program in line 5. If such an implementation does not exist, the algorithm goes

further to choose one of the other implementations and starts configuring it

in line 6. This selection is very dependent on the scheduling (line 6-1). The

configuration process is discussed in Section 4.2.3.

Listing 4.1: The SET API

SET (input: Operation op): return Implementation IM

1- SET begins

2- Assume im_list the list of all the implementations

corresponding to the op in the library;

3- Assume co_list as an empty list;

4- foreach IM in im_list

4-1- If the corresponding physical location of IM is

busy

Remove IM from im_list;

Continue;

End if

4-2- If IM is already configured on the FPGA

Add IM to the co_list;



4.2. MOLEN RUNTIME PRIMITIVES 55

End if

End for

5- If co_list is not empty, return the IM with the minimum

execution time from co_list;

6- If im_list is not empty

6-1- Choose IM from the im_list based on the scheduling

policy; //Calls the Scheduling Algorithm e.g. IM =

LDiF(im_list);

6-2- If IM is NULL, Return FAIL;

6-3- Configure IM on FPGA;

6-4- Return IM;

End if

7- Return FAIL;

8- SET ends

By looking more carefully to the SET procedure, it is obvious that the hardware

execution part is non-preemptive. We check the busy status of the physical

locations in step 4-1 before making any replacement decision. In preemptive

hardware scheduling scenario, the system has to offer the ability to save and

restore hardware status among other services.

Preemptive scheduling is outside the scope of this thesis. However, more detail

on the preemptive scheduling can be found in [53] and [54]. Moreover, we do

not have task migration from CPU to FPGA. As soon as a task starts on the

CPU, it cannot be executed on the FPGA. However, at a later stage in another

run of that task, it might be executed on another core. This means that we

support weak code mobility but not strong code mobility. Strong code mobility

involves moving the code and the execution state from one core to another.

4.2.2 EXECUTE

The EXECUTE is also an API offered by the runtime system. It has two input

arguments; the operation name and the address of the configured implementa-

tion in the SET phase. Listing 4.2 shows the pseudo code corresponding to the

EXECUTE.



56 CHAPTER 4. TASK ABSTRACTION

Listing 4.2: The EXECUTE API

EXECUTE (input: Operation op; input: Implementation IM)

1- EXECUTE begins

2- If IM is not NULL and IM is not busy

Execute IM;

Return SUCCESS;

End if

3- IM = SET (op);

4- If IM is not NULL and IM is not busy

Execute IM;

Return SUCCESS;

End if

5- Return FAIL;

6- EXECUTE ends

The operations might be shared between different applications (This task sharing

is one of the motivations behind the idea of using dynamic shared object

(discussed in section 4.2.3). On the other hand, there might be a gap between

the occurrence of the SET and EXECUTE (e.g. because of the compiler

optimizations to hide the reconfiguration delay). Therefore, the control might

go from current application (aap1) to another application (app2). The second

application (app2), therefor, might use the implementation which is set by the

first application (aap1). That is why the busy status of the IM (in line 2 of

Listing 4.2) has to be checked. If it is not busy, it can start execution.

As the EXECUTE performs a SET in any case, it is possible to directly call

the EXECUTE without any prior SET or any successful prior SET. In such

a case, ECECUTE is called with IM being null. In case of having a busy

implementation or a null, the SET has to be performed again. This is done

in line 3 of Listing 4.2. Finally, the algorithm executes the implementation in

line 4 of Listing 4.2. If any problem occurs during the EXECUTE, it return a

FAIL which means the operation has to be executed in software. The execution

process is discussed in section 4.2.3.



4.2. MOLEN RUNTIME PRIMITIVES 57

4.2.3 Dynamic Binding Implementation

The actual binding of the function calls to the implementation happens at

runtime. To do that we use the ELF binary format delayed symbol resolution

facility and the position independent code.

For each operation implementation in the library, there is a software wrapper

with two functions. One function performs the low level configuration of the

operation (the original set) and the other performs the low level execution of the

operation (the original execute). In the runtime SET, when the reconfiguration

takes place (line 6-2 in Listing 4.1), the low level SET from this software

wrapper is called. Similarly, in the runtime EXECUTE (lines 2 and 4 in

Listing 4.2) the low level execute is called. The reason that we can use the

traditional set and execute at this point is that the sharing controls has already

been performed by the runtime system and it is safe to call the original set and

execute instruction.

As it is mentioned in Section 4.1.2, this software wrapper is kept in the form

of a Dynamic Shared Object (DSO). Given the name of a DSO by the SET

(line 6-2 in Listing 4.1), the system dynamically loads the object file into the

address space of the program and returns a handle to it for future operations.

The name of the DSO is actually the name of the chosen implementation. We

do this process by using the Linux dlopen function. The dlopen is called in

LAZY mode. The LAZY mode says to perform resolutions only when they are

needed. This is done internally by redirecting all the requests that are yet to be

resolved through the dynamic linker. In this way, the dynamic linker knows at

request time when a new reference is occurring, and resolution occurs normally.

Subsequent calls do not require a repeat of the resolution. To find the address

of each function in the DSO, we use Linux dlsym facility. The dlsym takes the

name of the function and returns a pointer containing the resolved address of

the function.

At the time of original set call (line 6-3 in Listing 4.1), all the required parame-

ters needed by the FPGA have to be transferred to MOLEN XREGS. Then, it



58 CHAPTER 4. TASK ABSTRACTION

starts configuring the FPGA. At the time of the original execute (lines 2 and

4 in Listing 4.2) call, the address of the second function is resolved using the

dlsym. By this function pointer, we can invoke the required operation.

Furthermore, a support tool is proposed for simplifying the creation of DSO

files to be added to the runtime library (especially for third-party modules)

. The idea is simple: It shows a template of the wrapper and the program

developer has to add a few lines of code to it. Besides, the program developer

has to write explicitly the parameters transfers instruction in the pre-defined

template (moving the parameters to XREGs). At the end, the tool compiles the

code for Position Independent Code (PIC) and converts it to a DSO. The tool

provides a very simple interface to gather the metadata required by the runtime

scheduler such as the configuration latency, execution time, memory bandwidth

requirements, power consumption, and physical location on the reconfigurable

fabric and stores them in an appropriate format.

4.3 Evaluation

The overall performance improvement through acceleration and the invoked

overhead are the two important parameters for the evaluation of the proposed

mechanism. In this section, we first discuss the overhead involved in the pro-

posed mechanism and then we present the experimental results. The execution

time overhead imposed by loading of a DSO occurs at two places; at run and

load-time.

At runtime, each reference to an externally defined symbol must be indirected

through the Global Object Table (GOT). The GOT is a table that contains

the absolute addresses of all the static data referenced in the program. The

compiler/assemble make all data references through this table. During runtime

linking this table is initialized by the runtime linker. In most cases, the only

runtime overhead is the need to access imported symbols through the GOT.

Each access requires only one additional instruction.



4.3. EVALUATION 59

At load-time, the running program must copy the loaded code from an object

file into the memory and then link it to the program. The load-time overhead is

the time spent to load the object file. For a null function call in our system, the

load time is about 0.75 milliseconds. For a typical wrapper function, the load

time increases to about 2 milliseconds. We should mention that the increase in

the input parameters’ size might increase the size of the wrapper function since

each parameter needs a separate instruction to be transferred to the MOLEN

XREGs.

In the next section, we present the time it takes to load some of the well-known

kernels using the proposed mechanism by hardware emulation.

4.3.1 Overhead in a Single Call

To show the overhead of loading DSOs, we performed some experiments. We

take some well-known kernels and try to show the overhead when calling them

using the proposed mechanism. We developed a very simple program which

call each kernel once using the SET and EXECUTE APIs. All the kernels are

implemented in the form of a DSO.

The experiment workload is obtained from an interactive multimedia Internet

based testing application [55]. The workload’s kernels and the results are listed

in Table 4.1. The timing is based on the software or hardware execution of the

tasks on the Xilinx Virtex-5 FPGA Family. The software execution time is on

a hard PPC. The configuration time is the time for partial reconfiguration of

each task. The numbers in the first three columns are generated using the REC-

BENCH tool [55]. These numbers are used as the input to our emulator. The last

two columns are obtained from employing the proposed mechanism. It should

be mentioned that the hardware execution is emulated in these experiments.

The last column in Table 4.1, shows the operation total execution time when it

is executed only once. This means the execution time is the sum of the software

wrapper load delay plus the reconfiguration delay plus the HW execution time.

The first column is the software only execution time (no FPGA) which is



60 CHAPTER 4. TASK ABSTRACTION

Table 4.1: Workload Kernels

Kernels SW execution
time (ms)

HW Execution
time (ms)

Configuration
Delay (ms)

SW wrapper
Delay (ms)

HW total
execution time

(ms)

Epic-Decoder 19.87 8.56 5.82 2.11 16.49

Epic-Encoder 11.87 5.22 2.49 1.17 8.88

Mpeg2-Decoder 77.35 2.43 3.64 1.47 7.54

Mpeg2-Encoder 10.39 1.94 4.87 1.81 8.62

G721 42.42 4.64 5.82 2.57 13.03

Jpeg-Decoder 68.39 8.63 8.72 3.41 20.76

Jpeg-Encoder 169.33 35.23 10.98 4.51 50.72

Pegwit 166.06 36.34 5.88 2.59 44.81

mentioned just as a point of reference.

As shown in Table 4.1, the software wrapper delay over the total execution time

varies between 5 to 20 percent for different kernels.

However in general, when a kernel is loaded (incurring one wrapper and re-

configuration delay), it executes more than once which means the overhead

decreases as the number of executions increases. To show such a reduction in

execution time, we evaluate the overall execution time in the following section.

4.3.2 Overall Overhead

To show overall system performance, we used 5 different workloads from

interactive multimedia Internet based test; the workload varies based on the

number of tests taken and the number of kernels, which are used in each test. We

have workloads for 12 applicants (821 kernels), 24 applicants (1534 kernels),

36 applicants (2586 kernels), 48 applicants (3032 kernels), and 60 applicants

(4164 kernels). It should be mentioned that each test taker has its own process

in the system and therefore the number of applications are equal to the number

of test takers. In such a scenario, each test taker corresponding application is

competing against the others to obtain the FPGA resources.

Furthermore, we have implemented a very simple scheduling algorithm. This



4.3. EVALUATION 61

Table 4.2: Overall Execution Time

No application 12 24 36 48 60

No kernels 821 1534 2586 3032 4164

SW only (ms) 135654.08 260508.60 381329.44 501860.74 641478.23

SW/HW (ms) 59580.79 121977.13 186415.10 256929.84 335276.90

Wrapper overhead
(ms) 2983.03 5884.87 7654.71 10814.62 11463.15

Wrapper overhead
percentage 5 5 4 4 3

Speedup 2.28 2.14 2.05 1.95 1.91

algorithm picks the fastest implementation and executes it. If the fastest imple-

mentation is not available, the scheduler picks the next one.

We compared the software only execution with the hardware/software execution.

As shown in Table 4.2, the overall system speedup varies between 2.28 to 1.91.

The wrapper overhead to the overall execution time is between 3 to 5 percent.

As the number of test takers increases, the chance of executing an already

configured kernel increases and as a result, the wrapper overhead reduces.

On the other hand, since the system loads increases, the overall speedup also

decreases. That is because the FPGA resources are limited and fixed. Therefore,

when the system load increases the HW/SW execution time gets closer to the

SW only solution and as a result, the speedup reduces.

One might argue that the obtained speedup of around 2 is not as impressive

as it should be. There are some reasons behind this number. First of all as we

used the processor coprocessor paradigm with only one GPP, the GPP load

is a bottleneck in our system. Most parts of the code which are not compute

intensive are executed on the GPP and we can not exploit any parallelism in

those parts. Furthermore, we use the library to load the kernels binary from

which increases the overhead of the system. Operating system overhead (for

example the system calls overhead) is also another source of system overhead.

However, we believe that the imposed overhead is actually the price we pay to

achieve a more flexible system.



62 CHAPTER 4. TASK ABSTRACTION

4.4 Conclusion

In this chapter, we extended the MOLEN programming paradigms primitives

to use them in presence of an operating system and in multi-application, multi-

tasking scenarios. The MOLEN primitives in their current status are just

for single application execution. We discussed the details of the SET and

EXECUTE APIs and presented the dynamic binding mechanism, which is

used by these APIs to bind a task call to a proper task implementation. Our

experiments show that the proposed approach has a negligible overhead over

the overall applications execution.



5
Scheduling

One of the major challenges in heterogeneous multi-core systems is the schedul-

ing and allocation of the tasks into different cores. In this chapter, we present a

two level scheduling mechanism. To overcome the complexity of identifying

kernels at runtime, we use the compiler support. The compiler provides the

runtime system with a configuration call graph which is used as a viable source

of information for the scheduling algorithm. We combine the configuration call

graphs from all running applications and extract our scheduling parameters for

each task from this graph. We also present a number of scheduling policies in

this chapter.

5.1 Introduction

Current reconfigurable multi-core systems can serve several applications as

they have huge computing power and huge system resources. Therefore, the

system should be able to share its computing resources among the tasks within

a single application or even among different applications.

The tasks in a static single application environment can be scheduled efficiently

by partitioning and design time scheduling of the tasks [56–61]. However, such

predictable application schedules form only a small subset of all the applications.

63



64 CHAPTER 5. SCHEDULING

Hence, the reconfigurable resources need to be managed at runtime for the

multitasking environments by a runtime scheduler [62–71].

The main problem is to assign the limited system resources based on the needs

of the applications at the execution time. The objective is to identify certain

tasks that can be accelerated on the faster cores and the remaining parts of the

application will be executed on a regular general-purpose processor. We should

clarify that in this thesis, a task can be a whole function or procedure but it can

also be any cluster of instructions that is scattered throughout the application.

Task scheduling can have different conflicting objectives, like improving per-

formance, power consumption, or the memory footprint. As a result, many

different scheduling algorithms can be used for task scheduling. For example

during the program execution, a scheduler can estimate the potential speedup

that will be achieved when running a task on a reconfigurable hardware and the

initial cost of a hardware mapping. The scheduler decides how to allocate the

hardware based on the scheduling policy and considering the other applications

requirements

In the proposed system, task scheduling takes place in two phases. Firstly, at

compile-time, the compiler performs static scheduling of the reconfiguration

requests assuming a single application execution. The main goal in this stage

is to hide the reconfiguration delay by configuring them well in advance the

execution point. Then at runtime, the runtime system performs the actual task

scheduling. In this stage, the SET and EXECUTE instructions are just a hint to

the runtime system. The runtime system decides based on the runtime status

of the system and it is possible to run a kernel in software even though the

compiler already scheduled the configuration. In the following, we explain each

phase in more details.

We should mention that in our system, each application is composed of several

tasks. Each task can be mapped to a certain core, or it can be executed on

the general-purpose processor. A certain task might be used in more than

one application. To simplify the design and to be in line with the MOLEN

programming paradigm, we assume that a task is in the form of a function in



5.2. COMPILE TIME SCHEDULING 65

the program code. Therefore, each function in the code is a task unless it is

a very small function. Some of these functions (tasks) are recognized by the

compiler as compute intensive tasks. For calling these tasks, the compiler uses

the runtime system’s APIs. However, there might be other compute intensive

tasks which are not recognized as such by the compiler. These tasks may be

identified at runtime by the profiler and therefore, the runtime system has to

change the call to these tasks in such a way that they use the runtime APIs.

Besides the help of the compiler and the runtime system, the program developer

can also directly use the runtime system’s APIs in the program code.

5.2 Compile Time Scheduling

One of the tasks of the runtime system is to intercept the kernels. Then, it can

map them to the faster cores. Intercepting the kernels at runtime is not trivial.

It requires complex profiling tools to provide the required information to the

scheduler. Besides using the runtime profiling information, we can also use the

compiler and design time tools hints for identifying compute intensive tasks.

Within the MOLEN programming paradigm, the set and execute concept can be

effectively employed as an abstraction primitive which can separate the notion

of task call from the real task implementation as described in Chapter 4. The

runtime scheduler then employs a binding mechanism to attach each task to a

proper implementation at runtime.

The compiler performs static scheduling of the reconfiguration requests assum-

ing single application execution. The goal of this scheduler is to minimize the

impact of the reconfiguration latency over the application performance. The

reconfiguration latency is a major drawback when using reconfigurable accel-

erators. However, by configuring the tasks well in advance, the compiler can

reduce the effect of reconfiguration on the overall application performance [72].

Here, we show a motivational example presented in [73].

In Figure 5.1, op1, op2, and op3 are the kernels, which can be placed on an



66 CHAPTER 5. SCHEDULING

Figure 5.1: Compiler Instruction Scheduling

FPGA. op2 has physical conflicts with both op1 and op3 and therefore can not

be place with any of them concurrently. However, op1 and op3 can be placed at

the same time. The numbers associated with each edge of the graph represent

the execution frequency of the edge. As it is obvious in the figure, operation

op1 is configured 100 times in B5 and 10 times in B13. By moving SET op1

instruction on the (B1, B2)-edge, we can reduce the number of configuration

calls for op1 to 20. The hardware configuration for op2 at B10 cannot be moved

earlier than node B7, as it will change the hardware configuration for op3 that

must be performed at B7. Moving forward the SET of the other operations such



5.3. RUNTIME SCHEDULING 67

as B15 hides the configuration latency to some extent.

Therefore, we make use of the compiler optimization in order to optimize

a single application execution. As shown in the motivational example, the

compiler changes program by moving the SETs to an earlier place in the code

to hide the configuration latency.

However during runtime, all these optimized applications run together. This

concurrent execution causes some conflicts when using the computing resources.

Therefore, the runtime system might not be able to perform all the optimizations

done by the compiler. In the next section, we describe how the runtime scheduler

works and how it resolves the conflicts.

5.3 Runtime Scheduling

One of the basic limitations of multitasking reconfigurable computers is the

size of the reconfigurable fabric. The size of the required logic for all the

applications usually exceeds the size of the fabric. Therefore, the most important

design factor for a runtime scheduling mechanism is the replacement policy.

This replacement algorithm determines which part of the logic area should be

replaced whenever some space is needed.

The scheduler should calculate which tasks are likely to be needed soon and if

they are already configured, not to replace them with other tasks. This is often in

combination with pre-cleaning, which guesses which configured tasks currently

on the FPGA are not likely to be needed soon. However, this cannot be managed

by the runtime systems because, it is impossible to compute reliably how long it

takes before a task will be used again, except when all the applications running

on a system are known beforehand.

One way to predict the future behaviour of the system is to look at the past

behaviour of it. However, it has been proven in [74] that the past behaviour is

not a good heuristic to be used for replacement in the reconfigurable computers.

We really need to know the future behaviour to be able to make good decisions.



68 CHAPTER 5. SCHEDULING

One solution is to provide information from the design time using CCG. With

the help of CCG, the scheduler can look at future of the application behaviour

and extract useful information about the tasks execution. For example, the

scheduler can calculate parameters such as the distance to the next call and the

frequency of the calls in future, which can be used as the replacement decision

parameters.

In the followings, we give more details on the replacement policy and the

parameters we use for the replacement decisions.

5.3.1 The Replacement Policy

Many decision parameters can be used to decide for the replacement such as

the frequency of use in the past, the distance from last call, or even a random

selection.

All of these parameters are heuristics to keep the best kernel configured. Having

information about the future is indeed a real success factor in this decision. In

this section, we introduce a few decision parameters such as the distance to the

next call, the frequency of the calls in future, the frequency of calls in the past

and time improvement.

At each scheduling point, we define the distance to the next call for the task T as

follows. Let di be the distance to the next call for application i. This represents

the number of task calls between the current execution point and the next call to

the task T, in the breadth first traverse of the CCG. We use the minimum value

of di as the distance to the next call for task T.

Similarly, for a specific task T, we define the frequency of the calls in future for

an application as the total number of calls to the task T in all the successors of

the current execution point. Afterwards, the frequency of the calls for the task

T in the whole system is the sum of the frequencies of all applications.

Deciding based on the distance to the next call means we want to remove the

task that is used furthest in future. Similarly, considering the frequency of calls



5.3. RUNTIME SCHEDULING 69

in future as the decision parameter, means the replacement candidate is the task

that is used less frequent in the future.

The time improvement heuristic is defined by two parameters: the first is the

reduction in task execution time, which is obtained by comparing the hardware

execution time of a task on FPGA and the software execution time on the

general-purpose processor. The second parameter is called distance to the next

call which is defined above.

These parameters except the frequency in the past can be calculated from the

CCG. CCG is a directed graph that is generated by the compiler and gives

information about the execution behaviour of an application. In the next section,

we provide a detailed explanation of the CCG.

5.3.2 Configuration Call Graph

A Configuration Call Graph is a directed graph, which provides the runtime sys-

tem with information about the execution of the application. CCG is generated

by the compiler. The runtime scheduler can predict the future behaviour of the

system from a CCG. Each CCG node represents a task. The edges of the graph

represent the dependencies between the configurations within the application.

The nodes of a CCG are of three types: operation information nodes, parallel

execution nodes (AND nodes), alternative execution nodes (OR nodes).

The parallel execution nodes specify that all of their successor nodes have to be

executed in parallel. The alternative execution nodes specify that only one of

their successors have to be executed. However, the selection of the successor

depends on a condition that is specified in the program. The output edges of the

alternative execution nodes are weighted with the probabilities of execution of

the corresponding successors. The compiler derives those probabilities from

the edge execution frequencies. The weights of the other edges are set to one.

Figure 5.2 shows a sample CCG.

Each node in a CCG is weighted. The weight of a node is defined by a vector of

n values; Wnode = {V1, V2, .., Vn}. Each Vi can be another vector or a single



70 CHAPTER 5. SCHEDULING

Figure 5.2: A Sample CCG

value which shows a specific characteristic of the implementations of a task.

The distance to next call to the same operation and the frequency of the call of

the same operation are among the parameters that the scheduler uses to perform

the task mapping. The weights of the CCG can be calculated off line thereby

reducing the runtime overhead.

The probabilities of the OR nodes and some of the values in the weight vector of

the node might be dependent on the compile time profiling input dataset. This

means that the CCG is not accurate at runtime because another input dataset

might be used at runtime. However, we use the CCG as a heuristic and it does

not need to be one hundred percent accurate, though a more accurate heuristic

results in better performance.

The algorithm to calculate the distance to the next call for each node (task)

is listed in the Listing 5.1. This is in fact a Breadth-first search algorithm.

However, it is extended to keep the level for each node. The level represents the

number of edges from the root of the tree to the node in the execution order. A

Breadth-first algorithm traverses the graph level by level. The parameter level

is used to limit the traverse depth. This is discussed later in this section.



5.3. RUNTIME SCHEDULING 71

Listing 5.1: Distance to the Next Call in a Single CCG

DistanceToNextCall (input: Node node, CCG ccg, Integer level) :

return Integer distance

1- Begin

2- node.level=0;

3- Enqueue node;

4- While the queue is not empty do

4-1- Dequeue a node n;

4-2- Mark n;

4-3- If (n.level > level), Return level+1;

4-4- if (n.operationName = node.operationName, Return n

.level;

4-5- For all unmarked children of the node

4-5-1- child.level=n.level+1;

4-5-2- enqueue the child node;

End for

End while

6- End

The algorithm presented in the Listing 5.2 is similar to the algorithm in Listing

5.1. This algorithm counts the frequency of the calls for each operation from

each node. It should be noted that CCG is a directed graph. This algorithm also

used the parameter level to limit the traverse depth as will be explained later.

For avoiding ambiguity, we only traverse the node with the highest probability

in the alternative execution nodes (OR nodes) in the CCG traversal algorithms

listed in Listings 5.1 and 5.2. Furthermore, we traverse the loop body only two

times when encountering a loop. This is not shown in the algorithms listed in

5.1 and 5.2 in order to make them more readable. To do this, in the loop in line

4-5 in Listing 5.1, we check the type of the node. If it is an OR node, we only

enqueue the child connected via an existing edge with the highest weight in

line 4-5-2. In case of loops, marking mechanism should be changed and it is a

little bit more complicated. In fact, a loop begins (or ends) with an OR node.

When passing an OR node, we reduce the probability of the taken branch in

such a way that allows only one more pass through that branch.



72 CHAPTER 5. SCHEDULING

Listing 5.2: Frequency of Calls from Current Node in a Single CCG

FrequencyInFuture (input: Node node, CCG ccg, Integer level) :

return Integer Frequency

1- Begin

2- node.level=0; count=0;

3- Enqueue node;

4- While the queue is not empty do

4-1- Dequeue a node n;

4-2- Mark n;

4-3- If (n.level > level), Return count;

4-4- if (n.operationName = node.operationName, count++;

4-5- For all unmarked children of the node

4-5-1- child.level=n.level+1;

4-5-2- enqueue the child node;

End for

End while

6- End

One of the main issues in calculating the distance and frequency is a concept we

call it the nearness degree. Looking at the distance is good in general. However,

we are not interested to look very far as that might have a negative influence

on the scheduling decisions. For example, an operation might be called several

times but that is not in the near future. If we look very far, it means that this

operation should have a very high priority and it should be kept configured.

However, in the near future, this particular operation is not used and it is wise

to remove it and make space for the other operations.

To calculate the nearness degree, a maximum traverse depth is specified to

restrict the level of movement in the CCG in the traversal algorithms listed in

the Listings 5.1 and 5.2. This limitation also has a positive impact on the time

overhead of the algorithm. We performed experiments to identify the maximum

traverse depth. Figure 5.3 shows the total execution time of the applications by

increasing the traverse depth for the different workloads. More details about our

experimental setup can be found in Section 5.8. As it is shown in Figure 5.3, by

increasing the traverse depth, the execution time is approaching to a fixed value.



5.3. RUNTIME SCHEDULING 73

At the beginning of each diagram, the execution time varies a lot. After around

traverse depth of 10, the execution time is getting more flat. Therefore, we set

the nearness degree to 10. This means that in all of our traversal algorithms we

traverse at most 10 levels of CCG from the current execution point.

As we said before, the nearness degree can influence the time complexity of the

traversal algorithms. In the worst case, when the GCC is full (i.e. all the nodes

have two children), we have to traverse 1024 nodes with the nearness degree

of 10. However most of the times, the CCG is not full and most nodes have

only one child. In that case, we traverse much fewer nodes than 1024. However,

this number is very dependent on the workload. This means that if we want to

use a different workload in our system, we have to change the nearness degree

accordingly. This is a design parameter and should be identified at the system

design time. If the designer can not provide this number, the algorithms traverse

the tree to the end and because this is an off line stage, it does not influence the

applications’ execution time at runtime.

It may seem that this replacement algorithm is similar to the page replacement

algorithms for virtual memory managements. For example, recency and fre-

quency of use are the most dominant decision factors for virtual memory page

replacement algorithms. However, there are some major differences here; firstly,

the virtual memory replacement algorithms replace at least one page by a new

page when the memory is full. Nevertheless, here, evicting no kernel is also an

option. Secondly, the cost of the replacement in virtual memory is fixed and has

no effect on the decision, yet here every kernel has its own configuration latency.

Thirdly, most of the algorithms for virtual memory are based on the temporal

and spatial locality in the reference pattern of the main memory. However,

in our case, the spatial and temporal locality of references is not yet proven

or accepted as a general principle and needs more investigation. Lastly, a vir-

tual memory page is relocatable and can be placed anywhere in the memory,

nonetheless, this is not true for the hardware kernels. In our algorithms, we use

the CCG to look at the future in contrast to the page replacement algorithms

which mostly look at the pas behaviour. Furthermore, we combine the execution

behaviour with another metrics from the kernel characteristics (i.e. the amount



74 CHAPTER 5. SCHEDULING

 

   

   

Figure 5.3: Execution Time Reduces when Travel Depth Increases

of time improvement).

The runtime scheduling procedure is a two level mechanism. The first phase

is a normal scheduling policy which is performed by the operating system

(e.g. a normal round robin). At the first level of scheduling, the tasks are

being scheduled to run on the general-purpose processor. Apart from that,

there are some points that the system needs to decide to use the reconfigurable

coprocessor for compute intensive tasks. These points are either the SET or

EXECUTE APIs or the internal events from the runtime profiler.

There are a few possibilities at each scheduling points. The first choice is to

do nothing and continue the execution on the general-purpose processor. The

other option is to choose one of the hardware implementations of the kernel

from the library, configure it on the FPGA, and start hardware execution. It



5.4. LONGEST DISTANCE IN THE FUTURE 75

should be noted that there might be other conflicting tasks already configured

on the FPGA and some of them might be in the execution status (busy). In the

following, we explain a few algorithms by which we address these conflicts.

Each of the algorithms presented here used a different parameter to make the

scheduling decisions.

5.4 Longest Distance in the Future

The Longest Distance in the Future (LDiF) algorithm replaces the tasks which

will be used furthest in future based on the provided CCG. That is because such

a task has the least chance of being accessed soon and can be safely replace by

a more important task.

In LDiF algorithm, at each scheduling point, we define the distance to the next

call for task T as follows. For application i, let di be the distance to the next

call. This represents the number of task calls between the current execution

point and the next call to the task T, in the breadth first traverse of the CCG. We

use the minimum value of di in all CCGs as the distance to the next call for the

task T.

Let us assume we are at a certain scheduling point. The scheduler is going

to decide about the task T. There are n different hardware implementations

(I1, I2, ..., In ) matching the task Tin the library. First, the scheduler must

ensure that in the physical location of each Ii on the FPGA, there is no other

busy task configured. Afterwards, it has to check if any of Ii is already config-

ured and is in ready status. This means there is no need for the reconfiguration

and the hardware execution can start right away. Subsequently, the scheduler

must choose either to replace one or more of the currently configured tasks on

the FPGA with one of the Ii or to continue the T’s execution in software. This

can be done using the replacement policy. There is a chance that no replacement

takes place because it might be more efficient to keep the currently configured

tasks. In this case, T runs in software.



76 CHAPTER 5. SCHEDULING

Listing 5.3 presents LDiF algorithm. This algorithm assumes that the imple-

mentation list is sorted based on the configuration latency plus the execution

time (total execution time). This assumption is because we are optimizing

the execution time. As we mentioned before, other optimization can be also

applied such as selecting the smaller task in size or the task with less energy

consumption and so on. The replacement decision is being taken in step 6-1. In

the listing 5.3, we used the distance to the next call as our decision parameter.

Listing 5.3: LDiF Scheduling Algorithm

LDiF (input: Implementation [] im_list) : return Implementation

IM

//assumes im_list is sorted based on the configuration_latency

+ execution_time

//DTNC(Operation op) returns the distance to the next call of

operation (It uses the DistanceToNextCall() function

explained in the previous section for each CCG and returns

the minimum values of them)

1- Scheduling begins

2- If im_list is empty return FAIL;

3- Remove the first IM from im_list;

4- Assume ToBeEvicted_list is an empty list;

5- Add all the operations, which are already configured and

have overlaps with IM physical location to the

ToBeEvicted_list;

6- foreach I’ in the ToBeEvicted_list

6-1- if DTNC(I’.op) < DTNC(IM.op) goto 2;

End for

7- Return IM;

8- Scheduling ends

We should consider the CCGs of all the running applications for calculating the

distance to the next call. The algorithm listed in Listing 5.1 in Section 5.3.2,

only gives the distance to the next call for each node in a single CCG. However,

this is not enough due to the following reasons. First, the operations might

be shared between applications and, therefore, applications can influence each



5.5. LEAST FREQUENCY IN THE FUTURE 77

other. As a result, other CCGs should also be considered. Second, the distance

should be calculated from the current execution point in each CCG. Whereas,

Listing 5.1 provides the distance from the last call to the next call of the same

task and not from the current execution point to the next call.

To handle the first issue, we consider the minimum value of distances to the

next call in all CCGs as the distance to the next call. To handle the second issue,

we define a current execution level variable for each CCG that holds the level

of the current execution point. We update this value when the control transfers

to the next level (e.g. a new task call happens). On the other hand, we also keep

the level of the next call and the node name of the next call besides keeping the

distance to the next call for each node. This way, to calculate the distance to

the next call from the current execution point for each task, we only need to

subtract the current execution point level from the next call’s level. We should

mention that, we keep a list of all the operations inside a CCG and the distance

to the next call and frequency of calls in the future for member of that list. We

update these values during the program execution.

The overhead of the algorithm in Listing 5.3 is dependent on the number of

implementations for each task because a number of constraints have to be

checked for each of them. The distance to the next call in future is calculated

offline for each application and at runtime; we only need to find the minimum

value of the distances for all the applications. Therefore, this will not impose a

big overhead.

5.5 Least Frequency in the Future

Least Frequency in the Future (LFiF) replaces the task that will be accessed

less frequent than the others in future. Replacing such a task might lead to less

number of reconfiguration and therefore, to reduce the overhead involved in

each reconfiguration.

Considering LFiF algorithm, for a specific task T, we define the frequency of



78 CHAPTER 5. SCHEDULING

the calls in future for an application as the total number of calls to the task T in

all the successors of the current execution point. Afterwards, the frequency of

the calls for the task T in the whole system is the sum of the frequencies of all

applications.

Listing 5.4 shows the LFiF scheduling. This algorithm works similar to the

algorithm in Listing 5.1. However, in the line 6-1, it checks for the frequency

of calls.

Listing 5.4: LFiF Scheduling Algorithm

LFiF (input: Implementation [] im_list) : return Implementation

IM

//assumes im_list is sorted based on the configuration_latency

+ execution_time

//FqiF(Operation op) returns the expected number of calls in

the future for operation (It uses the FrequencyInFuture()

algorithm for each CCG and returns the sum of them)

1- Scheduling begins

2- If im_list is empty return FAIL;

3- Remove the first IM from im_list;

4- Assume ToBeEvicted_list is an empty list;

5- Add all the operations, which are already configured and

have overlaps with IM physical location to the

ToBeEvicted_list;

6- foreach I’ in the ToBeEvicted_list

6-1- if FqiF(I’.op) > FqiF(IM.op) goto 2;

End for

7- Return IM;

8- Scheduling ends

5.6 Least Frequency in the Past

Listing 5.5 presents the algorithm for the Least Frequency in the Past (LFiP).

In this algorithm, we use the information from the past to predict the future.



5.7. EXPECTED TIME IMPROVEMENT 79

This information is provided by the runtime profiler, which is discussed in

the Chapter 7. We also have something similar to the nearness degree for the

past information. This means that we only look at the recent behaviour of the

applications. In contrast to the future that the nearness degree is based on the

number of calls, we look only a certain time back in the past. For example, we

count the number of call to a particular task only in the past 20 seconds.

Listing 5.5: LFiP Scheduling Algorithm

LFiP (input: Implementation [] im_list) : return Implementation

IM

//assumes im_list is sorted based on the configuration_latency

+ execution_time

//FqiP(Operation op) returns the number of calls in the Past

for the operation (It reads this information from the

profiler frame which will be discussed in the chapter 7)

1- Scheduling begins

2- If im_list is empty return FAIL;

3- Remove the first IM from im_list;

4- Assume ToBeEvicted_list is an empty list;

5- Add all the operations, which are already configured and

have overlaps with IM physical location to the

ToBeEvicted_list;

6- foreach I’ in the ToBeEvicted_list

6-1- if FqiP(I’.op) > FqiP(IM.op) goto 2;

End for

7- Return IM;

8- Scheduling ends

5.7 Expected Time Improvement

The Expected Time Improvement (ExTI) algorithm tries to estimate the possi-

bility of the acceleration by a task in the future. Considering ExTI algorithm,

a time-improvement heuristic is defined by two parameters: the first is the



80 CHAPTER 5. SCHEDULING

reduction in task execution time, which is obtained by comparing the hardware

execution time of a task on FPGA and the software execution time on the

general-purpose processor and considering the task configuration time. The

second parameter is the distance to the next call that is the number of task

calls between the current execution point and the next call to the same task.

This parameter is discussed in Section 5.4. We actually combined these two

parameters to come up a better heuristic.

Listing 5.6 shows this algorithm. This algorithm is very similar to the LDiF.

It only adds one further improvement to that algorithm and that is checking

how good one implementation compare to the others is. The LDiF always takes

the fastest implementation if possible. However, the ExTI takes the fastest

implementation considering the implementation’s configuration time as well.

For example, a task might have two implementation with the execution times

of 10 and 12 milliseconds and configuration time of 8 and 5 milliseconds

respectively. In this example, LDiF takes the first implementation as that one

is the fastest. However, the ExTI takes the second one. Because, the second

one is a better option considering the configuration latency and execution time

together. Nevertheless, if an operation is being executed several times after

configuration, the LDiF shows a better performance.

Listing 5.6: ExTI Scheduling Algorithm

ExTI (input: Implementation [] im_list) : return Implementation

IM

//assumes im_list is sorted based on the configuration_latency

+ execution_time

//TImpr(implementation IM) returns the time improvement for IM

1- Scheduling begins

2- If im_list is empty return FAIL;

3- Remove the first IM from im_list;

4- Assume ToBeEvicted_list is an empty list;

5- Add all the operations, which are already configured and

have overlaps with IM physical location to the



5.8. EVALUATION 81

ToBeEvicted_list;

6- foreach I’ in the ToBeEvicted_list

6-1- if TImpr(I’) > TImpr(IM) goto 2;

End for

7- Return IM;

8- Scheduling ends

5.8 Evaluation

In this section, we present the evaluation results of the proposed algorithms.

We first describe the workload we used for the evaluation and the application

scenario. Then, we present the results of the experiments.

5.8.1 Workload for Evaluation

The workload for evaluation is obtained from an interactive multimedia Internet

based testing application. This application can serve a large number of appli-

cants simultaneously. We have identified eight multimedia applications that

consume most of the server computation time through profiling the exam server.

The identified kernels are described in the following paragraphs.

Jpeg-Encoder and Jpeg-Decoder: Jpeg is a standardized compression method

for the images. Jpeg is a lossy compression method, meaning that the output

image is not exactly identical to the input image. Two kernels are derived

from the Jpeg; Jpeg-Encoder does image compression and Jpeg-Decoder does

decompression.

Epic-Encoder and Epic-Decoder: These compression algorithms are based on a

bi-orthogonal critically sampled dyadic wavelet decomposition and a combined

run-length/Huffman entropy coder. Extremely fast decoding of epic makes it

suitable to be employed for portable embedded systems.

Mpeg2-Encoder and Mpeg2-Decoder: Mpeg2 is the standard for digital video

transmission.



82 CHAPTER 5. SCHEDULING

Table 5.1: Kernel Specifications (ms)
 

Implementation 
one 

Implementation 
two 

Implementation 
three 

Benchmarks 
Software 
execution 

time Conf. 
time 

Exec. 
time 

Conf. 
time 

Exec. 
time 

Conf. 
time 

Exec. 
time 

Epic-Decoder 19.87 11.04 5.98 6.39 8.53 5.82 8.56 
Epic-Coder 11.87 4.87 3.99 2.66 4.93 2.49 5.22 
Mpeg2-Decoder 77.35 5.83 2.01 4.11 2.34 3.64 2.43 
Mpeg2-Ecoder 10.39 7.51 1.19 5.68 1.82 4.87 1.94 
G721 42.42 10.6 3.99 6.39 4.23 5.82 4.64 
Jpeg-Decoder 68.39 11.72 7.56 9.13 8.11 8.72 8.63 
Jpeg-Encoder 169.33 13.78 29.25 11.49 31.98 10.98 35.23 
Pegwit 166.06 12.35 34.56 6.47 32.35 5.88 36.34 
 

G.721: is a standard for speech codec that uses the Adaptive Differential Pulse

Code Modulation (ADPCM) method and provides toll quality audio at 32 Kbps.

Pegwit: is a program for public key encryption and authentication. It uses an

elliptic curve over GF(2255), SHA1 for hashing, and the symmetric square

block cipher.

In order to implement the profiled applications, we use the C code of the

programs in the mediabench [75]. For each kernel, we have three different im-

plementations. After obtaining the bit stream of the hardware implementations,

their configuration times are calculated as follows [76].

configurationtime = sizeofbitstream/FPGAclockfrequency (5.1)

The experiment workload is obtained from an interactive multimedia Inter-

net based testing application [55]. The timing is based on the software or

hardware execution of the tasks on the Xilinx Virtex-5 FPGA Family. The

software execution time is on a hard PPC. The configuration time is the time

for partial reconfiguration of each task. The numbers are generated using the

REC-BENCH tool [55]. These numbers are used as the input to our simulator.

All the numbers are in milliseconds.

Table 5.1 lists the information about these kernels and their implementations.



5.8. EVALUATION 83

Table 5.2: Workload Set-ups

Scheduling 
algorithms 

 Set-up 1 Set-up 2 Set-up 3 Set-up 4 Set-up 5 

Execution 
Time (ms) 135654.08 260508.60 381329.44 501860.74 641478.23 

Software 
only Number of 

tasks executed 
on the RPs 

0 0 0 0 0 

Execution 
Time (ms) 126883.12 226219.53 248866.52 334082.77 618196.87 

LFiP Number of 
tasks executed 

on the RPs 
194 656 1092 1388 622 

Execution 
Time (ms) 91230.78 176467.80 267377.39 360294.81 455492.04 

LFiF Number of 
tasks executed 

on the RPs 
546 978 1380 1718 2276 

Execution 
Time (ms) 71727.74 143546.82 216114.94 290748.26 363356.18 

LDiF Number of 
tasks executed 

on the RPs 
704 1332 1836 2135 3212 

Execution 
Time (ms) 68648.15 137524.57 202793.31 241565.90 342166.00 

ExTI Number of 
tasks executed 

on the RPs 
742 1352 1970 2564 3412 

 
 
 

 Number of applications Number of tasks 
Set-up 1 12 858 
Set-up 2 24 1660 
Set-up 3 36 2419 
Set-up 4 48 3206 
Set-up 5 60 4097 

 

The software execution time of the kernels is computed when running on the

GPP. We can compute the proportion of the acceleration of hardware execution

to the software execution from this information.

In general, each application in the workload is a type of multimedia test such as

reading, listening, speaking, or writing. Each application includes a number of

tasks. Therefore, the application-mix depends on the ordering of the multimedia

tests and the number of tasks in the application. The system simulates multiple

executions of the applications in the multimedia tests. For example, an appli-

cation workload can have five reading tests, six listening tests, five speaking

tests and two writing tests. The start times of the applications are different. The

operation reuse in the application depends on the workload and the similarity

between the tasks in the application workload.

We obtained the workload by running the examination server in five different

set-ups (12 applicants (858 tasks), 24 applicants (1660 tasks), 36 applicants

(2419 tasks), 48 applicants (3206 tasks), and 60 applicants (4097tasks)). The

server’s operations have been logged and the workload is extracted from these

logs.

The log includes the name of the task, the execution time of the task (software-

only), and the arrival time for each task. The workload is generated per applicant

per set-up. Therefore, for each set-up, we exactly know how many applicants

there are (number running process in the server), how and when the kernels

have been called. The information about the workload set-ups is shown in Table

5.2.



84 CHAPTER 5. SCHEDULING

Table 5.3: The Tasks Execution Time and Number of Executed Tasks on RPs in each
Set-up

Scheduling 
algorithms 

 Set-up 1 Set-up 2 Set-up 3 Set-up 4 Set-up 5 

Execution 
Time (ms) 135654.08 260508.60 381329.44 501860.74 641478.23 

Software 
only Number of 

tasks executed 
on the RPs 

0 0 0 0 0 

Execution 
Time (ms) 126883.12 226219.53 248866.52 334082.77 618196.87 

LFiP Number of 
tasks executed 

on the RPs 
194 656 1092 1388 622 

Execution 
Time (ms) 91230.78 176467.80 267377.39 360294.81 455492.04 

LFiF Number of 
tasks executed 

on the RPs 
546 978 1380 1718 2276 

Execution 
Time (ms) 71727.74 143546.82 216114.94 290748.26 363356.18 

LDiF Number of 
tasks executed 

on the RPs 
704 1332 1836 2135 3212 

Execution 
Time (ms) 68648.15 137524.57 202793.31 241565.90 342166.00 

ExTI Number of 
tasks executed 

on the RPs 
742 1352 1970 2564 3412 

 
 

5.8.2 Evaluation Results

The simulations for a number of test takers are performed in order to evaluate the

performance of the proposed scheduling algorithm. We extended the CPUSS

CPU scheduling framework [77] for evaluation. We performed simulation

mainly because we did not have access to the hardware platform which supports

partial reconfiguration in the way that we need. We really wanted a platform in

which we can partially reconfigure the FPGA for as many tasks as the scheduler

decides. To get an impression of the FPGA size, in the worst case, the FPGA can

accommodate only one large size task based on our measures and in the average

case it can accommodate 4 tasks. We assume that the tasks are rectangular

shaped.



5.8. EVALUATION 85

We compared the four algorithm (LDiF, LFiF, LFiP and ExTI) presented in

the previous sections. We have different set-ups in our validation experiments

where the number of participants and thus the number of tasks vary. Each cell

of Table 5.3 contains the total execution time of the application and the number

of executed tasks on RPs in each scheduling algorithm. As illustrated in the

table, all algorithms have shorter execution times than software-only execution

of the tasks which is an obvious result of using reconfigurable accelerators.

The numbers in Table 5.3 certify that the LDiF and ExTI are performing better

than the other algorithms. The reason that ExTI outperforms the LDiF is that

ExTI, besides looking into the future, considers the reconfiguration latency for

decision-making. However, as it is mentioned before, the LDiF outperforms

ExTI in the scenarios in which a task will be executed several times with short

intervals.

Additionally, the results show that the frequency of calls does not perform as

good as the distance to the next call. The reason is that although a kernel might

be used several times in the future, it does not mean that those uses are in the

near future. For example, a task might be accessed 10 times during 10 seconds

from which one access is in the first one second and the rest are in the last

2 seconds. Using highest frequency algorithm suggests keeping this task on

the FPGA, however seven seconds between the calls might be enough time to

remove this task from the FPGA and bring it back later.

The reason for better performance of future frequency over the past frequency

is also obvious. Looking at the past frequency is a kind of heuristic to predict

the future and it is not always accurate. Using the CCG in the future frequency

algorithm, we have a better heuristic with more accuracy.

Figure 5.4 presents the percentage of the tasks, which have been executed on the

RPs. This Figure shows that the algorithms with better performance were able

to execute more tasks on the RPs. Therefore, they showed a better acceleration.

Figure 5.5 shows the obtained speed up. ExTI showed a speed up of two that is

the best comparing to the other algorithms. As shown in Figure 5.5, the speedup



86 CHAPTER 5. SCHEDULING

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Set-up 1 Set-up 2 Set-up 3 Set-up 4 Set-up 5

LFiP LFiF LDiF ExTI

Figure 5.4: Percentage of the Tasks Executed on RPs

0

0.5

1

1.5

2

2.5

Set-up 1 Set-up 2 Set-up 3 Set-up 4 Set-up 5

LFiP LFiF LDiF ExTI

Figure 5.5: The Obtained Speedup



5.9. CONCLUSION 87

in all the setups almost behaves the same for all the applications.

One might argue that the obtained speedup of around 2 is not as impressive

as it should be. There are some reasons behind this number. First of all as we

used the processor coprocessor paradigm with only one GPP, the GPP load

is a bottleneck in our system. Most parts of the code which are not compute

intensive are executed on the GPP and we can not exploit any parallelism in

those parts. Furthermore, we use the library to load the kernels binary from

which increases the overhead of the system. Operating system overhead (for

example the system calls overhead) is also another source of system overhead.

However, we believe that the imposed overhead is actually the price we pay

to achieve a more flexible system. As a future work, we plane to experiment

the processor coprocessor paradigm with more than one GPP. Employing more

GPPs can help to exploit the parallelism in none compute intensive parts of the

code.

5.9 Conclusion

In this chapter, we presented the scheduler as a part of the proposed runtime

system. We showed how we use a combination of design time and runtime

scheduling in order to optimize the system performance. At the design time,

we use the compiler to perform static task scheduling assuming single thread

of execution. Then at the runtime, the runtime scheduler performs the actual

task scheduling. The runtime scheduler can use the information provided by the

runtime profiler. It can also use the information transferred from design time in

the form of a CCG.

We also presented a number of scheduling policies performance of which is

shown by experiments. Based on the obtained results, looking into the future

using CCG can improve the system performance quite considerably. We used

three different parameters to base our scheduling decisions on them. We showed

that Expected Time Improvement and Longest Distance in the Future are very

good heuristics for the scheduling. In fact, combining the future behaviour



88 CHAPTER 5. SCHEDULING

with the amount of time we can save by a faster kernel is shown to be the best

heuristic.



5.9. CONCLUSION 89





6
Fuzzy Real-time Scheduling

One of the main uses of heterogeneous multi-core systems is the time-critical

applications. In such systems, applications need real-time guarantees for execu-

tion times. We provide scheduling mechanisms for soft real-time multi-core

systems in this chapter. In the presented approaches, the decision parameters

are modelled as fuzzy variables and using a Fuzzy Inference System (FIS) the

scheduling priorities are determined.

It should be mentioned that in contrast to the scheduling algorithms presented

in the previous chapter, the scheduling algorithms that are presented in this

chapter are targeting periodic real-time workloads. The tasks in such workloads

have to be executed in a predefined amount of time that is their deadlines. We

assume our system as a soft real-time system. If a task misses its deadline,

the scheduling algorithm will not execute that task anymore and such a task

is considered as a failed execution task. In a hard real-time system, if a task

misses its deadline, the whole system fails.

The scheduling algorithms presented in the previous chapter execute all the

tasks since they do not have any deadlines. Therefore, the obtained results of

the experiments from the algorithms here are not comparable to the results of

the algorithms of the previous chapter. For example, the overall execution time

of the workloads with real-time constraints is smaller than the same workloads

without real-time constrains since some of the tasks never execute in the real-

91



92 CHAPTER 6. FUZZY REAL-TIME SCHEDULING

time case.

Although in this chapter we considered the cores to be identical, the main

concept can be employed for the heterogeneous cores as well. For example in

the algorithms based on the laxity, the laxity is the same for all the cores as they

are identical. However, when the cores are not identical, the laxity of each task

should be calculated for each core separately. This is because each core has a

different computing power and as a result the task execution time on that core

is different from the others. This means that a task might be considered to miss

its deadline on one core and at the same time to be still feasible for execution

on another core (probably a faster core).

6.1 Introduction

Real-time systems are vital to industrialized infrastructure such as command

and control, process control, flight control, space shuttle avionics, air traffic

control systems and also mission critical computations [78]. In all the cases,

time has an essential role and having the right answer too late is as bad as not

having it at all.

In the literature, these systems have been defined as “systems in which the

correctness of the system depends not only on the logical results of computation,

but also on the time at which the results are produced” [79]. Such a system must

react to the requests within a fixed amount of time which is called deadline.

In general, real-time systems can be categorized into two important groups:

hard real-time systems and soft real-time systems. In hard real-time systems,

meeting all deadlines is obligatory. While in soft real-time systems, missing

some deadlines is tolerable.

In both cases, when a new task arrives, the scheduler is to schedule it in such a

way that guaranties the deadline. Scheduling involves allocation of resources

and time to tasks in such a way that certain performance requirements are met.

These tasks can be classified as periodic or aperiodic. A periodic task is a kind of



6.1. INTRODUCTION 93

task that occurs at regular intervals, and an aperiodic task occurs unpredictably.

The length of the time interval between the arrivals of two consecutive requests

in a periodic task is called period.

Another aspect of scheduling theory is to decide whether the currently executing

task should be allowed to continue or it has had enough CPU time for the

moment and it should be suspended. A preemptive scheduler can suspend the

execution of current executing request in favour of a higher priority request.

However, a nonpreemptive scheduler executes the currently running task to

completion before selecting another request to be executed. A major problem

that arises in preemptive systems is the context-switching overhead [80].

We need to use a deadline aware scheduling algorithm in a multi-core system in

order to meet all the deadlines. Such a scheduling algorithm decides to execute

each task on which core based on the performance requirements and timing

constrains.

Multi-core scheduling techniques in real-time systems fall into two general

categories: partitioning and global scheduling [81]. Under partitioning, each

core schedules tasks independently from a local ready queue. Each task is

assigned to a particular core and is only scheduled on that core. In contrast, all

the ready tasks are stored in a single queue under global scheduling. A single

system-wide priority space is assumed: the highest priority task is selected

to execute whenever the scheduler is invoked. Partitioning is the favoured

approach because it has been proved efficient and reasonably effective when

popular single processor scheduling algorithms such as Earliest Deadline First

(EDF) and Rate Monotonic (RM) are used [82]. However, finding an optimal

partitioned schedule is an NP-hard problem.

In the global scheduling scheme, processors repeatedly execute the highest

priority tasks available for execution. It has been shown that using this approach

with common priority assignment schemes such as Rate Monotonic (RM) and

Earliest Deadline First (EDF) can give rise to an arbitrarily low processor

utilization [82]. In this approach, a task can migrate from one processor to

another during execution.



94 CHAPTER 6. FUZZY REAL-TIME SCHEDULING

Although, these algorithms focus on timing constraints but there are other

implicit constraints in the environment, such as uncertainty and lack of complete

knowledge about the environment, dynamicity in the world, bounded validity

time of information and other resource constraints. In real world situations,

it would often be more realistic to find viable compromises between these

parameters. For many problems, it makes sense to partially satisfy the objectives.

The satisfaction degree can then be used as a parameter for making a decision.

One good method to achieve this is the modelling of these parameters through

fuzzy logic. The same approach is also applied on single processor real-time

scheduling in [83–85].

6.2 Fuzzy Inference System

Fuzzy logic is an extension of Boolean logic dealing with the concept of partial

truth, which denotes the extent to which a proposition is true. Whereas, classical

logic holds that everything can be expressed in binary terms (0 or 1, black or

white, yes or no), fuzzy logic replaces Boolean truth-values with a degree of

truth. The degree of truth is often employed to capture the imprecise modes of

reasoning that play an essential role in the human ability to make decisions in

an environment of uncertainty and imprecision.

Fuzzy Inference Systems (FIS) are conceptually very simple. They consist of

an input, a processing, and an output stage. The input stage maps the inputs (e.g.

frequency of reference and recency of reference) to the appropriate membership

functions and truth-values. The processing stage invokes each appropriate rule

and generates a corresponding result. It then combines the results. Finally, the

output stage converts the combined result back into a specific output value [86].

The membership function of a fuzzy set corresponds to the indicator function of

the classical sets. A curve defines how each point in the input space is mapped

to a membership value or a degree of truth between zero and one. The most

common shape of a membership function is triangular, although trapezoidal

and bell curves are also used. The input space is sometimes referred to as the



6.2. FUZZY INFERENCE SYSTEM 95

universe of discourse.

As discussed earlier in this section, the processing stage, which is called infer-

ence engine, is based on a collection of logic rules in the form of IF-THEN

statements. Typical fuzzy inference systems have dozens of rules. These rules

are stored in a knowledge base. An example of a fuzzy IF-THEN rule is IF lax-

ity is critical then priority is very high, which laxity and priority are linguistics

variables and critical and very high are linguistics terms. Each linguistic term

corresponds to membership function.

An inference engine tries to process the given inputs and produce an output by

consulting an existing knowledge base. The five steps toward a fuzzy inference

are fuzzifying inputs, applying fuzzy operators, applying implication methods,

aggregating all outputs, defuzzifying outputs.

Fuzzifying the inputs is the act of determining the degree to which they belong

to each of the appropriate fuzzy sets via membership functions. Once the inputs

have been fuzzified, the degree to which each part of the antecedent has been

satisfied for each rule is known. When the antecedent of a given rule has more

than one part, the fuzzy operator is applied to obtain one value that represents

the result of the antecedent for that rule. The implication function then modifies

that output fuzzy set to the degree specified by the antecedent. Since decisions

are based on the testing of all of the rules in an FIS, the results from each rule

must be combined in order to make a decision. Aggregation is the process by

which the fuzzy sets that represent the outputs of each rule are combined into

a single fuzzy set. The input for the defuzzification process is the aggregated

output fuzzy set and the output is a single value. This can be summarized as

follows: mapping input characteristics to input membership functions, input

membership function to rules, rules to a set of output characteristics, output

characteristics to output membership functions, and the output membership

function to a single-valued output.

There are two common inference processes. The first is called Mamdani’s fuzzy

inference method proposed in 1975 by Ebrahim Mamdani [87] and the other is

TakagiSugeno-Kang, or simply Sugeno, method of fuzzy inference introduced



96 CHAPTER 6. FUZZY REAL-TIME SCHEDULING

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No. 3A, March 2006 
 

 

90 

(sugeno)

9 rules

Fuzzy
inference

Engin

Output

EPriority

Deadline

Deadline

There are two common inference processes [6]. First is 
called Mamdani's fuzzy inference method proposed in 
1975 by Ebrahim Mamdani [8] and the other is Takagi-
Sugeno-Kang, or simply Sugeno, method of fuzzy 
inference Introduced in 1985 [9]. These two methods are 
the same in many respects, such as the procedure of 
fuzzifying the inputs and fuzzy operators.  
The main difference between Mamdani and Sugeno is that 
the Sugeno output membership functions are either linear 
or constant but Mamdani’s inference expects the output 
membership functions to be fuzzy sets. 
Sugeno’s method has three advantages. First it is 
computationally efficient, which is an essential benefit to 
real-time systems. Second, it works well with optimization 
and adaptive techniques. These adaptive techniques 
provide a method for the fuzzy modeling procedure to 
extract proper knowledge about a data set, in order to 
compute the membership function parameters that best 
allow the associated fuzzy inference system to track the 
given input/output data. However, in this paper we will not 
consider these techniques. The third, advantage of Sugeno 
type inference is that it is well-suited to mathematical 
analysis. 

3. The Proposed Model 

The block diagram of our inference system is presented in 
Figure 1.  
 

  
 
 
 
 
 
 
 
 
 

Fig.1. Inference system block diagram. 
 

In the proposed model, the input stage consists of two 
linguistic variables. The first one is an external priority 
which is the priority assigned to the task from the outside 
world. This priority is static. One possible value can be the 
tasks interval, as rate monotonic algorithm does. For 
Figure 1, the other input variable is the Deadline. This 
input can easily be replaced by laxity, wait time, or so on, 
for other scheduling algorithms. Each parameter may 
cause the system to react in a different way. The only thing 
that should be considered is that by changing the input 

variables the corresponding membership functions may be 
changed accordingly.  
For the simulation purposes, as it is discussed later, four 
situations are recognized: First, by using laxity as a 
secondary parameter and, second, by replacing the laxity 
parameter with deadline and both of them are considered 
in partitioned and also global scheme. In fact, four 
algorithms are suggested: FGEDF1, FGMLF2, FPEDF3, 
and FPMLF4. 
The output if the system is priority that determines which 
is used as a parameter for making a decision. 
The input variables mapped into the fuzzy sets as 
illustrated in Figures 2, 3 and 4. 

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

EPriority

D
eg

re
e 

o
f 

m
em

b
er

sh
ip

5 73 821 94 6

  
Fig.2. Fuzzy sets corresponding to reference recency 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Deadline

D
eg

re
e 

o
f 

m
em

b
er

sh
ip

42 31 5

  
Fig.3. Fuzzy sets corresponding to deadline 

                                                           
1 Fuzzy Global EDF 
2 Fuzzy Global MLF 
3 Fuzzy Partitioned EDF 
4 Fuzzy Partitioned MLF 

Figure 6.1: Inference System Block Diagram

in 1985 [3]. These two methods are the same in many respects, such as the

procedure of fuzzifying the inputs and the fuzzy operators.

The main difference between Mamdani and Sugeno is that the Sugeno output

membership functions are either linear or constant but Mamdani’s inference

expects the output membership functions to be fuzzy sets.

Sugeno’s method has three advantages. First, it is computationally efficient,

which is an essential benefit to the real-time systems. Second, it works well

with optimization and adaptive techniques. These adaptive techniques provide a

method for the fuzzy modelling procedure to extract proper knowledge about a

data set for computing the membership function parameters that best allow the

associated fuzzy inference system to track the given input/output data. However,

in this chapter we do not consider these techniques. The third, advantage of

Sugeno type inference is that it is well-suited to the mathematical analysis.

6.3 The Proposed Fuzzy Model

The proposed model is shown in Figure 6.1. In this model, the input stage

consists of two linguistic variables. The first one is an external priority which



6.3. THE PROPOSED FUZZY MODEL 97

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No. 3A, March 2006 
 

 

90 

(sugeno)

9 rules

Fuzzy
inference

Engin

Output

EPriority

Deadline

Deadline

There are two common inference processes [6]. First is 
called Mamdani's fuzzy inference method proposed in 
1975 by Ebrahim Mamdani [8] and the other is Takagi-
Sugeno-Kang, or simply Sugeno, method of fuzzy 
inference Introduced in 1985 [9]. These two methods are 
the same in many respects, such as the procedure of 
fuzzifying the inputs and fuzzy operators.  
The main difference between Mamdani and Sugeno is that 
the Sugeno output membership functions are either linear 
or constant but Mamdani’s inference expects the output 
membership functions to be fuzzy sets. 
Sugeno’s method has three advantages. First it is 
computationally efficient, which is an essential benefit to 
real-time systems. Second, it works well with optimization 
and adaptive techniques. These adaptive techniques 
provide a method for the fuzzy modeling procedure to 
extract proper knowledge about a data set, in order to 
compute the membership function parameters that best 
allow the associated fuzzy inference system to track the 
given input/output data. However, in this paper we will not 
consider these techniques. The third, advantage of Sugeno 
type inference is that it is well-suited to mathematical 
analysis. 

3. The Proposed Model 

The block diagram of our inference system is presented in 
Figure 1.  
 

  
 
 
 
 
 
 
 
 
 

Fig.1. Inference system block diagram. 
 

In the proposed model, the input stage consists of two 
linguistic variables. The first one is an external priority 
which is the priority assigned to the task from the outside 
world. This priority is static. One possible value can be the 
tasks interval, as rate monotonic algorithm does. For 
Figure 1, the other input variable is the Deadline. This 
input can easily be replaced by laxity, wait time, or so on, 
for other scheduling algorithms. Each parameter may 
cause the system to react in a different way. The only thing 
that should be considered is that by changing the input 

variables the corresponding membership functions may be 
changed accordingly.  
For the simulation purposes, as it is discussed later, four 
situations are recognized: First, by using laxity as a 
secondary parameter and, second, by replacing the laxity 
parameter with deadline and both of them are considered 
in partitioned and also global scheme. In fact, four 
algorithms are suggested: FGEDF1, FGMLF2, FPEDF3, 
and FPMLF4. 
The output if the system is priority that determines which 
is used as a parameter for making a decision. 
The input variables mapped into the fuzzy sets as 
illustrated in Figures 2, 3 and 4. 

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

EPriority

D
eg

re
e 

o
f 

m
em

b
er

sh
ip

5 73 821 94 6

  
Fig.2. Fuzzy sets corresponding to reference recency 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Deadline

D
eg

re
e 

o
f 

m
em

b
er

sh
ip

42 31 5

  
Fig.3. Fuzzy sets corresponding to deadline 

                                                           
1 Fuzzy Global EDF 
2 Fuzzy Global MLF 
3 Fuzzy Partitioned EDF 
4 Fuzzy Partitioned MLF 

Figure 6.2: Fuzzy Sets Corresponding to the External Priority

is the priority assigned to the task from the outside world. This priority is

static. One possible value can be the tasks interval, as rate monotonic algorithm

does [88]. For Figure 6.1, the other input variable is the Deadline. This input

can easily be replaced by laxity, wait time, or so on, for other scheduling

algorithms. Each parameter may cause the system to react in a different way.

The only thing that should be considered is that by changing the input variables

the corresponding membership functions may be changed accordingly.

For the simulation purposes, as it is discussed later, four situations are recog-

nized: First, by using laxity as a secondary parameter and, second, by replacing

the laxity parameter with deadline and both of them are considered in parti-

tioned and also global scheme. In fact, four algorithms are suggested: Fuzzy

Global EDF (FGEDF), Fuzzy Global MLF (FGMLF), Fuzzy Partitioned EDF

(FPEDF), and Fuzzy Partitioned MLF (FPMLF).

The output of the system is execution priority that determines which task has to

be executed first. The input variables mapped into the fuzzy sets as illustrated

in Figures 6.2 and 6.3. An expert determines the shape of the membership

function for each linguistic term. These shapes can be tuned to optimize the

obtained results. Each diagram in Figures 6.2 and 6.3 represents a membership

function. The y-axis of Figures 6.2 and 6.3 is the degree of membership which



98 CHAPTER 6. FUZZY REAL-TIME SCHEDULING

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No. 3A, March 2006 
 

 

90 

(sugeno)

9 rules

Fuzzy
inference

Engin

Output

EPriority

Deadline

Deadline

There are two common inference processes [6]. First is 
called Mamdani's fuzzy inference method proposed in 
1975 by Ebrahim Mamdani [8] and the other is Takagi-
Sugeno-Kang, or simply Sugeno, method of fuzzy 
inference Introduced in 1985 [9]. These two methods are 
the same in many respects, such as the procedure of 
fuzzifying the inputs and fuzzy operators.  
The main difference between Mamdani and Sugeno is that 
the Sugeno output membership functions are either linear 
or constant but Mamdani’s inference expects the output 
membership functions to be fuzzy sets. 
Sugeno’s method has three advantages. First it is 
computationally efficient, which is an essential benefit to 
real-time systems. Second, it works well with optimization 
and adaptive techniques. These adaptive techniques 
provide a method for the fuzzy modeling procedure to 
extract proper knowledge about a data set, in order to 
compute the membership function parameters that best 
allow the associated fuzzy inference system to track the 
given input/output data. However, in this paper we will not 
consider these techniques. The third, advantage of Sugeno 
type inference is that it is well-suited to mathematical 
analysis. 

3. The Proposed Model 

The block diagram of our inference system is presented in 
Figure 1.  
 

  
 
 
 
 
 
 
 
 
 

Fig.1. Inference system block diagram. 
 

In the proposed model, the input stage consists of two 
linguistic variables. The first one is an external priority 
which is the priority assigned to the task from the outside 
world. This priority is static. One possible value can be the 
tasks interval, as rate monotonic algorithm does. For 
Figure 1, the other input variable is the Deadline. This 
input can easily be replaced by laxity, wait time, or so on, 
for other scheduling algorithms. Each parameter may 
cause the system to react in a different way. The only thing 
that should be considered is that by changing the input 

variables the corresponding membership functions may be 
changed accordingly.  
For the simulation purposes, as it is discussed later, four 
situations are recognized: First, by using laxity as a 
secondary parameter and, second, by replacing the laxity 
parameter with deadline and both of them are considered 
in partitioned and also global scheme. In fact, four 
algorithms are suggested: FGEDF1, FGMLF2, FPEDF3, 
and FPMLF4. 
The output if the system is priority that determines which 
is used as a parameter for making a decision. 
The input variables mapped into the fuzzy sets as 
illustrated in Figures 2, 3 and 4. 

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

EPriority

D
eg

re
e 

o
f 

m
em

b
er

sh
ip

5 73 821 94 6

  
Fig.2. Fuzzy sets corresponding to reference recency 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Deadline

D
eg

re
e 

o
f 

m
em

b
er

sh
ip

42 31 5

  
Fig.3. Fuzzy sets corresponding to deadline 

                                                           
1 Fuzzy Global EDF 
2 Fuzzy Global MLF 
3 Fuzzy Partitioned EDF 
4 Fuzzy Partitioned MLF 

Figure 6.3: Fuzzy Sets Corresponding to Deadline

shows the degree that each values in the x-axis belongs to each membership

function. The x-axis in the Figure 6.2 represents the external priorities values.

The external priority is a discrete variable. However traditionally, membership

functions are shown as non-discrete variables. The x-axis in the Figure 6.3

represents the normalized values (between 0 and 1) of the deadlines. As an

example, deadline 0.5 belongs to the membership function 3 with the degree of

1 and belongs to the membership function 2 with the degree of 0.2.

Fuzzy rules try to combine these parameters as they are connected in the real

world. Some of these rules are mentioned in the following. To make the rules

more readable, we used English worlds for the membership functions. For

example, the word critical for the deadline represents the membership function

5. Similarly, the word sufficient represents the membership function 3.

1. If (EPriority is high) and (deadline is critical) then (Priority is very high)

2. If (EPriority is normal) and (deadline is critical) then (Priority is high)

3. If (EPriority is very low) and (deadline is critical) then (Priority is normal)

4. If (EPriority is high) and (deadline is sufficient) then (Priority is normal)

5. If (EPriority is very low) and (deadline is sufficient) then (Priority is very

low)



6.4. THE PROPOSED ALGORITHMS 99

In fuzzy inference systems, the number of rules has a direct effect on its time

complexity. So, having fewer rules may result in a better system performance.

A fuzzy inference system implements a nonlinear mapping from the input space

to output space. The output is determined as a weighted mean value over all the

rules. A detailed discussion of the mapping can be found in [3].

6.4 The Proposed Algorithms

The FGEDF algorithm is shown in Listing 6.1. FGMLF is much the same with

FGEDF just by replacing the word deadline by laxity.

Listing 6.1: FGEDF Algorithm

Loop // System is running for ever

For each core in the system do the followings:

1- for each ready task T //a task that is not running

1-1- If (T has enough time to meet its deadline)

1-1-1- Feed its external priority and deadline into the

inference engine.

1-2-2- Consider the output of inference module as

priority of task T.

End if

End for

2- Execute the task with highest priority until a scheduling

event occurs (a running task finishes, a new task arrives)

3- Update the system states (deadlines, etc)

End for

End loop

The FPEDF algorithm is shown in Listing 6.2. The difference between Listings

6.1 and 6.2 is that in the latter, we have an extra condition in line 1-1. With

that condition, the algorithm checks that the task T has not been executing on

another core. Therefore, it only considers the tasks that have been executing

on the same core or the newly arrived tasks. FPMLF is much the same with

FPEDF just by replacing the word deadline by laxity.



100 CHAPTER 6. FUZZY REAL-TIME SCHEDULING

Listing 6.2: FPEDF Algorithm

Loop // System is running for ever

For each core in the system do the followings:

1- For each ready task T //a task that is not running

1-1- If (T in its current execution has not been executed

on another core) and (T has enough time to meet its

deadline)

1-1-1- Feed its external priority and deadline into the

inference engine.

1-1-2- Consider the output of inference module as

priority of task T.

End if

End for

2- Execute the task with highest priority until a scheduling

event occurs (a running task finishes, a new task arrives)

3- Update the system states (deadlines, etc)

End for

End loop

6.5 Performance Evaluation

To evaluate the proposed algorithm, 1024 test cases with different load factors

were generated. The load factor of 100 means that the system load is at the

maximum. The load factors greater than 100 mean that the system is overloaded.

In each test case, the number of tasks and the corresponding execution time

and request interval were randomly generated. In addition, each task has been

assigned a priority according to the rate monotonic principle (tasks with shorter

request interval are given higher priorities). The behaviour of all the four

algorithms (FGEDF, FGMLF, FPEDF and FPMLF) is compared with each

other. The following performance metrics are used to compare the algorithms.

Number of missed deadlines is an influential metric in scheduling algorithms

for soft real-time systems. When task preemption is allowed, another prominent

metric comes into existence and that is the number of preemptions. Each of the

preemptions requires the system to perform a context switch which is a time



6.5. PERFORMANCE EVALUATION 101

Number of Misses

0 20 40 60 80 100 120 140 160
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

FGEDF

FGMLF
FPEDF

FPMLF

Load Factor

 4 Cores 

  

0 20 40 60 80 100 120 140 160
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

FGEDF

FGMLF
FPEDF

FPMLF

Load Factor

 8 Cores 

0 20 40 60 80 100 120 140 160
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

FGEDF

FGMLF
FPEDF

FPMLF

Load Factor

16 Cores  
 

0 20 40 60 80 100 120 140 160
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

FGEDF

FGMLF
FPEDF

FPMLF

Load Factor

 32 Cores 

  

0 20 40 60 80 100 120 140 160
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

FGEDF

FGMLF
FPEDF

FPMLF

Load Factor

 64 Cores 

0 20 40 60 80 100 120 140 160
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

FGEDF

FGMLF
FPEDF

FPMLF

Load Factor

 128 Cores 

 
 
 
 
 

Figure 6.4: Number of Misses



102 CHAPTER 6. FUZZY REAL-TIME SCHEDULING

 
Number of Preemptions

0 20 40 60 80 100 120 140 160
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

FGEDF

FGMLF
FPEDF

FPMLF

Load Factor

 4 Cores 

0 20 40 60 80 100 120 140 160
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

FGEDF

FGMLF
FPEDF

FPMLF

Load Factor

 8 Cores 

0 20 40 60 80 100 120 140 160
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

FGEDF

FGMLF
FPEDF

FPMLF

Load Factor

 16 Cores 

0 20 40 60 80 100 120 140 160
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

FGEDF

FGMLF
FPEDF

FPMLF

Load Factor

 32 Cores 

0 20 40 60 80 100 120 140 160
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

FGEDF

FGMLF
FPEDF

FPMLF

Load Factor

 64 Cores 

0 20 40 60 80 100 120 140 160
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

FGEDF

FGMLF
FPEDF

FPMLF

Load Factor

 128 Cores 
 
 
 
 
 

Figure 6.5: Number of Preemptions



6.6. CONCLUSION 103

consuming action. We performed our simulation for systems with different

number of identical cores and we judge the algorithms against each other in

these conditions.

As Figures 6.4 and 6.5 show, among the four algorithms FGEDF and FGMLF

nearly achieve the same performance in all situations and all metrics. FPMLF

performs poorly in number of misses, but its performance on the number of

preemption is much better than the others especially when the number of CPUs

increases.

About number of misses, as Figure 6.4 shows, the FPMLF algorithm has the

most number of misses. The FPEDF algorithm has the minimum numbers of

misses among the other algorithms. This figure shows that deadline is a better

scheduling parameter considering the number of tasks missing their deadlines.

Comparing number of preemptions, as Figure 6.5 demonstrate, the FPMLF

algorithm outperforms the others. The FPEDF algorithm reaches to a higher

number of preemptions as the load factor increases. Numbers of preemptions

in FGMLF are a little more than FGEDF. In this case, deadline is the better

parameter.

6.6 Conclusion

This chapter has described the use of fuzzy logic in multi-core real-time schedul-

ing. We modelled the scheduling parameters in the form of fuzzy variables and

used a fuzzy inference engine to derive the scheduling priorities. We presented

four different algorithms for real-time scheduling. These algorithms are based

on the deadline and laxity as input parameters. Furthermore, we considered

both global scheduling approach as well as the partitioning approach. As it

was shown, algorithms which are based on the deadline as a fuzzy parameter

outperformed the algorithms which are based on the laxity. We presented the

number of misses and the number of preemption for each algorithm.





7
Runtime Profiling

In this chapter, we present the design and implementation of a runtime profiler

which is responsible to produce statistics about the code running on the system.

The profiler facilitates the runtime mapping process of the tasks into the recon-

figurable processors. We have performed a set of experiments in order to show

the overhead of our proposed profiler. The evaluation results show that the

overhead imposed by the profiler is less than one percent of the total execution

time and the information generated by the profiler is almost as accurate as a

design time profiler such as gprof.

7.1 Introduction

One of the main limitations of using the heterogeneous multi-core systems

is the difficulty in programming them. Usually, separate tools are used for

writing software and designing hardware. Therefore, the overall design and

implementation cycle is difficult and needs knowledge from both the hardware

and the software. Furthermore, when moving towards multi applications, multi-

tasking scenarios, it is even more difficult for the designers to deal with such

systems, as the exact configuration of the system is not known at design time.

These requirements necessitate the existence of a runtime system, which is

responsible for operating the system and performs the resource management

105



106 CHAPTER 7. RUNTIME PROFILING

[89]. The resource management of a heterogeneous multi-core system by itself

is a very complicated task and is dependent on the available information for

decision making [70].

One important tool required that can help with the decision making is a runtime

profiler. The runtime profiler gives vital statistics about the code running on

the heterogeneous multi-core system. Those statistics can then be used by the

runtime system to decide which parts of the code need to be translated into

hardware.

In this chapter, we present a runtime profiler, which is intended to run concur-

rently with the applications in the actual application execution time. Therefore,

one key difference between such a profiler and traditional design time profilers

such as gprof [90] is that it has to be very low overhead.

Design time profilers such as gprof are quite good and produce very useful

information. However, as they might impose a considerable overhead to the

application execution time, they cannot be used at runtime. Furthermore, they

need expert users to operate them. On the other hand, general-purpose runtime

profilers [91–93] are not as useful as they should be for employing in the

proposed runtime system. This is because, the profiler has to communicate

in real-time with the scheduler and other runtime system’s components. As a

result, the interface between them has to be very efficient.

Furthermore, there is very little related work. Among them, we can refer to

the Warp processor [29] which detects kernels at runtime using a frequent loop

detection profiler. The main limitations to this work are that it only profiles

loops. Secondly, it deals with the addresses at physical level, while we need

to deal with virtual addresses, as we want to profile all programs running in

the user space. Furthermore, it only keeps counts of 16 loops at a time, while

we want to keep much of all calls to the kernels in the profiled applications.

DAProf [94] is also another similar work focusing only on loop profiling.

The proposed profiler profiles all the functions in the application and produces

the number of calls per function and the approximate time spent in a function. It



7.2. DESIGN CHOICES 107

is completely software based and runs under the Linux operating system. This

makes the proposed profiler quite portable and easy to be incorporated in any

runtime system.

7.2 Design Choices

The proposed runtime system is intended to completely virtualize the under-

lying hardware and thus relieves the program developers from the difficulties

of hardware design issues. Within the proposed runtime system, the profiler

communicates with the scheduler at runtime. Therefore, it needs to use data

structures that allow fast writing and reading of the profiled statistics. Further-

more, it should be capable of continuously profiling the application behaviour.

This is because, kernels may be swapped several times because of the limited

available hardware. This is a fundamental difference between the proposed pro-

filer and profilers used in virtual machines like Java. In such virtual machines,

once a function is optimized, it no longer needs to be profiled.

Different techniques used in the literature for profiling are summarized in

Table 7.1. In this table, we discuss different methods used in each type of

profilers as well as the advantages and disadvantages for them. We also included

some example for each type.

We have to work with executable binaries and therefore, we cannot perform

compile or link time code injection like what GProf [90] or ATOM [95] do.

We need to either modify the executable binary, so that it can contain and use

an instrumentation code or use a hardware approach as used by the frequency

loop detection profiler and DAProf. Although the hardware approach has a very

low overhead, it has some disadvantages. One obvious disadvantage is that

it is not very portable. A hardware design made for one system might not fit

into another one. The second disadvantage is that we need to take care of the

virtual addresses in the system. At the hardware level, we only see the physical

addresses. In cases such as frequency loop detection profiler which only deals

with small loops, they do not require knowing the virtual addresses. The reason



108 CHAPTER 7. RUNTIME PROFILING

Table 7.1: Comparison of Different Types of Profilers

Profiling Techni-
que

Method used Advantages Disadvantages Examples

Instrumentation

Instrumentation
Code Insertion at
Compile and Link
time

Platform Indepen-
dent

Cannot work with executable
binaries

GProf [90]

Instrumentation
Code Insertion dur-
ing linking of object
files

Easy to port cannot work with executable
binaries

ATOM [95]

Interpretation of Na-
tive Binary Code and
JIT Compilation

Instrumentation
Code can be inserted
anywhere in the code

Has relatively large overhead.
Very complicated and time
consuming to create such a
tool.

Pin [96], Dy-
namo [91]

Modification of
function prologues
to jump to an Instru-
mentation Code

Has relatively low
overhead. Easy to
implement and port.

Instrumentation Code cannot
be called from anywhere in
the code. A function prologue
must be of a certain minimum
size, so that it can be replaced
with a jump to the Instrumenta-
tion Code.

Detours [97]
and IgProf [98]

Sampling
Using Timer Inter-
rupts

Has low overhead
and is non-intrusive

Can only give statistical ap-
proximation about time spent
by different parts of the code

GProf and [99]

Using Timer Inter-
rupts and Hardware
Performance Coun-
ters

Has low overhead
and is non-intrusive.
Gives additional
information like the
parts of code causing
more cache misses,
pipeline stalls etc.

Same as above OProfile [93]

Software Based Easy to port Extra code has to be injected Arnold and
Ryder [92]
and Profiler
for IBM Tes-
taRossa [100]

Hardware Based Using custom-
designed hardware

Has very low
overhead and is
non-intrusive

It is difficult to port a design to
another system. Consideration
has to be given to handle vir-
tual addresses.

Frequency Loop
Detection Pro-
filer [101] and
DAProf [94]

is that the small loops can be seen from the instruction bus. On the other hand,

in our case, in which we deal with software implementations, we require to

know the virtual addresses of the instructions in the programs.

To implement the instrumentation part of the profiler in software, one possible

approach is to do native binary code interpretation and JIT compiling, like Pin

and Dynamo. Although this approach is very useful to create versatile profiling

tools like Pin, it has some disadvantages. The first of which is that it is slow.

Another disadvantage of this approach is that it is very complicated and time

consuming to write a native binary code interpreter and JIT compiler for any

processor.



7.2. DESIGN CHOICES 109

In the proposed profiler, we choose to replace the function prologue with an

unconditional jump to the instrumentation code. The instrumentation code

contains the removed prologue as well as an unconditional jump back to the

remaining part of the instrumented function. This has some advantages. First,

low overhead profiling can be achieved by using an efficient instrumentation

code. Second, this technique is much less complicated than the native binary

code interpretation approach. Third, this technique is very portable, because we

only have to deal with function prologues and not the rest of the code inside the

functions.

One important issue in the instrumentation code is the way it saves the collected

information. As the interaction between the scheduler and profiler has to be

as fast as possible, using normal files is not an option and the data has to be

kept in the memory. For this purpose, different techniques can be used. For

example, one can use a /proc file to save the information. In the proposed

profiler, we propose the use of a shared memory called Profiler Frame and a

double buffering mechanism to store and read profiled data. The Profiler Frame

is shared between the profiler and the scheduler. Using this technique, we have

been able to lower the overhead of the profiler to as low as less than one percent

for typical applications.

Another contribution of the proposed profiler is in how we use a daemon that

runs continuously and injects instrumentation code to the applications without

any input from the user. The OS kernel is modified so that it sends a signal to

the daemon whenever a new program is loaded for execution. On receiving that

signal, the daemon injects instrumentation code into the application. The dae-

mon uses the Injector utility for injecting code. After the instrumentation code

is injected into the application, the application can perform self-instrumentation.

The instrumented application automatically updates function call counts in

shared memory on entering functions. Another feature of the proposed profiler

is an off line program, known as the Extractor to optimize the code injection

time. The emphExtractor extracts vital information from a program. For each

program, the Extractor also creates a file which contains function ranges, so

that the daemon can know which function was executing when a sample at a



110 CHAPTER 7. RUNTIME PROFILING

timer interrupt was taken. This is done by using program counter value at time

of the interrupt and process ID of the interrupted process. Approximate time

spent by functions can be calculated in this way.

7.3 Design And Implementation

As explained in Chapter 3, the proposed runtime system is intended to make a

completely virtualized and transparent hardware layer available to the program

developers. In such a system, the programs are developed to be executed on

the general-purpose processor and, therefore, the program developers are not

bothered with complex hardware design issues. It is thus the runtime system’s

responsibility to find compute intensive tasks and map them into the faster cores.

The profiler has to be able to profile the applications on the GPP in the first

place. When a task is mapped into a different core, it has to be able to continue

the profiling of the task on that core. As a result, our profiling mechanism has

two aspects; the profiling on the GPP, and the profiling on the reconfigurable

fabric.

As on the reconfigurable side, we use the MOLEN hardware organization

and the MOLEN programming paradigm. We employ the MOLEN runtime

primitives (discussed in Chapter 4) to perform the profiling. This will be

discussed in more detail later in this section.

On the GPP side, the proposed profiler runs on the Linux operating system.

Its task is to keep statistics of the running kernels on a general-purpose pro-

cessor and present that information to the scheduler. The proposed profiler

performs both instrumentation and sampling profiling. The instrumentation

profiler records the number of times different functions have been called while,

the sampling profiler calculate the approximate time spent per function. To

instrument programs, we need some mechanism to inject code into programs.

To achieve this, our code injector replaces the prologue of each function that

has to be profiled with an unconditional jump to the instrumentation code. The

instrumentation code contains a jump back to the rest of the profiled function



7.3. DESIGN AND IMPLEMENTATION 111

Program’s 
ELF File

Extractor

Instrumentatio
n Code File

Information 
File

Function 
Ranges File

Create

Create

Injector

Call Counts 
Buffer

Copy of 
Instrumentation 

Code File

Profiled 
Application

Map
Changes Prologue

Of Functions

Mapped By Injector

Create

Update
 Function 
Counts

Daemon

Read Function Counts

Updates
the Profiler Frame

Samples 
Buffer

Read
Samples

APIC Timer 
Interrupts

Update

Shared 
Memory 

Contents File

Create

Create

Offline Steps

Profiler
Frame

Figure 7.1: Interaction of Different Parts of the Proposed Profiler with the Profiled
Application and the Scheduler

besides the prologue of the profiled function. The current implementation

has been done and tested successfully on machines with x86 processors, both

single-core and multi-core.

The proposed profiler consists of several different parts. The interaction between

those parts is shown in Figure 7.1. The Extractor utility is used to create

instrumentation code file besides others, from an executable elf file. The

Injector utility is used to inject instrumentation code and map Profiler Frame

into the address space of the profiled program. The Injector utility uses the

Ptrace API in Linux to inject and modify code at runtime. The local APIC

Timer interrupts update the Samples Buffer. Note that in case of processors



112 CHAPTER 7. RUNTIME PROFILING

Number of Functions


Offset for Functions Hash Table


Function Calls Counts

(Written by 
 Profiled Application
  and


read by 
Daemon
)


Data Buffer 0 for Scheduler

(Written 
by Daemon
  and read by


Scheduler
)


Data Buffer 1 for Scheduler

(Written 
by Daemon
  and read by


Scheduler
)


Functions Hash Table

(Read by 
 Scheduler
)


Figure 7.2: Contents of the Profiler Frame

other than x86, we can use their own local timer interrupts to update the Samples

Buffer. Finally, the Daemon combines information from different places in

a form that can be quickly and easily read by the scheduler. The purpose of

the Profiler Frame is to keep the function call counts of profiled functions as

well as information to be read by the scheduler. The reason we have used

shared memory for the Profiler Frame is that it is the fastest possible method to

communicate data.

One very important part of the profiler is the Profiler Frame’s structure and

the access mechanism to it. The Profiler Frame layout is shown in Figure 7.2

and consists of five blocks. The first block is the number of functions to be

profiled. The next portion of the Profiler Frame is used to present data to the

runtime system. The data in that portion is updated by the daemon. This middle

part of the Profiler Frame employs a double buffering mechanism to prevent

inconsistencies when there is a read and write conflict. To achieve that, the



7.4. PERFORMANCE EVALUATION 113

daemon writes data to one buffer and the next time it writes to the other. When

it completes writing data to one buffer, it changes the index to point to that

buffer, so that the runtime system can read it from there.

Finally, the lower portion of the Profiler Frame contains a hash table. The keys

to that hash table are profiled functions’ names or IDs and values are indexes of

those functions.

The Profiler Frame is the only part that needs to be known by the runtime

system, which needs to integrate the proposed profiler. The rest of the profiler

can be seen as a black box. All the generated data by the profiler is accessible

from the Profiler Frame. The Profiler Frame is in fact a shared memory between

the profiler and the runtime system. Therefore, each component in the runtime

system that needs profiling information has to map this shared memory into its

own address space.

When a kernel is mapped to the hardware, its profiling has to be continued

in order to have a valid (updated) status of the systems at each point in time.

Within the MOLEN programming paradigm, the mappings of the kernels to the

reconfigurable fabric is being done by the SET and EXECUTE APIs [102]. This

way, the profiling can be delegated to these APIs when the hardware execution

is happening. Each kernel to be executed on the hardware should be invoked

by the EXECUTE API from the runtime system. Therefore, in the execute

phase we exactly know which kernel is executing and as a result the EXECUTE

can update the corresponding values in the shared memory. This mechanism

guarantees that function call counts updates in case of hardware execution. To

update the values in the shared memory, we use the same code as we use in the

injected codes in the instrumentation profiling.

7.4 Performance Evaluation

To test the performance of the proposed profiler, we used benchmarks from

different areas. One of these is PC version of tcf, which is a Stationary Noise



114 CHAPTER 7. RUNTIME PROFILING

Filter used in hArtes [103] demonstration. We used a sound file of size 19

MB as the input. Then we have minisat2 [104], which is an industrial scale

SAT solver. Note that we removed the randomness part in minisat2, so that our

results do not vary from run to run. The input file for the minisat benchmark

contained 630 variables and 2280 clauses. Then we have H264/AVC encoder,

from MediaBench II benchmarks [75], which is an H264 encoder application.

For the H264 encoder application, we used an input file of size 5.2 MB and

bit rate of 45020 bps. Next, we have coremark [105], which is a free synthetic

benchmark from EEMBC [106]. Finally, we have a benchmark that we created

ourselves, known as multiply. That program calls a multiply function which just

returns the multiplication of two fixed numbers, one billion times. Normally,

such tiny functions are inlined by the compiler and, therefore, profiling would

not be required for them. However, testing the profiler with such tiny functions

gives us an idea of the worst-case performance of the instrumentation profiling.

To avoid inlining of the multiply function, the multiply application is compiled

with optimizations turned off.

We performed different experiments, which are discussed in the following

section.

7.4.1 Instrumentation Overhead

The instrumentation overhead of the proposed profiler is shown in Table 7.2.

From the table we can see that the overhead of the proposed profiler, except

for the multiply application, is always less than 1.5 %. The low overhead for

applications other than multiply was expected because the proposed profiler

only adds three instructions to original functions for profiling. The overhead

for the multiply application here is relatively large because it repeatedly calls a

very tiny function that just returns product of two numbers.



7.4. PERFORMANCE EVALUATION 115

Table 7.2: Instrumentation Overhead (secs)

Normal Profiling Overhead
multiply 9.681 10.092 4.25%
coremark 12.496 12.654 1.26%
tcf 7.083 7.089 < 1%
h264enc 40.774 40.865 < 1%
minisat2 29.004 29.155 < 1%

Table 7.3: Sampling and Daemon Overhead

Normal OProfile The Proposed Pro-
filer

multiply
Time (secs) 9.681 9.677 9.688
Overhead - < 1% < 1%

coremark
Time (secs) 12.496 12.510 12.495
Overhead - < 1% < 1%

tcf
Time (secs) 7.083 7.121 7.126
Overhead (%) - < 1% < 1%

h264enc
Time (secs) 40.774 40.838 41.034
Overhead - < 1% < 1%

minisat2
Time (secs) 29.004 29.037 29.058
Overhead - < 1% < 1%

7.4.2 Sampling and Daemon Overhead

We show the results achieved without performing instrumentation in Table 7.3.

The purpose of not performing instrumentation in this case is to quantify the

overhead imposed by sampling and the Daemon. The results are compared with

those achieved from OProfile. We can see that the overhead for both OProfile

and the proposed profiler is negligible. It should be noted here that we only

used the timer interrupt event for OProfile, to make it functionally equal to the

proposed profiler.



116 CHAPTER 7. RUNTIME PROFILING

Table 7.4: Sampling Accuracy of the Proposed Profiler

Function gprof (%) The Proposed Pro-
filer (%)

coremark
crcu8 31.77 31.13
core state transition 30.05 31.20
core bench list 13.85 15.14
matrix mul matrix bitextract 5.48 5.55

minisat2
propagate 74.87 75.05
analyze 13.56 13.53
litRedundant 4.45 4.43
cancelUntil 2.85 2.92

h264enc
SetupFastFullPelSearch 33.59 32.63
dct luma 11.17 10.60
biari encode symbol 7.33 7.30
SetupLargerBlocks 3.83 3.42

7.4.3 Sampling Accuracy

In this part, we checked the accuracy of the sampling part of the proposed

profiler by comparing it with gprof [90]. We executed each program five times,

both with the proposed profiler and with gprof, so that we could get the mean

values . The results are given in Table 7.4. In this table, percentages of total

time spent for the functions that took the most time according to gprof are

given. From the Table 7.4, it can be seen that the mean values for both the

proposed profiler and gprof are almost the same. This was expected as we

are using the same technique as gprof. The only difference is that we take our

samples through the local APIC timer interrupts, so that we can take samples

for multi-cores, while gprof uses the kernel timer interrupt and therefore cannot

perform sampling for multi-cores. Since the default Linux kernel timer interrupt

occurs at the rate of 100 per second, we also set the frequency of the local APIC

timers interrupt to 100 per second for fair comparison.



7.4. PERFORMANCE EVALUATION 117

Table 7.5: Overall Overhead of the Proposed Profiler (secs)

Normal The Proposed Pro-
filer

Overhead

Single Application Execution
multiply 9.681 10.112 4.45%
coremark 12.496 12.655 1.27%
tcf 7.083 7.088 < 1%
h264enc 40.774 41.158 < 1%
minisat2 29.099 29.040 < 1%

Multiple Applications Execution
five benchmarks 92.32 93.04 < 1%

7.4.4 Overall Overhead

In the first part of this experiment, we tested our benchmark applications with

all parts of the profiler working. The results are shown in Table 7.5. The results

are as expected, that is all applications other than the multiply application have

overhead of less than 1.5%. Moreover, overall overhead for all application is

almost the same as that for instrumentation overhead, thus reinforcing the fact

that sampling and the daemon have very low overheads.

In the second part of the experiment, we executed all the benchmark applica-

tions simultaneously with all parts of the profiler working. We repeated the

experiment five times and took the mean values, which are shown in bottom of

table 7.5. The results show that the profiling overhead is less than 1%.

Our results shows that our profiling system performs the same as Dynamo,

which has overhead of less than 1.5% and better than the profiler presented

in [92] which has average overhead of 3%. Those parts of the code that are

optimized by Dynamo are never profiled again, while the proposed profiler has

to continuously profile all the functions.

7.4.5 Percentage of Profilable Functions

The proposed profiler replaces prologues of to be profiled functions with a

jump instruction. For that purpose, a function’s prologue must be at least 5

bytes because the jump instruction in an x86 consumes 5 bytes. Most of the



118 CHAPTER 7. RUNTIME PROFILING

Table 7.6: Percentage of Profilable Functions

Program Opt Level Total Func-
tions

Profilable Func-
tions

tcf -O0 59 59 (100%)
h264enc -O2 591 560 (94.8%)
minisat2 -O3 56 52 (92.9%)
coremark -O2 40 29 (72.5%)

functions have at least 5 bytes of prologue. However, some very small functions

do not. By prologue instructions, we mean instructions that prepare the stack

and registers for use within a function. We showed the number of functions

that are profilable for different applications in Table 7.6. We also listed the

optimization levels used for compiling those applications, the purpose of which

is to see if optimizations make it any harder to find profilable functions. Except

for coremark, all applications have more than 90% of profilable functions and

both h264enc and minisat2 are using high level of optimizations. The reason

that coremark has only 72.5% of profilable functions is because there are many

functions of very small sizes in it.

We use only prologue and that is why we have the limitation on the size of

it. One can argue that if the prologue is too small, you can consider more

instructions from the top of function as a part of prologue. However, this

solution is not feasible. Because, it might happen that an instruction inside a

function jumps to some instruction at the top of that function. If that instruction

at the top is replaced by some other instructions, the program might crash or

behave differently.

7.5 Conclusion

In this chapter, we described the design and implementation of a runtime profiler,

which can be used as a part of the MOLEN runtime environment. The profiler

is a combination of a Sampling profiler and an Instrumentation profiler. We

discussed different parts of the profiler namely the extractor, injector, sampler,

profiler frame and daemon. Then, we showed the overhead of the proposed



7.5. CONCLUSION 119

profiler from different aspects. This is done by showing the overhead on

Instrumentation, Sampling and the overall overhead. Besides, we compared the

accuracy of the proposed profiler with a popular design time profiler. All the

presented results show that the proposed profiler has very low overhead (less

than 1.5%) and is as accurate as design time profilers.





8
Conclusions

In this dissertation, we presented a runtime system for heterogeneous multi-

core systems. We discussed the design and the implementation of the proposed

runtime system. The runtime system consists of a scheduler, a profiler, a

transformer, a JIT compiler and a kernel library. A detailed description of each

component was presented and the performance of the system as well as the

imposed overhead of the components was discussed.

In this chapter, we first summarize the thesis and presented results. Then, we

present the main contributions of the work and describe the remaining open

issues and future directions.

8.1 Outlook

In this thesis, we presented our runtime support system for heterogeneous

multi-core systems. The work presented in this thesis can be summarized as

follows.

In Chapter 2, we gave an overview on the background information and the

related work. In the beginning, several examples of the target architectures

were presented. Next, we gave a short summary of the MOLEN and the

MOLEN programming paradigm as well as the MOLEN design tool chain.

121



122 CHAPTER 8. CONCLUSIONS

Then, we briefly described some of the similar approaches used in runtime

support for heterogeneous multi-core systems. The motivation for the need

of virtualization is discussed afterwards. At the end, we pointed out the open

issues and discussed our approach towards solving those issues.

In Chapter 3, we presented our runtime system. In this chapter, we explained the

structure of our runtime system and its forming components. Each component

was briefly discussed. Furthermore, we explained how the whole system is

structured into layers. The system is divided into four layers; the application

layer, the virtualization layer, the operating system layer, and the hardware

platform layer which is further divided into the MOLEN abstraction layer

and the physical hardware layer. Subsequently, we explained the interaction

mechanisms between different components in the runtime system. We also

included two case study scenarios and showed how the runtime system should

react in those scenarios.

In Chapter 4, we explained how the MOLEN programming paradigm is ex-

tended to support multitasking and multi-application scenarios. To accomplish

this, we used the same idea of MOLEN set and execute instructions to abstract

away the concept of a task. In this way, we decoupled the task call from the task

implementation. We also proposed a binding mechanism to bind a task imple-

mentation to the corresponding task call. The high level SET and EXECUTE

APIs are also presented. Finally, we showed the overhead of the proposed APIs

using some experiments.

In Chapter 5, we presented our scheduler as a part of the runtime system. In

this chapter, we showed how we used a combination of the design time and

the runtime scheduling in order to optimize the system performance. In the

design time, we used the compiler to perform static task scheduling assuming

single thread of execution. Then at the runtime, the runtime scheduler performs

the actual task scheduling having the scheduling decisions from the compiler

as a hint. The runtime scheduler can also use the information provided by the

runtime profiler. It can also use the information transferred from the design time

in the form of a CCG. Following that, we presented a number of scheduling



8.2. CONTRIBUTIONS 123

policies as case studies and provided performance evaluations. We based our

scheduling decisions on three different parameters. We showed that Expected

Time Improvement and Longest Distance in the Future are very good heuristics

for the scheduling procedure.

In Chapter 6, we focused on the conditions in which we have real-time con-

straints. We used fuzzy logic to model the real-time constrains and to improve

the scheduling decisions. Using deadline as a fuzzy parameter in real-time

scheduling is more promising than laxity.

In Chapter 7, we described the design and implementation of our runtime

profiler, which can be used as a part of the runtime environment. The profiler

is a combination of a sampling profiler and an instrumentation profiler. We

discussed different parts of the profiler namely the extractor, injector, sampler,

profiler frame and daemon. Then, we calculated the overhead of our profiler

from different aspects. This is done by showing the overhead on Instrumentation,

Sampling and the overall overhead. Besides, we compared the accuracy of our

profiler with a popular design time profiler, gprof. All the presented results

showed that our profiler has very low overhead (less than 1.5%) and is as

accurate as design time profilers.

8.2 Contributions

The main contributions of this dissertation can be summarized as follows.

1. We introduced a comprehensive runtime system and presented a detailed

discussion of its components and performance evaluation. We provided a

detailed overview of the system layers and showed how each layer inter-

acts with the others. The most important layer is the virtualization layer

which consists of a scheduler, a profiler, a JIT compiler, a transformer

and a kernel library.

2. We defined and implemented a new task abstraction mechanism through

which the task implementation is separated from the task call. The main



124 CHAPTER 8. CONCLUSIONS

idea is taken from the MOLEN programming paradigm. We extended

the model in such a way that it is suitable for multitasking and multi-

application scenarios.

3. We presented a detailed discussion of scheduling requirements for het-

erogeneous multi-core systems and some scheduling policies together

with their performance evaluations. We introduced a number of new

scheduling algorithms. Our scheduling decision making is based on the

distance in the future and frequency in the future as well as expected

speedup. We also introduced the configuration call graph as a viable

source of information for the scheduler.

4. We employed fuzzy logic in the decision making process of the scheduler

for the systems with real-time constraints. We modelled the inputs of

the scheduler such as laxity and deadline as fuzzy variables and used a

Sugeno inference engine to derive the scheduling priorities. In this way,

we presented some new scheduling algorithms.

5. We presented a novel runtime profiler whose task is to analyze the running

code and produce statistics about code execution such as the computation

intensity and frequency of the execution. This profiler has to run con-

currently with other applications on the end user’s machine, and hence,

needs to have a low overhead. Our runtime profiler has an overhead of

less 1.5%.

8.3 Open Issues and Future Directions

In this thesis, we proposed a runtime system that consists of a number of

components. We have implemented the scheduler and the profiler. However, JIT

compilation for reconfigurable fabric is still an open issue. Such a compiler has

to compile from binary to bit stream. A JIT compiler must be able to perform

technology mapping, placement, and routing. This process also requires a

standard binary format for the FPGAs from all the vendors. Furthermore, JIT



8.3. OPEN ISSUES AND FUTURE DIRECTIONS 125

compilation involves introducing fast and efficient mapping, placement and

routing algorithms that can be used at runtime without imposing a considerable

overhead.

The transformer component is not implemented in the current work. Once

a JIT compiler generates the binary for the target core, the runtime system

needs to change the binary of the main thread of the application to call the new

binary code instead of the old one. The transformer is responsible to do this

code modification on the fly. The basic implementation mechanism for the

transformer is a little bit similar to the profiler. The profiler also modifies the

binary and changes the prologue of a function. However, the difference is that

the profiler changes the binary at the function body, whereas, the transformer

has to do this at the function call. This involves the transformer to be able to

identify the function calls in the code and change them to calls to the newly

generated code.

Once we have all the components, we can integrate all of them together and

have a complete runtime system. So far, we have implemented the scheduler

and the profiler as well as the library. Yet, we do not have the JIT compiler and

the transformer.

Another open issue which is not addressed in this work is the preemptive

scheduling of tasks on the reconfigurable co processors. By preemptive schedul-

ing, we mean the ability to stop the execution of a task on the RP at some

time and resuming its execution from the point it was stopped onward. This

process involves mechanisms to save the hardware status and to restore it later.

Furthermore, problems might arise if the task continues execution at a different

place from the previous run (i.e. to continue on a different column of an FPGA).

Moreover, the task migration from one core to the other (i.e. migration from

the hardware to the software) is still an open issue in the current work.

Yet another open issue which is discussed in Chapter 2 is the lack of consistent

and uniform comparison methodology for comparing similar works in the area

of runtime systems. This seems to be a common problem in the field. In

future work, we will study this problem and provide a set of qualitative and



126 CHAPTER 8. CONCLUSIONS

quantitative metrics for comparison purposes. Besides, we will provide a set

of standard real world application workloads that can be used as the input for

comparisons.

In the MOLEN programming paradigm, we assume there is a single general-

purpose processor that acts as the master and all the other processors are

coprocessors. One major issue with the processor, coprocessor paradigm is that

the general purpose processor can become a bottleneck as the main thread of

the execution is executing there. Generally, only the compute intensive parts

might be mapped into the coprocessors. This means that a large portion of the

program which is not compute intensive had to run on the GPP. This is one

of the reasons that the presented speed ups in the previous chapters are not

very high. However within the same paradigm, if we employ more GPPs, none

compute intensive parts of the applications can also be executed in parallel. The

presented APIs in Chapter 4 are based on such an assumption. However, in case

of the platforms with multiple master processors that each master processor

can independently access any of the cooperating processors, we need some

centralized or decentralized coordination techniques to handle the conflicts

between the master processors. For example, the presented APIs can implement

some sort of locking mechanism in order to guarantee the mutual access to the

computing resources. However, this increases the overhead and might influence

the system performance quite considerably.



Bibliography

[1] G. Kornaros, Multi-core embedded systems. CRC Press, 2010.

[2] C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose, and M. Martonosi, “An

analysis of efficient multi-core global power management policies: Max-

imizing performance for a given power budget,” in Microarchitecture,

2006. MICRO-39. 39th Annual IEEE/ACM International Symposium on.

IEEE, 2006, pp. 347–358.

[3] M. Sugeno, Industrial Applications of Fuzzy Control. New York, NY,

USA: Elsevier Science Inc., 1985.

[4] H. Flows, C. Easy, C. Uses, P. Processing, and D. Processing, “Xilinx ar-

chitects ARM-based processor-first, processor-centric device,” Xcelljour-

nal, vol. 71, 2010.

[5] T. M. Brewer, “Instruction set innovations for the convey HC-1 computer,”

IEEE Micro, vol. 30, pp. 70–79, 2010.

[6] http://www.freescale.com, 2010.

[7] I. Colacicco, G. Marchiori, and R. Tripiccione, “The hardware applica-

tion platform of the hArtes project,” in Field Programmable Logic and

Applications, 2008. FPL 2008. International Conference on, September

2008, pp. 439 –442.

[8] http://www.ece.ufl.edu/announcements/news/2010/Novo-G.html, 2010.

[9] F. Ferrandi, L. Fossati, M. Lattuada, G. Palermo, D. Sciuto, and

A. Tumeo, “Automatic parallelization of sequential specifications for

symmetric MPSoCs,” in IESS: International Embedded Systems Sympo-

sium, 2007, pp. 179–192.

[10] F. Ferrandi, M. Lattuada, C. Pilato, and A. Tumeo, “Performance es-

timation for task graphs combining sequential path profiling and con-

trol dependence regions,” in MEMOCODE’09: Proceedings of the 7th

IEEE/ACM international conference on Formal Methods and Models for

127

http://www.freescale.com
http://www.ece.ufl.edu/announcements/news/2010/Novo-G.html


128 BIBLIOGRAPHY

Codesign. Piscataway, NJ, USA: IEEE Press, 2009, pp. 131–140.

[11] W. Luk, J. Coutinho, T. Todman, Y. Lam, W. Osborne, K. Susanto, Q. Liu,

and W. Wong, “A high-level compilation toolchain for heterogeneous

systems,” in Proceedings of IEEE International SoC Conference (SOCC),

September 2009.

[12] Y. D. Yankova, K. B. G. Kuzmanov, G. N. Gaydadjiev, Y. Lu, and

S. Vassiliadis, “DWARV: Delftworkbench automated reconfigurable

VHDL generator,” in Proceedings of the 17th International Conference

on Field Programmable Logic and Applications (FPL07), 2007, pp.

697–701.

[13] H. So and R. Brodersen, “A unified hardware/software runtime environ-

ment for FPGA-based reconfigurable computers using BORPH,” ACM

Transactions on Embedded Computing Systems (TECS), vol. 7, no. 2,

p. 14, 2008.

[14] H. So and R. Brodersen, “File system access from reconfigurable FPGA

hardware processes in BORPH,” in International Conference on Field

Programmable Logic and Applications, 2008, pp. 567 –570.

[15] H. So and R. Brodersen, “Improving usability of FPGA-based reconfig-

urable computers through operating system support,” in International

Conference on Field Programmable Logic and Applications, 2006.

[16] K. Olukotun, “Towards pervasive parallelism,” in Barcelona Multicore

Workshop (BMW2008), Jun 2008.

[17] E. Lubbers and M. Platzner, “ReconOS: An operating system for dynam-

ically reconfigurable hardware,” Dynamically Reconfigurable Systems,

pp. 269–290, 2010.

[18] E. Lubbers and M. Platzner, “ReconOS: An RTOS supporting hard- and

software threads,” in Proceedings of the 17th International Conference

on Field Programmable Logic and Applications (FPL). Amsterdam,

Netherlands: IEEE, August 2007, pp. 441–446.



BIBLIOGRAPHY 129

[19] E. Lubbers and M. Platzner, “A portable abstraction layer for hardware

threads,” in International Conference on Field Programmable Logic and

Applications, 2008, pp. 17–22.

[20] E. Lubbers and M. Platzner, “Cooperative multithreading in dynamically

reconfigurable systems,” in Proceedings of the 18th International Confer-

ence on Field Programmable Logic and Applications (FPL). Heidelberg,

Germany: IEEE, September 2008.

[21] C. Steiger, H. Walder, and M. Platzner, “Operating systems for reconfig-

urable embedded platforms: Online scheduling of real-time tasks,” IEEE

Transactions on Computers, pp. 1393–1407, 2004.

[22] E. Lubbers and M. Platzner, “ReconOS: Multithreaded programming for

reconfigurable computers,” ACM Transactions on Embedded Computing

Systems (TECS), vol. 9, no. 1, pp. 1–33, 2009.

[23] J. Kelm and S. Lumetta, “HybridOS: Runtime support for reconfigurable

accelerators,” in Proceedings of the 16th International ACM/SIGDA

Symposium on Field Programmable Gate Arrays, 2008, pp. 212–221.

[24] J. Kelm, I. Gelado, M. Murphy, N. Navarro, S. Lumetta, and W. Hwu,

“CIGAR: Application partitioning for a CPU/coprocessor architecture,”

in Proceedings of the 16th International Conference on Parallel Archi-

tecture and Compilation Techniques, 2007, pp. 317–326.

[25] G. Wigley, D. Kearney, and D. Warren, “Introducing ReConfigME: An

operating system for reconfigurable computing,” in Field-Programmable

Logic and Applications: Reconfigurable Computing Is Going Main-

stream, ser. Lecture Notes in Computer Science, 2002, pp. 687–697.

[26] G. Wigley and D. Kearney, “Performance evaluations of ReconfigME,”

in IEEE International Conference on Field Programmable Technology,

December 2006, pp. 309 –312.

[27] G. Wigley and D. Kearney, “The development of an operating system

for reconfigurable computing,” in The 9th Annual IEEE Symposium on



130 BIBLIOGRAPHY

Field-Programmable Custom Computing Machines, 2001, pp. 249–250.

[28] G. Wigley, D. Kearney, and M. Jasiunas, “ReConfigME: a detailed

implementation of an operating system for reconfigurable computing,”

in 20th International Parallel and Distributed Processing Symposium,

April 2006.

[29] G. Stitt, R. Lysecky, and F. Vahid, “Dynamic hardware/software par-

titioning: a first approach,” in Proceedings of the 40th annual Design

Automation Conference. New York, NY, USA: ACM, 2003, pp. 250–

255.

[30] S. Haynes, H. Epsom, R. Cooper, and P. McAlpine, “UltraSONIC:

A reconfigurable architecture for video image processing,” in Field-

Programmable Logic and Applications: Reconfigurable Computing Is

Going Mainstream, 2002, pp. 25–45.

[31] T. Wiangtong, P. Cheung, and W. Luk, “A unified codesign run-time

environment for the UltraSONIC reconfigurable computer,” in Field-

Programmable Logic and Applications, 2003, pp. 396–405.

[32] Wiangtong, C. Ewe, and P. Cheung, “SONICmole: a debugging environ-

ment for the UltraSONIC reconfigurable computer,” in Proceedings of

the 2003 International Symposium on Circuits and Systems, May 2003,

pp. 808–811.

[33] W. Peck, E. Anderson, J. Agron, J. Stevens, F. Baijot, and D. Andrews,

“Hthreads: A computational model for reconfigurable devices,” in Inter-

national Conference on Field Programmable Logic and Applications,

August 2006, pp. 1–4.

[34] D. Andrews, W. Peck, J. Agron, K. Preston, E. Komp, M. Finley, and

R. Sass, “Hthreads: a hardware/software co-designed multithreaded

RTOS kernel,” vol. 2, September 2005.

[35] E. Anderson, J. Agron, W. Peck, J. Stevens, F. Baijot, E. Komp, R. Sass,

and D. Andrews, “Enabling a uniform programming model across



BIBLIOGRAPHY 131

the software/hardware boundary,” in Proceedings of the 14th Annual

IEEE Symposium on Field-Programmable Custom Computing Machines.

Washington, DC, USA: IEEE Computer Society, 2006, pp. 89–98.

[36] K. Kosciuszkiewicz, F. Morgan, and K. Kepa, “Run-time management of

reconfigurable hardware tasks using embedded linux,” in International

Conference on Field-Programmable Technology, December 2007, pp.

209 –215.

[37] N. W. Bergmann, J. A. Williams, J. Han, and Y. Chen, “A process model

for hardware modules in reconfigurable system-on-chip,” in 19th Inter-

national Conference on Architecture of Computing Systems, Workshops

Proceedings, 2006, pp. 205–214.

[38] J. Williams, N. Bergmann, and X. Xie, “FIFO communication models in

operating systems for reconfigurable computing,” in 13th Annual IEEE

Symposium on Field-Programmable Custom Computing Machines, April

2005, pp. 277 – 278.

[39] P. M. Wells, K. Chakraborty, and G. S. Sohi, “Dynamic heterogeneity

and the need for multicore virtualization,” SIGOPS Operating Systems

Review, vol. 43, no. 2, pp. 5–14, April 2009.

[40] C. Bertin, C. Guillon, and K. De Bosschere, “Compilation and virtu-

alization in the HiPEAC vision,” in Proceedings of the 47th Design

Automation Conference, ser. DAC ’10. New York, NY, USA: ACM,

2010, pp. 96–101.

[41] R. Buchty, D. Kramer, F. Nowak, and W. Karl, “A seamless virtualization

approach for transparent dynamical function mapping targeting hetero-

geneous and reconfigurable systems,” in Reconfigurable Computing:

Architectures, Tools and Applications, ser. Lecture Notes in Computer

Science, J. Becker, R. Woods, P. Athanas, and F. Morgan, Eds., 2009,

vol. 5453, pp. 362–367.

[42] A. Hofmann, K. Waldschmidt, and J. Haase, “SDVMR; managing het-

erogeneity in space and time on multicore SoCs,” in Adaptive Hardware



132 BIBLIOGRAPHY

and Systems (AHS), 2010 NASA/ESA Conference on, June 2010, pp. 142

–148.

[43] S. Huang, A. Hormati, D. Bacon, and R. Rabbah, “Liquid metal: Object-

oriented programming across the hardware/software boundary,” in Pro-

ceedings of the 22nd European conference on Object-Oriented Program-

ming. Springer-Verlag, 2008, pp. 76–103.

[44] E. Rohou, A. C. Ornstein, A. E. Özcan, and M. Cornero, “Combining

processor virtualization and component-based engineering in C for het-

erogeneous many-core platforms,” in Programming Models for Emerging

Architectures (PEMA).

[45] C. Augonnet and R. Namyst, “A unified runtime system for heteroge-

neous multi-core architectures,” vol. 5415, pp. 174–183, 2009.

[46] P. H. Wang, J. D. Collins, G. N. Chinya, H. Jiang, X. Tian, M. Girkar,

N. Y. Yang, G.-Y. Lueh, and H. Wang, “EXOCHI: architecture and

programming environment for a heterogeneous multi-core multithreaded

system,” ACM SIGPLAN Notices, vol. 42, no. 6, pp. 156–166, June 2007.

[47] G. F. Diamos and S. Yalamanchili, “Harmony: an execution model

and runtime for heterogeneous many core systems,” in Proceedings

of the 17th international symposium on High performance distributed

computing. New York, NY, USA: ACM, 2008, pp. 197–200.

[48] A. Vetro, S. Yea, M. Zwicker, W. Matusik, and H. Pfister, “Overview

of multiview video coding and anti-aliasing for 3D displays,” in IEEE

International Conference on Image Processing, vol. 1, October 2007, pp.

I –17 –I –20.

[49] http://www.rtlinuxfree.com, 2011.

[50] W. Fu and K. Compton, “An execution environment for reconfigurable

computing,” in 13th Annual IEEE Symposium on Field-Programmable

Custom Computing Machines, April 2005, pp. 149 – 158.

[51] S. Vassiliadis, G. Gaydadjiev, K. Bertels, and E. Panainte, “The MOLEN

http://www.rtlinuxfree.com


BIBLIOGRAPHY 133

programming paradigm,” in 3rd International Workshop on Systems,

Architectures, Modeling, and Simulation, July 2003, pp. 1–10.

[52] E. M. Panainte, K. Bertels, and S. Vassiliadis, “Compiling for the

MOLEN programming paradigm,” in Proceedings of the 13th Inter-

national Conference on Field Programmable Logic and Applications

(FPL’03), September 2003, pp. 900–910.

[53] V. Manh Tuan and H. Amano, “A preemption algorithm for a multitasking

environment on dynamically reconfigurable processor,” Reconfigurable

Computing: Architectures, Tools and Applications, pp. 172–184, 2008.

[54] S. Jovanovic, C. Tanougast, and S. Weber, “A hardware preemptive

multitasking mechanism based on scan-path register structure for FPGA-

based reconfigurable systems,” in Proceedings of the 2nd NASA/ESA

Conference on Adaptive Hardware and Systems. IEEE Computer

Society, 2007, pp. 358–364.

[55] M. Fazlali and A. Zakerolhosseini, “Rec-Bench: A tool to create bench-

mark for reconfigurable computers,” in Programmable Logic Conference

(SPL), 2010 VI Southern, March 2010, pp. 187 –190.

[56] J. M. P. Cardoso and H. C. Neto, “Compilation for FPGA-based

reconfigurable hardware,” IEEE Design & Test of Computers,

vol. 20, no. 2, pp. 65–75, March 2003. [Online]. Available:

http://portal.acm.org/citation.cfm?id=766314.766333

[57] G. Dimitroulakos, N. Kostaras, M. D. Galanis, and C. E.

Goutis, “Compiler assisted architectural exploration framework for

coarse grained reconfigurable arrays,” Journal of Supercomputing,

vol. 48, no. 2, pp. 115–151, May 2009. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1541536.1541567

[58] R. Cordone, F. Redaelli, M. Redaelli, M. Santambrogio, and D. Sciuto,

“Partitioning and scheduling of task graphs on partially dynamically

reconfigurable FPGAs,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 28, no. 5, pp. 662 –675, May

http://portal.acm.org/citation.cfm?id=766314.766333
http://portal.acm.org/citation.cfm?id=1541536.1541567


134 BIBLIOGRAPHY

2009.

[59] Z. Gu, M. Yuan, and X. He, “Optimal static task scheduling on reconfig-

urable hardware devices using model-checking,” in 13th IEEE Real Time

and Embedded Technology and Applications Symposium, April 2007, pp.

32 –44.

[60] J. Angermeier, S. Fekete, T. Kamphans, N. Schweer, and J. Teich, “Vir-

tual area management: Multitasking on dynamically partially recon-

figurable devices,” in 2010 IEEE International Symposium on Parallel

Distributed Processing, Workshops and Phd Forum, April 2010, pp. 1

–4.

[61] F. Redaelli, M. Santambrogio, and D. Sciuto, “Task scheduling with

configuration prefetching and anti-fragmentation techniques on dynami-

cally reconfigurable systems,” in Design, Automation and Test in Europe,

March 2008, pp. 519 –522.

[62] M. Sabeghi, H. Mushtaq, and K. Bertels, “Runtime multitasking

support on polymorphic platforms,” SIGARCH Comput. Archit.

News, vol. 38, pp. 46–52, January 2011. [Online]. Available:

http://doi.acm.org/10.1145/1926367.1926376

[63] H. Walder and M. Platzner, “Online scheduling for block-partitioned

reconfigurable devices,” 2003.

[64] V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins, “De-

signing an operating system for a heterogeneous reconfigurable SoC,”

2003.

[65] J. Resano, D. Mozos, and F. Catthoor, “A hybrid prefetch scheduling

heuristic to minimize at run-time the reconfiguration overhead of dynam-

ically reconfigurable hardware,” Design, Automation and Test in Europe

Conference and Exhibition, vol. 1, pp. 106–111, 2005.

[66] P.-A. Hsiung, C.-H. Huang, and Y.-H. Chen, “Hardware task scheduling

and placement in operating systems for dynamically reconfigurable SoC,”

http://doi.acm.org/10.1145/1926367.1926376


BIBLIOGRAPHY 135

Journal of Embedded Computing, vol. 3, no. 1, pp. 53–62, January 2009.

[67] M. Yuan, Z. Gu, X. He, X. Liu, and L. Jiang, “Hardware/software

partitioning and pipelined scheduling on runtime reconfigurable FPGAs,”

ACM Transactions on Design Automation of Electronic Systems,

vol. 15, no. 2, pp. 13:1–13:41, March 2010. [Online]. Available:

http://doi.acm.org/10.1145/1698759.1698763

[68] R. Guha, N. Bagherzadeh, and P. Chou, “Resource management

and task partitioning and scheduling on a run-time reconfigurable

embedded system,” Computers and Electrical Engineering, vol. 35,

no. 2, pp. 258–285, March 2009. [Online]. Available: http:

//portal.acm.org/citation.cfm?id=1507764.1507873

[69] Y. Lu, T. Marconi, K. Bertels, and G. Gaydadjiev, “Online task schedul-

ing for the FPGA-based partially reconfigurable systems,” vol. 5453, pp.

216–230, 2009.

[70] M. Sabeghi, V. Sima, and K. Bertels, “Compiler assisted runtime task

scheduling on a reconfigurable computer,” in 19th International Confer-

ence on Field Programmable Logic and Applications (FPL09), August

2009.

[71] J. Resano, J. A. Clemente, C. Gonzalez, D. Mozos, and

F. Catthoor, “Efficiently scheduling runtime reconfigurations,” ACM

Transactions on Design Automation of Electronic Systems, vol. 13,

no. 4, pp. 58:1–58:12, October 2008. [Online]. Available: http:

//doi.acm.org/10.1145/1391962.1391966

[72] E. Panainte, K. Bertels, and S. Vassiliadis, “The MOLEN compiler for

reconfigurable processors,” ACM Transactions on Embedded Computing

Systems (TECS), vol. 6, no. 1, 2007.

[73] E. M. Panainte, K. Bertels, and S. Vassiliadis, “Interprocedural opti-

mization for dynamic hardware configurations,” in Embedded Computer

Systems: Architectures, Modeling, and Simulation, ser. Lecture Notes

in Computer Science, T. D. Hmlinen, A. D. Pimentel, J. Takala, and

http://doi.acm.org/10.1145/1698759.1698763
http://portal.acm.org/citation.cfm?id=1507764.1507873
http://portal.acm.org/citation.cfm?id=1507764.1507873
http://doi.acm.org/10.1145/1391962.1391966
http://doi.acm.org/10.1145/1391962.1391966


136 BIBLIOGRAPHY

S. Vassiliadis, Eds., vol. 3553. Springer Berlin / Heidelberg, 2005, pp.

2–11.

[74] L. Bauer, M. Shafique, and J. Henkel, “MinDeg: a performance-

guided replacement policy for run-time reconfigurable accelerators,”

in Proceedings of the 7th IEEE/ACM international conference on

Hardware/software codesign and system synthesis, ser. CODES+ISSS

’09. New York, NY, USA: ACM, 2009, pp. 335–342. [Online].

Available: http://doi.acm.org/10.1145/1629435.1629481

[75] C. Lee, M. Potkonjak, and W. Mangione-Smith, “Mediabench: a tool for

evaluating and synthesizing multimedia and communications systems,”

in 13th Annual IEEE/ACM International Symposium on Microarchitec-

ture, December 1997, pp. 330 –335.

[76] M. Rullmann and R. Merker, “A cost model for partial dynamic reconfig-

uration,” in International Conference on Embedded Computer Systems:

Architectures, Modeling, and Simulation, July 2008, pp. 182 –186.

[77] G. Barnett, http://cpuss.codeplex.com/, 2009.

[78] P. Laplante, Real-Time Systems Design & Analysis. Wiley-India, 2009.

[79] K. Ramamritham and J. Stankovic, “Scheduling algorithms and operating

systems support for real-time systems,” vol. 82, no. 1, January 1994, pp.

55 –67.

[80] J. Goossens and P. Richard, “Overview of real-time scheduling problems,”

in 9th International Workshop on Project Management and Scheduling,

2004.

[81] S. Lauzac, R. Melhem, and D. Mosse, “Comparison of global and parti-

tioning schemes for scheduling rate monotonic tasks on a multiprocessor,”

in 10th Euromicro Workshop on Real-Time Systems, June 1998, pp. 188

–195.

[82] B. Andersson and J. Jonsson, “Fixed-priority preemptive multiprocessor

scheduling: to partition or not to partition,” in 7th International Confer-

http://doi.acm.org/10.1145/1629435.1629481
http://cpuss.codeplex.com/


BIBLIOGRAPHY 137

ence on Real-Time Computing Systems and Applications, 2000, pp. 337

–346.

[83] M. Sabeghi, M. Naghibzadeh, and T. Taghavi, “Scheduling non-

preemptive periodic tasks in soft real-time systems using fuzzy infer-

ence,” in 9th IEEE International Symposium on Object and Component-

Oriented Real-Time Distributed Computing, April 2006, p. 6 pp.

[84] M. Sabeghi, M. Naghibzadeh, and T. Taghavi, “A fuzzy algorithm

for scheduling soft periodic tasks in preemptive real-time systems,” in

Advances in Systems, Computing Sciences and Software Engineering.

Springer Netherlands, 2006, pp. 11–16.

[85] M. Sabeghi, H. Deldari, V. Salmani, M. Bahekmat, and T. Taghavi,

“A fuzzy algorithm for real-time scheduling of soft periodic tasks on

multiprocessor systems,” in IADIS International Conference on Applied

Computing, 2006.

[86] L. Wang, A course in fuzzy systems and control. Prentice-Hall, Inc.

Upper Saddle River, NJ, USA, 1996.

[87] E. Mamdani and S. Assilian, “An experiment in linguistic synthesis with

a fuzzy logic controller,” International Journal of Man-Machine Studies,

vol. 7, no. 1, pp. 1 – 13, 1975.

[88] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-

ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46–61,

January 1973.

[89] M. Sabeghi and K. Bertels, “Toward a runtime system for reconfigurable

computers: A virtualization approach,” in Design, Automation and Test

in Europe (DATE09), April 2009.

[90] S. L. Graham, P. B. Kessler, and M. K. McKusick, “gprof: a call graph

execution profiler,” ACM SIGPLAN Notices.

[91] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A transparent

dynamic optimization system,” in ACM SIGPLAN Notices, vol. 35, no. 5,



138 BIBLIOGRAPHY

2000, pp. 1–12.

[92] M. Arnold and B. G. Ryder, “A framework for reducing the cost of

instrumented code,” ACM SIGPLAN Notices, vol. 36, no. 5, pp. 168–179,

2001.

[93] http://oprofile.sourceforge.net/, 2010.

[94] A. Nair and R. Lysecky, “Non-intrusive dynamic application profiler for

detailed loop execution characterization,” in Proceedings of the 2008

international conference on Compilers, architectures and synthesis for

embedded systems. New York, NY, USA: ACM, 2008, pp. 23–30.

[95] A. Eustace and A. Srivastava, “ATOM: a flexible interface for building

high performance program analysis tools,” in Proceedings of the USENIX

1995 Technical Conference. Berkeley, CA, USA: USENIX Association,

1995, pp. 25–25.

[96] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,

V. J. Reddi, and K. Hazelwood, “Pin: building customized program

analysis tools with dynamic instrumentation,” in Proceedings of the

2005 ACM SIGPLAN conference on Programming language design and

implementation. New York, NY, USA: ACM, 2005, pp. 190–200.

[97] G. Hunt, , G. Hunt, and D. Brubacher, “Detours: Binary interception of

Win32 functions,” in In Proceedings of the 3rd USENIX Windows NT

Symposium, 1998, pp. 135–143.

[98] G. Eulisse and L. A. Tuura, “Igprof profiling tool,” Computing in High

Energy Physics and Nuclear Physics, 2004.

[99] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T. Nakatani,

“A dynamic optimization framework for a java just-in-time compiler,”

in 16th ACM SIGPLAN conference on Object-oriented programming,

systems, languages, and applications. New York, NY, USA: ACM,

2001, pp. 180–195.

[100] V. Sundaresan, D. Maier, P. Ramarao, and M. Stoodley, “Experiences

http://oprofile.sourceforge.net/


BIBLIOGRAPHY 139

with multi-threading and dynamic class loading in a java just-in-time

compiler,” in International Symposium on Code Generation and Opti-

mization. Washington, DC, USA: IEEE Computer Society, 2006, pp.

87–97.

[101] A. Ross and F. Vahid, “Frequent loop detection using efficient nonin-

trusive on-chip hardware,” IEEE Transactions on Computers, vol. 54,

no. 10, pp. 1203–1215, 2005.

[102] M. Sabeghi and K. Bertels, “Interfacing operating systems and polymor-

phic computing platforms based on the MOLEN programming paradigm,”

in Sixth Annual Workshop on the Interaction between Operating Systems

and Computer Architecture, June 2010.

[103] http://www.hartes.org/, 2010.

[104] N. Een and N. Sorensson, “An extensible SAT-solver,” in Theory and

Applications of Satisfiability Testing, 2004, pp. 333–336. [Online].

Available: http://www.springerlink.com/content/x9uavq4vpvqntt23

[105] http://www.coremark.org/, 2010.

[106] http://www.eembc.org/, 2010.

http://www.hartes.org/
http://www.springerlink.com/content/x9uavq4vpvqntt23
http://www.coremark.org/
http://www.eembc.org/




List of Publications

International Journals

1. M. Fazlali, M. Sabeghi, A. Zakerolhosseini, K.L.M. Bertels, Efficient
Task Scheduling for Runtime Reconfigurable Systems, Elsevier Jour-

nal of Systems Architecture, Vol. 56, Issue 11, November 2010, pp.

623-632.

2. M. Sabeghi, H. Mushtaq, K.L.M. Bertels, Runtime Multitasking Sup-
port on Polymorphic Platforms, ACM SIGARCH Computer Architec-

ture News, Vol. 38, Issue 4, September 2010, pp. 46-52.

3. M. Sabeghi, M. Naghibzadeh, T. Taghavi, A Fuzzy Algorithm for
Scheduling Soft Periodic Tasks in Preemptive Real-Time Systems,

New Mathematics and Natural Computation Journal, Vol. 3, Issue 3,

November 2007, pp. 371-384.

International Conferences

1. H. Mushtaq, M. Sabeghi, K.L.M. Bertels, A Runtime Profiler: Toward
Virtualization of Polymorphic Computing Platforms, 2010 Interna-

tional Conference on Reconfigurable Computing, December 2010.

2. M. Sabeghi, K.L.M. Bertels, Interfacing Operating Systems and Poly-
morphic Computing Platforms based on the MOLEN Programming
Paradigm, Sixth Annual Workshop on the Interaction between Operating

Systems and Computer Architecture in conjunction with ISCA10, June

2010.

3. M. Sabeghi, H. Mushtaq, K.L.M. Bertels, Runtime Multitasking Sup-
port on Reconfigurable Accelerators, First International Workshop

on Highly-Efficient Accelerators and Reconfigurable Technologies held

within ACM ICS 2010, June 2010.

141



142 LIST OF PUBLICATIONS

4. M. Sabeghi, V.M. Sima, K.L.M. Bertels, , Compiler Assisted Runtime
Task Scheduling on a Reconfigurable Computer, 19th International

Conference on Field Programmable Logic and Applications (FPL09),

August 2009.

5. M. Fazlali, A. Zakerolhosseini, M. Sabeghi, K.L.M. Bertels, G. Gaydad-

jiev, Data path Configuration Time Reduction for Run-time Recon-
figurable Systems, International Conference on Engineering of Recon-

figurable Systems and Algorithms (ERSA09), July 2009.

6. M. Sabeghi , K.L.M. Bertels, Toward a Runtime System for Reconfig-
urable Computers: A Virtualization Approach, Design, Automation

and Test in Europe (DATE09), April 2009.

7. M. Sabeghi, H. Deldari, A Fuzzy Algorithm for Scheduling Periodic
Tasks on Multiprocessor Soft Real-Time Systems, IASTED Interna-

tional Conference on Modeling and Simulation , May 2006.

8. M. Sabeghi, M. Naghibzadeh, T. Taghavi, Scheduling Non-Preemptive
Periodic Tasks in Soft Real-Time Systems using Fuzzy Inference, 9th

IEEE International Symposium on Object and component-oriented Real-

time distributed Computing (ISORC), April 2006.

Local Conferences

1. M. Sabeghi, K.L.M. Bertels, Current Trends in Resource Manage-
ment of Reconfigurable Systems, 19th Annual Workshop on Circuits,

Systems and Signal Processing, November 2008.

2. M. Sabeghi, K.L.M. Bertels, Toward a Run-time Support System for
MOLEN Hardware Organization, Architectures and Compilers for

Embedded Systems (ACES), September 2008.

3. M. Sabeghi, K.L.M. Bertels, M. Naghibzadeh, Deadline vs. Laxity as
a Decision Parameter in Fuzzy Real-Time Scheduling, 18th Annual

Workshop on Circuits, Systems and Signal Processing, November 2007.



LIST OF PUBLICATIONS 143

Other Papers

Journals

1. H. Deldari, M. Sabeghi, R. Mafi, An Agent-based Approach to Grid
Programming, Kuwait Journal of Science and Engineering, Vol. 34

No.2, December 2007.

2. M. Naghibzadeh, M. Sabeghi, S. Mirshokraie, H. Abachi, Round Data
Mailer Real-Time Protocol and its Message Delivery Performance,

International Review on Computers and Software journal (IRECOS), Vol.

2 No. 6, November 2007.

3. M. Sabeghi, M.H. Yaghmaee, Using Fuzzy Logic to Improve Cache
Replacement Decisions, IJCSNS International Journal of Computer

Science and Network Security, Vol. 6 No.3, March 2006.

Conferences

1. S. Mirshokraie, M. Sabeghi, K.L.M. Bertels, M. Naghibzadeh, Datalife
Time Analysis in RDM+ Real-Time Communication Protocol, IEEE

International Conference on Signal Processing and Communications,

November 2007.

2. S. Mirshokraie, M. Sabeghi, M. Naghibzadeh, K.L.M. Bertels, Per-
formance Evaluation of Real-Time Message Delivery in RDM Al-
gorithm, Third International Conference on Networking and Services

(ICNS07), June 2007.

3. M Sabeghi, M. Naghibzadeh M., K.L.M. Bertels, RDM+: A New Mac
Layer Real-Time Communication Protocol, IEEE Sarnoff Symposium,

April 2007.

4. M. Sabeghi, M. Naghibzadeh, H. Deldari, Performance Assessment of
a Distributed Real-Time Control System Utilizing RDM and RDM+
Protocols for Communication, 2nd International Conference on Future



144 LIST OF PUBLICATIONS

Networking Technologies (CoNEXT06), December 2006.

5. S. Khajoueinejad, M. Sabeghi, A. Sadeghzadeh, A Fuzzy Cache Re-
placement Policy and Its Experimental Performance Assessment,
IEEE International Conference on Innovations in Information Technol-

ogy, November 2006.

6. M. Sabeghi, M. Naghibzadeh, T. Taghavi, A Fuzzy Algorithm for
Scheduling Soft Periodic Tasks in Preemptive Real-Time Systems,

1st International Conference on Systems, Computing Sciences and Soft-

ware Engineering,December 2005.



Samenvatting

Multi-coreprocessing platformen zijn een grote stap voorwaarts in het aanbod

van high performance computing platformen. Het idee is om de prestaties te

verhogen door meerdere verwerkingseenheden aan te wenden voor het uitvo-

eren van een taak. Dit creert echter een uitdaging voor zowel de hardware

ontwikkelaars die zulke systemen bouwen, als voor de software ontwerpers die

deze platformen programmeren.

Betreffende de hardware kunnen we de problemen noemen met betrekking

tot interconnectie management, complexiteit van geheugenhirarchin en cache

coherency. Terwijl, wat de software betreft, de meeste problemen zich voor doen

in resource management, resource sharing en synchronisatie. Daarenboven is de

onmogelijkheid dergelijke platformen met conventionele programmeermodellen

te prrogrammeren een fundamenteel probleem aan de software kant. Dit komt

grotendeels door de diepe kennis van hardware design die het programmeren

van zulke platformen vereist.

In deze dissertatie pakken we de problemen aan de software kant aan door

een alomvattend runtime systeem voor te stellen dat verantwoordelijk is de

system resources te beheersen en alle conflicten op te lossen wanneer com-

puting resources worden aangesproken. Bovendien biedt het runtime systeem

applicatieontwikkelaars, APIs en System primitives, die platformafhankelijke

details wegabstraheren en voorziet in een consistent programmeermodel. Deze

primitieven koppelen het softwareontwikkelingsproces los van hardwareon-

twerp.

Het voorgestelde runtime systeem bestaat uit een scheduler, een profileerder,

een transformeerder, een JIT compiler, een een bibliotheek van kernels. Een

gedetailleerde beschrijving van de components wordt gepresenteerd. Zowel de

prestaties van het gehele systeem, als de opgelegde overhead van de component

is beschreven.

145





About the Author

Mojtaba Sabeghi was born in Mashhad, Iran, on July 16, 1981. He studied

computer engineering at Ferdowsi University of Mashhad, Mashhad, Iran,

where he received his BSc. and MSc. degrees in 2004 and 2006, respectively.

He joined Delft University of Technology in November 2006 as a PhD candidate,

where his research work was carried out in the Computer Engineering Labora-

tory. His doctoral research focused on the runtime support for heterogeneous

multi-core systems.

Mojtaba Sabeghi’s research interests include Operating Systems, Programming

Languages and Computer Architecture.

147





  

  

كليه جزييات سخت ،نويسي لازمهاي برنامهسيستم زمان اجرا با فراهم آوردن واسط ،علاوه براين
صورت انتزاعي در اختيار نويس پنهان كرده و آنها را در سطحي بالاتر و بهافزاري را از ديد برنامه

و بدون نياز به هرگونه ها نويس تنها در صورت آشنايي با اين واسطبرنامه. دهدنويس قرار ميبرنامه
  .نويسي كنداي ناهمگن برنامههستهتواند براي هر نوع سيستم چندافزاري ميدانش تخصصي سخت

نـويس  كـه حتـي در صـورتي كـه برنامـه      اسـت اي طراحـي شـده  آل به گونـه سيستم در حالت ايده
غيـر چنـد   هـاي نويسـي را بـه طـور كامـل بـراي سيسـتم      هـا آشـنا نباشـد و برنامـه    با ايـن واسـط  

اي نـاهمگن  هسـته بـاز هـم بتوانـد برنامـه خـود را روي يـك سيسـتم چنـد         ،اي انجـام دهـد  هسته
  .اجرا نمايد

 ،اين اجزا شامل زمانبند. استسيستم زمان اجراي ارايه شده از اجزاي مختلفي تشكيل شده
مه هر كدام از اين اجزا با نادر اين پايان. باشدكامپايلر زمان اجرا و كتابخانه مي ،رنسفورمرت ،پروفايلر
كارايي هر جز به همراه ميزان سربار زماني تحميل شده به سيستم نيز . اندارايه شده انجزيياتش

  .استمورد بررسي و تحليل قرار گرفته

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 چكيده  
ر روي يك چيپ به منظو افزايش تعداد واحدهاي محاسباتي ،ايستهههاي چندايده اصلي سيستم

افزايش سرعت در حقيقت با به كارگيري تعداد بيشتري واحد  .باشدافزايش قدرت محاسباتي مي
توانند از اين واحدهاي محاسباتي مي. پذيردمحاسباتي براي انجام يك كار مشخص صورت مي

لحاظ معماري داخلي كاملا مشابه بوده و يا اينكه معماري داخلي متفاوت و بالطبع قدرت 
 هايسيستم ،در صورتي كه معماري داخلي متفاوتي داشته باشند. تفاوتي داشته باشندمحاسباتي م

  .شونداي ناهمگن ناميده ميهستهچند

با همكاري و تعامل با يكديگر هركدام بخشي از محاسبات  ،هاواحدهاي محاسباتي يا همان هسته
دهند و بدين ترتيب سرعت نهايي انجام كار افزايش ميمورد نياز را به صورت همزمان انجام مي

يچيدگي زيادي به سيستم مل به سادگي قابل دستيابي نيست و پاما اين همكاري و تعا. يابد
  . آيدافزاري بوجود ميافزاري و نرماين پيچيدگي در هر دو بعد سخت. كندتحميل مي

سلسله  ،واردي مانند شبكه ارتباطي داخليتوان به افزايش پيچيدگي در ممي يافزاردر بعد سخت
افزاري نيز افزايش پيچيدگي در در بعد نرم. كش اشاره نمود حافظه مراتب حافظه و شفافيت

اشتراك منابع و مسايل مربوط به همزماني فرآيندها قابل مشاهده  ،مواردي مانند مديريت منابع
  .است

نويسان در برنامهعدم توانايي كافي برنامه ،هاييمتر براي استفاده از چنين سيستاما مشكل  اساسي
نويسي به تنهايي پاسخگوي فرآيند ها و ابزارهاي متداول و سنتي برنامهروش. باشدنويسي آنها مي

نويسي چنين سيستمي نيازمند دانش و برنامه ،در حقيقت. ها نيستندنويسي اين سيستمبرنامه
  .بهره هستندنويسان از آن بيباشد كه اغلب برنامهافزاري ميتسلط عميق بر مفاهيم سخت

اي هستههاي چندنويسي سيستمافزاري و برنامهحل مشكلات نرم رونامه پيشهدف اصلي پايان
است كه هدف آن يك سيستم زمان اجراي كامل و پوشا ارايه شده ،منظوربدين. ناهمگن مي باشد

نويس شفاف بوده و ين مديريت كاملا از ديد برنامها. باشدمديريت سيستم و منابع سيستمي مي
  .ندارد را نويس به هيچ عنوان نياز به دانستن چگونگي مديريت توسط سيستم زمان اجرابرنامه

  



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 خدمات زمان اجرا

 براي سيستم هاي چند هسته اي ناهمگن
 

 

 

 

 
 

 

 

 

 

 

 مجتبي سابقي

 

 




	fcover
	thesis
	Main
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	List of Acronyms and Symbols
	Introduction
	Problem Overview
	Dissertation Contribution
	Dissertation Organization

	Background and Related Work
	Target Architectures
	The Xilinx Extensible Processing Platform
	Convey HC-1
	Freescale QorIQ P2 Series
	STMicroelectronics Platform 2012
	Industrial Reference Platform
	hArtes Platform
	Novo-G

	MOLEN Hardware Organization
	MOLEN Programming Paradigm
	Design Tool Chain
	Runtime Systems
	BORPH
	Pervasive Parallelism
	ReconOS
	HybridOS
	ReconfigME
	Warp Processing
	UltraSONIC
	hthreads
	Other Runtime Systems

	Virtualization
	Comparison Methodology
	Open Issues
	Summary

	Runtime System
	Introduction
	Sample Real World Applications
	The Proposed Runtime System
	Scheduler
	Profiler
	Transformer
	Kernel Library
	JIT Compiler

	Interfacing Components
	Conclusion

	Task Abstraction
	Introduction
	MOLEN Programming Paradigm
	The Runtime Environment

	MOLEN Runtime Primitives
	SET
	EXECUTE
	Dynamic Binding Implementation

	Evaluation
	Overhead in a Single Call
	Overall Overhead

	Conclusion

	Scheduling
	Introduction
	Compile Time Scheduling
	Runtime Scheduling
	The Replacement Policy
	Configuration Call Graph

	Longest Distance in the Future
	Least Frequency in the Future
	Least Frequency in the Past
	Expected Time Improvement
	Evaluation
	Workload for Evaluation
	Evaluation Results

	Conclusion

	Fuzzy Real-time Scheduling
	Introduction
	Fuzzy Inference System
	The Proposed Fuzzy Model
	The Proposed Algorithms
	Performance Evaluation
	Conclusion

	Runtime Profiling
	Introduction
	Design Choices
	Design And Implementation
	Performance Evaluation
	Instrumentation Overhead
	Sampling and Daemon Overhead
	Sampling Accuracy
	Overall Overhead
	Percentage of Profilable Functions

	Conclusion

	Conclusions
	Outlook
	Contributions
	Open Issues and Future Directions

	Bibliography
	List of Publications
	Samenvatting
	About the Author

	persiantitle

	bcover

