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INTRODUCTION

MATERIAL PERCEPTION AND ART, OR
THE ART OF PERCEPTION

Humans are capable of visually recognizing materials extremely quickly and accurately
(Sharan et al., 2009, 2014) to the extent that this task appears trivial. However, the task is
actually very complex. The visual appearance of materials is dependent on complex inter-
actions between a variety of physical and optical factors (Anderson, 201 1). At least, this is
true for the real world: paintings are instead created by the artists directly manipulating im-
age features on the canvas, which might therefore deviate from the “complex interactions”
found in natural scenes. Cavanagh (2005) points out that the real world must follow the
rules of physics, but that no such restrictions apply to the worlds depicted within paintings.
Despite sometimes violating the rules of physics within their depictions, paintings can evok-
ing strong perceptions of a rich 3D world filled with objects and materials. Through endless
artistic experimentation (Gibson, 1978) painters have found successful ways to capture the
appearance of materials within paintings. Studying these painterly depictions of materials
can grant insights into human material perception that might not be achieved through the
study of “normal” materials.

In the next sections, we will first introduce material perception to provide a general
context for this thesis. Next, we will provide a discussion of how painterly depictions of
materials can be a valuable contribution to this field and we will argue the need for a large-
scale dataset of painterly depictions of materials and the multi-disciplinary benefits this
could generate. Finally, we discuss the main aims of this thesis and shortly introduce each
individual chapter.

1.1. MATERIAL PERCEPTION

Our world is filled with objects and materials (Adelson, 2001). The perception of objects
has received much scientific attention, while the perception of materials has only recently
started receiving more attention (Adelson, 2001; Fleming, 2014, 2017). Despite this dispar-
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2 1. INTRODUCTION

ity in attention, the perception of materials is a ubiquitous challenge that the human visual
system is exposed to numerous times a day. Material perception allows us to visually dis-
tinguish between fresh and rotting food, judge if the pavement is slippery, or if a bench is
dry enough to sit on. In other words, we need material perception in order to successfully
interact with our world.

But what exactly is material perception? No agreed-upon definition exists, but material
perception is generally understood as the multi-modal ability, or set of abilities, that allow us
to categorize materials (Fleming, 2017; Hu et al., 201 1; Sharan et al., 2009, 2014), estimate
material attributes (Ferwerda et al., 2001; Fleming, 2014, 2017; Marlow et al., 2012; Zhang
etal., 2015) and estimate an object’s or material’s physical state (Komatsu and Goda, 2018;
Sawayama et al., 2017). Here categorization relates to differentiating between for example
wood and fabrics. Estimating material attributes informs us if a material is glossy, soft,
etc., and estimating physical state allows us to infer if an object is wet, dusty or dirty. See
Fig. 1.1 for examples of each. Material perception is inherently multi-modal: by merely
viewing a material, we can already form expectations of what the material might feel or
sound like when interacted with. However, discussing all the modalities that are involved
with material perception is outside the scope of this thesis, and for the remainder of this
text, the focus shall be on visual material perception.

Based on our ability to perform material perception without conscious effort, we might
naively assume that material perception is straightforward and uncomplicated. Indeed, it
has been shown that humans are capable of categorizing materials accurately and quickly
(Sharan et al., 2009, 2014), and that when judging and estimating material attributes, par-
ticipants tend to correlate strongly with each other (Fleming, 2014), further implying the
task of material perception is an easy one. However, if we actually consider the task itself,
instead of our ability to perform it, we quickly uncover a hidden complexity. The input for
visual material perception consists of the light-rays that are reflected from our environment
to our retina. The actual light that reaches our eyes depends on multiple interacting fac-
tors such as the viewing angle, lighting condition, shape, optical properties of the material
(Anderson, 2011), and the physical state of the material (e.g., dusty or wet) (Komatsu and
Goda, 2018).

A classical explanation for material perception holds that the visual system is able to es-
timate, or model, the physical scene in order to discount effects thereof to recover intrinsic
properties of the material (Marr, 2010; Pizlo, 2001; Poggio and Koch, 1985; Poggio et al.,
1985). The origin of this idea is generally attributed to Helmholtz (1866/1962), who con-
jectured that we "eliminate" the effect of the illumination to "reveal the body". In essence,
this inverse optics view claimed that the visual system is able to create an accurate mental
model of the physical scene by running physics in reverse (Poggio et al., 1985). However,
current views consider inverse optics to only be feasible for simple, straightforward scenes
(Fleming et al., 2004; Nishida, 2019). For example, Fleming et al. (2004) argues that it
would be extremely difficult to recover complex surfaces, such as mirrors, as "all visible
features belong to the environment surrounding the object".

A more recent approach, known as image statistics, reasons that generating accurate
model of the environment is too computationally complex and that the human visual system
needs not know (i.e., model) the environment as it may instead rely on image features to
infer physical material properties (Fleming, 2014; Fleming and Biilthoff, 2005; Motoyoshi
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Figure 1.1: An example of the large visual variety found in materials. In the top row, stone, metal, and fabric are
three examples of different material categories. In the middle row, three examples of wood show the perceptual
variety that can be found within a single category. The bottom row shows that even the exact same material can
differ across physical state, with the left image being dry, and the right wet.
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etal., 2007; Nishida, 2019). That is, instead of requiring the generation of complex models
of the natural scene the visual system can instead rely on much simpler learned statistical
rules of natural scenes. For example, Nishida (2019) argues that when the visual system
encounters a blurry reflection on a metal object it can infer that the metallic object is not
polished - as the natural scene reflected is originally sharp.

More approaches exist that attempt to explain the connection between the light reaching
the eye and the material perception that this evokes. To our knowledge however, there is
currently no theory, approach or model that can robustly and accurately predict the evoked
output, i.e., perception, for arbitrary input images. Interestingly however, there are visual
experts that are capable of doing the inverse, i.e., generating input images that can robustly
evoke perceptions: painters.

Painters have learned how to capture the world within paintings through endless artistic
experimentation and observation (Gibson, 1978). When we observe a painting we perceive
the world through the artist’s eye; a painting is not just a reflection of a natural scene, it
is instead a reflection of a painters perception thereof. In other words, the endless artistic
experimentation and observation of painters is itself shaped by the painters’ perception.
As such, paintings can be considered as a double perception interface: an image made by
and for perception (Cavanagh, 2005). Studying the depiction and perception of materials
within paintings provides a valuable novel, multidisciplinary approach to understand visual
material perception due to this double perception interface.

1.2. PAINTINGS AND PERCEPTION

Paintings have a long history of being used as stimuli to study the human visual system
(Buswell, 1935; Yarbus A L, 1967) and the inverse is also true: art historians have a long
history of using vision science to study art (Arnheim, 1965; Gombrich, 1960). Paintings
typically display strong statistical correlations with natural scenes (Graham and Field, 2008;
Redies et al., 2008), but they merely reflect the physical, 3D world. Painters do not intent
to capture the world as truthfully as possible '. Instead, paintings are explicitly created
for human perceptions and in the process of painting, artists can directly manipulate the
2D image features in order to evoke a desired perceptual response. This results in a more
perceptually motivated stimulus that is ideal for visual perception experiments, as the stim-
ulus is explicitly created for and by perception (Cavanagh, 2005), i.e., a double perception
interface. Furthermore painters are free to bend or ignore the rules of physics (i.e., by di-
rectly manipulating the 2d image features) when creating a painting in order to “further the
painting’s intended effect” (Cavanagh, 2005; Graham and Meng, 2011) which can lead to
scenes that are very unlikely, if not impossible, to be encountered in the real world.

One of the primary goals of this thesis is to enable a multidisciplinary audience to
study material depiction and perception within paintings by creating a large-scale dataset
of artistic depictions. Therefore, in this thesis, we introduce the Materials In Paintings
(MIP) dataset, which is a large-scale dataset of paintings containing material information.

Nt is interesting to note that the human visual system does not try to “capture” the world as truthfully as possi-
ble either. A “perfect” perceptual system that accurately perceives “reality” would for example not be able to
perceive paintings as it would merely perceive a planar surface marked with with splashes of color. Instead of pur-
suing such “perfection” evolution has shaped our human visual system and our perception towards maximizing
biological fitness.
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Number of paintings

1200 1400 1600 1800 2000
and below

Figure 1.2: The distribution of paintings over time. The paintings shown exemplify the large variability of
paintings contained within the dataset. The lack of paintings after the 1900s is due to the copyright restrictions
for cultural heritage images. Paintings shown from left to right are: A Pavilion by unknown artist, 1153. The
Cleveland Museum of Art, USA. The Annunciation by Jan van Eyck, 1435. National Gallery of Art, USA. The
Musicians by Caravaggio, 1595. The Metropolitan Museum of Art, USA. Girl with a Pearl Earring by Johannes
Vermeer, 1665. Mauritshuis, The Hague, Netherlands. A Graduate of Merton College, Oxford attributed to George
Knapton, 1754. National Gallery of Art, USA. Keelmen Heaving in Coals by Moonlight by Turner, 1835. National
Gallery of Art, USA. The Rowers’ Lunch by Pierre-Auguste Renoir, 1875. The Art Institute of Chicago, USA.

We tried to gather a large set of paintings that encompasses a large selection of art history.
As can be seen in Fig. 1.2, our collection contains paintings across a large range of time
and styles.

1.3. A DATASET OF ARTISTIC MATERIAL DEPICTIONS

A decade ago only few paintings were digitally available, but with the push of digitizing cul-
tural heritage over the last decade, many previously unavailable paintings have now become
freely accessible online (Bernhard, 2016; Saleh and Elgammal, 2015). Possibly the most
famous dataset of paintings is the WikiArt dataset, created by a non-profit organisation with
the goal “to make world’s art accessible to anyone and anywhere" (“Visual Art Encyclope-
dia”, 2020). The WikiArt dataset has been widely used for a variety of scientific purposes
(Baretal., 2014; Elgammal et al., 2018; Saleh and Elgammal, 2015; Strezoski and Worring,
2017; Tan et al., 2017). However, some of these images are copyrighted, which in some
cases can complicate the use of WikiArt images for scientific purposes. Luckily, large-scale
datasets of paintings exist that were explicitly created for scientific use and exclusively use
paintings from the public domain. These datasets typically contain low-quality images, as
this is usually preferred within the computer vision field for deep learning purposes. For
example, the Art500k dataset contains more than 500k low-resolution artworks which were
used to train a model to identify style in paintings (Mao et al., 2017). In another exam-
ple, Crowley and Zisserman (2014a) and Crowley and Zisserman (2014b) used a set of 10k
medium-resolution paintings to study object recognition within paintings.

While the previously mentioned datasets contain paintings, they do not explicitly con-




6 1. INTRODUCTION

tain material information. To our knowledge, with the exception of the Materials In Painting
(MIP) dataset introduced in this thesis within chapter 3, no datasets exist that contains paint-
ings with material information. There are however a small number of datasets that contain
material information for photos or for digital renderings. One such database was highly
influential for the creation of this thesis: OpenSurfaces (Bell et al., 2013), which contains
around 70k crowd-sourced polygon segmentations of materials sourced from photos. In a
later study, the authors upgraded OpenSurfaces by providing an additional 3 million point-
samples across 23 material classes (Bell et al., 2015). The MIP dataset has used, updated,
and adapted the software and annotational pipe-line described in Bell et al. (2013). An-
other example of influential datasets containing material information is the Flickr Material
Database (FMD), which was originally created to study how quickly people can recognize
materials.

Many of the datasets previously mentioned were originally created for a single disci-
pline. For example, Opensurfaces was created for computer vision, but could easily be
applied for material perception research. Other dataset have been presented as more mul-
tidisciplinary, such as for example, the FMD which has been used for both human vision
and computer vision research by the original authors (Sharan et al., 2013; Sharan et al.,
2009), which demonstrates the possible multi-disciplinary nature that databases can have.
Similarly, the MIP dataset introduced in this thesis is intended to be multi-disciplinary. The
benefits for human vision are described above, as well as in chapters 5 and 6. For computer
vision the MIP dataset provides data previously unavailable, namely the painterly depic-
tion of materials. In Lin, Zuijlen, et al. (2021) we explicitly discuss the insights the MIP
dataset can grant computer vision. Furthermore, in Lin, van Zuijlen, et al. (2021) we use
the MIP dataset to improve model robustness for computer vision applications. For (digi-
tal) art history we consider the depictions within paintings as fundamentally interesting and
we consider this field a third major discipline that the MIP can contribute towards. It can,
for example, enable the study of material depictions on a large scale, which is a topic we
further explore in chapter 3.

1.4. THIS THESIS

The main rationale of this thesis is that the study of painterly depiction of materials can
be beneficial for vision science, art history, and computer vision. The motive here is that
painters are assumed to be masters of depiction and that their painterly skills and/or ex-
pertise can be leveraged into scientific insights. As such, the primary aim of this thesis is
twofold. First, to study the perception of materials in painterly depictions and second to
enable the study of painterly material depictions for a broad, interdisciplinary audience.

Each of the chapters work towards these aims. Below we will shortly introduce and
describe the rationale for each chapter.

Chapter 2. One of the central points of this thesis is that studying materials depicted
within paintings can lead to valuable insights for our understanding of material perception.
However, this belief rests on the implicit assumption that insights into the perception of
painterly materials can transfer to the perception of materials in other media, like photos or
drawings. Is the perception of materials in paintings indeed comparable to the perception
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of materials across other media? Do materials in paintings evoke comparable perceptions
of material attributes relative to other media?

In Fleming et al. (2013), the authors measured perceived material attributes, such as
softness, coldness, and hardness for various photographed materials and found that the dis-
tributions for these material attributes are "well defined, distinct, and systematically related
to material class membership". In this chapter, which contains the first peer-reviewed paper
of this thesis, we posed the question if similar, distinct relationships exist between materials
and material attributes for painterly material depictions. To test this we studied the percep-
tion of painterly depictions by measuring the perceived material attributes for a number of
materials and compared this to the result reported by Fleming et al. (2013).

Without discussing the results in depth here, it is important to note that we found that
painterly depictions of materials also display distinct, well defined, and systematic distri-
butions of material attributes. Moreover, these distributions for painterly materials were
found to be comparable to those reported for natural stimuli by Fleming et al. (2013). We
interpreted this to strongly imply that insights gained into the perception of painterly depic-
tion might, at least to some extent, transfer to the perception of materials as a whole. This
opens up possibilities for multidisciplinary research, which we further explored in the next
chapter.

Chapter 3. In the previous chapter, in order to measure the perception of painterly ma-
terials, we started with the collection of painterly materials. Specifically, we collected a
substantial set of paintings and collected material annotations using crowd-sourcing over
the internet. Furthermore, we showed that the perception of materials within paintings ap-
pears to be comparable to the perception of materials in photographs. This implies that
insights into the perception of painterly materials can transfer to the perception of materials
in different media.

A primary aim of this thesis is to promote the multidisciplinary study of materials. We
consider the study of the painterly depiction of materials to be inherently multidisciplinary.
The depiction of materials within paintings is of fundamental interest to art history, and
the perception thereof is of fundamental interest to perception. Furthermore, the depiction
of materials is also of interest to human vision science and vice versa. For example, how
did painters depict such smooth and shiny fabrics? And what visual cues present within
paintings are used by the human visual system to trigger these perceptions?

In addition to vision science and art history, the depiction and perception of painterly
materials can also be of interest to computer science, specifically computer vision and com-
puter graphics. If a large enough set of painterly material depictions becomes available,
this data could be used to train and improve existing neural networks. Can the painterly de-
piction of materials improve a network’s robustness? Or can it improve the generalizability
of networks across different domains (i.e., different medias of depiction). Can networks
be trained to recognize materials within paintings? Can painterly depiction techniques be
“learned” and employed by generative networks?

As a starting point, to answer the questions posed above, we created the Materials In
Paintings (MIP) dataset. The primary purpose of the paper, contained within this chap-
ter, was to describe, introduce, and release the dataset to the scientific community. To
demonstrate the multidisciplinary utility of the dataset we furthermore conducted various




8 1. INTRODUCTION

experiments and analyses across perception, art history and computer vision.

Chapter 4. In the previous chapters we have worked towards, and completed, a large
scale dataset of material depictions within art. To maximize the reach and accessibility
of this dataset we made the data available at an easily navigable location and provided a
number of filters and search tools to enable detailed exploration of the data. As such, the
dataset is hosted on a dedicated server and can be visited on materialsinpaintings.tudelft.nl,
where the entirety of the dataset can be viewed, browsed, and downloaded.

In the previous chapter we have provided a scientific discussion of the dataset. In this
chapter we provide a more practical and design-driven discussion. First a brief, high-level
overview of the final ’result’ is given by answering the following questions: What is the
MIP database? What is in it? Where does the data come from? Next, we provided an
informal discussion of the design decisions and reflected on the process that has led to the
final version of the dataset; in chapter 2, for example, we used polygonal segmentation,
while, in chapter 3, we primarily focused on bounding boxes. The explicit discussion of the
challenges and/or problems that have caused such changes typically do not belong within of
a scientific article. Nevertheless, the discussion of such reflections could give some insight
into the final design of the dataset. Finally, we provided a short practical guide on how to
browse and explore the dataset.

Chapter 5. In the previous chapters, we have taken a big picture approach to material
perception. First, we studied numerous materials and material attributes. Secondly, we
created and released an extensive set of annotated material depictions within art. Doing
so we worked towards one of the main aims of this thesis: to make the study of materials
multidisciplinary. In the following chapters we apply this multidisciplinary approach by
studying materials depicted within paintings.

Studying the depiction and perception of materials in this multidisciplinary approach
can lead to novel insights. For example, painters are free to directly manipulate the im-
age features of their depictions. Artists can even ignore certain cues entirely while still
rendering convincing material perceptions.

In this chapter we specifically study the depiction and perception of fabrics. Fabrics
are interesting as this material displays an especially large variability in appearance across
different exemplars. Nevertheless, from chapter 2 we know that fabrics in paintings, sim-
ilar to photographed fabrics, on average display a distinct and well defined distribution of
perceived material attributes. This raises the question if different types of fabrics display a
comparable, well defined distribution of perceived material attributes, or do different fab-
rics have distinct distributions? We attempt to answer this question by using stimuli from
the MIP dataset for two fabrics: velvet and satin. We consider these fabrics as especially
interesting as the appearances of these fabrics are heavily influenced by their reflective
properties, in almost entirely opposite ways.

Chapter 6. In this chapter we studied the depiction and perception of pearls within paint-
ings. Some materials, such as fabrics from the previous chapter, display considerable visual
variability in shape, texture, and color. In contrast with this, pearls might naively be con-
sidered a simple material in the sense that their visual appearance is quite robust. However,
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optically, pearls are fascinating due to their physical structure and their luster, a term used
to denote the various interactions with light that are characteristics of pearls. This physical
structure gives rise to subtle but striking differences between different instances of pearls.

In this chapter we try to study the perception of pearls depicted in paintings. The ratio-
nale and multidisciplinary approach here is similar to the previous chapters: we consider
painters to be experts at depicting materials. During this depiction they might emphasize
relevant perceptual features while ignoring or reduce non relevant perceptual features. In
this way, painters might function as a sort of perceptual filter - they depict by and for per-
ception. As such, the study of materials depicted within paintings is not just a study of
perception in the eye of the beholder. Instead, here we study perception through a double
perception interface: twice through the eye of the beholder.
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PAINTERLY DEPICTION OF
MATERIAL PROPERTIES

Painters are masters of depiction and have learned to evoke a clear perception of materials
and material attributes in a natural, three-dimensional setting, with complex lighting con-
ditions. Furthermore, painters are not constraint by reality, meaning that they could paint
materials without exactly following the laws of nature, while still evoking the perception of
materials. Paintings have to our knowledge not been studied on a big scale from a material
perception perspective. In this paper, we studied the perception of painted materials and
their attributes by using human annotations to find instances of 15 materials, such as wood,
stone, fabric, etc. Participants made perceptual judgments about 30 unique segments of
these materials for 10 material attributes, such as glossiness, roughness, hardness, etc. We
found that participants were able to perform this task well while being highly consistent.
Participants, however, did not consistently agree with each other and the measure of con-
sistency depended on the material attribute being perceived. Additionally, we found that
material perception appears to function independently of the medium of depiction - the re-
sults of our PCA analysis agreed well with findings in former studies for photographs and
computer renderings.

Published as: Mitchell J. P. van Zuijlen, Sylvia C. Pont, Maarten W. A. Wijntjes; Painterly depiction of material
properties. Journal of Vision 2020;20(7):7. doi: https://doi.org/10.1167/jov.20.7.7.
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2.1. INTRODUCTION

Materials represent the ‘stuff’ that things are made of (Adelson, 2001). We interact daily
with these ‘things’, either physically (e.g., manual interaction) or visually (e.g., assessing
ripeness, quality, or value). While the importance of material perception for humans seems
evident, we lack a full understanding of the underlying mechanisms. In a previous study,
Fleming et al. (2013) investigated the relationships between attribute ratings and material
classes (e.g., wood, glass, foliage, etc.) for photographs. In this paper, we extended on
this study by using a big data approach to measure the perception of material properties
in paintings. Our investigation is motivated by the assumption that to depict materials
convincingly, painters presumably hold insights into visual cues that lead to the perception
of various attributes.

Painters are masters of depiction and are capable of evoking a clear perception of a
three-dimensional world, with complex lighting and recognizable materials. Interestingly,
while the appearances of real materials are limited by the rules of physics, materials as de-
picted in paintings have no such constraints. Incongruencies between paintings and reality
often go unnoticed by the viewer (Cavanagh, 2005). Instead of strictly following physics,
painters have extracted the essential visual cues needed to trigger the perception of mate-
rials. Di Cicco et al. (2019) studied visual cues for gloss, which were implicitly discussed
in a painting manual by the 17Th-century painter Willem Beurs (Beurs, 1692). They found
that predictors that explained a large portion of the variance in gloss perception had implic-
itly been described within this 17Th-century manual. This shows that painters held insights
into perception and that studying art could lead to new insights for perception scientists.

While art reveals insights into perception, conversely perception can be used to un-
derstand art. For example, several important art historical publications (Arnheim, 1965;
Baxandall, 1995; Gombrich, 1960) use knowledge about perception to analyze art. Anec-
dotally, this approach can also be seen in artistic attributions such as in the case of Still
Life with Grapes and a Bird, which is attributed to Antonio Leonelli by the Metropolitan
Museum curator. In his attribution, the curator comments on “The tendency to geometrize
the forms with shading that rigorously enhances their rotundity [...] the emphasis on surface
effects—the grained wood [...] the clearly delineated shadows". It is interesting to see that
many of the curator’s terms are conceptually very similar to those used in perception sci-
ence. The overlap between the perceptual sciences and art means that a fuller understanding
of perceptual concepts could be beneficial for both fields.

Yet, how to study and quantify the depiction of materials in paintings? There are several
standard psychophysical methods that potentially apply to the study of depicted materials,
such as matching tasks, similarity ratings, or attribute ratings. The first method requires
a material probe, which is an interactive image that can be adjusted to match the material
attributes of the target stimulus. The probe can be parameterized by an analytical physical
model (e.g. Ward), weight parameters of data-driven Bidirectional Reflectance Distribution
Functions (BRDFs, Matusik et al., 20032) or additive mixing of basis images representing
canonical modes (Griffin, 1999; Zhang et al., 2016). As such, material matching tasks
require predefined models for each material or sets of basis (BRDF) samples or (canonical
mode) images to represent a wide range of materials. These methods are suitable for testing
a wide range of materials, but not for all materials. For example, varying 3D textures
(based on Bidirectional Texture Functions, BTFs) systematically and fluently is technically
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extremely hard. Moreover, there is no method yet to vary 3D textures in a tractable interface
such that all materials are covered. Therefore, material matching is not suited to study the
wide variety of material attributes found in paintings as we aim to do here.

A second method, similarity ratings, relies on systematic variations of the stimulus set.
Pellacini et al. (2000) asked participants to rate the apparent difference in gloss between
pairs of images, without defining gloss. They then used multi-dimensional scaling to infer
the dimensionality of gloss. Often, the similarity is not specified to the observer and can
comprise of any combination of subjective criteria. Radonji¢ et al. (2015) asked partici-
pants to judge which of two test patches rendered under varying illuminations was more
similar to a third patch under a fixed illumination, to investigate the relative contribution
of illumination on color-constancy. The fact that comparisons are made between pairs or
triplets implies that a very large number of trials (i.e. quadratically increasing with sample
size for pairs) is needed. For the large number of materials that we aim to study this method
is thus not feasible.

Last, a popular method relies on attribute scaling. In this method, a participant ei-
ther rates single images explicitly (e.g. how glossy is this material?) or makes implicit
forced-choice pairwise comparisons (e.g. which of these two images is glossier?). How-
ever, making comparisons inflates the trial number, so we decided to choose attribute ratings
for single images to study materials depicted within paintings. This raises a straightforward
question: which attribute names should be chosen that most completely covers the percep-
tion of the wide variety of materials present in paintings?

While a large variety of attributes has been investigated previously in perception litera-
ture, the majority of these attributes are studied in isolation, such as glossiness (Chadwick
and Kentridge, 2015; Ferwerda et al., 2001; Kim et al., 2012; Marlow and Anderson, 2013;
Marlow et al., 2012; Wiebel et al., 2015; Wijntjes and Pont, 2010), translucency (Fleming
and Biilthoff, 2005; Motoyoshi, 2010; Xiao et al., 2014) or transparency (Fleming et al.,
2011; Motoyoshi, 2010; Nakayama et al., 1990). These studies often investigate how the
perception of attributes are affected by various distal cues such as shape (Fleming et al.,
2004; Marlow and Anderson, 2015) and light (Adams et al., 2004; Fleming et al., 2003)
or proximal (image structure) cues (Marlow and Anderson, 2013; Motoyoshi et al., 2007;
Sharan et al., 2008).

Perceptual attributes are also studied in computer science, albeit with different motiva-
tions. Since attributes — such as gloss, translucency, and roughness — seem to be intuitive,
perceptual parameters (i.e., attributes) are often preferred over physical parameters for ren-
dering interfaces. To develop intuitive interfaces Serrano et al. (2018) collected attribute
ratings for fourteen material attributes, also including high-level class descriptors such as
plastic-like, fabric-like , and metallic-like. They mapped these perceptual attributes to an
underlying PCA-based representation of BRDFs (i.e. physical parameters) and showed that
their functionals were good predictors of the perceived material attributes.

Aside from perception and graphics, industrial design also makes use of quantitative
attribute descriptions of materials. Designers use attributes to investigate and design user
experiences (Karana et al., 2009). Interestingly, these three disciplines use partially overlap-
ping but also distinct vocabularies to describe attributes. In computer science (e.g., Matusik
et al., 2003b; Serrano et al., 2018) a large portion of attributes refer to material classes, such
as metallic-like, plastic-like, ceramic-like, while perception and design studies often focus
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more on sensorial qualities like fragility, hardness, and elasticity. The material classes in
our study were based on human annotations. The attributes we selected for our study are
mostly based on the perception and design studies. We arrived at a set of 15 materials and
10 attributes, the details of which will be explained in the methods section.

In this paper, we studied perceived material classes and how they vary in perceived
material attributes for a large set of paintings. We first present our methods relatively ex-
tensively, as this partly consisted of collecting the painting images. Furthermore, we detail
how we collected a large set of annotated segmentations of paintings via online experi-
ments. Then we present the results, first addressing the subjects’ consistency, as validation
of our method, followed by a detailed analysis of the collected material judgments.

2.2. METHODS

Our stimulus collection serves a broader goal than the study reported here. The collection
and annotation of artworks is part of ongoing research that will be comprehensively pub-
lished at a later stage. In the current study, we perform a perceptual experiment in which
we use a subset of the artworks and annotations we collected. We nevertheless report all
the details on the collection of data for sake completeness

In the following paragraphs, we detail our artwork annotation pipeline. This is followed
by the perception experiment, in which participants judged material attributes for various
material classes.

2.2.1. ETHICS

The study conformed to the declaration of Helsinki and was approved by the ethical review
committee of the Technical University of Delft. All data was collected anonymously.

2.2.2. STIMULUS COLLECTION
In the context of a project where we are creating a database of depicted materials and their
properties, we collected material segments from paintings. As this process was not part of
the current studies’ scope, we report it in the supplementary material. Below we report a
summary.

We created a list of materials, based on the previous research mentioned in the introduc-
tion, plus observations of the paintings and our desire to cover as many materials in those
paintings as possible. The list contains 15 materials as can be seen in Table 2.1:

animal ceramic fabric*
florat food gem
glass*  ground  liquidf
metal* paper*  skin
sky stone*  wood

Table 2.1: The 15 materials used in this study. Items marked with * are in also in the Flickr Material Database
(FMD, Sharan et al., 2013; Sharan et al., 2009). The two items marked with { are also present in the FMD but
with a more narrow category, namely foliage and water instead of flora and liquid respectively.

The material list has six items in common with the Flickr Material Database (FMD,
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Sharan et al., 2013; Sharan et al., 2009). These common items have been indicated above
with an asterisk (*). Additionally, two materials from the FMD, foliage and water, were
incorporated within our list as part of our broader labels flora and liquids — indicated with a
1. These eight materials were also used by Fleming et al. (2013) with the original names as
defined in the FMD. The remaining seven materials were included for a variety of reasons.
Animal and food are two instances of materials that we included as an overarching concept,
encompassing many different materials such as fruits, vegetables, and bread for food, and
materials such as fur, claws, feathers, and scales for animal. We included gem to contain
items such as pearls and precious stones. Ground and Sky were included because they often
cover large portions of the painting’s surface. Note that 1) we defined ground as things such
as dirt and gravel, without grasses or shrubbery, since those should be identified as flora and
2) we counted clouds as belonging to the sky. Lastly, we included (human) skin, instead of
an overarching human concept such as is done with animal and food. We made this decision
because skin is a very interesting material in its own right (sometimes even referred to as
the “holy grail” of rendering) both from a classic perceptual point of view (Matts et al.,
2007; Stephen et al., 2011) as well as from a computer science perspective (Igarashi et al.,
2007; Jensen et al., 2001) and an art-historical point of view (Lehmann, 2008).

ANNOTATION PIPELINE

In Bell et al. (2013b) OpenSurfaces was published, a database with annotated and seg-
mented materials. This database is a public resource and is available at
http://opensurfaces.cs.cornell.edu/. Bell et al. (2013b) created this database to fill the need
within computer graphics to accurately model materials within context. Besides the database,
they made their annotation pipeline, i.e. their process of collecting data, open-source. We
have adapted their annotation pipeline to fit our purposes for the collection of material seg-
mentations and annotations.

COLLECTING STIMULI

The collection of stimuli was executed in multiple steps. Here we provide a summary of
each step. Each step is discussed in-depth within the supplementary materials. Step 1,
collecting paintings: we collected digital images and the associated meta-data for paintings
from 7 online museum galleries. Step 2, collecting materials: we used Amazon Mechani-
cal Turk (AMT) to measure inferences of what materials were depicted within the painting.
Participants had to indicate which paintings contained a requested material. For each paint-
ing, we collected at least 5 responses for each material and required an agreement of 80%
to consider a painting to contain the material. Step 3, segment collection: participants seg-
mented materials from paintings. In each task, the participant would see a painting and be
requested to segment one instance of a specific material that was indicated to be present
within the painting in step 2. Step 4, quality check: the quality of the created segments
was checked by a minimum of 5 participants. Step S, material check: It is possible that a
participant wrongfully segmented wood, when tasked with segmenting metal, therefore in
this step we asked participants to indicate what they perceived the material of the segment
to be. Step 6, manual selection: in the end, we manually selected the 90 best segments per
material.
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2.2.3. PERCEPTUAL EXPERIMENT

Using the selected segments discussed above, we had a total of 198 AMT participants rate
10 perceptual attributes for each of these segments. The perceptual attributes are listed be-
low. All participants were located within the USA, according to AMT and each participant
had previously completed at least 1000 tasks on the AMT platform of which at least 95%
had been accepted by the creators of those tasks.

ATTRIBUTES AND IMAGE STATISTICS

We created a list of ten perceptual material attributes. Our attribute list has five items in
common with Fleming et al. (2013), i.e., those indicated with an asterisk. When appli-
cable we have copied the original attribute definitions and we have created our attribute
definitions to be similar to the other attributes used in Fleming et al. (2013). Additionally,
we split colorful into multicolored and vivid. We expected colorful might be difficult for
naive participants, since it could be interpreted as “many, low-intensity colors” or “a single,
very intense color” for multicolored and vividness respectively. Additionally, we included
translucent to the existing transparent attribute, because we found that some participants
were aware of the optically defined difference between these two, while some were not.
Altogether this resulted in the following list and definitions:

Bendable: How bendable is the material? Low values indicate that the material is
highly rigid and could not easily be bend; high values indicate that a small force
would be required to bend the material.

* cold*: To what extent would you expect the surface to feel cold to the touch? Low

values indicate that the material would typically feel warm or body temperature; high

values indicate that the material would feel cold to the touch.

fragile*: How fragile or easy to break is the material? Low values indicate that the

material is highly resistant and could not easily be broken; high values indicate that

a small amount of force would be required to break, tear, or crumble the material.

* glossy*: How glossy or shiny does the material appear to you? Low values indicate
a matte, dull appearance; high values indicate a shiny, reflective appearance.

* Hairy: If you were to reach out and touch the material, how hairy would it feel? Low
values indicate that the surface would feel hairless; high values indicate that it would
feel hairy.

* hard*: If you were to reach out and touch the material, how hard or soft would it

feel? How much force would be required to change the shape of the material? Low

values indicate that the surface would feel soft; high values indicate that it would feel
hard.

Multicolored: How multi-colored does the material appear to you? Low values indi-

cate a monochrome (single-colored) appearance; high values indicate many colors.

rough*: If you were to reach out and touch the material, how rough would it feel?

Low values indicate that the surface would feel smooth; high values indicate that it

would feel rough.

* transparent/translucent: To what extent does the material appear to transmit light?

Low values indicate an opaque appearance; high values indicate the material allows

a lot of light to pass through it.
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* vivid: How vivid does the material appear to you? Low values indicate a dull, grayish
appearance; high values indicate a strong vivid color.

Next, we also defined and calculated 4 simple, image histogram statistics for each of
the material segments.

e The contrast: Defined as the Michelson contrast: contrast = % , Where 1,4
and [,;,;;, are taken as the 95th and 5th percentile of the luminance distribution of the
material segment (Michelson, 1891).

* Skewness: The skewness of the luminance distribution of the material segment.

¢ Colorful: The colorfulness, measured as the ratio of voxels filled in three-dimensional
RGB color space to the total number of voxels, where the RGB color space was
rescaled to 0 to 15, as opposed to the conventional O to 255, for each of the material
segments.

* Mean luminance: the mean luminance of the image segment.

STIMULI

From the 90 segments per material — as discussed above — we randomly selected 30 seg-
ments, for each of the 15 materials, making a total of 450 stimuli. We chose to include
this randomization to reduce the chance of experimenter bias, considering we originally
selected the 90 segments per material. We subdivided these 450 segments into 5 sets of 90,
where each set contained 6 segments per material. In other words, each set had 6 segments
of wood, 6 segments of metal, etc. These sets were used in experimental blocks. We chose
to partition the data into these 5 sets, to reduce the number of trials per participant. With-
out partitioning the data into these 5 sets, every participant would have needed to complete
(450 stimuli X 3 repetitions=) 1350 trials, which we consider too many for web-based ex-
periments. With these 5 sets, participants only need to complete 270 trials. The specific
choice of 5 sets, over for example 9 sets, is arbitrary. Splitting the experiments into these
sets implies that we calculated inter-rater reliability within each set.

We presented the segments in a section of the original painting. We created a square
context box around the segment, which is, in essence, a bounding box around the segment
with margin. The context box size was calculated as the maximum of the width or height
of the segment, multiplied by 1.25. We took the maximum to ensure the context box is
a perfect square. In some cases, this meant that the context box boundaries exceeded the
dimensions of the original painting. To keep the aspect ratio consistent, we included this
overflow as part of the segment and colored the overflow with the average of the color of
the painting part within the bounding box. A few examples can be seen in Fig. 2.1.

PROCEDURE

Each of the 5 sets of images was rated on each of the 10 attributes, making a total of
50 set/attribute combinations. Each of 50 combinations would be rated by 10 different
participants. Each participant would only see one set of images and rate this set on one
attribute per task. Participants could choose how many of these combinations they would
rate. This means that a single participant could, in theory, do each of the 50 experimental
blocks once and that the total number of participants should be between 10 (i.e. each
participant did all 50 set/attribute combinations) and 500 (i.e. each participant did only 1
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task). In practice, 198 participants performed the task on average 2.5 times each, with 110
participants only performing one task. The full distribution is presented in Fig. 2.2.

Each task contained three repetitions of the 90 images, making a total of 270 trials. We
used a Fisher-Yates Shuffle to create three shuffled permutations of the set and concate-
nated these three permutations in each task. This allows us to measure the intra-observer
correlation (with 3 repetitions) next to the inter-observer correlations (with 10 repetitions)

TASK

Participants on the AMT platform were capable of choosing and selecting what tasks they
wanted to work on. Once participants had selected our tasks, they would first be shown a
text-based tutorial. After a 10 second interval, participants were able to start the task. First,
the tasks displayed the main question in bold: “How [attribute] is this material?”’, followed
by our definition of that attribute. To give participants an impression of the range of stimuli
we showed them a random selection of one-third of the stimuli, on which they were told to
base their ratings. They could click the start button to start the first trial.

In each trial, the participants were shown the same question and definition as mentioned
above, as well as one segment at a time, such as shown in Fig. 2.3. Upon the start of a trial,
or when a participant clicked the show outline button, the outline would be indicated with
a flashing red line around the edges of the segment for 1 second. On the right of the image
was a vertical slider, ranging from 0 at the bottom with the label “not [attribute]” to 100 at
the top with the label “[attribute]”. On the right of the slider was a small box indicating the
current value selected. Participants could move the slider using the mouse. On a left-click
the participants could progress to the next trial. A button allowed the participant to go to
the previous trial.

EXCLUSION CRITERIA

As discussed above in the AMT section, we are capable of adding AMT qualifications, in
an effort to improve data quality. First, we added three default qualifications, namely 1) that
each participant needs to have completed at 1000 tasks and 2) that each participant needed
to have at least 95% of those tasks approved and 3) that the participants were located within
the United States of America.

Furthermore, we noticed in pilot experiments that some observers seemed to respond
both fast and random. As their actual response cannot be an exclusion criterion (we cannot
know what the perceive), we deemed it wise to use response time as selection criterion:
if observers on average responded below 1 second, their data were excluded for further
analysis.

ANALYSIS

For the analysis of the data, we used several statistical methods and techniques. We will
look into the intra- and interobserver correlations. Furthermore, we use Principal Compo-
nent Analysis (PCA) on the perceptual data. This technique applies an orthogonal trans-
formation to data to produce a new set of uncorrelated variables, i.e. components. These
components are ordered on the explained variance within the original data, where the first
component explains the largest portion of the variance within the original data. Last, we
also make use of a Procrustes analysis, which tries to find the best fit for a set unto a target
set by minimizing the linear distance between points in the original set and the target set.



2.2. METHODS 23

[§

Figure 2.1: Examples of four stimuli. For the top two, the context size exceeds the dimensions of the original
painting, and the overflow has been colored with the average RGB color value of the painting contained within
the bounding box. For the bottom two, the context size does not exceed the original painting dimensions and
is thus only a section of the painting without any overflow. The red outlines indicate the segments. From top-
left to bottom-right: detail of David with the Head of Goliath (c. 1645) by Guido Cagnacci; The Explorer A.E.
Nordenskiold (1886) by Georg von Rosen; detail of Polyptych with Saint James Major, Madonna and Child, and
Saints (1490) by Bartolomeo Vivarinil; and detail of Mlle Charlotte Berthier (1883) by Auguste Renoir.
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average number of tasks per participants

100 4

80 A

60 1

401

20 A

1 2 3 456 7 8 91011121314151617 1819 2021 22

Figure 2.2: Distribution of completed rating tasks per participants with number of tasks on the x-axis and number
of participants on the y-axis.

2.3. RESULTS

2.3.1. DATA QUALITY; INTRA- AND INTER- CORRELATIONS
First, we analyzed the internal consistency by calculating the intra- and interobserver corre-
lations. Each task contained 3 repetitions of each stimulus and was judged by 10 different
participants for each material attribute. The average intra-observer correlation is 0.76 (std =
.08) , which is higher than the average of 0.48 (std = .16) for the inter-observer correlation
We plotted the correlations in Fig. 2.4, where each point corresponds to one of the
50 set/attribute combinations, with the intra-observer correlation as a function of the inter-
observer correlation. Note that each of these 50 combinations was rated by a different group
of 10 participants. We fitted an ellipse around the 5 points which belong to the same at-
tribute. The distribution along the intra-observer axis shows that participants are, in general,
consistent and that there is very little difference between the material attributes. The dis-
tribution of the inter-observer correlations shows a larger spread, implying participants do
not always agree amongst each other. The inverse, the small spread on the averaged intra-
observer correlations indicate the high agreement rate within participants. Additionally, the
material attributes cluster together, but the clusters are spread out over the inter-observer
correlation dimension implying that the magnitude of (dis-)agreement between participants
is material attribute dependent.

2.3.2. MATERIAL JUDGMENTS

We collected a total of 135,000 human judgments about how much a specific stimulus
depicted a specific attribute. We have plotted the distributions of these ratings per attribute
in Fig. 2.5. At a glance, it becomes clear that the distributions are generally broad and flat,
except for some attributes at 0. The stimuli cover the whole range for each attribute, and
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Instructions.

How vivid is this material?

Definition: How vividly colored does the material appear to you? Low values indicate a dull, grayish
appearance; high values indicate a strong vivid color.

Trial 2 out of 270 Show outlines | Back

Base your judgement only on the material in the red outline.

Vivid

Value

Not vivid

Figure 2.3: Example of the perceptual judgment task. At the top, the question and definition are repeated, which
participants would have seen in the instructions. The task shows one segment at a time, as part of the original
painting. In the live version, the red outline appears flashing at around 10hz at the onset of each trial (or when the
participant pressed the corresponding button) to indicate the segment boundaries and disappears after a second.
The slider can be moved by moving the mouse up and down, while a left mouse-click progresses the experiment
to the next trial. The painting is a section of The Annunciation (c.1660) by Godfried Schalcken
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Intra vs inter-observer correlations
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Figure 2.4: Each of the 50 set/attribute combinations expressed in a 2D intra/inter-observer correlational space.
The data are color-coded to indicate the material attribute that was judged. Ellipses (1 SD) are fitted for each
material attribute based on the 5 experimental blocks relating to that attribute. The red lines represent the one-
sided 5% alpha significance level, with 88 and 8 degrees of freedom for intra and inter-observer correlations
respectively.

when an attribute is present it is more or less equally likely to be present in any quantity.

We visualized the averaged distributions of material attributes for each material in
Fig. 2.6. Here, we found some remarkable similarities and those reported by Fleming et
al. (2013) and therefore we reproduced these in Fig. 2.7. To make an accurate comparison,
it should be noted again that our study did not use the same set of attributes as did Flem-
ing et al. (2013). Our signature included hairy and bendable, whilst excluding naturalness
and prettiness. Furthermore, we split colorfulness into vividness and multicoloredness and
included translucency into transparency. What we observe is that the distributions seem to
follow the same pattern for the materials that are in common between our study and Flem-
ing et al. (2013). To quantify this relationship, we performed a non-parametric Wilcoxon
signed-rank test in which we paired the mean values for the materials and attributes that the
current study has in common with the study of Fleming et al. (2013). Note that we equate
Fleming’s transparency with our ‘ transparent/translucent’ and Fleming’s colorfulness with
our vivid and multicolored. The test showed that there was no significant difference be-
tween the attribute ratings for photographs and paintings Z(56)=790, p = .94)

2.3.3. MATERIAL ATTRIBUTE CORRELATIONS

Correlations likely exist between the material attributes: a change in one attribute could
lead to a predictable change in other attributes. We quantify these relations by calculating
the correlations using Bonferroni adjusted alpha levels of .001, .0001, and .00001 (.05/45,
.005/45 and .005/45 respectively). These correlations have been visualized in Fig. 2.8.
The highest correlations are found between roughness and hardness (r= .54, p<.0001), and
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Distribution of ratings per attribute

transparent &
glossy translucent vivid multicolored rough

2000 -4

frequency
frequency
frequency

1000 -

frequency
frequency

ratings ratings ratings ratings . ratings

hard cold fragile hairy bendable

2000 4

1000

0 50 100 0 50 100 0 50 100 0 Sb 100 50 160
ratings ratings ratings ratings ratings

frequency
frequency
frequency
frequency
frequency

o

Figure 2.5: Distribution of all the judgments per attribute for all materials. The colors are in reference to the
colors used by Fleming et al. (2013).
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Figure 2.6: The averaged ratings for each attribute per material
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Figure 2.7: A recreation of the average rating for the attributes and materials from Fleming et al. (2013), for the
materials and attributes that are shared between our study and Flemings study. Note that in our study, we split
up colorfulness into vivid and multicoloredness. Figure adapted with permission; original copyright belongs to
ARVO.

between vividness and multicoloredness (r= .5, p<.0001). The lowest correlation is found
between hardness and bendableness (r= -.6, p<.0001). The majority — 33 out of 45 — of the
attributes pairs only displayed a small (i.e. r < .3) correlation. This implies that while there
is overlap, most attributes cover a distinct area of a high-level material-feature space.

2.3.4. PCA

To analyze the relationship between material attributes and to see if material attributes can
predict material class identity, we applied a Principal Component Analysis (PCA) to un-
cover the underlying multi-dimensional attribute feature space. This technique applies an
orthogonal transformation to remap the original data set in such a way that the new di-
mensions (components) are linearly uncorrelated, and ordered by the quantity of variance,
where the first dimension explains the most variability within the original dataset. We have
visualized the first two components in Fig. 2.9, which explain 52% of the variability within
the data. Adding a third, fourth, or fifth component captures 68%, 76% and 83% of the
variability respectively. These numbers are roughly comparable to the two numbers Flem-
ing et al. (2013) reports: 62% for the first two PCs and 93% for the first five PCs. However,
it should be noted that our measured dimensions are not identical (see Attributes and image
statistics in the method section). We have plotted a full scree plot in Fig. 2.10 and added
the factor loadings for the first 4 components in Table 2.2.

We also ran a PCA for each material, i.e. with only the 30 datapoints belonging to that
specific material, as opposed to all 450 datapoints for all materials. We visualized these for
paper, skin, flora, and fabric in Fig. 2.11. The remaining material plots are included in the
supplementary materials.

We have included all the factor loadings for all the PCAs (1x global and 15x mate-
rial specific) within the supplementary materials. Next, we applied a Procrustes analysis
to map each material-specific PCA onto the associated data-points within the global PCA
space, i.e. the 30 segments for one material-specific PCA were mapped unto the 30 corre-
sponding segments within the global PCA. Here, the residual error quantifies how much a
material-specific PCA deviates from the global PCA. Or, inversely, how similar the variance
within one material is in comparison to the global variance found between all materials. We
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correlations between perceptual attributes
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Figure 2.8: Correlation matrix heatmap, we have masked the values along the diagonal, which would always
simply be 1 and the symmetrically identical values. * indicates p < .001, ** indicates p < .0001 and *** indicates
p <.00001.
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Figure 2.9: A visualization of the first two PCA dimensions. The color of the points relates to material class
identity. The factor loadings of the original dimensions are plotted as red vectors. Lastly, we fitted ellipsoids (sd =
1) for each material class. Note that the PCA is not fed any class data, the clustering of material classes observed
is thus purely based on the perceptual data.
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Figure 2.10: Scree plot for the PCA visualized in Fig. 2.9
Attribute PC1 PC2 PC3 PC4
multicolored -0.126 0.221 0.070 0.511
transparent / translucent ~ —0.080 0.693  —0.200 0.019
glossy 0.090 0.250 0.471 0.157
hairy -0.267 -0.325 —-0.063 0.583
rough 0.221 —-0.253 -0.078 0.023
hard 0.621 -0.227 0.305 0.152
bendable -0.562 —0.153 0.171 -0.341
fragile -0.116 0.100 0.757 -0.167
cold 0.326 0.368 —-0.093 —-0.088
vivid -0.167 0.138 0.141 0.445

Table 2.2: Factor loadings for the first 4 principal components.

applied the Procrustes analysis on the first two components, as opposed to all ten. The rea-
son for this is simple: a PCA works by applying an optimized transformation on a data set,
while the Procrustes analysis tries to find an optimized transformation to map one dataset
onto another. Consider that the material-specific PCA dataset is a subset of the global PCA
dataset. This means the raw data for the PCA’s are the same but have undergone different
transformations within a 10-dimensional space.

Thus, applying a 10-D Procrustes analysis would perfectly map the material-specific
subset onto the global PCA leaving a residual of exactly 0. Instead, we take the two pri-
mary components which explain the major part of the variability. Note that the loadings of
the first two PCA dimensions can change from the global to the material-specific models
and that materials with a larger variability can have a larger influence on the global vari-
ability relative to materials with less variability. The residuals of the Procrustes analysis are
listed in Table 2.3. We also used randomly generated data points drawn from a uniform dis-
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Figure 2.11: Four visualizations of the first two primary components for the material-specific PCA for flora,
fabric, paper, and skin. Each PCA was run with only the 30 stimuli per material. The red vectors indicate the
factor loadings of each attribute. We plotted the actual stimuli within the PCA space. The blue lines connect the
stimuli to their actual position within the space when the stimuli would otherwise overlap. The ellipse is fitted
around the points (1 sd).
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tribution and mapped these to each of the material subsets within the global PCA using the
Procrustes analysis. We repeated these 10,000 times, for each material, to find an averaged
residual error of 0.9508 which functions as a comparison. The results are visualized and
ordered in table 3 2 and show that the residuals range from 0.14 to 0.74 and are all smaller
than for the random set. This shows that intra-material variations are described relatively
well by the variation in the global PCA space, but for some materials better than others.

Material Residual

fabric 0.14
metal 0.19
stone 0.22
ground 0.23
glass 0.25
food 0.28
paper 0.36
wood 0.36
liquid 0.37
ceramic 0.37
flora 0.5

animal 0.46
sky 0.53
gem 0.72
skin 0.74
Random  0.95

Table 2.3: Table of residuals of the Procrustes analysis. Lower residuals indicate more generic materials.

2.3.5. IMAGE STATISTICS

As detailed in the Methods section we calculated simple histogram-based image statistics
for each image stimuli. We correlated the material attributes with these image statistics,
both averaged over materials and per material. We adjusted the alpha levels using Bonfer-
roni correction to .0013, .00013 and .000013 (.05, .005, and .0005 divided by 40 respec-
tively). Over all materials generalized, we found some correlations. Colorful correlated
with multicolored (r = .44, p<.00013) and with vivid (r= .42, p<.00013), suggesting our
color metric indeed captures multicoloredness to a certain degree. Furthermore, mean lu-
minance correlated with transparent/translucent (r= .36, p<.00013) and with hardness (r=
-.31, p<.00013). These correlations and the remaining, smaller correlations have been vi-
sualized in Fig. 2.12. The significant correlations per material have been listed in Table 2.4.
Here the colorful-multicolored and colorful-vivid relationships are often found to be sig-
nificant. In addition, the skewness of the luminance distribution and mean luminance are
found to be related to specific attributes in a material-dependent manner.
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Correlations between perceptual attributes and image features

o8 -- .

0.083 0.039

multicolored
transparent / translucent
0.04

glossy

hairy

rough
-0.00
hard

bendable

fragile

contrast skewness colorful mean luminance

Figure 2.12: Correlation between the perceived perceptual attributes and image statistics (i.e. image statistics). *
indicates p < .0013, ** indicates p < .00013 and *** indicates p <.000013
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Material Perceptual Attribute image Statistic r sig
ceramic  multicolored colorful 0.75  *#*
glass vivid mean luminance 0.6 *
gem multicolored colorful 0.75  *¥*
gem bendable Skewness of the luminance distribution —0.81  ***
gem bendable mean luminance 0.83  F¥*
gem fragile Skewness of the luminance distribution = —0.73 ~ *%%*
gem fragile mean luminance 0.72 Rk
sky vivid colorful 0.69  **
fabric transparent / translucent ~ Skewness of the luminance distribution —0.58 *
wood multicolored colorful 0.73 k¥
wood vivid colorful 0.63

wood multicolored mean luminance 0.68

metal multicolored colorful 0.57
ground multicolored colorful 0.68  **
ground vivid colorful 0.58 *

Table 2.4: Significant correlations between perceived material attributes and image statistics. * indicates p <
.0013, ** indicates p < .00013 and *** indicates p < .000013

2.4. DISCUSSION

In this study, we collected human perceptual judgments for 10 material attributes for paint-
ings of 15 material classes. The consistency within participants indicates that participants
understand and are capable of performing the task, which shows that our experimental
setup allows for measuring the perception of material attributes in paintings via AMT and
supports the validity of the data, while the inconsistency between participants shows that
individual differences exist in how participants interpret the depictions. Additionally, we
found that the material signatures and the material feature PCA spaces show many similar-
ities to those of Fleming et al. (2013) based on material photographs, as well as of Zhang
et al. (2019) based on mixtures of canonical reflectance modes, which implies that the per-
ception of material properties functions independently of the medium of depiction and the
structure found represents generic key components underlying material perception. Lastly,
we looked at the residuals that result from mapping material-specific PCA data onto the
global material PCA and found that the variation within materials is partially explained by
the variation between materials, but that this varies depending on the material. Below we
will discuss these findings in more detail.

In the task, participants were shown a square bounding box and asked to use only the
segment, outlined in red (see Fig. 2.3) when they make their judgments. Participants may
make their judgments based on the object category inferred from this red outline. However,
it should be noted that for the vast majority of segments, the materials are partially occluded
by other materials or objects and tend not to be informative of the object identity, see for
example those in Fig. 2.1 and Fig. 2.3. Besides being a measure of the internal validity, the
high consistency displayed by participants shows that the perception of material attributes
is distinct and that participants have a clear perception of these attributes. Despite this clear
perception, disagreement between participants does exist. The magnitude of this disagree-




36 2. PAINTERLY DEPICTION OF MATERIAL PROPERTIES

ment — which ranged from r=.01 to r=.87 — appears to depend on the perceptual attributes.
Roughness induced the highest level of idiosyncrasy, while hairiness is the most consistent
between — and also within — participants. The overall pattern of (in)consistencies between
participants for the perceptual attributes in our results appears to be very similar to those
reported by Fleming et al. (2013), however, it is interesting to see that roughness is one
of the most consistent in their results, while in our study it is the least consistent between
participants. It is unclear why these results differ. Possibly, roughness is too multidimen-
sional to be measured in one scalar measure; even for a single type of surface structure it
was found that its roughness perception was multidimensional (Padilla et al., 2008).

In the experiment conducted by Fleming et al. (2013) they found that materials tend
to display statistical regularities, such as glass tending to look glossy, transparent, smooth,
hard and so on, while water also tends to look glossy and transparent, but not at all hard.
They postulated that these distinctive features can be interpreted as a signature of a material
class. In this study, we found that the material signatures for painted materials are also
distinct and that some materials appear to be more similar to each other than others. For
example, wood and stone have a very similar material signature, and glass and liquid are al-
most identical except that glass is — obviously — harder and more fragile. Also, many of the
between-attribute correlations seem intuitive, such as the negative correlation between hard-
ness and bendableness, and the negative correlation between hairy and cold. Furthermore,
we find some remarkable similarities with the material signatures reported by Fleming et al.
(2013), which shows that the perception of photographed and painted materials results in
similar associations, which suggests a generic underlying mechanism.

When looking at the first two components of the PCA we find that materials tend to
cluster together, but that clusters for different materials can overlap. This implies that the
perceptual judgments are material specific in terms of perceptual attributes, but that extract-
ing a specific material identity based solely on the perceptual attributes measured in this
study would likely be prone to errors. Possibly by adding a more extensive list of perceptual
attributes, a predictor model could predict the material class identity. Furthermore, when
looking at the PCA visualization, it is again interesting to note the similarity between the
data presented here and the PCA dimensions reported by Fleming et al. (2013). This implies
that material perception functions independently of the medium of depiction. One could ar-
gue that this can be explained by semantic knowledge: material classification is extremely
fast, and after classification we gain access to semantic information, which in turn could
have a top-down influence on the perception of perceptual attributes (Sharan et al., 2014;
Wiebel et al., 2013; Xiao et al., 2011). Then, the estimation and perception of material
properties could be argued to be driven by a top-down influence from material recognition.
This top-down influence would then also be independent of the medium. To test this idea,
Fleming et al. (2013) conducted a second experiment, where participants rated the material
attributes of semantic stimuli (i.e., only material class names). They found that material
property ratings for the semantic-only represented material classes were very close to the
cluster centers for photographic representations. It would be naive to claim that semantic
top-down influences can fully explain material perception since we are capable of making
judgments based on material properties within a material class (which fruit looks fresher?
which sweater looks softer?). It does, however, imply that our perception might be influ-
enced by semantic top-down influences when viewing materials. Furthermore, Zhang et
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al. (2019) had participants perform a material probing task on a canonical set of computer
rendered base images, where material perception could only rely on material reflectance
since there was no semantic information. They found a PCA space that is similar to our
PCA space and the one reported by Fleming et al. (2013). Thus, while semantic informa-
tion might explain a portion of material perception, it does not explain the perception of
intra-class variations. Thus, while semantic information might explain a portion of material
perception, it does not explain the perception of intra-class variations. Furthermore, since
the global PCA structure cannot entirely be explained by semantic information, it is im-
plied that a portion of the global PCA structure (i.e. the portion not explained by semantic
information) is independent of the medium of depiction

The PCA space visualizes the majority of the perceptual variability of the materials and
in doing so, shows how materials are — and importantly, how they are not — related. We
were interested in seeing how similar the variability within one material is in comparison
to the variability found between all materials. To do so, we took the variability within one
material and analyzed how well this mapped unto the variability between all materials. To
quantify, we performed the Procrustes analysis. Here, the lower the residual error is for
a material, the closer the variability within the material resembles the variability between
materials. The first, intuitive result is that different materials vary differently across the
perceptual attributes we measured. This effect could be highly dependent on the stimulus
set. However, if we consider the previous results, namely that different stimulus sets have
remarkably similar PCA spaces, even with different methods of depictions (e.g. paintings
in our study, photographs in Fleming et al. (2013) and reflectance modes mixtures in Zhang
et al. (2019)) and that the material signatures are very similar for photographic and painted
images (see Fig. 2.9 and Fig. 2.10). Furthermore, the finding that different materials varied
differently across perceptual attributes, further suggests that the similarities we find are
not just a semantic effect. If it was merely a semantic effect, it would be more likely that
the Procrustes residuals would show little variability between materials. Looking at specific
materials, the residuals showed that fabric, metal, and stone are relatively generic materials:
the variability within these closely resembled the variability between all materials. Gem and
skin were found to be much more distinctive materials, as the variability did not resemble
the global variability. In summary, the residuals of the Procrustes showed that different
materials varied differently across perceptual attributes. Some intra-material variations are
quite generic, i.e. they closely resembled the global material PCA space. However, other
materials are more unique and resembled the global variability.

It has previously been proposed that variations in the perception of specific material
attributes could be explained by image statistics (Baumgartner and Gegenfurtner, 2016;
Motoyoshi et al., 2007, but this has also been debated (e.g. Kim and Anderson, 2009).
Considering the large amounts of data collected in our study, we decided to calculate sev-
eral simple, histogram-based image statistics, to see whether those could explain variations
of the perceptual attributes. It appeared that the small set of image statistics we used did
not correlate strongly with the perceptual attributes across all materials. This could per-
haps be expected, after finding that the Procrustes residuals varied across materials. We
did find some weak and moderate correlations, however, and the correlation we found be-
tween transparency/translucency and the mean luminance of the stimuli seems an interest-
ing finding. It has previously been argued that the average luminance is a poor predictor
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for transparency in natural images and that this is due to the luminance of an object being
strongly influenced by scene illumination and the objects spatial and directional properties,
shape, and context (Fleming and Biilthoff, 2005; Fleming et al., 201 1; Fleming et al., 2004;
Koenderink and van Doorn, 2001). When looking at the correlations per material, it is in-
teresting to note that the majority of the correlations, as well as the strongest, were all found
for gem. Perhaps, it is possible that this material simply shows stronger optical effects than
other materials.

As previously noted, the image database we used is different from existing image sets,
such as the FMD, because each image comes from a certain artist and a certain period.
Although the sample size for the perception experiment is relatively small with respect to
all paintings to our disposal, it does give us some idea of interesting future directions for
the study of art and perception. For example, we conducted a small pilot, not reported
here, where we found that gems are perceived as glossier for recent paintings relative to
older paintings. A typical art historical hypothesis would include the invention of oil paint
that supposedly increased the convincingness of materials. Yet, most of our paintings are
after this invention and the material rendering revolution that van Eyck caused in the 15th
century. But there can be many other reasons and possibly even patterns that have not yet
been identified in art history. With our continued work on creating the painting database of
material depictions we hope to further investigate these questions
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2.5. SUPPLEMENTARY MATERIALS

Here we include a short description of the Amazon Mechanical Turk platform. We follow
this by methodological details related to the gathering of the data that were not included in
the main text. Furthermore, we have added here the material-specific PCA visualizations
that were not included in the main paper. Next, we list the factor loadings of the two first
principal components of all the PCAs that we ran, for all material specific PCAs and the
global PCA in the bottom, which contained all materials.

AMAZON MECHANICAL TURK

For all data collection, we use the online labor marketplace Amazon Mechanical Turk
(AMT), colloquially referred to as MTurk. On this platform, people can sign up as workers,
or turkers, to perform micro-tasks for requesters. The platform has been popular for com-
panies that require simple human-intelligence tasks such as transcriptions. In recent years,
the MTurk platform has also seen increased use from the social sciences (Bohannon, 2016;
Peer et al., 2014) and computer sciences (Bell et al., 2013a, 2015; Papadopoulos et al.,
2017; Su et al., 2012).

Workers are free to choose what tasks to perform and have the option to stop at any
moment if they so desire. They are paid per task, where each task can last a few minutes
(the usual) up to multiple hours. The requester is given a chance to review the submitted
work and has the option to either accept or reject the work based on the quality. Workers are
not paid for any rejected work. For the experiments reported below we accepted all work as
it is clearly impossible to define quality in our case: there is no right or wrong perception.

Workers can be selected before the task. This can be achieved by using qualifications
that are based on demographic criteria such as geography, age, or reputational criteria such
as requiring that a worker has completed a minimum number of tasks with a certain per-
centage of acceptance. For example, it is common — as these are the default values on AMT
— to require that a worker has completed at least 1000 tasks, of which at least 95% percent
has been accepted. With these qualifications, workers can be restricted from starting tasks.

STEP 1: COLLECTING PAINTINGS

We downloaded 17936 images from the digitized open-access painting collections from
seven galleries. The galleries are listed in Table 2.5. Most of these images were collected
via web scraping the websites of these seven galleries. Web scraping was done with Python,
making use of the Beautifulsoup, Selenium, and Urllib modules. For the Rijksmuseum, we
used their API to directly download each image individually. For the National Gallery of
London, we used peer-to-peer downloading to download the collection. The URLSs for each
gallery have been supplied in the references.

For each image, we also obtained the original meta-data from the gallery, which con-
tains for example information about the title of the artwork, the artist, and an estimated
creation date.

Next, we filtered out 661 monochrome images using a linear regression on the 3D color
data keeping a total of 17275 paintings. We have not applied any color management or
color corrections techniques, nor do we have any information into what color management
the respective galleries applied.
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Table 2.5: Each gallery and the number of images we downloaded from their digitized open-access gallery.

Gallery Count Country
Rijksmuseum 4657 Netherlands
NationalMuseum 2924 Sweden
The Metropolitan 2729 USA

National Gallery of London 2402 United Kingdom
National Gallery of Art 2132 USA
Museo Nacional Del Prado 2032 Spain

Getty 399 USA

STEP 2: COLLECTING MATERIALS

To identify what materials are perceived to be depicted in the collected paintings 1571 AMT
participants completed a total of 36838 tasks. The majority (n=511) of participants only
completed the task once, while some participants completed a much larger number of tasks:
two participants completed more than 1000 tasks each and an additional 6 participants
completed over 500 tasks each. Each task paid 0.02 USD and presented participants with
40 paintings and a target material. An example of this can be seen in Fig. 2.13, where
the target material is fabric. Participants could scroll through the webpage to view all
the paintings. The target material would be one of the materials listed in the Materials
and Attributes section. Participants were instructed to use the mouse to click each painting
where they perceived the target material to be present. If a painting was clicked the painting
would gain an orange outline and a small textbox in the bottom right corner would change
from “no [material]” to “[material]”.

Before starting the task, participants would be presented with a short tutorial. In the
tutorial, the task was explained followed by a short description of the specific material
was given. At the end of the tutorial, participants had to complete a small number of test
trials. The number of test trials varied per material, between 3 to 5. In each test trial, the
participants were shown one painting at a time and had to click the correct button, indicating
whether the painting did or did not depict the requested material for that trial. Upon giving
a wrong answer, a participant was immediately given feedback and asked to redo the same
trial. Once all test trials were completed, the real task would commence. Once a tutorial
was completed for a specific material, the participant would not be shown the tutorial for
that material again

For each painting/material combination, we collected responses from at least 5 partici-
pants. If at 80% or more of these participants responded that a painting depicted a material,
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Instructions

2
Category: fabrics -

If you cannot tell, don't select the photo. Please do not guess. Don’t worry if you miss small things that are
hard to see.

Figure 2.13: Example of the material-collection web task. After a tutorial, participants would see this screen. The
yellow top bar shows the instructions in short, and the right-wards button opens a pop-up menu with additional
instructions when clicked. The target material is indicated semantically. Participants would use the mouse to
scroll through a total of 40 images. Once a painting was indicated (clicked) to contain the target material, the

white outline (as can be seen in the top-left painting) changed to orange (as in the other 3 visible painting) and the
label in the bottom right of the painting would change accordingly.
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we considered that painting to depict that material for the continuation of this project.

STEP 3: COLLECTING SEGMENTATIONS

In the next step, AMT participants would be tasked with segmenting the target material,
where the target material was one of the materials that is depicted in the painting, as in-
dicated in step 2. Participants were told to “find the largest area displaying [material]and
trace its outline as accurately as you can”, where [material] would be replaced by one of
the materials listed in the Materials and Attributes section. A screenshot of the task can be
seen in Fig. 2.14.

To make a segment, a participant could click anywhere on the presented painting, which
would create a point on the painting. Consecutively placed clicks would be connected with
a blue line, and a line would continuously be drawn between the last placed point and the
mouse. Once the outline of the chosen material instance was traced, the last point could
be connected to the first point by hitting the enter key, a right-mouse click, or by pressing
the Close button. Once closed, a participant could enter the adjust mode, either pressing
the Adjust button or the a key. In the adjust mode individual points could be moved using
click-and-drag. Additionally, participants could zoom in or out by scrolling, could move
the painting using the arrow keys, or undo and redo the last action using the buttons or by
pressing ctrl-z or ctrl-y respectively. Once participants were satisfied with a segment, they
could finish the task by pressing the submit button.

Initially, we placed no restrictions on which participants could perform the segmentation
task. However, after we collected around 1700 segments from a total of 52 participants, we
selected the five participants whom we judged to be the best, based on the observed quality
of the created segments. From this point onwards, only these five selected participants were
allowed to perform the task. This restriction increased the average number of points, i.e.
vertices in the polygonal segmentation by 62% from 37 to 65, indicating that the average
detail per segment increased. Additionally, the acceptance rate, i.e. the number of submitted
segments that passed the quality control in the next step, improved by 20% from 0.58 to
0.7. The five selected participants completed 283, 455, 777, 1235, and 3082 tasks. In total,
all participants together completed 7110 tasks, for 0.15 USD per task.

STEP 4: QUALITY CHECK
In the quality control check a total of 127 AMT participants performed 1349 tasks for
0.05 USD per task. In each task, a participant was shown 20 material segments, together
with the paintings the segments were from. This can be seen in Fig. 2.15. Participants
were asked to inspect each segment and click the painting if it fulfilled the requirements.
The requirements were 1) that each segment only contains one material and 2) that the
boundaries of the segment follow the outline of the depicted material. Examples were
provided. Comparable to the task in step 2, once the segment was clicked, it would get an
orange outline and a textbox in the bottom right would change from “multiple materials or
bad boundary” to “one material and tight boundary”.

A minimum of 5 different AMT participants would judge each segment. Next, we did
a quality check using the CUBAM algorithm, as described in (Bell et al., 2013a), which
was created by (Welinder et al., 2010). CUBAM is intended to improve the quality of
binary data by taking the (dis-)agreement between participants into account. The CUBAM
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ind the largest playing flora and its outli as you can. If the outlir ials, also add inner outlines. Draw one outline to complete the task.

#Draw (D) |+ Adjust (A) | @ Undo (CtrlZ) | © Redo (Ctr © Close (Right X Delete (Delete) = Reset Zoom (Esc)

Figure 2.14: Example of the online segmentation tasks. At the top, a short summary of the instructions is given.
Directly below is the menu, which also holds an option to view the instructions again. The remainder of the screen
is used to display the painting, which is here displayed zoomed in. In the middle, a flower can be seen, which
has been segmented, as indicated with a light-blue transparent layer. Once complete, a participant could press the
submit button in the top right.

algorithm resulted in a single quality score value. Segments with an adequate quality score
continued to the next step.

STEP 5: MATERIAL LABELING

In step 3 participants segmented specific materials. It is possible that instead of segmenting
the required material a participant segmented a different material. To counter this possibil-
ity, in this step we re-labeled each segment with a material name. 178 AMT participants
completed 749 of these labeling tasks, for 0.04 USD per task. In each task, 5 different
participants were shown one segment at a time and asked to select to best fitting label from
a list. The list contained the materials discussed in section Materials, as well as three addi-
tional options: “I can’t tell”, “More than one material” and “Not on list”. If there was an
agreement on at least 3 out of 5 answers, we assigned that label to the segment.

STEP 6: MANUAL SELECTION

After completing the previous steps, we had collected around 4500 material segments.
From these segments we selected 90 segmentations for each of the 15 material categories,
aiming to create the most diverse set possible for each material. These sets were then used
for the perceptual experiment.

FACTOR LOADINGS
The factor loadings for the first two principal components can be found in Table 2.6.
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Instructions: Click on the red shapes that contain a single material or texture. Reject shapes that are far from the material boundary Examples

Some example of materials: wood, steel, brick, ceramic, skin, wood.

If a shape contains some portion of another material or texture, reject it. For example, if the open space inside a mug handle is not removed
with a red line, do not select the shape.

Please click the “Examples” button for help and examples (top right).

L

multiple materials or bad boundary one material and tight boundary

AL

Figure 2.15: Example of a quality check task. At the top, a summary of the instructions is given, next to a button
to see good and bad examples. Segments are displayed next to the section of painting where they are originally
taken from, to show the material segment in context. AMT participants could click a pair to indicate the material
segmentation was correct, i.e. contained one material and possessed a tight boundary. Participants could scroll
down to see the rest of the segments. A submit button was below the last segments.

MATERIAL-SPECIFIC PCA VISUALIZATIONS

The material-specific PCA visualizations (i.e., Fig. 2.16, Fig. 2.17, and Fig. 2.18 ) for 11
out of 15 material categories. Note that the visualizations for fabrics, skin, flora, and paper
can be found in the main text.
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Table 2.6: A full list of the factor loadings for the first two principal components for each separate material, and
one for all the materials together at the bottom. Some header names are abbreviated due to space constraints: MC
is Multi-colored, TT is Transparent translucent, B is Bendable

Material MC TT glossy hairy rough hard B fragile cold vivid
flora PC1 | -40 .03 -.15 13 42 35 -29 -6 .05 -23
flora PC2 | .61 .11 .06 22 d6  -02 .05 -49  -03 54
paper PCl1 | -36 -.10 .08 -.15 22 45 -6l -32 .09 -31
paper PC2 | .76 -20 A2 -.09 17 26 -25 -17  -.07 41
glass PCI1 | -34 -.68 -.26 12 .01 -16 .13 =31 -21 -.39
glass pC2 | 72 .05 -.51 22 A5 -28 .20 02 -18 -03
wood PC1 | 48 .35 .20 .08 -39 -51 0 -10  -.11 41
wood PC2 | 25 21 -.38 .01 39 -33 52 40 .16 -17
skin PC1 | 73 .09 -.01 .08 .10 02 -14 02 25 .60
skin PC2 | .08 -.06 -44 .20 .36 37 .58 -04 34  -19
stone PC1 | 29 25 -.04 .06 =55 -6l .07 14 -38 .09
stone PC2 | 42 .05 .50 -12 -.18 39 -16 -08 .02 .59
animal PC1 | 59 22 17 -.58 A2 -07 21 27 .11 32
animal PC2 | -27 .14 -.07 -4 -24  -54 12 24 -20  -53
fabrics PC1 | -46 -.16 -.34 .05 19 25 -22 -.11 20 -.67
fabrics pPC2 | 41 -.09 .19 -.53 22 39 -27 -.21 43 .07
food PC1 | 70 .04 .05 .03 -.05 A7 -47 -12 13 48
food PC2 | -24 -13 -.06 -.06 .34 53 -61 -06 -01 -39
ground PCl | 26 46 -.06 .20 -30  -66 34 A2 .09 .08
ground PC2 | .60 -.37 -.15 27 .05 .03 -.03 01 -44 46
gem PC1 | -.16 .21 47 .01 -.11 26 .61 44 .060 25
gem pC2 | 57 -.11 .10 -.02 27 30 -11 -18  -.01 .66
sky PC1 | -49 .03 -33 -.06 .02 -13 -03 -.23 d6  -74
sky PC2 | -36 -45 .20 37 -21 -04 31 27 -52 -1
metal PC1 | 40 .29 18 .06 .03  -35 53 49 -.07 .26
metal PC2 | -33 -.03 -.78 .10 -03  -29 .19 28 -09 -27
ceramic  PCI A3 13 -.83 .08 28 -16 -.07 -29  -17 21
ceramic PC2 | 59 .19 .19 .04 -21 -06 -.04 .10 .08 72
liquid PC1 | .19 32 .67 -.07 -30  -.02 .04 44 16 3
liquid PC2 | -35 -20 .08 -.08 13 44 -.02 62 -38 -29
global PCI | -.13 -.08 .09 =27 22 .62 -56 -12 33 -17
Global PC2 | 22 .69 25 -32 -25 =23 -5 10 37 .14
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Figure 2.16: Four visualizations of the first two primary components for the material-specific PCA for food,
ground, gem, and sky. Each PCA was run with only the 30 stimuli per material. The red vectors indicate the factor
loadings of each attribute. We plotted the actual stimuli within the PCA space. The blue lines connect the stimuli
to its actual position within the space when the stimuli would otherwise overlap. The ellipse was fitted around the
points (1 sd).
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Figure 2.17: Four visualizations of the first two primary components for the material-specific PCA for glass,
wood, stone,and animal. Each PCA was run with only the 30 stimuli per material. The red vectors indicate the
factor loadings of each attribute. We plotted the actual stimuli within the PCA space. The blue lines connect the
stimuli to its actual position within the space when the stimuli would otherwise overlap. The ellipse was fitted

around the points (1 sd).
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Figure 2.18: Three visualizations of the first two primary components for the material-specific PCA for metal,
ceramic, and liquid. Each PCA was run with only the 30 stimuli per material. The red vectors indicate the factor
loadings of each attribute. We plotted the actual stimuli within the PCA space. The blue lines connect the stimuli
to its actual position within the space when the stimuli would otherwise overlap. The ellipse was fitted around the
points (1 sd).



MATERIALS IN PAINTINGS

In this paper, we capture and explore the painterly depictions of materials to enable the
study of depiction and perception of materials through the artists’ eye. We annotated a
dataset of 19k paintings with 200k+ bounding boxes from which polygon segments were
automatically extracted. Each bounding box was assigned a coarse material label (e.g.,
fabric) and half was also assigned a fine-grained label (e.g., velvety, silky). The dataset
in its entirety is available for browsing and downloading at materialsinpaintings.tudelft.nl.
We demonstrate the cross-disciplinary utility of our dataset by presenting novel findings
across human perception, art history, and computer vision. QOur experiments include a
demonstration of how painters create convincing depictions using a stylized approach. We
further provide an analysis of the spatial and probabilistic distributions of materials de-
picted in paintings, in which we for example show that strong patterns exists for material
presence and location. Furthermore, we demonstrate how paintings could be used to build
more robust computer vision classifiers by learning a more perceptually relevant feature
representation. Additionally, we demonstrate that training classifiers on paintings could be
used to uncover hidden perceptual cues by visualizing the features used by the classifiers.
We conclude that our dataset of painterly material depictions is a rich source for gaining
insights into the depiction and perception of materials across multiple disciplines and hope
that the release of this dataset will drive multidisciplinary research.

Published as: Mitchell J. P. van Zuijlen, Hubert Lin, Kavita Bala, Sylvia C. Pont, Maarten W. A. Wijntjes; Ma-
terials In Paintings (MIP): An interdisciplinary dataset for perception, art history, and computer vision. Plos one,
16(8), €0255109.
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3.1. INTRODUCTION

Throughout art history, painters have invented numerous ways to depict the three-dimensional
world onto flat surfaces (Kemp, 1992; Panofsky, 2020; Pirenne, 1970; White, 1957). Un-
like photographers, painters are not limited to optical projection (Cavanagh, 2005; Willats,
1997) and therefore paintings have more freedom. This means that a painter can directly
modify and manipulate the 2D image features of the depiction. When doing so, a painter’s
primary concern is not whether a depiction is optically or physically correct. Instead, a
painting is explicitly designed for human viewing (Graham and Field, 2008a; Graham and
Field, 2008c). The artist does not copy a retinal image (Perdreau and Cavanagh, 2011)
(which would make the painter effectively a biological camera) but may apply techniques
such as iteratively adapting templates until they ‘fit’ perceptual awareness (Gombrich,
1960).

As a result of this, the depiction contained can deviate from reality (Cavanagh, 2005).
On one hand, this makes paintings unsuited as ecological stimulus (Gibson, 1978. On the
other hand, as Gibson acknowledges, paintings are the result of endless visual experimen-
tation, and therefore, indispensable for the study of visual perception.

The depiction and perception of pictorial space in paintings (Kemp, 1992; Panofsky,
2020; Pirenne, 1970; White, 1957; Willats, 1997) has historically received more attention
than the depiction and perception of materials. It has previous been found that human
observers are able to visually categorize and identify materials accurately and quickly for
both photos (Fleming et al., 2013; Sharan et al., 2009, 2014) and paintings (van Zuijlen
et al., 2020). Furthermore, for these painted materials, we can perceive distinct material
properties such as glossiness, softness, transparency, etc (Cavanagh et al., 2008; Sayim and
Cavanagh, 2011; van Zuijlen et al., 2020). A single material category (e.g., fabric) can
already display a large variety of these material properties, which demonstrates the enor-
mous variation in visual appearance of materials. This variation in materials and material
properties has received relatively little attention. In fact, the perceptual knowledge that is
captured in the innumerable artworks throughout history can be thought of as the largest
perceptual experiment in human history and it merits detailed exploration.

3.1.1. A SIMPLE TAXONOMY OF IMAGE DATASETS

To explore material depictions within art there is a need for a dataset that relates artworks
to material perception. Therefore, in this study, we create and introduce an accessible
collection of material depictions in paintings, which we call the Materials in Painting (MIP)
dataset. However, the use and creation of art-perception datasets is of broader interest.

We propose a simple taxonomy of three image dataset usages: 1) perceptual, 2) eco-
logical, and 3) computer vision usage. In the remainder of the introduction below, we will
contextualize our dataset within this taxonomy by first discussing existing image and paint-
ing datasets as well as the benefits our MIP dataset can provide for each of these three
dataset usages. This shall be followed by a detailed description of the creation of the MIP
dataset in the method section. Finally, we perform and discuss several small experiments
that exemplify the utility of the MIP datasets for each of three dataset usages discussed.

Perceptual datasets. To understand the human visual system, stimuli from perceptual
datasets can be used in an attempt to relate the evoked perception to the visual input. We
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can roughly categorize three types of stimuli used for visual perception: natural, synthetic,
and manipulated.

The first represent ‘normal’ photos of objects, materials, and scenes as they can be
found in reality. Experimental design with such stimuli often attempts to relate the evoked
perceptions to natural image statistics within the images or physical characteristics of the
contents captured in the images. Some examples of uses of natural stimuli datasets include,
but are not limited to, the memorability of pictures in general (Isola et al., 2011) or more
specifically the memorability of faces (Bainbridge et al., 2013). In another example, images
of natural, but novel objects were used to understand what underlies the visual classification
of objects (Horst and Hout, 2016).

The second type, synthetic stimuli, are created artificially, such as digital renderings,
drawings, and paintings. Synthetic stimuli might represent the real world, but often contain
image statistics that deviate from natural image statistics. Paintings have for example often
been used to study affect and aesthetics (Joshi et al., 201 1; Machajdik and Hanbury, 2010;
Sartori et al., 2015). In another example, Borkin et al. (2013) used a set of synthetic stimuli
to test for memorability of data visualizations.

Both natural and synthetic images can be manipulated, which leads to the third type of
stimuli. Manipulated stimuli are often used to investigate the effect of image manipulations
by comparing them to the original (natural or synthetic) image. Here the manipulations
function as the independent variables. For example Ohlschliger and V& (2017) created a
database of images that contain scene inconsistencies that can be used to study the compo-
sitional rules of our visual environment. In another example, a stimulus set consisting of
original and texture (i.e., manipulated) versions of animals found that perceived animal size
is mediated by mid-level image statistics (Long et al., 2018).

The advantage of using manipulated or synthetic images is that perceptual judgments
can be compared to some independent variable, which is typically not available for natural
images. Paintings are a special case here. They are a synthetic image of a 3D scene that
is rendered using oils, pigments, and artistic instruments. However, the painting is also a
mostly flat, physical object. Retrieving the veridical data is usually impossible for paintings.
In other words, objects or materials depicted in photos can often be measured or interacted
with in the real world but this is rarely possible for paintings. However, the advantage of
using paintings is that it can often be seen, or (historically) inferred, how the painter created
the illusory realism. Even if it cannot be seen with the naked eye, chemical, and physical
analysis can be performed. In Di Cicco et al. (2020) a perceptually convincing depiction
of grapes was recreated using a 17th century recipe. In this reconstruction, the depiction
was recreated by a professional painter one layer at a time, where each layer represents a
separate and perceptually diagnostic image feature that together lead to the perception of
grapes. The physical limitations of painterly depictions relative to the physical 3D world,
such as for example due to luminance compression in paintings (Graham et al., 2016; Gra-
ham, 2011; Graham and Field, 2008b; Graham et al., 2009) may lead to systematically
different strategies for material depiction. Despite this, van Zuijlen et al. (2020) has shown
that the perceptions of materials and material properties depicted in paintings are similar to
those previously reported for photographic materials (Fleming et al., 2013).

Therefore, studying paintings in addition to more traditional stimuli like photos or ren-
derings, can enrich our understanding of human material perception. It should be noted that
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in this paper we focus on the image structure of the painting instead of the physical object.
In other words, we focus on what is depicted within paintings and our data and analysis is
limited to pictorial perception. In the remainder of this paper, when we mention paintings,
we mean images of paintings.

Throughout history, painters have studied how to trigger the perceptual system and
create convincing depictions of complex properties of the world. This resulted in perceptual
shortcuts, i.e., stylized depictions of complex properties of the world that trigger a robust
perception. The steps and painterly techniques applied by a painter to create a perceptual
shortcut can be thought of as a perception-based recipe. Following such a recipe results in
a perceptual shortcut, which is a depiction that gives the visual system the required inputs
to trigger a perception. Many of the successful depictions are now available in museum
collections. As such, the creation of art throughout history can be seen as one massive
perceptual experiment. Studying perceptual shortcuts in art, and understanding the cues,
i.e., features required to trigger perceptions, can give insights into the visual system. We
will demonstrate this idea by analyzing highlights in paintings and photos.

Ecological datasets. To understand how the human visual system works it is important
to understand what type of visual input is given by the environment. Visual ecology en-
compasses all the visual input and can be subdivided into natural and cultural ecology.
Natural ecology reflects all which is found in the physical world. For example, to under-
stand color-vision and cone cell sensitivities it is relevant to know the typical spectra of
the environment. For this purpose, hyperspectral images (Foster et al., 2006; Nascimento
et al., 2016) can be used, in this case to investigate color metamers (perceptually identical
colors that originate from different spectra) and illumination variation. In another example,
a dataset of calibrated color images were used to understand color constancy (Ciurea and
Funt, 2003) (the ability to discount for chromatic changes in illumination when inferring
object color). The Southampton-York Natural Scenes database, which contains a diverse set
of images of natural scenes coupled with dense LiDAR range data, was used to relate image
statistics to physical statistics (Adams et al., 2016). Another dataset contains photos taken
in Botswana (Tkacik et al., 2011) in an area that supposedly reflects the environment of the
proto-human and was used to investigate the evolution of the human visual system. Spatial
statistics of today’s human visual ecology are clearly different from Botswana’s bushes as
most people live in urban areas that are shaped by humans. For example, a dataset from
Olmos and Kingdom (2004) was used to compute the distribution of spatial orientations of
natural scenes (Girshick et al., 2011).

The content depicted within paintings only loosely reflects the natural visual ecology,
but they do strongly represent cultural visual ecology. They have influenced how people
see and depict the world and have influenced visual conventions up to contemporary cine-
matography and photography. Both perceptual scientists and art historians have looked for
and studied compositional rules and conventions within art. A good example is the painterly
convention that light tends to originate from the top-left (Carbon and Pastukhov, 2018; Sun
and Perona, 1998), which is likely related to the human light-from-above prior (Berbaum
et al., 1983; Gibson, 1950; Mamassian and Goutcher, 2001; Ramachandran, 1988).

New developments in cultural heritage institutions have made the measurement and
study of paintings much more accessible. In recent years the digitization of cultural heritage
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has led to a surge in publicly available digitized art works. Many individual galleries and
art institutions have undertaken the admirable task to digitize their entire collection, and
have often make a portion, if not the whole collection digitally available with no or minor
copyright restrictions. The availability of digitized art works, combined with advancements
in image analysis algorithms, has lead to Digital Art History, which concerns itself with the
digitized analysis of artworks by for example analyzing artistic style (Saleh and Elgammal,
2016) and beauty (De La Rosa and Sudrez, 2015), or local pattern similarities between
artworks (Shen et al., 2019). In San et al. (2019), the authors for example developed a
system that automatically detects and extracts garment color in portraits, which can for
example be used for the digital analysis of historical trends within clothes and fashion.

Crowley and Zisserman (2014) pointed out that art historians often have the unenviable
task of finding paintings for study manually. With an extensive dataset of material depic-
tions within art, this task might become slightly easier for art historians that study the artistic
depiction of materials, such as for example stone (Augart et al., 2018; Dietrich, 1990). The
ability to easily find fabrics in paintings and its fine-grained subclasses such as velvet, silk,
and lace could be used for the study of fashion and clothes in paintings in general (Hollan-
der, 1993, 2016) or for paintings from a specific cultural context, such as Italian (Birbari,
1975), English, and French (Ribeiro, 1995) or even for the clothes worn by specific artists
(De Winkel, 2005). The human body and it’s skin, which clothing covers, is often studied
within paintings (Bol and Lehmann, 2012; Hollander, 1993; Lehmann, 2008). For example,
the Metropolitan Museum, published an essay on anatomy in the Renaissance, for which
artworks depicting the human nude were used (Bambach, 2002). In this work on anatomy,
only items from the Metropolitan Museum were used but with an annotated database of
material depictions this could be extended and compared to other museum collections. Fur-
thermore, through material categories such as food and flora category, the MIP could give
access to typical artistic scenes such as stillives (Grootenboer, 2006; Woodall, 2012) and
floral scenes (Taylor, 1995) respectively. It should be noted that ‘stuff’ like skin and food
might not appear like a stereotypical material, however in this paper we adhere to the view
of Adelson (2001), where each object, or ‘thing’, is considered to consist of some material,
i.e., ‘stuff’. Within this view non-stereotypical ‘stuff’ such as skin and food can certainly
be considered as a material.

Computer vision datasets. Today, the majority of image datasets originate from research
in computer vision. One of the first relatively large datasets representing object categories
(Fei-Fei et al., 2004) has been used to both train and evaluate various computational strate-
gies to solve visual object recognition. The ImageNet and CIFAR datasets (Deng et al.,
2009; Krizhevsky, 2009) are regarded to be standard image recognition datasets for the last
decade of research on deep learning vision systems.

Traditionally much visual research has been concerned with object classification but
recently material perception has received increasing attention (Adelson, 2001; Bell et al.,
2013, 2015; Caesar et al., 2018). A notable dataset that contains material information
is OpenSurfaces by Bell et al. (2013), which contains around 70k crowd-sourced polygon
segmentations of materials in photos. The Material In Context database improved on Open-
Surfaces by providing 3 million samples across 23 material classes (Bell et al., 2015). To
our knowledge, no dataset exists that explicitly provides material information within paint-
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ings.

The majority of image datasets contain photographs, but various datasets exist that con-
tain artworks. The WikiArt dataset for instance, which is created and maintained by a
non-profit organisation, with the admirable goal “to make world’s art accessible to anyone
and anywhere" (“Visual Art Encyclopedia”, 2020). The WikiArt dataset has been widely
used for a variety of scientific purposes (Bar et al., 2014; Elgammal et al., 2018; Saleh
and Elgammal, 2016; Strezoski and Worring, 2017; Tan et al., 2017). The Painting-91
dataset from Khan et al. (2014) consists of around 4000 paintings from 91 artists and was
introduced for the purpose of categorization on style or artist. More recently, Art500k was
released, which contains more than 500k low resolution artworks which were used to auto-
matically identify content and style (Mao et al., 2017) within paintings.

The visual difference introduced by painterly depiction does not pose any significant
difficulties to the human visual system, however it can be challenging for computer vision
systems as a result of the domain shift (Patel et al., 2015; Wang and Deng, 2018; Wilson
and Cook, 2020). Differences between painting images and photographic datasets include
for instance composition, textural properties, colors, and tone mapping, perspective, and
style. As for composition, photos in image datasets are often ‘snapshots’, taken with not
too much thought given to composition, and typically intended to quickly capture a scene
or event. In contrast, paintings are artistically composed and are prone to historical style
trends. Therefore, photos often contain much more composition variation relative to paint-
ings. Within paintings, composition can vary greatly between different styles. The human
visual system can distinguish styles — for example, Baroque vs. Impressionism — and also
implicitly judge whether two paintings are stylistically similar. Research in style or artist
classification, as well as neural networks that perform style transfer, attempt to model these
stylistic variations in art (Jing et al., 2020; Saleh and Elgammal, 2016).

Humans can also discount stylistic differences, for example, identifying the same per-
son or object depicted by different artists. Similarly, work in domain adaptation (Patel et
al., 2015; Wang and Deng, 2018; Wilson and Cook, 2020) focuses on understanding ob-
jects or ‘stuff’ across different image styles. Models that learn to convert photographs into
painting-like or sketch-like images have been studied extensively for their application as a
tool for digital artists (Jing et al., 2020). Recent work has shown that such neural style trans-
fer algorithms can also produce images that are useful for training robust neural networks
(Geirhos et al., 2019). However, photos that have been converted into a painting-like image
are not identical to paintings; paintings can contain spatial variations of style and statistics
that are not present in photos converted into paintings. Furthermore, painterly convention
and composition are not taken into account by style-transfer algorithms.

Depending on the end goal for a computer vision system, it can be important to learn
from paintings directly. Of course, when the end goal is to detect pedestrians for a self-
driving car, learning from real photos, videos, or renderings of simulations can suffice.
However, if the goal is to simulate general visual intelligence, multi-domain training sets
are essential. Furthermore, if the goal is to create computer vision systems with a perception
that matches human vision, training on paintings could be very beneficial. Paintings are
explicitly created by and for human perception and therefore contain all the required cues
to trigger robust perceptions. Therefore, networks trained on paintings are implicitly trained
on these perceptual cues.
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The multifaceted nature of datasets. While we have distinguished the broad purposes
of datasets and exemplified each with representative datasets, it is important to keep in mind
that these datasets can serve multiple goals across the taxonomy. For example, the Flickr
Material Database (Sharan et al., 2009) was initially created as a perceptual dataset to study
how quickly human participants were capable of recognizing natural materials. However,
since then it has also often been used as a computer vision dataset, including by the original
authors themselves (Sharan et al., 2013). In this study paintings are considered as espe-
cially interesting as they can be used for perceptual experiments, for digital art history, i.e.,
cultural visual ecology and can furthermore be used to train and test computer vision net-
works. The dataset presented in this paper is explicitly designed with this multidisciplinary
nature in mind.

3.2. METHODS

Here we will first provide a short description of the dataset and the various stages of data
collection, followed by an in-depth description of each stage.

Our dataset consists of high-quality images of paintings sourced from international art
institutions and galleries. Within these images, human annotators have created bounding
box around 15 material categories (e.g., fabrics, stone, etc). We further sub-categorized
these material categories into over 50 fine-grained categories (e.g., velvet, etc). Finally,
we automatically extract polygon segments for each bounding box. The annotated dataset
will be made publicly available. All paintings, bounding boxes, labels, and metadata are
available online.

The data collection was executed in multiple stages. Here we give an itemized overview
of each stage and subsequently we discuss each stage in depth. The first two stages were
conducted as part of a previous study (van Zuijlen et al., 2020), but we provide details here
for completeness. Participants were recruited via Amazon Mechanical Turk (AMT). A total
of 4451 unique AMT users participated in this study and gave written consent prior to data
collection. Data collection was approved by the Human Research (ethics) Committee of the
Delft University of Technology and adheres to the Declaration of Helsinki.

« First, we collected a large set of paintings.

* Next, human observers on the AMT platform identified which coarse-grained mate-
rials they perceived to be present in each painting (e.g., “is there wood depicted in
this painting?").

* Then, for paintings identified to contain a specific material, AMT users were tasked
with creating a bounding box of that material in that painting.

* Lastly, AMT users assigned a fine-grained material label to bounding boxes (e.g.,
processed wood, natural wood, etc.).

3.2.1. COLLECTING PAINTINGS

We collected 19,325 high-quality digital reproductions of paintings from 9 online, open-
access art galleries. The details of these art galleries are presented in Table 3.1. Images
were downloaded from the online galleries, either using web scraping or through an APIL
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For the majority of these paintings we also gathered the following metadata: title of the
work, estimated year of creation and name of the artist.

For 92% of boxes, we also have an estimate of the year of production. These estimates
were made by the galleries from which the paintings were downloaded. The distribution of
the year of production for all paintings are plotted in Fig. 3.1.

Table 3.1: List of galleries. A list of all the galleries, the country in which the gallery is located, and the number
of paintings downloaded from that gallery.

Gallery Name Country Count
The Rijksmuseum Netherlands 4672
The Metropolitan Museum of Art USA 3222
Nationalmuseum Sweden 3077
Cleveland Museum of Art USA 2217
National Gallery of Art USA 2132
Museo Nacional del Prado Spain 2032
The Art Institute of Chicago USA 936
Mauritshuis Netherlands 638

J. Paul Getty Museum USA 399

All Galleries, n = 17074
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Figure 3.1: Histogram of the distribution of paintings over time. Each bin equals 20 years.

3.2.2. IMAGE-LEVEL COARSE-GRAINED MATERIAL LABELS

Next, we collected human annotations to identify material categories within paintings. We
created a list of 15 material categories: animal, ceramic, fabric, sky, stone, flora, food, gem,
wood, skin, glass, ground, liquid, paper, and metal. Our intention was to create a succinct
list, that would nevertheless allow the majority of ‘stuff’ within a painting to be annotated.
Our list is partially based on material lists used in Sharan et al. (2009) and Fleming et al.
(2013), with which our set has 8 materials categories in common, and partially based on
Bell et al. (2013), with which our list has 11 material categories in common. Note however
minor difference in the category labels; the lists used in (Bell et al., 2013; Fleming et al.,
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2013; Sharan et al., 2009 has ‘water’, which we have named ‘liquid’ instead.

Our working definition of materials here is heavily influenced by Adelson (2001) and
Fleming (2017), where material does not just refer to prototypical materials that are used
as construction materials such as wood and stone, but also to the ‘stuff’ that makes up
‘things’. For example, few people would consider banana as a material, but nevertheless
this object has been made up of some type of banana-material, which humans are capable of
recognizing, distinguishing, and estimating physical properties off. In this rational, we have
included some less typical ‘stuff’ categories, such as for food and animal. Note however
that we made an exception for skin, instead of a more overarching ‘human’ category as
one might expect considering based on the previous. We made this choice because of
the scientific interest in the artistic depiction (Lehmann, 2008), perception (Matts et al.,
2007; Stephen et al., 2011), and rendering of skin directly (Igarashi et al., 2007; Jensen
et al., 2001). Last, we realized that for many paintings a large portion was dedicated to
the depiction of the sky or ground ‘stuff’, neither of which are considered a prototypical
material, but on average both take up a large portion of paintings. Therefore, in an attempt
to more densely annotate the whole region of the painting, we included sky and ground.

In one AMT task, participants would be presented with 40 paintings at a time and one
target material category. In the task, participants were asked if the painting depicted the
target material (e.g., does this painting contain wood?). They could reply ‘Yes, the target
material is depicted in this painting.” by clicking the painting and inversely, by not clicking
the painting, participants would reply with ‘No, the target material is not depicted in this
painting.”. Each painting was presented to at least 5 participants for each of the 15 materials.
If at least 80% of the responses per painting claimed that the material was depicted in the
painting, we would register that material as present for that painting. In total, we collected
1,614,323 human responses in this stage from 3,233 unique AMT users participating.

3.2.3. EXTREME CLICK BOUNDING BOXES

In the previous stage, paintings were registered to depict or not to depict a material. How-
ever, that stage does not inform us (1) how often the material is depicted, nor (2) where the
material(s) are within the painting.

We gathered this information on the basis of extreme click bounding boxes. For extreme
click bounding boxes, a participant is asked to click on the 4 extreme positions of the
material: the highest, lowest, most left-, and most right-wards point (Papadopoulos et al.,
2017). See Fig. 3.2 for an example. In the task, participants were presented with paintings
that depicted the target material and tasked to create up to 5 extreme click bounding boxes
for the target material.

To make bounding boxes within the task, the participants would use our interface, which
allows users to zoom in and out, and pan around the image. The interface furthermore
allowed participants to finely adjust the exact location of the extreme points by dragging
the points around. Initially, the tasks were open to all AMT workers, but after around 2000
bounding boxes were created by 114 AMT users, with manual inspection, we found that the
quality of bounding boxes varied greatly between participants. Therefore, we restricted the
work to a smaller number of manually selected participants who were observed to create
good bounding boxes. After this restriction, new boxes were manually inspected by the
authors, and in a few cases additional participants were restricted due to a deterioration of
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bounding box quality. Simultaneously additional participants were granted access to our
tasks after passing (paid) qualification tasks. As a result, the number of manually selected
participants varied between 10 and 20 participants. In total, 227,810 bounding boxes were
created by participants.

Figure 3.2: An example of four extreme clicks (marked in green) made by a user on a piece of fabric. These points
correspond to the most left, most right, highest, and lowest points on the annotated item. The red-line displays the
resulting bounding box. Samuel Barber Clark, by James Frothingham, 1810, Cleveland Museum Of Art, image
reproduced under a CCO license.

Automatic bounding boxes. While we consider our dataset to be quite larger, it only
covers a small but representative portion of art history. It might be required to access ma-
terials in paintings that are not part of our dataset. To allow for this, we have trained a
FasterRCNN (Ren et al., 2015) bounding box detector to localize and label material boxes
in unlabelled paintings. We use the publicly available implementation from Wu et al. (2019)
with a ResNet-50 backbone and feature pyramid network (R50-FPN). The model is fine-
tuned from a COCO-pretrained model for 100 epochs using the default COCO hyperpa-
rameters from Wu et al. (2019). First we trained the detector on 90% of annotated paintings
in the dataset. In section Automatically detected bounding boxes in the Results and demon-
strations section below, we show our evaluation of the network, which was performed on
the remaining 10% of annotated paintings. While we created this network to be able to de-
tect paintings outside our dataset, we decided to apply the network on our dataset in order to
more densely annotate our paintings. Therefore, after the evaluation, we ran the detection
network on the entire set of paintings, i.e., training and testing data, in an attempt to more
exhaustively annotate materials within paintings. From the automatic detected bounding
boxes we first removed all boxes that scored <50% confidence (as calculated by Faster-
RCNN). Next, we filtered out automatic boxes that were likely already identified by human
annotators, by removing automatic bounding boxes that scored = 50% on intersection over
union, i.e., automatic boxes that shared the majority of it’s content with human boxes. This
resulted in an additional 96k bounding boxes.
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3.2.4. FINE-GRAINED LABELS

In this step we supplemented the previously collected material labels with fine-grained ma-
terial labels (see Table 3.2). For example, a bounding box labelled as fabric could now be
labelled as silk, velvet, fur, etc.. We excluded bounding boxes that were too small (e.g.,
width in pixels x height in pixels <5000) and boxes that were labelled as sky, ground or
skin for which fine-grained categorizations were not annotated. We collected fine-grained
labels for the remaining 150,693 bounding boxes. Note that this only concerns the bound-
ing boxes created by human annotations as no automatically detected boxes were assigned
a fine-grained material label. For each of these 150,693 bounding boxes, we gathered re-
sponses from at least 5 different participants. If the responses reached an agreement of at
least 70%, we would assign the agreed upon label to the bounding box. To guide the work-
ers, we provide a textual description for each fine-grained category for them to reference
during the task. We did not provide visual exemplars as we did not want to bias the workers
into template matching instead of relying on their own perceptual understanding.

We found that it is non-trivial to define fine-grained labels in such a way that they are
concise, uniform, and versatile (i.e., useful across different scientific domains) while still
being recognizable and/or categorizable by naive observers. We applied the following rea-
soning to select fine-grained labels: first, we tried to divide the materials into an exhaustive
list with as few fine-grained labels as possible. For example, for ‘wood’, each bounding box
is either ‘processed wood’ or ‘natural wood’. If an exhaustive list would become too long
to be useful, we would include an ‘other’ option. For example, for ‘glass’ we hypothesized
that the vast majority of bounding boxes would be captured by either ‘glass windows’ or
‘glass containers’. However, to include all possible edge cases such as glass spectacles and
glass eyeballs, we included the ‘other’ option.

A possible subset for ‘metal’ we considered was ‘iron’,‘bronze’, ‘copper’, ‘silver’,
‘gold’ , ‘other’. However, we feared that naive participants would not be able to consis-
tently categorize these metals. An alternative would be to subcategorize on object-level,
e.g. ‘swords’, ‘nails’, etc., but as we are interested in material categorization, we tried to
avoid this as much as possible. Thus, for ‘metal’, and for the same reason ‘ceramic’, we
required a different method. We chose to subcategorize on color, as often the color for these
materials are tied to object identity.

Participants are shown one bounding box at a time and are instructed to choose which
of the fine-grained labels they considered most applicable. Additionally, they are able to
select a ‘not target material’ option.

We collected over one million responses from 1114 participants. This resulted in a a
total of 105,708 boxes assigned with a fine-grained label. See Table 3.2 for the numbers per
category.

3.3. RESULTS AND DEMONSTRATIONS

We conducted a diverse set of experiments to demonstrate how our annotated art-perception
dataset can drive research across perception, art history, and computer vision. First, we
report simple dataset statistics. Next, we organized our findings under the proposed dataset
usage taxonomy: perceptual demonstrations, cultural visual ecology demonstrations and
computer vision demonstrations.
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3.3.1. DATASET STATISTICS

The final dataset contains painterly depictions of materials, with a total of 19,325 paintings.
Participants have created a total of 227,810 bounding boxes and we additionally detected
96k using a FasterRCNN. Each box has a coarse material label and 105,708 also have been
assigned a fine-grained material label. The total number of instances per material categories
(coarse- and fine-grained) can be found in Table 3.2. Further analysis of spatial distribution
of categories, co-occurences, and other related statistics will be discussed in a following
section in the context of visual ecology.

Table 3.2: The number of annotated bounding boxes for each coarse- and fine-grained category. Note that not
every bounding box is associated with a fine-grained label since participants were not always able to arrive at a
consensus. See main text for details.

Coarse-grained Fine-grained # Labels
animal 11606
birds 1822
reptiles and amphibians 144
fish and aquatic life 289
mammals 7752
insects 155
other animals 10
ceramic 3641
brown or red 1088
white 381
decorated 289
other ceramic 14
fabric 31557
velvety 261
lace 491
silky/satiny 1354
cotton/wool-like 5712
brocade 96
fur 27
other fabric 12
flora 26693
trees 12851
vegetables 96
fruits 1238
flowers 2515
plants 3699
food 3690
cheese 11

Continued on next page
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Continued from previous page

Coarse-grained Fine-grained # Labels
vegetables 107
fruits 1536
meat or poultry 183
bread 127
seafood 183
nuts 8
other 14
gem 10525
pearls 719
gemstones 715
other gems 1
glass 5546
glass window 2243
glass container 1003
other glass 171
ground 2552
liquid 5737
body of water 4583
liquid in container 458
other liquid 172
metal 27708
colorless metal 2933
yellowish metal 4435
brownish or reddish metal 510
multicolored or other colored metal 215
paper 3167
paper book 1380
paper sheets 585
paper scrolls 114
other paper 19
skin 32323
sky 12734
stone 23157
processed stone 9226
natural stone 9429
wood 26953
processed wood 12810
natural wood 10751

3.3.2. PERCEPTUAL DEMONSTRATIONS

We believe that one of the benefits of our MIP dataset is that selections of the dataset can
be useful as stimuli for perceptual experiments. We demonstrate this by performing an
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annotation experiment to study the painterly depiction of highlights on drinking glasses.

PERCEPTION-BASED RECIPES IN PAINTERLY DEPICTIONS

As previously argued, we believe that painterly techniques are a sort of perception-based
recipe. Applying these recipes results in a stylized depiction that can trigger a robust per-
ception of the world. Studying the image features in paintings can lead to an understanding
of what cues the visual systems needs to trigger a robust perception.

Here we explore a perceptual shortcut for the perceptions of glass by annotating high-
lights in paintings and comparing these with highlights in photos. In paintings, it has pre-
viously been observed that highlights on drinking glasses are typically in the shape of win-
dows, even in outdoor scenes (Miller, 1998). This highlight-shape can even often be found
in contemporary cartoons (Anjyo and Hiramitsu, 2003; Pacanowski et al., 2008). This
convention can be considered as a perception-based recipe, where the result is a window-
shaped highlight that appears to be a robust cue that triggers the perception of gloss for
drinking glasses.

We used bounding boxes from our dataset and photographs sourced from COCO (Lin
etal., 2014). Participants for this study included 3 of the authors, and one lab-member naive
to the purpose of this experiment.

Images. We used 110 images of drinking glasses, split equally across paintings and pho-
tos. First, we selected all bounding boxes in the glass, liquid container category in our
dataset. From this set, we manually selected drinking glasses, since this category can also
contain items such as glass flower vases. Next, we removed all glasses that were mostly
occluded, were difficult to parse from the background - for example when multiple glasses
were standing behind each other, and removed images smaller then 300x300 pixels. This
resulted in a few hundred painted drinking glasses.

Next, we downloaded all images containing cups and wineglasses from the COCO (Lin
et al., 2014) dataset, from which we removed all non-glass cups, occluded glasses, blurry
glasses, and glasses that only occupy a small portion of the image, and small images. This
left us with 55 photos of glass cups and wineglass. Next, we randomly selected 55 segmen-
tations from our painted glass collection. Each image was presented in the task at 650 x
650 pixels, keeping aspect ratio intact.

During this selection phase, we did not base our decision on the shape of the glass. After
the experiment, as part of the analysis, we divided the glasses into three shapes, namely
spherical, cylindrical, and conical glasses. See Fig. 3.3 for an example of each shape.

Task. Participants annotated highlights on drinking glasses using an annotation interface.
In the annotation interface, users would be presented with an image on which the annotated
geometry was visible. This made it clear which glass should be annotated, in case multiple
glasses were visible in the image. Users were instructed to annotate all visible highlights
on that glass. Once the user started annotating highlights, the geometry would no longer
be visible. Annotations could be made by simply holding down the left-mouse button and
drawing on top of the image. Once a highlight was annotated a user could mark it as finished
and continue with the next highlight, and eventually move to the next image.
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Figure 3.3: Examples of the three glass shapes. From left to right: spherical, cylindrical, and conical. The red
geometry annotations were manually created by the authors, and were used to standardize across glasses for the
highlight analysis. The images have reduced contrast only to enhance the visibility of the red lines for this figure
and were presented to participants with the original contrast. Paintings used, from left to right: Portret van een
Jjongen, zittend in een raamnis en gekleed in een blauw jasje, by Jean Augustin Daiwaille. 1840. Still Life with
a gilded Beer Tankard, by Willem Claesz. Hed, 1634. The White Tablecloth, by Jean Baptiste Siméon Chardin,
1731. The left and middle images courtesy of The Rijksmuseum. The right image courtesy of The Art Institute of
Chicago. All images reproduced under a CCO license.

Results. To compare the highlights between photos and paintings, we resized each glass
to have the same maximum width and height, and then overlaid each glass on the center.
Initially, we overlaid all images for both types of media (not visualized here) and found the
resulting figure quite noisy. However, when we split the glasses on media and shape, clear
patterns emerge for painted glasses Fig. 3.4.

As can be seen, painters are more likely to depict highlights on glasses adhering to
a stylized pattern, at least for spherical and conical glasses. This pattern of highlights is
perceptually convincing and very uniform in comparison with the variation found within
reality.

Furthermore, we calculated the agreement between each pair of participants,as the ratio
of pixels annotated by both participants (i.e., overlapping area) divided by the number of
pixels that was an annotated by either participant (i.e., total area). Averaged across partic-
ipants, the agreement on paintings (0.33) was around 50% higher relative to the average
agreement between participants on photos (0.21). This means that for our stimuli, high-
lights in paintings are less ambiguous when compared to photos.

3.3.3. CULTURAL VISUAL ECOLOGY DEMONSTRATIONS

The ecology displayed within paintings are representative of our visual culture. Our dataset
consists of paintings spanning 500+ years of art history. This provides a unique opportunity
to analyze a specific sub-domain of visual culture, i.e., that of paintings. Here we first
analyze the presence of materials in paintings in the Material presence section and in the
next section we analyse this over time. In The spatial layout of materials , we visualize
the spatial distributions of materials in our dataset. In the last section, we analyze the
automatically detected bounding boxes.
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Highlight position between media for different shapes

Photos, Spherical-shape, n=23

Photos, Cylindrical-shape, n=32

Photos, Conical-shape, n=0
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Figure 3.4: The overlaid highlights created by users, split on media and glass shape. In general, the photographic
glass shapes display more variability and do not display a clear pattern. Note that for photos, no stimuli existed
with a conical shape in our set which leads to a black image, since there were no highlight-annotations. On the
right, for painted glasses, we see clear patterns in the placement of highlights for each glass shape.



3.3. RESULTS AND DEMONSTRATIONS 69

Material presence. Within the 19,325 paintings, participants exhaustively identified the
presence of 123,244 instances of 15 coarse materials. In other words, for each painting, par-
ticipants indicated if each material is or is not present. The distribution of unique materials
per painting is normally distributed with an average of 5.7 unique coarse materials present
per painting (std = 2.8 materials). The most frequent materials are skin and fabric. The least
frequent are ceramics and food. The relative frequency of each coarse material is presented
in Fig. 3.5. We did not exhaustively identify fine-grained materials within paintings, so we
will not report those statistics here.
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Figure 3.5: The proportion of paintings in our dataset that depict at least one instance of each material.

Based on prior knowledge of natural ecology, one might assume that some materials,
such as skin and fabric might often be depicted together in paintings. To quantify the extent
to which materials are depicted together, we create a co-occurrence matrix presented in
Fig. 3.6, where each cell is the co-occurrence for each pair of materials as the number of
paintings where both materials are present, divided by the number of paintings where either
(but not both) materials are present. We can see for example, that if skin is depicted, there
is a 94% change to also find fabric in the same painting.

Furthermore, one might expect that the presence of one material can have an influence
on another material. For example, one might expect that gem might almost always be
depicted with skin, but that skin is only sometimes depicted with gem. To quantify these
relations, we calculated the occurrence of a material given that another material is present.
We visualize this in Fig. 3.7. Here we see that if gem is present, then skin is found in 99%
of the paintings, but that if skin is present, then gem is found in only 20% of the paintings.
The same relationship is true for gem and fabric. This implies that gems are almost always
depicted with human figures, however that human figures are not always shown with gems.
Another example, when liquid is present, in 85% of the paintings, wood is also present. One
might be reminded of typical naval scenes, or landscapes with forests and rivers. Inversely,
when wood is present, only 34% of the paintings depict liquid. For food and ceramics, two
materials which are present in less then 10% of paintings, we see that if food is present,
ceramics has a 53% change to be present as well, but the inverse is only 33%. This implies
that food is served in, or with, ceramic containers half of the time, but that this is only 1/3rd
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Figure 3.6: Co-occurrence matrix. Each cell equals the number of paintings where both materials are present
divided by the number of paintings where one or the other material is present.

of what ceramics is used for.

Material presence over time. We have previously shown the distributions of materials
in paintings in Fig. 3.5. When we created similar distributions (not visualised) for tempo-
ral cross-sections, for example for a single century, we found that these distributions were
remarkably similar to the average distribution in Fig. 3.5. We used t-tests, to see if the dis-
tribution for any century was significantly different from the average distribution in Fig. 3.5
and found no significant effect. This means that despite the changes in stylistic and artistic
techniques over time, the distribution of materials (such as in Fig. 3.5 remained remarkably
stable over time for the period covered in our dataset.

The spatial layout of materials. Paintings are carefully constructed scenes and it follows
that a painter would carefully choose the location at which to depict a material. With the
knowledge that spatial conventions exists within paintings (e.g., lighting direction (Carbon
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Figure 3.7: Likelihood matrix. This matrix visualizes the influence a material has on the likelihood of finding
another material within the same painting, i.e., if one material on the y-axis is present, then how does this impact
the presence of other materials on the x-axis? Calculated as the number of paintings where both materials are
present, divided by the number of paintings that contain only one of the materials.

and Pastukhov, 2018; Sun and Perona, 1998), one can assume that these might extend
to materials. The average spatial location and extent of materials is visualized by taking
the (normalized) location of each bounding box for a specific material and subsequently
plotting each box as a semi-transparent rectangle. The result is a material heatmap, where
the brightness of any pixel indicates the likelihood to find a material at that pixel. In this
section, we limit the material heatmaps to only include the bounding boxes created by
human annotators. In the next section, we visualize the material heatmaps for automated
boxes too.

Material heatmaps for the 15 coarse materials are shown in Fig. 3.8. The expected
finding that sky and ground are spatially high and low within images serves as a simple
validation or sanity-check of the data. It is interesting to see how skin and gem are both
vertically centered within the canvas. It appears to suggests a face, with necklaces and jew-
elry adorning the figure. In general, each material heatmap appears to be roughly vertically
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fabric, n=59211 metal, n=32529 skin, n=38400 , h=17857 animal, n=16807
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Figure 3.8: Material heatmaps, which illustrate the likelihood at any given pixel to find the target material at that
pixel. Brighter colors indicate higher likelihoods.

symmetric. For glass, there does however appear to be a minor shift towards the top-left.
This might be related to an artistic convention, namely that light in paintings usually comes
from a top-left window (Carbon and Pastukhov, 2018). When we look at the heatmaps for
the sub-categories for glass in Fig. 3.9, we see that it is indeed glass windows that show the
strongest top-left bias.

glass window, glass container, other glass,
n=3770 n=1776

n=291

Figure 3.9: Material heatmaps for glass sub categories. For glass windows, it is interesting to see the clustering
in the top-left corner, which is in agreement with the artistic convention of having light come from the top left.
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Automatically detected bounding boxes. Besides the bounding boxes created by hu-
mans, we also trained a FasterRCNN network to automatically detect bounding boxes with
90% of the data as training data. On the remaining unseen 10% of paintings, the network
detected 90,169 bounding boxes. We removed those with a confidence score below 50%,
which resulted in 24,566 remaining bounding boxes. In the section below, all references to
the automated bounding boxes refer to these 24,566 bounding boxes.

Fabric Stone

Food

Figure 3.10: Examples of detected materials in unlabeled paintings. Automatically detecting materials can be
useful for content retrieval for digital art history and for filtering online galleries by viewer interests.

A qualitative sample of detected bounding boxes is given in Fig. 3.10. Our human
bounding boxes are non-spatially exhaustive in nature meaning that not every possible ma-
terial has been annotated. As a result, the automatically created bounding boxes cannot
always be matched against our human annotations and thus we cannot use this to evaluate
their quality. In order to validate the automatic bounding box detection, we performed a
simple user study to get an estimate of the accuracy per material class, which is visualized
in Fig. 3.11. In the user study, a total of 50 AMT participants judged a random sample of
1500 bounding boxes. The 1500 bounding box stimuli were divided into 10 sets of 150
stimuli, where each set contain 10 boxes per course material class. Each individual partici-
pant only saw one set and each set was seen by 5 unique participants. Therefore, this can be
thought of as 10 experiments, each with 5 participants and 150 stimuli, where participants
performed the same task across each set/experiment. The participants were tasked to rate
whether each stimuli is either a good or a bad bounding box, where a bad bounding box
was defined as either 1) having the wrong material label (e.g., "I see wood, but the label says
stone") or as having a bad boundary where the edges of the bounding box were not near
the edges of the material. The order of stimuli was randomized between sets and partici-
pants. This leads to a total of 7500 votes, 500 per material classes. The ratio of good to bad
votes per material classes can serve as a measure of accuracy, which has been visualized in
Fig. 3.11.

The participant agreement averaged across bounding boxes was found to be 8§0%), i.e.,
on average 4 out of 5 participants agreed on their rating per bounding box. As a result of
the user study, we found a mean average accuracy of 0.55 across participants. While not
high, these results are somewhat interesting in that they show that a FasterRCNN model is
capable of detecting materials in paintings, without any changes to the network architecture
or training hyperparameters. It is certainly promising to see that an algorithm designed
for object localization in natural images can be readily applied to material localization in
paintings. Likely, the accuracy could be further improved by finetuning the network which
we have not done in this paper.

It is interesting to note that the spatial distribution of automatically detected bound-
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Figure 3.11: In the bar graph, the accuracy for automatically detected bounding boxes is displayed in the same
order as in Fig. 3.5. The values were derived from human quality votes. On the right, we compare the material
heatmaps for fabric between the automated and the human annotation bounding boxes. From left to right, top to
bottom: Lake George , by John William Casilear, 1857. Man with a Celestial Globe , by Nicolaes Eliasz Pickenoy,
1624. A Seven-Part Decorative Sequence: An Interior, by Dirck van Delen, 1631. Thomas Howard, 2nd Earl of
Arundel, by Anthony van Dyck, 1620. The Poultry Seller, by Cornelis Jacobsz. Delff, 1631. First and second
digital image courtesy of The Metropolitan Museum of Art. Third and last image courtesy of The Rijksmusuem.
Fourth image courty of the Getty’s Open Content Program. All images reproduced under a CCO license.

ing boxes looks very similar to the spatial distribution of the human annotated bounding
boxes. We have visualized the material heatmap for one material, fabric, for the automated
bounding boxes to show the similarity with the material heatmap for the same material cre-
ated from human annotation bounding boxes. This has been visualized in the right side of
Fig. 3.11

3.3.4. COMPUTER VISION DEMONSTRATIONS

In this section, we will first apply existing segmentation tools designed for natural pho-
tographs to extract polygon segmentations. Next, we perform an experiment to demonstrate
the utility of paintings for automated material classification.

EXTRACTING POLYGON SEGMENTATIONS

A natural extension of material bounding boxes is material segments (Bell et al., 2013,
2015; Caesar et al., 2018). Polygon segmentations are useful for reasoning about boundary
relationships between different semantic regions of an image, as well as the shape of the
regions themselves. However, annotating segmentations is expensive and many modern
datasets rely on expensive manual annotation methods (Bell et al., 2013; Caesar et al.,
2018; Cordts et al., 2016; Lin et al., 2014; Zhou et al., 2017). Recent work has focused on
more cost effective annotation methods (e.g., Benenson et al., 2019; Lin et al., 2019; Ling
et al., 2019; Maninis et al., 2018). One broad family of methods to relax the difficulty of
annotating polygon segmentations is through the use of interactive segmentation methods
that transform sparse user inputs into a full polygon masks.

For this dataset, we apply interactive segmentation with the crowdsourced extreme
clicks as input. To evaluate quality, we compared against 4.5k high-quality human an-
notated segmentations from van Zuijlen et al. (2020), which were sourced from the same
set of paintings. We find that both image-based approaches like GrabCut (GC) (Rother
et al., 2004) and modern deep learning approaches such as DEXTR (Maninis et al., 2018)
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perform well. Surprisingly, DEXTR transfers quite well to paintings despite being trained
only on natural photographs of objects. The performance is summarized in Table 3.3. The
performance is summarized using the standard intersection over union (IOU) metric. IOU
is computed as the intersection between a predicted segment and the ground truth segment
divided by the union of both segments. IOU is computed for each class, and mIOU is the
mean IOU over all of the classes. Samples are visualized in Fig. 3.12. Segments produced
by these methods from our crowdsourced extreme points will be released with the dataset.

Table 3.3: Segmentations from extreme clicks. Grabcut (Rother et al., 2004) rectangles use bounding-box only
initialization as a reference baseline. Grabcut Extr is based on the improved GC initialization from (Papadopoulos
et al., 2017) with small modifications: (a) we compute the minimum cost boundary with the cost as the negative
log probability of a pixel belonging to an edge; (b) in addition to clamping the morphological skeleton, we also
clamp the extreme points centroid as well as the extreme points; (c) we compute the GC directly on the RGB
image. DEXTR (Maninis et al., 2018) Pascal-SBD and COCO are pretrained DEXTR ResNet101 models on
the respective datasets. Note that Pascal-SBD and COCO are natural image datasets of objects, but DEXTR
transfers surprisingly well across both visual domains (paintings vs. photos) and annotation categories (materials
vs. objects).

mlOU (%)
Grabcut Grabcut DEXTR DEXTR DEXTR
Rectangle Extr Pascal-SBD COCO Finetune
441 72.4 74.3 76.4 78.4

DEXTR Finetune IOU By Class (%)
Animal Ceramic  Fabric Flora  Food
76.9 86.8 79.1 77.0 87.5

Gem Glass Ground Liquid Metal
74.4 83.2 69.6 73.0 75.5

Paper Skin Sky Stone  Wood
86.1 78.9 78.5 81.7 67.4

LEARNING ROBUST CUES FOR FINEGRAINED FABRIC CLASSIFICATION

The task of distinguishing between images of different semantic content is a standard recog-
nition task for computer vision systems. Recently, increasing attention is being given to
“fine-grained" classification, where a model is tasked with distinguishing images of the
same coarse-grained category (e.g., distinguishing different species of birds or different
types of flora (Van Horn et al., 2018; Wah et al., 2011; Wei et al., 2019). Classifiers for
material categories can perform reasonably well on coarse-grained classification by relying
on context alone. In comparison, fine-grained classification is more challenging for deep
learning systems as contextual clues are often equal within fine-grained classes. For ex-
ample, one might reason that the material of a shirt might be recognized as fabrics partly
because of the context, i.e., being worn by a figure. However, in fine-grained classification
context can be held consistent across classes (for example, both velvet shirts and satin shirts
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Figure 3.12: Segmentation visualizations. Left to right: Original Image, Ground Truth Segment, Grabcut Extr
Segment, DEXTR COCO Segment. Both Grabcut and DEXTR use extreme points as input. For evaluation, the
extreme points are generated synthetically from the ground truth segments. The IOU for each segmentation is
shown in the bottom right corner. Top image: Dance before a Fountain , by Nicolas Lancret, 1724, Digital image
courtesy of the Getty’s Open Content Program. Bottom image: Still life with fish, by Pieter van Noort, 1660, Het
Rijksmusuem. Images reproduced under a CCO license.

are worn). To successfully distinguish between these two fine-grained classes in a context-
controlled setting, a classifier should use non-contextual features (at least more so relative
to uncontrolled settings).

The rational above leads to two interesting possibilities. First, we hypothesize that the
painted depictions of materials can be beneficial for fine-grained classification tasks. Since
artistic depictions focus on salient cues for perception, i.e., paintings are explicitly created
for and by perception, it is possible that a network trained on paintings is able to learn a
more robust feature representation by focusing on these cues.

Second, visualising the features used by a successful fine-grained classifier could poten-
tially lead to the uncovering of latent perceptual cues. For example, in the Perception-based
recipes in painterly depictions section above, we showed that window-shaped highlights are
a robust cue for the perception of gloss on drinking glasses. However, it is assumed that the
visual system used many such cues which are as of now unknown. Visualising what cues
are used by classifiers might lead to the finding of cues used by the perceptual system.

Task. We experimented with the task of classifying cotton/wool versus silk/satin. The lat-
ter can be recognized through local cues such as highlights on the cloth; such cues are care-
fully placed by artists in paintings. To understand whether artistic depictions of fabric allow
a neural network to learn better features for classification, we trained a model with either
photographs or paintings. High resolution photographs of cotton/wool and silk/satin fabric
and clothing (dresses, shirts) were downloaded and manually filtered from publicly avail-
able photos licensed under the Creative Commons from Flickr. In total, we downloaded
roughly 1K photos. We sampled cotton/wool and silk/satin samples from our dataset to
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form a corresponding dataset of 1K paintings. We analyzed the robustness of the classifier
trained on paintings versus the classifier trained on photos in two experiments below. Taken
together, our results provide evidence that a classifier trained on paintings can be more ro-
bust than a classifier trained on photographs, and that visualizing these features could lead
to discovering perceptual cues utilized by the human visual system.

Generalizability of classifiers. Does training with paintings improve the generalizability
of classifiers? To test cross-domain generalization, we test the classifier on types of images
that it has not seen before. A classifier that has learned robust features will outperform
a classifier that has learned features based on more spurious correlations. We tested the
trained classifiers on both photographs and paintings across the two classes using 1000
samples per domain.

In Table 3.4, the performance of the two classifiers are summarized. We found that
both classifiers perform similarly well on the domain they are trained on. However, when
the classifiers are tested on cross-domain data, we found that the painting-trained classifier
performs better than the photo-trained classifier. This suggests that the classifier trained on
paintings has learned a more generalizable feature representation for this task.

We have reported the confusion matrices in Table 3.5 . The photo classifier applied
to paintings is heavily biased towards satin predictions. We hypothesize that this is be-
cause the photo classifier is relying on spurious cues (such as image background or cloth-
ing shape) over more robust cues and thus that the shift from photos to paintings causes its
mispredictions. Only 21% of cotton samples are correctly identified as cotton while 79%
are identified as satin. This skew in precision/recall across the classes is also reflected by
the F1 scores for each class. On the other hand, the painting classifier applied to photos
is much more balanced in its predictions, with 57-59% of predictions being correct. The
precision/recalls are also much better balanced as reflected by the F1 scores.

Table 3.4: Classifier performance across domains. Classifiers are trained to distinguish cotton/wool from
silk/satin. The first column represents the classifier trained on photographs, and the second column represents
the classifier trained on paintings. In the first row, the classifiers are tested on images of the same type they were
trained on (i.e., trained and tested on photos, and trained and tested on paintings). In the second row, the classifiers
are tested on the other medium, i.e., trained on photos and tested on paintings and vice versa.

Photo — Photo ~ Painting— Painting
MEAN F1 Score 79.6% 80.5%

Photo — Painting  Painting— Photo
MEAN F1 Score 49.5% 57.8%

Human agreement with classifier cues. How indicative are the cues used by each clas-
sifier to humans? We hypothesized that training networks on paintings might lead to the
use of more perceptually relevant image features. If this is true, then the features used by
the classifier trained on paintings should be preferably by humans.
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Table 3.5: Confusion matrix for the two classifiers. The top represents the classifier trained on photos, tested on
paintings which is heavily biased towards satin. The bottom represents the classifier trained on paintings, tested
on photos, which is more balanced in its predictions.

Photo — Painting

Cotton Satin
Cotton 20.83% 79.17%
Satin 9.72% 90.28%
Per class F1 3191 67.01

Painting — Photo

Cotton Satin
Cotton 58.82% 41.18%
Satin 42.86% 57.14%
Per class F1 55.56 60.00

We produced evidence heatmaps with GradCAM (Selvaraju et al., 2017) from the fea-
ture maps in the network before the fully connected classification layer. We extracted high
resolution feature maps from images of size 1024 x 1024 (for a feature map of size 32 x
32). The heatmaps produced by GradCAM show which regions of an image the classi-
fier uses as evidence for a specific class. If the cues (i.e., evidence heatmaps, such as in
Fig. 3.13) are clearly interpretable, this would imply the classifier has learned a good repre-
sentation. For both models, we computed heatmaps for test images corresponding to their
ground truth label. We conducted a user study on Amazon Mechanical Turk to find which
heatmaps are judged as more informative by users. Users were shown images with regions
corresponding to heatmap values that are above 1.5 standard deviations above the mean.
Fig. 3.13 illustrates an example. Users were instructed to "select the image that contains
the regions that look the most like <material>", where <material> was either cotton/wool
or silk/satin. We collected responses from 85 participants, 57 of which were analyzed after
quality control. For quality control, we only kept results from participants who spent over
1 second on average per trial.

Overall, we found that the classifier trained on paintings uses evidence that is better
aligned with evidence preferred by humans (Fig. 3.14). This implies that training on paint-
ings allows classifiers to learn more perceptually relevant cues, and it shows that this method
might be useful to detect previously unknown perceptual cues.

Due to the domain shifts, training and testing a classifier on a single type of images
will outperform a classifier trained and tested on different kind of images. Based on this, if
paintings do not lead to a more robust feature representation we would expect the painting
classifier to do best on paintings and the photo classifier to perform best on photos. Inter-
estingly however, this does not hold when testing on photos of the satin/silk category (see
last column of Fig. 3.14). We found that users actually have no preference for the cues from
either classifier, i.e., the cues from the painting classifier appears to be equally informative
as the cues from the photo classifier for categorizing silk/satin in photos. This suggests that
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either (a) the painting classifier has learned human-interpretable perceptual cues for recog-
nizing satin/silk, or (b) that the photo classifier has learned to classify satin/silk based on
some spurious contextual signals that are difficult to interpret by humans. We asked users to
elucidate their reasoning when choosing which set of cues they preferred. In general, users
noted that they preferred the network which picks out regions containing the target class.
Therefore, it seems that the network trained on paintings has learned better to distinguish
fabric through the appearance of such fabrics in the image over other contextual signals (see
Fig. 3.13).

Figure 3.13: Visualization of cues used by classifiers. Left to right: Original Image, Masked Image (Painting
Classifier), Masked Image (Photo Classifier). The unmasked regions represent evidence used by the classifiers for
predicting “silk/satin" in this particular image. See main text for details. Image from Interior of the Laurenskerk
at Rotterdam, by Anthonie De Lorme, with figures attributed to Ludolf de Jongh, 1662. Digital image courtesy of
the Getty’s Open Content Program, reproduced under a CCO license.

3.4. CONCLUSION

In this paper, we presented the Materials in Paintings (MIP) dataset — a dataset of painterly
depictions of different materials throughout time. The dataset can be visited, browsed, and
downloaded at materialsinpaintings.tudelft.nl. The MIP dataset consists of 19,325 high
resolution images of painting. Unlike existing datasets that contains paintings, such as for
example (Khan et al., 2014; Mao et al., 2017), the MIP dataset contains exhaustive material
labels across 15 categories for all paintings within the set. Additionally, human annotators
have created 227,810 bounding boxes and we automatically identified an additional 96k
bounding boxes. Each bounding box also contains a material label and half are additionally
assigned with a fine-grained material label.

Although the findings reported in this study are valuable for their own sake, together
they demonstrate the wide utility that a dataset of painterly depictions can serve. We hope
that the MIP dataset can support research in multiple disciplines, as well as promote mul-
tidisciplinary research. We have shown that depictions in paintings are not just of interest
for art history, but that they are also of fundamental interest for perception, as they can
illustrate what cues the visual system may use to construct a perception. We have shown
that computer vision algorithms trained on paintings appear to use cues more aligned with
the human visual system, when compared to algorithms trained on photos. The benefits of
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100 -

Cues from own
domain preferred

wool /
cotton

Paintings Photos

Figure 3.14: Human preference for classification cues used by each classifier. The y-axis represents how often
humans prefer the cues from a classifier trained on the same domain as the test images. For example, the first
bar indicates that in 73.2% of the cases, humans preferred cues from the classifier trained on paintings when
classifying wool/cotton paintings (and thus, the inverse, that in 26.8% of the cases, humans preferred cues from
the photo classifier.) Interestingly, note the last column — humans equally prefer cues used by both classifiers for
classifying silk/satin photos despite the painting classifier never seeing a photo during training.

this might also extend to learning perceptually robust models for image synthesis.

Our findings support our hope that the MIP dataset will be a valuable addition to the
scientific community to drive interdisciplinary research in art history, human perception,
and computer vision.
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THE MATERIALS IN PAINTING
DATASET

4.1. WHAT 1S 1T?

The Materials In Painting (MIP) dataset consists of about 20.000 high-resolution digital
images of paintings. The paintings are from 9 art galleries that have made (a portion of)
their painting collection available to the public. A full list of all the galleries can be seen in
Table 3.1 in the previous chapter. The paintings in MIP mostly depict western art but also
include a small minority of Asian art. In addition to the paintings, we also have meta-data
for most of the paintings provided by the galleries, including the title of the artwork, the
attribution, and the year of production.

We have exhaustively labelled each painting with 15 material categories, meaning that,
for each individual painting, we know if each of the 15 materials is present (i.e., "This
painting has wood, metal, and stone, but no fabrics, glass..."). The 15 materials categories
that we labelled are listed in Table 4.1.

Table 4.1: The 15 material categories used within the dataset. We also used sub-materials, which can be found in
Table 3.2 in the previous chapter.

animal ceramic fabric  flora  food
gem glass ground liquid metal
paper skin sky stone  wood

Next, we collected bounding boxes, the smallest possible box that completely encloses
the region of interest. Here, the regions of interest were the depictions of the 15 mate-
rial categories with the paintings. Bounding boxes were created using the Extreme Click
method, in which a user clicks the ’extreme edges’ of a material or object. The ’extreme
edges’ refer to the most left, highest, most right, and lowest point of the region of interest
(see Fig. 4.1). About half of these boxes were also assigned a ’fine-grained’” material label,
meaning that boxes that were initially assigned a material label are now assigned a more

81
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specific label; a box previously assigned as ’fabric’, for example, now becomes ’fabric -
cotton’.

Figure 4.1: An example of extreme clicks, i.e., the four green points. From the x,y coordinates of the extreme
clicks we can draw a bounding box. In this example, the bounding box captures the metal pitcher. Still Life with
Ewer, Vessels, and Pomegranate, by Willem Kalf. 1640. The J. Paul Getty Museum.

Last, we used our data to train a machine learning system and used this system to
automatically label additional bounding boxes within the paintings.
Summarized in numbers, our dataset contains the following:

* 20k paintings

* 15 coarse-grained material categories created by human annotators
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* 50+ fine-grained material categories created by human annotators

220k bounding boxes around those materials created by human annotators

100k bounding boxes around those materials created by an automated process

105k boxes assigned a fine-grained material category label created by human anno-
tators

4.1.1. THE CREATION OF THE DATASET

In this section, we will provide a description of the design considerations and a discussion
of the creation process of the dataset. In the previous chapters, we have not discussed the
pilots nor earlier iterations of the data collection methods, as the discussion of pilots and
the reflection thereof does not fit within scientific articles. Nevertheless, the lessons learned
over these iterations have led to the final design of the data-collection and the dataset and
could therefore be valuable.

The general idea of this dataset was to collect materials in paintings. Collecting paint-
ings can be challenging from a technical perspective, as it requires in-depth knowledge of
web-protocols and web-scraping tools. However, from a methodological perspective, it is
quite simple, as the only relevant question is what paintings to include. The answer to this
question came down to a related question: what paintings are available for download?

Only recently have art collections (museums, galleries, etc.) made their art digitally
available. For reference, The Metropolitan Museum of Art (NY, USA) made their collec-
tion open-access in February 2017 while this PhD project started in January 2017. Since
then, many more museums have digitized their collections and some of these institutions
have also made their collection available. The push for open-access cultural heritage data
continues to date; as of the time of writing (March 2021). Almost every month a new muse-
ums joins the open-access movement by releasing their data, with the most recent example
being the Louvre.

At the start of the project however, only a few museums had made there collection
available online. As such, at the start of the project we collected paintings primarily based
on availability, with the only criteria being that the digital images of the paintings were
of high-quality and contained the minimum meta-data, e.g., title, artist, and year. Most of
the institutions did not have an option to download the entire dataset at once and therefore
we needed to download each painting individually using web-scrapers. Because the online
gallery (i.e., website) for each art institution is unique, we needed to write custom code for
downloading the paintings from each art institution.

Once we had a large number of paintings available, we started with the collection of
materials. In an early, pilot iteration of the material collection methodology, we simply had
participants look at a painting and notate each material that they perceived. This process
resulted in long lists, which were difficult to analyse and interpret. In addition to typos
(’fabris’, *fbarics’, and ’farbics’), for example, a problematic issue was the different levels
of labels from participants. One participant might label a specific table simply as wood’,
while another might be more specific with *oak’. It became clear we needed to provide par-
ticipants with a limited set of options. Around the same time, we started experimenting with
crowd-sourced data gathering on the Amazon Mechanical Turk platform, for the purpose
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of performing simple and quick online experiments to attract hundreds or thousands of paid
participants in a short time frame. We found that the best results for crowd-sourced data
gathering are achieved when the task is as simple as possible. Combining this insight with
the ’limited set of material options’, we created the pilot for the first crowd-sourced mate-
rial collection experiment. It simply showed paintings in succession and participants had to
select from a limited menu which materials they perceived. In the next iteration, we further
simplified this task to present participants with only a single "yes" or "no" question per
painting, based on the annotational pipeline from OpenSurfaces (Bell et al., 2013). Some
participant, for example, were repeatedly asked "Does this painting contain wood?", while
other participants were asked the same question for fabrics, metal, etc. Initially, this process
might sound like much more work for participants relative to selecting materials from a list;
however, we found that having participants focus on a single material was actually much
faster, as they don’t need to mentally shift the task (i.e. "Is there wood? Is there wood? Is
there wood?" vs "Is there wood? Is there stone? Is there fabric?"). Furthermore, with this
approach, the task itself can be simplified. An example of the final task we used can be seen
in Fig. 4.2. Furthermore, we had a minimal of 5 participants answer each question, e.g., 5
participants would be asked "Does this painting contain wood?" for the painting. This al-
lowed us to average across participants responses and to minimize the effect of participant
error. Only if the majority of participants replied that a painting depicted a material would
that material be assigned with the corresponding material label.

Above we have reflected on the material labelling task and the design thereof. With the
design of this task completed, we can ask the obvious follow-up question: what materials
should be labelled using this task? A perusal of the literature across computer science, art
history, and perception resulted in different lists of materials. We aimed to create a broad
list that is beneficial across disciplines. However, as explained in the previous paragraph,
we had a at least 5 participants perform the material labelling task per painting, per mate-
rial. As such, each additional material added to our list resulted in an additional number of
tasks equal to the number of paintings multiplied by 5 participants. Therefore, we sought to
create a list that was as succinct as possible, while containing all the ’stuff’ depicted within
paintings. The current list contains 15 materials. Most of these are prototypical materials
including stone, wood, and fabric. However, the list also contains materials that are not
intuitively considered as materials. For example, the food 'material’ serves as an overar-
ching collection of many food products, which we later specified with fine-grained labels,
like food -> cheese. The same is true for the animal material. Furthermore, our material
list includes sky and ground, two categories that are not prototypical material categories but
which we chose to include as they typically cover a substantial portion of the surfaces of
paintings. With the final list we aimed for a minimal set of material categories that could
be used to annotate the majority of the surface for each painting.

A subsequent major decision we had to make was related to the question: how to col-
lect spatial information? At this point in the project, we had categorized materials within
the paintings. However, there was not yet any information pertaining to the spatial loca-
tion of these materials. Three main methods that we considered are presented in Fig. 4.3.
The initial intention was to create polygonal segmentations as those are most informative.
However, we found that in general, these segmentations are costly relative to the other two
options presented in Fig. 4.3, in both time and money. Furthermore, materials in paintings
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Category: fabrics

If you cannot tell, don't select the photo. Please do not guess. Don’t worry if you miss small things that are
hard to see.

Figure 4.2: An example of the material labeling task. A participant was be presented with around 30 paintings
at a time. By clicking on the painting, the participant could indicate the material was present and inversely, not
clicking meant the material was not present.

often have complex or fuzzy boundaries which can make tracing the boundaries very diffi-
cult. Therefore we chose to use the extreme click method in chapter 3 to create bounding
boxes. In this method, participants always need to make exactly four clicks, which is much
faster and easier compared to polygon segmentations which can be anywhere from three to
hundreds of clicks. These four clicks are on the ’extreme’ points of the material, i.e., the
highest, lowest, most left, and most right pixels that belong to the material. This extreme
click method makes it easier for participants to create bounding box relative to the ’typical’
bounding box task (i.e., the left of Fig. 4.3) where participants need to place clicks on the
"imaginary corners of a tight box around the" material (or object) of interest (Papadopoulos
et al., 2017). In addition to being easier, faster, and less costly, extreme click bounding
boxes also provide nearly identical information relative to polygon segmentations for many
vision and art historical applications. However, they are regretfully much less informative
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relative to polygon segmentations for most computer vision applications, but as we have
shown in chapter 3, with computer algorithms it is possible to create a polygon segmenta-
tion from extreme clicks.

Initially, the extreme-click bounding box task was open to any participant on the AMT
platform. Regretfully, while being much simpler relative to a polygon segmentation task,
the extreme click bounding box tasks can still be quite difficult for participants. While the
interface we designed makes creating the bounding box itself trivially simple, the difficulty
lies in knowing what exactly should be contained within the bounding box. For example,
segmenting ’skin’, furthermore defined as ‘human skin‘ might appear as relatively straight-
forward. However, considering the large collection of paintings and the variety of scenes
depicted therein we can expect cases in which it is no longer straightforward. In distinct
cases participants asked if they should consider Jesus, Buddha, or angels depicted within
paintings as human and thus creating create bounding boxes around their ’skin’. In another
case a participant indicated that a book depicted within a painting seems to bound in human
skin and asked if this should be treated as such. Another example related to flayed skin lay-
ing at the foot of a martyr. For most other material similar examples exist. Furthermore, and
more problematic than the task being difficult, many participants simply performed badly.
For example, many participants created bounding boxes around materials we did not ask
for in the task (e.g., creating bounding boxes for wood in a metal task). Other participants
would simply create bounding boxes around figures or faces, independently of what mate-
rial should be labelled within the task. We spent much effort re-writing and re-designing
the instructions and tutorial, but eventually, we were forced to manually select workers that
consistently created good bounding boxes. In hindsight, the best course of action likely
would have been to set up an automatic system using sentinel items to select and restrict
good and bad participants respectively.

Figure 4.3: Three possible ways to create a polygonal segmentation around an object/material. From left to
right: a bounding box, extreme clicks and a polygon segmentation. A polygonal segmentation per definition also
contains the extreme clicks. Furthermore, from the extreme click coordinates the bounding box can easily be
calculated. In chapter 2 we started with the collection of polygon segmentations, but moved on to extreme click
segmentations in chapter 3.

4.2. THE WEBSITE

The MIP dataset can be viewed, browsed, and downloaded at materialsinpaintings.tudelft.nl.
In this section we will provide a concise guide on how to navigate and use the website. As
websites can be updated at any time, the visuals might change in future updates. As such,
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screenshots provided here might not visually reflect the database website at a later point.
However, the core functionality described here will likely remain the same.
Materials in Paintings Dataset Download About

Enter an artist or e Search Suprise me

Advanced 10967 Download

Corot, Jean-Baptiste-Camille 1861 Jacob van Geel 1636 Cropsey, Jasper Francis 1851 Peter Paul Rubens 1615
‘The Moored Boatman: Souvenir of an Imaginary Wooded Landscape The Spirit of War Saint Francis
Italian Lake

—

=

John Steuart Curry 1931 paul Gauguin 1891
Pierre-Auguste Renoir 1864 Spring Shower (Western Kansas. la (Hail Mary)
Romaine Lacaux Landscape)

Anthonie van Borssom 1663
Animals and Plants

Figure 4.4: The Materials In Paintings homepage.

In Fig. 4.4, the homepage is shown. When users navigate to the website, they will be
presented with this screen. The search bar at the top can be used for a basic search using
string matching, for a certain artwork or artist. To execute a specific search the advanced
search functionality can be used. Clicking on ’Advanced’, the advanced search menu will
become visible (see Fig. 4.5). With this menu open, a specific query can be created. At the
top the option to query paintings or bounding boxes is presented. The available options in
the menu will reflect the selected option. Note Fig. 4.6 for the painting and bounding box
option on the left and right respectively. Specific materials can be selected for both data
types. Each bounding box can have only one material which means that selecting multiple
materials will query bounding boxes that show one of the selected materials (i.e., an OR
filter). Paintings on the other hand can depict multiple materials and therefore there is an
additional option when selecting materials for paintings. This option toggles searching for
paintings that contain all the selected paintings (i.e., AND filter) or paintings that contain
at least one of the selected materials (i.e., OR filter). Furthermore, for paintings there is
also an option to exclude materials (i.e., a NOT filter). This can be used to query paintings
that explicitly do not have a certain material (e.g., "show me all paintings that do not have
wood"). For bounding boxes we can simply search for specific materials. In additional
to this, both data types can also be filtered by specific artists, title or by the year of cre-
ation. Furthermore, for the bounding boxes, users can filter by creation type, i.e., created
by human annotators or by an automated process. If the automatic boxes are selected, users
can also filter by the score, which represents the automated network’s confidence in the
bounding box.

The advanced search functionality allows us to make a selection of paintings. By press-
ing the download button in the top-right corner (Fig. 4.5) we can download the metadata
for this selection in a .csv file. Depending on the size of your selection, generating this file
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Materials in Painting Dataset Download About

Advanced lof1 Download

. Johannes Vermeer 1925 johannes Vermeer 1665 Johannes Vermeer 1670

“The Smiling Girl Woman Reading a Letter Girl with a Flute

Include Materials

Must contain all of these

Must contain one of these
O fabrics O metal O skin
O sky O animal O gem
O ceramic O flora O food
O glass O liquid O paper
O ground O wood O stone

Exclude Materials

Creation Year
Johannes Vermeer 1665
Title Johannes Vermeer 1665 A Lady Writing

SR None | Girl with a Pearl Earring

Artist A Young Woman Reading

Search!

¢

Figure 4.5: The advanced search menu. In this view we first used the search bar (no longer visible after opening
the advanced menu, but visible in Fig. 4.4) to query for *Vermeer’. The result of the previous query remains visible
when opening the advanced search menu.

Paintings Bounding boxes Paintings Bounding boxes

Include Materials Include Materials
Must contain all of these O fabrics O meta 0 skin
. O sky O animal O gem
Must contain one of these
O ceramic O flora O food
O fabrics O metal O skin
O glass O liquid O paper
0O sky O animal O gem
O ground O wood O stone
O ceramic O flora O food
O glass O liquid O paper Type
O ground O woo O stone Creation Year
Exclude Materials < Title
Creation Year < Artist
Title < Search!
Artist
Search!

Figure 4.6: On the left is the advanced menu, with the options reflecting the choice of paintings. On the right the
menu for bounding boxes is presented. The difference between these two are due to the different data types. For
paintings the "Must contain all of these", "Must contain one of these" and the "Exclude materials" are essential
AND, OR, and NOT filters respectively. For bounding boxes only an OR filter is available.
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can take some time.

In the .csv files, each painting and each bounding box contains a unique ID, i.e., a
specific painting will always have the same ID across .csv files and the same is true for
each bounding box. This allows paintings and bounding boxes to be linked. In Table 4.2 a
portion of a .csv file for a bounding box selection is reproduced. As can be seen, multiple
bounding boxes are linked to the same painting, e.g., id "130220". Each .csv file contains
much more information, including the title of the artwork, the artist, the year of production,
the size of the image in pixels and the gallery which holds the original painting.

The next step is to download the actual images. There are two ways to download the im-
ages. Either, using the .csv files, each image can be downloaded individually. We have pro-
vided a python script to do so, which can also be found on materialsinpaintings.tudelft.nl.
All boxes and paintings that can be downloaded in this way are at a maximum resolution of
1024 by 1024 pixels. This means that all boxes and paintings are resized to fit inside a box
with a width and height of 1024 pixels, assuming the image did not already fit.

For large selections it is advisable to download all the images as a single .zip file. Also,
if a resolution higher then 1024 by 1024 pixels is desired, a .zip files that contains all the
images at the original (i.e., max) resolution is available. These .zip files are hosted on a
dedicated server that is better equipped to handle large files. The availability of two data
types (e.g., paintings vs bounding boxes), which are both available in two resolutions, com-
pounded by bounding boxes which are available with and without padding, results in a
possibly confusing number of files that can be downloaded. To help users find the de-
sired .zip files we have provided a flow-chart on the "Download’ page on materialsinpaint-
ings.tudelft.nl.

Table 4.2: A portion of the .csv file for a selection of bounding boxes by querying for *Vermeer’ in the artist field.
The original field contains many more columns, such as the width and height of the box, the gallery from which it
originates and the URL required to download the image.

box id paintingid main material

381278 129483 fabrics
351401 130220 flora
351400 130220 flora

351399 130220 liquid
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SOFT LIKE VELVET AND SHINY
LIKE SATIN

Dutch 17th century painters were masters in depicting materials and their properties in a
convincing way. Here, we studied the perception of the material signatures and key image
features of different depicted fabrics, like satin and velvet. We also tested whether the
perception of fabrics depicted in paintings related to local or global cues, by cropping the
stimuli. In Experiment 1, roughness, warmth, softness, heaviness, hairiness, and shininess
were rated for the stimuli shown either full figure or cropped. In the full figure, all attributes
except shininess were rated higher for velvet, while shininess was rated higher for satin.
This distinction was less clear in the cropped condition, and some properties were perceived
significantly different between the two conditions. In Experiment 2 we tested whether this
difference was due to the choice of the cropped area. Based on the results of Experiment
1, shininess and softness were rated for multiple crops from each fabric. Most crops from
the same fabric differed significantly in shininess, but not in softness perception. Perceived
shininess correlated positively with the mean luminance of the crops and the highlights’
coverage. Experiment 1 showed that painted velvet and satin triggered distinct perceptions,
indicative of robust material signatures of the two fabrics. The results of Experiment 2
suggest that the presence of local image cues affects the perception of optical properties
like shininess, but not mechanical properties like softness.

Published as: Mitchell J. P. van Zuijlen*, Francesca Di Cicco*, Maarten W. A. Wijntjes, Sylvia C. Pont; Soft like
velvet and shiny like satin: Perceptual material signatures of fabrics depicted in 17th century paintings. Journal of
vision, 21(5), 10-10 * Authors contributed equally
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Figure 5.1: Satin (left)is visually more similar to aluminum foil (middle) than to velvet (right). However, satin
certainly belongs to a different material class than aluminum. The first two images were downloaded from Morgue-
file.com and the third image from pxfuel.com, released under free license.

5.1. INTRODUCTION

Fabrics serve a wide array of functions in our daily life. We use fabrics to hold and carry
things, to clean and dry surfaces, for decoration, and for clothing. With this wide array of
functions, the material category of ‘fabric’ also comes with a wide variety of appearances.
The visual appearance of fabrics depends on the type of fiber (e.g., natural or synthetic), the
yarn (the continuous segment of fibers), and the weaving method (Koenderink and Pont,
2003; Pont and Koenderink, 2003; Zhao et al., 2011). Materials’ appearances are strongly
dependent on light (Fleming et al., 2003; Pont and Te Pas, 2006) and shape (Ho et al., 2008;
Marlow and Anderson, 2015; Schmidt et al., 2020). This is true also for the appearance
of fabrics, which has been shown to depend on the illumination environment (Barati et
al., 2015; Zhang et al., 2019) and on the folding shape (Xiao et al., 2016). Nonetheless,
we can visually discriminate and identify different types of fabrics on the basis of their
characteristic visual qualities, also known as “material signatures” (Fleming et al., 2013).

In this paper we focus on the appearance of velvet and satin. Velvet and satin both be-
long to the material category of fabric, but large differences exist within this same material
class. Upon visual observation, one could find more similarities between the appearance
of satin and aluminum foil, than between satin and velvet (Fig. 5.1). However, despite the
visual similarity, nobody would classify aluminum as a fabric.

In this study, we studied the perception of painted fabrics in 17th century Dutch paint-
ings, a class of paintings unanimously acknowledged for the convincing representation of
materials and their properties. The economical yet effective rendering of material proper-
ties exploited by 17th century painters (Parraman, 2014) resonates with the mechanisms of
the human visual system (Adelson, 2001; Casati and Cavanagh, 2019; Cavanagh, 2005; Di
Cicco et al., 2019; Koenderink and van Doorn, 2001; Marlow et al., 2017; Sayim and Ca-
vanagh, 201 1; van Zuijlen et al., 2020; Wijntjes et al., 2012; Wijntjes et al., 2020). Painters
carefully chose the image features to include and could choose to omit perceptually irrele-
vant or hindering features, as it was shown to be the case for the orientation of the highlights
on grapes which do not need to be congruent with the object shape in order to communi-
cate a glossy appearance (Di Cicco et al., 2019). Materials were often painted according to
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standard, well-established instructions which assured the painter of getting the best possi-
ble rendering. Velvet, for example, could be convincingly depicted by simply inverting the
typical patterns of light and shade (Lu et al., 1998; van Duijn and Roeders, 2012). Written
records of such visual tricks can be found in “Het Schilder-boek™, a book describing the
life and work of several painters, composed by Dutch painter and art historian Karel van
Mander in 1604. He wrote: “In contrast to your other textile, where you render with light
paint all the relief in the folds, this is completely different with velvet [drapery], as you
make these entirely dark and paint flat highlights only on the reflecting side” (van Eikema
Hommes et al., 2002; van Mander, 1604). Another relevant art historical source is “The
big world painted small” by Willem Beurs (Beurs, 1692; Lehmann and Stumpel, In press).
This book has already proven to be a useful tool to help understand pictorial procedures and
the relevant image features for the rendering of materials (Di Cicco et al., 2020). In this
collection of pictorial recipes, Beurs described how to paint satin and velvet emphasizing
the different rendering of specular reflections, sharp and high contrast for satin and some-
what blurrier and with less contrast for velvet (Pottasch, 2020). These are examples of the
value of investigating paintings and art historical writings for the sake of understanding the
functioning of the human visual system.

Understanding the material attributes that form the signatures of the representation of
different fabrics, like velvet and satin, is important for several applications. One example is
online shopping, in which visual communication of the material qualities of fabrics is cru-
cial to guide the consumers’ choice. The appearance in the image should match as closely
as possible the appearance that would be perceived in a real shop. Failing to capture and
convey the material attributes of the fabric is one of the major concerns of online retail-
ing (Tuunainen and Rossi, 2002). On this topic, it has been shown that dynamic stimuli
(videos) can better communicate the haptic properties of fabrics compared to static stimuli
(images), because of the greater availability of information (Bouman et al., 2013; Wijnt-
jes et al., 2019). Xiao et al. (2016) found that when observers can only rely on images to
infer the material properties of fabrics, color and folding information interact to enhance
the accuracy with which tactile properties are estimated. In the absence of folds, i.e., if the
fabric is shown flat, chromatic information was found not to be discriminative enough. In
perception-based computer graphics, it has been shown that the optical appearance of dif-
ferent fabrics contributes to the realism of the rendering more than their dynamics (Aliaga
et al.,, 2015). The digital rendering of fabrics is gaining importance in the entertainment
industry for movies and games (Zhao et al., 2016), and in online shopping with the option
to virtually try-on clothes (Pons-Moll et al., 2017).

Velvet and satin have different mechanical and optical properties which give rise to
their distinctive appearances. The appearance of velvet is due to asperity scattering, where
light is scattered by the hairy layer on the surface, leading to a brightening of the contours
(Koenderink and Pont, 2003; Pont and Koenderink, 2003). The reflectance properties of
satin, which lead to its shiny appearance, depend on its constructional parameters (e.g., the
yarn density and the weave pattern) (Akgun et al., 2014). In particular the weave pattern of
satin is based on “floating” yarns, yarns that are weaved vertically over a horizontal weft.
These floating yarns reflect the light from the fabric creating specular or split-specular re-
flections causing the shiny appearance (Barati et al., 2015). The specular peaks for satin
are located at the regions of highest curvature, and under generic lighting conditions are
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pointed towards the light source. For velvet however, the brightest regions are typically
placed along its occluding contours, under generic lighting condition (Barati et al., 2015).
The position of highlights, being related to the 3D shape of the object, also reveals the
folding configuration of the fabric. This folding configuration is informative when estimat-
ing the optical and mechanical properties of a piece of fabric when presented with visual
information only (Xiao et al., 2016).

Some physical properties of an object or material, such as softness or warmth, are not
directly apparent by the optical cues present in the image. To infer these properties, the
human visual system can either employ a bottom-up or a top-down approach. The first
relies on the profile of image features that triggers material perception. The second ap-
proach would first require recognizing the object and the material class it belongs to, and
then inferring the material attributes via prior knowledge and learned associations. How-
ever, it is not always necessary to identify the object in order to infer the material attributes.
Schmidt (2019) and Schmidt et al. (2017) showed that identifying the material class already
provides enough cues to derive material attributes via an “associative approach”. They con-
ducted a rating experiment of several material attributes using unfamiliar shapes rendered
with materials with different optical properties (e.g., marble, steel, velvet, etc.). They found
that softness estimation relied on recognizing the different materials via the associative ap-
proach (e.g., it is velvet therefore it is soft). These two approaches, i.e., bottom-up and
top-down typically, but not necessarily exclusively, use local and global visual information
respectively. This then raises the question whether material perception relies on global or
local visual information, or a combination of both. According to Schwartz and Nishino
(2019), material attributes are inherently local, which is why a classifier trained on human
similarity judgements could recognize these attributes from small image patches, like im-
age crops. Marlow and Anderson (2013) proposed that human perception of glossiness
depends on local image features of the highlights, such as coverage, contrast, and sharp-
ness, but these features are in turn dependent on the global information of the shape and
the illumination environment. Balas et al. (2020) proposed that the use of global or large
scale visual information for material perception is developed with age, as they found that
children’s performance in distinguishing between real and fake food was impaired when
local information was disrupted but that this impairment was reduced or even absent when
global information was disrupted. Schmidt et al. (2020) showed that local shape features
affect the visual perception of softness and weight of unfamiliar, static objects. It is evident
from the literature that the understanding of the visual systems’ use of local vs global vi-
sual information is still an open problem, therefore in this paper we tested and compared
material perception providing either global or local information.

Another field in which it is relevant to distinguish and identify different fabrics is art his-
tory, as every element within paintings usually carries meaning. For example, in some draw-
ings made around 1490 by a German artist known as the Master of the Coburg Roundels,
the lively “fluttering loincloth” of the crucified Christ may signify his imminent resurrection
(Lehmann, 2015). Another example is the dress of Eleanor of Toledo, painted by Bronzino
in 1546, which symbolized the wealth and power of Florence and de Medici family in the
16th century (Thomas, 1994). According to Thomas (1994), “in order to understand the ori-
gin and purpose of the dress, we must first know the nature of the fabric”” and he wondered
whether the fabric was velvet or satin. The original hypothesis that the fabric was brocaded
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satin was later confirmed when the tombs in de Medici’s mausoleum were opened, as the
dress was the burial gown of the Eleanor of Toledo (Thomas, 1994). However, it should be
noted that art historical examples where the depictions of an object or material can actually
be compared with the original object or material, are for obvious reasons extremely rare.

The first aim of this paper was to determine the perceptual material signatures of velvet
and satin depicted in 17th century paintings. In Experiment 1, we further explored whether
cropping the fabric out of its global form and providing only local information, caused a
change in perception of its material properties. This indeed happened. In Experiment 2, we
investigated whether the observed changes in material perception when judging a cropped
image could be related to the choice of the cropped area, due to the presence or absence
of triggering image cues. Finally, to explore which cues observers relied on to make their
judgments, we correlated the perceived material properties in the different crops with image
features of the highlights.

5.2. EXPERIMENT 1

5.2.1. METHODS

In Experiment 1 six material attributes (roughness, shininess, softness, weight, warmth,
and hairiness) were rated for a set of paintings of fabrics, depicting either velvet or satin,
to measure the extent of association of each attribute with the two types of fabric. The
stimuli were presented in two viewing conditions, either with context where the full fig-
ure was presented or without context/object shape information, where crops of the fabric
were presented. The different viewing conditions were aimed to test whether showing a
fabric embedded in a recognizable object, such as a dress or a tablecloth, rather than in an
anonymous form without context, would affect the perception of the material attributes.

STIMULI

We selected 19 fabrics from 17 high-resolution digital images of 17th century oil paintings.
Two paintings depicted both velvet and satin and were therefore used twice. All paintings
reproduced within this paper are available under open access at a CCO or CC BY 4.0 license.
The full list of all paintings used within this study, including those reproduced in this paper,
can be found in in Fig. 5.16 through Fig. 5.34 in the supplementary materials.

The fabrics were categorized as either velvet (n = 8) or satin (n = 11) by the experi-
menters. The categorization was based on the expertise of all the authors in vision science
and optics. We further supported this categorization with art historical sources identifying
the fabrics of some of the paintings in our set of stimuli, as either satin or velvet (Gordenker,
1999; Liedtke, 201 1; Pottasch, 13 Jun. 2020). In one viewing condition, the entire figure or
object, including the background, was shown with a red arrow indicating the target fabric
to rate (see the left image in Fig. 5.2). In the other viewing condition, each target fabric
was cropped to a 600x600 pixels patch and presented on the screen at the same visual size
as in the full figure condition, against a grey background (see the right image in Fig. 5.2).
The cropped areas were chosen to be as informative as possible about the folding shapes.
Throughout the rest of the paper, we will refer to the two viewing conditions as full figure
condition and crop condition, respectively. See Figure S1 in the supplementary material for
all the stimuli in both viewing conditions.
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Full figure condition Crop condition

Figure 5.2: An example of each of the two conditions, within the interface. Left the full figure condition, in which
the figure or object with the target fabrics is fully visible. On the right, the crop condition, where only a patch
from the target fabric is visible, which is intended to deprive the visual system from context and shape information.
Note that a participant would see only the left or right screen, never both.

OBSERVERS

Each participant rated all the stimuli in one viewing condition and for one material attribute.
We collected data from 10 participants for each combination of the two viewing conditions
and six attributes, for a total of 120 participants. Data were collected through the Amazon
Mechanical Turk (AMT) platform. While AMT provides some benefits over conventional
lab-settings, it is known to possibly result in noisy data as a result of a small, but consider-
able portion of participants that appear to perform badly in experiments. Based on previous
experience with the AMT platform (van Zuijlen et al., 2020), we set an exclusion criterion
to automatically remove data from participants whose median trial time was below 1 second
(i.e., responding too fast). For each participant removed this way, we collected one more
participant until we reached the targeted 10 participants per viewing condition/attribute
combination. In total, 48 participants were removed this way, which in hindsight signals
that this exclusion criterion might have been too strict. Participants were excluded in this
way before any data analysis was performed. All participants were naive to the purpose
of the experiment. They agreed with the informed consent prior to the experiment. The
experiments were conducted in agreement with the Declaration of Helsinki and approved
by the Human Research Ethics Committee of the Delft University of Technology.

PROCEDURE
Experiment 1 consisted of a between-subjects design, with two viewing conditions and six
perceptual attributes, namely roughness, shininess, softness, weight, warmth, and hairi-
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ness. Before starting the experiment, participants received written instructions explaining
the task. They were informed that they would be shown images of fabrics but not which
type of fabric. Prior to the actual experiment, participants performed 15 practice trials, not
only to become familiar with the interface but also to get an idea of the range of stimuli.
Participants were randomly assigned to one of the viewing conditions and they were asked
to rate one of the attributes. Each attribute was rated using a slider on a continuum ranging
from O to 100: smooth vs. rough, matte vs. shiny, hard vs. soft, cold vs. warm, hairless vs.
hairy, and light vs heavy. In both viewing conditions, each of the 19 stimuli was rated three
times for a total of 57 trials. The trials were randomized across participants.

5.2.2. RESULTS

CONSISTENCY BETWEEN AND WITHIN OBSERVERS

In Experiment 1 each attribute was rated three times. The consistency within observers is
visualized in Fig. 5.3 (left) and was calculated as the average pairwise (Pearson) correlation
between the ratings over the three repetitions per observer, again averaged across observers.
Next, we took the median across the three repetitions to smooth out the effects of potential
outliers. Then, we normalized the data for each participant between 0 and 1 to rule out
possible effects of unequal interval judgments. We used this median, normalized data for
the remainder of the result section. For the consistency between participants, we calculated
the intraclass correlation coefficient (ICC) using an average rating, consistency, two-way
random effects model for each attribute and each condition (Koo and Li, 2016; McGraw
and Wong, 1996). The ICC values and the 95% confidence intervals have been visualized
in Fig. 5.3 (right). A full report of the ICC statistics can be found in Table S1. In Fig. 5.3
there is a clear trend of higher inter- and intra-rater agreement in the full figure condition
compared to the crop condition, with the exception of roughness in the inter-rater agree-
ment (Fig. 5.3, right). For the ratings of roughness, some participants in the crop condition
may have attended to the visible roughness of the brushstrokes instead of judging the fab-
ric. Furthermore, the ICC calculations show that the consistency between participants is
significantly different from zero, thus above chance, for all attributes and in both viewing
conditions, with the only exception of hairiness in the crop condition. However, the intra
rater agreement on hairiness was high and significant in both viewing conditions.

MATERIAL SIGNATURES

We ran a two-way MANOVA to examine the effect of the viewing condition and the fab-
rics’ material on the perception of the material attributes. We found a main effect for both
viewing condition (i.e., full figure vs crop) at F(6, 29) = 2.78, p < .05, and material (i.e.,
velvet vs satin) at F(6, 29) = 23, p < .001. We also found an interaction effect between the
two factors at F(6,29) = 6.56, p < .001. In Fig. 5.4, we visualized the average judgments of
the material attributes, split by viewing condition (top) and material (bottom) and indicate
significant differences (Bonferroni corrected) between the conditions. The perception of
warmth and hairiness of satin, and hairiness and softness of velvet changed significantly
between the two viewing conditions. For the full figure condition, velvet was judged to
be significantly warmer, hairier, softer, heavier, and rougher, while satin was perceived to
be shinier. For the crop condition, velvet was significantly warmer, hairier, and heavier,
whereas satin was rated significantly shinier. There were no significant differences between
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Figure 5.3: Consistency within and between participants. Left) The consistency within participants is calculated
as the averaged pairwise correlation between each participants repetitions of the stimuli, and the error bars indicate
the standard error. Right) The consistency between participants was calculated using intraclass correlations, and
the error bars indicate the 95% confidence interval. The full report of the ICC analysis can be found in Table S1.
Note that non-significant ICC are not visualized (i.e., hairiness in the crop condition).

satin and velvet, for the attributes of softness and roughness, in the crop condition.

To check if the material attributes were independent of each other or belonged to an
underlying subset of dimensions, we computed a correlation matrix for both viewing con-
ditions, visualized in Fig. 5.5. The correlation coefficients are reported in the cells of the
matrices. Significant correlations at p < .05 are marked with an asterisk (*).

In the full figure condition, shininess was the only attribute that showed a negative sig-
nificant correlation with each other attribute. All other attributes showed mutual positive,
significant correlations except for roughness, which only correlated (negatively) with shini-
ness.

In the crop condition, fewer correlations were found across all attributes. Roughness
was again negatively and significantly correlated with shininess, as well as with softness
and positively correlated with heaviness. Shininess was no longer correlated with hairiness,
nor softness. Overall, this shows that the material attributes are not completely independent
of each other, which implies they might be captured by a smaller set of dimensions.

PRINCIPAL COMPONENT ANALYSIS AND PROCRUSTES ANALYSIS

To visualize whether the two materials, velvet and satin, were perceived as having different
material properties, we ran a PCA for both viewing conditions. Fig. 5.6 and Fig. 5.7 show
the PCA biplots of the full figure and the crop conditions, respectively. These biplots in-
dicate how the stimuli are related to the attributes. The stimuli were clustered using 95%
confidence covariance ellipses, according to the depicted material, satin (light blue ellipse),
or velvet (yellow ellipse).

To further compare the effect of cropping on the material properties perception, we per-
formed Procrustes analysis. The PCA of the crop condition shown in Fig. 5.7 was matched
to the PCA of the full figure condition (Fig. 5.6).

In the full figure condition, the first two principal components account for 84.2% of the
variance. The factor loadings listed in Table 5.1, show that the first principal component
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Figure 5.4: The perceptual judgments of satin and velvet, for both conditions. In the top plots, the data is split by
viewing condition, while in the bottom plots data is divided by material. For each participants, we took the median
rating across the stimuli repetitions, and then averaged across these values. Significance between condition (top)
and material (bottom) is indicated at p < .05, Bonferroni corrected. Note that besides the significance, the top and
bottom display the same data, only differently presented to make interpretations across conditions easier, and to
avoid visual clutter of displaying all significant differences within a single plot.
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Figure 5.5: Correlation matrices of the attributes for both conditions. Color indicates the magnitude of the
correlation coefficient. Asterisk (*) indicates a significant effect at p < .05.
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Figure 5.6: PCA biplot for the full figure condition. The materials are clustered within 95% confidence ellipses.
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Figure 5.7: PCA biplot for the crop condition. The materials are clustered within 95% confidence ellipses.
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is positively loaded by a cluster of attributes including hairiness, warmth, and heaviness.
In the negative direction, shininess loads on the first component. The second principal
component is mostly loaded by roughness.

Table 5.1: The factor loadings for the first two principle components of two PCAs, one for each condition.

PC1 PC2 PC1 PC2

Full figure Full figure Crop Crop
Warmth 0.45 0.01 0.41 0.27
Hairiness  0.48 -0.14 049 0.16
Softness 0.39 -0.50 0.015 0.78
Heaviness  0.40 0.06 0.45 0.15
Shininess -0.44 -0.1 -048 0.14
Roughness 0.24 0.85 040  -0.51

In the crop condition, the first two principal components explain 77% of the variance.
The first component is mostly loaded in the positive direction by hairiness, heaviness, and
warmth and by shininess in the negative direction. The second component is mostly loaded
positively by softness and negatively by roughness.

A permutational test to check the significance of the Procrustes result (r = 0.72, p <
.001), indicated that the overall distribution of the stimuli was similar between the PCA of
the full figure condition and of the crop condition. However, the distribution of the stimuli
in the PCA biplot (Fig. 5.7) shows much more overlap of the velvet and satin clusters,
compared to the PCA of the full figure condition (Fig. 5.6). In addition, some stimuli clearly
changed location between the two PCA spaces, indicating that their perception differed in
the two viewing conditions. One example is shown in Fig. 5.8. The mean ratings of all the
attributes for this fabric, averaged over the median rating of each participant, are shown in
Fig. 5.8 for the two viewing conditions. The asterisk indicates that hairiness and shininess
were perceived to be significantly different at p < .05 between the two viewing conditions.

5.2.3. INTERMEDIATE CONCLUSIONS AND DISCUSSION

We conclude that, within the attributes that we tested, the material signature of depicted
velvet included warmth, heaviness, hairiness, and softness, and the signature of depicted
satin included shininess. We further conclude that depriving the visual system of context
and shape information significantly changed the perception of fabrics as depicted in 17th
century paintings. Specifically, when depriving the visual system of shape and object in-
formation, the perception of material attributes can drastically change, as exemplified in
Fig. 5.8. Moreover, the percepts became less consistent and more subjective as observed
from the decrease in both inter- and intra-rater agreement. Furthermore, differences be-
tween materials expressed as the distributions of perceived material attributes became less
distinct.

The cropped areas shown in the crop condition were chosen according to the amount of
folding, in an attempt to maximize the amount of visual information. Considering that, we
wondered to what extent the differences in perception found between the crop and full figure
conditions were affected by this choice. One could argue that the depicted dress or robe
from which crops are taken presents a certain shininess, roughness, etc., and thus different
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Figure 5.8: The mean ratings on the y-axis of the attributes for one specific stimulus. An asterisk (*) indicates a
significant difference at p < .05. Right: the crop and full figure stimuli represented in the left bar chart. Error bars
indicate the standard error. Painting: Catherine Howard, Lady d’ Aubigny, by Anthony van Dyck. 1638, National
Gallery of Art

crops from it would present these properties quite consistently without qualitative changes
in perception between crops. However, on the other hand, local variations in shape (drapery)
and effective lighting can cause major appearance variations, thereby causing differences
in perception between the full figure condition, where participants could attend to all image
features anywhere on the clothing, and the selected crop condition. For instance, a crop that
coincidentally captures many highlights might be perceived to be shinier relative to a crop
with few or no highlights, and, vice versa, it might also be possible that key image features
were absent in our crops.

We follow-up on this question in Experiment 2 where we tested if the perception of
crops changed depends on the choice of cropped area.

5.3. EXPERIMENT 2

5.3.1. METHODS

In Experiment 2, we investigated the extent to which perception of material attributes varies
depending on the content of the crop and the presence or absence of local image features.
We tested this with two material attributes that we also used in the previous experiment.
The experiment consisted of a rating task of the two material attributes, followed by image
analysis of the crops to extract highlights’ features that could relate to the variations in
perception between crops of the same fabric.

STIMULI

We used the 19 fabric stimuli from the full figure condition in Experiment 1 to make the
stimuli in Experiment 2. From each image, we extracted a set of 9 to 21 equally sized crops,
which covered the whole fabric (see Fig. 5.9 for an example). Thus, we made 19 sets of
crops ( velvet n = 8 and satin n = 11). To keep the visual size of the folds in the crops as
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consistent as possible across different sets, the images were cropped with a constant ratio
between the width of the whole fabric in the original image and the width of the crops.
Images of all the crops can be found in the supplementary materials.

OBSERVERS

Identical to Experiment 1, data were collected on the AMT platform. Each of the 19 sets
of crops was judged by a group of 5 participants for either shininess or softness. That is,
participants would rate one set of crops for one material attribute. A total of 190 AMT users
participated in the second experiment. All participants were naive to the purpose of the
experiment, and none had participated in the first experiment. Each participant agreed with
the informed consent prior to performing the experiment. The experiments were conducted
in agreement with the Declaration of Helsinki and approved by the Human Research Ethics
Committee of the Delft University of Technology.

MATERIAL ATTRIBUTES

We used two material attributes in this experiment, both of which were also measured in
Experiment 1. The first attribute was shininess, and the second was softness. Softness
was found to be not correlated (see Fig. 5.5) with shininess and it can be seen to be nearly
perpendicular to shininess in the crop condition PCA (Fig. 5.7). We interpreted this to
mean that the majority of variability captured by softness is not explained by shininess, and
vice versa, and that these two represented two main underlying dimensions of a perceptual
material attribute space. Roughness was found to not be significantly different between
velvet and satin and thus is unlikely to represent an underlying feature in this material space.
The three remaining attributes used in Experiment 1 (warmth, hairiness, and heaviness) all
inter-correlate and likely compose one underlying dimension. Therefore, with choosing
shininess and softness we hope to capture the majority of the variation and underlying
dimensions of the material feature space for fabrics with the least amount of attributes.

PROCEDURE RATING EXPERIMENT

In Experiment 2, participants were asked to rate one material attribute for each crop in one
set of crops, taken from one of the 19 fabrics used in Experiment 1. After having read the
instructions and having agreed to the informed consent, participants were asked to perform
a size calibration, by adjusting a digital image of a credit card until it matches a physical
payment card in the possession of the participants. Since all payment cards adhere to the
standard size set forth by the International Organization for Standardization’s 7810 ID-1
format (ISO/IEC 7810-ID-1), this allows us to rescale all images, so that each stimulus was
presented at the same size, across different display settings for different participants. After
the size calibration, participants performed a 10 second free-viewing task of the crops to get
an idea of the range of the stimuli. Next, participants performed five practice trials followed
by the actual experiment. For each trial, participant were tasked with rating shininess or
softness with a slider on a continuum ranging from O to 100, corresponding to matte to
shiny and hard to soft, as in Experiment 1. Each crop was rated three times, for a total
number of trials ranging from 27 to 63 depending on the number of crops. The trials were
randomized across participants.
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Figure 5.9: The original full figure stimuli, with red boxes that indicate the crops made for this stimulus. Each of
the 19 stimuli from experiment 1 was subdivided into a set of crops as shown here. These sets of crops were used
as stimuli in experiment two. Each crop within a set was the same size.
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PROCEDURE IMAGE ANALYSIS OF HIGHLIGHTS

One way painters distinguished the depiction of velvet from satin, is through the rendering
of the key image features of their reflectance properties (Gombrich, 1976). We hypothesized
that, when judging the material properties of such depicted fabrics, humans attend to similar
image features as perceptual cues.

Via photometric measurements of fabric samples, (Barati et al., 2015) assigned satin to
a reflectance category combining specular and split-specular scattering, and velvet to the
category of asperity scattering materials. From a perceptual rating experiment, (Barati et
al., 2015) also found that the samples belonging to the asperity scattering category were
perceived to be the softest, whereas the samples in the specular and split-specular scatter-
ing class were perceived to be the shiniest and the least soft. These findings support our
hypothesis that softness and shininess are key attributes of velvet and satin, respectively.

The different scattering behaviors of velvet and satin result in distinctive optical cues.
Previous studies have shown that image features of the highlights, such as coverage, con-
trast, and sharpness, can influence the perception of glossiness (Di Cicco et al., 2019; Mar-
low and Anderson, 2013; Marlow et al., 2017; Qi et al., 2014; Schmid et al., 2020). To
test whether the perception of shininess and softness depended on the choice of the cropped
area, and therefore on the image features of the highlights present in the crop, we com-
puted the mean luminance of the crops, the relative coverage of the highlights and the mean
contrast of the highlights. We did not measure sharpness because that was assumed to be
relatively consistent between crops of the same painting.

The calculations of the highlight features, i.e., coverage and contrast, were done using
binary images of the crops. The threshold values to binarize the images and isolate the
highlights for the computations, were manually derived from the luminance histogram of
each crop. Fig. 5.10 A shows the luminance histogram of the crop shown in Fig. 5.10 B.
The highlight mode, one of the three general modes for a histogram-based measure of the
surface structure proposed by Pont (2009), is indicated by a black bar (note that here the
width and height of the bar have no other meaning beside providing a clear visual indication
of the threshold value used to binarize the image, whereas in Pont (2009) these parameters
were related to the width and the height of the mode). To binarize the images, we manually
selected the threshold at the minimum value of the highlight mode (indicated by the red
line in Fig. 5.10 A). The manual selection was done for every crop. Fig. 5.10 B shows the
original crop and its binary image.

The contrast was calculated as Michelson contrast, using the 95th and the 5th percentiles
of the luminance values instead of the absolute maximum and minimum for robustness; the
percentage of coverage was calculated as the ratio of the areas covered by white and by
black pixels in the binarized image.

All image analyses were done in Matlab 2018a (The MathWorks Inc., Natick, MA).

Note that the measures of the highlights’ features reported here should be considered
only rough approximations, due to the complexity of automatically and accurately segment-
ing the image regions that correspond to the highlights, especially in the case of paintings
for which the ground truth is not known. Designing a robust algorithm to measure the im-
age features of highlights that is generalizable to natural images such as photographs or
paintings, is still an unsolved problem in the literature, due to the difficulty of defining and
identifying what the visual system considers to be a highlight. In a previous study (Di Ci-
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Figure 5.10: A) Luminance distribution and the highlight mode used as threshold value (black bar) to create
the binarized image. B) The original stimulus, as presented to the participants in the rating experiment, and its
binarized version..

cco et al., 2019), we addressed this issue by combining manual annotation of the highlights
and self-developed algorithms for the semi-automatic computation of highlights’ features
directly from images of paintings. However, the paintings analyzed in that study were ex-
clusively depicting grapes, meaning that each object showed a single, mostly round, specu-
lar reflection. This simplified the annotation and computation, and made the method more
difficult to apply to paintings of fabrics with multiple reflections of various shapes. Marlow
et al. (2012) approached the problem by using psychophysical measurements of contrast,
coverage, and sharpness of highlights. They further compared the human judgements of the
highlights’ features with measures obtained via direct image computation, finding high cor-
relations between the two types of measurements. Qi et al. (2014) employed a pixel-wise
computation of the highlights’ features based on luminance threshold for stimuli rendered
with the same reflectance and illumination parameters. Recently, Schmid et al. (2020) de-
veloped a series of image-based calculations of the highlights’ features that could be applied
to stimuli with different shapes, but only with rendered images for which the diffuse and
specular components can be defined.

5.3.2. RESULTS

CONSISTENCY BETWEEN AND WITHIN OBSERVERS

The intra- and inter-rater agreement (Fig. 5.11) were calculated for each of the 19 sets of
crops for both material attributes. Because shininess and softness were rated three times per
crop, prior to the data analysis we took the median over the three repetitions of the ratings
to smooth out the effects of potential outliers. Then, the data were normalized to rule out
possible effects of unequal interval judgments. Consistency within observers was calculated
as the average correlation between the ratings over the three repetitions for each observer.
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Figure 5.11: The intra- and inter rater agreement. The top contains the intra rater agreement(consistency within
observers) with shininess on the left and softness on the right. The same ordering is applied at the bottom for the
inter rater agreement (agreement between observers). The error bar indicates the standard deviation.

The consistency between participants was calculated as the mean correlation between all
participants.

First, we report the consistency within and between participants split on material at-
tribute. The mean consistency within participants for different sets of crops ranged between
0.16 and 0.81 (M = 0.58, SD = 0.19) for shininess, and it ranged between 0.18 and 0.77 (M
= 0.45, SD = 0.13) for softness. The mean agreement for different sets of crops between
participants ranged from 0.13 to 0.87 (M = 0.66, SD = 0.23) for shininess, and from 0.08
to 0.78 (M = 0.33, SD = 0.2) for softness. Next, we further split the data into material
category. For satin, we found that the inter rater agreement on shininess ranged from 0.19
to 0.87 M = 0.71, SD = 0.18), and on softness from 0.08 to 0.78 (M = 0.36, SD = 0.22).
For velvet, shininess ranged from 0.13 to 0.85 (M = 0.54, SD = 0.25), and softness from
0.09 to 0.58 (M =0.29, SD = 0.15).

The agreement both within and between participants varied greatly. This indicates that
some sets of crops triggered a clear and consistent perception, whereas other sets were
perceptually ambiguous.
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ANOVA

The median ratings of shininess and softness were averaged over all participants for each
set of crops, to calculate a one-way ANOVA to measure the effect of varying the cropped
area. A significant effect for a set of crops indicates that the perceptual ratings differed
between crops taken from a single fabric. Significant differences were evaluated at p =.001
after Bonferroni correction. The results of each individual ANOVA are reported Table 5.2.
Overall, the crops of fifteen crop sets were significantly different for shininess, ten of which
depicted satin, and five depicted velvet. Softness was significantly different for only three
sets of the crops, two of which depicted satin and the remaining one velvet.

Table 5.2: Results of one-way ANOVAs of Experiment 2. The ordering of the stimuli corresponds to that of
Fig. 5.35 and onward in the supplementary materials. The ANOVAs significant after Bonferroni correction are
indicated by *. As can be seen, a significant effect (and thus a varying precept across the same fabric) was found
more often for shininess than softness. Stimuli material identity is marked by a S for satin and a V for velvet.

Stimuli Shininess Softness

# Material F-value p F-value p

1 S F(10, 55) 1.8 > .05 F(10,55) 0.5 > .05

2 S F(16,85) 3.8 <.001 * F(e,136) 1.1 > .05

3 S F(12,52) 8.1 <.001* F(12,91) 3.2 <.01

4 S F(14, 60) 10.1 <.001* F(4,45) 0.6 > .05

5 S F(16, 136) 23.1 <.001* F(6,85) 6.7 <.001 *
6 S F(19,60) 3.7 <.001* F(19,60) 9.9 <.001 *
7 S F(11,48) 8.3 <.001* F(11,84) 5.7 <.01

8 S F(20, 84) 15.8 <.001 * F(0,126) 1.3 >.05

9 S F(12,91)  32.0 <.001* F(2,65) 0.7 > .05
10 S F(11,96) 6.2 <.001 * F(11, 84) 1.2 > .05

11 S F(16,119) 245 <.001 * F(e6,136) 1.7 > .05
12 A% F(18, 76) 13.1 <.001 * F(18,133) 0.9 > .05

13 v F(10, 77) 13.3 <.001 * F(10,66) 2.7 <.01

14 v F(14, 90) 10.7 <.001* F(14,75) 0.5 > .05

15 A% F(8, 45) 16.2 <.001 * F(8,27) 0.2 > .05

16 v F(11,84) 34 <.001 * F(11,72) 1.8 > .05

17 v F(12,52) 1.5 > .05 F(12,52) 5.8 <.001 *
18 A% F(12,52) 1.2 > .05 F(12,117) 0.7 > .05

19 v F(12,52) 09 >.05 F(12,52) 0.6 > .05

The results from the ANOVAs showed that crops were perceived to vary significantly
in shininess within most of the crop sets. We hypothesized that the observed variation in
shininess perception can be related to the image features of the highlights available in the
different crops.

CORRELATION WITH HIGHLIGHTS’ FEATURES

We performed correlation analysis to evaluate the relationships between the mean ratings of
shininess and softness of the crops and the features calculated from the images, namely the
mean luminance of the crops, and the coverage and contrast of the highlights. We only per-
formed the correlations for the sets of crops in which we found significant differences with
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the one-way ANOVA, i.e., fifteen sets for shininess and three for softness. In Fig. 5.12 we
reported the correlation coefficients of the image features with shininess (top) and softness
(bottom). Only the values significant at p < .05 were reported. The stimuli corresponding
to the crop sets are reported in in Fig. 5.35 and onward in the supplementary material. Note
that the crop sets 1-3 for softness do not correspond to the crop sets 1-3 for shininess.

The top of Fig. 5.12 shows that for fourteen out of fifteen significantly different sets,
shininess was positively and significantly correlated with the mean luminance of the crops.
For eleven crop sets, shininess was also positively and significantly correlated with the
coverage of the highlights. Three of the sets showed a significant positive correlation with
the contrast of the highlights, whereas for one set the correlation with contrast was negative
and significant.

The three sets with crops significantly different in softness reported in Fig. 5.12, were
all positively and significantly correlated with the mean luminance. Two of them were also
significantly and positively correlated to the coverage of the highlights. None of them was
related to the contrast of the highlights.

5.4. GENERAL DISCUSSION

In Experiment 1, we aimed to determine which material attributes belong to the signatures
of velvet and satin depicted in 17th century paintings. We further tested if removing shape
and context information by only presenting crops of the fabric, caused a change in percep-
tion. We found that velvet and satin were judged to have different material attributes, as
indicated by the two-way MANOVA (Fig. 5.4) and the PCAs (Fig. 5.6 and Fig. 5.7), and
that the commonalities in the judgments were based on robust material signatures that are
specific for velvet and satin. In the full figure condition, velvet was judged to be warmer,
hairier, softer, heavier, and rougher, while satin was perceived to be shinier. In the PCAs for
both conditions, shininess appears to be directed towards the satin cluster while the remain-
ing attributes point more towards the velvet cluster. When we look at the velvet and satin
clusters in the PCA for the full figure condition (Fig. 5.6) we also see that the materials
are separated. In the crop condition (Fig. 5.7), this separation became less, implying that
the distinction between satin and velvet decreases in the crop condition relative to the full
figure condition. This is also shown in our finding that all material attributes were signifi-
cantly different between satin and velvet in the full figure condition, but only part of them
in the crop condition. This leads to the following result: satin and velvet depicted in the
17th century are perceptually distinct, but the distinction decreases when only viewing local
information. But what is this perceptual distinction between satin and velvet based on?

In the rating tasks, participants were consistent in both conditions but less so in the
crop condition. The agreement between participants varied depending on the perceptual
attribute, which has been reported before (Fleming et al., 2013; van Zuijlen et al., 2020).
Within the domain of computer vision Schwartz and Nishino (2019) argued that (for com-
puter vision) visual material properties, such as shininess and hairiness, should be inher-
ently local. However, Geirhos et al. (2018) showed that CNNs are strongly biased towards
texture, i.e., local image features. This implies that computer vision algorithms currently
rely on local information. Furthermore, Geirhos et al. (2018) showed that CNNs trained to
learn a shape-based representation (i.e., a bias for global information) improve on accuracy
and robustness. Similarly, providing global and context information decreases the idiosyn-
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Figure 5.12: Correlation coefficients of shininess (top) and softness (bottom) with the image features highlights’
contrast, highlights’ coverage, and mean luminance of the crops. The values reported are significant at p < .05
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Figure 5.13: One crop that was identified as a possible outlier. With this stimulus included, a strong negative
correlation was found between softness and roughness, which is surprising based on the literature. With this crop
removed, the correlation is no longer significant. This might be due to the visibility of the individual brushstrokes,
which gave rise to a perceptual ambiguity.

crasy for our human data in our experiment. This implies that while both computer and
human vision can form a clear or robust response from local information, the responses’
robustness can be improved by providing global information.

The correlation matrices in Fig. 5.5 showed that roughness was negatively correlated
to shininess in both viewing conditions. This is in agreement with many reflectance dis-
tribution models such as for instance the microfacets model (Cook and Torrance, 1982), in
which rough surfaces are modeled as a distribution of specular microfacets, which orien-
tation distribution determines the surface roughness and resulting width of the reflectance
lobe (the rougher, the less glossy, see also for instance (Honson et al., 2020; Wendt and
Faul, 2017). We also see this negative correlation in the two PCA biplots (Fig. 5.6 and
Fig. 5.7).

For roughness we found no correlation with softness for the full figure condition, which
is in agreement with several studies that have shown that the main perceptual dimensions
of tactile and visual perception of texture are roughness/smoothness and hardness/softness
(Hollins et al., 1993; Nagano et al., 2013; Zhang et al., 2019). However, in the crop con-
dition, we found a negative correlation between roughness and softness. This negative
correlation might be ascribed to one outlier: a crop with clearly visible rough brushstrokes
(see Fig. 5.13) which was on average perceived to be the second roughest fabric and the
least soft. Indeed, removing this crop from the data made the correlation no longer signif-
icant. Possibly the roughness of the brushstrokes for this specific stimulus introduced an
element of ambiguity in the judgment of the surface roughness of the fabric.

Heaviness was significantly negatively correlated with shininess in both viewing con-
ditions. In the crop condition, no size information was available. If participants were able
to retrieve the material identity, heaviness could have been inferred through an “associative
approach” (Schmidt et al., 2017). One possible association could have been that darker
objects are perceived to be heavier than brighter ones (Vicovaro et al., 2019; Walker et al.,
2017). From additional analysis, we found that ratings of heaviness in the crop condition
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were indeed highly negatively correlated with the mean luminance of the stimuli (r =-0.73,
p < .001). Shininess, on the other hand, was highly and positively correlated with the mean
luminance (r = 0.75, p < .001).

Softness, a material property relying on haptic information, is physically independent
from the visual property of glossiness. However, they can be perceptually related since a
perceptual association can be learned when intentionally induced (Ernst, 2007; Wismeijer
et al., 2012), or from prior experience, since glossy materials tend to be hard (Ingvarsdoéttir
and Balkenius, 2020). In the full figure condition, there was indeed a high and signifi-
cant negative correlation between shininess and softness, likely due to the identification of
the objects and of the materials they were made of. Paulun et al. (2017) showed that the
optical appearance of familiar materials creates expectations and influence stiffness percep-
tion. This might explain the lack of correlation between softness and shininess in the crop
condition, where participants knew they were judging fabrics, but they were missing con-
textual information to recognize the fabrics’ material, and thus were unable to draw from
expectations.

In Fig. 5.4 (top), we reported the attributes that were perceived to be significantly differ-
ent between the two viewing conditions, per material. If we considered a single fabric, we
observed additional variations of attributes between conditions (see Fig. 5.8). This raised
the question whether such variation in perception was due to our choice of the area to crop
in the fabrics. Thus, in Experiment 2 we tested the relationship between the perception
of shininess and softness and different areas cropped within the same fabric, spanning the
whole fabric as much as possible. If different perceptions were triggered, they might be the
result of the presence or absence of local image features within the crop. On the other hand,
if all crops were perceived similarly, we might argue that local image features tend to be
stable across the entire surface of the materials, at least within our set of stimuli.

The consistency within participants fluctuated greatly for different sets of crops, from
0.16 to 0.81 and from 0.18 to 0.77, for shininess and softness respectively. The consistency
between participants showed similar fluctuations, from 0.13 to 0.87 for shininess, and from
0.08 to 0.78 for softness. The high agreement found for some sets of crops indicates that
these crops evoked a clear and consistent perception. Simultaneously, the low agreement on
other sets showed the opposite, namely that these crops were perceptually ambiguous. In
the first experiment, stimuli presented with context and shape information, evoked a more
consistent perception. It appears that cropping stimuli reduces the uniqueness of the evoked
perception in some, but not all stimuli. The size, aspect ratio and area relative to the original
image was kept constant within each set of crops, and can thus not explain the differences
found. The local content of the crops within sets of crops must have caused the variety: the
presence (or absence) of local image features in the crops of each set might be (in)sufficient
to elicit a clear, consistent perception.

The results from the ANOVAs showed that crops were perceived to vary significantly
in shininess within most of the crop sets. The presence of highlights on a surface is a
well-known image feature for the perception of glossiness. According to Beck and Prazdny
(1981), glossiness perception depends on the local presence of highlights, meaning that the
direct area surrounding the highlight is perceived to be glossy, but not the whole surface
per se. That is, they argue that glossiness perception is the direct response to local visual
information, and not the result of some perceptual inference about the reflectance properties
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of the whole surface. Similar results are discussed by (Berzhanskaya et al., 2005). They
found that perceived gloss decreases as a function of the distance from the highlight. Thus
when different parts of an object are considered, gloss perception will differ among the
different parts depending on their vicinity to the highlights. This local quality of glossiness
is in agreement with our results on the perception of shininess differing between the crops
of a fabric.

We used three image features (mean luminance, coverage of the highlight and contrast
of the highlight) to further analyze this relationship between the local image content and the
evoked perception. In Fig. 5.12 (top), we showed that the mean luminance of the crops was
highly and positively correlated with almost all the crop sets for shininess. This finding is in
line with (Wiebel et al., 2015), who found that the mean luminance of photographs of real
materials was a high-performance predictor, followed by the standard deviation of lumi-
nance, to differentiate between glossy and matte materials. Highlights are high-luminance
regions of the surface, explaining the high correlation we observed between the mean lumi-
nance of the crops and the perceived shininess. Coverage of the highlights was also highly
correlated with the perceived shininess for most of the crop sets. Coverage of highlights
has been shown to be strongly associated with glossiness perception (Marlow and Ander-
son, 2013; Marlow et al., 2012), especially when coverage is the most reliable cue for the
judgement of glossiness. This happens with objects whose shapes create higher variability
in highlights’ coverage rather than contrast or sharpness, under the same illumination. For
our stimuli, within the same fabric, the folding configuration caused high variations of cov-
erage that we found to be related to significant variations in shininess perception between
the different crops of a fabric. High highlights’ coverage is also related to higher mean lu-
minance, given that the area of the surface covered with highlights, i.e., the high-luminance
regions, increases. We indeed found the correlation between the mean luminance and the
coverage averaged over all the crop sets, to be high and significant (r = 0.78 p < .001). The
third image feature that we measured, the highlights’ contrast, overall, was not strongly cor-
related with perceived shininess. In the three cases in which high and significant positive
correlations were found, the contrast was also positively correlated with coverage. The op-
posite occurred for the only crop set that showed a significant negative correlation between
contrast and shininess, i.e., the high contrast highlights covered the smallest regions of the
fabrics’ surface.

For softness perception, the ANOVAs showed no significant differences for most of the
crop sets. So, while the perception of shininess might depend on local image features, this
might not hold for softness. A possible explanation for this finding could be that softness
is a mechanical property, rather than an optical property and therefore less associated to the
image features. Another related possibility is that the image features that were analyzed
are simply not the key triggers for softness. The question then arises whether other local
features might explain the data, or whether mechanical attributes such as softness requires
global features to explain the judgments.

In the bottom section of Fig. 5.12 we reported the three crop sets that were significantly
different for softness perception. They all showed a high and significant positive correlation
with the mean luminance of the crops. Two sets were also significantly positively correlated
with the coverage of the highlights and one of these sets (crop set 2) is shown in Fig. 5.14.
The crops in the top row were perceived to be significantly softer that the crops in the
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Figure 5.14: Visualization of the crop set 2 from the bottom of Fig. 5.12. The image on top shows the locations
where the crops were taken from the whole fabric. The crop in the top row were perceived to be significantly
softer than the crops in the bottom row.

bottom row. What is apparent from these two rows of crops is that in the top row, the
high luminance and the high coverage of the highlights allow to clearly see the folding
shape of the fabric, in contradistinction to those in the bottom row. Local shape features,
like textiles’ folding, have been shown to play a role in the visual estimation of softness
perception (Schmidt et al., 2020). For the stimuli shown in Fig. 5.14, the visibility of the
shape deformation due to the folding could have been the driving cue for the perception of
different levels of softness between the crops. This is in agreement with Xiao et al. (2016),
who showed that the 3D folding configuration increases the accuracy of estimation of tactile
material properties of fabrics.

Other cues, like the brightened contours’, might be related to visual perception of soft-
ness via a cognitive association with velvet (Paulun et al., 2017; Schmidt et al., 2020; Zhang
et al., 2019). Further research is needed to understand how local and global information
contribute to and possibly interact in material perception, and whether such mechanisms
are dependent on the material and property under consideration.

Since the 15th century, with the introduction of oil painting and a whole new range of
possible visual effects, Netherlandish painters started to shift the attention from the ren-
dering of space and volume to the rendering of materials, reaching their “golden age” in
the 17th century. When the separation between diffuse and specular illumination started
to be acknowledged and exploited (Gombrich, 1976), painters could visually differentiate
velvet from satin, instead of rendering all the fabrics equally matte. This novel use of the
highlights is what we quantified in Experiment 2 via image analysis, and related to the
perception of shininess and softness. However, there is a stylistic aspect of the paintings
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that we selected for our stimuli set, which we did not address here, in order to focus on the
discussion on material perception. The paintings were made either with a neat, almost invis-
ible brushwork (see Fig. 5.15, left) or with loose brushstrokes (see Fig. 5.15, right). These
opposite pictorial manners were equally valued to produce a convincing effect (Gombrich,
1960), but their mechanisms are completely different. Paintings with the fine brushstrokes
can be appreciated from a distance or from close by in a similar way, whereas paintings
with coarse brushstrokes are unintelligible when one stands close or zooms in, but they
make perfect sense and trigger a powerful convincing effect when seen in their entirety, at
a proper distance. The different brushworks might have introduced an additional source
of noise in our data, but they also raised further questions, like, how is the pictorial style
(fine vs coarse) related to the use of local and global image cues for material depiction and
perception? Future work in this direction could contribute to the emerging field of art and
perception.

5.5. CONCLUSIONS

In this study, we found that warmth, heaviness, hairiness, and softness are key attributes
of the material signatures of velvet, whereas shininess is a key attribute of the signature of
satin, when studying the depiction of both fabrics in 17th century paintings. We further
showed that the two fabrics, as depicted in 17th century paintings, and their material sig-
natures were clearly perceptually distinct when the stimuli were presented in the full figure
condition. On the other hand, the cropped condition, depriving the visual system of object
shape and context information, caused higher ambiguity and made the distributions for the
measured perceptual attributes of the two materials less distinct.

In Experiment 2, we showed that the perceived shininess is not stable across one single
fabric. The perception of the optical property shininess based on a cropped area of the fabric
was shown to be correlated to the presence of diagnostic image features in the crop, namely
highlights. Moreover, shininess perception increased with the coverage of the highlights
and their mean luminance.

The haptic property of softness, instead, did not differ significantly between crops of the
same fabric. Further analysis of the softness data suggested that perception of this haptic
property might be driven by local and global shape cues.

In conclusion, we have shown that velvet and satin were depicted with distinct per-
ceptual material signatures, which painters started to employ around the 15th century, and
highlights started to be exploited to render the characteristic appearance of different textiles
(Gombrich, 1976). Highlights can be used to render the luster of satin and the softness of
velvet, by indicating not only how the fabric reflects light but also by revealing the shape of
the folds. Local image features of the highlights were found to be sufficient to trigger sig-
nificant variations in shininess perception, but not for softness. This indicates that shininess
is a local material property, whereas softness might require more global visual information
relating to shape.
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Figure 5.15: Examples from our stimuli set of a neat (left) and a loose use of brushstrokes (right), to illustrate
the difference in these two styles which becomes apparent when moving closer to the physical painting — or when
zooming in. The two crops (below) are from the crop-set that correspond to the paintings (above). Left: Self-
portrait with the Portrait of his Wife, Margaretha van Rees, and their Daughter Maria by Adriaen van der Werft,,
1699, Rijksmuseum, Amsterdam. Right: Portrait of a Man, Possibly Nicolaes Pietersz Duyst van Voorhout by
Frans Hals, ca. 1636-38, The Metropolitan Museum of Art, New York.
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Table 5.3: ICC calculations for the inter-rater agreement in Experiment 1. The calculation was done using average
rating, consistency agreement, two-way random effects model.

95% Cl1 F test with true value 0

Lower Bound Upper Bound Value dfl  df2 Sig.
Full figure
Warmth 0.78 0.61 0.91 4.74 18 162  <.001
Hairiness  0.92 0.85 0.96 123 18 162 <.001
Softness 0.75 0.54 0.89 397 18 162  <.001
Heaviness 0.89 0.79 0.95 9.05 18 162 <.001
Shininess ~ 0.92 0.86 0.96 12.8 18 162 <.001
Roughness 0.61 0.27 0.82 2.54 18 162 <01
Full figure
Warmth 0.5 0.08 0.77 1.99 18 162 <.05
Hairiness  -0.7 -2.25 0.21 0.56 18 162 >.05
Softness 0.49 0.06 0.77 1.97 18 162  <.05
Heaviness 0.55 0.17 0.79 222 18 162 <.01
Shininess ~ 0.71  0.47 0.87 35 18 162 <.001
Roughness 0.78 0.6 0.9 4.63 18 162 <.001

5.6. SUPPLEMENTARY MATERIALS

First, in Table 5.3 present the the intra-class correlations for the inter rater agreement in
Experiment 1.

Next, all the stimuli used in Experiment 1 are shown in Fig. 5.16 through Fig. 5.34
below. For stimuli we display the full figure condition on the left, and the crop condition
on the right. Note that both images are resized to fit the page while in the experiment
stimuli were presented at 600x600 and 200x200 pixels for the full figure and crop condition,
respectively. The first 11 are the satin stimuli, the remaining 8 are the velvet stimuli.

Last, we visualize all the stimuli used in Experiment 2 in Fig. 5.35 and onward. The
first 11 are satin stimuli, the remaining 8 are the velvet stimuli.

All images reproduced here are are available under open access at a CCO or CC BY 4.0
license. Two paintings (and the crops thereof) have not been reproduced here due to copy
rights restraints.
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Figure 5.16: Portrait of a Man, Possibly Nicolaes Pietersz Duyst van Voorhout, by Frans Hals. 1637, The
Metropolitan Museum of Art

Figure 5.17: A Young Woman Composing a Piece of Music, by Gabriél Metsu. 1664, Mauritshuis, The Hague
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Figure 5.18: Portrait of a Man, by Adriaen van der Werff. 1689, Mauritshuis, The Hague

Figure 5.19: The Oyster Meal, by Frans van Mieris the Elder. 1661, Mauritshuis, The Hague
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Figure 5.20: Philip, Lord Wharton, by Anthony van Dyck. 1632, National Gallery of Art

Figure 5.21: Catherine Howard, Lady d’ Aubigny, by Anthony van Dyck. 1638, National Gallery of Art
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Figure 5.22: Marchesa Brigida Spinola Doria, by Peter Paul Rubens. 1606, National Gallery of Art

Figure 5.23: Queen Henrietta Maria with Sir Jeffrey Hudson, by Anthony van Dyck. 1633, National Gallery of
Art
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Figure 5.24: William II, Prince of Orange, and his Bride, Mary Stuart, by Anthony van Dyck. 1641. The
Rijksmuseum

Figure 5.25: Pictura (An Allegory of Painting), by Frans van Mieris the Elder. 1661, J. Paul Getty Museum
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Figure 5.26: The Letter Writer, by Frans van Mieris (I). 1680, The Rijksmuseum

Figure 5.27: Portrait of Agostino Pallavicini, by Anthony van Dyck. 1621, J. Paul Getty Museum
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Figure 5.28: A Woman in a Red Jacket feeding a Parrot, by Frans van Mieris the Elder. 1663, The National
Gallery of London. Images not reproduced due to copy-rights restrictions.

Figure 5.29: The Letter Writer, by Frans van Mieris (I). 1680, The Rijksmuseum

Figure 5.30: Old Woman Reading, by Gerard Dou. 1631, The Rijksmuseum
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Figure 5.31: An Old Woman Reading, Probably the Prophetess Hannah, by Rembrandt van Rijn. 1631, The
Rijksmuseum

Figure 5.32: Philip, Lord Wharton, by Anthony van Dyck. 1632, National Gallery of Art

Figure 5.33: Self Portrait of the Artist, with a Cittern, by Frans van Mieris the Elder. 1674, The National Gallery
of London. Images not reproduced due to copy-rights restrictions.
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Figure 5.34: Self-portrait with the Portrait of his Wife, Margaretha van Rees, and their Daughter Maria, by
Adriaen van der Werff. 1699, The Rijksmuseum

Figure 5.35: Stimulus 1 in Experiment 2. Crops taken from Portrait of a Man, Possibly Nicolaes Pietersz Duyst
van Voorhout, by Frans Hals. 1637, The Metropolitan Museum of Art
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Figure 5.36: Stimulus 2 in Experiment 2. Crops taken from A Young Woman Composing a Piece of Music, by
Gabriél Metsu. 1664, Mauritshuis, The Hague. Crop set 1 in Figure 12 shininess
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Figure 5.37: Stimulus 3 in Experiment 2. Crops taken from Portrait of a Man, by Adriaen van der Werff. 1689,
Mauritshuis, The Hague. Crop set 2 in Figure 12 shininess

Figure 5.38: Stimulus 4 in Experiment 2. Crops taken from The Oyster Meal, by Frans van Mieris the Elder.
1661, Mauritshuis, The Hague. Crop set 3 in Figure 12 shinine
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Figure 5.39: Stimulus 5 in Experiment 2. Crops taken from Philip, Lord Wharton, by Anthony van Dyck. 1632,
National Gallery of Art. Crop set 4 in Figure 12 shininess. Crop set 1 in Figure 12 softness
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Figure 5.40: Stimulus 6 in Experiment 2. Crops taken from Catherine Howard, Lady d’ Aubigny, by Anthony van
Dyck. 1638, National Gallery of Art. Crop set 5 in Figure 12 shininess. Crop set 2 in Figure 12 softness
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Figure 5.41: Stimulus 7 in Experiment 2. Crops taken from Marchesa Brigida Spinola Doria, by Peter Paul
Rubens. 1606, National Gallery of Art. Crop set 6 in Figure 12 shininess
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Figure 5.42: Stimulus 8 in Experiment 2. Crops taken from Queen Henrietta Maria with Sir Jeffrey Hudson, by
Anthony van Dyck. 1633, National Gallery of Art. Crop set 7 in Figure 12 shininess
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Figure 5.43: Stimulus 9 in Experiment 2. Crops taken from William II, Prince of Orange, and his Bride, Mary
Stuart, by Anthony van Dyck. 1641. The Rijksmuseum. Crop set 8 in Figure 12 shininess.

Figure 5.44: Stimulus 10 in Experiment 2. Crops taken from Pictura (An Allegory of Painting), by Frans van
Mieris the Elder. 1661, J. Paul Getty Museum. Crop set 9 in Figure 12 shininess.
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Figure 5.45: Stimulus 11 in Experiment 2 Crops taken from The Letter Writer, by Frans van Mieris (I). 1680, The
Rijksmuseum. Crop set 10 in Figure 12 shininess.
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Figure 5.46: Stimulus 12 in Experiment 2. Crops taken from Portrait of Agostino Pallavicini, by Anthony van
Dyck. 1621, J. Paul Getty Museum. Crop set 11 in Figure 12 shininess.

Figure 5.47: Stimulus 13 in Experiment 2. A Woman in a Red Jacket feeding a Parrot, by Frans van Mieris the
Elder. 1663, The National Gallery of London. Crop set 12 in Figure 12 shininess. Images not reproduced due to
copy-rights restrictions.
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Figure 5.48: Stimulus 14 in Experiment 2. Crops taken from The Letter Writer, by Frans van Mieris (I). 1680,
The Rijksmuseum. Crop set 13 in Figure 12 shininess.

Figure 5.49: Stimulus 15 in Experiment 2. Crops taken from Old Woman Reading, by Gerard Dou. 1631, The
Rijksmuseum. Crop set 14 in Figure 12 shininess.
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Figure 5.50: Stimulus 16 in Experiment 2. Crops taken from An Old Woman Reading, Probably the Prophetess
Hannah, by Rembrandt van Rijn. 1631, The Rijksmuseum. Crop set 15 in Figure 12 shininess.

Figure 5.51: Stimulus 17 in Experiment 2. Crops taken from Self Portrait of the Artist, with a Cittern, by Frans
van Mieris the Elder. 1674, The National Gallery of London. Crop set 3 in Figure 12 softness. Images not
reproduced due to copy-rights restrictions.
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Figure 5.52: Stimulus 18 in Experiment 2. Crops taken from Philip, Lord Wharton, by Anthony van Dyck. 1632,
National Gallery of Art

Figure 5.53: Stimulus 19 in Experiment 2. Crops taken from Self-portrait with the Portrait of his Wife, Margaretha
van Rees, and their Daughter Maria, by Adriaen van der Werff. 1699, The Rijksmuseum



ON PERCEIVING THE LUSTER OF
PEARLS. WHEN LESS IS MORE.

The optics of pearls is relatively well understood, however the perception of pearls has
received less attention. Here we studied which image features make an object look pearl-
like. We identified three image features: 1) a highlight, (2) a dark halo surrounding the
highlight and (3) edge reflections. We hypothesized that these are used by the visual system
as perceptual cues to estimate the appearance of pearls. We used pearl earrings depicted
in paintings because painters identified the image features perceptually-relevant to render
materials, including pearls, in a convincing manner. In the first of a series of experiments,
we showed that there is a perceptual variability within these pearl stimuli, i.e., some objects
appear more pearly relative to others. Next, we digitally enhanced the three image features
mentioned above, and showed that this leads to an increase in the perception of pearliness.
Next, we isolated each image feature - by digitally removing the other two features - to
test the extent to which each isolated feature is responsible for the perception of pearliness
both for novice participants and for experts of pearls. Surprisingly, we found that novice
participants had a preference for the manipulated version in which the edge reflection and
the dark halo were removed, thus with only the highlight, over the original depiction with
all three image features. This indicates that the presence of a highlight alone satisfies the
perceptual systems requirements to evoke the perception of pearliness for our stimuli, and
that the other two optical features appear to interfere with the perception of pearliness.
However, experts had a significant preference for depictions containing all three image
features, demonstrating that a strong expert effect exists in the perception of pearls.

Submitted as: Mitchell J. P. van Zuijlen*, Francesca Di Cicco*, Pascal Barla, Maarten W. A. Wijntjes, Sylvia C.
Pont; On perceiving the luster of pearls. When less is more. * Authors contributed equally
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6.1. INTRODUCTION

Unlike most gemstones, pearls do not require human artifice to enhance their beauty, and
as such they were likely the earliest gems known to mankind (Kunz and Stevenson, 1908a).
The appraisal of the value and quality of pearls depends on a set of factors, like shape, size,
and color. But the characteristic for which they are most admired and highly priced, is their
luster, a term indicating the different interactions with light that are characteristic of pearls,
both on the surface and within the internal layers. luster is also referred to as brilliance or
glow.

The question we aim to answer in this paper is: what makes an object look pearl-like?
As previously shown (Di Cicco et al., 2020; Di Cicco et al., 2019; Sayim and Cavanagh,
2011; van Zuijlen et al., 2020; Wijntjes et al., 2020), the key to answer this kind of questions
can be found by analyzing paintings and pictorial practices. Painters can deliberately en-
hance the perceptually-relevant features of pearls’ for the sake of rendering their luxurious
and lustrous appearance (Cavanagh, 2005; Miller, 1998). By including only the significant
visual information, and leaving out what, even though physically correct, would not add
to the overall convincingness of its perception, paintings represent an instructive source of
information about the mechanisms of material perception. For example, the most famous
pearl in art history, depicted in the ’Girl with a Pear]l Earring” painted by Vermeer (Fig. 6.1),
does not look pearl-like and it might not be a pearl at all. Curators at the Mauritshuis (The
Netherlands) - where the painting is displayed - have argued that the size of the pearl is ”’im-
probably large”, and deemed it more likely that the pearl was rather a commonly available
and cheap, handcrafted imitation pearl, made of metal or glass and then lacquered (“The
Girl Without a Pearl Earring?”, 2017). Beside the shape, the appearance itself of the pearl
is not convincing. For example, Icke (1987) pointed out that the look is too metallic to be a
pearl. Understanding which cues determine the appearance of pearls can thus also help art
historians and conservators with an objective and consistent method for the identification
of the depicted materials.

Why are pearls lustrous? Like every other material property, luster can be treated both
as a physical and a perceptual issue (Mondonneix et al., 2017). While the optics of pearls
is well understood and has been thoroughly studied (Landman et al., 2001; Raman and
Krishnamurti, 1954a, 1954b), their perception remains largely unexplored.

The physical explanation of the luster of pearls is to be found in their structure and op-
tical behaviour. Natural pearls are formed by mollusks such as oysters and clams, which
secrete shell material as a response to damages to their tissue, caused by the intrusion of an
irritant (Taylor and Strack, 2008). The shell material is made mostly of calcium carbonate,
also called nacre or mother of pearl, interlaced by an organic membrane of conchiolin, and
deposited around the nucleus in concentric layers (Landman et al., 2001). The nacre con-
sists of an ordered structure of thin, parallel, crystal sheets (Rouhana and Stommel, 2020).
The thickness of the translucent nacre, and its arrangement with the opaque conchiolin,
determine the lustrous and iridescent appearance of pearls (Landman et al., 2001). When
light hits a pearl, it is partly reflected off the surface and partly absorbed and refracted
via thin-film interference, through the translucent nacre layers (Raman and Krishnamurti,
1954a, 1954b). The scattering of light follows an anisotropic path along the lateral di-
rection, parallel to the nacre plates rather than perpendicularly (Raman and Krishnamurti,
1954a, 1954b).
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Figure 6.1: Johannes Vermeer, Girl with a Pearl Earring, c. 1665. Mauritshuis, The Hague, The Netherlands.

In their comprehensive discussion of the optical behaviour of pearls, Raman and Kr-
ishnamurti (1954a, 1954b) identified three main optical phenomena: the reflection and
diffraction of light creating the focused image of the light source, a darker diffusion halo
surrounding this reflection, and a general, lateral diffusion of light reaching the highest
intensity along the periphery of the pearl, termed “whispering gallery effect”.

The optical behaviour of pearls described by Raman and Krishnamurti (1954a, 1954b)
was measured under collimated lighting conditions in a controlled lab environment. How-
ever, as for any other material, pearls’ appearance depends on the combination of object
shape, optical properties and illumination conditions (Fleming et al., 2003; Marlow et al.,
2012; Olkkonen and Brainard, 2010; Pont and te Pas, 2006). Given that the shape of pearls
is mostly spherical, the visibility of the optical phenomena identified by Raman and Kr-
ishnamurti (1954a, 1954b) will depend on the illumination environment under which the
pearls are observed. More ecologically valid lighting conditions can cause the emergence
of different features and thus a wider range of appearances of pearls.

While lighting conditions within paintings are often canonical, with strong conventions
for lighting coming from the top-left (Carbon and Pastukhov, 2018; Di Cicco et al., 2019;
Mamassian, 2008; Van Zuijlen et al., 2021; Wijntjes, 202 1), they nevertheless contain more
variability than a single collimated light source.

Through observation of a large selection of painted pearls we identified three distinct
image features that appear consistently across paintings of pearls. These images features are
the highlight, the dark halo around the highlight, and the edge reflection. A pearl depicted
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within a painting that exemplifies all three image features is presented in Fig. 6.2. We
hypothesized that these three image features are perceptual cues for the visual perception
of pearls.

Figure 6.2: A section from the painting "Portret van Adriana Croes" by Johannes Cornelisz. Verspronck, 1644,
The Rijksmuseum, which exemplifies all three image features that we hypothesized are used by the visual system
as perceptual cues. First, the highlight in the top-left region of the pearl. Next, in the middle of the pearl, bordering
the highlight is a dark halo. Lastly, the reflection along the edges of the pearl.

A number of perceptual studies have researched the first of these three image features,
namely the highlight, but not in relation to the perception of pearls’ appearance. The role
and constraints of the highlights have been the object of thorough investigations, with the
main aim of understanding gloss perception (Chadwick and Kentridge, 2015). The pres-
ence of even simple shaped highlights (e.g. from a single-point light source) on the surface,
is enough to trigger the perception of glossiness (Beck and Prazdny, 1981), even though
the estimation of reflectance properties improves under more complex, real-world illumi-
nation conditions (Fleming et al., 2003). This is probably due to the increased coverage of
highlights, one of the image cues proposed to elicit gloss perception, together with contrast
and sharpness (Marlow and Anderson, 2013; Marlow et al., 2012). For the bright spots
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on the surface to be perceived as specular reflections, congruency constraints apply. Thus,
their orientation and brightness need to be congruent with the 3D shape of the object and its
shading profile (Kim et al., 201 1; Koenderink and van Doorn, 1980; Marlow et al., 2011),
unless one considers a cluster of objects oriented differently, like a bunch of grapes, then the
rule of orientation congruence can be broken without hindering the perception of glossiness
(Di Cicco et al., 2019).

The perceptual role of the dark halo surrounding the highlight, has never been re-
searched to the best of our knowledge, probably because it is an optical phenomenon pecu-
liar to pearls. Fu et al. (2014) conducted microstructural analysis of real pearls to determine
the origin of this optical effect. They attributed it to the heterogeneous nature of the reflect-
ing layers of the pearl, made of crystals of aragonite embedded in the organic matrix. While
resulting from a different optical phenomenon, the locally darker luminance extrema of the
dark halo might be visually compared to the lowlights, which have been shown to con-
tribute and even trigger a convincing perception of glossiness in the absence of highlights
(Kim et al., 2012).

Finally, the edge reflections are created by reflections of the surroundings along the
edges of the pearl’s surface.

To further illustrate these three features, we photographed two real pearls using studio
lighting set up (Fig. 6.3). All the images were illuminated from above. In the two images on
the left, the pearls were placed against a dark background. The lighting condition created
a clear highlight and some glow along the edges. Note that this glow is due to the lateral
scattering of light parallel to the nacre layers, an optical phenomenon also described by
Raman and Krishnamurti (1954a, 1954b), and it is different from what we referred to here
as edge reflection. In the images in the middle and in the right columns of Fig. 6.3, we added
a white background, first only behind the pearl (middle) then also below (right). Such light
background could be clothing or human skin within paintings (such as in Fig. 6.2), and it
is reflected along the edges of the pearl, creating the edge reflection. The addition of the
white background below the pearl causing the bottom reflection, also delineates the dark
region around the highlight, which we referred to as dark halo.

It has been shown that humans are incredibly good at categorizing materials into dif-
ferent classes with high accuracy (Fleming et al., 2013), and at telling apart real from fake
materials, even within a brief presentation time (Sharan et al., 2009, 2014). To understand
how humans can categorize materials, the next step in research is to focus on the cues that
trigger the perception of material classes. For example, Todd and Norman have studied the
role of reflections on the perception of glass (Todd and Norman, 2019, 2020) and on metal
(Todd and Norman, 2018). Schmid et al. (2020) hypothesized that discriminating between
material classes is the primary aim of our ability to distinguish between gloss levels, based
on the image structure of the specular reflections. They identified a set of image features
of the specular reflections, i.e. both highlights and lowlights, and showed that these can be
manipulated to evoke robust perception of different material classes, including pearlescent
materials.

Understanding the image features employed by the visual system to judge the appear-
ance of pearls is not only a fundamental question about the functioning of the visual sys-
tem, it also has practical applications. For example, it would help to clarify and optimize
the evaluation criteria used by experts during quality control through computer graphics
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Figure 6.3: Two sets of photographs of real pearls showing the three image features that we hypothesized are
used by the visual system as perceptual cues for the visual perception of pearliness. The pearls in all images are
illuminated from above. The images on the left were taken against a black background to capture the highlight in
isolation. In the images in the middle and on the right, a white background was added only behind (middle) and
both behind and below (right) the pearls. The reflection of the white background at the bottom of the pearls causes
the edge reflection and delineates the dark halo around the highlight.

simulations (Nagata et al., 1997), or switch from the time-consuming judgement prone to
subjective biases of human experts to computer vision assessment of pearls’ quality (Mon-
donneix et al., 2017).

In this study, we are interested in the image features that serve as perceptual cues to
identify pearls depicted in paintings. As stimuli for this study, we exclusively used pearls
earrings, which are commonly depicted within paintings. In this way, each stimulus has
a relatively similar context, i.e., a human face. We first experimentally demonstrated the
intuitive finding that the perception of pearls is not simply uniform: some pearls are more
pearl-like than others. This of course leads to the main question: What makes a pearl look
more pearl-like? Therefore, we manipulated the three pearl image features - highlights, dark
halo, edge reflections - first by digitally enhancing them, and then by deleting two of the
three features in turn, to study the extent of their role as perceptual cues for the perception
of pearliness.
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6.1.1. OVERVIEW OF THE EXPERIMENTS

In Experiment 1, we tested the extent to which participants perceived the pearls depicted in
earrings to look pearl-like. The hypothesis behind this experiment was that not all depic-
tions were equally successful in rendering a convincing appearance of pearls. Thus, the aim
of the experiment was to test whether the painted pearls indeed varied in how much they
looked like a pearl.

In Experiment 2, we digitally enhanced the three image features under investigation in
this study - highlight, dark halo and edge reflection - using a self-developed image editing
process. Participants were asked to choose the most pearl-like between the original and
the enhanced version of each pearl, with a two-alternative forced choice experiment. In
this experiment we tested whether the pearls would be consistently chosen to look more
pearl-like, by enhancing the image features that we expected to trigger the appearance of
pearls.

In Experiment 3, we tested the causal relationship between each of the three image
features and the appearance of pearls, by digitally deleting two of the three features. Par-
ticipants chose with a categorization task, to what extent the three manipulated versions of
the stimuli as well as the original stimuli looked like pearl, glass, metal or stone.

In Experiment 4, we performed a follow-up of the results in Experiment 3. Two groups
of participants, experts of pearls and novices, performed a two-alternative forced choice ex-
periment to choose the most pearl-like between the original version and the highlight-only
version. We found that novices and experts attended to different features in their judge-
ments, and that experts chose consistently the original stimuli, whereas novices preferred
the highlight-only manipulations.

6.2. EXPERIMENT 1

6.2.1. PARTICIPANTS AND STIMULI

All participants in the studies reported within this paper were naive to the purpose of the
experiments. Each participant agreed with the informed consent prior to the experiment
and received compensation for their participation. The experiments adhered to the tenets of
the Declaration of Helsinki and were approved by the Human Research Ethics Committee
of the Delft University of Technology.

For all the experiments (except for a part of Experiment 4), participants were recruited
through Amazon Mechanical Turk (AMT). AMT is an online platform for crowd-sourced
data gathering that can be used to rapidly obtain high-quality data (Buhrmester et al., 201 1).
Using the AMT system of qualifications, we restrict the tasks to participants that have com-
pleted at least 1000 tasks of which at least 95% were accepted (Peer et al., 2014). Further-
more, we added the qualification that required participants to be located within the USA,
with the aim that participants would have a sufficient knowledge of the English language to
understand the instructions. These three qualifications apply to every experiment reported
in this paper that was performed through AMT.

Besides the "qualifications’ that restrict participants from starting a task, we also defined
a number of exclusion criteria for participants based on their performance in these tasks. For
the first experiment we excluded participants that either (1) failed an attention check (Aust
et al., 2013; Oppenheimer et al., 2009) i.e., in the instructions participants were explicitly
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instructed to write the word ‘attention’ in the comment section at the end of the experiment,
or (2) participants that responded too fast by having a median trial time under 1 seconds
or (3) by having an intra-rater agreement below a cut-off value of 0.3. Here, the intra-rater
agreement was calculated as the averaged Pearson correlation across the three repetitions
of the trials. The cut-off value of 0.3 was determined using a look-up table for Pearson
correlation’s critical values for a one-tailed distribution at an alpha of .005, which is 0.267
when n equals 90. We rounded the critical value (i.e., 0.267) up to 0.3, which makes our
cut-off slightly more conservative.

In Experiment 1, we collected the data from 40 participants. Using the exclusion criteria
described above, we removed a total of 31 participants, the majority of which (n = 29) were
removed due to failing the attention check and a further 2 were removed due to failing the
intra-rater agreement criterion. Of the participants that failed the attention-check, 14 also
failed the time criterion, i.e., they responded too fast.

We analyzed the data from the 9 remaining participants, who rated 91 sections of paint-
ings that contained a pearl earring. Stimuli were selected from the Materials In Paintings
(MIP) database (Van Zuijlen et al., 2021, https://materialsinpaintings.io.tudelft.nl/). The
size of the depicted pearls varied between paintings. A simple, but limited way to control
for this would be to standardize the size of the pearls, i.e., to resize each painting so that
the pearls have the same size across all paintings. However, real-world pearls are not all
the same size and therefore standardizing in this way would also remove a portion of the
variability which the painter might have explicitly chosen to include. This might further-
more impact the scale and content of the segmented context drastically, which in turn might
affect the data as a confounding factor. Instead, we chose to standardize the size of pearls
relative to something that is consistent in size in the real world and that is present across
all the paintings in our set. The iris of the eye of the figures wearing the pearl earrings
fits these requirements. One of the researchers annotated the size of the iris for the figures
wearing the pearls, which was then used to resize the paintings. Next, we manually created
a segment of 200 x 200 pixels for each painting, with the pearl roughly in the middle. A
few examples can be seen in Fig. 6.4 and the full set can be found in the supplementary
materials.

Figure 6.4: Examples of pearl earring stimuli used in Experiment 1. Note the visible variability in pearl sizes that
was maintained by standardizing the size of the original painting to the size of the iris. The attribution for each
painting can be found in the section.
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6.2.2. PROCEDURE

Before starting the rating task, we asked participants to calibrate the presentation size of the
stimuli using the method described in (Di Cicco et al., 2021, in press.), where users matched
the size of a digital credit card on their screen to a physical credit card in their possession.
In this way we could control for the varying display sizes, and therefore ensure a consistent
presentation size across participants. After this calibration, participants performed a free-
viewing task of 10 seconds of 18 stimuli randomly selected from the stimulus set, to get
an idea of the range of the stimuli. Finally, participants performed five randomly selected
practice trials before starting the real task.

Participants were explicitly instructed that each stimulus would contain a pearl earring.
They were asked to rate “to what extent” the pearl “looks like a pearl”, using a continuous
scale ranging from “Does not look pearl-like” to “Looks very pearl-like”. At the end of
the experiment, participants were asked to answer the question “What did you base your
judgements on?”. Each stimulus was rated three times, for a total of 273 trials per observer.
The trials were randomized across participants.

6.2.3. RESULTS AND DISCUSSION

In Experiment 1, participants rated the perceived pearliness of 91 stimuli, three times per
stimulus. The intra-rater agreement, calculated as the average Pearson rank order correla-
tion across the three repetitions of each participant, was 0.54. Note however that this value
is slightly inflated due to the exclusion of participants scoring below 0.3. Next, we looked
at the consistency between participants by calculating the intraclass correlation coefficient
(ICC). ICC estimates and their 95% confidence intervals were calculated using the pingouin
package for Python, based on a mean-rating (k = 3), consistency, two-way random-effects
model (ICC3k; (Koo and Li, 2016; McManus and Humphrey, 1973; Shrout and Fleiss,
1979). The ICC was estimated to be 0.78, in a 95% confidence interval between 0.7 and
0.84, which was found to be significantly different from 0 (F(90,810) = 4.49, p < .0001).
The mean perceived pearliness spans a perceptually distinguishable range from 0.11 to 0.82.

Taken together, these results show that participants had a robust and non-random per-
ception of pearliness that was agreed upon between participants. In Fig. 6.5 we visualized
the mean ratings across all participants, where we took the median of each participants over
the three repetitions, and we showed the two least and the two most “pearly” pearls in our
stimuli set. The full range of stimuli ordered on pearliness can be found in the supplemen-
tary materials Fig. 6.12.

The results of Experiment 1 indicate that the perception of pearliness can vary across
painted depictions of pearls. Such variation in the appearance of pearliness may be caused
by differences in the features of the painted pearls. This raised the follow-up question:
which are these features? As discussed earlier, we hypothesized that three perceptual fea-
tures are used by the visual system to trigger the perception of pearliness - highlight, dark
halo and edge reflection. On observation of our stimuli, we found these three image features
to be present in all the stimuli of our set, but with different weight combinations depending
on the artist. We tested our hypothesis in the following experiments.
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Figure 6.5: The average ratings across all participants, where we take the median rating per participant, for
each painting. Error bars indicate the standard error. Higher ratings indicate that the pearl earring was rated as
perceptually more pearly, and the opposite for lower values. The two least pearly, as well as the two most pearly
pearls are visualized. The attribution for each painting can be found in the section.

6.3. EXPERIMENT 2

In Experiment 2, we tested our hypothesis that the three images features (highlights, dark
halo and edge reflections) are cues that trigger the perception of pearliness. We enhanced
the intensity of these three image cues in the 91 stimuli used in Experiment 1, employing a
self-developed image-editing process. The manipulated stimuli, together with their original
version, were used in a two-alternative forced choice test. According to our hypothesis, the
manipulated depiction should be perceived as more pearly relative to the original stimuli.

6.3.1. PARTICIPANTS AND STIMULI

In Experiment 2 we compared the perceptions of the original paintings to the perceptions of
their Pearliness Enhancement Transform (PET) version. The painting segments we tested
and manipulated were the same 91 stimuli used in Experiment 1. The self-developed PET
algorithm, inspired by Wetness enhancing transformation (WET) (Sawayama et al., 2017),
consists of three mostly automatic image manipulations. First, we increased the luminance
of the whole pearl (both light and dark tones). In the second manipulation, the visibility of
the dark halo and the edge reflection are enhanced by creating a mask that adds dark tones
to the dark halo and bright tones to the edge reflection; the mask is then blurred to create
smooth transitions between these added image features. Finally, a glow filter is applied to
the pearl image region in order to reproduce the visual effect of pearl translucency. Details
of the step-by-step process of PET manipulation can be found in section 6.9 in supplemen-
tary material. Examples of the original version of the pearls in the earrings and their PET
version, are shown in Fig. 6.6. The complete list of PET manipulated stimuli can be found
in section 6.9 in the supplementary material.



6.3. EXPERIMENT 2 155

The task was originally performed by 20 participants, recruited on AMT. Identical to the
previous experiment, we used an attention check and data from participants that failed the
attention check were not analyzed. A total of 10 participants were removed from the task
due to the attention check, and the data for the remaining 10 participants were analyzed.

Original version
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Figure 6.6: Examples of the original stimuli (top row) and their manipulated PET versions (bottom row). The
attribution for each painting can be found in the section.

6.3.2. PROCEDURE

Identical to Experiment 1, participants performed a size-calibration task before starting
the experiment. In Experiment 2 we conducted a two-alternative forced choice (2AFC)
test. The original and the manipulated versions of the stimuli were presented side-by-side.
The location of each version (i.e., left or right presentation) was randomized across trials.
Participants were informed that they would be presented with “two versions of a painting”,
and they were asked to use the mouse to click the image that they perceived to “contain the
most pearl-like pear]l”. Each of the 91 pairs of stimuli was presented three times, for a total
of 273 trials.

6.3.3. RESULTS AND DISCUSSION

Fig. 6.7 shows the proportion of which version of the stimuli was perceived to be more
pearly, averaged across participants for each stimulus, for which we took the median over
the three repetitions. Across participants, there was a strong tendency to perceive the ma-
nipulated version as more pearly. A 1-sample t-test confirms that the difference between
the PET and the original version was significant (#(90) = 37.6, p < .0001).

We hypothesised that highlight, edge reflection and the dark halo are the perceptual
cues that trigger the perception of pearliness. Our findings show that enhancing the visi-
bility of these image features leads to an increase in the perception of pearliness. We have
shown that a causal relationship exists between at least one of these features and the in-




156 6. ON PERCEIVING THE LUSTER OF PEARLS. WHEN LESS IS MORE.

IIIII‘ ““‘III | “III I ‘III‘ ‘ I‘II‘I ‘I“‘I“ IIII‘I ‘ ‘III Il T ‘ I ‘

0.8
A
(]
£
30.6
o
°
[
>
Q
2 0.4
[}
o

0.2

| original version rated as more pearly
manipulated version rated as more pearly
0.0
0 20 40 60 80
paintings

Figure 6.7: The proportion of which version of the stimuli was chosen to look more pearly by participants. A
value of 1, which makes a full orange bar, such as for the most left-wards stimuli, implies that all the participants
rated the manipulated version as being more pearly. For each participant, the median of the three repetitions was
used.

creased perception of pearliness. However, in Experiment 2 the contributions of the three
image features were conflated. Thus, in order to measure the relative contribution of each
feature to the perception of pearliness, in the next experiment we isolated them via image
manipulation of the original versions.

6.4. EXPERIMENT 3

In Experiment 3, we conducted a material categorization task inspired by Todd and Norman
(2019), to test if the image features identified in this study triggered a convincing perception
of pearliness when seen in isolation, or if they rather elicited the appearance of different
materials, like metal, glass, and stone.

6.4.1. PARTICIPANTS AND STIMULI

To create the stimuli for Experiment 3, we selected the 15 images that were perceived to
be most pearly on average in Experiment 1. Next, we created three alternative versions for
each image, where each version only contained one of the three image features. The aim
of this was to test the causal relationship between the individual image features and the
pearly appearance. That is why we tested only the images that were judged as perceptually
most pearly, and left out the ones that perhaps were already perceived to look more like
something else.

The image manipulations were done in Gimp version 2.10.22, using the Resynthesizer
plugin. We first upscaled the image from 200 x 200 pixels to 800 x 800 pixels. Then, we
applied the Heal Selection tool, which is part of the plugin, using a sampling width of 20
pixels in order to erase two of the three image features in turn, and create versions of the
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stimuli that contained either only the highlight, only the edge reflection or only the dark
halo (see Fig. 6.8). In the last step, we downscaled the images back to their original size.
The 15 original stimuli and their three manipulated versions can be found in section 6.9 in
the supplementary material. Note that for the edge reflection only version of some stimuli,
the edge reflection might appear attenuated compared to the original version. The reason of
such perceptual effect is the lack of contrast created by the absence of the dark halo.

A total of 30 participants were recruited on AMT to perform this experiment. The ex-
clusion criterion was the attention check that was also used in the previous two experiments,
which led to the exclusion of 13 participants. The data from the remaining 17 participants
was analyzed and is shown below.

~ Original

Highlight only Dark halo only
h . .

Edge reflection only
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I %

Original Highlight only Dark halo only Edge reflection only

Figure 6.8: Examples of the four different versions of the stimuli used in Experiment 3. On the left, two examples
of the original stimuli are presented. These are identical to the stimuli used in Experiment 1 and 2. In the second
column, the highlight only version is shown, in which the dark halo and edge reflection were manually removed.
In the third column, only the dark halo remains visible, and in the last column only the edge reflection is visible.
The attribution for each painting can be found in the section.

6.4.2. PROCEDURE

Before starting the experiment, participants performed the size-calibration and the free-
viewing tasks as described for Experiment 1 and 2. Participants were instructed that they
would be presented with sections of paintings containing an earring. They were further
instructed that “because the earrings come from paintings, it is not always clear what the
earring is made out of”’, and that the earrings “can look like a combination of” glass, metal
or stone. Participants were then asked to categorize the appearance of each earring by
assigning 100 points across four material categories: pearl, metal, glass, and stone. For
example, if an earring looked completely pearl-like, a participant could assign all 100 points
to the pearl attribute. Participants could continue to the next trial only after all 100 points
were assigned. Points were always assigned in multiples of 5, which we intended to make
the task less tedious. This is mathematically identical to asking participants to assign 20
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points in multiples of 1, but the authors found that a total of 100 points was conceptually
easier. See Fig. 6.9 for an example of the interface used in this task. Observers were
presented with one stimulus at a time to categorize. There were three repetitions for each
stimulus, for a total of 180 trials. The trials were randomized across participants.

To what extend does the earring look like the four materials?

Assign the points to the materials relative to how much the earring represents that category

5 points left

pearl 15
anl)

metal 0
o

glass 60
aassssss—=@)

stone 20
aanl)

Next Trial

Trial O out of 5 practice trials

Figure 6.9: Example of the task in Experiment 5. Participants were required to assign all points (in multiples
of 5) to the extent in which they perceived the earring to look like the materials reported above the sliders. The
participants were only able to progress once all 100 points were assigned.Therefore in this case of this example,
the participants is required to assign 5 more points. The green bar at the top serves as a visual indication of the
remaining points and displayed a linearly interpolated color between red (100 points left) and green (0 points left).
The attribution for the painting can be found below the references.

6.4.3. RESULTS AND DISCUSSION

Participants categorized four versions of 15 pearl earrings, and for each version they in-
dicated to what extent they perceived the earring to be made out of pearl, metal, glass,
and stone. The mean ratings across participants and the significant differences between
categories per stimuli version are shown in Fig. 6.10. The original version and the high-
light only version of the stimuli, were categorized to look significantly more pearl-like than
metal, glass or stone-like. On the contrary, the versions of the stimuli that only showed
the dark halo or the edge reflection, were categorized similarly as pearl or stone, and pearl,
stone or glass respectively.

These results appear to indicate that the highlight is the most salient feature to trigger
pearliness perception. When comparing between versions, it is somewhat surprising to see
that the categories distribution for the highlight-only version is so similar to the original
version, which seems to imply that the dark halo and edge reflection do not contribute to
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Figure 6.10: Boxplot distributions for the ratings for each of the four versions of the pearl earrings. The box
extends from the upper and lower quartiles and the middle lines indicate the median. Outliers more than 1.5 times
the interquartile range are plotted as points. In the original version (top-left) the stimuli were not manipulated.
In the other three versions, only one of the image features remained, while the other two image features were
digitally removed. Significant differences at Holm—Sid4k adjusted p-values of 0.05 are indicated with an asterisks

().

the perception of pearliness. Note that *highlight-only’ refers to the manipulation in which
the other two images features were removed. When directly comparing the original and
highlight-only version, it appears that the highlight-only version was rated as more pearly
relative to the original version, which contains all image features. As Fig. 6.10 only contains
significance tests per version, we performed one extra dependent t-test for paired samples
which showed that indeed, the highlight only version was rated as significantly more pearly,
t=-3.89, p < .005.

The importance of the highlight for pearls and the resulting change in material cate-
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gorization when the highlight was removed, were not surprising results. What we did not
expect though, was that the version of the stimuli in which we isolated the highlight was
judged as pearl significantly more than the original version having all three image features.
One influencing factor could be the level of experience with the appearance of real pearls
of our participants. It is probable that the vast majority of our participants were no experts
of pearls nor were they often exposed to real pearls. In Tani et al. (2014), it was shown
that when asked to visually rank real pearls based on quality, novices and experts attend
to different features to judge pearls’ quality (Tani et al., 2014). One can assume that this
difference between novice and experts extends to the judgement of pearliness for pearls
depicted within paintings. Possibly pearl experts would disagree with our novice partic-
ipants that judged the highlight-only version as more pearl-like than the original version.
Therefore we conducted the next experiment, in which we compared the perception of the
pearl-like appearance for the original and the highlight-only versions, by expert and novice
observers.

6.5. EXPERIMENT 4

The previous experiment showed that the stimuli having only the highlight were categorized
as pearls more often than the original stimuli, suggesting that the dark halo and the edge
reflection did not contribute to the perception of pearliness, or even suppressed the percep-
tion thereof when shown in isolation. In Experiment 4, we tested whether experience with
real pearls affects the perception of the pearls. We used a two-alternative forced choice
paradigm, identical to Experiment 2, to check the perceptual difference between the origi-
nal version containing all image features and the highlight-only version, i.e., the version in
which the black halo and the edge reflect were removed.

6.5.1. PARTICIPANTS AND STIMULI

We collected data from two groups of participants: novices and experts. The novice partic-
ipants (n = 30) were recruited on the AMT platform, identical to the previous experiments.
The expert participants (n = 5) consisted of professional pearl appraisers and art historians.
The experts were approached by email and performed the experiment in identical settings
as the AMT participants. All participants were naive to the purpose of the experiment, they
were only informed that we were “interested in the perception of pearls.”

For the experts, we did not use any exclusion criteria. For the novice participants, we
used the same exclusion criterion as reported for Experiment 2, i.e., the attention check. In
this case it led to the removal of 21 novice participants.

The stimuli were the 15 original versions of the paintings and the 15 highlight-only
versions used in Experiment 3. Two examples of the stimuli are shown in the first and
second columns of Fig. 6.8.

6.5.2. PROCEDURE

The task was identical to the two-alternative forced choice experiment described in Exper-
iment 2, executed with the same procedure. Each trial was repeated three times, for a total
of 45 trials.
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6.5.3. RESULTS AND DISCUSSION

Fig. 6.11 shows the number of times that each version of the stimuli was chosen to appear
more pearly by novices (top) and experts (bottom). For the novice participants, it shows
that the highlight-only version was consistently chosen as looking more pearl-like than the
original, which was confirmed by a 1-sample t-test (#(14) = 9.8, p < .0001). Experts, on
the other hand, had a strong preference for the original depiction of the pearl, t(14) =-9.99,
p < .0001. It is interesting to note that one of the experts spontaneously mentioned that
without the “dark area surrounding the highlight” the pearl looks less realistic, which is in
agreement with our initial hypothesis.

6.6. GENERAL DISCUSSION

In this study, we identified the image features used by painters to depict pearls (highlight,
dark halo, edge reflection). The aim of this study was to determine whether these image
features are used as perceptual cues by the visual system to trigger the perception of pearls.

In Experiment 1, we measured to what extent pearl earrings depicted in paintings were
perceived pearl-like. We found that the stimuli in our set covered a wide range of pearli-
ness, indicating that certain features of their appearance allowed participants to tell apart
what does and what does not look like a pearl. Real pearls do not all have the same appear-
ance, otherwise quality controls would not be necessary. Shape, size, and color of pearls
are important quality parameters for pearls’ evaluation (Klein, 2014; Kunz and Stevenson,
1908b) which likely influenced the ratings of this experiment. The two most pearly pearls
look small and round while the least two are bigger and drop-like in shape (Fig. 6.5). When
participants reported what they based their judgements on, several indeed referred to shape
and size and a single participant mentioned the color. But most of all, participants referred
to the optical appearances of the objects, more then they mentioned shape, size, and color
combined. This is probably because the most important parameter to assess pearls is their
luster, the way they interact with light (Mondonneix et al., 2017). Words like “shiny”,
“glossiness”, “luster” and “gleam” were used by the majority of participants to describe the
objects that looked more pearl-like. But remarks were not limited to specular reflections.
Participants also reported to have judged the “opacity”, “whiteness” and “solidity”, and
stated that more transparent objects did not look like pearls.

We hypothesized that three image features (highlight, edge reflection and a dark halo)
constitute the perceptual cues for pearls’ recognition. Previous studies have classified the
image features used for luster assessment with the main aim of automatizing the quality
control process. Mondonneix et al. (2017) related a number of image features, including
the six types of gloss identified by Hunter et al. (1937) to the perceptual luster assessment
of Tahitian pearls, a type of pearl showing a black body color due to the pigmentation of the
organic material. The majority of features used by Mondonneix et al. (2017) are related to
highlight features, such as specular gloss, gloss contrast and directness-of-reflected-image
gloss. In this study we merely considered the presence (or absence) of highlights with
our highlight feature. Our next feature, edge reflections, was however not considered in
Mondonneix et al. (2017). Note here that sheen, i.e., specular reflections at a grazing angle,
and our edge reflection feature might in some conditions appear perceptually similar but
are caused by separate optical processes. Lastly, in Mondonneix et al. (2017) there is no
mention of a dark halo. This is most likely because the body color of the pearls under
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Figure 6.11: The preference across novice (top) and expert (bottom) participants for the original or highlight-only
version of the stimuli. A value of O (a full crimson bar) would indicate that participants always choose the original
version as more pearly, and a value of 1 (a full salmon bar) would mean the participants always choose the original
version as the most perceptually pearly.
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investigation was already dark. Nagata et al. (1997) tested the visual judgements by novice
observers of the pearl-like quality of different sections of a pearl for both photographs and
synthesized images of pearls. They found that the section of the image that presented both
the highlight feature and the interference color, was the most characteristic of pearls. This
confirms the relevance of the highlight feature in pearls’ judgement.

It is interesting to note that both studies mentioned above also tested iridescence in ad-
dition to specular reflections. Iridescence here is an optical phenomenon typical of pearls,
caused by the combined effects of dispersion, diffraction, and thin-film interference due to
the layers of nacre. However, within our stimuli set of paintings, iridescence was never
rendered in the pearl earrings. We can speculate that leaving out the iridescence was done
deliberately by painters, who knew the key image cues for a convincing depiction of mate-
rials, and iridescence might not have been necessary for the identification of pearls.

To test the effect of our set of image features as perceptual cues for pearliness percep-
tion, in Experiment 2 we enhanced the visibility of these image features using our Pearliness
Enhancement Transform (PET) to check if this would increase the pearl-like appearance of
the stimuli. We found a significant effect where the PET versions were consistently cho-
sen to look more pearly than the originals. The brightness of the pearl was indicated by
participants as the main trait they based their judgements on, confirming that the most char-
acteristic property of pearls is indeed their luster, due to the complex scattering of light that
results in a specular reflection “whiter than white” (Klein, 2014). High contrast highlights
were found to be highly correlated with the perception of glossiness of pearlescent materi-
als (Schmid et al., 2020). However, with the PET manipulation we enhanced the brightness
not only of the highlight but also of the edge reflection, and we also increased the darkness
of the dark halo, which in turn increased the contrast of the highlight even more. As such,
it was difficult to disentangle the separate effect of increased pearl-perception for each of
the three image features.

To test the relative contribution of each of these three image feature to the perception
of pearliness, we ran Experiment 3. Surprisingly, when comparing the ratings between ver-
sions, the highlight-only stimuli were perceived to be significantly more pearl-like than the
original version. Our finding that the version with only the edge reflection was categorized
as glass much more often than the other versions is in agreement with Todd and Norman
(2019), who reported that glass reflections are mostly visible along occluding object bound-
aries.

In Experiment 4, we further investigated this finding with a 2AFC paradigm, presenting
the original stimuli and the highlight-only stimuli to novices and experts of pearls. Our
findings showed that novice participants had a significant preference for the highlight-only
version, whereas experts had a strong and significant preference for the version with all
three image features. From this we can conclude there is an effect of visual expertise on the
perception of pearls.

It has been shown in literature that experts of pearls and novices evaluate different
features when judging the quality of real pearls (Tani et al., 2014), and that novice observers
improve their ability to distinguish between key image features of photographed pearls
when they are exposed to real pearls before the judgement (Nagata et al., 1997). Tani
et al. (2014) had novices and pearl experts to visually rank pearls based on quality, and
tested the contribution of glossiness and interference color, both in isolation and combined.
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They found that glossiness could explain the judgements of the novices four times more
than it could explain the expert judgement, leading them to the conclusion that experts
used features that have not been considered in their study. Their finding of the increased
relevance of glossiness for novices is in agreement with our results. A possible explanation
could be that people who work with real pearls, i.e., pearl experts, are more familiar with
real pearls, and they might build a more complete schemata (Gombrich, 1960) in their mind
of how a pearl is supposed to look-like, rather than simply attending to glossiness as novice
users. We speculate that, as a result of visually studying pearls with the goal of depicting
them, painters could also develop an expertise in pearl appearance. This has likely led them
to reproduce some or all of the three image features through painting. Furthermore, fake
pearls, being made out of plastic or glass, do not have the layered structure found in real
pearls and as a result only show a white spot as specular reflection, where real pearls present
a more complex combination of features (Mondonneix et al., 2017).

6.7. CONCLUSION

The present article described the perception of pearls depicted in paintings. We identified
three image features (highlight, edge reflection and the dark halo surrounding the highlight)
that might be used by the visual system as cues for the perception of pearliness. In a
series of experiments, we first demonstrated the intuitive result that pearls depicted within
paintings can vary on perceived pearliness. We further demonstrated that increasing the
intensity of the three image features led to an increase in the perceived pearliness for our
stimuli, implying that at least one of these features is used by the human visual system for
the perception of pearliness. When attempting to disentangle the contribution to pearliness
for these three features, we found that removing the edge reflections and the dark halo
increased the perception of pearliness for novice participants, while it decreased for expert
viewers. This implies that there is a strong effect of exposure or expertise on the perception
of pearliness. We can conclude that from our set of image features, highlights are most
important for the perception of pearliness, while the benefit of edge reflection and the dark
halo depends strongly on familiarity with high-quality pearls .

6.8. ATTRIBUTION

All paintings used and reproduced within this paper are available under open access at a
CCO or CC BY 4.0 licences. Paintings are listed in order of appearance, from left to right.

* Figure 1. Johannes Vermeer, 1635. Girl with the pearl earring, Mauritshuis.

* Figure 2. Johannes Cornelisz Verspronck, 1644. Portret van Adriana Croes, The
Rijksmuseum.

* Figure 4. Frans II Pourbus, 1600. Portrait of Margaret of Austria, Consort of Philip
111, The Rijksmuseum.

* Figure 4. Pieter Dubordieu, 1638. Portrait of a Woman, The Rijksmuseum.
* Figure 4. Nicolaes Maes, 1665. Portrait of a young Woman, The Rijksmuseum.

* Figure 4. Isaack Luttichuys, 1656. Portrait of a Young Lady, The Rijksmuseum.
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* Figure 5. Jan Mijtens, 1661. Maria de Witte Franoisdr (b 1616). Wife of Johan van
Beaumont, The Rijksmuseum.

* Figure 5. Probably chiefly studio of Sir Peter Lely, 1663. Barbara Villiers, Duchess
of Cleveland, National Gallery of Art.

* Figure 5. Johannes Cornelisz Verspronck, 1644. Portret van Adriana Croes, The
Rijksmuseum.

* Figure 5. Peter Paul Rubens, 1630. Portrait of Isabella of Bourbon, The Art Institute
of Chicago.

* Figure 6. Rembrandt van Rijn, 1660. Woman with a Pink , The Metropolitan Mu-
seum of Art.

* Figure 6. Peter Paul Rubens, 1630. Portrait of Isabella of Bourbon, The Art Institute
of Chicago.

 Figure 6. Missing value, 1675. Okdnd kvinna, Nationalmuseum.

* Figure 6. British Painter, 1600. Portrait of a Woman , The Metropolitan Museum of
Art.

* Figure 8. Frans van Mieris (I), 1678. A Man and a Woman, The Rijksmuseum.

* Figure 8. Van Dyck, Anton, 1638. Diana Cecil, Countess of Oxford, Museo Nacional
del Prado.

* Figure 9. Dirck Craey, 1650. Portrait of a Woman, thought to be Catharina Kettingh
(1626/27-73), Wife of Bartholomeus Vermuyden, The Rijksmuseum.
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6.9. SUPPLEMENTARY MATERIALS

ALL ORDERED PEARL STIMULI AND ATTRIBUTION

Figure 6.12: Figure continued on next page. All the pearl stimuli ordered from least pearly to most pearly, as rated
by participants in Experiment 1. The ordering goes from left to right, top to bottom, where the top-left is least and
bottom-right most pearly. 9 of the pearl stimuli are from images from the National Gallery of London, which can
not be reproduced here due to copyright and have therefore been replaced by a black square. The attribution for
each of the paintings can be found in the Attribution section. Note that the number in the top-left of each image
here is only used to link images to its attribution and was not visible to the participants.
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Figure 6.13: Figure continued from previous page.

ATTRIBUTION

Below is the list of all paintings used within this study. For each painting, we only used a
small section of the painting that depicted the pearl earring. All images reproduced in the
main document or in this supplementary document are reproduced under CC BY 4.0 or CC

0.0.

1.

Maria de Witte Frangoisdr (b 1616). Wife of Johan van Beaumont by Jan Mijtens.
1661. The Rijksmuseum

. Barbara Villiers, Duchess of Cleveland by Probably chiefly studio of Sir Peter Lely.

1663. National Gallery of Art

3. Okdnd kvinna by Missing value. 1675. Nationalmuseum
4. Ulrika Eleonora d.d. 1656-1693, drottning av Sverige prinsessa av Danmark by

Jacques D’ Agar. 1677. Nationalmuseum

5. Portrait of a young woman by Eglon van der Neer. 1660. The Rijksmuseum
6. Young Woman with a Pearl Necklace by Copy after Willem Drost. None. The

Metropolitan Museum of Art

. Company Making Music by Missing value. 1665. Mauritshuis

8. Margaretha Munter (1639-1711), second Wife of Jacobus Trip by Lambertus Jansz.

de Hue. 1668. The Rijksmuseum

. Portrait of a Young Woman by Gerrit Dou. 1655. The National Gallery of London
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10

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.
24,
25.

26.

27.
28.
29.
30.
31.

32.

. Portrait of a young Woman by Nicolaes Maes. 1665. The Rijksmuseum

Marie de Medici, Queen of France by Rubens, Pieter Paul. 1622. Museo Nacional
del Prado

Portrait of Cornelia Craen van Haeften (1622-1678) by Cornelis Janssens van Ceulen
(1I). 1670. The Rijksmuseum

Portrait of Catharina Dierquens (1664-1715) by Nicolaes Maes. 1682. Mauritshuis

Karl XII, 1682-1718, konung av Sverige, pfalzgreve av Zweibriicken och Hedvig
Sofia, 1681-1708, prinsessa av Sverige, hertiginna av Holstein-Gottorp by David
Klocker Ehrenstrahl. 1687. Nationalmuseum

Diana and Her Nymphs on the Hunt by Workshop of Peter Paul Rubens. 1627. J.
Paul Getty Museum

Girl Standing before a Mirror by Caspar Netscher. 1668. The Art Institute of
Chicago

Ingena Rotterdam (died 1704), Betrothed of Admiral Jacob Binkes by Nicolaes Maes.
1676. The Metropolitan Museum of Art

Johanna le Gillon, Wife of Hieronymus van Beverningk by Jan de Baen. 1670. The
Rijksmuseum

A couple with six children by Jiirgen Ovens. 1664. The Rijksmuseum

Portrait of a Lady and a Girl by Caspar Netscher. 1679. The National Gallery of
London

Portret van Helena Fourment (1614-1673) by Peter Paul Rubens. 1635. The Ri-
jksmuseum

Aletta Pancras (1649-1707) Wife of Francois de Vic by Gerard ter Borch (II). 1670.
The Rijksmuseum

Judith by Eglon Hendrik van der Neer. 1678. The National Gallery of London
Portrait of a Woman by British Painter. 1600. The Metropolitan Museum of Art

Portrait of the Infanta Isabella by Studio of Peter Paul Rubens. 1615. The National
Gallery of London

Margaretha van Raephorst (d 1690). Wife of Cornelis Tromp by Jan Mijtens. 1668.
The Rijksmuseum

A Fishmonger at the Door by Missing value. 1663. Mauritshuis

A Musical Company by Gerard van Kuijl. 1651. The Rijksmuseum

Young Woman in Fantasy Costume by Rembrandt van Rijn. 1633. The Rijksmuseum
Portrait of a Woman by Jacob Adriaensz Backer. 1647. J. Paul Getty Museum

Portrait of Amalia van Solms (1602-75) by Michiel Jansz van Mierevelt. 1632. The
Rijksmuseum

Portrait of a Woman by Adriaen Hanneman. 1653. The Metropolitan Museum of
Art
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33.

34.

35.

36.
37.
38.

39.
40.
41.
42.
43.

44.

45.

46.
47.
48.

49.

50.
51.
52.

53.
54.

55.

56.

Portrait of Margaret of Austria, Consort of Philip III by Frans Il Pourbus. 1600. The
Rijksmuseum

Portrait of Catharina van der Voort by Abraham van den Tempel. 1667. The Ri-
jksmuseum

Portrait of Jacoba van Orliens, Wife of Jacob de Witte of Haamstede by Jan Mijtens.
1660. The Rijksmuseum

Portrait of a Woman by Jan Mytens. 1660. J. Paul Getty Museum
Woman with a Pink by Rembrandt van Rijn. 1660. The Metropolitan Museum of Art

Portrait of Elisabeth van Bebber (1643-1704) by Caspar Netscher. 1677. Maurit-
shuis

Portrait of a Woman by Bartholomeus van der Helst. 1659. Mauritshuis
Girl with a Pearl Earring by Johannes Vermeer. 1665. Mauritshuis
Konversationsstycke by Bartholomeus Maton. 1679. Nationalmuseum
Samson and Delilah by Jan Lievens. 1632. The Rijksmuseum

A Girl Holding a Glass ("Taste", One of a Series of the Five Senses) by Hendrick ter
Brugghen. 1620. Nationalmuseum

Portrait of a Lady by Caspar Netscher. 1683. The National Gallery of London

Hedvig Sophia of Sweden (1681-1708), Swedish princess and a Duchess Consort
of Holstein-Gottorp, Spouse Frederick 1V, Duke of Holstein-Gottorp by Anna Maria
Ehrenstrahl. 1684. Nationalmuseum

Women with Pearls in her Hair by Ferdinand Bol. 1653. Nationalmuseum
Lucretia by Rembrandt van Rijn. 1664. National Gallery of Art

Anne of Austria, Queen of France by Rubens, Pieter Paul. 1622. Museo Nacional del
Prado

Portrait of a Woman by Style of Anthony van Dyck. 1635. The National Gallery of
London

Woman Writing a Letter by Gerard ter Borch. 1655. Mauritshuis
Amalia de Solms-Braunfels by Van Dyck, Anton. 1631. Museo Nacional del Prado

Portrait of Catharina Pottey, Sister of Willem and Sara Pottey by Nicolaes Maes.
1677. The Rijksmuseum

Portrait of Petronella Dunois by Nicolaes Maes. 1681. The Rijksmuseum

Isabella Klara Eugenia, 1566-1633, prinsessa av Spanien drkehertiginna av Oster-
rike by Peter Paul Rubens. None. Nationalmuseum

Gerard Rover, Merchant and Shipowner in Amsterdam by Nicolaes Maes. 1684. The
Rijksmuseum

Portrait of a woman, possibly a member of the van Citters family by Caspar Netscher.
1674. The Rijksmuseum
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57.

58.

59.

60.

61.
62.

63.

64.

65.
66.
67.
68.

69.
70.

71.

72.
73.
74.

75.
76.
7.

78.

79.

Sara Pottey (1651-1705), Wife of Johan van Bochoven by Daniél Haringh. 1680. The
Rijksmuseum

Lady Elizabeth Thimbelby and her Sister by Anthony van Dyck. 1637. The National
Gallery of London

Cornelia Teding van Berkhout (1614-80), Wife of Maerten Harpertsz Tromp by Jan
Lievens. 1646. The Rijksmuseum

Alida de Lange, Wife of Johan Rammelman by Netscher, Caspar. 1679. Museo
Nacional del Prado

Woman Selling Herrings by Godfried Schalcken. 1677. The Rijksmuseum

Portrait of Philippina Staunton, Wife of Roelof van Arkel (1632-1709), lord of Broeck-
huijsen by Caspar Netscher. 1668. The Rijksmuseum

Portrait of Amalia van Solms (1602-75) by Gerard van Honthorst. 1650. The Ri-
jksmuseum

Old Man with a Gold Chain by Rembrandt Harmenszoon van Rijn. 1631. The Art
Institute of Chicago

Portrait of Rembrandt by Rembrandt van Rijn. 1650. National Gallery of Art
A Lady Playing the Lute by Ferdinand Bol. 1654. Nationalmuseum
Joseph and Potiphar’s Wife by Guido Reni. 1630. J. Paul Getty Museum

Maria Eleonora (1599-1655), Princess of Brandenburg, Queen of Sweden by Michiel
van Mierevelt. 1619. Nationalmuseum

Portrait of Maria Timmers (1658-1753) by Missing value. 1683. Mauritshuis

Portrait of a Young Woman by Attributed to Willem Drost. 1679. The National
Gallery of London

Portrait of Petronella van der Burcht (1657-1682) by Zacharias Blijhooft. 1674. The
Rijksmuseum

Portrait of a Young Lady by Isaack Luttichuys. 1656. The Rijksmuseum
Portrait of a Woman by Jan Verkolje (I). 1691. The Rijksmuseum

Portrait of a Woman, possibly Clara Fourment (1593-1643) by Peter Paul Rubens.
1630. Mauritshuis

A Polish Nobleman by Rembrandt van Rijn. 1637. National Gallery of Art
nan by Gonzdlez, Bartolomé. 1600. Museo Nacional del Prado

Portrait of Dina Lems, Wife of Jan Valckenburgh by Daniel Vertangen. 1660. The
Rijksmuseum

Matthijs Pompe van Slingelandt and Family by Johannes Mijtens. 1655. National-
museum

Maria Rey (1630/31-1703). Wife of Roelof Meulenaer by Ferdinand Bol. 1650. The
Rijksmuseum
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80.

81.

82.

83.

84.

85.
86.
87.

88.

89.
90.

91.

Diana Cecil, Countess of Oxford by Van Dyck, Anton. 1638. Museo Nacional del
Prado

Margherita Gonzaga (1591-1632), Princess of Mantua by Frans Pourbus the Younger.
None. The Metropolitan Museum of Art

Portrait of Helena Ctaharina de Witte 91661-95), wife of Iman mogge, lord of Haam-
stede by Caspar Netscher. 1678. The Rijksmuseum

Portrait of a Woman with a Black Cap by Jan de Braij. 1657. The National Gallery
of London

Portrait of Ernestine Yolande (1594-1663), Princess of Ligne by Missing value. 1618.
Mauritshuis

A Man and a Woman by Frans van Mieris (I). 1678. The Rijksmuseum
Portrait of a Woman by Pieter Dubordieu. 1638. The Rijksmuseum

Lucretia del Prado, Wife of Jeremias Boudinois by Gortzius Geldorp. 1610. The
Rijksmuseum

Portrait of a Woman, thought to be Catharina Kettingh (1626/27-73), Wife of Bartholomeus
Vermuyden by Dirck Craey. 1650. The Rijksmuseum

Young Venetian Woman by Tintoretto, Domenico. 1600. Museo Nacional del Prado

Portrait of Adriana Croes by Johannes Cornelisz. Verspronck. 1644. The Rijksmu-
seum

Portrait of Isabella of Bourbon by Peter Paul Rubens. 1630. The Art Institute of
Chicago
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PEARLINESS ENHANCEMENT TRANSFORM (PET)

To manipulate the stimuli we developed the Pearliness Enhancement Transform (PET).
PET consists of three image manipulations applied to the pearl linked to the three image
features we have previously discussed. As a prerequisite, PET requires the pearl’s location
and an approximation of the pearl’s shape. Below, we first discuss how the pearls location
and shape were identified, after which we discuss the three image manipulations in depth.
All computations are GPU based with a GLSL implementation in the Gratin software .
As the input images are rather small (200x200 pixels) they are first upscaled to 800x800
pixels. Then the PET is applied, after which they are again downscaled back to their original
resolution.

Pearl Shape The image region corresponding to the earring is determined by 5 parame-
ters: its central position p in pixels, its size s in pixels, its aspect ratio r € (0, 1] (assuming
that a pearl is always elongated in the vertical direction), its orientation 0 in degrees and its
vertical asymmetry a € R* (assuming a pearl may be narrower at its top than at its base).

All shape parameters are set manually to match the estimated contour of the earring in
the image. This process exports two images: a gray-level mask m of the estimated image
region, and a normal map i for the corresponding shape.

Figure 6.14: The outline of the pearl earring is first defined as a circle of center 7 and radius s (left). It is then
deformed to an elliptic shape via the ratio r (middle) and to a “drop-like” shape via the vertical asymmetry a
(right). For attribution see #37 in the Attribution section.

The mask is determined implicitly: we assign a gray level value m(g)to a pixel g
by imposing that the distance d(g) to the contour is smaller than or equal to 1. Here
4 =2 G- p)+ p corresponds to § transformed by a rotation matrix % of —6 radians
around p. The distance is given by d(§) = |S [§ — pl|l, where S is a non-uniform scaling

(i.e., diagonal) matrix given by S = diag(m, %), where ¢ is the vertical coordinate

of . When a=0, S=di ag(%, %) is independent of ¢, and yields an ellipse in general, or
a circle when r = 1. When a # 0, the scaling depends on the position §; along the verti-
cal axis, pinching the shape at the top and inflating it at the bottom, yielding a “drop-like”
shape. For the final mask, we allow for a narrow transition around d(§) = 1 by setting
m(fi) =1-smoothstep(1 —¢,1+€,d(§)), where we use the GLSL smoothstep function, and

1 http://gratin.gforge.inria.fr/
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systematically set € = 0.12.

The normal map 7 is also computed implicitly, starting from the distance function.
Indeed, since d(g) < 1 inside the mask, S[g§ — p] can be considered as the projection of 7i
onto the picture plane. The normal is then recovered by lifting its projection so that it has

unit length: 7(§) = (S[G - pl,\/1 - 1d(@]2).

Luminance Adjustment The first image manipulation simply consists in adjusting the
luminance of pixels in order to make both darkest and brightest tones lighter. This should
be done in a way that depends on the range of luminances in the input image. For that
reason, we first compute the mean p and standard deviation o of the luminance histogram
of whole the input image.

Figure 6.15: The earring region in the input image (left) is first modified to slightly increase the luminance of the
dark tones via ag (middle), then modified to strongly increase the bright tones via @ (right). For attribution see
#37 in the Attribution section.

The color C(q) at a pixel g inside the mask m is then modified using
Cl@ <~ D+aoL@)+ar(Lig)C(q), 6.1)

where L(g) is the luminance intensity of pixel ¢, and ag and a; increase the luminance of
the darkest and brightest tones respectively and are given by:

ao(l)
ar(l)

smoothstep(l — (u—0),1,1-1), (6.2)
smoothstep(u—o, u+40,1). 6.3)

The boundaries (first two parameters) of the GLSL smoothstep functions could be adjusted
to increase or decrease the strength of the effect; here they have been chosen manually to
produce consistent results for the full set of 91 input earring images.

Additional reflections The next image manipulation adds two types of reflections to the
pearl earring image region: a dark spot around the main highlight, and an elongated bright
reflection close to its contour, following observations from paintings as well as recommen-
dations from painting tutorials.
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Figure 6.16: Using the normal map 771, we create three regions (left): inside the highlight in green, in the dark
spot in red, and in the bright elongated region in dark gray. We assign a dark tone to pixels belonging to the dark
spot but not to the highlight, and a bright tone to pixels belonging to the bright reflection but not to the dark spot
(middle). The resulting gray level map R is blurred (right). For attribution see #37 in the Attribution section.

As with the pearl shape estimation, this step involves manual interaction for locating
the position of the pixel gy, at the center of the main highlight and for specifying its size sp,.
We use the normal map to assign a normal 7ij, = 7i(Gy,) to the highlight.

We then define three distance functions dj, dy and d;, which locate the distance to
the border of the main highlight, of the dark spot and of the bright elongated reflection
respectively. All three functions are based on the normal map 7, and hence automatically
conform to the previously estimated pearl shape from Section 6.9. They are computed as
follows:

1—T7ipo,1-7(4)

Sh,0,1

dnoa(q) = 6.4)
When 7 is aligned with either 7iy,, 7ip or 7, the corresponding distance is equal to 0. As
the normals start to spread appart, the distance increases until it reaches 1 for a reflection of
size sp, So or §; respectively.

The dark spot is positioned in a direction opposite to the highlight with respect to the
center of the earring. To this end, we start from 72;,, the 2D projection of 7, onto the picture
(=np,3)
I=7ip3)I°
This has the effect of placing the dark spot closer to the earring center so that it does not
overlap too much with the second, bright elongated reflection. We systematically set the

extent of the dark spot to so = 4sy,.
The bright elongated reflection is also positioned in a direction opposite to the highlight,
but farther from it. As before, we start from ﬁh but modify it to push the reflection closer

—%3“'_”'” i1y, The resulting 2D vector is then lifted to a unit
h

plane; we then lift the symmetric of this 2D vector to a unit 3D vector using 7y =

to the boundary using 7; =

3D vector: 7] = (?ll, VAR ﬁl [12). Elongation is obtained by computing the extent in a way

dependent on §. We use s; = (1+8|7i(g) - f1]) sp, where 7 = %; in effect, the bright

reflection is thus 8 times wider in the direction running along the contour of the earring.
We next create a reflection image R based on these three distance functions, using the

minimal and maximum luminances m and M of the original input image. We assign the

dark spot a luminance that is slightly less dark than m (e.g., to avoid having it as dark as
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the eye pupil), but we use the maximal luminance for the elongated bright reflection:

R(g) =

M if do(g)>1 and dy(§) <1 (6.5)

0.8m+0.2M if do(§) <1 and dp(g§)>1
0.5 otherwise.

Figure 6.17: Starting from the previously modified image (left), we first blend it with the dark spot (middle), then
with both the dark spot and the bright elongated reflection (right), using a soft light mode (see text). For attribution
see #37 in the Attribution section.

The reflection image R is then blurred with a large kernel to smooth out boundaries
across the added reflections, and finally combined with the image output from Equation 6.1
using a soft light mode:

C(g) < softlight(C(4),G* R(q)), (6.6)
where G is a 40 x 40 Gaussian blur kernel with * the convolution operator and where soft-
light is a classic blending mode in image manipulation software that makes dark pixels
darker and bright pixels brighter. We use the softlight formula employed in Gimp:

softlight(4,B) = (1- A)B+C)A 6.7)
where

C=1-(1-A10-B) (6.8)
Glow filter Shape The last manipulation adds a slight glow to the pearl. It is obtained by
blurring the pixels in the mask m, and combining the result with the unblurred pixels:

C(@ <« max(C(§),G=C(g), (6.9)

where G is a 10 x 10 Gaussian blur kernel and * denotes the convolution operator.
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Figure 6.18: Starting from the previously modified image (left), we add a slight glow effect (middle). We compare
this final result with the original input image (right). For attribution see #37 in the Attribution section.

ALL PET MANIPULATED STIMULI
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Figure 6.19: Figure continued on next page. All the PET stimuli, in the same order as Fig. 6.12. 9 of the pearl
stimuli are from images from the National Gallery of London, which can not be reproduced here due to copyright
and have therefore been replaced by a black square. Note that the number in the top-left of each image here is only
used to link images to its attribution and was not visible to the participants. For attribution see the corresponding
numbers in the Attribution section.
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Figure 6.20: Figure continued from previous page.
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ORIGINAL AND MANIPULATED VERSIONS

Original Highlight only Dark halo only

Edge reflection only

Figure 6.21: Figure continued on the next page. The original and the 3 manipulated versions of the stimuli used
in experiment 3, following the same order as in Fig. 6.12. One image (#3 in Fig. 6.12) did not show all the image
features and thus could not be manipulated consistently in relation to the other stimuli and has therefore been
skipped. As such, instead of the 15 most pearly stimuli, we actually used the 16 most pearly stimuli minus image
#3 in Fig. 6.12. A second image (#9 in Fig. 6.12, which would be #8 here) has not been reproduced here due to
copyright. The numbers here refer to the PCA bi-plot in figure 9 of the main document and have not been shown
to participants. Note that in some cases it can be difficult to see the edge reflections due to the reduced contrast as
a result of the removal of the black halo. For attribution see the corresponding images in the Attribution section.
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Original Highlight only Dark halo only Edge reflection only

Figure 6.22: Figure continued from previous page.
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Original Highlight only Dark halo only Edge reflection only

Figure 6.23: Figure continued from previous page.






CONCLUSION

Material perception is a vital ability that enables us to successfully interact with the world.
This ability extends to the painterly depictions of materials found in paintings. The main
aim of this thesis was to study the perception of materials and material attributes depicted
within paintings and to enable other researchers to study material depiction within paint-
ings. This aim has been accomplished in several scientific articles that study material per-
ception in paintings and with the release of the Materials In Paintings dataset. Detailed
conclusions for each of the studies can be found within the corresponding chapters; here
we discuss the implications and contributions of this thesis.

The first major contribution of this is the Materials In Paintings (MIP) dataset. The MIP
dataset contains a large set of high-quality, digital reproductions of paintings, representative
of western art history. For each of these paintings we have collected a number of annotations
relating to material identity and location. We have demonstrated the multidisciplinary utility
of this dataset for perception, art history and computer vision.

The annotational paradigm we used to collect the majority of our data relies on human
vision to provide insights that may be difficult, if not impossible, to collect using automated,
computational methods (Wijntjes, 2021). Often, only after collecting human annotations
can computer vision leverage these annotations into a computational approach. By using
large samples of participants we can use the human visual system to measure or judge image
features. For example, while it is trivial to extract color, contrast, or edges from an image
computationally, the same can not be said of extracting subjective qualities such as beauty
or perceptual judgements of material attributes.

Using this annotation method we collected perceptual judgements of material attributes,
such as glossiness, hardness, translucency, etc., in chapter 2 for 15 materials. Using these
annotations we reaffirmed the finding of “material signatures” by Fleming et al. (2013), i.e.,
distributions of material attributes that are related to material categories in distinct and well
defined patterns. We showed that similar distributions can be found for materials depicted
within paintings as can be found for materials captured within photographs. The implication
of this finding is that insights generated by studying painterly material depictions and the
perception thereof could transfer to material perception as a whole, i.e., material perception
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independently of the medium of depiction.

We found found that the averaged “material signatures” distributions are distinct for the
coarse-grained material categories (e.g., stone, fabrics, etc.,) that we measured. This raised
the question if equally distinct and well-defined material signatures could be found for fine-
grained material categories (e.g., marble and limestone or velvet and satin). In chapter 5 we
measured a number of perceptual attributes for velvet and satin, which are two subordinal
material categories of the superordinal category of fabrics. We found that the distributions
of measured material attributes for these two materials were also distinct. We speculate that
experiments will likely continue to find distinct distributions for material categories as long
as we can visually distinguish between those materials. In other words, when we can not
visually distinguish between two materials categories the material signatures will likewise
not be distinct. While we did not explicitly test for material recognition or distinguishability,
we did find that only presenting local information, which we assumed reduced material
recognizability, resulted in less distinct distributions of material attributes for velvet and
satin.

While the material signatures averaged across participants are distinct and well defined
for materials we also found that variation exists between participants when rating percep-
tual attributes. Specifically, we found that the consistency within and the agreement be-
tween participants, while both quite high, displayed some variation. This can be seen in
figure 2.4 from chapter 2 which shows the intra- and inter-rater agreements for perceptual
attributes averaged over 15 materials. Similar results for within participants consistency
have been found for velvet and satin, in figure 5.3 from chapter 5 I Some variation within
the intra- and inter-rater agreement is found in virtually any perceptual experiment and is
therefore not very surprising. However, what is interesting is that this variation appears
to be dependent on the perceptual attribute being rated. This is interesting as this might
explain some instances of misperception, where one material is wrongfully interpreted as
another material.

Above we have only discussed the averaged distributions of perceived material at-
tributes, which are robust. However, different instances of a material can of course evoke
different perceptions. This can for example be seen in the PCA bi-plot shown in figure 2.9:
if all instances of a material were perceptually identical in terms of perceptual attributes,
than their should be no spread within material clusters within the PCA space. One could
argue that this spread is merely noise, but then why do different clusters display differ-
ent patterns? I would argue that it is the variation in the materials appearance that causes
this perceptual variation - and not just noise. However, one might continue to argue that
the stimuli displayed a variety of shapes and were depicted within varying contexts, and
that might explain the perceptual deviation from the “average” material signature. In chap-
ter 6 we used painterly depictions of pearl earrings, which all had a roughly comparable
shape and context, and nevertheless found perceptual variations >. We furthermore showed
that manipulating a number of perceptual image features related to the material appear-
ance, without manipulating shape or context, caused participants’ perception of the pearls

IFor agreement between participants a different method of calculation was applied that invalidates the comparison.

21¢ might be worth noting that in chapter 2 we measured perceptual attributes, such as glossiness, roughness, etc.,
while in chapter 6 we measured pearliness, i.e., the extend to which the stimuli looked like a pearl. As such,
there is some asymmetry as in the former we studied material estimation and in the latter material categorization.
Nevertheless, we consider both to be expressions of perceptual variation in this case.
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to change. Taken together this implies that it is variations within the appearance of the
material itself that account for these perceptual variations.

In addition to variations within the appearance of materials leading to perceptual varia-
tions, for pearl perception we also found striking perceptual variation between two sets of
participants; pearl novices and pearl experts. Despite being presented with identical stimuli,
i.e., painterly depictions of pearls, these two sets of participants appeared to have signifi-
cantly diverging perceptions. Specifically, novice participants had a significant preference
for pearls in which two image features were digitally removed, while pearl experts indi-
cated that they perceived the original pearls, containing all image features, as more pearly.
Note here that from an optical point of view, the original pearl should indeed be considered
as more pearly. While it is possible that the reduced pearliness perception for pearl experts
was induced by noticing small artefacts of the digital removal of two image features, we
speculate that instead the pearl experts displayed a visual expertise, i.e., a perceptual fa-
miliarity with pearls from previous interactions. Within vision science the study of visual
expertise has largely focused on face perception (Diamond and Carey, 1986; Gauthier and
Tarr, 1997; Harel, 2016; Young and Burton, 2018) and to our knowledge little work exists
that explicitly considered visual expertise for material perception. In a study by Tani et al.
(2014), where novices and pearl experts were asked to order pearls based on quality, it was
shown that experts use a method for evaluating quality that was different from what was
used by novices. Biederman and Shiffrar (1987) proposed that visual expertise might be
related to acquired knowledge of distinguishing features. Indeed, in a recent eye tracking
study it was shown that novices learned to attend to critical locations that contained the dis-
tinguishing features required for a categorization task (Dickter and Baker, 2019). Without
additional studies, we can only speculate further on the existence of such an effect of exper-
tise on material perception. Might expertise with certain materials - or material attributes -
explain some of the differences found between participant discussed previously?

FUTURE WORK

The MIP dataset currently contains the paintings from 9 galleries, which we believe gives us
a reasonably representational sample of western art. However, by now there are many more
digital reproductions of paintings available. Collecting additional paintings would greatly
improve the generalizability for any art historical findings. Likewise, paintings could be
collected that cover non-western art to improve generalizability.

Besides the collection of additional paintings, the density of the bounding boxes for
the existing paintings could be improved. For each painting, we have exhaustively labelled
material presence, i.e., we know if a material is present or not. However, we do not always
know how often a material is present as material segmentations were not always done ex-
haustively. Instead, for each painting/material combination we have collected at most five
bounding boxes. Increasing this maximum, or removing this upper-limit entirely, would al-
low for more detailed ecological inquiries. For example, we found that the presence of the
coarse grained materials (fabrics, skin, metal, etc.,) within a painting remained relatively
stable over time, however it might be that the quantity with which materials occur within a
painting does fluctuate.

Furthermore, the existing bounding boxes have not all been assigned with a fine-grained
material label because in many cases no consensus was reached between labelling annota-
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tors. We can assume that failing to reach consensus is at least partially due to a more
difficult stimulus. On the one hand, this implies that the fine-grained labels in our dataset,
i.e., the boxes that have reached consensus are robust and clear stimuli. On the other hand,
it means that difficult, ambiguous or unclear stimuli are under-represented in our dataset.
These difficult stimuli would be very interesting to study. What makes them unclear? Do
these stimuli evoke robust but idiosyncratic responses or are they not robust at all? Per-
haps alternative methods could be used to reach consensus for difficult images, such as the
consensus game by Upchurch et al. (2016).

In addition to improving the existing annotations for our set of paintings, there are also
novel annotations of which collection could be beneficial. For example, we have demon-
strated that annotating image features such as highlights can reveal painterly conventions
or the stylized methods of depictions that evoke a robust perceptual response. This demon-
strates that simple annotational interfaces can be used to simplify difficult, lengthy, or com-
plex tasks by distributing the labor across a variety of simple and straightforward tasks, or
across a large selection of annotators. By for example directly annotating a set of image
features we might be able to describe certain materials by the typical image features they
depict. More broadly speaking, using annotation methods we could link image features
to perceptual responses. The difficulty herein however lies with knowing what to anno-
tate. For example, image features such as the contrast, coverage, sharpness (Marlow and
Anderson, 2013) and motion of highlights (Doerschner et al., 2011), as well as the pres-
ence of lowlights (Marlow et al., 2012) have been proposed to trigger the perception of
shininess. Recently, other perceptual attributes have received increasing attention, such as
translucency (Di Cicco, Wiersma, et al., 2020; Di Cicco, Wijntjes, et al., 2020; Fleming and
Biilthoff, 2005; Gkioulekas et al., 2015; Gkioulekas et al., 2013) and viscosity (Van Assen
etal., 2018; van Assen et al., 2020). For example, it was found by Paulun et al. (2017) that
the magnitude of object deformation in response to external forces was strongly related to
perceived rigidity. However, for many other attributes it is not always clear what features
are related. Visualizing the image regions used by neural networks for material categoriza-
tion, as we have demonstrated in chapter 5, could help reveal image features or novel cues
that trigger the perception of material categories or material attributes.

As we have discussed in previous sections, individual differences exists between hu-
man annotators. By discarding individual differences and averaging across annotators we
can reveal information encapsulated within the image itself. On the other hand, analysis
of these individual differences can reveal insights into the perceptual system. The former,
averaging across annotation, could be of direct interest to digital art history. However, to
our knowledge human annotations are only rarely used within this field. One example from
the literature is given by Carbon and Pastukhov (2018), who collected annotations of the
lighting direction for a large set of paintings. Doing so, they were able to confirm the top-
left lighting convention, i.e., the convention that lighting predominately originates from the
top-left of the scene. While computer vision often replaces human annotations with ground
truth, this option is not available for digital art history as ground truth is usually impossible
to retrieve or might not exist in the first place. The latter, analyzing individual differences
between annotators, can be of value to perception science by providing insights into the
human perceptual system. For example, in chapter 2 we use annotators to judge material
attributes, such as glossiness and roughness, and found that the (dis-)agreement between
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participants depended on the material being judged. Another example can be found in
chapter 3 where we had groups of at least 5 annotators label material identities. In this
way a piece of fabric would be labelled as silk or velvet, etc. In many cases participants
disagreed and no consensus was reached. What leads some participants to interpret a fabric
stimulus as silk, while others interpret it as velvet? Do different annotators attend to differ-
ent image features? Or are image features interpreted differently amongst annotators? We
ask these questions explicitly for painting stimuli, but these questions are equally valid for
photographs or renderings.

An added benefit of such annotations is that they can be applied for a wide variety of
research questions, assuming that the data is publicly available. For example, in chapter
3 we used material bounding box annotations and found that glass windows have a strong
spatial bias to be depicted in the top-left of the painting, which appears strongly related to
the previously mentioned top-left lighting convention confirmed by Carbon and Pastukhov
(2018).The finding that two very dissimilar types of annotations can both point towards
a very similar result, i.e., a top-left lighting convention, is indicative not just of a high
external validity, but also that annotations might be useful besides their primary purpose.
Thus the collection, and especially the publicly sharing, of such annotations could lead to
novel insights.

LIMITATIONS

There is one “limitation” that is especially worth discussing, which concerns all chapters
of this thesis: the usage of paintings itself. Here we used quotation marks around the
word limitations, as we believe the usage of paintings is one of the primary assets of this
thesis. Nevertheless, while paintings can provide many benefits, there can also be several
drawbacks that warrant discussion.

The first such drawback is the underlying assumption of this thesis related to the artist’s
skills of material depiction. As argued several times throughout this thesis, we assume that
painters are skilled at depicting material and their attributes. This assumption is based on
the observation that, when looking at materials depicted by old master painters such as Van
Eyck, Velazquez, or Caravaggio, we experience a rich, convincing perception of these ma-
terials. Thus, based on this we feel warranted to assume that, at the least, some painters
have the expertise, the skill, to depict materials in a way that robustly triggers the human
visual system by capturing the required perceptual cues to evoke material perceptions. By
collecting paintings from curated art galleries we aimed to collect paintings that were pri-
marily made by artists who posses this skill of material depiction. However, it is entirely
possible that at least some of the paintings in our collection were made by painters without
this material expertise. An added complication here is the subjective, unclear nature of this
skill or expertise of material depiction.

The history of art has seen countless varying, changing, and evolving methods of de-
pictions. Rarely can clear before and after periods be distinguished, such as before and
after the discovery of perspective. Usually, variations in style appear and disappear grad-
ually across time and regions. Throughout all these changes in depiction, possibly, if not
likely, entirely unbeknownst or unintended by the painters, the material depictions have also
changed. This too adds to the complexity of any attempt trying to extract or capture this
painterly expertise of material depiction. On the other hand however, it makes this material
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depiction expertise all the more interesting. How, for example, did painters across time
and different styles depict some materials? Furthermore, this material depiction expertise
is not only limited to paintings. Food photographers, for example, are known to use many
“tricks” to make their photographic results look more appealing to the visual perceptual
system, such as for example substituting milk with glue or hair conditioner in an attempt
to create a perfect photograph of bowl of cereal (Campbell, 2012). For a more complete
understanding of material perception we need a broader study that encompasses a wider
variety of artistic material depictions, such as food photographers and digital artists.

In addition to this complex notion of a painters expertise of material depiction, there is
also a more physical, objective issue that arises when working with paintings, namely the
degradation of paintings. This can lead to unintended perceptual effects. For example, in
one unpublished pilot experiment from chapter 2 a piece of porcelain was perceived as very
fragile. On visual inspection we noticed that the white paint used to depict this porcelain
had deteriorated and had become transparent. Consequently, the porcelain itself appeared
so thin as to be transparent. Here, the transparency likely evoked the perception of fragility
in a way that was, likely, not intended by the painter. In our current studies we did not take
degradation into account and did not account for how degradation might alter the material
depictions in ways that were not intended by the painters.

While the evoked perception of a painting can be altered by deterioration, and poten-
tially by restoration, it is in practise not possible to alter the evoked perception in a con-
trolled manner. This results in a fundamental difference between the use of paintings as
stimuli and the use of more conventional vision science stimuli, such as photos and ren-
derings. For the latter, experimenters can manipulate and control parameters such as for
example the perspective, lighting, size, and the properties of the materials presented. For
paintings, comparable experimental control is only possible during the painterly process,
which means that researchers would need to create novel painterly stimuli (e.g., Di Cicco
et al., 2019) if controlled stimuli are required. Despite this fundamental difference dur-
ing the stimuli creation, the stimuli and the perceptions these evoke are comparable. All
three types of stimuli discussed here (paintings, photos, and renderings) could in theory re-
sult in perceptually identical stimuli’, despite the fundamental differences in experimental
control discussed here. This lack of control over experimental parameters within the stim-
ulus can be overcome by relating perceptual data to independent variables quantified and
measured within the stimuli itself. Furthermore, instead of setting experimental parameters
themselves, paintings allow researchers to rely on painters, who have carefully chosen the
parameters of depiction in order to achieve an optimal visual representation.

All in all, we conclude that studying painterly depictions for perception introduces novel
challenges and complexities, but that these are far out-weighted by the benefits, as we have
shown that painters’ perceptual expertise can be leveraged into insights that can be revealed
by the perceptual study of painterly depictions.

3The most simple being a monochrome plane, but more complex scenes could in theory be captured, too.
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SUMMARY

The world around us is filled with materials. Our ability of visual material perception
informs us how to navigate and interact with our environment. It tells us, for example,
whether food is fresh, if a chair is strong enough to sit on, how much force to use to pick
up a glass, etc. Painters have studied how to depict the world and the materials therein
for thousands of years. We believe that the material depictions within paintings can be
leveraged into insights for the scientific understanding of material perception. In this the-
sis, we studied the perception of painterly depictions of materials and aimed to make the
study thereof accessible to other researchers with the release of the Materials In Paintings
dataset. We collected a large set of paintings from museums and galleries. Then, we used
an online crowd-sourcing approach to annotate material identity (fabrics, stone, etc.,) and
gather spatial material segmentations (i.e., “cutting out” piece of the painting that depict the
material). In the first study, we measured the perception of material attributes (soft, rough,
fragile, etc.,) across a range of materials and found that painterly materials trigger dis-
tinct distributions of perceived attributes and we furthermore compared these distributions
to those for photographic materials. In the second study, we continued crowd-sourcing
annotations on material identity and material segmentations and combined these into the
Materials In Paintings dataset. In a number of cross-disciplinary demonstrations we pre-
sented novel findings across art history, human perception, and computer vision. While
these demonstrations are useful in their own right, the main focus here was the release of
the dataset. Next, we used the dataset as a source of stimuli for two studies into specific
materials. First, for fabrics, we studied the perception of satin and velvet and the effect of
presenting only local or, both local and global information, and found that the perceptual
distinction between these two fabrics becomes more ambiguous when removing global in-
formation. Furthermore, we showed that local image cues can affect perceptual responses
for shininess but not for softness. Lastly, we studied the perception and depiction of pearls
by identifying three image features that might trigger the perception of pearliness. In a se-
ries of experiments, we confirm the role of these image features but find that the presence
of only one of these image features, highlights, is already sufficient for naive participants to
trigger the perception of pearliness. Conversely, expert participants (art historians or pearl
experts) perceive depictions with all three features as more pearly, which implies the exis-
tence of visual expertise for pearl perception. All in all, in this thesis we show the benefits
of studying material perception through painterly depictions of materials and enable further
study with the release of the MIP dataset.
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SAMENVATTING

De wereld om ons heen is vol met materialen. Ons vermogen om deze materialen visueel
waar te nemen helpt ons om te navigeren en interacteren met onze omgeving. Het vertelt ons
bijvoorbeeld of voedsel vers is, of een stoel sterk genoeg is om op te zitten, hoeveel kracht
we moeten gebruiken om een glas op te pakken, of de vloer glad is enzovoort. Schilders
hebben duizenden jaren bestudeerd hoe zij de wereld en de materialen daarin kunnen weer-
geven. Wij geloven dat de schilderkunstige weergave van materialen kan worden benut om
inzicht te creéren in materiaal perceptie. In dit proefschrift bestuderen we de perceptie van
schilderkunstige afbeeldingen van materialen en probeerden we de studie daarvan toegan-
kelijk te maken voor andere onderzoekers met de publicatie van de Materials In Paintings
dataset. We verzamelden een groot aantal schilderijen van musea en galerie€n. Vervolgens
gebruiken we een online crowd-sourcing benadering om materiaalidentiteit (hout, steen,
metaal, enz.) te annoteren en materiaalsegmentaties te verzamelen (d.w.z. stukken digitaal
“uitsnijden” van het schilderij, waarin alleen het materiaal in kwestie is afgebeeld). In de
eerste studie meten we de perceptie van materiaal attributen (zacht, ruw, breekbaar, enz.) in
een reeks materialen en vinden dat verschillende schilderkunstige materialen verschillende
distributies van materiaal attributen vertonen. Verder vergelijken we deze distributies met
die voor fotografische materialen. In de tweede studie gaan we verder met crowd-sourcing-
annotaties over materiaalidentiteit en materiaalsegmentaties en combineerden we deze in
de Materials In Paintings dataset. In een aantal multidisciplinaire demonstraties werden
nieuwe bevindingen voor de kunstgeschiedenis, visuele perceptie en computer-visie gepre-
senteerd. Hoewel deze demonstraties op zichzelf al nuttig zijn, lag de focus hier op het
publiceren en introduceren van de dataset. Vervolgens gebruikten we de dataset als bron
voor twee onderzoeken naar specifieke materialen. Ten eerste bestudeerden we voor textiel
de perceptie van satijn en fluweel en het effect van het presenteren van alleen lokale of,
zowel lokale als globale informatie. Hierbij vonden we dat het perceptuele onderscheid
tussen deze twee stoffen minder duidelijker wordt bij het verwijderen van globale informa-
tie. Bovendien lieten we zien dat lokale beeldsignalen de perceptuele reacties voor glans
kunnen beinvloeden, maar niet op zachtheid. Ten slotte bestudeerden we de perceptie en
afbeelding van parels. Hierbij identificeerden we drie beeldkenmerken waarvan wij stellen
dat deze de perceptie van parelachtigheid kunnen opwekken. In een reeks experimenten
bevestigden we de rol van deze beeldkenmerken en vonden we dat de aanwezigheid van
slechts één van deze beeldkenmerken, highlights, al voldoende is voor naieve deelnemers
om de perceptie van parelachtigheid op te wekken. Echter, deskundige deelnemers (kunst-
historici of parelexperts) geven aan dat zij de afbeeldingen met alle drie de kenmerken als
meer parelachtig ervaren, wat impliceert dat er visuele expertise bestaat voor de perceptie
van de parel. Al met al lieten we in dit proefschrift de voordelen zien van het bestuderen
van material perceptie door middel van schilderkunstige afbeeldingen van materialen en
maken we verder onderzoek mogelijk met de publicatie van de MIP-dataset.
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