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Abstract 

Purpose: 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) is used in the diagnostic process 

and management of patients with metastatic colorectal cancer (mCRC). Also, 18F-FDG PET radiomic features have 

been found to hold prognostic value for clinical outcome in mCRC. However, no prognostic model has yet been 

developed to predict clinical outcome in mCRC using 18F-FDG PET images. Computer-aided pattern recognition 

can be helpful in this process but needs to be validated. The aim of this work was to develop and evaluate a 

medical-based explainable artificial intelligence (XAI) framework for discriminating between dichotomous 

progression free survival (PFS) in patients with mCRC undergoing anti-epidermal growth factor receptor (anti-

EGFR) monoclonal antibody (mAb) treatment using pre-treatment 18F-FDG PET images. 

Methods: We conducted an analysis of 18F-FDG PET images, expressed in standardized uptake values (SUV), 

obtained from 80 patients with mCRC who were eligible for third-line treatment with an anti-EGFR mAb as part 

of the IMPACT study. A coronal 2.5D Convolutional Neural Network (CNN) was built to capture features of the 

18F-FDG PET images specific for the two patient groups and a medical-based XAI framework was developed to 

extract the 18F-FDG PET features used by the CNN. The images were randomly divided into a training and a 

validation set (10-fold cross-validation). Performance of the CNN was evaluated based on the average area under 

the curve (AUC), accuracy, sensitivity and specificity from the cross-validation. A statistical analysis was 

performed to assess the predictive value of the 18F-FDG PET features extracted by the XAI framework. 

Results: The coronal 2.5D-CNN was able to discriminate between dichotomous PFS (median PFS: 152 days) in 

patients with mCRC undergoing anti-EGFR mAb treatment using pre-treatment 18F-FDG PET images, with an 

average AUC of 0.95  ± 0.11 (SD), accuracy of 94% ± 12, sensitivity of 91% ± 21 and specificity of 94% ± 21 %. The 

XAI framework showed that especially low 18F-FDG PET uptake volume features hold significant differences 

between the two patient groups. 
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Conclusion: The coronal 2.5D-CNN showed good performance to predict dichotomous PFS from pre-treatment 

18F-FDG PET images in patients with mCRC undergoing anti-EGFR mAb treatment. Low 18F-FDG PET uptake 

volume features seem to have potential as IB in this patient cohort, but further validation is required. 

Keywords: metastatic colorectal cancer (mCRC), anti-epidermal growth factor receptor (anti-EGFR), 18F-FDG, 

convolutional neural network (CNN), explainable artificial intelligence (XAI) 

Introduction 

18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) is widely used as diagnostic tool in the 

management of patients with metastatic colorectal cancer (mCRC) [1, 2]. Also, 18F-FDG PET showed potential as 

a prognostic tool to predict clinical outcome in patients with mCRC who underwent third-line palliative treatment 

with the anti-epidermal growth factor receptor (anti-EGFR) monoclonal antibody (mAb) cetuximab [3, 4]. The 

introduction of anti-EGFR mAb cetuximab and panitumumab improved clinical outcome in patients with a left-

sided primary tumour, KRAS, NRAS and BRAF wild-type mCRC [5-7]. It is of interest to develop a prognostic model 

in patients with mCRC eligible for palliative treatment, which could aid in more patient specific treatment 

decision using pre-treatment 18F-FDG PET. 

Computer-aided pattern recognition algorithms have been developed to evaluate and identify disease specific 

PET patterns based on 18F-FDG PET images in patients with mCRC [4, 8]. These studies used radiomic features 

extracted from tumour segmentations to predict clinical outcome, i.e. find tumour specific radiographic image 

characteristics (e.g. tumour intensity, shape, texture) for clinical outcome. Low metabolic tumour volume, 

heterogeneity and high sphericity on the 18F-FDG PET showed an association with improved clinical outcome [3]. 

Despite yielding reasonable results, feature extraction depending on volume of interest (VOI) parcellation can be 

time-consuming and is observer dependent in case of manual delineation. Also, non-tumour patterns (e.g. 18F-

FDG uptake in liver tissue, bone-marrow and muscle) might be of prognostic value to predict clinical outcome 

[9]. Deep learning based algorithms, such as Convolutional Neural Networks (CNN), use the whole 18F-FDG image 

to extract features and therefore may provide superior performance. Therefore, it is of interest whether a CNN 

could effectively be applied to predict progression free survival (PFS) in patients with mCRC undergoing anti-

EGFR mAb treatment using pre-treatment 18F-FDG PET. 
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However, in recent years, there has been an increasing concern about the black box nature of these CNNs [10]. 

Since CNNs are trained in an unsupervised way, many latent (i.e. not observable by humans) features can be 

extracted from images. Because of this complex nature, it is difficult to understand how CNNs extract features 

and come to a decision. Therefore, there is an increasing need for explainable artificial intelligence (XAI) methods 

to provide a post-hoc explanation of these trained CNNs. SHapley Additive exPlanations (SHAP) is a XAI method 

that shows great interest because of better consistency with human intuition than other XAI techniques [11, 12]. 

However, similar as most other post-hoc XAI methods, SHAP is developed/optimized for non-medical usage, 

prone to spatial variation in the input image and (still) provides moderately interpretable attribution images in 

medical imaging [13]. Therefore, there is high need for a XAI method that is able to accurately and robustly 

describe CNN feature extraction, but even so importantly provides medical-based explanation. Therefore, we 

propose a novel medical-based XAI method, which is a combination of current state-of-the-art XAI methods and 

methods used in medical imaging. The main aim is to discover new imaging biomarkers (IB), which have the 

potential to be used in routine management of patients with mCRC. In other words, this XAI method may provide 

new insight in disease characteristics, which alternatively can be used as an indicator of responses to anti-EGFR 

mAb cetuximab and panitumumab treatment. However, before this XAI method can be applied as an useful and 

trustworthy tool for either testing research hypotheses, or clinical decision-making, it must cross ‘translational 

gaps’, through performing and reporting technical and clinical validation. 

In this proof of concept study, we retrospectively evaluate the performance of a CNN to predict dichotomous 

PFS in patients with mCRC undergoing anti-EGFR mAb cetuximab and panitumumab treatment using pre-

treatment 18F-FDG PET images. Also, we will develop a novel medical-based XAI method to develop potential IB 

as an indicator of responses to mAb cetuximab and panitumumab treatment in patients with mCRC. 

Methods 

Population 

A total of 80 patients with mCRC from the IMPACT-CRC study [14] were included in this study and used for 

training the CNN (five subjects were excluded because of no available whole-body PET scan or no available 

injected dose activity). For the XAI analysis, 68 patients with mCRC were included (12 subjects were excluded 

because of no available/complete/misaligned low-dose computed tomography (ldCT) scan). The IMPACT-CRC is 
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a phase I-II multicentre image-guided dose escalation study (NCT02117466). Patients were eligible for inclusion 

in case of confirmed KRAS and NRAS wild-type adenocarcinoma of the colon or rectum with metastatic disease. 

During the clinical trial, evidence showed that patients harbouring a BRAF p.V600E mutation and right-sided 

mCRC might not respond to anti-EGFR mAb. Therefore, after December 2016, patients with this mutation and/or 

right-sided mCRC were no longer included in this trial [15]. Patients were 18 years or older, ECOG performance 

status ≤ 2, and an adequate renal and liver function. The study was performed at the Amsterdam University 

Medical Center location VUmc, Radboud University Medical Center, Erasmus University Medical Center, 

University Medical Center Groningen, Jeroen Bosch Medical Center, Antoni van Leeuwenhoek Medical Center, 

and Rijnstate Medical Center, the Netherlands. The central Medical Research Ethics Committee of the 

Amsterdam University Medical Center location VUmc approved the study. All patients gave written informed 

consent prior to any study procedure. 

Data acquisition 

Within two weeks before anti-EGFR mAb treatment, 60 min after tracer injection (3-4 MBq/kg), a ldCT scan was 

acquired for attenuation and scatter corrections, followed by a 20-min static 18F-FDG PET scan according to the 

European Association of Nuclear Medicine guidelines using EARL-accredited PET scanners [16]. 

The 18F-FDG PET images were converted to standardized uptake value (SUV) images, and rebinned to a matrix 

dimension of 160x160x500 and a voxel size of 4.0 mm in all three directions. The ldCT images were also rebinned 

to a matrix dimension of 160x160x500 and a voxel size of 4.0 mm in all three directions. 

Clinical outcome 

In this study, two patient groups were evaluated using dichotomous PFS (short-term and long-term PFS) based 

on the median PFS. The PFS was defined as the period starting from the date of the first treatment with an anti-

EFGR mAb to the date of disease progression. Disease progression is defined as ≥ 20% increase of the sum of 

diameters of maximally 5 lesions [≤2 per organ, lesion diameter ≥ 10 mm (long axis) or ≥ 15 mm (short axis) for 

lymph nodes] on CT or MRI according to Reponse Evaluation Criteria in Solid Tumors (RECIST 1.1) [17]. 

Model architecture and hyper parameter tuning 

CNNs are able to learn latent features from the 18F-FDG PET images. Therefore, a CNN is proposed to find 

prognostic features from the 18F-FDG PET images to support clinical prognostication in patients with mCRC. In 
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this study, because of the small dataset, instead of 3D-CNNs, coronal 2.5D-CNNs (Figure 1) to extract features 

from 18F-FDG PET images are proposed [18]. Similar to the 3D-CNN, the 2.5D-CNN requires a input volume (3D), 

but instead of generating 3D feature images, it generates 2D features images. This could be described in terms 

of creating a maximum importance projection, which consists of projecting the voxel/feature with the highest 

importance (depicted by CNN) throughout every XZ (coronal) coordinate. 

The CNNs consisted of convolution blocks, consisting each of one convolution layers, one Rectified Linear Unit 

(ReLU) activation layers, one batch normalization layers (first and third block), one max-pooling layer and one 

dropout. Hyper parameters (Table 1) were tuned to optimize model convergence (based on training accuracy) 

each fold. The classification layer consisted of a global average pooling (GAP) layer and a sigmoid dense layer for 

binary classification. 

 

Figure 1: The architecture of a coronal 2.5D-CNN model used in this study. 
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Table 1: (Hyper) parameters used to optimize model convergence each fold. 

(Hyper) parameter  Value(s) 

Convolution block(s) 1/2/3/4 

Number of units/filters 16/32 

Kernel size(s) 3x3/6x6/9x9 

Pool size(s) 2x2/4x4/6x6 

Batch size(s) 4/8/16 

Learning rate 0.0001 

Dropout 0.2 

 

The proposed CNNs were implemented in the Keras library in Python (version 3.6), using TensorFlow as backend. 

For weights optimization, an Adam optimizer was used with a fixed low learning rate of 1 × 10−5, and binary cross 

entropy as loss function. 

Model performance 

A stratified 10-fold cross-validation was used to evaluate the performance of each CNN model its average 

validation area under the curve (AUC), accuracy, sensitivity and specificity. Also, an receiver operating 

characteristic (ROC) curve will be provided. No external test dataset was used due to the small size of the dataset. 

Explainable Artificial Intelligence (XAI) 

Current application of XAI in medical imaging shows the inability to provide accurate and/or clear explanation of 

features used by the CNN for outcome prediction [13]. These XAI methods are not developed/optimized for 

medical imaging and therefore are not (yet) useful to provide reliable IB which can be used for management of 

(oncology) patients. In this study we propose a novel medical-based XAI method, which combines current 

knowledge of XAI methods with knowledge used in medical imaging. We therefore utilize strengths of both fields 

to provide a XAI method, which is both technically as clinically easy to understand, accurate and robust. 

Our XAI method is based on SHAP, a state-of-the-art post-hoc perturbation XAI algorithm, which showed 

consistency with human explanations [11, 19]. SHAP decomposes the output prediction of the CNN on the input 

image by propagating the contribution of all neurons in the CNN to every feature present in the input image. It 
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compares the activation of each neuron to an estimated reference activation (background/neutral images) and 

assigns attribution scores to each voxel according to its difference. However, SHAP is prone to spatial variation 

in the input images because of this intra-voxel comparison and obtaining reliable neutral reference images is 

difficult to achieve, which makes technical and clinical validation difficult. 

A neutral image/value means that it should not contain any prognostic value for one of the patient groups. 

Therefore, instead of a (non-neutral) image-based reference activation, we use a SUV value of 0 (SUV0) as a 

neutral value to assess the negative/positive attribution of the 18F-FDG PET image features utilized by the CNN. 

This way the XAI method is not affected by spatial variation between the images, and provides a value that should 

not contain any prognostic value. Attribution scores are assigned to each voxel according to the difference 

between the benchmark/original CNN probability and the new probability after replacing/perturbing the 18F-FDG 

PET voxels with SUV0. 

Data perturbation is performed using a three XAI-resolution medical-based XAI framework (Figure 2). First, 104 

structures/organs are segmented from the ldCT using nnU-Net, an open-source (ld-)CT segmentation software 

package in Slicer3D [20]. However, nnU-Net does not provide segmentation of the mesentery, which is a common 

metastatic site in mCRC, and also major muscles are not included; muscle mass have shown prognostic value for 

adverse outcomes in cancer patients [21]. Therefore, to ensure coverage of the mesentery and muscles, an 

additional segment is created (called soft-tissue) from the remaining tissue by subtracting the 104 segments from 

the 18F-FDG PET images. 

These 105 segments are used as initial masks for the 18F-FDG PET images (XAI-resolution 1). Subsequently, SUV[n–

n+1] masks (start: SUV0, end: SUVmax, interval: SUV1) are created per organ, to intra-subject assess the contribution 

of SUV[n–n+1] per organ (XAI-resolution 2). Also, these two XAI-resolutions function as a preselection for the last 

(highest) XAI-resolution. The last XAI-resolution consists of systematic perturbation of the positive contributing 

18F-FDG PET voxels (obtained from the previous two XAI-resolutions) per organ using a 1x1x1-4x4x4 (SUV0) voxel 

matrix to obtain more fine-grained attribution images (XAI-resolution 3). The idea behind this three XAI-

resolution approach, is that direct systematic perturbation (without preselection) using a similar kernel would 

result in exceptionally long computation time. Also, this approach provides a clear way to perturbate the 18F-FDG 

PET images. 
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Similar to SHAP, we propose a XAI method that incorporates both local as (semi-)global attribution features. First, 

we assess the 18F-FDG PET images per organ to achieve local explanation of prognostic features. However, cancer 

cells can spread to other parts in the body, in mCRC most often to the liver, but also to the lungs and mesentery 

and therefore requires a XAI method that also incorporates interaction between different parts of the body. This 

global explanation requires coalitions (i.e. combinations of features) to obtain the interrelationships of 18F-FDG 

PET image features utilized by the CNN. For this only the positive contributing 18F-FDG PET voxels (obtained from 

the local XAI method) are used and again are assessed per organ. However, assessing all possible coalitions is not 

feasible because of the high computation time and therefore we estimate the global interaction by only using 

single organ, two organs, and all but one organ coalitions. This way you can assess the target organ attribution 

on its own, in combination with one other organ, and in absence of the target organ. 

 

Figure 2: The proposed three XAI-resolution medical-based XAI framework. In XAI-resolution 1 segmentations 

mask are derived from the ldCT using nnU-Net to mask/sample each organ from the 18F-FDG PET image. 

Subsequently in XAI-resolution 2, per organ the SUV[n –n+1] is perturbated using SUV0. This functions as a 

preselection for XAI-resolution 3, where systematic perturbation using a SUV0  voxel matrix is performed (3a). To 
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obtain (semi-)global attribution features, coalition perturbation (3b) using the from XAI-resolution 3a obtained 

positive attributing 18F-FDG PET voxels is performed. 

The area over the perturbation curve (AOPC) was used to assess the ability of the XAI method to obtain 

prognostic features from the 18F-FDG PET images used by the CNN for each patient group [22]. The idea behind 

this is that important features from the attribution image should correspond with important features from the 

18F-FDG PET image. So the more the benchmark CNN probability decreases by perturbation, the better an 

attribution method is capable to identify relevant input features resulting in a high AOPC. 

Quantitative XAI 

In addition to the attribution images, first-order features of the attributing 18F-FDG PET voxels (based on the XAI 

framework) are extracted: SUVmax, SUVpeak, SUVmean, SUVmedian and area under the cumulative SUV-volume 

histogram (AUC-CSH: a quantitative index of tumour uptake heterogeneity) for each organ [23]. These first-order 

features are acquired using the attribution image as sampling mask/VOI for each organ. In a similar way, the 

volume of attributing 18F-FDG PET voxels is assessed using SUV[n–n+1] (start: SUV0, end: SUVmax, interval: SUV1), 

SUV>4, SUV>6 and SUV>8 (last three approximate tumour uptake) for each organ. The SUV>4, SUV>6 and SUV>8 are 

used, since comparison using SUV[n–n+1] may be negatively impacted by the high inter-subject 18F-FDG PET uptake 

heterogeneity, especially in tumours. Subsequently, a student T-test is used to obtain significant (p < 0.05) 

different XAI derived PET features between the two patient groups. For visualisation purposes, only the colon 

and rectum (primary tumour site), and the most common metastatic sites in mCRC (liver, lungs and soft-tissue, 

i.e. mesentery and muscles) are presented in the result section [24]. 

In addition, first-order (SUVmax, SUVpeak, SUVmean, SUVmedian and AUC-CSH) and volume features are also extracted 

from corresponding non-XAI derived 18F-FDG PET voxels for each organ for comparison. This comparison 

demonstrates the possible added value of XAI compared to non-XAI derived PET features for patient group 

discrimination, with lower p-values indicating better capability to discriminate between the patient groups. It 

also functions as quality control for the XAI derived PET features; similar patterns between the XAI and non-XAI 

derived PET features strengthens the reliability of the XAI-method. Boxplots are created for the significant XAI 

and corresponding non-XAI derived PET features. 
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Qualitative XAI 

From both the attribution (XAI) images as the 18F-FDG PET images, average images of the two patient groups 

were created for more pragmatic visual comparison between the patient groups. First, all the 18F-FDG PET images 

are aligned to a fixed (average/healthy 18F-FDG PET image: average patient size, no tumour bulk, etc.) image 

using a rigid and a non-rigid registration algorithm based on the co-registration framework Dipy [25]. The fixed 

image is smoothed with a 4 mm full-width-half-maximum Gaussian kernel to suppress noise. The non-rigid 

registration is used to transform extreme differences between the moving and fixed scans, e.g. arms up and 

down, and patient size. Subsequently, per voxel the average of the patient group is taken. Although the co-

registration has major effect on quantification reliability, the average attribution images provide a more 

pragmatic visualisation than the individual images. 

In addition, ten (5/5) random 18F-FDG PET were visually assessed as a quality control of the obtained quantitative 

features. In other words, we assessed whether the (significant) quantitative features were also visible on the 18F-

FDG PET images. 

XAI permutation test 

Random perturbation of the 18F-FDG PET images was performed through randomly adding SUV0 to the images 

(where SUV is not zero) using a similar 4x4x4 (SUV0) voxel matrix to assess the significance (p < 0.05) of the XAI 

method. This was done for each image using the same amount of perturbation as used by the proposed XAI 

method. This permutation test shows whether the XAI method uses non-specific/specific features and therefore 

is similar/better than random perturbation. 

Results 

Model performance 

In Table 2, patient demographics and clinical data are presented. Demographic and clinical data were all not 

significant (p < 0.05) different between the two patient groups (except for left and right-sided mCRC and BRAF 

mutation). Based on the best hyper parameters from each fold, the CNN showed the ability to predict 

dichotomous PFS of patients with mCRC using pre-treatment 18F-FDG PET image, with an average validation AUC 

of 0.95 ± 0.11, accuracy of 94 ± 12%, sensitivity of 91 ± 21% and specificity of 94 ± 11% (Figure 3). The high 
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variance in hyper parameter performance, and the high standard deviations, indicate that the performance of 

the models highly relies on the data used for training (and validation). 

Table 2: Demographic and clinical data of the patients included in this study. 

  Part 1 (n = 34) Part 2 (n = 46)* All patients (n = 80) 

Variables No. (%) Median (range) No. (%) Median (range) No. (%) Median (range) 

Age - Years   64 (50 - 82)    69 (31 - 82)   65 (31 - 82) 

Sex             

Male 25 (75)   36 (78)   61 (76)   

Female 9 (25)   10 (22)   19 (24)   

WHO status             

0 9 (27)   11 (28)   20 (25)   

1 22 (65)   24 (62)   46 (58)   

2 3 (9)   4 (10)   7 (9)   

Unknown 0 (0)   7 (15)   7 (9)   

Prior treatment             

Capecitabine/5-FU 34 (100)   46 (100)   80 (100)   

Oxaliplatin 34 (100)   42 (91)   76 (95)   

Irinotecan 30 (88)   29 (63)   59 (74)   

Bevacizumab 23 (68)   27 (59)   50 (63)   

BRAF mutation*             

No 30 (88)   43 (93)   73 (91)   
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Yes 4 (12)   3 (7)   7 (88)   

Side*             

Left-sided 25 (75)   40 (87)   65 (81)   

Right-sided 9 (25)   6 (13)   15 (19)   

Months since metastatic disease   24 (5-65)   24 (6-48)   24 (5-65) 

Baseline laboratory results             

LDH (U/L)   299 (148-1636)   328 (145-2628)   309 (145-2628) 

CEA (μg/L)   59 (5-28386)   69 (2-1697)   63 (2-28386) 

Plasma Glucose (mmol/L)  5.5 (4.1-11)  5.7 (5–6.4)  5.5 (4.1–11) 

PFS  138 (31-622)  158 (29-350)  152 (29-622) 

Dichotomous PFS (152 days) 

20/14 

(59/41)  

20/26 

(43/57)  

40/40 

(50/50)  

*Significant different (p < 0.05) between dichotomous PFS patient groups. 

WHO: World Health Organization; LDH: Lacto dehydrogenase; CEA: Carcinoembryonic antigen; PFS: Progression free survival 
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Figure 3: Mean cross-validated ROC curves of the 2.5D-CNNs using 18F-FDG PET images. 

Explainable Artificial Intelligence (XAI) 

An average AOPC of 83.15 ± 29.59 (standard deviation) and 90.51 ± 25.64 was obtained for the short- and long-

term patient groups, respectively. The high standard deviation is because of four images (2/2) which were not 

able to be described/assessed by the XAI method. 

Quantitative analysis 

The 18F-FDG PET first-order and volume features are presented in Table 3 and 4, respectively. The first-order 

features do not differ significantly between the patient groups, except for soft-tissue. However, this difference 

is because of 18F-FDG accumulation at the radiotracer injection site. 

The volume features, however, show significant differences. For the colon and rectum, a higher prevalence 

(amount of voxels) of SUV1-2 is positively associated with long-term PFS (PFS ≥ 152 days) (Figure 4). Similar results 

are observed for other organs: SUV2-4 for the liver, SUV1-2, for the lungs and SUV1-3 for the soft-tissue (Figure 4). 

Especially the 18F-FDG PET volume features of the liver show high significance (p-value: 2.29 × 10-8). Interestingly, 

the corresponding non-XAI derived 18F-FDG PET volume features of the liver show high significance as well (p-

value: 0.0021). Also, SUV6-7, SUV>4 and SUV>6 for the lungs, and SUV9-11, SUV15-16, SUV>4, and SUV>6 for the soft-
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tissue are significantly different, but the prevalence (amount of voxels) is low. Furthermore, the total volume of 

colon and rectum seems to be significantly larger (13625 ± 6358 (PFS < 152 days) vs 17098 ± 6718 (PFS ≥ 152 

days) voxels) of the patients with long-term PFS, however the segmentation of this organ can be highly impacted 

by the amount of defecation and/or air present. Additionally, most (92%) of the significant XAI-derived 18F-FDG 

PET features have lower p-values compared to non-XAI derived features. 

Table 3: XAI derived 18F-FDG PET first-order features. 

Organ Feature XAI p-value Non-XAI p-value 

Colon and rectum SUVmax 0.31 0.14 

 SUVpeak 0.20 0.095 

 SUVmean 0.12 0.43 

 SUVmedian 0.096 0.40 

 AUC-CSH 0.43 0.14 

Liver SUVmax 0.18 0.31 

 SUVpeak 0.24 0.35 

 SUVmean 0.39 0.23 

 SUVmedian 0.37 0.11 

 AUC-CSH 0.16 0.34 

Lungs SUVmax 0.21 0.46 

 SUVpeak 0.11 0.32 

 SUVmean 0.27 0.056 

 SUVmedian 0.48 0.19 

 AUC-CSH 0.23 0.41 

Soft-tissue SUVmax 0.12 0.045 

 SUVpeak 0.15 0.061 

 SUVmean 0.26 0.33 

 SUVmedian 0.22 0.33 
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 AUC-CSH 0.095 0.045 

 

Table 4: XAI derived 18F-FDG PET volume features with corresponding non-XAI 

derived 18F-FDG PET volume features of the colon and rectum, liver, lungs and 

soft-tissue. 

Organ SUV min SUV max XAI p-value Non-XAI p-value 

Colon and rectum 1 2 2.00 × 10-6 0.0032 

 4 SUVmax 0.46 0.46 

 6 SUVmax 0.43 0.44 

 8 SUVmax 0.45 0.31 

 Volume 0.019 

Liver 2 3 2.29 × 10-8 0.0021 

 3 4 0.026 0.15 

 4 SUVmax 0.44 0.24 

 6 SUVmax 0.43 0.20 

 8 SUVmax 0.45 0.27 

 Volume 0.24 

Lungs 1 2 0.0023 0.070 

 7 8 0.019 0.039 

 4 SUVmax 0.062 0.046 

 6 SUVmax 0.038 0.023 

 8 SUVmax 0.050 0.027 

 Volume 0.41 

Soft-tissue 1 2 8.4 × 10-6 0.027 

 2 3 0.0012 0.13 

 9 10 0.042 0.24 

 10 11 0.044 0.26 

 15 16 0.044 0.28 
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 4 SUVmax 0.00036 0.016 

 6 SUVmax 0.021 0.084 

 8 SUVmax 0.33 0.018 

 Volume 0.052 

 

Figure 4: Boxplots of the significant XAI derived low 18F-FDG PET uptake volume features of the two patient 

groups with corresponding non-XAI derived 18F-FDG PET volume features of the colon and rectum, liver, lungs 

and soft-tissue. 

Qualitative analysis 

An attribution image for each 18F-FDG PET image was created (Figure 5). Also, average attribution and 18F-FDG 

PET images were created for each patient group (Figure 6). It can be seen that especially the liver, the colon, the 

brain, the kidneys and the rectum showed high attribution. In addition, in the average attribution images of the 

long-term PFS patient group, more homogenous attribution is seen in the liver, which corresponds with the high 

prevalence of SUV2-4 in this patient group. For the short-term PFS patient group, more heterogeneous attribution 

was seen in the liver, which corresponds to the more heterogeneous 18F-FDG PET uptake present in this patient 

group. 
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Visual comparison of ten 18F-FDG PET images showed that the patient group with longer PFS has a higher 

prevalence of SUV2-4 (significant), a similar prevalence of SUV>4 and a lower prevalence of SUV1-2 (non-significant) 

in the liver (Figure 7). Visual comparison of the other three organs (colon and rectum, lungs and mesentery) did 

not show clear difference between the two patient groups, however, this is due to the non-rigid and 

heterogeneous characteristics of these organs. 

 

Figure 5: Coronal 18F-FDG PET images (A: 132 days PFS; C: 230 days PFS) and corresponding attribution images (B 

and D) of two patients with mCRC. 
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Figure 6: Average 18F-FDG PET images (A and B) and corresponding average attribution images (C and D). 

 

Figure 7: Qualitative assessment of the liver as a quality control of the obtained (significant) 18F-FDG PET features 

of ten (5/5) mCRC patients. The red-line represents the voxels within SUV2-4 (within the whole image). 
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XAI permutation analysis 

Permutation (random perturbation) of the 18F-FDG PET images using a similar amount of perturbation as the XAI 

method showed a significant lower AOPC of -0.0015 ± 0.0209 and 0.005275 ± 0.0296 for the short- and long-

term PFS patient groups, respectively. 

Discussion 

A coronal 2.5D-CNN was developed to predict dichotomous PFS in patients with mCRC undergoing anti-EGFR 

mAb cetuximab and panitumumab treatment using pre-treatment 18F-FDG PET scans. The CNN was able to 

discriminate between short- and long-term PFS with relative high performance. Also, a medical-based XAI 

method was developed to provide specific (explainable) 18F-FDG PET features used by the CNN. 

In a previous study performed by van Helden et al., radiomic features on pre-treatment 18F-FDG PET were 

assessed as potential IB for response and survival in patients with mCRC [4]. However, this method may ignore 

certain abnormalities/features in the tumour (because of predefined radiomic features), and potential relevant 

features outside of the tumour lesions are not captured using the pre-defined VOIs, limiting the 

representativeness power of these extracted radiomics. For this reason, we proposed a deep learning framework 

based on a CNN, which can extract features from the entire image unsupervised and could therefore have a 

better representation of the actual data of (clinical) interest/potential than predefined radiomic features. 

In this study, a coronal 2.5D-CNN over a 3D-CNN was preferred. The ability to learn interslice context (3D) comes 

with high computation costs, but more importantly, it is more prone to overfitting, especially in this small patient 

cohort [18]. Overfitting is a problematic challenge because of the limited amount of training data compared with 

the large number of learnable features. The high disease heterogeneity present in mCRC [26] makes 

development of a robust and accurate CNN even more difficult. Although we obtained a high average 

performance (AUC, accuracy, sensitivity and specificity), the high standard deviation suggests that the 

performance of the models highly depends on the training (and validation) data used for model development, 

i.e. is impacted by the small dataset and the high disease heterogeneity. Therefore, further validation should be 

performed using external test data to assess the model’s robustness. 

In addition to the 18F-FDG PET images, other clinical data, such as (diagnostic) CT images, laboratory tests, medical 

history, demographics, etc. could also aid in developing more robust and accurate AI models. Current AI models 
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for nuclear medicine and radiology applications almost only consider pixel/voxel information [27]. However, in 

clinical practice, these additional data help healthcare professionals to interpret image findings more accurately 

[27-29]. Therefore, we hypothesize that adding additional medical data could improve model performance. 

The ability of a CNN to learn features unsupervised comes at the cost of high complexity and extensive amount 

of learnable features. Yet, to be able to understand why a CNN makes a certain decision not only helps to improve 

the model, but also increases confidence of healthcare professional in utilization of these data-driven models 

[30]. Therefore, in this study we proposed the use of a medical-based XAI method to increase interpretability of 

the CNN. To the best of our knowledge, we are the first that developed a medical-based XAI method to mitigate 

the gap between these CNN models and healthcare professionals in medical imaging. For this we combined state-

of-the-art XAI knowledge, an anatomical atlas acquired from the ldCT image using nnU-Net, and we (pre-

)sampled the 18F-FDG PET SUV image. This combination strengthens the usability of this XAI method. However, 

implementation of such XAI method in the clinical workflow still requires considerable improvement and 

validation. 

First, misalignment between the ldCT and the 18F-FDG PET image (due to breathing and/or movement of the 

patient) could results in incorrect interpretation of the 18F-FDG PET image. In this study minor misalignment was 

acceptable, since most disease characteristics were present in the more bulky organs (e.g. liver). However, PET 

uptake can also be more subtle and more sensitive to misalignment as is the case in, for example, patients with 

Multiple Myeloma bone disease [31]. Therefore, for disease agnostic application of this XAI method, better 

alignment between the ldCT and the 18F-FDG PET image should be pursued, such as respiratory-gating and post-

scan image co-registration Also, incomplete segmentation of the structures using nnU-Net could impact the 

interpretation power of the method. Another potential problem is the partial volume effect as consequence of 

limited spatial resolution of PET and ldCT. For small organs (e.g. ribs) or organs with thin walls (e.g. colon), the 

limited spatial resolution can result in considerable quantitative underestimation and/or mis-segmentation as 

can be the case for the colon and rectum. 

Another consideration of this study, is the use of SUV0 perturbation. Ideally you would prefer a perturbation 

value, which is not prognostic for both patient groups but also follows imaging modality specific characteristics. 

In other words, you would want to perturbate the 18F-FDG PET image with a value that is not abnormal for that 

specific VOI; SUV0 results in holes in the structures, which is clinically not feasible (with the exception of necrosis). 
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Therefore, you could speculate about the usability of SUV0 perturbation in clinical terms. Also, SUV0 perturbation 

results in steep gradients in the 18F-FDG PET image, which may have prognostic value in 18F-FDG PET image as 

well. Yet, from the significant lower AOPCS of the permutation test you could conclude that these steep gradients 

do not have much impact. Also, from both the quantitative as the qualitative analysis it can be seen that the XAI-

derived (using SUV0 perturbation) and non-XAI derived 18F-FDG PET show similar patterns. In addition, zero 

perturbation is also current practise in widely used (although non-medical) XAI methods such as RISE [32], LIME 

[33] and systematic occlusion mapping [22]. 

An alternative approach is perturbation of the 18F-FDG PET features using a physiological 18F-FDG PET uptake 

value per organ. Although this provides more clinical realistic perturbation in structures with more homogeneous 

18F-FDG PET uptake (e.g. liver), in structures with heterogeneous 18F-FDG PET uptake (e.g. colon) this will results 

in abnormal PET uptake as well. Also, this may overestimate the prevalence of the healthy organ tissue, which 

may be problematic as well. In addition, physiological 18F-FDG PET uptake perturbation values also do not 

guarantee to hold no prognostic value for a specific patient group (SUV0 more and less does). Furthermore, this 

approach cannot assess physiological 18F-FDG PET features (which may have prognostic value as well) and 

therefore cannot provide a complete explanation of the 18F-FDG PET features used by the CNN. In future 

research, additional steps have to be taken to develop perturbation values, which do not hold prognostic value 

and also provide clinically realistic images. But for now, SUV0 seems to provide the most reliable and versatile 

perturbation value in 18F-FDG PET imaging. 

The quantitative analysis showed that first-order 18F-FDG PET features and volume features of high 18F-FDG PET 

uptake (SUV>4; representing tumour uptake) in the liver, colon and rectum are not significant different between 

the two patient groups. Van Helden et al. conducted a study using similar data and found no significant 

differences in the tumours using first-order features as well [4]. For the lungs and soft-tissue, significant 

difference was seen between the patient groups. However, because of low prevalence of these lesions in this 

cohort, these results are not generalizable. 

Interestingly, especially low 18F-FDG PET uptake (SUV<4) volume features showed significant difference between 

the patient groups. In multiple organs higher volume of low 18F-FDG PET uptake is associated with long-term PFS 

(≥ 152 days). Clear example of this, is the significant higher volume of low 18F-FDG PET uptake in the liver (SUV2–

4) in patients with longer PFS. It therefore seems that higher volume of SUV2–4 in the liver has beneficial impact 
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on outcome in patient with mCRC undergoing anti-EGFR mAb cetuximab and panitumumab therapy. Total liver 

volume depends on patient size, liver diseases, previous treatment (e.g. resection, radiofrequency ablation, 

radiotherapy, etc.) of liver metastasis and presence of liver metastasis. The total liver volume was not significant 

different between the two patient groups, suggesting that the ratio between healthy liver tissue and tumour bulk 

and/or diseased tissue in the liver may be different. In other words, the short-term PFS patient group may have 

insufficient healthy liver tissue in comparison to the long-term PFS patient group. Similar observations were also 

observed for the colon and rectum, the lungs, and soft-tissue. However, not much is known about the influence 

of low 18F-FDG PET uptake on the effectiveness of cancer therapy, making the legitimacy and application of these 

observations (currently) questionable. 

Hypoalbuminemia is known to decrease 18F-FDG uptake in the liver, and low serum albumin levels have shown 

to correlate with increased hepatocellular carcinoma aggressiveness [34, 35]. The short-term PFS patient group 

may therefore be impacted by lower serum albumin levels, because of the higher disease aggressiveness seen in 

this patient group. However, although this may be the case for some patients, a significant lower 18F-FDG PET 

uptake in the liver is not seen for the short-term PFS patient group. This indicates that, although 

hypoalbuminemia could partly explain the significant lower SUV2-4 prevalence in this patient group, it is the 

heterogeneous intra-patient group 18F-FDG PET uptake that results in this inter-patient group difference. 

Although these observations are (currently) not completely supported by relevant literature, these observations 

may contain relevant information about biological processes important for this patient cohort and therapy. 

Therefore, we advocate for further assessment of these features in future studies. 

Future studies could compare the biodistribution of cetuximab and panitumumab between the patient groups. 

A previous study performed by van Helden et al. did not show a relation between tumour PET uptake and therapy 

response using 89Zr-cetuximab PET imaging in patients with mCRC [14]. However, in this study only the relation 

between SUV of the tumour lesions and therapy response were assessed. It would also be of interest to assess 

the relation of non-tumour features to therapy response in 89Zr-cetuximab PET imaging. This may provide use 

with information about the possible biodistribution difference of cetuximab and panitumumab between the two 

patient groups and how it relates to 18F-FDG PET uptake seen in this study. 

In this study we only focussed on the primary tumour and the most common metastatic sites (liver, lungs, 

mesentery). However, other organs may hold prognostic value as well. Bone marrow may for instance also play 
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a role in disease prognostication; high bone marrow 18F-FDG PET uptake has shown to be related to advanced 

staging in colorectal cancer [36]. Also, abnormal brain metabolic patterns observed in patients with colorectal 

cancer in a preliminary study performed by Jie Ma et al. suggest that cerebral metabolic patterns may be 

associated with disease burden in colorectal cancer [37]. Therefore, in future studies further assessment should 

be conducted to obtain a complete overview of the organs and 18F-FDG PET features associated with disease 

aggressiveness in patients with mCRC. 

Further quality assessment of the XAI method should be performed using other (but similar in performance) CNN 

weights derived from the cross-validation. It could be the case that current used weights are biased towards 

specific 18F-FDG PET features (although unlikely because of similar patterns seen in XAI and non-XAI derived 

features). By comparing the 18F-FDG PET features extracted from the different CNN weights, the 

reliability/robustness of the current derived 18F-FDG PET features can further be assessed. Also, four 18F-FDG PET 

images were not able to be described by the proposed XAI method. Possible causes of this is the (possible) 

incompleteness of current XAI method, for example, SUV0 perturbation, coalitions which were not assessed and 

the spatial resolution of the XAI framework (not able to find (very) fine-grained details). 

First steps are made to understand the behaviour of this CNN model. However, for successful implementation 

we still need to invest more in the development of clinical realistic and neutral perturbation values. This is not 

only of interest to get a better understanding of the behaviour of these CNNs, but also to investigate the 

legitimacy and usability of the XAI method in this field [38]. The obtained results require extensive further 

assessment, but because of the extensive quality control performed in this study, we believe that these results 

may hold valuable information to support clinical prognostication for treatment decision in this cohort. 

Conclusion 

A coronal 2.5D-CNN to classify dichotomous PFS from pre-treatment 18F-FDG PET in patients with mCRC 

undergoing anti-EGFR mAb cetuximab and panitumumab treatment was successfully constructed and trained. 

From the medical-based XAI framework, low 18F-FDG PET uptake volume features from multiple organs are 

promising to hold prognostic value for treatment with anti-EGFR mAb. However, extensive validation should be 

performed to develop IB which can be used clinically for patients with mCRC eligible for anti-EGFR mAb 

cetuximab and panitumumab treatment. 
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