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Abstract

As part of the Afsluitdijk project the discharge capacity, which is currently facilitated by two
sluice complexes, is increased to cope with future sea level rise. It was decided to realise
this by an innovative solution: the pump gate. The steel lifting gates, each containing
three pumps, will be implemented in the existing sluice complex in phases, expecting a
total of thirteen by the year 2050. This concept provides the possibility of pumping when
necessary without hampering the discharge capacity during gravity flow, in which case the
gates are lifted. The gates were designed to withstand quasi-static loads. Mainly due to
the presence of the pumps, which have a high weight and require limited vibrations, the
dynamic behaviour of the gate may lead to more strict design requirements. Two reference
designs are investigated: the regular, and flood defence pump gate. The latter is designed
to act as part of the primary flood defence, and is therefore significantly more robust.
The analysis of the pump gate is limited to three components: the gate structure with its
supports, pumps, and fluid.

Standard expressions for the hydrodynamic pressures do not apply to the pump gate and
surrounding fluid, mainly due to the three-dimensional vibration shape of the gate and the
presence of the pumps. General methods or numeric models to quantify vibrations are not
readily available for a continuous system with interacting gate, pumps, and fluid. In this
thesis, a method is developed to determine the dynamic behaviour of gate-fluid systems
confined by sluices. This method is based on a frequency domain semi-analytical coupled
modal analysis, able to directly solve the behaviour of gate and fluid for the linearized
equations.

Several fluid schematizations are found in literature taking surface waves, compressibility, or
neither into consideration. The validity of these schematizations was investigated for a wide
range of water depths and excitation frequencies. Distinct regions, shown in figure 1, were
found in which these physical processes do or do not have an effect on the hydrodynamic
mass. The so-called ‘transition region’ is characterised by the absence of both compressibil-
ity and surface wave effects. The hydrodynamic mass is therefore frequency-independent
in this region and no hydrodynamic damping is present.

The response of the pump gate reference designs is quantified by a three-dimensional plate
model, based on previously described method. Both designs have considerably higher eigen-
frequencies than those corresponding to regular wave excitation. For the Den Oever case,
the quasi-static approach therefore suffices when considering wave loads. This is not the
case for excitations originating from the pumps, which relate to a wider and higher fre-
quency range. As a consequence of the preliminary design phase, exact pump specifications
are not available. Results are therefore based on a pump envelope of possible excitations
and presented as risks. These apply to the Den Oever gate designs, but are also relevant
to the pump gate concept in general.
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Abstract

Figure 1: Frequency and water depth regions for which surface waves and compressibility
play a role for a two-dimensional fluid system.

Three response amplitudes were quantified: the gate’s deflection, pump vibration velocity
and the resulting fluid pressures. Furthermore, based on the amplification of the static
deflection an estimation of the maximum stresses is made. For both designs maximum
deflections were less than a millimetre, which is negligible considering the dimensions of
the gate. This is explained by the relatively small amplitude of the pump excitation forces
compared to the total of static loads. Nevertheless, a significant deflection amplification
(dynamic/static) is found. When internal stresses are amplified similarly, a risk of fatigue
and even direct failure exists for the regular pump gate design. The more robust flood
defence pump gate design reduces stresses to acceptable levels. Vibration velocities of the
pumps were compared to ISO limits for non-rotating pump parts. For the regular design
at several frequencies these limits were exceeded. The robust design is able to limit these
velocities considerably.

Most concerning is the magnitude of the pressure fluctuations in the fluid. For the regular
design, pressure head amplitudes at the suction side up to 0.5 metre were found. This
leads to an increased risk of cavitation, and therewith damage and a reduced efficiency.
Furthermore, total head fluctuations over both sides of the pumps can be in the same order
as the static pump head. This is expected to lead to an unacceptable reduction in efficiency.
The robust flood defence pump gate does reduce these fluctuations over the first range of
the investigated excitation frequencies (< 250 rad/s), but for several frequencies leads to a
larger response at higher frequencies.

Concluding, the dynamic behaviour of the pump gate designs should be considered in
further design phases, since several risks were identified. The combination of a robust gate
design and limited high frequency pump excitations may lead to an acceptable design.
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1 | Introduction

This chapter starts with background information on the Afsluitdijk project (1.1). Further,
the topic (1.2) and research questions (1.3) of this thesis are elaborated. The research
method is briefly treated in section 1.4 and the structure of this report is explained in
section 1.5.

1.1 The Afsluitdijk project

The Afsluitdijk was built in 1932 and has not been changed significantly since. The 32
kilometre long dam acts as a primary flood defence and separates the Waddensea from
Lake IJssel, which has become a freshwater lake. In the assessments of 2006 and 2011,
the Afsluitdijk appeared not to comply with the present safety requirements, which state
that the Afsluitdijk should withstand conditions with an occurrence frequency of 1/10.000
years [24]. In addition, it was shown that the current discharge capacity will likely be
inadequate in the future. It was therefore decided to strengthen the Afsluitdijk and its
structures and apply pumps at one of the existing sluice complexes. The tender procedure
of the Afsluitdijk project is planned to start in 2016, construction works at the end of 2017
[3].

The dam itself is mainly susceptible to failure due to wave overtopping. The decision was
made to increase the resistance of the Afsluitdijk to this, rather than reducing overtopping
by increasing the crest height. In order to do so, a top layer of concrete blocks or asphalt is
added. When possible, a grass layer will be restored on top of this for aesthetic purposes.

Figure 1.1: Overview Afsluitdijk [1, edited]

The Afsluitdijk contains two sluice complexes and two shipping locks. An overview of the
Afsluitdijk and the location of the sluice complexes is shown in figure 1.1. The sluice com-
plex of Den Oever is located on the far west side. The other complex, Kornwerderzand, is
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Chapter 1. Introduction

located on the eastern side. Each is accompanied by a shipping lock. At all four structures,
the steel gates are no longer able to withstand 1/10.000 years conditions. Furthermore,
the pile foundation of sluice complex Kornwerderzand and the abutments of both shipping
locks are weaknesses as well [39]. The main cause of the concrete’s deterioration is alkali
silica reaction (ASR).

The primary reason for the required increase in discharge capacity is the expected sea level
rise. This decreases the present discharge capacity in two ways, as can be seen in figure 1.2.
Firstly, the time window in which discharging by gravity is possible reduces. Due to wind
set-up on the Waddensea and other water level variations, during some days discharging
is not possible at all. Secondly, the average head difference is reduced. The proportional1

discharge is therefore reduced as well. Due to the decreased discharge capacity, the number
of days the sluices need to be in operation increases.

Figure 1.2: Free flow discharge window decreasing due to sea level rise [39, edited]

Although the first thought was to increase the discharge capacity by constructing a third
sluice complex, the decision was finally made to use pumps. These will not be part of a
new pump complex, but will be implemented into the existing sluice complex Den Oever.
To do so, an innovative solution will be used: the pump gate. In this design, the pumps
will be implemented into newly placed steel lifting gates. These can be lifted so that during
regular free flow discharge the capacity is not reduced due to the presence of the pumps.
The motto is: “discharging by gravity when possible, pumping when necessary” [40].

The reason that the pumps will be applied at Den Oever, is that this sluice discharges
less effectively than the one at Kornwerderzand. Due to the lower tidal difference at Den
Oever, the average positive head (Hlake - Hsea > 0) between the relatively constant (on a
daily time scale) Lake IJssel water level and the Waddensea water level is lower [39]. A
potentially negative effect of the pumps on the free flow discharge capacity will therefore
have less impact at Den Oever than at Kornwerderzand.

1The discharge is proportional to the square root of the head difference: Q ∝
√

∆H.
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1.2 Topic description

Pumps are generally situated on a heavy concrete foundation, which supports the pumps
and guides the flow as is shown in figure 1.3. The pump gate concept shown in figure 1.4,
implements (three) heavy pumps directly into each relatively light-weight steel gate, which
is innovative and challenging both in design and construction. Designs for the pump gates
at Den Oever have been made by Witteveen+Bos [40]. These ’reference designs’ are used
as a starting point in this thesis.

The pump gate has been designed for (quasi-)static loading caused by the water level
difference and waves during design storm conditions, and pump thrust, so that they fulfil
the ultimate limit state (ULS) requirements in terms of maximum stresses. The dynamic
behaviour of the gate is not investigated, but accounted for by safety factors.

Figure 1.3: Side view of a conventional pump complex

Figure 1.4: Side view of the pump gate solution

In practice, the design of gates on dynamic loading is often limited to checking whether
resonance may occur. For relatively small scale gates such as those at Den Oever, direct
failure to excessive vibrations is not very common. Fatigue is a more frequent problem for
which standardized design requirements exist. The dynamic behaviour of the existing wave
defence beam and flood gates at Den Oever has received some attention in the past [24, 38].

The relatively large weight of the three pumps compared to that of the gate, and possible
forces resulting from interaction between pumps and fluid, might change the behaviour
significantly in comparison to a regular flood gate of the same dimensions. Secondly, the
presence of the pumps poses additional, potentially more strict, requirements on the gate.
To ensure the required efficiency and lifetime of the pumps, their movement should be lim-
ited. Furthermore, pressure fluctuations in the fluid can have adverse effects on the pumps,

3



Chapter 1. Introduction

such as a reduced efficiency and increased wear and tear. A more thorough investigation
of the dynamic behaviour of the pump gate and fluid is therefore required.

To explore this dynamic behaviour, insight in the interaction between the gate structure,
pumps and fluid must be obtained. Standard expressions for the linear hydrodynamic pres-
sures do exist for some two-dimensional cases, but do not suffice when geometry complicates
or three dimensional behaviour plays a significant role. Especially due to the presence of
the pumps, this is the case at Den Oever. Methods to analyse the fluid-structure interaction
and vibrations must therefore be investigated first.

1.3 Research questions

From the topic description in previous section, it is clear a quick estimation of the occurring
vibrations and resulting stresses in the gate is not possible. Hence, a more thorough inves-
tigation is needed that combines the fluid motion and forces with the structural vibrations.
The best method to model the involved processes and solve the behaviour of structure and
fluid simultaneously must therefore be found, which poses the following research question:

(I) In what way can the fluid-structure interaction for (pump) gates be modelled for the
order of magnitude of the water depth, sluice width and excitation frequencies present
at Den Oever?

Insight into the dynamic behaviour of the pump gates, is especially relevant because of the
innovative character of operating pumps in such a gate. This thesis therefore focuses on
the behaviour of the gate in closed (downward) position, when pumps are in operation.
Although in some cases relevant for regular flood gates, the behaviour of the pump gate
during closure and opening will not be researched. The second research question is posed
as follows:

(II) What will be the (order of) magnitude of the vibrations in the gates and especially
the pumps for the reference designs under governing conditions?

Two sub questions that should be answered with the help of the result of this main research
question, are:

(II.a) What is the direct (due to pump-gate vibrations) and indirect (due to pressure
fluctuations in the fluid as a result of gate vibrations) effect on the efficiency,
lifetime and required maintenance of the pumps?

(II.b) What are the resulting stresses onto the existing sluice structure and in the
pump gate and do these exceed the strength of any of the system elements
(which comply in the static analysis)? Do the vibrations result in a significant
increase in maintenance or fatigue of the steel gates?

If these research questions are answered, this shows whether additional measures are needed
for the pump gate reference designs, but also says something about the technical feasibility

4
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of the pump gate concept in general. Furthermore, insight is obtained in the dynamic
behaviour and design of flood gates and the involved fluid-structure interaction.

1.4 Research methodology

The fluid and resulting hydrodynamic pressures are expected to play an important role in
the dynamic behaviour of the pump gate. Estimations will be made based on analytical
expressions known from literature to check whether this is indeed the case.

The interaction between gate, fluid and pumps potentially alters the behaviour of the
system from what is found by these estimations. Therefore, an efficient method to model
this interaction is searched for. Due to the many uncertainties in this phase of the Afsluitdijk
project, a simplified analytical or numeric approach is preferred to the use of more extensive
finite element or computational fluid dynamics models.

An effort is made to derive a general method that can aid in the dynamic design of the pump
gate or gates under similar conditions. Application of the chosen model to obtain quan-
titative conclusions about the vibration magnitude of the pump gate designs is therefore
done in a later stage of the report.

1.5 Report structure

An overview of this report’s structure is shown in figure 1.5. Chapter 2 and 3 together form
the system description of the Den Oever pump gate case. This includes background on the
pump gate concept, the reference designs and input for further analysis. An indication
of the desired output of further models is based on the requirements that are stated with
respect to vibrations in section 3.4. The system analysis is limited to the gate structure,
pumps and fluid. Theoretical background on the behaviour of these components during
vibrations is given in chapter 4.

Based on this, it is decided to set-up two semi-analytical models in the frequency domain
which can solve the structure-pump-fluid interaction directly. A two-dimensional beam
model is set-up in chapter 5 to gain insight in the fluid response for the governing water
depths and excitation frequencies. When the reader is interested in the semi-analytical
method to model fluid-structure interaction for closed flood gates in sluices more gener-
ally, it is referred to this chapter, the analytical derivations of chapter 6, and the related
appendices F and G.

Quantitative conclusions on dynamic behaviour of the pump gate are based on the ana-
lytical plate model in chapter 6. This model includes the effect of surface waves and fluid
compressibility. In chapter 7 a numeric validation of the fluid response is made for a geom-
etry including the pump conduits. Finally, conclusions and recommendations are made in
chapter 8.

5
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Figure 1.5: Thesis structure
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2 | Pump complex Den Oever

This chapter provides a description of the present (section 2.1) and future (section 2.2) Den
Oever complex. In section 2.3 and 2.4 the pump gate concept and gate reference designs
by Witteveen+Bos [40] are elaborated. In appendices B and appendix C background on
the gate designs and pumps is given.

In chapter 3 the focus is laid on the vibrations of these designs and the design cases for fur-
ther analyses are determined. The hydraulic boundary conditions are therefore elaborated
in the following chapter.

2.1 Present sluice complex

Sluice complex Den Oever has three equal parts, each consisting of five sluices. An overview
of the complex is given in figure 2.1. The width of the waterway between the concrete piers
is 12 metre.

Figure 2.1: Top view sluice complex Den Oever [38, edited]

Each sluice has four concrete lifting towers that lift the two steel flood defence gates. A side
view of the sluice is given in figure 2.2. To reduce the load on the currently insufficiently
strong gates, holes have been implemented in the northern (left) gate. In the present
situation the southern (right) gate therefore retains the water, while the nothern gate
reduces the wave impact [24, 39]. The current gates have a height of 7.03 metre. It was
decided to replace both steel gates.

Studies have been done into wave slamming on the northern gate and the effect of the wave
impact defence beam in front of the gate [14, 24]. While it was concluded the defence beam

7



Chapter 2. Pump complex Den Oever

Figure 2.2: Cross section sluice Den Oever. The opened mitre gate has a lightened color
in the drawing, as it has been removed. [38, edited]

does not have a significant negative effect on the gate, its own strength is insufficient to
withstand wave impact of design storms.

The upper structure on the piers, except for the lifting towers and defence beam, also
consists of two bridge girders providing space for the two by two vehicle lanes of highway
E22 (A7) plus a smaller one for the bicycle road on the Waddensea side.

2.2 Conceptual design of the pump complex

The works at complex Den Oever consist of the replacement of the steel gates and the
construction of seepage screens. To realise the increase in discharge capacity by pumps,
four variants were considered. Prior to the more detailed reference design of Witteveen+Bos
[40], the decision has been made to choose design alternative B, seen in figure 2.3, as most
desirable. Alternative C (figure 2.4) is still kept in the solution space as a possibility.

The intention of the chosen design (alternative B) is to integrate the pumps into the newly
placed southern gate, and therewith prevent large scale alterations of the eighty year old
concrete sluice structure. Except for saving costs, the advantage of this alternative is that
the pumps will not hamper the discharge capacity under gravity flow when in lifted position.

The more conventional method of constructing the pumps on a large and heavy concrete
foundation (figure 2.5a), is thus not considered a solution any more. Also, the possibility of
constructing a new foundation for a pump gate (figure 2.5b) is excluded from the solution
space.

In this thesis the focus is on alternative B, in which a pump gate is implemented at the
location of the present southern flood gate. At this location, two gate designs are still an
option differing mainly in strength: the regular pump gate and the pump gate as primary
flood defence. Both designs will be treated in section 2.4 and appendix B.

8
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Figure 2.3: Preferred pump complex design (alternative B) [39]

Figure 2.4: Alternate pump complex design (alternative C), still in the solution space [39]

(a) Alternative A (b) Alternative D

Figure 2.5: Two in the previous phase of the project considered variants with regard to
the water discharge capacity, that do now fall outside of the solution space.

2.3 Pump gate concept

The pump gate is a combination of two main concepts: the movable barrier or flood gate
and the water pump. The combination of these concepts, can be taking literally in a
geographical sense. By applying pump gates, there is no need for a pump complex separately
from the main waterway. This is shown in figure 2.6. The same is in fact done at the
Afsluitdijk. Instead of constructing a new pump station integrated in the dam the existing
waterway is used, in this case being sluice complex Den Oever. This solution saves space
and is therefore also likely to reduce costs. Two examples of pump gates are shown in the
figures below. In section 2.3.3 some existing pump gate projects are elaborated.

2.3.1 Gate and barrier types

The pump gates at Den Oever will regulate the water level at Lake IJssel under daily
circumstances, both by retaining and discharging water. Whether it will also serve as a
primary flood defence is not yet decided upon. This will be clarified further in section 2.4.
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Figure 2.6: Plan view of conventional method with a pumping station separately from the
main waterway (left) and of the pump gate solution (right), which combines these two
functions and therewith saves space and costs.

Figure 2.7: Photos of two Hasuh pump gates applied in South-Korea. Noticing the guidance
system at the sides of the gate in the photo on the left [12], these are likely to be vertical
lifting gates. The photo on the right [13] shows a hinged pump gate.

Due to the existing structure at sluice complex Den Oever, a vertical lifting pump gate is
evidently the best solution. For the purpose of the pump gate concept in general, several
gates and barriers and their suitability to function as a pump gate are briefly inventoried.
These are shown in figure 2.8. Advantages of the lifting, radial and sliding gate are the
relative easy access to the pumps in opened position, as these require regular maintenance.
Barrier types such as the inflatable and parachute barrier are not suitable for obvious
structural reasons. Mitre and flap gates will likely have issues with stability and leakage.

2.3.2 Pump types

A pump is defined as “a mechanical device using suction or pressure to raise or move
liquids...”. By adding energy to the flow, a water level difference can be overcome. Two
major pump categories can be distinguished: displacement and dynamic [18].

In the first category, energy is periodically added by application of force on an enclosed
volume, resulting in a direct increase in pressure. Two examples are given in figure 2.9a and
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(a) Lifting gate (b) Mitre gate (c) Sliding gate (d) Radial gate (e) Flap gate

(f) Sector gate (g) Visor gate (h) Inflatable bar-
rier

(i) Parachute bar-
rier

(j) Barge gate

Figure 2.8: Examples of gate and barrier types [6, edited] and their suitability to function
as pump gate.

2.9b. A third example of the displacement pump type is the rotary pump. The maximum
discharge of a displacement pump is generally lower than the dynamic type pumps.

(a) Diaphgram pump (b) Piston and plunger
pumps

(c) Axial flow centrifu-
gal flow

(d) Radial flow cen-
trifugal pump

Figure 2.9: Four examples of displacement (a,b) and dynamic pumps (c,d)

Dynamic pumps continuously add energy to the fluid to increase the fluid velocity. When
the fluid slows down, a higher pressure remains and thus a head difference has been over-
come. Figure 2.9c and 2.9d both show examples of dynamic pumps. These are both
centrifugal pumps, which is the most common dynamic pump. For a further classification
of dynamic pumps, see appendix C.1.

2.3.3 Reference designs

Although the planned pump gate at Den Oever is considered innovative on its scale, some
pump gate projects do exist. In the Netherlands two projects in Terneuzen and Hoek have
been realised, where a single pump was implemented in a gate [24]. Little information is
available on those projects however.

In Korea, the company Hasuh has designed and applied the pump gate [13] at over 50
projects in the past ten years. They have patented some of these technologies as well.
Most often applied, is the horizontal shaft pump gate with axial flow pump. A pump
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complex project in which bulb pumps (or horizontal axial flow pumps) are used, is shown
in figure 2.10. A design with a vertical pump shaft and bent flow exists as well. Other
variations mainly concern the gate opening and closure system. The vertical lifting pump
gate is applied most. When vertical space is limited, horizontally or vertically hinged gates
provide possible solutions.

Figure 2.10: Gangmae Pump Station with vertical lifting pump gates

In all of Hasuh’s pump gate designs, the pump can be closed off by valves from both sides.
It is therefore able to retain water at both positive and negative head. In figure 2.10 these
valves can be seen in closed position. No second gate is applied in most of these projects.

In table 2.1 key dimensions are given of pump gates and surrounding structure for different
pump diameters. A few basic relations can be deducted from these standard sizes. For
a gate with two pumps, the width of the gate used is 4D. Based on the 500, 1000 and
1500 mm diameter data, the heart to heart distance used is about 1.6D. This leaves 0.7D
between the sides of the gates and the outer pump diameters. The height of the pump gate
is about 0.5 + 1.5D metre. A single 1500 mm diameter pump is approximated to discharge
4-6 m3/s at a head of three metre [13].

Using the above relations, the gate of about 12 m at Den Oever should then indeed be
able to geometrically contain three pumps with a 2 m diameter. The larger span and high
number of pumps at the Den Oever gates may also result in higher loads and less resistance
to it. Exact values for the thickness or flexural rigidity of the Hasuh pump gate designs
are not known. In figure 2.7 the gate’s thickness seems to be in the order of a fourth to
a third of its span, which would be very robust compared to regular flood gates subjected
to non-extreme design conditions. This indicates that the dynamic behaviour of the pump
gates may have been a determining factor in these designs.
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Table 2.1: Dimensions (in mm) of standard horizontal shaft pump gate design by Hasuh
Industries Corporation [13]. Table is shortened for clarity, multiple sizes exist in between.

2.4 Gate designs Den Oever

Two designs will be analysed in this thesis. These will both be considered at the location
of the present southern flood gate, which is the preference alternative (see figure 2.3). The
designs differ in design head and therefore in weight and rigidity, and will be denoted by:

• Primary flood defence pump gate
• Regular pump gate

By means of a reliability analysis, Witteveen+Bos [40] has concluded using a single flood
gate provides sufficient reliability. For the entire pump complex, the requirement states
that the failure chance must be smaller than:

Pfailure < 0.1 · frequency norm = 0.1 · 10−4 = 1/100, 000 [per year] (2.1)

Two requirement ‘tracks’ of maximum allowed water level rise at Lake IJssel were evaluated
[40]:

• A rise of 0.8 metre at storm conditions with a return period of 10 years gradually
decaying to no rise at a return period of 4,000 years.
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• A rise of 0.8 metre at storm conditions with a return period of 10 years gradually
decaying to 0.075 metre rise at 10,000 years and no allowed rise for higher return
periods.

These requirements lead to a failure probability of 1/147.000 and 1/243.000 per year, both
complying with the requirement. This is mainly due to the large Lake IJssel basin and
a redundant central control. Whether a single or double primary flood defence will be
implemented, is decided in the final project stage by the contractor. Both pump gate
designs are therefore still a possibility for the preference alternative.

The reference designs by Witteveen+Bos [40] are used as the basis for the two considered
designs. However, some alterations are made. To keep the solution space broad the design
for the preference alternative by Witteveen+Bos [40] has been made only for the governing
case (in both costs and space), which is when the pump gate serves as primary flood defence.
A regular design has been made for alternative C (at the existing foundation on the Lake
IJssel side), for which slightly other geometrical conditions such as a lower bottom level
apply. The latter is therefore altered to comply to the considered location.

The geometry of both reference designs is shown in figure 2.11. The flood defence gate
design is characterised by a smaller number of large vertical profiles, while the regular design
has a higher number of smaller vertical profiles. Both gates have three main horizontal
profiles. In figure 2.12 the structural design of the flood defence pump gate is shown as is
used in the FEM model by Witteveen+Bos [40].

Figure 2.11: Reference pump gate designs (front view). Both designs will be considered at
the location of the most desired conceptual design alternative (B).

The flexural rigidities of the reference designs have been determined in appendix B. In the
analyses in further chapters, the gate is considered simply supported at its edges. The gate
supports are further elaborated in section 2.4.2. The vertical edge profiles were therefore
not taken into account when determining the body rigidity. For both gate designs this
resulted in a higher flexural rigidity per running metre in horizontal than in the vertical
direction. To simplify further analyses both gate designs are considered isotropic2, taking

2The gate designs evidently have a three-dimensional layout with stiffening profiles at distinct locations.
An equal body rigidity in horizontal and vertical direction is in this case considered isotropic, and also
schematized as such in further models.
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Figure 2.12: Structural design of pump gate as used in the calculation FEM model by
Witteveen+Bos [40], dimensioned as primary flood defence.

the higher horizontal rigidity as representative for both directions. The vertical profiles
shown in section 2.11 therefore do not correspond to the investigated rigidity of the gate
designs. It must be noted that the increased vertical rigidity is favourable compared to
the actual present reference designs, which must be kept in mind for the presented results.
The most important parameters of both designs are given in table 2.2. The input for the
analyses of both designs only differ in rigidity and weight.

Table 2.2: Structural parameters of both gate designs used as input for further analyses.
In the determination of the flexural rigidity the stiffness of the edge elements is neglected,
as these will be considered supported. The gate weight includes these elements.

Parameter Flood defence pump gate Regular pump gate

Design head [m] 6.75 2
Steel type S355 S355
Gate thickness [m] 1.7 0.6
Bending stiffness3 D [Nm] 3.0 · 109 2.0 · 108

Gate weight [kg] 30,000 18,040

To take into account fatigue for the regular pump gate design, the bending moment unity
check was done for 0.7 (a number based on experience). In case of the flood defence
pump gate, fatigue was assumed insignificant due to the high strength of the gate as a
consequence of the 6.75 head difference. For both designs, the dynamic behaviour was not
investigated further. More insight in the dynamic behaviour and demands could indicate
whether the regular pump gate design is indeed sensitive to vibrations and whether, except

3The plate bending stiffness, or flexural rigidity EI per running metre, is equal in both directions since
the gates will be schematized as homogeneous and isotropic. As was mentioned, this is not the case for the
reference designs by Witteveen+Bos [40].
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for fatigue, the stronger flood defence pump gate fulfils all other vibration related demands
(see section 3.4).

In figure 2.11, the geometrical integration of the three pumps in the gate is shown as well.
The maximum pump diameter was determined by Witteveen+Bos [40] to be 2 metre, based
on the following design rules [27, 40]:

• Distance above bottom level: ≥ 0.5D;
• Distance between pumps: ≥ 1D;
• Distance pump and wall: ≥ 0.5D.
• Water coverage: ≥ 0.5D;

The stated distance are with respect to the pump edge (thus not center). The width
required to house three pumps of 2 metre is then exactly the available sluice at Den Oever:

Wrequired = 2 · 0.5D + 3 ·D + 2 ·D = 6 ·D = 6 · 2 = 12 [m] (2.2)

The available length in vertical and lateral direction are elaborated in the following section.

2.4.1 Implementation of gates into present structure

By applying pump gates at the location of the southern flood gates, extensive alterations to
the existing concrete structure are avoided. Locally, the northern bridge girder is adjusted to
generate the 3.5 metre available length needed for the pumps in lifted position. Specialists of
Nijhuis B.V. have indicated this length is enough for an axial flow pump with direct driving
[40]. In figure 2.13 the proposed integration of the pump gate in the existing structure is
shown.

As a first estimate, often twice the pump diameter is used for the pump length [27]. In the
designs of Hasuh, see table 2.1, the pump length is even larger than that. The largest pump
diameter of the Hasuh designs is 1.5 metre, for which the pump length is already 3.5 metre.
The available length could therefore be seen as a minimum to house the pump impellers,
motor and in- and outflow diffusers. The shorter length does result in an increase of in-
and outflow losses. An alternative would be to house the motor above the pump impellers
and connect it through gears. The efficiency is expected to be lower in that case.

The sill will be slightly lowered from -4.4 to -4.5 m NAP. In that case the bottom of the
pumps (0.8 m above gate bottom) will at a height of -3.7 m NAP. The required distance
between bottom level sluice (-4.7 m NAP) is therewith complied to. In appendix A the
hydraulic boundary conditions are elaborated. The minimum Lake IJssel water level for
which the pumps will be in operation is stated to be -0.60 m NAP, which results in a
minimum water coverage of (1.7− 0.6) = 0.525 ·D.
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Figure 2.13: Integration of pump gate in southern part of the sluice [40, edited]. Lifting
towers are not included in the drawing.

2.4.2 Gate suspension and support

What happens at the four edges of the gate, is of importance to the dynamic behaviour
of the gate. The top edge of the gate is free. Besides that, the bottom of the gate is
the most straightforward connection with respect to geometry. In order to minimize the
resultant upward water pressure in extreme events, a bottom element is constructed as
close as possible to the Waddenzee side. In figure 2.14 this detail is shown for the old flood
gates. In the original design the bottom element was still in the middle of the gate, but
was changed in a further design stage. A similar connection is intended in the design for
the new gates as well. The connection point is not horizontally embedded, and relatively
thin in comparison with the gates’ width. The latter results in little capacity to transfer
resulting moments onto the foundation.

The vertical connections at the sides of the pump gate will have to be roller guides due to
the large weight of the pump gate, in contrast to glide connections which would be possible
for the new flood gates. Currently, a guiding system with roller guides is in place as well.
Since no detailed design is available, the present connection is taken as representative, given
in figure 2.15. The gate layout obviously does not apply to the pump gate designs.

2.4.3 Pump specifics

At pump complex Den Oever, it is intended to apply an axial flow pump [40]. This pump
type is suitable for high discharges at low head differences. More specifically, a bulb pump
will be used, which is an axial flow pump with direct driving. With this pump type, the
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Figure 2.14: Bottom detail of present flood gates, placement on sill. A similar bottom
detail is intended for the new (pump) gates. [40, edited]

Figure 2.15: Drawing existing flood gate. Gate supports highlighted in red. Bottom detail
on sill as depicted is later changed to the design given in figure 2.14. [24, edited]
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flow is not bent as was shown in figure 2.9c, but the flow is guided around the rotor. In
figure 2.16 examples of a bulb pump and bulb turbine are given.

Figure 2.16: Left: bulb pump IJmuiden [16]. Right: Alstom bulb turbine [28].

Exact specifics on the pumps that will be used, are not yet available. In section 2.4.1 it
was seen that the maximum pump diameter between the geometric constraints is about 2
metre. The geometry of the pump gate and the implementation of the pumps is given in
appendix B, figure B.2. Witteveen+Bos [40] has, in consultation with specialists of Nijhuis
B.V., determined the following values for the design point of that size pump:

• Design head Hd = 1.0 m;
• Design discharge Qd = 18 m3/s.

In table 2.3 below the estimations for the total pump station are given. The number of
pumps includes one reserve.

Table 2.3: Provisional assumptions and data pump capacity [25]

till 2028 till 2050

Number of gates 8 13
Designed number of pumps 24 39
Pump capacity [m3/s] 414 684

The radial velocity of the pumps is not relevant when evaluating the static behaviour of the
gate designs. Therefore, an estimation of this velocity has not been made byWitteveen+Bos
[40]. For a potential power plant in the Brouwersdam, guidelines have been deduced by
Nijhuis Pompen BV [27] based on experiments and experience for the design values of low
head (till approximately 6 m) bulb pump turbines. These are able to function both as a
pump and as a turbine. These guidelines are used to make a global estimation of the pump
radial frequency. The diameter, in relation to the design discharge, is estimated by:

D ≈ 0.5 ·
√
Qd [m] (2.3)

This results in D = 0.5 ·
√

18 ≈ 2.1 m, which is thus reasonably in accordance with the 2
metre that was used by Witteveen+Bos [40]. The rotation speed of the pump impeller is
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then estimated as follow:

Nd ≈
750√
Qd

= 750√
18
≈ 177 [rpm] (2.4)

This is equal to 177/60 = 2.95 Hz ≈ 18.5 rad/s.

Based on a constant pump rotational velocity, a pump curve has been estimated [40] which
gives the discharges at hydraulic heads different from the design point. This curve is shown
in chapter 4 (figure 4.9) in which it is used to estimate the motion-dependent pump forces,
specific values are given in appendix C.2. The actual discharge through the sluice is not
only determined by this pump curve, but also by the total system curve, which consists
of the static head plus the dynamic head (friction losses). This is elaborated further in
appendix C. In the report by Witteveen+Bos [40], this distinction has not been made and
a constant system efficiency is used.

2.5 Conclusion

The pump gate concept has large benefits compared to the more conventional method of
constructing a pump complex separately from the main waterway or, in case of Den Oever,
the sluice complex. Due to this innovative solution, the free flow discharge capacity is
not hampered and costs can be reduced. This however also brings along some uncertainty
and challenges. Instead of the pumps being on a heavy concrete foundation, they are now
situated in a relatively light weight steel gate. Excessive vibrations of the pumps and gate
therefore become a larger risk.

Compared to the Korean reference projects, the pump gate designs for Den Oever have
a large span and height. This results in higher loads and a lower stiffness of the gate.
Furthermore, although exact values of their stiffness are not known, the Korean pump
gates appear to be robust with a thickness of a fourth to a third of their spans and a
small heart to heart distance between the stiffening elements. The flood defence pump
gate, which is dimensioned on extreme storm conditions, has a significantly higher flexural
rigidity than the regular pump gate. The regular pump gate design, subjected to the same
variable loading during operation, is therefore much more prone to vibrations.

Whether the pump gate will have to function as flood gate, is decided by the contractor in
a later phase of the Afsluitdijk project. A dynamic analysis of the pump gate designs can
support such a decision. If the regular pump gate appears not to comply with vibration
requirements, and has to be designed with a larger thickness, the benefits of not using the
pump gate as a second flood defence reduce.

Although the pump gate designs are elaborated in detail, the exact geometry of its vertical
supports remains unknown. A detailed design of these connections is not available and
therefore a similar guidance system as for the previous gates is assumed. The supports of
the gate are an important parameter in its dynamic behaviour. To simplify further analyses,
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both designs will be considered with an isotropic bending stiffness. This is favourable
compared to the designs by Witteveen+Bos [40] and should be kept in mind.

In the following chapter (3), the causes and consequences of vibrations of the Den Oever
pump gates are elaborated and hydraulic conditions are determined. This forms the input
for further analyses in chapter 5 to 7.
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3 | Vibrations of the pump gate

In section 3.1 a quick overview of the components influencing the dynamic behaviour of
the gate is given. The analyses in the remainder of this report are limited to a few of
these components. Subsequently, the hydraulic design conditions are elaborated (3.2). The
possible causes of vibrations are elaborated in section 3.3. Furthermore, the consequences
of these vibrations and the requirements with respect to these consequences are stated in
section 3.4.

3.1 System influencing pump gate vibrations

The pump gates at Den Oever are part of a larger system. One of the reasons why the
dynamic behaviour of the pump gate is complex, is due to the many components involved
that influence it. A schematic representation of these components, is given in figure 3.1.

Figure 3.1: Schematic presentation components dynamic system of the pump gate. The
upper structure has not been drawn for clarity.

Vibrations of the gate will have an effect on and will be affected by the gate structure,
the pumps, fluid, concrete structure and subsoil. Due to the large volume of the concrete
structure, the weight of the concrete structure is relatively large in comparison to that of
the gate and pumps. The concrete pillars in between each water way alone have a weight
of about:

mpillar = 4.1 · 10 · 50 · 2400 = 4920 · 103 kg (3.1)
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This is 55-60 times larger than the weight of the pump gate. Including the concrete towers,
girders and floor slab, the difference in weight will be much larger. For this reason, the
movement of the concrete structure and subsoil is neglected in the analysis of the system.
This limits the analysis of the system to the following components:

• Gate structure, including its supports and suspensions;
• Pumps;
• Fluid.

Although the concrete structure is not included in the analysis, forces from the gates onto
its support may involve risks. This is not explicitly investigated, but the amplification of
static gate deflections is a first indication of whether these forces may be significant.

Theoretical background on the dynamic behaviour of each of the three included components
is given in chapter 4.

3.2 Hydraulic design conditions

Especially relevant to the pump gate, is the behaviour during operation. The analyses
in further chapters are therefore, as was mentioned before, focused on the closed pump
gate with operating pumps. Since, the governing dynamic response of the designs may not
simply be at the highest water levels, a possible range is determined. Subsequently, a few
likely governing cases are investigated.

The absolute minimum Lake IJssel water level for which the pumps are required to operate
is -0.6 m NAP. The maximum allowable water level at Lake IJssel is +0.55 ≈ +0.6 m NAP,
based on a historical event in which this water level was reached [22]. These two water
levels give the possible water level range on the Lake IJssel side of the pump gate.

During extreme (1/10,000 year) storm conditions and corresponding water levels on the
Waddensea, the pump gate will not be in operation. A requirement for the maximum
return period at which operating must be possible, is not stated. The maximum water
level at the Waddensea side is therefore based on the assumed requirement of open channel
flow. As was shown in figure 2.1 the bottom of the upperstructure is located at +2.50 m
NAP. Even if the pumps will indeed not operate at higher water levels and corresponding
return periods, they may have a significant favourable effect on the resistance against
extreme storm conditions. The water level at Lake IJssel can be lowered more effectively
in anticipation and at the beginning of extreme conditions.

Although the pump is theoretically able to operate at negative heads, it is expected that in
that case discharging by gravity will be preferable. The minimum Waddensea level during
operation is therefore taken 0.1 metre above that of Lake IJssel. The hydraulic conditions
are summarized in table 3.1.

The maximum head during operation is thus 7.2− 4.1 = 3.1 metre. The pumps are able to
operate at this head. The regular pump gate is however dimensioned on a head of 2 metre
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Table 3.1: Design water level ranges Lake IJssel and Waddensea during pump operation

Location Min. water level Corr. water depth Max. water level Corr. water depth

Lake IJssel (hS) -0.6 m NAP 4.1 m +0.6 m NAP 5.3 m
Waddensea (hN ) -0.5 m NAP 4.2 m +2.50 m NAP 7.2 m

[40]. To ensure an unambiguous comparison between the regular and more robust flood
defence pump gate design, both designs will be evaluated for a maximum pump head of 2
metre. Based on above defined water level ranges, three possibly governing load cases will
be investigated:

• Minimum water depths:
• Cavitation risk:
• Maximum water depths:

hS = 4.1 m, hN = 4.2 m
hS = 4.1 m, hN = 6.1 m
hS = 5.3 m, hN = 7.2 m

The minimum and maximum water levels will likely results in respectively the highest
and lowest eigenfrequencies of the entire system. The cavitation water levels are based on
minimum water coverage, and maximum pump head. The requirements and background
with respect to cavitation are elaborated in section 3.4 and appendix C.6

The maximum Waddensea water level of +2.50 corresponds to the present 1/1 year storm
conditions. A wave spectrum is determined for this water level in appendix A and is
elaborated further in section 3.3.2 as one of the excitation forces.

3.3 Causes of vibrations

A distinction should be made between the ‘external’ forces and those which are part of
the dynamic system and are responsive to the vibrations. The fluid and pumps contribute
to both these categories. The presence of the fluid results in hydrodynamic damping and
mass (or stiffness), which is part of the responsive system. The same applies to the pumps,
which are likely to have a certain response to the motion of the gate. The responsive
forces, dependent on the deflection, velocity or acceleration of the structure, influence the
eigenfrequencies and modes of the entire system. The responsive forces of both the fluid
and pumps are elaborated in chapter 4.

These forces are however not the cause of vibrations. In this section the possible excitation
mechanisms of the pump gate are inventoried, of which the followings can be distinguished:

• The motion-independent mechanic and hydraulic pump forces;
• Waves;
• Other fluid-induced interactions;

Other loads are considered insignificant in magnitude, such as wind loading, in likelihood
of occurrence, such as earthquake loading, or not governing in the design concerning vibra-
tions, such as collision impact loads.
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3.3.1 Motion-independent pump forces

Due to inevitable inaccuracies in the pump, unbalanced forces will be a result of the ro-
tations of the pump rotor. Mechanical unbalance is the result of a deviation in mass of
the different propellers. The resulting net centrifugal force has harmonic horizontal and
vertical components. A bent shaft and the run-out of individual components can result in
such forces as well. The forces resulting from mechanical inaccuracies have their peak at
the rotation frequency of the pump [11].

Given the orientation of the axial flow pumps, the blades are rotating in the same plane
as the gate. Unbalance forces therefore do not directly lead to a bending motion of the
gate. Mechanical unbalance often goes accompanied with hydraulic forces in the pumps.
Furthermore, the inherent turbulent behaviour of the fluid leads to certain periodic forces.
Florjancic and Frei [11] state the following hydraulic forces leading to pump vibrations (and
their corresponding frequencies):

• Hydraulic unbalance (peak at ωp)
• Vane pass (peaks at n · nblades · ωp, n = 1, 2, 3, ...)
• Recirculation/separation, and similar phenomena (no peak, 0-1.5 · ωp)
• Rotating stall (peak at 0.5-0.95 · ωp)
• Cavitation (broad band 0.5-10 kHz)

in which: ωp = pump radial velocity [rad/s]
nblades = number of rotor blades of the pump [-]

The extremely high frequencies corresponding to the implosion of cavitation bubbles (≈ 10
kHz) can in some cases, due to disturbance of the flow, also lead to pressure fluctuations
with much lower frequencies (< 10 Hz) [11].

Vane passage forces are, as is in the name, the result of the blades passing by the vanes
which support the pumps. The vane passage excitation frequencies depend on the number
of impeller blades: n · nblades · ωp. Florjancic and Frei [11] state vane passage becomes
insignificant for n > 3.

Generally, the pump manufacturer states limits for the forces that may originate from the
pumps. As was stated in section 2.4.3, specifics on the pumps are yet unsure in this phase
of the Afsluitdijk project. Data on pump forces is therefore not yet available, and also the
pump radial frequency may vary from what was estimated. A more broad and roughly
estimated force envelope is therefore defined. Results will give insight in whether certain
pump radial velocities should be avoided or whether the pump gate must be adjusted to
this.

Since the radial pump velocity is roughly estimated and the number of pump blades is not
certain yet, these parameters are varied. In figure 2.16 it can be seen that the bulb pumps
of IJmuiden have five impeller blades. The following possibilities are considered:

• Pump radial velocity: ±50% · 18.5 rad/s
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• Number of blades: 4-6

Subsequently excitation frequencies are considered within 0.5-1.5 times the radial pump
velocity, which corresponds to most of the listed pump forces. For the vane passage forces
frequencies three multiples of nblades · ωp are considered. The above leads to excitation
frequencies from (0.5 · 0.5 · 18.5 ≈) 4.6 to (3 · 6 · 1.5 · 18.5 =) 499.5 rad/s.

Witteveen+Bos [40] has, in consultation with Nijhuis B.V., assumed the total peak ampli-
tude of the variable pump forces is no more than ten percent of the constant pump thrust,
see equation (3.2). This obviously is a crude assumption and does not distinct between the
motion-independent and dependent forces. Due to lack on better data, this value is used
as a possible maximum for each of the estimated possible frequencies. Since energy decays
for higher vane passage multiples, the energy is reduced with one third for each higher mul-
tiple n. The given ranges and assumed values then result in the excitation force-frequency
‘envelope’ shown in figure 3.2. The values given in this envelope do not act simultaneously,
but each of these forces is evaluated as a maximum. This differs from a usual spectrum,
which represents a time signal transformed to the frequency domain as a summation of
harmonics (such the wave spectrum in section 3.3.2)
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Figure 3.2: Amplitude-frequency envelope for the forces resulting from the pumps based
on varied pump radial velocities and the number of pump blades (blue). In red, the peak
excitation frequencies are shown given for a single pump rotation speed (ωp = 18.5 rad/s).
In reality some kind of distribution would be present around each peak frequency. Since
only the envelope is considered in the analyses, such a distribution was not determined.

The maximum force amplitude as a function of the pump thrust is given by:

F̂p = 0.1 · Fthrust = 0.1 ·Ap ∆p = 0.1 ·Ap ρfg Hp (3.2)
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in which: Ap = pump propeller area [m2]
Hp = pump head [m]

Since especially for the flood defence pump gate, pump thrust is small compared to the
governing extreme storm conditions, response is likely to be limited unless resonance oc-
curs. The exact value is therefore less important than the corresponding frequency ranges,
although both are used to give a first estimate of the response magnitude.

3.3.2 Waves

In appendix A.2 a wave spectrum is quantified for the location of the sluice complex. This
depth-limited JONSWAP spectrum is depicted in figure 3.3. The peak frequency (and
related wave length) depend on the fetch for an undeveloped sea state. Due to the short
fetch at the Waddensea, the peak frequency is relatively high and corresponding energy
relatively low. Locally, the waves are possibly distorted due to the change of depth and the
counterflow generated by the pumps. This has not been taken into account however when
determining the wave spectrum.
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Figure 3.3: Depth-limited JONSWAP wave spectrum at the Waddensea

As can be seen, the waves correspond to much lower frequencies than the forces originating
from the pumps, with minimal periods of about two seconds. Therefore, these waves
potentially excite no natural frequencies of the gate system. This is the case for many
regular hydraulic flood gates. Due to the pump masses and stricter requirements for the
pump gate, it should be investigated whether this also applies to the pump gate designs.

The response to a wave spectrum is determined by frequency-dependent transfer functions.
First, the variance density spectrum is transformed to the wave force spectrum. Subse-
quently, a response spectrum can be determined. This is further explained in section A.3.

28



Chapter 3. Vibrations of the pump gate

3.3.3 Fluid-induced vibrations

The following fluid induced structural vibrations are mentioned in literature [9, 17, 19, 21,
26]:

• Excitation due to turbulence;
• Excitation by stable vortices;
• Excitation due to flow instability;
• Self-excitation;
• Excitation due to fluid oscillations in a basin;
• Excitation due to fluid oscillations coupled with the structure motion.

The distinction between the ‘responsive’ system and the motion-independent excitation
force is less clear for some of these excitations. When the fluid is part of the dynamic
system, the latter two categories listed above can actually be considered as the excited
system itself. These are therefore included in the analyses in further chapters of this report.

In appendix D.4 each of these six phenomena is discussed briefly with respect to gates.
Self-excitation occurs when the velocity of the structure is accompanied by a force in the
same direction. This can be expressed by a negative damping coefficient. In such cases
often the permanent flow is the component adding energy to the system, and can thus be
seen as the external forcing. Most of the self-excitation mechanisms and flow instabilities
are therefore relevant to gates with under- or overflow. These are therefore not considered
in this thesis.

3.4 Vibration requirements and failure mechanisms

Extensive vibrations can lead to a number of unwanted effects or even failure of the struc-
ture. Possible failure due to vibrations in the existing structure or gate can be due to:

1. Exceedance of ultimate strength in the steel pump gates or its support;
2. Exceedance of ultimate strength in the concrete structure;
3. Fatigue of a structural component.

Furthermore vibrations can lead to:

4. Increased maintenance of structural components.

Effects of vibrations could further have the following negative effects on the pumps:

5. Decreased efficiency;
6. Decreased lifetime;
7. Increased maintenance.

Finally, the water tightness of the gate might be influenced by vibrations, which indirectly
decreases the efficiency of the pumps. Predicting the effect of vibrations on the leakage of
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the gate is however, even qualitatively, difficult. It depends on the exact geometrical design
of the supports and borders. For now, it is assumed the water tightness will receive special
attention in the final design if necessary and measures will be taken to such an extend that
leakage can be neglected.

Below, for each of the above mentioned effects it is described briefly how it can be deter-
mined, and what the requirements are.

1) The ultimate stresses resulting from the vibrations can be described by a structural
model. The ultimate allowable tensile stress in the gate is given by the steel used (S355).

2) Although, similar to steel fatigue, repetitive loads on the concrete structure might be
more harmful than the same static load, the concrete structure itself is not investigated in
this thesis. Instead, the amplification of static gate deflection is used as a first indication
of the magnitude of the support forces.

3+4) The occurrence of fatigue and required maintenance of the structural elements due
to vibrations are closely related. In appendix D.2 the phenomenon of fatigue and the
approach of the Eurocode 3 is given, which uses a standard S-N curve. The cumulative
fatigue damage in case of variable amplitude loading is determined by the so called Miner
rule, which states that in order for an element not to fail:

Dd =
∑ ni

Ni
< 1 (3.3)

in which: Dd = fatigue damage factor during design life [-]
ni = number of times load Si occurs [cycles]
Ni = fatigue endurance to load Si [cycles]

The higher this damage factor, the greater the likelihood of damage and needed mainte-
nance. A simplified structural model will most likely not describe occurring (peak) stresses
in every gate element and might neglect effects like torsion. Factors could be used to
account for this.

5) Extensive vibrations can lead to a decrease in pump efficiency, which would mean a
higher energy consumption. The occurrence of cavitation has a large influence on the
pumps’ efficiency. An important notion in the prediction of cavitation is the net positive
suction head (NPSH). Vibrations of the gate can possibly reduce the active NPSH due to
resulting pressure fluctuations in the fluid. The concept of cavitation is elaborated further
in section C.6.

6+7) On top of the normal wear and tear of the pump parts, extensive vibrations can
significantly reduce pump lifetime. In this, damage due to cavitation (and thus the NPSH)
plays a role as well. Secondly, guidelines exist stating maximum allowable vibration speeds
in the non-moving parts of pumps. These will be used as a limit, above which lifetime is
significantly reduced. These limits are given in appendix C.5, table C.2.
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3.5 Conclusion

Together with chapter 2, the input has been provided for further analyses of the pump
gate designs with respect to vibrations. The system has been limited to the gate structure,
pumps and fluid. The relevant causes of vibrations independent of the system itself that will
be included in further analyses are waves and pump forces. The quantification of the latter
includes high uncertainties in this phase of the project. A broader envelope of potential
pump radial speeds and corresponding excitation frequencies is therefore determined.

The focus of further analyses will be on the pump gate during operation, for which hydraulic
design conditions have been determined. Since it is not known in advance which hydraulic
boundary conditions will lead to governing eigenfrequencies, a range is inventoried.

The vibration requirements with respect to the gate come down to the demand of not
exceeding stresses occurring in the static situation, since also with fatigue the maximum
number of repetitive loads allowed is a function of the stress amplitude. The ratio between
the force amplitude and maximum responsive spring force is given by the amplification
factor, which is introduced in appendix D.1.1. Considering (quasi-)static loading the gate
designs complied to the requirements.

The requirements for the pump are twofold. To limit wear and tear of the pumps, vibration
velocities should be limited. On the other hand, excessive pressure fluctuations in the fluid
can lead to inefficient operation and in extreme cases to cavitation damage. These pressure
fluctuations can be caused by the gate, the pumps or be the result of fluid oscillations in
the sluice.

A model of the pump gate should thus not solely focus on the pump-gate structure, but also
quantify pressure fluctuations in the fluid. Since the fluid is part of the excited system, it
is likely that this is a prerequisite to determine gate vibrations in any case. The theoretical
background on the behaviour of the structure, pump and fluid during vibrations each is
given in the following chapter, after which a model strategy is determined.
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4 | Fluid, pump and structure dynamics

As a start of the quantification of pump gate vibrations, in this chapter a theoretical
investigation of the pump gate system is made. Subjected to harmonic forcing, the pump
gate will vibrate in a certain shape. In figure 4.1 the two-dimensional motion of the gate
is shown for both the vertical and the horizontal direction. In reality, the motion will be
three dimensional.

Vertical Horizontal

Figure 4.1: Representation of the vibrating pump gate

In figure 4.1 the three key elements of the dynamic system that will be included in future
analyses, are shown. As mentioned in chapter 3 these are the gate structure, pumps and
fluid. Theoretical background is given on the dynamic behaviour of each of these compo-
nents in section 4.1, section 4.2 and section 4.3. Analytical estimations are given for these
components. Based on these estimations and their relative magnitude, it can be decided
whether a more specific model approach is necessary.

Furthermore, the interaction between the vibration (shape) of the structure and the fluid
and pump pressures is not yet included in each of these separate theoretical expressions.
The hydrodynamic forces are both dependent on the amplitude as well as the shape of
the vibrating gate. The motion of the gate is turn determined by these forces and the
hydrodynamic response. To include and solve these interactions, multiple methods exist.
A model strategy is elaborated in section 4.4.

4.1 Structural dynamics

4.1.1 Basic notions

When a structure is subjected to a force, this causes deformations and internal stresses. In
a static analysis, variations in time are not taken into account and the structure will be in
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equilibrium: ∑
F = 0,

∑
T = 0 (4.1)

in which: F = external force [N]
T = external moment [Nm]

When the forces do vary in time, the inertia of the structure might not be negligible any
more. In that case the response is dynamic and vibrations can occur. A well-known
theoretical example is that of the single degree of freedom mass-spring-dash pot system,
which can be seen in figure 4.2. This system can be described by the following equation:

m
d2y

dt2
+ c

dy

dt
+ ky = F (t) (4.2)

in which: m = mass [kg]
c = damping [Ns/m]
k = spring stiffness [N/m]
y = displacement in y-direction [m]
t = time [s]

Figure 4.2: Single degree of freedom mass dash pot spring system [17]

An important notion in the field of dynamics, is resonance. This is the phenomenon that
consists of a given system being driven by a force to oscillate with greater amplitude at
certain frequencies. The natural frequency or eigenfrequency at which this occurs, is given
in equation (4.3) for the mass-dashpot-spring system. To avoid resonance in practice,
structures are designed stiff enough so that its first natural frequency is about twice the
excitation frequency.

fn = ωn
2π = 1

2π

√
k

m
(4.3)

in which: fn = natural frequency or eigenfrequency [Hz = s−1]
ωn = natural radial frequency or radial eigenfrequency [rad/s]

When such a system is submerged in water, its behaviour and eigenfrequencies will change.
This is elaborated in section 4.2.
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Many structures can not be sufficiently described by a single degree of freedom and should
thus be represented as continuous systems or systems with n-degrees of freedom. In numer-
ical software the systems will often be represented as a discrete system (or lumped mass
systems) with limited but many degrees of freedom. The equations of motion can then best
be presented in matrix form:

Mÿ + Cẏ + Ky = f (4.4)

In appendix D.1.1 the behaviour of the single and multiple degree of freedom (SDOF and
MDOF) system is treated further.

4.1.2 Continuous systems: the bending beam

A continuous system is in fact an infinite degree of freedom system. Hence, it has an
infinite number of eigenmodes and natural frequencies. The first three eigenmodes of a
simply supported bending beam are given in figure 4.3. The lowest natural frequency is
linked to the first eigenmode, and so on.

Figure 4.3: The first three eigenmodes of a simply supported bending beam [32]

In the two-dimensional space the pump gate could be described as a bending beam. Dy-
namic and kinematic boundary conditions apply at each side of the continuous function.
Some possibilities for a bending beam and the corresponding eigenfrequencies and eigen-
modes, are given in figure D.2. Using Euler-Bernouilli theory, a bending beam is described
by:

ρb
∂2w(x, t)
∂t2

+ EI
∂4w(x, t)
∂x4 = q(x, t) (4.5)

in which: ρb = specific weight of the beam per running metre [kg/m]
E = elasticity modulus [N/m2]
I = moment of inertia [m4]
q = distributed force [N/m]

Euler-Bernoulli beam theory can be considered as a specific case of the Timoshenko beam
theory. This model takes into account shear deformation and adds a term to equation (4.5).
In Euler-Bernouilli theory the beam planes remains perpendicular to the beam’s axis, which
is not the case for Timoshenko beam theory, as is shown in section 4.4.

Taking into account this deformation mechanism, results in lower eigenfrequencies and in
the static case a larger deflection. Kirchhoff-Love plate theory neglects shear deformation

35



Chapter 4. Fluid, pump and structure dynamics

Figure 4.4: Comparison between a bent Euler-Bernouilli and Timoshenko beam

as well and is therewith the equivalent of Euler-Bernouilli beam theory. The equation of
motion for plates is given in the chapter 6, where it is applied to the pump gate design.

Whether shear deformation must be taken into account depends mainly on the thickness to
height and width ratios. In case of static loading, Blaauwendraad [2] states the following
requirement:

t

Lx/z
<

1
5 (4.6)

in which: t = plate or beam thickness [m]
Lx/z = length in x- or z-direction [m]

A quick estimation is made to check the width over length ratios for both Den Oever gate
designs. As these designs are in reality non-homogeneous, an equivalent plate thickness (or
beam thickness per running metre) is determined for the rigidities of both designs.

te = (12 · Izz)1/3 (4.7)

in which: te = equivalent plate or beam thickness [m]
Izz = moment of inertia per running metre around the z-axis [m4 m−1]

Since the plate designs were considered as isotropic, the inertia is equal in both directions.
For the regular and flood defence pump gate designs, this results in a thickness of 0.23 and
0.56 m respectively. This gives the following ratios:

• Regular pump gate:
• Flood defence pump gate:

rx = te
Lx

= 0.23
12.5 ≈

1
54

rx = te
Lx

= 0.56
12.5 ≈

1
22

rz = te
Lz

= 0.23
7.25 ≈

1
32

rz = te
Lz

= 0.56
7.25 ≈

1
13

These ratios are sufficiently small compared to the required 1/5 ratio to neglect shear de-
formation under static loading. Considering the dynamic behaviour of a plate or beam,
higher eigenmodes result however in a reduced distance between opposite shear forces.
Shear deformation therefore becomes more significant for higher modes and corresponding
frequencies. Especially in case of the flood defence gate design, neglecting this deformation
results in less accurate results for higher modes. Since the first few eigenmodes are gen-
erally governing in the dynamic behaviour, Euler-Bernouilli and Kirchhoff-Love theory are
considered sufficient in this design phase.
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An additional requirement that is often stated is that the amplitude to thickness ratio
should be small. Since amplitudes are required to be in the order of millimetres to avoid
pump wear and tear that this requirement is expected to be fulfilled in the final design.

It is noted that in the analysis by Molenaar [24] of the concrete defence beam, which has
the same length, both theories were used. Differences in maximum deflection between both
models were in that case not negligible, but less than ten percent. The respective beam
consists of reinforced concrete however and has a high thickness of 1.55 m.

4.1.3 Analysis in the time or frequency domain

The dynamic behaviour of a structure can be analysed and described in the time or fre-
quency domain. Both ways have their advantages and disadvantages. Any time signal can
be represented by a summation of harmonics, and vice versa. This is done with the help of
a so called Fourier transform.

In the frequency domain the forcing is described with a (discrete) spectrum of amplitudes
versus frequencies. Analysis of the structure results in a response amplitude operator
(RAO), which describes the response of the structure to a certain force (shape) for each
excitation frequency. The multiplication of the forcing amplitude at each frequency with
the RAO value at that frequency yields the response spectrum. In a time-history analysis
the motion of the structure is evaluated step-by-step, generally using a form of numerical
integration.

Analysis in the frequency domain is mathematically favourable. Furthermore, frequency
dependency can be included, which is a difficulty in the time domain. Non-linearity however,
can only be included in the time domain. A more advanced method when it is necessary to
include both frequency dependency and non-linearity, is the hybrid frequency time domain
(HFTD) analysis. This method iterates between the frequency and time domain.

The analysis of the pump gate will be made in the frequency domain, mainly due to the
frequency dependency of the hydrodynamic response and the mathematical advantage. It
will thus not be able to include non-linearity in the analysis. Linearising of the system
equations generally relies on the prerequisite of small amplitude vibrations. As structural
failure will generally occur for larger amplitudes, this is expected to be the case in the final
design.

4.1.4 Two dimensional plate behaviour

In appendix E a quick estimation is made of the modal shapes of a plate with similar
dimensions as the pump gate. Given the arbitrary gate thickness and pump weights, no
quantitative conclusions can be drawn from such a schematization. However, figure 4.5
does give insight in the possible shapes and two dimensional behaviour of the gate.
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(a) First modal shape (b) Second modal shape (c) Third modal shape

(d) Fourth modal shape (e) Fifth modal shape (f) Sixth modal shape

Figure 4.5: Modal shapes of a (dry) plate with length and width equal to the Den Oever
gates, but arbitrary thickness and added pump weights. Fixed supports on left and right
side, simple support at bottom.

In figure 4.5 both horizontal and vertical modes are relevant. Furthermore, it can be seen
that even the approximate horizontal modes are significantly influenced by the bottom
boundary condition. Neglecting this boundary condition, and schematizing the gate as a
horizontal beam, is therefore likely inadequate.

4.2 Fluid dynamics

4.2.1 Hydrodynamic pressures

The motion of a structure in water results in a certain fluid pressure response, i.e. hydro-
dynamic pressures. Dividing these pressures into contributions linearly proportional to the
structures motion (y, y’ and y”) results in the hydrodynamic coefficients. By making use
of these coefficients, the analysis of the structural motion can remain similar to that of a
‘dry’ structure.

The linear forces are called the hydrodynamic stiffness force, damping force and mass inertia
force [17], often appearing in literature as ‘added mass, damping and stiffness’. The equation
of motion for the same single degree mass-spring-dashpot system as in section 4.1.1 (but
now submerged) is shown in equation (4.8) below [21].

(m+mw)d
2y

dt2
+ (c+ cw)dy

dt
+ (k + kw)y = Fw1(t) + Fw2(y, dy

dt
, etc.) (4.8)
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in which: mw = hydrodynamic mass or added water mass [kg]
cw = hydrodynamic damping [Ns/m]
kw = hydrodynamic spring stiffness [N/m]

Fw1 represents the force by the water not dependent on the systems motion and Fw2

represents the non-linear forces. The latter can be neglected in most practical situations
as long as amplitudes are small.

The added coefficients (mw, cw, kw) can alter the dynamic behaviour considerably. In some
cases, especially for thin structures like gates, the added water mass can be a multiple of
the structures own mass. The added water mass lowers the natural frequencies, in case of
the single degree of freedom mass-spring system (and no added stiffness) by:

fdry
fwet

=
√
m+mw

m
(4.9)

For systems with multiple degrees of freedom, equation (4.8) should again be presented in
matrix form. The added mass matrix Mw can also contain non-diagonal terms, representing
coupling forces. For example in case of an L-shaped gate, a vertical motion will push the
water upwards, but also sidewards against the vertical part. This example is shown in
figure 4.6.

Figure 4.6: Periodic potential flow in case of a vibrating L-shaped gate. The motion in the
vertical degree of freedom results in pressures (added mass) in both directions, the motions
are thus coupled [21].

A structure in water has either a net hydrodynamic stiffness or hydrodynamic mass. This
can be seen when the motion of the structure is described harmonically:

Displacement y = Ay sin(ωt) (4.10)
Acceleration ÿ = −ω2Ay sin(ωt) (4.11)

in which: Ay = amplitude in x-direction [m]
ω = radial vibration frequency [rad/s]
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The hydrodynamic stiffness describes the force that is proportional to the structure’s mo-
tion: kw = Fw,k−part/y, and the hydrodynamic mass the force that is proportional to the
acceleration: mw = Fw,m−part/ÿ. As can be seen from equation (4.10) and (4.11), the ac-
celeration is in anti-phase with the structure’s displacement. The resultant hydrodynamic
force will either be opposite to the structure’s motion, when the hydrodynamic stiffness is
governing, or in the same direction, when the hydrodynamic mass is governing.

Hydrodynamic stiffness is especially relevant for water-piercing structures (or vessels) with
a degree of freedom in the vertical direction as in that case the upward water pressure
increases with submergence. For gates with under or overflow so called sudden stiffness
exists as well [21]. These three types of stiffness are shortly discussed in appendix D.3,
but not considered relevant to the bending pump gate in closed position. The hydrody-
namic mass is expected to have the highest contribution, which would thus decrease the
eigenfrequencies of the gate compared to the dry situation.

As the dynamic behaviour of the pump gate is investigated during pump operation, a
permanent flow field will be present around the pump gate. The vibrating pump gate
alters this flow field. The non-viscous Navier-Stokes equation, split into permanent flow
and a dynamic component, is given for the x-direction [21]:

∂(p+ p′)
∂x

= −ρ∂(u+ u′)
∂t

− ρ(u+ u′)∂(u+ u′)
∂x

− ρ(v + v′)∂(u+ u′)
∂x

− ρ(w + w′)∂(u+ u′)
∂x
(4.12)

Only considering the extra pressure field p′ that is generated by the vibration, the following
terms remain [21]:

∂p′

∂x
= −ρ∂u

′

∂t
− ρ

(
u′
∂u

∂x
+ u

∂u′

∂x

)
− ρ

(
v′
∂u

∂y
+ v

∂u′

∂y

)
− ρ

(
w′
∂u

∂z
+ w

∂u′

∂z

)
+ .. (4.13)

Terms with u′2 were neglected as vibration velocities are relatively small to the permanent
flow velocities. From equation (4.13) it can be seen in which ways the water responds
to vibrations. The fact that there are terms with δu′

δt indicates that there is an added
water mass. As can be seen, this term is not dependent on the initial flow field. The
hydrodynamic damping, represented by terms with u′, does have terms proportional to the
permanent flow however. In appendix D.3 general examples of hydrodynamic damping are
given.

Determination of the hydrodynamic coefficients taking into account the permanent flow, is
very complex. In practice, despite the dependence these coefficients are often determined
assuming still standing water [21].

4.2.2 Potential flow

In fluid dynamics, potential flow theory can be used to describe the fluid flow. This is a
simplified approach that does not include effects caused by viscosity and boundary layers.
Nevertheless, it can describe many physical phenomena and is used in e.g. wave theory.
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The fluid domain is described by a potential function, such that:

∂Φ
∂s = −v (4.14)

In which s is a streamline element. The velocity vector can be separated into each direction
(x,y,z). For incompressible flow, the following equation holds:

∂2Φ
∂x2 + ∂2Φ

∂y2 + ∂2Φ
∂z2 = 0 or ∇2Φ = 0 (4.15)

In case compressibility of the fluid plays a role, which is investigate further for the Den
Oever case in section 4.2.3 and chapter 5, the fluid equation is extended by an additional
term:

∂2Φ
∂x2 + ∂2Φ

∂y2 + ∂2Φ
∂z2 = 1

c2
p

∂2Φ
∂t2

(4.16)

with:

cp =
√
K

ρf
(4.17)

in which: cp = celerity of pressure waves in water (or the speed of sound) [m/s]
K = bulk modulus of water [N/m2]

Relevant in the dynamic analysis of hydraulic structures, are the fluid pressures as a result
of the structure’s motion. According to the linearised Bernoulli equation, requiring small
flow velocities (v� 1), the pressures in the fluid for unsteady flow are equal to:

pf = −ρf
∂Φ
∂t
− ρfgz (4.18)

In which only the first term represents pressures generated by the oscillatory flow:

p̃f = −ρf
∂Φ
∂t

(4.19)

With the potential flow equations, the fluid response to a moving gate can be evaluated
through the interface condition which states that the velocity of the fluid at the gate’s
surface is equal to that of the gate:

∂Φ(x, z, t)
∂y

∣∣∣∣
y=0

= ∂w

∂t
(x, z, t) (4.20)

in which: w = structural deflection in y-direction [m]

Among others, the method by Kolkman [20] to determine the hydrodynamic mass for
varying geometries is based on the above described equations. In chapter 5 and 6 these
equations are used and further elaborated in the analytical models.
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4.2.3 Hydrodynamic pressures for a rigid vertical gate (Westergaard)

Approximations and analytical solutions of the hydrodynamic pressures have been derived
for several standard two-dimensional situations with still standing water. As the sluice
walls confine the flow, the vertical representation of the pump gate at Den Oever is to a
large extent similar to an infinitely long vertical wall or gate.

Westergaard has developed a widely used analytical derivation for such a situation, namely
the hydrodynamic pressures for a vertical dam during earthquakes. The following simplifi-
cations were used to come to this derivation [37]:

• Pressure at water level is zero; no vertical movement or waves at the water surface;
• Infinitely long rigid dam;
• Reservoir extends to the infinity.

The pressures as a result of the horizontally accelerating wall are then described by:

pf (z) = 8 ρfg khh
π2

∞∑
n=1,3,5,..

1
n2Cn

sin
(
nπz

2h

)
(4.21)

with:

Cn =
√

1− 16ρfh2

n2KT 2
e

(4.22)

in which: h = water depth [m]
kh = horizontal seismic coefficient [-]
K = bulk modulus of water [Pa]
pf = hydrodynamic pressure [N·m−1]
Te = excitation period [s]
z = vertical coordinate along the water depth [m]
ρf = density of water [kg/m3]

As can be seen from K in this expression, the compressibility of the water is taken into
account. The hydrodynamic pressures are in that case dependent on the excitation period
Te, which is the vibration period of the structure. Westergaard has developed a simplified
relation, based on incompressible flow as well. Since surface waves are neglected, incom-
pressible flow will lead to frequency independence. In this case the hydrodynamic pressures
are completely in phase with the structure’s acceleration and the hydrodynamic pressures
can be considered as hydrodynamic mass. The simplified expression for the pressure over
the depth is as follows:

p(z) = 7
8ρfgkh

√
zh (4.23)

The seismic horizontal coefficient is defined as the horizontal ground acceleration divided
by the gravitational acceleration: kh = ah/g. This parameter is useful for earthquake
design, when the ground acceleration is known in advance as a design parameter. The
hydrodynamic pressures resulting from a unit acceleration, thus the hydrodynamic mass,
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are more insightful in this case:

mw(z) = 7
8ρf
√
zh (4.24)

Versluis [37] has investigated the validity of these expressions for large lock gates, which
generally have a smaller water depth and a finite reservoir. Among others, the following
conclusions were drawn:

• For a typical earthquake frequency spectrum and large lock water depths (≈ 30 m),
the amplitude of the hydrodynamic pressure is almost independent of the excitation
frequency. The assumption of incompressible water is valid.
• Including the bending stiffness of the gate or wall can have a significant influence on
the amplitude of the hydrodynamic pressures.
• Surface waves and effects like sloshing have little to no influence on the total pressure
distribution. Therefore the assumption that the pressure at the water surface is equal
to zero is also valid for navigation locks and recommended for practical design.

Since conclusions were drawn for earthquake frequencies, the latter statement is not neces-
sarily valid for lower frequencies. When waves are the excitation mechanism, evidently the
frequency range is in the region where surface waves are of significant importance. Also
at the frequencies of the pump forces, surface waves might still play a role. This should
be investigated for the given geometry. Sloshing effects over the length of the sluice are
unlikely to occur, as in the semi-infinite environment the surface waves are not (signifi-
cantly) reflected. Possibly, at certain horizontal modes and frequencies, a standing wave
could occur over the width of the sluice, which would be a three-dimensional effect.

A quick check is made to see whether the fluid can be considered incompressible for gov-
erning frequencies and water depths at the pump gate as well. A comparison between
compressible and incompressible fluid response is shown in figure 4.7. When the excitation
frequency becomes close to the a resonance frequency of the fluid, hydrodynamic pressures
increase greatly and the error of assuming compressible flow becomes extremely large. The
fundamental resonance period of water is given by [37]:

T1 = 4h
cp

(4.25)

The pressure wave celerity (or the speed of sound) is approximately 1500 m/s for water. In
table 3.1 the design water levels were shown. The maximum water level of 7.2 metre will
lead to the lowest fundamental eigenfrequency of:

f1 = 1
T1

= cp
4h = 1500

4 · 7.2 ≈ 52 [Hz] (4.26)

As can be seen in figure 4.7 results are reasonable for excitation frequencies lower than about
a third of the fundamental resonance frequency of water. Wave excitation frequencies are
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Figure 4.7: Comparison between relations for hydrodynamic pressures with compressible
and non compressible fluid [37]

well within this limit. In section 3.3.1 most of the pump excitations were estimated have
a frequency of 0.75 to 6.6 Hz, for which the response can be considered incompressible as
well. However, vane passage involves higher excitation frequencies up to 80 Hz and can
therefore certainly excite the system’s compressible resonance frequencies.

Figure 4.8: Pressure waves

Based on the simplified Westergaard parabola, a rough estimation of the hydrodynamic
mass is made for the pump gate. The motion of the pump gate is for the time being thus
considered rigid and without pumps. The hydrodynamic inertia force acts for both sides in
the same direction. The hydrodynamic mass is therefore maximum (in this approximation)
for maximum water levels, being 5.3 and 7.2 metre as shown table 3.1. This would result
in an added water mass of:

mw,oneside = Lx

∫ z=H

z=0
mw(z) = Lx

∫ z=H

z=0

7
8ρf
√
zh = Lx

7
12ρw

√
h
[
z3/2

]z=H
0

mw,total = 12 · 7
12 · 1010 · (5.32 + 7.22) = 565 · 103 [kg]

(4.27)

In which Lx is the width of the sluice, and ρf the mass density of the fluid. As the pumps
only discharge from Lake IJssel to the Waddensea, the water is expected to be relatively
fresh. The density used throughout this report is therefore 1010 kg/m3. The hydrodynamic
mass found is much more than the weight of the gates including pumps (≈ 80 · 103 kg).
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Given this estimated magnitude, the hydrodynamic mass will have a large effect on the
behaviour of the pump gate, likely reducing its natural frequencies. The finite bending
stiffness of the pump gate is expected to change the distribution and magnitude of the
hydrodynamic mass however. In addition, this flexibility leads to horizontal modes, at
which the assumed two-dimensionality of the gate is no longer valid.

Furthermore, the presence of the pumps is expected to significantly change the hydrody-
namic mass in comparison to that of a closed vertical wall. At most of the gate’s surface,
the fluid is forced by the vibrating gate. The pumps have a different effect on and response
to the fluid however. This pump-fluid interaction is treated in section 4.3.

4.3 Pump vibrations

In section 3.3.1 the motion-independent pump forces were elaborated. In this section the
forces generated by the motion of the gate and thus pumps are treated. The way in which
the entire pump will move due to the excitation forces, is dependent on the gate and fluid,
and will be part of the models in further chapters.

In the static situation the pump generates a certain discharge at a given hydraulic head.
The relation between the discharge and hydraulic head is given by the pump curve. When
the pumps vibrate with a certain velocity ẇ, the instantaneous velocity between the pump
and fluid flow changes by that velocity. Subsequently, the change in instantaneous discharge
∆Q will lead to a change in generated hydraulic pump head ∆Hp, and thus a force response.
From figure 4.9, in which the pump curve estimated by Witteveen+Bos [40] is shown, it
can be seen that the curve is shaped such that a decrease in discharge will result in an
increase in pump head (or force).

A vibration velocity in flow direction means a decrease in instantaneous pump discharge,
which leads to a decrease in hydraulic pump head. Since the pump forces the fluid in
flow direction, a decrease in this permanent force is directed against the flow direction.
Summarizing, a vibration velocity in flow direction will lead to a force in the opposite
direction and vice versa. This is thus a stabilizing force induced by the velocity of the
pump and can be considered a positive damping force.

The pressure change inflicted by a change in pump thrust is given by:

∆pp = ρfg∆Hp (4.28)

in which: Hp = static pump head [m]
Fp = total pump thrust [N]

The local gradient ∆Hp/∆Qp is named dHQ. In further models the gate is considered
continuous and a deflection is field is therefore determined over the surface where the pumps
are present as well. The average velocity at this surface could be taken as representative
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Figure 4.9: Pump curve for Den Oever with the local gradient shown at H = 2.2 m. To be
able to describe the pump curve gradient continuously, the pump curve is approximated
by a polynomial above this point and linearly beneath.

for the pumps, in which case the change in instantaneous discharge is given by:

∆Qp = Ap
∂w̄

∂t
(4.29)

in which: Ap = pump propeller area [m2]

When substituted in equation (4.28), the corresponding pressure force is obtained:

∆pp = ρf g dHQ ∆Qp = ρf g dHQ Ap
∂w̄

∂t
(4.30)

The distributed pump damping coefficient is then given by:

cpump = ρf g dHQ Ap [Ns/m · m−2] (4.31)

To be able to apply this damping in a frequency domain analysis, it must be linear. From
Hp = 0 to 2.2 m, the estimated pump curve is linear. For the non-linear part, the pump
curve must be approximated as its local gradient, which is valid as long as ∆Q and thus
vibration amplitudes, are small. To be able to describe the damping terms continuously
at each pump work point, a second order polynomial fit is used for H > 2.2 m. The local
gradient is then given by:

dHQ = 1.5 [s/m2] for: 0 < Hp ≤ 2.2 m (4.32)
dHQ = 0.4313Hp + 0.6605 [s/m2] for: 2.2 < Hp < 3.1 m (4.33)
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It must be noted that a few simplifications are made in the previous derivation. In first
instance, the pump curve estimated by Witteveen+Bos has been highly simplified. Fur-
thermore, in the above it has been assumed the pump head directly adjusts to the change
in instantaneous discharge and the pump radial velocity remains constant. The rotor and
pump system have their own inertia, which can change the magnitude and phase of the
response. Based on consultation with an pump expert of Deltares, it is expected that the
damping due to change in instantaneous discharge is the main contribution to the pump
response however. One of the reasons for this, is the stabilizing effect of the pump’s electro
motor. An increase in radial velocity of the pump, will lead to a reduced force applied by
the electro motor.

4.4 Conclusion and model strategy

In this chapter, theoretical background on the dynamic behaviour of each of the three
components (structure, fluid and pumps) was treated. The following conclusions can be
made based on this theoretical investigation:

• The structure, fluid and pumps are expected to influence each other significantly
and must therefore be modelled as one interacting system. The fluid couples the
modes of the structure and causes an interdependence so that the contribution of
each component can not be determined separately from the others.

• Euler-Bernouilli beam theory and Kirchhoff-Love plate theory are expected to de-
scribe the first few eigenmodes of the gate with reasonable accuracy. For higher
vibration frequencies results become less accurate.

• Quantitative conclusions on the response of the gate must be based on a three-
dimensional model schematization due to the presence of the pumps and the expected
vibration modes of the gate.

• Excitation frequencies related to surface waves and the radial velocity of the pump
result in a response for which the fluid body can be considered as incompressible. Vane
passage frequencies do however result in a response for which the compressibility of
the fluid must be taken into account.

• For the linearised flow equations the hydrodynamic damping is influenced by the
permanent flow field, the hydrodynamic mass is not.

• The most significant contributor of the motion-dependent pump response is a damping
force onto the gate, which is a reaction to a change in instantaneous discharge. Inertia
of the rotor system and delay in the reaction of the pump may change this behaviour,
but it is expected that this remains the largest component of the force.

An overview of the components that will be considered in further analyses and the interac-
tion between these components is shown in figure 4.10. As stated above, the hydrodynamic
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mass can be influenced by the permanent flow field. The simplification of still standing
water is made nevertheless, as taking into account this permanent flow complicates the
analysis greatly. The flow field generated by the gate and pump vibrations is thus consid-
ered superimposable.

Figure 4.10: Components of the dynamic system influencing each other. The effect of the
permanent flow field on the hydrodynamic pressure field will not be included in further
analysis.

Since the pump gate is a continuous structure which may vibrate in many possible shapes,
and as it was concluded the interaction between structure, fluid and pumps will be signifi-
cant, solving its motion by applying constant hydrodynamic coefficients is not possible. The
choice was made to model the linearised system in the frequency domain (section 4.1.3), in
which multiple methods exist to solve this interaction. Firstly, a structural and fluid model
could be set-up separately. Subsequently, iterating between these models could solve the
final combined structure-fluid deflection and pressure vibration shapes.

A method directly solving the combined behaviour is more efficient computationally and
deemed theoretically more insightful. This direct solving is possible through a so called
semi-analytical coupled modal analysis. In this method the motion of the structure and
fluid are both described as an (semi-)infinite summation of their eigenmodes and corre-
sponding modal coefficient. The influence between the structure (with pumps) and the
fluid is given by interface conditions, through which the eigenmodes can be interrelated.
For above mentioned reasons, this analytical method is preferred over numerically itera-
tion. Nevertheless, an analytical method has some drawbacks as well, such as the need for
a simplified geometry. This method is further elaborated in chapters 5 and 6.

Also indicated in figure 4.10 is the exclusion of secondary effects between pumps and fluid.
The force onto the gate generated by movement of the pumps respective to the fluid, is
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taken into account. The simultaneous pressure change in the fluid, and through this fluid
on the surface of the gate, is neglected however. Vice versa, the pump response to pressure
changes at the inlet of the pumps due to the movement of the gate is not considered.

In Versluis [37] the hydrodynamic pressures were investigated for locks. In the respective
study the hydrodynamic pressures were not significantly affected by the second gate (of
the closed lock chamber) for L > 4 · h. For larger lengths, the lock chamber could thus be
considered infinite. For the maximum water level north of the pump gate (7.2 m), this is
about equal to the sluice length at that side. The model domain is therefore limited to a
single infinitely long sluice, excluding any interaction between adjacent sluices. Whether
this assumption remains valid with the effect of surface wave and the pumps included,
should be checked. An overview of the model domain in the vertical space is given in
figure 4.11.

Figure 4.11: Vertical model space representing the three dynamic domains that influence
each other: the gate, fluid and pumps. The sluice is considered infinitely long. Boundary
conditions for the fluid domain when described by potential flow have been included.

The coming three chapters together form the research analysis in this report. This includes
two models based on the mentioned semi-analytical method:

• Beam model (chapter 5)
• Plate model (chapter 6)

As mentioned, using an analytical method requires several geometrical simplifications, such
as neglecting the pump conduit length. In chapter 7 a numeric validation of the fluid
response is therefore made for one frequency case, comparing the results to the plate model.

The two-dimensional beam model especially serves to investigate the effect of the surface
waves and compressibility and compare the results with the expressions known from lit-
erature. Final conclusions about the response of the pump gate are based on the plate
model.
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5 | Beam model

In this chapter, a semi-analytical vertical beam model is used to investigate gate vibrations
and the involved processes. In section 5.1 and 5.2 this model and the corresponding equa-
tions are elaborated, which are generally applicable to (pump) gates in a confined waterway.
Subsequently analytical derivations, based on a modal expansion (5.3) of the structure and
fluid, are made to deduce a system of equations describing the beam vibrations. An exten-
sive elaboration of these derivations can be found in appendix F.

In section 5.4 the hydrodynamic mass and damping are investigated for the compressible
and incompressible fluid, the latter including the effect of surface waves. The structure is
considered rigid for this purpose. Results are compared to what is known from existing
literature, which was elaborated in chapter 4. Based on the findings, validity ranges for the
several fluid schematizations are deduced.

In section 5.5 the beam model is applied to the pump gate designs of Den Oever, including
the fluid-pump-structure interaction. This gives a first estimate of the eigenfrequencies and
magnitude of vibrations. More accurate quantifications must however be based on the plate
model in chapter 6.

5.1 Model description

An analytical method is used to solve the interaction between the fluid and structure. The
gate is simplified as a thin beam, which is surrounded by water at both sides to a certain
height. In this analytical approach the vibrations of the structure and fluid are described
in terms of eigenmodes, which amplitudes are given by modal coefficients and result from
the applied force. The behaviour of the fluid is described by potential flow theory. Using
the interface condition, the fluid response can be described in terms of structural modal
coefficients. This derivation is explained further in section 5.3.

This method has been applied by Tsouvalas and Metrikine [33, 34] to describe the vibro-
acoustic behaviour during offshore pile driving. In Tsouvalas et al. [35] it has specifically
been applied to a thin bending beam. Mentioned studies focus on high frequency vibra-
tions for which the compressibility modes, but not the surface waves, are of significant
importance.

The beam model in this report will be extended to represent the dynamic behaviour of the
fluid-beam system over a wide frequency range. As was estimated in chapter 4, for the
governing water depths the compressible behaviour of the fluid is expected to play a minor
role at wave and pump rotation periods. Mechanisms in the pumps such as vane passage
corresponds to higher excitation frequencies and therefore could be in this ‘compressibility

51



Chapter 5. Beam model

Figure 5.1: Model schematization of beam-pump-fluid system in the vertical direction (side
view)

range’. The fluid response for this model is determined based on two approaches: the in-
compressible fluid with surface waves and the compressible fluid without. This is elaborated
further in section 5.2.

The model schematization is given in figure 5.1. To represent the pump gates at Den Oever,
a certain sill height ∆z is included in the model. The sluice bottom level is therefore located
at z = ∆z, while the bottom of the gate is at z = 0. Since the pump gate has a relatively
small contact surface with the sill (see figure 2.14), it is considered to have no rotational
resistance. The resultant downward force of the gate is further expected to be sufficiently
large to consider the gate supported in translational (y-)direction at the bottom boundary.

The pumps are schematized to be rigidly attached to the gate. The flexural rigidity is
assumed not to be affected by the presence of the pumps, as most stiffening elements are
not interrupted (see appendix B).

The rigidity provided by supports at both edges of the gate is included by vertically dis-
tributed springs. These can not represent the dynamic behaviour of the gate accurately as
the response in horizontal direction is of course frequency-dependent as well. This therefore
is a crude schematization for the pump gate. This model is used to obtain a first estimate
of the relevant processes. More accurate results will be obtained in the three-dimensional
model in chapter 6.

A few other simplifications are made in this model:

• Detailed geometry of the pump gate structure, such as the stiffening profiles and pump
conduits length, are not included. Secondly, the indirect effect of the induced fluid
velocities and pressures on the pumps are not included in the model. In chapter 7 it
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is investigated whether this is a reasonable assumption, based on the length of the
pump conduits.

• The sluice is schematized as infinitely long (in y-direction, see figure 5.1). This
assumption is investigated in section 5.4.2 and in the numeric validation of chapter 7.
It is considered valid for most of the investigated frequency range.

• As was discussed in section 4.4 second order effects in the pumps and between the
fluid domains at both sides of the gate are neglected. The primary force generated
by a change in instantaneous discharge was described in section 4.3.

• Material damping is neglected.

The use of potential flow theory further inherits some fundamental assumptions. It neglects
viscous effects and energy dissipation due to friction. The relative significance of this
effect depends on the magnitude of other damping terms, which might be low at certain
frequencies. Due to the large dimensions of the sluice (in contrast to e.g. detailed pump
or pipe flow) the viscous effects are expected to have a limited influence on the global
behaviour.

5.2 Governing equations and analytical derivation

The governing equations are directly written in the frequency domain by substitution of
the assumed solutions: w(z, t) = W (z) · eiΩt and Φ(y, z, t) = Φ̃(y, z) · eiΩt. As was shown in
section 4.1.2, the motion of a thin beam can be described by:

EIz ·
d4W (z)
dz4 − ρbΩ2 ·W (z) =

∑
q̃(Ω, z) (5.1)

Specified to the system schematization given in previous section, this equation can be
expanded to:

EIz ·
d4W (z)
dz4 − ρbΩ2 ·W (z) = [H(z − z1)−H(z − z2)] ·

(
ρp · Ω2 − cpump · iΩ

)
·W (z)

− k ·W (z)− qfN (z)− qfS (z)− Fext(Ω, z)
(5.2)
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in which: EIz = flexural rigidity (in z-direction) [Nm2]
W = deflection of the structure [m]
ρb = beam’s weight [kg/m]
Ω2 = frequency of the external forcing [rad/s]
ρp = pump’s weight per running metre [kg/m]
H(z − zi) = heaviside step function4

k = distributed spring stiffness [N/m2]
Fext = external forcing [N]
qfN/S = hydrodynamic forcing (North/South) [N/m]
cpump = distributed pump damping [Ns/m2]

The analytical derivations are made as if both fluid mediums are present at the ‘positive-
y’ or northern side of the beam. The fluid of both domains then extents to +∞ and
the equations are equal. In equation (5.2) both hydrodynamic contributions are therefore
accompanied by a minus sign.

Although it is more conventional to include the inertia force due to the weight of the
pumps and the spring force on the left-hand side of previous equation, those are considered
as separate forces in the used analytical method. They are therefore not included in the
homogeneous equation either.

The boundary conditions of the beam are fairly straightforward. The simply supported
bottom results in zero displacement and momentum. The free end of the beam leads to
zero momentum and shear force. The boundary conditions are as follows:

W (0) = d2W

dz2

∣∣∣
z=0

= d2W

dz2

∣∣∣
z=Lz

= d3W

dz3

∣∣∣
z=Lz

= 0 (5.3)

As mentioned, the fluid response is based on two models: a compressible and incompressible
response. It is known that for low frequencies the effect of surface effect can be significant,
while the fluid acts as incompressible. Towards higher excitation frequencies, the effect
of surface waves becomes less while the compressibility of the fluid will start to have a
larger effect. At certain transition frequencies, the fluid can possibly be considered both
incompressible as without surface waves, which would be the most simple case. This will
be investigated further in section 5.4. The division results in different equations of motion
and surface boundary condition for both systems as is shown in figure 5.2.

The equations of motion for both the compressible as incompressible fluid were treated in
section 4.2.2. The bottom impedance condition and interface condition are equal for both
components and given below. The condition at y = ∞ states that the solution Φ(y = ∞)
must be finite and no energy may be propagating from infinity.

Closed gate surface: ∂Φ̃
∂y

∣∣∣
y=0

= iΩW (5.4)

4The heaviside step function H(z− zi) is simply zero for all z smaller than zi and equals one above. The
statement H(z − z1)−H(z − z2) therefore equals one for z1 ≤ z < z2, in this case denoting the presence of
the pumps between these coordinates.
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Figure 5.2: The incompressible fluid including surface waves and the compressible fluid
response can be superimposed.

Sluice floor: ∂Φ̃
∂z

∣∣∣
z=∆z

= 0 (5.5)

When surface waves are not taken into account, a pressure release boundary condition can
be used for the compressible modes.

p
∣∣
z=h = −ρf

∂Φc

∂t
= 0 (5.6)

Substituting the assumed solution Φc(y, z, t) = Φ̃c(y, z) · e−iΩt, results in the following
frequency domain equations:

Equation of motion (compressible): ∂2Φ̃c(z, y, t)
∂z2 + ∂2Φ̃c(z, y, t)

∂y2 + Ω2

c2
p

Φ̃c = 0 (5.7)

Surface condition (compressible): − ρf · Ωi · Φ̃
∣∣
z=H = 0 ↔ Φ̃

∣∣
z=H = 0 (5.8)

When free surface waves will be taken into account, there will be a surface elevation above
still water level. This elevation is named η and is superimposed on the mean water level
H. The following linearised conditions then apply at y = H:

∂η̃

∂t
= vy = ∂Φ̃

∂y
(5.9)

∂Φ̃
∂t

+ gη̃ = 0 (5.10)

Combining these equations results in the free surface condition:

∂2Φ
∂t2

+ g
∂Φ
∂y

= 0 (5.11)

Substitution of the steady state solution into this equation results in the following condi-
tions:

Equation of motion (incompr, surface waves): ∂2Φ̃in

∂y2 + ∂2Φ̃in

∂z2 = 0 (5.12)
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Surface condition (incompr., surface waves): ∂Φ̃in

∂z

∣∣∣
z=h

= Ω2

g
· Φ̃in(z = H) (5.13)

When both incompressibility and surface waves are included, the surface condition for the
incompressible wave schematization should be combined with the compressible equation of
motion. Derivations are similar for all three schematizations, which is elaborated in next
section.

5.3 Modal expansion

As was stated in section 5.1, with the so called coupled modal analysis method used, both
the motion of the structure and the response of the fluid are expanded into eigenmodes.
These modes must comply to the boundary conditions. The modal coefficients of the fluid
modes are subsequently described in terms of the modal coefficients of the structure. This
finally leads to a system of analytical equations including the external forcing, which can
be solved for the structural modal coefficients. Summarizing, the following steps are taken
in the derivation:

• Expressing the displacement of the structure in terms of an infinite summation of
modal shapes and coefficients found for the homogeneous structural equation of mo-
tion;

• Expressing the fluid response in terms of (its own) modal shapes and coefficients;
• Using the interface condition (eq. 5.4) to express this fluid response in terms of the

structural coefficients;
• Substitution of the found expressions into the forced equation, obtaining an analytical

system of equations with the modal coefficients as the only unknowns;
• Solving the system of equations for each (modal) external force amplitude and fre-

quency.

5.3.1 Structural and fluid modes

In appendix F.2 the eigenmodes of the ‘simply-free’ unforced beam are derived. The pumps
weights and springs are not included in determination of these modes. Instead, these forces
are implemented as ‘external’ forces in the forced equation. The bending beam modes are
given by:

Wm(z) = Am ·
[
sinh(βmz) + sinh(βmLz)

sin(βmLz)
· sin(βmz)

]
, βm =

(m+ 1
4) · π

Lz
(5.14)
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The eigenfrequencies of the determined theoretical beam modes, directly follow from the
definition of βm:

β2
m =

(m+ 1
4) · π

Lz


2

= ωm

√
ρb
EIz

↔ ωm =
[
(m+ 1

4) · π
]2
·
√

ρb
EIz · L4

z

(5.15)

In the analysis the rigid body mode must be included as well, which corresponds to an
eigenfrequency of zero (as no springs are included yet). These and the first few bending
modes are shown in figure 5.3. In figure 5.13 an example is shown of how these these
individual beam modes will form the final solution.

Figure 5.3: The rigid body and first few bending beam modes. The deflection of the beam
is a summation of these - theoretically infinite number of - eigenmodes.

In appendix F.3 the fluid’s incompressible wave modes and compressible modes are derived.
Since both fluid schematizations, incompressible with surface waves and compressible, are
investigated separately in section 5.4, the fluid equations are derived separately below as
well. The full solution, which is similar, is stated after.

The total fluid response is described as a summation of the multiplied modes in z- and y-
direction. In case of the incompressible fluid with surface waves, the solution is as follows:

Φ̃in =
∞∑
p=1

BpZp(z)Yp(y) =
∞∑
p=1

Bp · cos(kz,p · (z −∆z)) · e−iky,py (5.16)

With ∆z the sill height and ky,p given by:

Ω2 = gky · tanh(kyh) (5.17)

The boundary condition at infinity requires (see note5):

Re(ky,p) ≥ 0 (5.18)
Im(ky,p) ≤ 0 (5.19)

And kz,p = ky,pi. In appendix F.3 the system is split into a real and imaginary part as it is
known that one propagative wave mode (ky,p = real) and an infinite number of evanescent

5Obeying these requirements, for real values of ky,p the solution is propagating in positive-y direction:
Y (y) = e−i(+ky,real) y = e−iky,real y. Imaginary values lead to a decaying solution in positive-y direction
and thus obey the requirement of finite energy at infinity: Y (y) = e−i(−ky,imagi)y = e−ky,imag y.
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modes (see figure 5.4) will exist. To maintain a clear similarity with the compressible fluid
modes, the equations above are written as is.

Figure 5.4: Propagative versus evanescent potential in y-direction

As can be seen in figure 5.5 and 5.6, the propagative mode in y-direction corresponds to
a cosine hyperbolic shape in z-direction. This is well known from linear wave theory. In
the particular figures, all shapes are normalized to have a value of 1 at the free surface.
Comparing figure 5.5 to 5.6, showing the modes at radial frequencies of 1 and 5 rad/s
respectively, it can be seen clearly that the relation between the value at the free surface
and the rest of the shape is strongly frequency-dependent. As the fluid modes depend on
h, the modes are different for both sides of the gate.
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Figure 5.5: Propagative (left) and first few evanescent (right) modes of the fluid at Ω = 1
rad/s and h = 7.2

The potential of the compressible system is given by:

Φ̃c =
∞∑
t=1

CtZt(z)Yt(y) =
∞∑
t=1

Ct · cos(kz,tz) · e−iky,ty (5.20)

With

kz,t = (2t− 1) · π
2h for: t = 1, 2, ..,∞ (5.21)

ky,t = ±
√
k2
f − k2

z,t (5.22)

kf = Ω
cp

(5.23)
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Figure 5.6: Propagative (left) and first few evanescent (right) modes of the fluid at Ω = 5
rad/s and h = 7.2

The boundary condition at infinity, which states finite and no negatively propagating en-
ergy, then requires:

Re(ky,t) ≥ 0 (5.24)
Im(ky,t) ≤ 0 (5.25)

In this case the real values of ky,m again represent propagative modes while imaginary
values result in evanescent modes. In contrast to the incompressible case when only one
propagative mode was present, with the incompressible no or multiple propagative modes
may exist depending on the excitation frequency (at a given water depth). Similar to the
incompressible case, an infinite number of evanescent modes will exist. This will be further
elaborated in section 5.4. Whether propagative or evanescent, all modes are simply cosine
functions for the compressible case with zero surface pressure.

From the compressible and incompressible solutions above, it can be seen that for high
frequencies surface waves and for low frequencies the effect compressibility indeed become
insignificant. In figure 5.6 it is shown that the average pressure of the propagative wave
mode diminishes for higher frequencies and that the surface pressure goes to zero in compar-
ison to the pressures over the total water column. In turn, for low frequencies k2

f becomes
very small and thus ky,p becomes the compressible solution (

√
−k2

z,p).

The fluid response including both compressibility and the effect of surface waves, combines
previous solutions and is as follows:

Φ̃p(x, y, z) =
∞∑
p=1

Br cos(kz,p · (z −∆z)) · e−iky,py (5.26)

With the following constants:

Ω2 = −gkz,p · tan(kz,ph) (5.27)
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ky,p = ±
√
k2
f − k2

z,p (5.28)

The same conditions for the positive and negative ky,p apply as stated for the separate
systems.

5.3.2 Forced system of equations

Using the interface condition (5.4), the modal coefficients (Bp) of the fluid can be written
in terms of those of the beam. For this derivation, the orthogonality of the fluid modes
is used. The fluid pressure is written for the incompressible summation of modes, which
series is denoted by p, but is identical for the compressible case.

pf (y = 0, z) = iΩ2ρf

∞∑
m=1

Am

∞∑
p=1

Qmp
ky,p∆p

Zp(z) (5.29)

in which:
Qpm =

∫ H

0
Zp(z)Wm(z)dz (5.30)

From equation (5.29) it can be seen that the evanescent fluid modes, which correspond to
an imaginary value of ky,p (or ky,p), result in a real value for the fluid pressure. In that
case the fluid pressure can be considered as an added mass (or stiffness). The propagative
modes result in an added damping, which is expected as they carry energy away from the
structure. This is further elaborated in section 5.4.

The forced equation is now written with the structural modes and expression for the fluid
pressures included. It is further used that each of the modal shapes complies to the homo-
geneous beam equation. In appendix F.4 and F.5 this is further elaborated. Finally, the
forced equation is multiplied by another beam mode. Due to the orthogonality of the beam
modes, the forced equation simplifies to the following system of linear equations:

∞∑
m=1

[(
ρb · (ω2

m − Ω2) + k∗
)
· δmn · Γn + ZN,mn + ZS,mn − Imn + Pmn

]
·An = Fn (5.31)

Fluid impedance (north/south): ZN,mn or ZS,mn = iΩ2ρf

∞∑
p=1

QmpQpn
kp∆p

(5.32)

Pump intertia: Imn = ρp · Ω2 ·
∫ z2

z1
Wm(z) ·Wn(z) dz (5.33)

Pump damping: Pn = cpump · iΩ ·
∫ z2

z1
Wm(z) ·Wn(z) dz (5.34)

Modal force: Fn =
∫ Lz

0
Fext(z,Ω) ·Wn(z) dz (5.35)

The integral Q was defined in equation (5.30). These, and the values for kp and ∆p are of
course different for the northern and southern fluid body.
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The term between brackets on left-hand size of equation (5.31) results in a coupled m×m
matrix. The modal coefficient for each modal shape n (or m) results from dividing the
modal force by this matrix: A(Ω) = F/M(Ω). The beam inertia terms and spring stiffness
results in diagonal matrices, as can be seen from the δmn term in (5.31). The pump
intertia, damping and fluid involve coupling terms. An example of this system of equations
this matrix, only including the fluid and beam inertia terms, is shown below:

ρb · (ω2
1 − Ω2) 0 0

0
. . . 0

0 0 ρb · (ω2
m − Ω2)



A1
...
Am

+

iΩ2ρf

∞∑
p=1



Q1,pQ1,p
kp∆p

· · · Q1,pQn,p
kp∆p

... . . . ...
Qm,pQ1,p
kp∆p

· · · Qm,pQn,p
kp∆p




A1
...
Am

 =


F1
...
Fm


(5.36)

In the fluid impedance matrix , the non-diagonal terms represent the fluid pressure exceeded
on the specific mode as a result of the motion of all other structural eigenmodes. The fluid
pressure induced by each mode, is in turn a summation of all excited fluid modes.

Due to the pump and fluid damping, the matrix M and thus also the modal coefficients are
complex. The complex response amplitude is given by:

W̃ (z,Ω) =
∞∑
m=1

Am ·Wm(z,Ω) (5.37)

The absolute amplitude is subsequently given by Ŵ (z,Ω) =
√
Re(W̃ ) + Im(W̃ ).

To evaluate the found solution, the two infinite series should be truncated. In this m and
n represent the structural series of eigenmodes and p the fluid modes. This truncation
introduces an error. In case of the structural modes this decision can be based on the
frequency range of the external force compared to the eigenfrequencies of the system. The
amount of evanescent fluid modes to include, is less straightforward. In Tsouvalas et al.
[35] this is investigated and it was concluded that the average displacement error is larger
than 10% when 20 or less evanescent modes are considered and becomes less than 1% when
more than 80 evanescent modes are included. For the number of fluid modes, 80 is therefore
chosen initially.

As can be seen from equation (5.36), the size of the system of equations that should be
solved, depends only on the amount of structural modes included. In first instance, 20
structural modes are deemed sufficient. The energy that each mode contains is expected
to decay relatively quickly for higher modes (depending on the excitation frequency). This
is checked for the obtained results.
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5.4 Hydrodynamic pressures for a rigid horizontally vibrat-
ing gate

The system of equations deduced in section 5.3 can be used immediately to solve the entire
structure-pump-fluid system. However, in this section the behaviour of the fluid only is
investigated. Results are obtained for the two fluid schematizations elaborated in previous
sections and compared over a wide range of frequencies and water depths.

A well known expression to determine the hydrodynamic mass for rigid vertical walls is that
of Westergaard, which was elaborated in section 4.2.3. The numeric method to give a quick
estimation of the hydrodynamic mass given by Kolkman [20] is based on a zero pressure
surface and an incompressible fluid. In this section, an analytical solution is derived for the
case in which these assumptions apply. The validity of these estimations is investigated and
discussed. The gate is therefore considered rigid and without pumps and the fluid response
is determined for a unit amplitude.

The sill height ∆z is set to zero for this purpose. Furthermore, the fluid is considered at a
single side of the beam. The only two parameters that determine the two-dimensional fluid
response in that case, are the frequency and water depth. Since only one structural (unit)
mode is considered, equation (5.29) and (5.30) reduce to:

pf (y = 0, z) = iΩ2ρf

∞∑
p=1

Qmp
ky,p∆p

Zp(z) (5.38)

in which:
Qpm =

∫ H

0
Zp(z)dz (5.39)

In figure 5.7 and F.3, the hydrodynamic mass and damping are compared for both fluid
model schematizations over a wide frequency range (0-1200 rad). These are defined as:

mw(z = 0) = Re (pf (y = 0, z = 0))
−Ω2 (5.40)

cw(z = 0) = Im (pf (y = 0, z = 0))
Ωi (5.41)

The results are given for the maximum water level at Den Oever of 7.2 metre and cp = 1500
m/s. Three distinct regions can indeed be distinguished:

a. Significant influence of surface waves;
b. Transition region with approximately zero surface

pressure and incompressible fluid;
c. Significant influence of fluid compressibility.

ω < 8 [rad/s]
8 <ω < 100 [rad/s]

100 <ω [rad/s]

The pattern of region (b) and (c) is similar to that given in figure 4.7, in which the com-
pressible fluid was compared to the non-compressible case both without surface waves. In
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Figure 5.7: The depth-integrated hydrodynamic mass compared for the compressible and
incompressible system of equations for a water level of h = 7.2 m. Three regions can be
distinguished (a,b,c). Note: the frequency axes of the subplots are not equal, as well as
the hydrodynamic mass axis of subfigure (c).

this case, the pressures are divided into hydrodynamic mass and damping. From equa-
tion (5.38), it can be seen the fluid pressure at the beam’s surface becomes infinite for
ky = 0. For the compressible fluid this is the case when:

ky,t =
√
k2
f − k2

z,t = 0 (5.42)

This is the case when kz,t = kf . Substituting the solutions for kz,t and kf , this can be
expressed explicitly in terms of the frequency:

ωt = (2 · t− 1) · π
2h · cp (5.43)

With t = 1 and Ω = 2π/T , the same expression is obtained for the fundamental compress-
ible eigenperiod of the system as was given in equation (4.25). At each of the frequencies
given by equation (5.43), the pressures corresponding to mode t are infinite and change
from hydrodynamic mass to damping as ky goes from an imaginary to a real value. This is
shown for the first two eigenfrequencies in figure 5.7 and F.3.
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The hydrodynamic damping due to surface waves diminishes to zero for high frequencies
as the propagative wave loses its energy and the surface pressure tends to zero. This was
demonstrated in section 5.3.1. It must be noted that the hydrodynamic mass going to zero
for low frequencies in figure 5.7 is a result of the undistorted beam motion. The integral
over the depth of all fluid modes does become zero for (extremely) low frequencies, as each
mode becomes negatively symmetric at h/2.
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Figure 5.8: Hydrodynamic mass over the depth for three different frequencies, according
to the three model schematizations (h = 7.2 m)

5.4.1 Analytical solution for the transition region

Modelling the fluid response as incompressible and without surface waves, greatly simplifies
the analysis. From equation (5.38) and equation (5.39) an analytical solution can be derived
for the hydrodynamic mass in the transition region. As was mentioned before, this becomes
frequency independent for zero surface pressure and incompressible fluid.

The integral Q can easily be determined for a structural unit deflection:

Qp =
∫ h

0
1 · Zp(z)dz =

∫ h

0
cos(kzz)dz =

[ 1
kz
sin(kzz)

]h
0

= 1
kz
sin(kzh) (5.44)

The sin(kzh) term simply equals +1 for each odd value of p and −1 for each even value,
which could be expressed as −1(t−1). The integration constant ∆p equals 18/5 for each p.
Furthermore in case of incompressibility ky = −kzi. As in this case only real values of kz
exist, all modes lead to hydrodynamic mass. From above, the analytical expression for the
hydrodynamic pressures at the gate’s surface over the water depth can be written as:

pf (z) = −Ω2 ρf

∞∑
p=1
−1(t−1) 5

18 k2
z,p

cos(kz,pz) with: kz = (2 · p− 1) · π
2h (5.45)

In case one is only interested in the total hydrodynamic mass, the shape must be integrated
one more time and the expression simply becomes:

mw,total = ρf

∞∑
p=1

5
18 k3

z,p

(5.46)
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The derived shape differs from the simplified Westergaard shape, discussed in chapter 4, as
can be seen in figure 5.9. The damping in the transition region is approximately zero, since
the energy of the propagating surface wave has strongly decayed and the first propagative
compressible mode is not yet present.
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ρf ·h
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Figure 5.9: Comparison between dimensionless simplified Westergaard shape for incom-
pressible flow and the derived analytical solution for the transition region

It is generally interesting for which combination of frequencies and water depths this ap-
proximation is valid and when surface waves or compressibility must be taken into account.
The error made when considering the fluid without both is therefore investigated, i.e. the
validity of the transition region. For this purpose, the total hydrodynamic mass is consid-
ered. Given other uncertainties in the dynamic analysis of such gate systems, a maximum
deviation of 5% is deemed acceptable. It is of course possible to determine validity regions
for other allowed deviations as well. The error function δ is defined as follows:

δ = mw,total,actual −mw,total,transition

mw,total,actual
(5.47)

Numerically limit values are evaluated, for which an analytical fit has been made to find
expressions that can be generally used. This resulted in the following:

6.47 ·
√
g

h
< ω < 0.313 · cp · π2h (5.48)

The lower limit is due to the deviation that results from not including surface waves, while
the upper is due to the neglect of compressibility. An overview of the results is shown in
figure 5.10.

As can be seen, for the water depths at Den Oever the transition region schematization
is valid from approximately 10 to 105 rad/s. With wave excitations below this range
(approximately 0.5 to 3.5 rad/s) and possible pump excitations from in and above this
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Figure 5.10: Frequency and water depth regions for which surface waves and compressibility
play a role for the two-dimensional fluid system. The line on the left indicates a 5%
deviation of the total hydrodynamic mass when not including surface waves, while the line
on the right indicates 5% deviation when not including the compressibility of the water.
The dotted lines indicate the minimum and maximum water level at Den Oever.

region (4.5 to 500 rad/s), both surface waves and compressibility must be included in the
analysis.

The validity regions can be used to obtain a quick indication of which methods or expres-
sions from literature may be used in case of a two-dimensional schematization with a closed
bottom boundary and free surface. The numeric scheme presented by Kolkman [20] is only
valid for the transition region, as it neglects both compressibility and surface waves.

5.4.2 Influence of limited sluice length

In the used analytical method, the sluice was extended to infinity. In reality the sluice
length will of course be limited, which may affect the hydrodynamic mass. In case of Den
Oever, the length at the Waddensea side is approximately 28 metres, about four times the
maximum water depth. As was mentioned in section 4.2, Versluis [37] investigated the
hydrodynamic pressures for closed lock reservoirs and concluded that a limited lock length
did not have a significant effect for L > 4 · h.

Based on the simple equations describing the hydrodynamic mass for the transition region,
an estimation is made of the effect of a limited sluice length. In that case ky is given by:

ky,p = −(2 · p− 1) · π
2h · i (5.49)
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And a corresponding solution for the potential in y-direction of:

Yp(y) = e−ky,p·y (5.50)

The first mode will result in the lowest value of −ky,p and thus the slowest decay of the
potential. In case of L = 4 · h the solution at the end of sluice has decayed to the following
value:

Yp(y) = e−
π

2h ·4h = e−2π = 0.0019 (5.51)

In other words: the fluid potential at a distance of four times the water depth has reduced
to 0.19% compared to that at the gate’s surface. At L = 2h the potential has decayed
to approximately 5%. When the sluice no longer confines the fluid (at its end), pressures
disperse and therefore likely decay faster. Based on above estimation the influence of
the limited sluice length can be neglected for the transition region for sluice length above
approximately two to four times the water depth.

For frequencies increasing towards the first fluid eigenfrequency, ky,p grows towards zero.
At that point the fluid pressures become infinite (according to the theoretical model) and
there is no decay of the potential. A further increase of excitation frequency results in
positive values of ky,p and thus propagative modes. The limited sluice length can therefore
have an effect on the hydrodynamic pressures in when compressibility becomes significant.
As a start an infinite half space could be modelled at the end of the sluice to estimate this
effect. This is however not investigated further in this thesis.

For the lower wave frequency range the evanescent values of kz,p and thus ky,p increase to
p·π/h (see figure F.2) and thus the potential decreases faster in y-direction. The propagative
mode does not decay and can therefore be affected by the geometry change at the end of
the sluice. Especially the reflection of waves could change the behaviour of the generated
pressures significantly.

5.5 Analysis of the Den Oever pump gate

In section 5.3.2 the forced system of equations was derived. Although the vertical beam
representation of the pump gate is too simplified for final results, some estimations are
made in this chapter. The analysis is limited to the regular pump gate design.

5.5.1 Parameters

In table 5.1 the parameters that describe the gate are shown. The isotropic bending stiffness
of the gate per running metre was elaborated in section 2.4 and is multiplied by the gate’s
width or height to obtain the total flexural rigidity shown in table 5.1. The weight of the
gate is considered distributed equally over its height.
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Table 5.1: Mass and flexural rigidity of both gate designs

Variable Lx [m] Lz [m] ∆z [m] ρby [kg/m] EIxx [Nm2] EIzz [Nm2]

Regular pump gate 12.5 7.25 0.2 2505 2.51 · 109 1.46 · 109

The pumps are simplified as square with the following dimensions and (vertically) dis-
tributed weight:

• Square pumps: 1.8 · 1.8 m2;
• Distributed pump weight ρp: 3 · 20, 000/1.8 = 33, 333 kg/m.

Flexural rigidities and weight of the gate are given for the total width of the gate. The
fluid response should therefore be given for the total width of the sluice, which is 12 metre.

The distributed translation spring stiffness is based on integrated static deflection caused
in horizontal direction by a distributed load. For this purpose the gate is considered simply
supported at its edges. In that case the deflection is found by solving the static beam
equation, which results in:

wstatic(x) = q x5

120EIzz
− q x4Lx

48EIzz
+ q x2L3

x

48EIzz
(5.52)

The average deflection caused by a distributed load is then:

w̄ =
∫ Lx
0 wstatic(x) dx

Lx
= qL4

x

120 EIzz
(5.53)

The equivalent stiffness to a force summed over the width (q Lx) per metre height will then
be given by:

k∗ Lz = 120 EIzz
L3
x

↔ k∗ = 1.24 · 107 [N/m · m−1] (5.54)

It must be noted that this is a crude assumption, while eigenfrequencies are affected signif-
icantly by this stiffness. As mentioned, more accurate results will be obtained for the plate
model in chapter 6.

Due to the presence of the pumps, the gate interface condition does not apply over the full
width of the gate at the height of the pumps. Between z1 and z2, the gate motion effective
for the fluid is therefore reduced by the relative pump surface: 3 ·1.8/12 ·100 = 45%. This is
applied by determining the integral Q defined in equation (5.30) with this reduced motion.

5.5.2 Eigenfrequencies of the dry (vertical) pump gate

The eigenfrequencies of the vertical beam without any pumps and springs were determined
in section 5.3, as these are used in the modal analysis method. In table 5.2 the first eight
eigenfrequencies are shown for the regular pump gate. These eigenfrequencies will no longer
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be valid for the total fluid-pump-structure system, but have been determined obtain insight
in the relative influence of the fluid.

The pump masses lower the eigenfrequencies of the gate significantly compared to those of
a regular gate. This effect is expected to be higher in the horizontal direction.

Table 5.2: The first six structural radial eigenfrequencies for the regular pump gate design,
with and without springs and pumps

Regular gate ω1 ω2 ω3 ω4 ω5 ω6

Beam only (mathematical) [rad/s] 0 294 952 1985 3395 5181
Beam and springs [rad/s] 70 302 954 1987 3396 5181
Beam, pump weight and springs [rad/s] 55 165 615 1127 2197 3194

The first few eigenmodes of the structural system are shown in figure 5.12. For the fourth
eigenshape the separate beam only modes that together form this shape are shown in
figure 5.13.
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Figure 5.12: First three eigenmode of the dry pump gate including pumps
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Figure 5.13: The fourth eigenmode of the dry pump gate (left). On the right it is shown
how the beam only modes together form this shape.

Without the presence of the fluid, the eigenfrequencies of the system typically lie above
the wave frequency range which is in the order of a few rad/s. The first eigenfrequency is
still slightly above those of excitations close to the possible range of pump radial velocities
as well. Vane passage could already be harmful for these frequencies. The full system is
analysed in the following section.
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5.5.3 Response to pump forces

Due to the high uncertainties, instead of a pump excitation spectrum an envelope was
determined. The maximum force estimated from the pumps is for this purpose ascribed to a
single frequency, and subsequently evaluated for each possible frequency. In contrast to the
wave spectrum these are thus not force-frequency combinations that happen simultaneously.
The response could therefore be determined immediately for each possible pump excitation
frequency and corresponding maximum force amplitude. Nevertheless a response function
is determined for the pump force as well, as this gives a clear insight in the sensitivity of
the structure. In the two-dimensional model, all pump excitation forces being in phase is
evidently the governing case.

The response spectra, which are thus the result of a distributed pump load of 1 N/m2, are
given in appendix F.6 (fig.F.4) for the maximum possible water levels. The eigenfrequencies
can be clearly distinguished in this response, the first four are shown in table 5.3.

Table 5.3: Eigenfrequencies (in rad/s) found for the ‘wet gate’ for different water levels
compared to those of the dry gate6

Case hL [m] hR [m] ω1 ω2 ω3 ω4

Dry gate 0 0 55 165 615 1127
Wet gate 4.1 4.2 41 151 452 566
Wet gate 5.3 7.2 20 101 330 751

The estimated radial velocity of the pumps (18.5 rad/s) is close to the first eigenfrequency
of the system (20 rad/s)7 at maximum water levels. The response spectrum is multiplied
by the pump force envelope of figure 3.2 to obtain the quantified response. This results
in a envelope for the deflection, which is shown in figure 5.14. Maximum deflection of the
gate is in the order of mm’s, which is very small compared to its width and height.

When the deflection is multiplied by Ω/
√

2 velocity rms values are obtained. Furthermore,
from the quantified structural deflection, the pressures in the fluid can be determined by
equation (5.30). Both results are shown in figure 5.15. It can be seen that for some pump
configurations, the ISO velocity hazard limit (see appendix C.5) is reached. It must be
noted that these limits are denoted for individual components, and that the simultaneous
vibration of the entire pump might have a higher resilience to these vibrations.

The pressure fluctuations at the pump inlet caused by the motion of the gate, are significant
as well. A head amplitude of several decimetres, and thus fluctuations of double this value,
can have a detrimental effect on the efficiency and may increase the chance of cavitation.

In chapter 6 it will be investigated whether the three dimensional effects of the fluid will
increase the pressure fluctuations and what eigenfrequencies are obtained with the more
accurate plate model.

6These eigenfrequencies, based on the two-dimensional model, are a rough indication. Results of the
plate model in the following chapter are significantly higher.

7The more accurate plate model in the following chapter results in a higher first eigenfrequency.
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Figure 5.14: Envelope of deflection amplitude at the pump center and for the total beam
under a pump force excitation at maximum water levels (hS = 5.3 m, hN = 7.2). The
applied pump load per frequency is shown in grey.
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Figure 5.15: Envelope of fluid head amplitude (left) and the velocity rms value (right) at
the pump center and the maximum of the total beam under a pump force excitation at
maximum water levels (hS = 5.3 m, hN = 7.2).

5.5.4 Response to waves

The response to the wave spectrum is determined differently from above, namely by re-
sponse amplitude operators. However, the eigenfrequencies (> 20 rad/s) of the regular
pump gate are significantly above the typical wave frequencies (<3.5 rad/s).

Secondly. the wave force integrated over the depth diminishes for higher frequencies. This
was shown for the responsive propagative wave in figure 5.5 and 5.6, but of course also
applies to incoming propagative waves.

The excitation due to waves will therefore be approximately quasi-static. Since correspond-
ing vibration velocities (∝ Ω) and fluid pressures (∝ Ω2) are relatively low as well, the static
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reference design of the pump gate suffices for wave loads. The response to waves is there-
fore not further researched, and the system is analysed further in chapter 6 for pump forces
only.

5.6 Coupling effect of the fluid

In section 4.2 the coupling effect of the fluid was introduced. In case of a discrete system, the
motion of one degree of freedom results in pressures effecting (all) other possible motions.
In the coupled modal analysis, this coupling of the fluid results in a non-diagonal fluid
impedance matrix, of which an example was given in equation (5.36).

In case this coupling could be neglected, the analysis would simplify greatly. For a regular
gate (without the pump inertia and damping) the modal coefficient of each mode is then
directly given by the derived analytical expressions, without the necessity of solving a
coupled system of equations. To estimate the effect of ‘decoupling’ the influence of the
fluid, thus neglecting a part of the generated pressures, the response to a pump excitation
force is evaluated based on this simplification. For this purpose, the damping and inertia
of the pumps are neglected.
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Figure 5.16: Maximum response for the beam schematization without pumps in terms
of the beam deflection (left) and fluid pressure (right) to a unit distributed pump load,
determined with a coupled and uncoupled fluid impedance

As can be seen in figure 5.16 the response near the first eigenfrequency of the system
differs relatively little for the coupled and uncoupled fluid system. For the remainder of
the frequency range, the difference is significant.

This could be ascribed to the fact that the beam despite the effect of the fluid, has its first
eigenmode close to that of the ‘beam only’ mode. The magnitude of one of the beam modes
is therefore much larger than all other. This is not explicitly quantified for the beam, but
is shown in figure 6.4 for the plate model results in the following chapter.

This behaviour can be explained by the increasing importance of the mass inertia (of the
plate, pumps and fluid) compared to the flexural rigidity of the gate. Whether the first
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or even more eigenfrequencies and shapes of a fluid-gate system (without pumps) can be
determined accurately by the uncoupled fluid, is therefore dependent on the ratio between
the rigidity of the plate, the mass of the plate and the hydrodynamic mass of fluid. In this
behaviour the size of the plate, the plate boundary conditions and the water depth play a
role as well. This behaviour will be investigated further.

Based on above, it is recommended to include the coupling motion of the fluid, especially
when higher frequency excitations such as those of the pumps in the Den Oever case, play
a role.

5.7 Conclusions

A semi-analytical beam model was set-up and used to evaluate the fluid response for a rigid
gate and the fully interacting Den Oever pump gate system. It can be concluded that this
method is able to efficiently and quickly determine the dynamic response of such a system,
taking into account the linear interaction between the structure, fluid and pumps. A plate
model based on same method is expected to describe the structural and fluid response more
accurately, and is set-up in next chapter.

The validity of different fluid schematizations was tested, based on including or neglecting
surface waves and compressibility effects. In the most simple case, where both of these
effects are small, the hydrodynamic pressures over the depth can be described by a simple
analytical expression equation (5.45). Validity limits for this schematization were deter-
mined and shown in figure 5.10.

The semi-analytical method takes into account the coupled fluid impedance. Neglecting
this coupled effect would simplify the analysis of the gate. The effect of this decoupling was
therefore researched. For the Den Oever regular pump gate design results deviated signifi-
cantly for frequencies higher than the first eigenfrequency. In general, whether decoupling
is allowed depends on the examined frequency range, structural and hydrodynamic mass,
and flexural rigidity.

In section 5.5 the beam model was applied to the regular pump gate design at Den Oever.
It was concluded that wave excitation plays a subordinate role in the design of the gate as
eigenfrequencies of the gate-pump-fluid system lie significantly above the wave frequency
range. Pump excitation frequencies can certainly excite some of the eigenfrequencies. This
potentially leads to unacceptable vibration velocities of the pumps and fluid pressure fluc-
tuations at its inlet. This is therefore researched further based on the more accurate plate
model in next chapter.
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6 | Plate model

In this chapter the beam model of the previous chapter is extended to a plate model, based
on the same semi-analytical method. The beam model was mainly used to get insight in
the fundamental behaviour and compare it to the theoretical expressions. For the plate
model, focus will be on the quantification of pump gate vibrations.

In section 6.1 and 6.2 the model and governing equations are described. The forced system
of equations is derived in appendix G, which is based on a modal expansion. The result,
together with the plate and fluid modes, is elaborated in section 6.3. In section 6.4 to 6.6
the response of the Den Oever gate designs is investigated.

6.1 Model description

In figure 6.1 the plate model domain is shown. Similar to the beam model of chapter 5 the
sluice is simplified to extent to infinity.

Figure 6.1: Three dimensional overview of the plate model space

The semi-analytical method [33–35] used to determine the plate-pump-fluid vibrations is the
same as used for the beam model and is described in chapter 5. The analytical derivations
are therefore for a large part similar to - and continued from - those of chapter 5 and
appendix F. Based on the conclusions of section 5.4, both the compressibility of the fluid
and the effect of surface waves will be included in the model. The associated equations of
motion and boundary conditions are given in section 6.2.

The vertical direction is unchanged from the beam model of chapter 5. As is shown in
figure 6.1, the fluid is simplified as constraint by the sluice in y-direction to infinity. As was
mentioned in chapter 2, the heart to heart distance between the supports of the pump gate
is slightly larger (0.5 m) than the width of the sluice. Similar to the offset in z-direction
representing the sill, in x-direction at each side an offset of ∆x (reduction in sluice width
compared to that of the gate) is introduced on each side of the gate. The exact geometry
of the gate’s vertical edges is unknown in this stage. It has been assumed they behave as
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Chapter 6. Plate model

simply supported. The two-dimensional schematization of the gate, representing it as a
plate, is shown in figure 6.2.

Figure 6.2: Geometrical overview (front) of the plate schematization

The flexural rigidity at the location of the pumps is assumed not to be reduced by the
pumps’ presence. In appendix B it can be seen that in the design of the flood defence gate,
the number of stiffening elements is increased at the height of the pumps. In case of the
regular design, most elements are still continuous. Furthermore, the pumps can provide
strength as well. The girder elements at the boundaries of the gate are not included in the
calculation of the plate’s bending stiffness, since the gate is considered rigidly supported in
translational direction. The connection between gate and pumps is assumed rigid.

The focus of the analysis is in first instance on the regular pump gate design, as this design is
most likely governing. Secondly, this design is approximately isotropic which simplifies the
analysis, see equation (6.1). Subsequently, the robuster flood defence gate is investigated to
see whether weaknesses can be solved by this design. The input for these designs is further
clarified in section 6.4.

6.2 Governing equations

In the three dimensional model, the gate is described two-dimensionally by Kirchhoff-
Love plate theory. This, similarly to Euler-Bernouilli to beams, applies to thin plates and
small amplitude vibrations. Since the plate is simplified as homogeneous and isotropic, the
equation of motion in the time domain becomes (w = w(x, z, t)):

ρs
∂2w

∂t2
+D ·

[
∂4w

∂x4 + 2 · ∂4w

∂x2∂y2 + ∂4w

∂z4

]
=
∑

f(x, z, t) (6.1)
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With:
D = t3E

12 · (1− ν2) (6.2)

in which: D = plate bending stiffness [Nm2]
t = plate’s thickness [m]

The term t3/12 can be considered as the flexural rigidity of the gate per running metre. It
is thus not necessary to determine an equivalent plate thickness. In the frequency-domain
(assuming w(x, z, t) = W (x, z) · eiΩt) this becomes:

−ρsΩ2 ·W (x, z) +D ·
[
∂4W (x, z)

∂x4 + 2 · ∂
4W (x, z)
∂x2∂y2 + ∂4W (x, z)

∂z4

]
=
∑

f̃(x, z,Ω) (6.3)

The forces on the right-hand side are mostly equal to those discussed for the beam model,
equation (5.2). No springs are present however, and the pump inertia force is now present
at three (two-dimensional) locations:∑

f̃(x, z,Ω) = H̃(x, z)·
[
−iΩ · cpump + ρp · Ω2

]
·W (x, z)−FfN (x, z)−FfS (x, z)−Fext(Ω, x, z)

(6.4)
In which H̃(x, z) represents the somewhat lengthy combination of step functions denoting
the presence of the pump weight:

H̃(x, z) = [H(z − z1)−H(z − z2)] · [H(x− x1)−H(x− x2)] ·
[H(x− x3)−H(x− x4)] · [H(x− x5)−H(x− x6)]

(6.5)

The three simply supported edges and the free top of the gate result in the following
boundary conditions:

W (0, z) = ∂2W (x, z)
∂x2

∣∣∣
x=0

= W (Lx, z) = ∂2W (x, z)
∂x2

∣∣∣
x=Lx

= 0 (6.6)

W (x, 0) = ∂2W (x, z)
∂z2

∣∣∣
z=0

= ∂2W (x, z)
∂z2

∣∣∣
z=Lz

= ∂3W (x, z)
∂z3

∣∣∣
z=Lz

= 0 (6.7)

In the three dimensional domain the compressible fluid is described by the following equa-
tion of motion:

∂2Φ̃(x, y, z, t)
∂x2 + ∂2Φ̃(x, y, z, t)

∂y2 + ∂2Φ̃(x, y, z, t)
∂z2 + Ω2

c2
p

Φ̃ = 0 (6.8)

The boundary conditions for the z-direction are equal to the incompressible wave equations
used in chapter 5. The closed boundaries for the x-direction are straightforward.

∂Φ̃
∂x

∣∣∣
x=∆x

= 0 ∂Φ̃
∂x

∣∣∣
x=Lx−∆x

= 0 (6.9)

∂Φ̃
∂z

∣∣∣
z=−∆z

= 0 ∂Φ̃
∂z

∣∣∣
z=H

= Ω2

g
· Φ̃(z = H) (6.10)
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The interface conditions remains as follows:

∂Φ̃
∂y

∣∣∣
y=0

= iΩW (6.11)

And also the condition at y =∞, which states energy only propagates in positive direction
and is finite, remains equal to that of the beam model.

6.3 Modal expansion

6.3.1 Structural modes and fluid modes

The plate modes will be two dimensional, and are therefore described as the product of
modes in two directions: Wkm(x, z) = Wx,k(x) ·Wz,m(z). In this notation, it is anticipated
that the solution will be an infinite summation of the multiplication of k modes in x-
direction and m modes in z-direction. Equation 6.3 can not be separated into equations for
the x- and z-direction directly, as was done with the two-dimensional fluid in chapter 5. A
solution for the x-direction, which complies to the boundary conditions at both gate edges,
is therefore assumed:

Wx,k(x) = sin(βkx), βk = kπ

Lx
, with: k = 1, 2, ..,∞ (6.12)

When this solution is substituted in (6.3), and subsequently divided by sin(βkx), this results
in:

−ρsω2
km ·Wz,m(z) +D · β4

k ·Wz,m(z)− 2D · β2
k ·

∂2Wz,m(z)
∂z2 +D · ∂

4Wz,m(z)
∂z4 = 0↔

D · ∂
4Wz,m(z)
∂z4 − 2D · β2

k ·
∂2Wz,m(z)

∂z2 +
[
D · β4

k − ρsω2
km

]
·Wz,m(z) = 0

(6.13)
For each mode k in x-direction, a homogeneous fourth order differential equation is thus
obtained. An infinite number of modesm can be found for each differential equation. These
modes will be numerically evaluated with Matlab’s bvp4c function. In appendix G.1 this is
elaborated further. For each m and k, the eigenfrequency ωkm is an unknown that is found
along with the two-dimensional eigenshape. The first four eigenmodes and corresponding
eigenfrequencies are shown in figure 6.3. The total plate deflection is again a summation
of these modes:

W (x, z) =
∞∑
m=1

∞∑
k=1

AkmWkm(x, z) (6.14)

The fluid response includes both compressibility and the effect of surface waves, and is
expressed as follows:

Φ̃pr(x, y, z) =
∞∑
p=1

∞∑
r=1

Bpr cos(kx,p · (x−∆x)) · cos(kz,r · (z −∆z)) · e−iky,pry (6.15)
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Figure 6.3: The first four numerically evaluated eigenmodes of the plate (without pump
weights) for the regular pump gate design. The deflection of each mode is normalised to a
unit maximum.

With the following constants:

kx,p = rπ

Lx− 2∆x (6.16)

Ω2 = −gkz,r · tan(kz,rh) (6.17)

ky,pr = ±
√
k2
f − k2

x,p − k2
z,r (6.18)

And the following requirement:

Re(ky,pr) ≥ 0 (6.19)
Im(ky,pr) ≤ 0 (6.20)

The derivations of these solutions can be found in appendix G.2.

6.3.2 Forced system of equations

In appendix G.3 the boundary condition is used to express the modal coefficient of the fluid
(Bpr) in terms of those of the beam (Akm). At the gates’ interface (y = 0), the pressures
are then described by:

pf (x, y = 0, z) = iΩ2ρ
∞∑
m=1

∞∑
k=1

Akm

∞∑
p=1

∞∑
r=1

Qkm,pr
ky,pr∆pr

Φpr(x, z) (6.21)
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With:
Qkm,pr =

∫∫
SW

Wkm(x, z) · Φpr(x, z) dx dz (6.22)

In which SW is the gate’s wet surface. In appendix G.4, using orthogonality of the plate
modes and the fact that they comply to the homogeneous equation, a system of equations
is derived for which the modal coefficients can be solved. This system can be expressed as
follows:
∞∑
k=1

∞∑
m=1

[
ρs · (ω2

km − Ω2) · δklδmn · Γln + ZN,km,ln + ZS,km,ln − Ikm,ln + Pkm,ln
]
·Aln = Fln

(6.23)

Fluid impedance (N/S): ZN,km,ln or ZS,km,ln = iΩ2ρf

∞∑
p=1

Qkm,prQln,pr
ky,pr∆pr

Inertia pumps: Ikm,ln = ρp · Ω2 ·
∫∫
S

H̃(x, z) ·Wkm(x, z) ·Wln(x, z) dx dz

Pump damping: Pln = cpump · iΩ
∫∫
S

H̃(x, z) ·Wkm(x, z) ·Wln(x, z) dx dz

Modal force: Fln =
∫∫
S

Fext(z,Ω) ·Wln(x, z) dx dz

The term between brackets on left-hand size of equation (6.23) results in a coupled (k ·m)×
(k ·m) matrix. The modal coefficient for each two-dimensional shape ln (or km) results
from dividing the modal force by this matrix: A = F/M .

6.4 Pump gate parameters

The plate bending stiffness was defined in equation (6.2), in which t3/12 represent the
moment of inertia per running metre. In section 2.4 and appendix B the flexural rigidity of
the gate designs were elaborated. The moment of inertia around the z-axis has been taken
as representative for both directions. The investigated designs therewith differ from the
reference designs by Witteveen+Bos [40]. The weight has been assumed equally distributed
over the gate’s surface. It is expected that small deviations in the distribution of this mass
have little effect on the total behaviour. Especially since the gate’s mass is relatively low
to the hydrodynamic and pump mass. The stiffness and weight parameters of both gate
designs are repeated in table 6.1.

Table 6.1: Weight and bending stiffness of both gate designs

Parameter Flood defence pump gate Regular pump gate

Bending stiffness D [Nm] 3.0 · 109 2.0 · 108

Distributed gate weight [kg/m2] 331 199
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The geometrical parameters are equal for both gate designs and given in table 6.2. The
definition of these parameters was shown in the plate overview of figure 6.2.

Table 6.2: Geometrical parameters of the gate

Variable Lx L′x Lz −∆z x1 x2 x3 x4 x5 x6 z1 z2

Value [m] 12.5 12.0 7.25 -0.2 1.35 3.15 5.35 7.15 9.35 11.15 0.70 2.50

The eigenfrequencies of the system are elaborated for the regular pump gate design. The
response to pump forces is elaborated in most detail for the governing regular design as
well. Subsequently, in section 6.6.4 the response of the flood defence gate is treated. After
quantification of the response, a reflection of the assumptions and uncertainties this analysis
is made in section 6.7.

6.5 Eigenfrequencies of the system

Based on the response to the pump forces in next section, the eigenfrequencies are invento-
ried. The modal expansion is truncated to 10 structural shapes in each direction, resulting
in a total of 100 plate shapes, and 40 fluid modes in each direction, resulting in 1600 fluid
potential shapes at the gate’s surface.

In table 6.3 the eigenfrequencies are shown for the three design water level combinations
stated in section 3.2. As can be seen the first eigenfrequency of the plate at maximum water
levels is three times higher than that estimated with the beam model. As was expected the
beam model is thus not sufficient to model the behaviour of the gate correctly.

This can firstly be explained by the fact that in the three dimensional the fluid pressures
distribute over the width of the sluice. Since the edges of the gate are supported, the fluid
is forced less at these locations. This is not included in the beam schematization. Secondly,
the estimated stiffness of the edge supports included in the beam model was in-precise and
is not valid in a dynamic analysis.

Table 6.3: Eigenfrequencies beneath 500 rad/s of the system for minimum and maximum
water levels

Case hL [m] hR [m] ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

Minimum WL’s 4.1 4.2 109.5 168.5 174.5 373.5 429.5 >500 >500 >500
Cavitation risk 4.1 6.1 88 146 165.5 319.5 344 405 484.5 >500
Maximum WL’s 5.3 7.2 74 128.5 157.5 277.5 317.5 363.5 408.5 493.5

Compared to the beam model, more eigenfrequencies are found in the same range (<500
rad/s). This is a logical consequence of the two-dimensional plate schematization. It is
almost impossible to avoid eigenfrequencies above the value of the first eigenfrequency, due
to the range of possible water levels. As can be seen in table 6.3, a change in water levels
has a large effect on the eigenfrequencies.
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Plate shape at ω1 = 74 rad/s
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Figure 6.4: The shapes of the plate at the first five (approximate) eigenfrequencies of the
structure-fluid system (left) and the contributions of the first 25 ‘plain’ plate shapes (right).
In total 100 plate only eigenmodes are used in the analysis.
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Fluid pressure shape (north) at ω1 = 74 rad/s
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Fluid pressure shape (north) at ω2 = 129 rad/s
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Fluid pressure shape (north) at ω3 = 158 rad/s
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Fluid pressure shape (north) at ω4 = 278 rad/s
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Fluid pressure shape (north) at ω5 = 318 rad/s
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Fluid pressure shape (north) at ω6 = 364 rad/s
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Figure 6.5: The shapes of the fluid pressures at the (northern) gate’s surface at the first
six (approximate) eigenfrequencies of the structure-fluid system (hS = 5.3 m, hN = 7.2
m). The locations of the pumps, where the interface condition is not applied, are shown
in black.

The minimum first system eigenfrequency of 74 rad/s lies sufficiently above the excitations
around the pump’s radial velocity (≈ 5− 40 rad/s).

When the exact pump specifics are known, excitations will likely only occur at several dis-
tinct peak frequencies. However, due the varying water levels, designing the gate such that
its resonance frequencies lie in between these excitation frequencies is not viable. Instead,
the gate should designed such that effects of these vibrations limited. As energy decays to-
wards higher frequencies, both for the response and pump forcing, a stiffer gate design will
be favourable. Secondly, pump forces are highest at high pump heads. Eigenfrequencies at
water levels with maximum head difference are therefore most relevant.

The vibration shapes of the plate, normalised to a unit maximum, at the first five peak
frequencies are shown in figure 6.4. The relative contribution of each of the homogeneous
plate shapes (dry and without pumps) to these eigenshapes, is shown for each of these
shapes. For the first two modes, there is still one homogeneous plate mode that governs.
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In that case, a rough estimation of the the corresponding eigenfrequency can still be made
by only considering one plate mode and determining the fluid response to this mode. The
fact that the plate shape changes due to the fluid and pumps is then neglected. This is
however not generally recommended as this behaviour depends on the exact case specifics.

The fluid pressure shapes corresponding to the eigenfrequencies are given in figure 6.5. Since
eigenshapes of the plate and fluid are only dependent on the system, which is symmetric
over its width, these shapes are symmetric or antisymmetric as well.

6.6 Response to pump forces

The response to pump forces was investigated for the vertical schematization in section 5.5.3.
In this section, the response is evaluated more based on the more accurate plate model.
The pump forces can have phase differences. In case of the plate, except for all forces being
in phase, the middle or edge pump can be out of phase with those of the other two pumps.
Since the system is symmetric, the response will be symmetric in case of the pump forces
are as well. The likelihood of the pump forces actually acting in phase or out of phase,
depends whether a so-called lock-in effect may occur. Through a dependency, the vibration
of the gate and pumps in of out of phase could then cause the pump forces to act in a
similar way.

Figure 6.6: The three possibly governing pump force combinations.

Similar to the beam model three response types are investigated, stated below. The latter
two will aid in the answer to research question (I.a) of this thesis, the first research question
(I.b).

1. Plate’s deflection and amplification factor. This is especially relevant to the require-
ments of the gate itself, which involve fatigue and the forces on the surrounding
concrete structure.

2. Pump’s vibration velocity, which is relevant to the maintenance and lifetime of the
pumps.

3. Pressure fluctuations in the fluid at the pump’s inlet, which influences especially the
efficiency of the pumps. Excessive head differences may also induce cavitation at low
water levels, and therewith lead to the increased damage and required maintenance
as well.
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Each of these responses may be governing at different water levels and pump force phases.
This is reasoned for each of these responses.

In the following subsections the response of the regular pump gate is evaluated. In sec-
tion 6.6.4 the results for the flood defence gate are summarized and compared.

6.6.1 Plate deflection and stress amplification

With the beam model, it was demonstrated that deflections of the plate are very small. As
can be seen in figure 6.7, this is the case with the plate model as well. This is explained
by the fact that the estimated pump forces are small compared to the static loads the gate
is designed for. With the three pumps in phase, the ratio between the resultant force and
the pump force amplitude at maximum water levels is about:

rFstat/Fdyn = Lx Lz ρfg ∆Hd

0.1 · 3 ·Ap ρfg Hpump
= 1724

17.74 ≈ 97 (6.24)

In which Hd is the gate’s design head of 2 metre and Hpump is the pump head, which is
1.9 metre at maximum water levels. Instead of determining the exact stresses in the gate
and supports, the amplification of the (maximum) deflection at the first mode is taken as
representative. For this mode, the deflection shape is still relatively close to the first plain
shape mode (see figure 6.4) and possibly the static deflection shape.
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Figure 6.7: Maximum gate deflection at maximum water levels (hN = 7.2 m, hS = 5.3
m) for the regular pump gate design for three pump phase possiblities, quantified for the
pump force envelope.
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When the quantified deflection of figure 6.7 is expressed in terms of amplification of the
static deflection caused by the three pumps in phase, a maximum amplification factor of
approximately 65 is obtained at the first eigenfrequency.8

The regular gate was dimensioned to a bending moment unity check of 0.7. Stresses are
therefore likely just within strength limits. Given the many uncertainties and the fact that
the favourable isotropic bending stiffness is used in the analysed design (compared to the
Witteveen+Bos [40] regular gate design) direct failure can be considered a risk, which is
definitely concerning.

Since the existing concrete foundation is designed to withstand the 6.75 metre design head
of the flood (pump) gate, the existing structure will likely suffice for these loads. As was
elaborated in section 3.4, repetitive loads might however be more harmful than static loads.
The stresses in the concrete structure are not further investigated in this thesis.

Due to the high frequencies involved and the frequent operation of the pumps, fatigue in the
steel gate may be an issue as well. In section D.2 the concept of fatigue and the Eurocode
requirements are elaborated. The pumps will operate around 100 days a year [40]. If the
pumps would vibrate one hour per operating day at the systems first eigenfrequency, in 35
years this would lead to:

35 · 100 · 3600 · 62
2 · π ≈ 1.24 · 108 [cycles] (6.25)

This is above the fatigue cut-off limit at which the maximum allowed stress amplitude is
given by:

∆σl =
( 5

100

)1/5 (2
5

)1/3
∆σc (6.26)

In the estimations by Witteveen+Bos [40] a detail category (∆σc) of 80 was used, which
results in a maximum allowed repetitive stress of 32.4 N/mm2. For the[40] designs a
maximum stress of 167 N/mm2 was found caused for the two metre design head (excluding
safety factors). Using again the rough estimation that the static design head leads to the
same deflection over force ratio as the pump head which is present at the three distinct
locations, a maximum allowed amplification factor can be estimated. This results in:

rampl = rFstat/Fdyn
σl
σd

= 97 · 32.4
167 ≈ 19 (6.27)

In that case the gate would not suffice, as an amplification factor of about 65 was found.
This is of course a crude estimation, but indicates that even though the gate was designed
with a unity check of 0.7 to account for fatigue, it is still a risk. Fatigue increases the
chance on required maintenance to the gate as well.

8The frequency range in which the first eigenfrequencies are located has little hydrodynamic damping as
was demonstrated in section 5.4. Other damping phenomena such as material damping and friction less that
are not included in the present model, will likely lower this amplification factor. This is further elaborated
in section 6.7.

86



Chapter 6. Plate model

6.6.2 Pump vibration velocity

As was discussed in section 3.4, certain limits are stated for non-rotating parts of the
pumps. A root-mean-square (rms) value of 9.5 mm/s is stated as limited operation, above
which there is hazard of damage. This value if taken as an indicative limit, but it is noted
that axial flow pumps are relatively robust and that the simultaneous vibration of the
entire pump is likely to be less damaging than individual components. The results for at
maximum water levels are given in figure 6.8.

As can be seen, at several frequencies and pump force cases the limit is exceeded consider-
ably. For the regular pump gate design a reduced efficiency or damage due to high pump
vibration velocities are therefore risks.
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Figure 6.8: Pump vibration velocity (rms) at maximum water levels (hN = 7.2 m, hS = 5.3
m) for the regular pump gate design for three pump phase possibilities, quantified for the
pump force envelope.

6.6.3 Fluid pressure fluctuations

Pressure fluctuations can have an adverse impact in two ways. Firstly these can have a
direct effect on the efficiency of the pumps. Secondly, the fluctuations can induce cavita-
tion. This phenomenon leads to a reduced efficiency, impeller blade damage, and dynamic
fluctuations in the fluid. The latter can after initiation of cavitation, thus also aggravate
vibrations. The concept of cavitation is elaborated in appendix C.6.

A clear limit for maximum pressure fluctuations at the pump’s inlet is not available. The
design rule requiring a minimum water coverage of half the pump’s diameter is based on the
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prevention of cavitation. Since cavitation will occur at low water coverage, the minimum
water level at the Lake IJssel side is considered, which is -0.60 m NAP and corresponds to
a water depth of 4.1 metre. In section 2.4.1 it was shown that the water coverage is 1.10
metre in that case. This in reference to the 0.5 · 2 = 1 metre required minimum coverage.
Feedback from the pumps onto the fluid is not taken into account in this model. The
pressures corresponding to this feedback generally apply to robustly founded pumps and
are therefore assumed to be included in the required water coverage. Amplitudes of the
pressure head fluctuations higher than approximately 0.1 m at the minimum Lake IJssel
water level are therefore considered problematic.

In chapter 7 the effect of the pump conduit on the pressures at the gate’s surface is inves-
tigated. In that chapter it is concluded that the fluid pressures are relatively unchanged
from the present schematization when taking into account the pump conduit length. It
must however also be taken into account that the pump inlet is at a certain distance from
the gate’s surface as potentials decay when moving away from the gate’s surface. This was
elaborated in section 5.4.2.

The potential corresponding to each fluid mode at a distance y from the gate’s surface is
given by:

Φ̃pr(x, y, z) = Φ̃pr(y = 0, x, z) · e−iky,pry (6.28)

Modes corresponding to higher (real) values of ky,pr decay quicker. The shape of the fluid
pressures at a distance from the gate’s surface will thus also change. The fact that the
geometry of the conduit affects the fluid pressure is neglected based on the mentioned
conclusions of chapter 7.

For above reasons, the generated pressures at the pump locations are both considered at
the gate’s surface and at a distance of 1.75 metre, which is half the total conduit length.
The exact center of pumps with respect to the gate’s plate is however not certain. This is
especially relevant when considering the suction (southern) side of the pumps, as pressures
at this location should comply to the requirements for cavitation.

In figure 6.9 the results are shown. As can be seen, head amplitudes at the suction (south-
ern) side of the gate can be considerably higher than the mentioned 0.1 metre. Even at
a distance of 1.75 metre most peaks correspond to amplitudes of 0.2 to 0.3 metre, with a
single peak higher than 0.5 metre.

The pressure forces at both sides act in the same direction, which means the relative head
amplitude generated over the pump is the summation of the amplitudes at both sides. In
figure G.3 the pressure fluctuations are given for maximum water levels. This gives about
the same response at slightly shifted eigenfrequencies. Considering the pump’s inlet at 1.75
metre from the gate’s surface (at both sides), maximum head amplitudes up to 1 metre are
found. This corresponds to head fluctuations (double the amplitude) over the pump in the
same order as the pump head, which can definitely be considered unacceptable.

It must be noted that at such great fluid responses, the linearised equations on which the
analysis is based become invalid. Non-linear effects should thus be taken into account. As
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(d) Northern side of the gate, eccentric pump
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Figure 6.9: Pump fluid head amplitude at water levels hS = 4.1 m and hN = 6.1 m for the
regular pump gate design for three pump phase combinations at both sides of the gate,
quantified for the pump force envelope.
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these pressure fluctuations are considered unacceptable, it is expected amplitudes will be
limited in a final design. In that case the model becomes reasonably valid again.

6.6.4 Flood defence pump gate

An inquiry is done into the response of the much more robust flood defence pump gate. As
elaborated in section 6.4 for this purpose the rigidity in both directions is increased with a
factor of approximately 15. The gate’s weight increases to 30,000 kg.

The deflection for this design is shown in figure G.4. As expected, deflection amplitudes
become even more insignificant. With the increased strength, stresses reduces significantly
as well and therefore fatigue is most likely not an issue for this design. In the same range
(1 < Ω < 500 rad/s) less eigenfrequencies are now found. At maximum water levels the
first eigenfrequency is 284.5 rad/s.

Although the deflection response is considerably lower, the vibration velocity, shown in
figure 6.10, still exceeds the limit at the system’s first eigenfrequency. Considering assump-
tions discussed in next section, the likelihood of unacceptable vibrations is deemed small
for this design however.

0 100 200 300 400 500

Frequency [rad/s]

0

2

4

6

8

10

12

14

16

18

20

V
el
o
ci
ty

rm
s
va
lu
e
[m

m
/s
]

Forces in phase (edge pump)

Forces in phase (middle pump)

Edge out of phase (edge pump 1)

Edge out of phase (middle pump)

Edge out of phase (edge pump 2)

Middle out of phase (edge pump)

Middle out of phase (middle pump)

ISO limit

Figure 6.10: Pump vibration velocity (rms) at maximum water levels (hN = 7.2 m, hS =
5.3 m) for the flood defence pump gate for the three pump phase possibilities, quantified
for the pump force envelope.

In figure G.5 the fluid head fluctuations are shown for the cavitation risk water levels
hS = 4.1 and hN = 7.2 metre. The increased stiffness of the gate has lead to almost
no amplifications beneath radial frequencies of 250 rad/s. However, above this frequency
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responses are found that can be considerably larger than for the regular gate design. When
regarding the pressures for the maximum water levels (figure G.6), pressure fluctuations
over the pump in the same order as the pump head are still possible.

This is likely caused by the larger overlap of structural and compressible fluid eigenfre-
quencies. Since the fluid eigenfrequencies are dependent on the existing sluice structure,
it is quite difficult to prevent these pressure fluctuations. Secondly, the first eigenfrequen-
cies which generally contain most energy are now present higher frequencies. The pressure
fluctuations (∝ Ω2) corresponding to the same deflection amplitude are larger for high
frequencies.

This is thus a general concern for pump gate design. A robust gate design and low energy
corresponding to higher excitations are required to limit the pressure fluctuations.

6.7 Conclusions and reflection

A dynamic analysis of the regular pump gate design with surrounding fluid was made. A few
assumptions should be kept in mind when considering the quantifications and conclusions
of previous section.

The maximum pump force amplitude was assumed to be ten percent of the pump thrust by
Witteveen+Bos [39] based on experience. In the absence of more detailed pump specifics or
data in this phase of the project, this value was used in the analyses. Response envelopes
were determined based on the determined pump force envelope. This assumes the possibility
of the total pump force being present at a single frequency. On one hand, this may lead to an
overestimation of the response, since in reality energy is spread over multiple frequencies.
One the other hand, the relatively large vibration motion of the pumps compared to a
conventional set-up may lead to an increase of the forces compared to what is based on
experience.

In addition, friction and viscous effects of the fluid and material damping of the gate will
potentially limit the peaks somewhat compared to what was found with the current model.

Considering the gate schematization, especially the supports involve uncertainties. If the
edge supports can be designed such that they have significant rotational stiffness, this
is favourable to the response. The lateral movement was however assumed completely
supported over the height while in reality the guiding system provides support only at
several locations of the guiding system. The vertical stiffening elements at the edges were
not included in the determination of the plate’s rigidity. If designed robust like with the
flood defence pump gate, the approximation of zero lateral movement is valid.

Keeping above considerations in mind, the results of the analysis in this chapter still give a
reasonable indication of the risks involved with the pump gate. For the regular pump gate
design, direct failure of the steel gates due to exceedance of ultimate stresses is a risk, but
less likely than failure due to steel fatigue. Even though a safety factor in the design was
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used to account for dynamic effects, when the response of the gate is amplified this appears
to be a risk.

Also vibration velocities can exceed limits at distinct frequencies. Whether this will indeed
be an issue should be decided by the pump manufacturer based on the forces and frequencies
from originating from the specific pumps and its sensitivity to vibration velocities. The
responses can simply be linearly scaled with the force amplitude.

For both the regular and the much stronger flood defence pump gate designs, pressure
fluctuations in the fluid are a serious concern. With the almost minimal water coverage at
the suction side of the pumps, cavitation may be induced by this fluctuations. In addition,
operation is hampered with possible pressure fluctuations in the order of half the pump
head, which may reduce efficiency.

Considering above, the regular gate design did not suffice on many of the considered re-
quirements. The flood defence gate reduces most of these risks to acceptable levels, but
pressure fluctuations in the fluid as a result of high frequency excitations may still be a
problem. Since the pumps will act as part of the primary flood defence, and will become a
vital part of the water regulation of Lake IJssel, further insight in these risks is required.
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7 | Numerical fluid validation

In the previous chapter the response of the pump gate was determined based on an ana-
lytical plate model. This included the presence of the fluid and the first order response of
the pumps to vibrations. The effect of the pumps on the fluid was accounted for by not
applying the interface condition (forcing the fluid) at the respective part of the gate’s sur-
face. An additional reduction of the pressures due to the possible flow through the pumps
was not accounted for.

To validate this assumption, a quick indication of the effect of the presence of the pumps
is obtained by numerically evaluating the fluid pressures for a single case. The transition
region, defined in section 5.4, allows for the most simple fluid schematization where both
surface pressures and compressibility have an insignificant effect.

In first instance, the results of the numeric model are validated based on the undistorted
vertical gate without pumps. In section 5.4.1 an analytical solution was derived for this
schematization. Subsequently, the geometrical presence of the pumps is included, both as
plain openings and with a certain conduit length. Results depend mainly on the geometry
of the gate and pumps and are therefore expected to give a valid indication of the pump’s
effect for frequencies outside of the transition zone as well.

7.1 Model description

7.1.1 General

Kolkman [20] presents a numerical calculation method, based on potential flow theory, in
order to estimate the hydrodynamic mass for varying geometries. It is referred to as a
spread-sheet type calculation, as a square mesh grid is used. In previous chapter is was
demonstrated that when the fluid is considered incompressible and without surface waves,
the hydrodynamic mass becomes frequency independent. The mentioned numeric method is
based on these assumptions. The obtained hydrodynamic mass is therefore only a function
of the geometry and gate vibration shape.

The gate is given a certain vibration shape W (x, z) which corresponds to a velocity of
iΩW (x, z). The potential field is then determined with the procedure laid out in next sec-
tions. For the given geometry and vibration shape this results in an unique ratio Φ/(iΩW )
for the potentials in the entire domain. Only those at the gate’s surface are relevant to the
gate and thus:

Φ(x, z) = rm(x, z) · iΩW (x, z) (7.1)
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In which rm(x, z) is the ratio between the given gate’s velocity shape and the resulting
potentials at the gate’s surface. The pressures at the gate’s surface are then described by:

p̂f (x, z) = −ρf · iΩ · Φ̃(x, z) = rm(x, z) · ρf · Ω2 ·W (x, z) (7.2)

Since the structure’s acceleration in the frequency domain is expressed by as = Ω2 ·W (x, z),
it can be seen this pressure force acts as an hydrodynamic mass:

mw(x, z) = pf (x, z)
as(x, z)

= ρf · rm(x, z) (7.3)

The governing equations and method are further explained based on the most simple
schematization, given in figure 7.1. This schematization is used to validate the numeric
model and subsequently extended to implement the pumps as openings and conduits. In
case an interaction is possible between the fluid domains at each side of the gate. The
model domain is limited to the sluice length, which is allowed based on the estimations
made in section 5.4.2.

Since only the fluid is considered, the width of modal domain is the 12 metre width of the
sluice (and not that of the somewhat larger gate). For simplicity, the sill is not considered
in this schematization and the bottom level of gate is considered at bottom sluice level (-4.7
m NAP). Water depth are still varied between 4.1 and 7.2 metre.

Figure 7.1: Numeric model domain including boundary conditions for the symmetric case
without pumps

As was elaborated before, the fluid can be described as incompressible in the transition
region, and thus the equation of motion becomes:

∂2Φ
∂x2 + ∂2Φ

∂y2 + ∂2Φ
∂z2 = 0 (7.4)

Furthermore the surface pressure is approximately zero, thus a Φ̃ = 0 boundary condition
applies. Instead of the infinity conditions, a Φ̃ = 0 condition is used as well. In section 5.4.2
it was demonstrated that for the transition region generated potentials and pressures have
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decayed to zero at that point. Other boundary conditions were elaborated for the plate
model in section 6.2.

7.1.2 Numerical grid and cell equations

The three dimensional domain is divided into cells with equal height, width and length
(∆L). The entire domain then contains Nx ·Ny ·Nz cells, with: Ni = Li/∆Li. In figure 7.2,
this grid is shown with a division into 27 regions is shown, denoted as y1-1 to y1-9, ybody-1
to ybody-9 and yend-1 to yend-9. Each of these regions has a different type of cell equation.
In comparison to the scheme used in Kolkman [20], the amount of different cell equations
increases largely when extended to the three dimensional domain.

Figure 7.2: Calculation grid of symmetric gate with regions of different cell equations (27
total). Region 5 of the middle part contains the body cells, obeying equation (7.5), all
other cells have changed equations directly influenced by the boundary conditions.

The equations for all cells are based on the continuity, which states sum of all discharges
must be zero (for the incompressible fluid). In appendix H it is shown that for the regular
cells (region ybody-5), this leads to:

Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y−1,z + Φx,y+1,z + Φx,y,z−1 + Φx,y,z+1)/6; (7.5)

Region xbody-5 contains by far the largest part of all cells. When adjacent to a boundary,
the cell equation changes. For example, x1-5 has the following cell equation:

Φx,y,z = (qx,z/∆L+ Φx,y+1,z + Φx−1,y,z + Φx+1,y,z−1 + Φx,y,z−1 + Φx,y,z+1)/5 (7.6)

In which qx,z is the discharge generated by the movement of the gate (Ẇ · ∆L2). When
the pump conduits are introduced, this leads to an increase in regions with altered cell
equations. For this and the other model geometries, the cell equations are elaborated in
appendix H.
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7.1.3 Iterative procedure

In the numeric method the gate is given a unit velocity, which will result in potentials
throughout the numeric domain. From point (x = 1, y = 1, z = 1) to (x = Nx, y = Ny,
z = Nz) the cell equations are executed. After each iteration, the hydrodynamic pressures
are determined. To do so, the calculated potentials at the contact coordinates to the gate
(x = 1) must be adjusted to represent the potential at the gate surface, which is at the cell
boundary (instead of its center). This correction is as follows:

φgate(x, z) = Φ(y = 1, x, z) + 1
2qgate(x, z) (7.7)

In equation (7.2) it was shown how the fluid pressures relate to the potential. The hydro-
dynamic mass of the entire gate is then calculated by:

mw =
x=Nx,z=Nz∑
x=1,z=1

ρf φgate(x, z) ∆L2/Ẇ (7.8)

In which Ẇ is absolute as it is the unit velocity given to the gate. Kolkman [20] introduces
the following accuracy criterion:

acc =
mwn −mwn−1

mwn

n

(7.9)

When the added mass is set out as a function of the iteration number, it can be seen that
this accuracy is the ratio between the local slope and global slope. This is depicted in
figure 7.3. The stop criterion stated in the figure is the inverse of accuracy criterion.

Figure 7.3: The stop criterion for acc[20]

When the accuracy is less than a certain value, the calculation stops. Kolkman [20] obtains
valid result with a required accuracy of accr = 0.025. Due the low computational resources
this numeric method requires, an accuracy of accr = 0.005 is used throughout the analyses
in this chapter.
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7.2 Gate without pumps

In further sections, a more complex geometry of the pump gate will be researched. First,
the numeric method is validated based on the analytical solution for a rigid horizontally
vibration gate, which was derived in section 5.4.1. In that case the fluid response is two-
dimensional. In figure 7.4 the results are shown for two
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Figure 7.4: Water pressures resulting from the numeric model compared to the exact
analytical solution and the simplified Westergaard solution for dl= 0.1 metre

The total hydrodynamic mass found with the numeric method for the gate at 12 metre
sluice width and h = 7.2 metre is 337 · 103 kg. This is considered sufficiently accurate
compared to the result of the analytical solution: 341 · 103 kg. The simplified Westergaard
parabola overestimates the hydrodynamic mass.

To validate the analytical estimation that the sluice length is indeed sufficiently long not
to be affected by the boundary condition at its end, the numeric model is evaluated for a
series of sluice lengths. From figure 7.5 it can be seen that this is indeed the case for the
28 metre long sluice.

7.3 Effect of pumps for several schematizations

Two estimate the effect of the present pumps on the hydrodynamic mass, three schemati-
zations are compared to the closed gate case:

1. Closed gate with zero displacement/velocity at the location of the pumps;
2. Gate with openings and zero thickness
3. Gate with pump conduits of a certain length.

The first of these is in fact the schematization used in previous analytical models, where
the interface condition was not applied at the pump locations. In case of the latter two
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Figure 7.5: The hydrodynamic mass as a function of the sluice lengths for a water depth
of 7.2 m

schematizations the fluid at both sides of the gate may interact. The full fluid domain must
therefore be included in the model. An overview of the domain for the gate with pump
conduits is given in figure 7.6.

Figure 7.6: Numeric model domain including boundary conditions for the symmetric case
without pumps

In all schematizations the gate, which in fact has a plate thickness of 10 to 15 mm, is
considered infinitely thin. In case of plain gate openings the fluid domains are thus in
direct contact. The pumps are in accordance with the analytical models schematizated as
square (1.8× 1.8 m2).

In figure 7.7 an overview of the hydrodynamic mass is shown for the schematization of the
gate with pump openings. The result is given for the anti-symmetric case, thus with equal
water levels (7.2 m) at both sides of the gate.

The hydrodynamic mass at this water level for one side of the gate is 130 · 103 kg. This is
a reduction of about 62% compared to the mass that was found for the closed gate. For
lower water levels, the relative reduction is even larger. This reduction is partially caused
by the possible flow through the openings and partially due to the fact the reduced gate
surface that forces the fluid. For the closed gate with adjusted displacement at the pump
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Figure 7.7: Overview of the hydrodynamic mass for the gate with openings as a result of
a undistorted translating motion

location a total hydrodynamic mass of 249 · 103 kg is found, which is still significant above
that of the gate with openings.

Due these large difference in hydrodynamic mass, the pumps are modelled more accurately
as conduits. The maximum available length for the pumps is approximately 3.5 metre (see
chapter 2). An equal conduit length of 1.75 metre at both sides is therefore assumed. In
appendix H.4 the equations to determine the potential field for this schematization are
elaborated.

The hydrodynamic mass over the depth is given for each of the three pump gate schemati-
zations and the closed gate in figure 7.8. As can be seen, the length of the conduits leads
to pressures that are almost equal to the adjusted closed gate schematizations. The effect
of the possible flow to the conduits is thus low in that case. The response of the pumps is
expected to decrease differences even more. The pump conduits have, especially compared
to the sluice, a small hydraulic radius. Even when response of the pumps would be ne-
glected, friction effects would therefore lead to a resistance of additional flow through the
pump conduits. This further decreases differences between the conduit and adjusted gate
schematization.

In table 7.1, a comparison between of the total hydrodynamic mass at both sides of the gate
between the adjusted closed gate and pump conduit schematization is made for different
water levels at each side of the gate. The maximum head and maximum water level cases
are considered. Although the values at separate sides of the gate differ, the difference in
total hydrodynamic mass for the gate is in the order of merely a few percent. The relatively
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(b) At the middle of the eccentric pumps
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(c) At the edge of the center pump
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(d) At the middle of the middle pump

Figure 7.8: Comparison hydrodynamic mass as a result of the gate’s undistorted translating
motion for four schematizations

small local differences that occur over the height are not expected to influence the behaviour
of the gate to a large extent.

Table 7.1: Comparison hydrodynamic mass between the geometry with conduits and the
‘adjusted’ closed gate

Water level case Geometry with conduits Adjusted closed gate

hS [m] hN [m] mwS [kg] mwN [kg] mwtotal [kg] mwS [kg] mwN [kg] mwtotal [kg]

Max. head 4.1 7.2 71.8 · 103 241 · 103 312 · 103 67.0 · 103 249 · 103 316 · 103

Max. water levels 5.3 7.2 122 · 103 237 · 103 359 · 103 122 · 103 249 · 103 371 · 103

For different shapes the hydrodynamic mass and thus also differences between the schema-
tizations will change. This is however not expected to significantly change results.
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7.4 Conclusions

It can be concluded that when the pumps’ conduit length of 3.5 metre is taken into account,
the adjusted gate surface schematization used in the analytical models in previous chapters
is reasonable. Although the method used in this chapter is only valid in the ‘transition
region’ without compressibility and surface waves, the results depend especially on the
geometry and are therefore expected to be representative for a wider frequency range as
well. Eccentric placement of the pumps might reduce the hydrodynamic mass. When this
is the case in a more detailed design phase, this should be investigated further.
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8 | Conclusions and recommendations

In this thesis a method is developed to model the fluid-structure interaction at sluice gates.
Subsequently, this method was applied to the pump gate designs at Den Oever. The
conclusions are divided into those that generally apply to fluid-structure interaction at
sluice gates and the way in which this can be modelled and those specifically to the Den
Oever pump gate case.

8.1 Conclusions fluid-structure interaction

Semi-analytical coupled modal analysis
The semi-analytical method used in this thesis is very suitable to determine the dynamic
behaviour of the gate’s in confined waterway. It can efficiently model and solve linear
fluid-structure interaction. It is applicable to complex plate geometries, as long as the
eigenmodes and -frequencies of the gate can be numerically evaluated. In existing software
based on finite element models, this is often possible for the dry structure together with
the static analysis. The semi-analytical model can then determine the dynamic behaviour
of system taking into account the structure-fluid interaction and its effect on the gate’s
vibrations.

The behaviour of the pump gate designs was investigated both with a two-dimensional
beam model and a three-dimensional plate model. Although the effect of the gate’s vertical
edges was incorporated by springs in the beam model, results differed significantly from
what was found with the more accurate plate model. Given this result, the plate model is
generally recommended when investigating these type of sluice gates.

The system of equations for the plate model has been derived such that it is applicable
to a wide range of geometries. This includes a sill, different widths of the gate and sluice
structure and the ability to include additional mass at certain locations. A relatively simple
software package based on this method can be useful in preliminary dynamic hydraulic gate
design.

Whether a dynamic analysis is required for regular hydraulic gates depends on excitation
frequencies and the size of the gate and sluice structure. For the pump gate designs it was
found that even with the significantly added pump weight, regular wave frequency range
was significantly below the first fluid-structure eigenfrequency. The dynamic behaviour of
closed bending gates therefore only becomes relevant for higher excitation frequencies, such
as those corresponding to pumps, earthquakes or breaking wave impact, or for much larger
dimensions. Additionally, when the gate’s edges do not provide full support in translating
motion, eigenfrequencies can be lower.
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The applicability of the derived semi-analytical model further depends on the sluice length.
The required length to be able to model the fluid as confined (till infinity) depends on
the frequency and water depth. For the transition region in which surface waves and
compressibility play a minor role (see next conclusion) a minimum length of 3 to 4 times
the water depth is required.

Surface waves and compressibility
In the semi-analytical models both the effect of surface waves and compressibility was
included. Three regions for the fluid have been determined:

• Significant surface waves;
• Transition region (approximately no effect of either surface waves or compressibility);
• Significant compressibility.

Numeric schemes such as that of Kolkman [20] exist to quickly determine the hydrodynamic
mass for different geometries and water levels. This method neglects both surface waves
and compressibility and is therefore only valid in the transition region. This region is char-
acterised by a frequency-independent hydrodynamic mass and no hydrodynamic damping.
Validity limits for modelling the fluid as such were determined in this thesis based on a 5%
deviation:

6.5
√
g

h
< ω < 0.31 · cp · π2h (8.1)

For this region an analytical expression was obtained of the hydrodynamic mass for a two
dimensional horizontally vibrating vertical gate.

8.2 Conclusions pump gate Den Oever

Two reference gate designs for the pump gates at Den Oever were investigated: the ‘regular
pump gate’ and ‘flood defence pump gate’. The latter will function as a primary flood gate
and is therefore dimensioned on a much higher design head. Both designs were considered
with an increased rigidity in vertical direction compared to the reference designs by Wit-
teveen+Bos [40], so that they could be analysed as isotropic plates. This should be kept in
mind when considering the results, which might be less favourable for the reference designs.

Wave excitation
Eigenfrequencies of the gate-fluid system (>20 rad/s) are well above frequencies corre-
sponding to typical regular waves (0.5-3.5 rad/s) at the Waddensea. Amplification of wave
loads will therefore not occur and the quasi-static approach suffices. In addition, due to
the excitation frequencies corresponding vibration velocities and fluid pressures are low as
well.
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Deflection and stresses
The deflection caused by pump forces, even at resonance frequencies, is insignificant for
both gate designs. Due to the amplification of the static stresses, for the regular gate design
fatigue and potentially even direct failure can be a risk. Even though the gate was designed
with a unity check of 0.7 to account for dynamic loads. Whether this will indeed be a
problem depends on the final specified pump forces and frequencies (see recommendations).
If so, a stronger gate design such as the flood defence gate can effectively reduce stresses.

Vibration velocities
ISO states limits for the non-rotating parts of pumps. For the regular pump gate design this
limit is exceeded at several excitation frequencies, which can lead to a reduced efficiency or
even damage of the pumps. This therefore appears to be a risk of the regular pump gate
design.

It must however be noted that axial flow pumps are known to be relatively robust. Secondly,
the simultaneous motion of the entire pump might be less damaging than the vibration of
individual components.

The more robust flood defence pump gate reduces vibration velocities significantly. Close
to a single system eigenfrequency, peak values still exceeded the limit slightly. Considering
above, the risk to excessive vibrations for this design is expected to be sufficiently small.

Pressure fluctuations in the fluid
Excessive pressure fluctuations at the pump’s inlet may reduce the efficiency of the pumps.
Secondly, since the water coverage is limited for the pumps at Den Oever, cavitation can
be a risk. The magnitude of the pressure fluctuations depends on the distance of the pump
inlet to the gate. Results were obtained for a pump length of 3.5 metre, with its center at
the gate’s plate.

For the regular pump gate design pressure head amplitudes up to 0.5 metre were found. In
reference to the 1.1 metre water coverage at the minimum Lake IJssel water level during
operation, this poses a risk. Considering both sides of the pumps, head fluctuations (twice
the summed amplitude) over the pump can be in the same order as the pump head. This
is considerable and may significantly influence the pumps’ efficiency.

The robust flood defence pump gate design reduces the fluid pressure response over first
part of the investigated frequency (< 250 rad/s). For the higher frequencies, significant
larger fluid responses are found however. This is likely due to the closer overlap of the
structural and fluid eigenfrequencies in this case. High pump excitation frequencies can
therefore still be harmful.

As was mentioned, it is important to note that the investigated designs were isotropic, and
have a higher vertical rigidity than the designs made by Witteveen+Bos [40]. Results may
thus be worse for the reference designs.
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A more detailed design of the gate and pumps certainly must pay attention to the fluid
fluctuations. These are caused by the movement of the gate, which forces the fluid over a
large surface. This in contrast to a conventional pump complex layout, where the pump is
founded on a relatively rigid concrete foundation. The Korean pump gate designs, appearing
extremely robust with a large thickness and relatively small span, are likely designed as
such to limit these fluctuations.

8.3 Recommendations

As was stated in the conclusions, given the identified risks, a general recommendation is to
investigate the dynamic behaviour of the pump gate further.

Pump manufacturer data
The analyses in this thesis have been made for a rough estimation of the maximum pump
force. When in a later phase of the Afsluitdijk project, a pump manufacturer is involved in
the project, more accurate data on the to be used pumps should be obtained. Not only the
forces, but also specifics on the sensitivity to pressure fluctuations and vibration velocities
should be obtained. Based on this data, a more pump specific response could be determined
and recommendations could be made on which eigenfrequencies should be avoided.

Gate supports
At the time of this thesis, a detailed design of the gate’s guiding and support system
was not available. Since it was demonstrated that these boundaries can have a significant
influence on the gate’s behaviour, this should be investigated further in a final design. The
analysis can be adjusted relatively easy to alternative boundary conditions by numerically
evaluating a new set of plate shapes and corresponding natural frequencies.

Gate: detailed geometry
In the analyses the gate was considered as a plain plate. Certainly for the more robust
design which has a thickness of 1.7 metre, the local geometry may influence the fluid
pressure distribution. A first indication of this effect could be based on the same numeric
method used in this thesis to investigate the effect of the pump conduit length.

Permanent flow
Due to the complexity of the fluid-structure interaction, the analysis of the pump has been
done for still standing water. In reality, high flow velocities are present in the sluice due to
the pumps’ discharge. It was demonstrated that for the linearised equations, this has an
effect on the hydrodynamic damping. An increase in damping has favourable effects on the
gate’s vibrations. Whether this should be investigated in more detail therefore depends on
the significance of the dynamic behaviour in the final design.
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Pump support
In the present model, the pump was considered to be rigidly attached to the gate. Fur-
thermore, the rigidity of the gate was assumed not to be affected by the presence of the
pumps. It should be investigated in a further design phase whether this is indeed the case,
or whether the pumps should be modelled with ‘spring supports’.

Linearised equations
Since the analysis was done in the frequency domain, the governing equations were lin-
earised. The validity of this linearisation is based on the assumption of small amplitudes.
This is generally the case in final design as high amplitudes will lead to structural failure.
In the fluid high pressure amplitudes were found. The exact value of these fluctuations
have therefore become inaccurate. Nevertheless, reduction of these pressure amplitudes by
alternative designs can be based on the linearised model used in this thesis.

Cavitation
Since high pressure amplitudes were found, the risk of cavitation is present. Based on an
analysis of the pressures in the permanent situation and more accurate data on the required
net present suction head (NPSHr) a requirement for the dynamic pressure fluctuations at the
pump’s inlet can be obtained. In this thesis the pressure head fluctuations were compared
to the present water coverage.

Safety factors
Since the analyses of the reference designs in this thesis functions as an indication of the
risks and is not set-up to come up with a final design, no safety factors were used. Fur-
thermore, the uncertainty of the pump forces lead to an envelope of possibilities that were
evaluated. In final design attention should be paid to safety factors or uncertainty should
be incorporated in a probabilistic design.

Wave impact
It was concluded that resonance will not occur for wave loads and corresponding vibration
velocities are low for regular waves. It is interesting to investigate whether impulse forces
corresponding to breaking wave impacts may lead to responses that can affect the pumps.

Finite element or scale model
When based on the outcome of the analyses in this thesis and more specific pump data,
vibrations of the pump gate remain a point of concern, modelling the gate and fluid with
an advanced finite element or scale model would be recommended. This could include a
more detailed geometry of e.g. the gate profile and pump inlet.

When more advanced models (and more accurate pump data) still indicate risks, a real size
test gate is a possibility as well.
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Nomenclature

Roman

Symbol Description Unit
A surface area m2

Am structural modal coefficient for mode m m
Ap pump’s surface area m2

Bp fluid modal coefficient for mode p
c damping Ns/m
ccrit critical damping Ns/m
cp velocity of sound in water m/s
cpump distributed pump damping N/ms · m2

Ct fluid modal coefficient for mode t
cw hydrodynamic damping Ns/m
D pump diameter m
D plate bending stiffness Nm2

Dd fatigue damage factor Nm2

E elasticity modulus N/m2

F external force N
Fn modal force for mode n N
fn natural frequency or eigenfrequency Hz = s−1
Fthrust pump thrust N
g gravitation constant m/s2

h water depth m
Hlake/sea water level head m +NAP
Hd pump design head difference m
Hm0 significant wave height m
Hpump pump head m
H(x− x1) heaviside step function -
HF,η amplitude-force transfer function
i imaginary unit -
Imn pump inertia force for structural mode m and n N
Ixx moment of inertia around the x-axis m4

k spring stiffness N/m
K bulk modulus of water N/m2

kf fluid compressibility number m−1

kh horizontal seismic coefficient -
kw hydrodynamic stiffness N/m
kx,t wave number in x-direction for mode t m−1

Lx length in x-direction m
m mass kg
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Nomenclature

Roman (continued)

Symbol Description Unit
mw hydrodynamic mass kg
nblades number of pump blades -
Nd rotation velocity pump rpm
ni number of times load Si occurs cycles
Ni fatigue endurance to load Si cycles
p fluid pressure N/m2

pf fluid pressure N/m2

Pfailure failure probability year−1
Pn pump damping force for structural mode n N
pv vapour pressure N/m2

q distributed force N/m2

q discharge m3/s
qf distributed hydrodynamic force N/m2

qp distributed pump force N/m2

Qd pump design discharge m3/s
Qmp integral of structural mode m and fluid mode p -
t time s
t plate thickness m
SF force spectrum N2/(rad/s)
SJON JONSWAP wave spectrum m2/(rad/s)
STMA TMA depth-limited wave spectrum m2/(rad/s)
T external moment Nm
Te excitation period Nm
u fluid velocity in x-direction m/s
U10 wind velocity at 10 metre height m/s
v fluid velocity in y-direction m/s
w fluid velocity in z-direction m/s
w structural deflection in y-direction m
W width m
W structural deflection frequency-domain amplitude m
x coordinate in x-direction m
X fluid potential solution in x-direction m2/s
y coordinate in y-direction m
Y fluid potential solution in y-direction m2/s
z coordinate in z-direction m
Z fluid potential solution in z-direction m2/s
Zmn fluid impedance for structural mode m and n N
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Nomenclature

Greek

Symbol Description Unit
βm beam or plate solving variable
γ relative damping -
∆H head difference m
δHQ local pump curve gradient m/(m3/s)
δmn dirac delta function for m and n -
∆x offset sluice width compared to gate structure m
∆z offset sluice bottom (sill height) m
η pump efficiency -
η surface elevation m
λ wave length m
ρb distributed beam weight kg/m
ρf fluid density kg/m3

ρp distributed plate weight kg/m2

σ cavitation number -
ω radial velocity or frequency rad/s
ωn natural radial frequency or radial eigenfrequency rad/s
ωp pump radial velocity rad/s
Ω excitation frequency rad/s
Φ fluid potential

Notations

Symbol Description
X matrix
x vector
x̂ amplitude
x̃ frequency-domain amplitude

Abbreviations

Symbol Description
amp amplitude
cog center of gravity
CFD computational fluid dynamics
FEM finite element method
FSI fluid-structure interaction
MDOF multiple degree of freedom
NPSH net positive suction head
NPSHa NPSH available
NPSHr NPSH required
rms root mean square
SDOF single degree of freedom
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A | Hydraulic boundary conditions

The operating conditions of the pumps are of importance, as these partially determine
the load cases on the gate. In a dynamic analysis the governing conditions are not as
straightforward as in a static safety analysis. The response of the structure does not only
depend on the force amplitude, but also its frequency. Therefore not only the highest water
levels, discharges and waves are of importance, but a range of these combined conditions
should be determined and checked.

A.1 Water levels

In section 3.2 the water levels during pump operation were determined. The maximum
considered water level at the Waddensea of +2.50 m NAP corresponds to the present 1/1
year storm conditions. For design conditions in 2050, sea level rise must be included.
Witteveen+Bos [40] has used water levels corresponding several return periods in their
analyses, as shown in table A.1.

Table A.1: Maximum Waddensea and corresponding Lake IJssel water levels for different
exceedance frequencies in 2050 [40]

Exceedance frequency [years] 1/1 1/10 1/100 1/1,000 1/10,000 1/100,000

Maximum Waddensea [m +NAP] 2.78 3.52 4.19 4.76 5.28 5.76
Corresponding Lake IJssel [m +NAP] -0.60 -0.69 -0.83 -1.09 -1.29 -1.49

A maximum water level of +2.50 m NAP is maintained for the pump gates at Den Oever
during operation, also as 2050 design conditions, since this is the bottom level of the sluice’s
upperstructure.

A.2 Wave spectrum

As was mentioned, the maximum water level during pump operation (+2.50 m NAP)
corresponds to the current once per year storm conditions. Hofste [14] has researched peak
wave pressures on the defence beam present at the northern side of the sluice for this
water level. To do so, the required wind set-up, and corresponding wind velocities, were
determined that lead to this water level. The highest wind velocity was then obtained when
this water level is reached at low tide (highest wind set-up). This wind velocity therefore
corresponds to a storm with a lower return period.

In figure A.1 the incoming wave directions are shown, as has been used to determine the
hydraulic boundary conditions for the Den Oever lock. The 42◦ waves do not reach the
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Appendix A. Hydraulic boundary conditions

sluice gates, and thus only the 340◦ waves are significant to the pump complex. For this
wave direction, the fetch is about 20 km, as can be seen in figure A.2. This assumes waves
from the North Sea do not deflect onto the Waddensea.

Figure A.1: Local layout of the
sluice area with the directions of
the incoming waves [14]

Figure A.2: Fetch corresponding to the governing wave direc-
tion [14]

In the mentioned thesis [14], a JONSWAP spectrum was assumed. This spectrum applies
to young sea states in deep water. The water depth in the Waddensea is however limited.
The JONSWAP spectrum is an enhancement of the Pierson-Moskowitz spectrum. The
latter applies to fully developed sea states. A depth function is used to adjust the JON-
SWAP spectrum to the limited depth, according to Det Norske Veritas [8]. The JONSWAP
spectrum can be described by the following equation:

SJON(ω) = αg2

ω5 exp
[
−5

4

(
ωp
ω

)4
]
γr (A.1)

with:
r = exp

[
−(ω − ωp)2

2σ2ω2
p

]
(A.2)

The four constants α, ωp, γ and σ were determined based on collected wave data (of the
North Sea) and are dependent on the fetch F and wind velocity U10.

α = 0.076 ·
(
U10

2

Fg

)0.22

ωp = 22 ·
(

g2

U10F

)1/3

γ = 3.3

σ =

0.07 ω ≤ ωp
0.09 ω > ωp

(A.3)
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Appendix A. Hydraulic boundary conditions

The depth function is described as follows [8]:

φ(ω) = cosh2(kh)

sinh2(kh) + ω2h

g

(A.4)

And thus the final wave spectrum by:

STMA(ω) = φ(ω) · SJON(ω) (A.5)

Based on Hofste [14], a wind velocity of U10 = 32.4 m/s and a fetch of F = 20 km are
used. The depth of 5 metre used in the respective thesis seems an underestimation of the
Waddensea water depth, instead d = 10 m is used. It is neglected that this influences the
set-up calculation on which the wind speed is based. The resultant spectrum is shown in
figure A.3.
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Figure A.3: Fetch corresponding to the governing wave direction [14]

The significant wave height corresponding to this spectrum is 2.47 m, given by:

Hm0 ≈ 4 ·
√
m0 with: m0 =

∫ +∞

−∞
S(ω) dω (A.6)

This is based on a Rayleigh distribution of individual wave heights and a certain charac-
teristic storm duration, see Holthuijsen [15].

Close to the discharge sluice, effects like wave shoaling might play a role. The difference
between the Waddensea and sluice water depth is however relatively small. Secondly, the
discharge channel close to the sluice has larger water depths as well. The Waddensea
spectrum is therefore used directly at the location of the pump gate.
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A.3 Wave force

To transform the wave spectrum to a force on the sluice gate, a transfer function should
be determined. It is not certain to what extent waves (and resulting pressures in the water
column) can reach the pump gate at the maximum water level of +2.50 m, as waves will
break on the upperstructure such as the defence beam. The effect of this defence beam
has been researched, for which it was concluded that it might result in even higher wave
pressures on the northern flood gate [24]. Only the wave pressures beneath still water are
taken into account and are assumed unaffected by the structure.

By linear wave theory, the wave pressures given by a wave amplitude η are defined over
the depth. The amplitude force function is defined as the force amplitude divided by the
amplitude of the deflection. This is thus:

HF,η(ω) = p̂w(z)
η̂

= ρfg ·
cosh(kz)
cosh(kh) (A.7)

With z = 0 at the bottom level, similar to the derivations used in the models of chapter 5
and 6. The frequency dependence is implicit in the wave number, given by the dispersion
equation. It is thus assumed the wave length is adjusted to the water depth in the sluice.

ω2 = kg · tanh(kh) (A.8)

A requirement to use the transfer function on the wave spectrum, is that the pressure
amplitude varies linearly with the wave amplitude. From above equations it can be seen
that for 0 ≥ z ≤ h this is the case (although only for the pressures beneath mean water
level). The shape of the wave pressures over the depth differs with the frequency and must
be taken into account when determining the response of the gate on the force. The force
spectrum is found as follows:

SF (z, ω) = HF,η(z, ω)2 · STMA(ω) (A.9)
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B | Gate designs: input to the dynamic analysis

In this appendix the two reference gate designs for Den Oever made by Witteveen+Bos
[40] are discussed. Furthermore the flexural rigidity and weight, both input for the analyses
in this thesis, are determined. Subsequently, both designs are altered to ‘fit’ in the same
global alternative and to have an isotropic bending stiffness.

B.1 Standardized gate designs

As discussed in 2.4, two gate designs are considered: the flood defence pump gate and the
regular pump gate. These designs will these gates will be considered at the same location:
that of the current southern flood gate. Since the designs by Witteveen+Bos have been
made for different pump complex alternative, i.e. gates at the present southern gate and
at the existing foundation on the Waddensea side, global dimensions differ slightly.

To consider both gate designs at the location of the present southern flood gate, dimensions
of the second gate design are adjusted to the general gate layout. An overview of this
layout is given in figure B.1. This geometry is based on the design of the flood defence
pump gate, which was made for the considered location and is elaborated in most detail by
Witteveen+Bos [40].

The location of the pumps in the standard design is based on design rules, which were
elaborated in section 2.4, and on what is stated in the report of Witteveen+Bos [40]. This
conflicts however with what is used in the ‘Scia’ calculation model of figure 2.12, in which
the center of the pumps is equally spaced over the width of the gate and the distance
between the pumps is the same as between wall and pumps.

The detailed design was in first instance made for a width of 12 m and a height of 7.5 metre.
Later insight showed however the gate is 12.2 wide and should be 7.25 metre high. The
heart-to-heart span of the supporting wheels is 12.5 metre [40]. These altered dimensions
result in some changes that affected the total weight.

The layout of the stiffening elements for each gate, is taken from the designs by Wit-
teveen+Bos [40] as much as possible. Due to the changes in the location of the pumps, the
layout of the stiffening elements is altered slightly as well.

The dynamic behaviour of the gate is determined by its flexural rigidity and its distributed
weight, as was shown in section 4.1.2. The weight of each gate is therefore inventoried
and the moment of inertia I of both gates in each direction is determined in the following
sections. The modulus of elasticity E of construction steel is 210,000 N/mm2.
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Figure B.1: Schematic front view of the standard pump gate layout, used for both designs,
with dimensions in metres. Pump location differs from what is used in the calculation
model by Witteveen+Bos [40]. In appendix B the layout has been further elaborated.

B.2 Flood defence pump gate

The ‘standard’ design of the flood flood defence gate is based on the detailed design made
by Witteveen+Bos [40]. Due to the different location of the pumps in the gate than in that
design, the location stiffening elements are slightly shifted. The lowest main horizontal
element is at 0.5 above bottom gate instead of 1 metre. The heart-to-heart distance is kept
the same. The vertical elements are shifted along with the pumps at the respective height.
An overview is given in figure B.2.

Figure B.2: Schematic front view of the standard pump gate layout with dimensions (in
metres)
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The three large stiffening elements, together with the front plate, are assumed to provide
the stiffness in horizontal direction. The smaller elements only direct local pressures to
the vertical stiffening and large horizontal stiffening elements. The large elements have a
moment of inertia of 1.22 · 1010 mm4 and the smaller elements of 5.55 · 106 mm4, which is
more than 2000 times smaller. At the edges of the gate the main girders gradually decrease
in size in order to optimize material use. This local decrease in stiffness is not taken into
account.

In vertical direction the largest elements are the two at each side. When the gate is
considered supported over that height, these would not provide additional stiffness to the
body however. In the body four vertical elements provide stiffness, locally at the gate this
is increased to six elements. This deviation could be included in a 3D model of the gate,
but in the calculation of the moment of inertia this is not included.

An overview of the elements used, is given in figure B.3. The front plate thickness in this
design is 15 mm. This dimensions are used to determine the moment of inertia in the
following subsection.

(a) Main horizontal element.
A= 38720 mm2;
Ixx = 1.2194 ∗ 1010 mm4;
cogx = 1098 mm.

(b) Vertical elements
at edges.
A= 19200 mm2;
Izz = 2.0698 ∗ 109

mm4;
cogz = 683 mm.

(c) Vertical elements
body.
A= 10800 mm2;
Izz = 2.5903 ∗ 108

mm4;
cogz = 379 mm.

Figure B.3: Stiffness elements of flood defence pump gate [40]

The flood defence gate has a weight of 30,000 kg, which includes 10 percent of estimated
finishing material.

B.2.1 Moment of inertia

The moment of inertia and center of gravity of each separate element is given by Wit-
teveen+Bos [40, page 261] and shown in figure B.3. This simplifies the determination of
the moment of inertia of the total gate. Each contribution can be added by applying steiner.
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Appendix B. Gate designs: input to the dynamic analysis

In horizontal direction (thus for a vertical cross-section) the Ixx of the plate is 1
12 ·7250·153 =

2039063 mm4. The center of gravity of the total gate, measured from the outer side of the
plate, becomes:

cogx = 3 · (1098 + 15) · 38720 + 7250 · 15 · 0.5 · 15
3 · 38720 + 7250 · 15 = 578.5 mm (B.1)

And the total moment of inertia in horizontal direction:

Ixx,total = Ixx,el + Ixx,el,steiner + Ixx,plate + Ixx,plate,steiner

= 3 · 1.2194 · 1010 + 3 · (1098 + 15− 578.5)2 · 38720
+ 2039063 + (578.5− 0.5 · 15)2 · 15 · 7250
= 1.0523 · 1011 mm4

(B.2)

The same can be done for the vertical direction. Like mentioned, the elements at the edges
will not be taken into account in this calculation and thus only the four body elements
provide stiffness. The center of gravity then lies at:

cogz = 4 · (379 + 15) · 10800 + 12500 · 15 · 0.5 · 15
4 · 10800 + 12500 · 15 = 79.87 mm (B.3)

And the total moment of inertia in vertical direction:

Izz,total = Izz,el + Izz,el,steiner + Izz,plate + Izz,plate,steiner

= 4 · 2.5903 · 108 + 4 · (379 + 15− 79.87)2 · 10800
+ 3515625 + (79.87− 0.5 · 15)2 · 15 · 12500
= 6.2845 · 109 mm4

(B.4)

When the edge elements would be included the following results would be obtained: cogz =
168.1 mm and Izz = 22.7 · 109 mm4.

The following flexural rigidities are thus found:

• EIzz = 22.1 · 109 [Nm2]
• EIxx = 1.32 · 109 [Nm2]

The plate bending stiffness is equal to the flexural rigidity per running metre. For the
horizontal direction this would result in:

Dzz = EIzz
Lz

= 22.1 · 109

7.25 ≈ 3.0 · 109 [Nm] (B.5)

Since the plates are analysed as isotropic in the beam and plate models of chapter 5 and
6, this bending stiffness is taken as representative for both directions. However, in reality
the stiffness of the body in vertical direction is almost 17 times smaller than in horizontal
direction. With the beam edges included this would be about 5 times.
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B.3 Regular pump gate

The less detailed design of the pump gate of Witteveen+Bos [40] is with respect to layout
in horizontal direction quite similar to the flood defence gate. Also in that case, the lowest
horizontal element is at 1 metre above the bottom. Again, this is changed to 0.5 metre.
The heart-to-heart distance between these elements of 2.5 is changed to 3 metre for this
reason and due to the slightly larger height of the gate. This might result in greater loading
of especially the middle horizontal element. Its dimensions are not changed however as the
gate is statically checked on uc = 0.7. The dynamic behaviour will be investigated further.
Plating at the top and bottom of the gate is not taken into account.

In vertical direction 13 elements provide stiffness, of which 2 main edge elements, 3 main
body elements and 8 smaller body elements. In the original design a heart-to-heart distance
of 1 metre was used for all elements. Due to the enlarged width, this distance increases
to 1.25 at the edges. The two edge elements are again assumed to provide no additional
support.

Figure B.4: Schematic front view of the standard pump gate layout with dimensions (in
metres)

The gates plate thickness is in this design is 10 mm. The elements are shown in figure B.5.
The indicated height is in this case including the flange thickness and front plate thickness.
The latter is thus deducted when determining the area, moment of inertia and center of
gravity of the separate elements, indicated below the figures. The vertical edge elements
are the same as in figure B.5b, but with a shaft thickness of 15 mm and half the flange
width (extended to one side).

The weight of the regular gate is estimated to be 16400 kg. When similar to the flood gate
10 percent is added for finishing, a total weight of 18040 kg is obtained.
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(a) Main horizontal element.
A= 15975 mm2;
Ixx = 5.7210 ∗ 108

mm4;
cogx = 421 mm.

(b) Main vertical
body elements.
A= 14280 mm2;
Izz = 4.9064 ∗ 108

mm4;
cogz = 437 mm.

(c) Secondary vertical
elements.
A= 3480 mm2;
Izz = 2.4389 ∗ 107

mm4;
cogz = 145 mm.

Figure B.5: Stiffness elements of flood defence pump gate [40]

B.3.1 Moment of inertia

The moment of inertia and center of gravity of each separate element is given in figure B.5.
In horizontal direction (thus for a vertical cross-section) the Ixx of the plate is 1

12 ·7250·103 =
604167 mm4. The center of gravity of the total gate, measured from the outer side of the
plate, becomes:

cogx = 3 · (421 + 10) · 15975 + 7250 · 10 · 0.5 · 10
3 · 15975 + 7250 · 10 = 174.5 mm (B.6)

And the total moment of inertia in horizontal direction:

Ixx,total = Ixx,el + Ixx,el,steiner + Ixx,plate + Ixx,plate,steiner

= 3 · 5.7210 · 108 + 3 · (421 + 10− 174.5)2 · 15975
+ 604167 + (174.5− 0.5 · 10)2 · 10 · 7250
= 6.954 · 109 mm4

(B.7)

The same can be done for the vertical direction. Like mentioned, the elements at the edges
will not be taken into account in this calculation and thus only the 11 body elements provide
stiffness.

cogz = 3 · (437 + 10) · 14280 + 8 · (145 + 10) · 3480 + 12500 · 10 · 0.5 · 10
3 · 14280 + 8 · 3480 + 12500 · 10 = 122.7 mm

(B.8)
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And the total moment of inertia in vertical direction:

Izz,total = Izz,el + Izz,el,steiner + Izz,plate + Izz,plate,steiner

= 3 · 4.9064 · 108 + 8 · 2.4389 · 107 + ·(437 + 10− 122.7)2 · 14280
+ ·(145 + 10− 122.7)2 · 3480 + 1041667 + (122.7− 0.5 · 10)2 · 10 · 12500
= 7.1280 · 109 mm4

(B.9)

When the edge elements would be included the following results would be obtained: cogz =
151.9 mm and Izz = 10.058 · 109 mm4.

In this case the stiffness of the body in vertical direction is slightly larger than that in
horizontal direction. The horizontal-vertical stiffness ratio is 0.98, and 0.69 when the edge
elements are included.

The following flexural rigidities are thus found:

• EIzz = 1.46 · 109 [N/m2]
• EIxx = 1.50 · 109 [N/m2]

For the horizontal direction this would result in a bending plate stiffness:

Dzz = EIzz
Lz

= 1.46 · 109

7.25 ≈ 2.0 · 109 [Nm] (B.10)

Since the plates are analysed as isotropic in the beam and plate models of chapter 5 and
6, this bending stiffness is again taken as representative for both directions.
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C | Pump specifics

In this appendix additional background on pumps in general and on the expected pumps
at Den Oever is treated. This includes background on pump classification (C.1), pump
curve characteristics (C.2) and efficiency (C.3). Furthermore the pump curve of the pumps
at Den Oever estimated by Witteveen+Bos [40] is stated in section C.4. As part of the
pump requirements, vibrations limits are given in section C.5 and the concept of cavitation
is elaborated in section C.6.

C.1 Classification

In section 2.3.2, an introduction was given on dynamic and displacement type pumps. The
axial flow pump that is expected to be used at Den Oever, is a dynamic pump. A further
classification of this category is given in figure C.1. As can be seen, centrifugal pumps are
further classified into axial, radial and peripheral pumps. Each of those pump types can
be single or multi stage. In case of the latter, multiple impellers and volutes are placed in
series.

Figure C.1: Classification dynamic pumps [18]
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In case of variable pitch, the blades are able to rotate around their own axis and can
therefore reach a high efficiency over a larger power range.

C.2 Pump characteristic

Pumps add energy to the flow, and by doing so can overcome a head difference. In theory,
the power of a pump or turbine at a certain head an discharge is given by:

P = η ρg Q Hpump (C.1)

in which: P = power [W]
η = pump efficiency [-]
ρ = density fluid [kg/m3]
g = gravitational acceleration [m/s2]
Q = discharge [m3/s]
Hpump (or ∆H) = hydraulic head difference over pump [m]

Each pump has a specific discharge-head (Q-H) relation called the pump curve or pump
characteristic. The actual flow rate depends not only on the pump characteristic, but on
the system characteristic as well. The pump will overcome a certain static head, which in
in the case of Den Oever is the water level difference between both sides of the sluice. In
addition to this, friction losses should be overcome that depend on the flow velocity. In
figure C.2 an example of these curves is given. The intersection of the system and pump
curve shows the discharge and head and which the pump will operate. This is called the
duty point.

Figure C.2: Characteristic curves pump flow

In figure C.2 it is illustrated that an increase in static head will decrease the discharge
through the pumps. If the pump has more than one rotation speed (ω) at which it can
operate, each rotation speed has its own characteristic curve. In this way the discharge rate
can be varied for a constant outside water level difference. An increase in rotation speed
will results in a higher discharge as well as pump head, the latter as a result of increased
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friction. The characteristics of the pumps are generally given by the manufacturer. An
estimated pump curve for Den Oever is given in section C.4.

C.3 Efficiency

The efficiency during operation, for a given geometry and pump, is f(Q,∆H). The energy
loss consists of mechanical loss, hydraulic loss and volumetric loss [18], in terms of efficiency:

η = ηm · ηH · ηV (C.2)

These efficiency components can be defined as:

(Mechanical efficiency) ηm = PI
P

= P − Pf
P

(C.3)

(Hydraulic efficiency) ηH = ∆H
∆HI

= ∆HI −∆HL

∆HI
(C.4)

(Volumetric efficiency) ηV = Q

Q+QL
(C.5)

In this ∆HI is the ‘ideal head’, which is the hydraulic head without any hydraulic losses.
The pump power calculated with this ideal head is the ideal power, thus defined as PI =
ρg ·Q ·∆HI . Pf is the power loss due to external drag of e.g. bearings, seal and fluid.

∆HL is the hydraulic head loss. If pump efficiency is calculated, only the hydraulic losses
in the flow passage of the pump must be taken into account. The efficiency of the total
system is however lower due to inflow losses and friction of the in- and outflow at the full
sluice construction.

Finally, QL is the leakage of water past the impeller back to the inlet. This fluid volume
has received energy from the pump, but ‘in vain’ as it leaks back.

The efficiency of the pump depends on the combination of total head and discharge head
it operates at. At the best efficiency point (BEP) this efficiency is the highest [29]. The
BEP is not equal to the point of maximum power. The pump specifics should be chosen in
such a way that the pump can operate most of the time at or around this point. The duty
point shown in figure C.2 will have different (mechanical) efficiencies.

C.4 Den Oever pump characteristic

By some indicative data and scaling laws, a pump curve is estimated in the report of [40].
The following efficiencies are estimated:

• ηmechanical = ηmotor · ηcables
– ηmotor = 0.98
– ηcables = 0.95
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• ηpump = 0.85
• ηflow = 0.6

These efficiencies are assumed constant and do thus not change at different head and
discharges. The validity of the pump curve is therefore less certain at points far from the
known design head and discharge. The values in the design point are as follows:

• Hd = 1.0 m
• Qd = 18 m3/s

With 23 active pumps, total discharge of the pumping station at the design point is 414
m3/s. The estimated curve is given in table C.1, based on a constant pump rotation speed.
A graph of this curve was shown in section 2.4.3.

Table C.1: Estimated pump curve, values given for the total of 23 pumps [40]

Hpump [m] Reduction factor [-] Discharge [m3/s] Power [kW]

3.6 0.75 311 23,095
3.2 0.80 331 21,897
2.7 0.85 352 19,631
2.2 0.90 373 16,936
1.6 0.95 393 13,001
1 1.00 414 8,554
0.4 1.05 435 3,593
-0.2 1.10 455 -1,882
-0.7 1.15 476 -6,886
-0.779 1.17 484 -7,796

C.5 Vibration limits

The pumps impose requirements on the system. As pumps are normally seen as the vibra-
tion inducers, situated on a heavy foundation, not much is known on the requirements of
external vibrations. In the ISO standards some guidelines are given for the vibration veloc-
ity limits of non-rotating parts, see table C.2. These values could be taken as representative
for the resulting overall vibration in the pumps due to the total dynamic system.

As these are designed for velocity measurements in situ, the root mean square (rms) value
is used. In case of harmonic sine motion, the amplitude can be divided by

√
2 in order get

the rms value. In table C.1 it can be seen that the power of the pumps at the design point
is 8554 kW for 23 pumps, or 8854/23 ≈ 385 kW per pump. The pumps at Den Oever are
thus of the > 200 kW category.

Category 1 is applicable to pumps in hazardous situations, like chemical pumps. The pumps
at Den Oever are assumed to be of category 2 as no such direct risks are of importance.
The flood reliability is treated separately from this, as a redundant pump is available and
risks of failure are included in the specific study.
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Table C.2: ISO standard velocity limits for non-vibrating pump parts [10]

C.6 Cavitation

Cavitation is the forming of vapour bubbles in a liquid as a consequence of pressure re-
duction. In more popular terms: the boiling of water due to low pressure instead of high
temperature. It is an important phenomenon in pump and turbine design. Most damage
is induced when the vapour bubbles implode. These implosions result in high impacts on
the runner blades or walls they are near. An example of typical cavitation damage is given
in figure C.3.

Figure C.3: Cavitation damage on Francis propeller [29]

Brennen [4] states the following three adverse effects of cavitation:

(i) Damage on material surfaces
(ii) Degraded performance (or efficiency)
(iii) Instabilities due to dynamic flow fluctuations

The performance drops significantly from a certain level of inlet pressure (see figure C.4).
This phenomenon is called cavitation breakdown. As there are many circumstances in
which it proves to be impossible to completely eliminate cavitation, efforts are done to
optimize pump performance and damage resistance in the presence of cavitation.
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The third effect is a consequence of the fact that cavitation affects not only the steady state
fluid flow, but also the dynamic response of the flow. This leads to instabilities in the flow
that do not occur in the absence of cavitation. Oscillating flow rates and pressures can
threaten the structural integrity of the pump or its inlet or discharge ducts [4]. Cavitation
can thus be an inducer of structural vibrations.

The basic notions to describe and quantify cavitation are elaborated below, mainly based on
Schiavello and Visser [29]. The three most common parameters involved in the prediction
of cavitations are:

• Cavitation number, σ
• Net positive suction head, NPSH
• Thoma cavitation number, σth

The cavitation number is defined as:

σ = p1 − pv
1
2ρv

2
R

(C.6)

in which: p1 = upstream static pressure [Pa]
pv = vapour pressure [Pa]

The reference velocity vR is commonly taken as the circumferential impeller eye velocity
(i.e. inlet-vane tip speed): vR = ve = ΩR1T . In this R1T is the inlet-vance tip radius.

The NPSH is defined as the the total pressure of the fluid at the center line of the impeller
above the vapour pressure of the fluid, see equation (C.7). This can thus be seen as the
margin against vaporization of the fluid as it enters the pump.

NPSH = ptot,in − pv
ρg

(C.7)

The total head at inlet is thus defined as:

ptot,in = pstatic,in + 1
2ρv

2
in (C.8)

in which: pstatic,in = static pressure at pump inlet [Pa]

The Thoma number is defined as:

σth = NPSH

Hpump
(C.9)

in which: Hpump = total pump head [m]

Since cavitation generally occurs at the inlet to the pump, the total pump head is not
especially relevant to the phenomenon. The Thoma cavitation parameter is therefore not
a particularly useful one [4, 29].

The first appearance of cavitation is called cavitation inception. When the suction pressure
(or NPSH) is further reduced, the region of cavitation enlarges, starting to cause noise,
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damage, performance change, head breakdown, loss of priming, and vapour lock [29]. Dif-
ferent stages are shown in figure C.4. Before head breakdown, the point in which the
pump head reduces drastically, there is a point of maximum cavitation damage. Due to
the cushioning effect of the surrounding bubbles, the cavitation damage decreases beyond
this point. Other points often defined are the 2, 3 or 5 percent head drop.

Figure C.4: Different stages in cavitation forming [29]

Florjancic and Frei [11] show that until the point of head breakdown, excitation due to
cavitation is very low. The frequency of the cavitation implosions before that point is very
high (> 10 kHz) and random, distributed all around the impeller. Although it was shown
that the local stresses can become very high and damage the impeller, the overall forces
are not very large.

Near head breakdown the cavitation becomes worse, the volume of cavitation bubbles
disturbs the normal flow pattern in such a way, that pressure pulsation at lower frequencies
occur. Large vapour cavities can alter the rotation symmetry and therefore produce forces
(see hydraulic unbalance in the next section). The vibrations are thus caused by the large
cavities and disturbed flow, and not the implosions.
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D | Dynamics: theoretical background

This appendix complements chapter 4 and elaborates the theoretical background and lit-
erature on some notions of structural and hydrodynamics.

In section D.1 the amplification factor is given for the one degree of free system and several
boundary conditions of the bending beam are treated. The phenomenon of fatigue is briefly
discussed and Eurocode design requirements are elaborated in section D.2.

In section D.3 example and theory are discussed of the linear hydrodynamic coefficients:
mass, damping and stiffness. Known fluid structure interactions that apply to flood gate
are discussed in section D.4.

D.1 Structural dynamics

D.1.1 Single degree of freedom systems

In section 4.1.1 the one degree of freedom mass-dashpot-spring system was introduced. The
response of this and other dynamics systems is highly depended on the eigenfrequency in re-
lation the frequency of the forcing. When the force is harmonic as shown in equation (D.1),
the response is described by equation (D.2):

F = Famp · sin(ωt) (D.1)
y = yamp · sin(ωt− Φ) (D.2)

in which: Φ = phase shift between load and response [rad]

The amplification factor A, defined as the maximum spring force divided by the amplitude
of the force Famp is a function of the relative damping γ [17] and excitation frequency:

A = k · yamp
Famp

= f( 1
2γ , ω) (D.3)

The relative damping is defined as:

γ = c

ccrit
= c

2
√
km

= c

2mωn
(D.4)

in which: ccrit = critical damping coefficient [Ns/m]

In figure D.1 the relation of the amplitude factor and phase shift with the ’relative excitation
frequency’ f/fn is shown. Some important relations become clear from this graph. When
f/fn is about equal to one, the response is maximal and the phase shift is π/2 or 90 degrees.
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This phenomenon is called resonance. The force continuously adds energy to the system at
this point. For γ = 0 none is dissipated and the excitation response will grow to infinity.

For excitation frequencies that are much higher than the natural frequency (f/fn > 2.5) the
excitation becomes very small. As expected, high relative damping reduces the response of
the system.

Figure D.1: Amplification factor as a function of f/fn and relative damping γ for a single
degree mass spring damper system [21]

D.1.2 Modal shapes and boundary conditions of a bending beam

In section 4.1.2 the bending beam was introduced, which can be described continuously by
an equation of motion. Dynamic and kinematic boundary conditions apply at each side of
the continuous function. Some possibilities for the bending beam are given in figure D.2.

Figure D.2: Possible boundary conditions for a bending beam [23]
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The eigenmodes and natural frequency of bending beams vary for different kinematic bound-
ary conditions. This is shown in figure D.3. It can be seen that the supports have a great
influence on the eigenmodes and natural frequencies of the beam. For example, there is
more than a factor two between the first natural frequency of a simply supported beam
and a clamped beam. The natural frequency of a beam with rotational stiffness can be
imagined to behave somewhere in between.

Figure D.3: Natural frequencies and eigenmodes of bending beams for different kinematic
boundary conditions ωn = Cn

√
EI/ρAl4 [32]

The way in which the supports are modelled is thus of great influence on the result. At the
same time, the supports are most difficult to describe accurately.

D.2 Fatigue

Fatigue is the weakening of a material by a repeatedly applied load. The stress values as a
result of this load can be much less than the ‘normal’ ultimate strength of the material.

A fatigue crack nucleus can be initiated on microscopically small scale. This is then followed
by crack growth and ultimately failure of the material due to fatigue. The stages of fatigue
life are shown in figure D.4.

Figure D.4: Stages of fatigue life [30]
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As a result of the pumps, the gates will be prone to a relatively high amount of load cycles.
The gate and its connections to the structure and pumps might thus be sensitive to fatigue.
The thesis work of Schönfeld [31] contains multiple examples of fatigue occurring at lock
gates. One can imagine that the pump gate which are loaded with a much higher frequency,
are prone to fatigue as well.

Fatigue is a complex phenomenon and predicting the exact occurrence of fatigue cracks
is therefore difficult as well. Peak stresses in detailed connections are of importance and
thus a finite element method (FEM) is generally needed. This thesis however does not aim
to predict the location of fatigue cracks, which is more important in a later more detailed
design stage, but rather the degree to which it is prone to fatigue. This in turn is closely
linked to the required gate maintenance.

The Eurocode 3 describes the fatigue strength of steel in a simplified way, which is suitable
for the mentioned application. The fatigue lifetime of steel material is described by a S-N
curve. The ‘S-part’ stands for the occurring stresses, and the ‘N-part’ for the number of
cycles the material can withstand at that stress. N is thus a strength parameter. The S-N
curve for steel from the European standards is given in figure D.5.

Figure D.5: S-N curve for constant amplitude direct stress range [5]

The lines in figure D.5 represent detail categories. As can been seen, detail category 160 has
the highest fatigue strength. This class contains rolled and extruded plates, rolled sections
or seamless hollow sections. Witteveen+Bos [40] has used detail category 80 for the pump
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gate designs. This value represents the characteristic fatigue stress at N = 2 · 106 load
cycles, also called the reference value ∆σc.

In figure D.5 two cases are represented. The first case is that of a constant amplitude
loading. In that case the S-N curve becomes horizontal (dotted line) at N = 5 · 106,
representing unlimited strength at lower stress ranges. The second more common case is
that of varying amplitude loading for which lower stress ranges are taken into account as
they contribute to the damage initiated by higher stress ranges. A prerequisite is therefore
that these higher stresses occur. The contribution of the lower stress ranges is relatively
small, represented by m = 5 slope instead of the m = 3 slope. The S-N curve in the case
of variable amplitude loading can be described by [5]:

∆σmr ∗N = ∆σmc · 2 · 106 with m = 3 for N ≤ 5 · 106 (D.5a)
∆σmr ∗N = ∆σmd · 5 · 106 with m = 5 for 5 · 106 ≥ N ≤ 5 · 108 (D.5b)

with:
∆σd =

(2
5

)1/3
·∆σc (D.6)

and a cut-off limit at N = 108 has a value of:

∆σl =
( 5

100

)1/5
·∆σd (D.7)

in which: ∆σc = reference value at 2 · 106 cycles [N/mm2]
∆σd = constant amplitude fatigue limit [N/mm2]
∆σl = cut off limit [N/mm2]

The shear stress S-N curve has a similar, but does not have a reduced slope for N > 2 · 106.
It does not distinguish between variable loading or constant amplitude loading either.

To sum the effects of the variable amplitude loads, the so called Miner rule or linear
cumulative damage hypothesis can be used, which states that in order for an element
not to fail:

Dd =
∑ ni

Ni
< 1 (D.8)

in which: Dd = damage factor during design life [-]
ni = number of times load Si occurs [cycles]
Ni = endurance [cycles]

In this way the damage by each load amplitude is thus linearly added.

D.3 Hydrodynamic coefficients

In section 4.2 the following three linear hydrodynamic coefficients were introduced as a way
to describe the effect of the fluid on the structure:
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• Hydrodynamic (or added) mass mw

• Hydrodynamic damping cw
• Hydrodynamic stiffness kw

The hydrodynamic mass for gates is discussed by means of the Westergaard equations
in section 4.2.3. Based on Kolkman [19] some examples of hydrodynamic damping and
stiffness for gates are elaborated.

D.3.1 Added damping

There are multiple types of hydrodynamic damping, e.g. due to wave radiation or a reduce
in drag force. According to Kolkman [19] the damping due to the radiation of waves for
the case of a horizontally vibrating deep gate with water on both sides and penetrating the
water surface, can be characterised as:

cw,radiaton = 4ρg2

ω3 (D.9)

It can be seen that for high vibration frequencies the added damping due to wave radiation
decreases quickly.

The dominant factor in added damping is often the flow. In case of a certain flow drag
the linear added damping for vibrations in flow direction can be deduced relatively easy
when the expression for the drag force is known. Based on Kolkman and Jongeling [21] the
following example is given.

If the flow drag force is described by:

FD = CD ·
1
2ρV

2A (D.10)

A vibration velocity then changes the relative velocity between the flow and the structure
by dV = ẏ. Using this the change in force due to ẏ can be calculated:

dF

dV
=
CD · 1

2ρV
2A

dV
= CD · ρV A⇒ dF = CD · ρV A · dV = CD · ρV A · ẏ (D.11)

And thus:
cw,flow = CD · ρV A = 2FD,static

V
(D.12)

The latter part of equation (D.12) could be seen as a general expression in case other
coefficients are used as long as F ∝ V 2.

D.3.2 Added stiffness

Kolkman and Jongeling [21] mentions three types of added stiffness: due to immersion, due
to quasi stationary flow forces and the sudden stiffness. The stiffness due to immersion is
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straight-forward. An increase in submersion results in an increase in the upward pressure
force (Fupward = ρgA(y − y0)), therefore:

kw,imm = ρgA (D.13)

in which: A = water surface piercing cross-sectional area [m2]

When the structure piercing the water is not uniform and A = f(y) then the term is
non-linear and ‘moved’ to the right-hand side of equation (4.8) or linearised by averaging.
Stiffness due to flow occurs for example with a wind vane. A deviation of its position results
in a restoring force.

The sudden stiffness is something that only occurs at gates with under or overflow and is a
result of the inertia of the discharge. When discharge passes the gate trough a gap, which
increases due to the gates movement, the discharge can not respond instantaneous. The
same discharge will thus flow through a larger gap. When the force onto the gate is again
proportional to V2, and the movement of the gate is small relative to the gap, the sudden
stiffness can be described by:

kw,sudden ≈ 2Fstatic/δ (D.14)

In which δ is the gap height in static position. The sudden stiffness is positive when
the gate is positioned downstream of a tube or culvert, upstream the sudden stiffness is
negative. In that case the gate could even be closed by the suction. The sudden stiffness is
frequency dependent. The phenomenon occurs at high frequency vibration, as in that case
the discharge tends to remain constant.

D.4 Fluid induced vibrations

Based on Erdbrink [9], Jongeling and Erdbrink [17], Kolkman [19], Kolkman and Jongeling
[21], Naudascher [26] the following fluid induced structural vibrations, which were already
mentioned in chapter 3, can be distinguished:

(i) Excitation due to turbulence;
(ii) Excitation by stable vortices
(iii) Excitation due to flow instability;
(iv) Self-excitation;
(v) Excitation due to fluid oscillations in a basin;
(vi) Excitation due to fluid oscillations coupled with the structure motion.

In some sources items (ii) and (iii) or (v) and (vi) are mentioned as a single type. Here it is
chosen to treat them separately in order to not overlook possible excitation mechanisms, as
this is often the reason a design dynamically does not suffice. Each phenomenon is briefly
discussed, especially in the relation to gates. For a more extensive elaboration the above
mentioned literature is recommended.
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D.4.1 Excitation due to turbulence (i)

Flow in practical civil engineering applications is always turbulent. Turbulence is generated
mainly due to the viscous friction between the water and any present obstacle, including
walls and the bottom.

Generally the turbulence intensity in the flow (r =
√
v̄′2/v̄) is lower than 10 percent.

However due to irregularities like obstacles or for example deceleration of the flow, this can
increase. The turbulence intensity of the stream leaving pumps will be much higher.

Normally the turbulence is spread over a large bandwidth with most energy in low frequency
till about 5 Hz [17]. Due to this, in case of gates the excitation due to turbulence is usually
of little significance [21].

It should be kept in mind that the pumps, except for an increase in turbulence intensity,
also might have an effect on the frequency spread or peak frequency of turbulence.

D.4.2 Excitation by stable vortices (ii)

The excitation due to stable vortices happens when the point of separation is fixed. Whether
this is the case depends mainly on the upstream structure shape. A sharp edge leads to a
fixed point of separation.

Stable vortices are less harmful than unstable ones (item (iii)) and a fixed point of separation
is thus recommendable. Stable vortices, just like turbulence, often do not lead to significant
vibrations as the excitation frequency is well below the natural frequency of the structural
elements.

The excitation frequency of vortices can be described by the dimensionless Strouhal number.
The value of this constant is depended on the geometry and determined for a large number
of situations. The Strouhal number is defined as follows:

St = fvL

U0
= f(geometry) (D.15)

in which: fv = vortice excitation frequency [1/s]
L = characteristic length [m]
U0 = upstream flow velocity [m/s]

In reality also with vortex shedding, instead of a single value, a frequency band is often
present. In that case fv represents the peak value [9].

As can be seen from equation (D.15), an increasing flow velocity leads to a higher excitation
frequency. It should be checked whether fv,max corresponding to the maximum flow velocity
U0,max is at least two times smaller than the lowest natural frequency fn. As said before,
this is generally the case.
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D.4.3 Excitation due to flow instability (iii)

Due to the specific shape of the structure sometimes flow instabilities can occur. Problems
often arise due to an unstable point of separation. A well-known example is the occurrence
of von Kármán vortices around a cylindrical object.

With flow underneath a gate an alternating point of separation can cause force fluctuations.
A well defined point of separation due to design of the bottom of a gate can prevent this.

Besides the point of separation, also the point of reattachment can be of significance to
the dynamic loading of gates, either when its fixed in space or not. When fixed, the
region between separation and reattachment forms a closed volume of rotating flow with
the shear layer feeding energy into this region on the downward side. In this area pressure
fluctuations can develop [9]. When unfixed, a similar force fluctuation exist as with an
unfixed separation point.

An important phenomenon that should be taken into account is the ‘lock-in effect’. When
the excitation is near the natural frequency of the gate, due to its motion the excitation
frequency can adjust itself to get closer to the gates’ natural frequency: a form of active
interaction.

D.4.4 Self-excitation (iv)

Self-excitation of structures is quite infamous due to the large consequences this can have.
Self-excitation occurs when a small initial disturbance of the structure leads to a force
increasing this motion. In equation (4.8) this would be represented by a negative damping
term. Self-excitation of a structure should always be prevented. Erdbrink [9] mentions
three possible theories of self-excitation in case of gates:

• Galloping
• Fluctuating leakage gap
• Fluctuating discharge coefficient

Galloping occurs due to the change in the lift force coefficient as a function of the angle
between relative velocity of the approach flow and the body. The condition for dynamic
instability is derived by Den Hartog [7]:

δCL
δα

+ CD < 0 (D.16)

in which: CL = lift force coefficient [-]
CD = drag force coefficient [-]
α = angle between relative velocity of the approach flow and the body

[rad]

The fluctuating leakage gap is also known as the ‘bath plug vibration’. When the gate (or
bath plug) moves in the direction of the gap, the discharge decreases. The inertia force
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is proportional to the discharge decrease, which is coupled to the velocity by which the
gates moves in the gaps direction. Therefore a suction force is generated in the direction
of the gates movement. This is thus negative damping. For a extensive elaboration of this
phenomenon and of all the forces involved, reference is made to Kolkman and Jongeling
[21]. Erdbrink [9] adds that in case of vertical-lift gates in free surface flows (instead of
a culvert or pipe) the in-line inertia is caused by a fluid volume in a fictitious streamwise
tube of length D + (CLu + CLd)a, in which Ci are length coefficients.

Lastly, the fluctuating discharge coefficient is another way of how the movement of the gate
cuts of the discharge. Due to the motion of the gate the point of flow separation differs,
varying the discharge coefficient and thus causing similar pressure fluctuations as with the
previous described theory. This would be more likely in case of a rounded gate bottom.

D.4.5 Fluid oscillations in a basin (v)

In same cases fluid resonance can occur in the adjacent basin. The resonating system could
be a standing wave, but also e.g. communicating vessels. In this case the oscillations are
not originating from the structure, but can cause loads on the structure that in turn cause
it to vibrate. In figure D.6 the first and second eigenmodes of a standing wave in a confined
basin are shown.

Figure D.6: First two eigenmodes of a standing wave in a confined basin [21]

The wave lengths of these harmonics simply results from the geometry:

λ = 2L/n with: n = 1, 2, ... (D.17)

in which: L = basin length [m]
λ = wave length [m]

The period of the oscillations depends on the wave length and celerity: T = λ/c. The wave
celerity (when not in shallow water) depends in turn on the wave period and wave length:

c = gT

2π tanh
2πd
λ

(D.18)

in which: d = water depth [m]
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Rewriting these equations, results in the following eigenperiod corresponding to each har-
monic (n):

Tn =

√√√√√√√√
4πL/n
g

tanh
2πd

2L/n

with: n = 1, 2, ... (D.19)

These frequencies should be checked on the forcing of the pumps and vibration frequencies
of the gate. A certain lock-in effect is thinkable, where the motion and forces from the
pumps somewhat adjusts to the motion of fluid oscillation.

D.4.6 Fluid oscillations coupled with structure motion (vi)

Another possibility as described in previous section is when the structure causes fluid
oscillation that would otherwise not occur.

An interesting example is that of the Maeslant Barrier described in Jongeling and Erdbrink
[17]. The two sector gates of the preliminary design, would be sensitive to self-excitation.
This self-excitation would result in a standing wave between both banks. The self-excitation
of the two sector gates would than be out-of-phase in the same frequency of the standing
wave. Both motions influence and amplify each other. This was reason enough to modify
the design of the Measlant Barrier.
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E | Preliminary Ansys calculation of eigenmodes

In order to gain some insight in the possible vibration shapes of the pump gate, a plate
with certain added cylindrical weights is modelled in Ansys Workbench. This plate is given
the same width and height as the pump gate at Den Oever9.

In Ansys the geometry of the plate was set up. An arbitrary, but small, thickness is given
to this plate. The stiffness of the gate is thus not realistic. The same applies to size of
the cylindrical elements, of which the weight is not a realistic representative for that of the
pump. This kept in mind, some useful insight can still be obtained from the modal shapes
of this ‘model’.

Figure E.1: Geometry of plate with tubes and automatically generated mesh of preliminary
Ansys calculation

In figure E.2 and E.3 the first six modal shapes of a plate with same length and width as the
original gate at Den Oever are given. The plate has been given an arbitrary thickness and
cylindrical bodies with a certain weight to represent the pumps. The vertical boundaries
of the gate (i.e. on the sides) are modelled as clamped. The top of the gate is free, the
bottom is modelled both free and simply supported. A standard generated triangular mesh
is used, automatically generated by Ansys. This can be seen in figure E.1. Using a finite
element method, Ansys can perform a modal analysis based on the given geometry. The
result are a number of eigenfrequencies and corresponding eigenmodes. The first are, due
to the arbitrary weights and thickness, meaningless in this calculation

Although the exact behaviour is not very realistic, since the weights are arbitrary and
contributions of the fluid and other are not included, the shapes gives some indication
to which extent the behaviour could be one or three-dimensional. The bottom boundary

9In this calculation W = 12 m and H = 6.9 m was used. Later information showed the pump gates at
Den Oever will have a span of 12.5 metre between the supporting wheels and a height of 7.25 metre. Due
to the qualitative nature of this calculation, an adaptation to these dimensions was not deemed necessary.
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(a) First modal shape (b) Second modal shape (c) Third modal shape

(d) Fourth modal shape (e) Fifth modal shape (f) Sixth modal shape

Figure E.2: Modal shapes of a (dry) plate with length and width equal to the Den Oever
gates, but arbitrary thickness and added pump weights. Fixed supports on left and right
side. Free at the bottom.

(a) First modal shape (b) Second modal shape (c) Third modal shape

(d) Fourth modal shape (e) Fifth modal shape (f) Sixth modal shape

Figure E.3: Modal shapes of a (dry) plate with length and width equal to the Den Oever
gates, but arbitrary thickness and added pump weights. Fixed supports on left and right
side, simple support at bottom.
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conditions has a large influence in this, as can be seen when comparing figure E.2 to E.3. In
case of the simply supported bottom, which is deemed more realistic due to the large pump
gate weight and small contact surface, the behaviour can not be considered one dimensional
any more.

The modal shapes in figure E.2a, E.2b and E.2f are very similar to the first three modal
shapes of a beam. Due to the eccentric location of the pumps still some two dimensional
effects can be seen at those shapes. This would be greater in reality due to eccentric forces.
However, these modal shapes would be quite well represented by a one-dimensional model,
potentially compensating for two-dimensional effects.

The lowest eigenfrequencies (corresponding to the first modal shapes) are often governing
in design as generally the structure is made stiff enough so that its lowest eigenfrequency is
above the excitation frequency. In case of the pump gate however, it is not known whether
this will be possible. Secondly, it is not sure which of the shapes will have the lowest
eigenfrequency in advance. In case of the flood defence pump gate, the stiffness in vertical
direction is significantly different from that in horizontal direction, as can been seen in
appendix B.

As the gate will be resting on the sluice floor slab, at least via some connection points,
modelling this as a free edge is not realistic either. When the bottom edge is modelled as
simply supported, the behaviour of the gate becomes much more two dimensional. As is
done in chapter 5, this can be partially included in a one dimensional model by equivalent
mass and stiffness.
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F | Analytical derivations and additional results
beam model

In this appendix from section F.1 to F.5 the of equations is derived to solve the motion of
the beam. In section F.6 additional results are given.

F.1 General

With the so called coupled modal analysis method used, both the motion structure and the
response of the fluid are described in terms of eigenmodes. The modal coefficients of the
fluid modes are subsequently described in terms of the modal coefficients of the structure.
This finally leads to a system of analytical equations including the external forcing, which
can be solved for the structural modal coefficients. The following steps are taken in this
derivation:

• Expressing the displacement of the structure in terms of an infinite summation of
modal shapes and coefficients found for the homogeneous structural equation of mo-
tion;
• Expressing the fluid response in terms of (its own) modal shapes and coefficients;
• Using the interface condition (eq. 5.4) to express this fluid response in terms of the
structural coefficients;
• Substitution of the found expressions into the forced equation, obtaining an analytical
system of equations with the modal coefficients as the only unknowns;
• Solving the system of equations for each (modal) external force amplitude and fre-
quency.

The derivations are made for a closed gate. The interface condition does not apply at
the location of the pumps, which is characterised by a different response. This can be
implemented easily by adjusted the determination of Qmp (see equation (F.68)) in the final
forced equation.

No interaction is included between the two sides of the gate. Based on the results in
chapter 7 this is a reasonable approximation due to the effect of the pump conduits. The
derivations are made as if both fluid domains are the same side of the gate. It is not
explicitly stated that two fluid domains are present. To implement this the final fluid force
should be determined twice, but with another water level, and thus modes, etcetera.

The governing equations and boundary conditions were elaborated in section 5.2. The most
relevant equations are repeated in the present derivation.
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F.2 Structural modes

In the frequency-domain the homogeneous equation for thin beam is as follows:

EIz
d4W (z)
dz4 − ρbω2W (z) = 0 ↔ d4W (z)

dz4 − β4W (z) = 0 (F.1)

With β4 = ρbω
2

EIz
, and ω a certain natural frequency of the system. The general solution to

equation (F.1) is as follows:

W (z) = A · sinh(βz) +B · cosh(βz) + C · sin(βz) +D · cos(βz) (F.2)

In which A to D are yet unknown constants, β is the fifth unknown. Substitution of this
general solution into the four boundary conditions yield the following system of equations:

0 1 0 1
0 1 0 −1

sinh(βLz) 0 − sin(βLz) 0
cosh(βLz) 0 −cos(βLz) 0



A

B

C

D

 =


0
0
0
0

 (F.3)

The first two conditions lead immediately to A = B = 0. The third statement can be
written as C = sin(βLz)

sinh(βLz) · D. Substitution in the last equation, then yield the following
condition:

D ·
[ sin(βLz)

tanh(βLz)
− cos(βLz)

]
= 0 (F.4)

A non-trivial solution requires the statement between brackets to be zero. From this equa-
tion β can thus be solved. For higher values of βLz, the term tanh(βLz) quickly grows
to ≈ 1. In that case the equation reduces to sin(βLz) = cos(βLz). Numeric evaluation of
the equation shows that this approximation is valid for all found solutions of β. With the
tanh(βLz) term taken into account, β1 would be ≈ 1.2499 ·π/Lz instead of 1.25 ·π/Lz. For
higher β’s, the difference becomes even less.

βm =
(m+ 1

4) · π

Lz
for m = 1, 2, ..,∞ (F.5)

Substitution of the found constants in the general equation, leads to the following solution:

Wm(z) = Am ·
[
sinh(βmz) + sinh(βmLz)

sin(βmLz)
· sin(βmz)

]
(F.6)

In which Am is the yet unknown modal coefficient of each structural mode m. The first
eigenmodes and corresponding eigenfrequencies are evaluated and shown in section ??.

The final solution for the beam’s deflection is a summation of these eigenmodes:

W (z,Ω) =
∞∑
m=1

Am ·Wm(z,Ω) (F.7)
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Figure F.1: The rigid body and first few bending beam modes. The deflection of the beam
is a summation of these - theoretically infinite number of - eigenmodes.

F.3 Fluid modes

As was elaborated in section 5.2, to model schematizations are used to determine the fluid
response: an incompressible fluid including surface waves and a compressible fluid without.
Consequently, the corresponding equations of motion and surface conditions differ, as is
given in figure 5.2. The fluid modes of both systems are therefore determined separately in
this section. Subsequently, the general applicable solution is given, which is a combination
of the two separate solution.

F.3.1 Incompressible surface wave modes

The equation of motion describing the incompressible fluid is homogeneous, when it is only
‘forced’ by its interface condition (which is the gate):

∂2Φ(z, y, t)
∂z2 + ∂2Φ(z, y, t)

∂y2 = 0 (F.8)

The assumed solution Φ(z, y, t) = Φ̃(y, z) · eiΩt is again substituted. Subsequently, separa-
tion of variables is used to solve this partial differential equation. It is assumed the solution
can be written as Φ̃(z, y) = Z(z) · Y (y), which is then substituted in above equation:

Y (y)d
2Z(z)
dz2 + Z(z)∂

2Y (y)
∂y2 = 0↔ 1

Z(z)
d2Z(z)
dz2 + 1

Y (y)
d2Y (y)
dy2 = 0 (F.9)

Equation (F.9) can be split into the following two equations:

d2Z(z)
dz2 + k2

zZ(z) = 0 (F.10)

d2Y (y)
dy2 + k2

yY (y) = 0 (F.11)

In which case k2
y + k2

z = 0 should be obeyed. The general solution of equation (F.10) for
the z-direction is:

Z(z) = Ã · e+ikzz + B̃ · e−ikzz = A · cos(kzz) +B · sin(kzz) (F.12)
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The assumed solution Φ̃(z, y) = Z(z) · Y (y) is substituted into the boundary conditions as
well. Since the z-axis was taken equal to the bottom of the gate, which is located on the
sill, the bottom of the sluice is not at z = 0. Instead, the bottom is located at ∆z. This
leads to the following conditions for the z-direction:

dZ(z)
dz

∣∣∣
z=∆z

= 0 (F.13)

−Ω2Z(z)
∣∣∣
z=h+∆z

+ g
dZ(z)
dz

∣∣∣
z=h+∆z

= 0 (F.14)

In which h is the water depth. The z-coordinate of the still water level is given z = h+∆z =
H. In case of Den Oever, ∆z is negative. Substitution of the general solution into these
boundary conditions yields again a system of equations, for which the constants can be
solved. The first boundary conditions results in B = A tan(k ·∆z). Applying this to the
second boundary condition gives:

A ·
[
−ω2 (cos(kzz) + tan(k∆z) sin(kzz)) + gk (−sin(kzz) + tan(kz∆z)cos(kzz))

]∣∣∣
z=h+∆z

= 0 (F.15)

Finding a non-trivial solution requires A 6= 0 and thus the expression between the brackets
must be zero. After dividing by cos(kzz) and substitution of z = h + ∆z, the following
equation is obtained:

Ω2 = −gkz ·
tan(kzh+ ∆zk)− tan(kz∆z)
1 + tan(kz∆z) tan(kzh+ ∆z) (F.16)

From the following trigonometric relation:

tan(a+ b) = tan(a) + tan(b)
1− tan(a) tan(b) ↔ tan(a) = tan(a− b)− tan(b)

1 + tan(b) tan(a− b) (F.17)

It can be seen that equation (F.16) is equal to:

Ω2 = −gkz · tan(kzh) (F.18)

Which is the well known dispersion equation. An infinite series of values for kz will fulfil
this condition, of which one positive imaginary and infinitely positive real values. This
series is named kz,p.

Using the dispersion relation, the solution for Z(z) can be simplified. Substitution leads in
first instance to:

Z(z) = A [cos(kzz) + tan(kz∆z) sin(kzz)] =
A [cos(kzz)− tan(∆zkz) sin(kzz)]

(F.19)

Using the following trigonometric rule, the found modes in z-direction can be further sim-
plified:

cos(a− b) = cos(a) cos(b) + sin(a) sin(b) ↔ cos(a− b)
cos(b) = cos(a) + tan(a) sin(b) (F.20)
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Since cos(∆z · kz) is a constant for a given shape, and the amplitude of the shape A is still
undetermined, it can be seen the determined function in z-direction is not different from:

Z(z) = A · cos(kz · (z −∆z)) = A · cos(kz · (z −∆z)) (F.21)

In the y-direction the general solution is written in terms of exponentials:

Yp(y) = Ap · e−iky,py +Bp · e+iky,py (F.22)

The boundary condition states no incoming wave and finite energy at y = ∞. Therefore
only the decaying exponential part should be present and Bp = 0. The following solution
for the y-direction remains:

Yp(y) = Ap · e−iky,py (F.23)

The infinity boundary condition then requires:

Re(ky,p) ≥ 0 (F.24a)
Im(ky,p) ≤ 0 so that: Y (y) = Ap · e−i(−kpi)·y = Ap · e−kp·y (F.24b)

From the definition of the separation variables the following holds: ky,p = ±kz,pi. The
infinite real values of kz,p given by the dispersion equation thus correspond to imaginary
values for ky,p, which should be negative conform equation (F.24a), resulting in evanescent
(decaying) modes in y-direction. The real positive values of kz,p are therefore named keva,p,
leading to ky,p = −keva,pi. Each keva,p solution of the dispersion equation can be found
in the range (p − 1.5) · π/h < keva < (p − 1) · π/h (with p = 2, 3, ..∞), as can be seen in
figure F.2.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

π/h

0

Ω
2

-kg tan(kh)
k

eva

Figure F.2: Regions in which the positive values for keva,p can be found

The single imaginary value of the dispersion equation leads to a propagative modes in y-
direction and is therefore named kz,p = kpropi. The corresponding value for ky,p must be
positive according to equation (F.24a) and is simply +kprop. The imaginary kz,p value leads
to a cosine hyperbolic shape when substituted into found expression for Z(z).
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The solution for Φ is now reconstructed with the found solutions. The remaining unknowns
from both directions can be combined to one modal coefficient (Bp):

Φp = Bp Zp(z) Yp(y) =

Bp · cosh(kprop · (z − 0.2)) · e−ikpropy for: p = 1
Bp · cos(keva,p · (z − 0.2)) · e−keva,py for: p = 2, 3, ..,∞

(F.25)

The potential of the incompressible fluid system is the infinite sum of these modes:

Φin =
∞∑
p=1

BpZp(z)Yp(y) (F.26)

F.3.2 Compressible fluid modes

The full (time domain) equation of motion for the compressible fluid is as follows:

∂2Φ(z, y, t)
∂z2 + ∂2Φ(z, y, t)

∂y2 = 1
c2
p

∂2Φ
∂t2

(F.27)

Instead of the free surface boundary condition used for the incompressible fluid solution, a
pressure release boundary condition can be used for the compressible modes. The bottom
impedance boundary condition remains the same.

Closed gate surface: p
∣∣
z=h = −ρf

∂Φ
∂t

= 0 (F.28)

Sluice floor: ∂Φ
∂z

∣∣∣
z=−∆z

= 0 (F.29)

Substituting the assumed solution Φ(y, z, t) = Φ̃(y, z) · e−iΩt, results in the following fre-
quency domain equations:

∂2Φ̃(z, y, t)
∂z2 + ∂2Φ̃(z, y, t)

∂y2 + Ω2

c2
p

Φ̃ = 0 (F.30)

−ρf · Ωi · Φ̃
∣∣
z=H = 0 ↔ Φ̃

∣∣
z=h = 0 (F.31)

∂Φ̃
∂z

∣∣∣
z=−∆z

= 0 (F.32)

Similar to how the incompressible solution was found, separation of variables is used to
solve the partial differential equations. The assumed solution, Φ̃(z, y) = Z(z) · Y (y), is
substituted in equation (F.30):

Y (y)d
2Z(z)
dz2 + Z(z)d

2Y (y)
dy2 + Ω2

c2
p

· Z(z) · Y (y) = 0↔ 1
Z(z)

d2Z(z)
dz2 = − 1

Y (y)
d2Y (y)
dy2 − k2

f

(F.33)
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In which k2
f = Ω2

c2
p
. To achieve similarity with the deduced equations of the incompressible

fluid, the equations are split into the same system:

d2Z(z)
dz2 + k2

zZ(z) = 0 (F.34)

d2Y (y)
dy2 + k2

yY (y) = 0 (F.35)

In this case with k2
y = k2

f − k2
z . The general solution for the z-direction is then again:

Z(z) = A · cos(kzz) +B · sin(kzz) (F.36)

The bottom impedance boundary condition results in B = 0. The surface conditions
subsequently demands:

Z(0) = A · cos(kzh) = 0; (F.37)

To find a non-trivial solution, it is required that A 6= 0 and thus cos(kzh) = 0. This results
in a series of solutions for kz, which will be denoted by kz,t:

kz,t = (2t− 1) · π
2h for: t = 1, 2, ..,∞ (F.38)

With k2
y,t = k2

f − k2
z,t (and ky,t = ±

√
k2
f − k2

z,t), the general solution for the y-direction can
be written in terms of exponentials:

Yt(y) = Ct · e−iky,ty +Dt · e+iky,ty (F.39)

The boundary condition at infinity, which states finite and no negatively propagating en-
ergy, then requires Dm = 0 together with:

Re(ky,t) ≥ 0 (F.40)
Im(ky,t) ≤ 0 (F.41)

The full potential (of the compressible equations) is the infinite sum of these modes:

Φc =
∞∑
t=1

CtZt(z)Yt(y) =
∞∑
t=1

Ct · cos(kz,tz) · e−iky,ty (F.42)

In this case the real values of ky,t again represent propagative modes, while the imaginary
values result in evanescent modes. In contrast to the incompressible case when only one
propagative mode was present, with the incompressible no or multiple propagative modes
may exist depending on the excitation frequency (at a given water depth). Similar to the
incompressible case, an infinite number of evanescent modes will exist.

Since ky,t is equal to ±
√
k2
f − k2

z,t, modes for which k2
z,m > k2

f result in an imaginary root
and thus an evanescent mode. When k2

z,1 corresponding to the first mode is (already) larger
than k2

f , no propagative modes will exist. As mentioned this depends on the excitation
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frequency and the water depth can be seen from:

k2
z,1 > k2

f ↔
[(2− 1) · π

2h

]2
>

Ω2

c2
p

↔ Ω <
π

2h · cp (F.43)

Substitution of T = 2π/Ω results in:

T <
4h
cp

(F.44)

This is the same expression as was given in equation (4.25) for the fundamental eigenperiod
of the compressible fluid.

F.3.3 Total fluid response

The fluid response including both compressibility and the effect of surface waves, combines
previous solutions and is as follows:

Φ̃p(x, y, z) =
∞∑
p=1

Br cos(kz,p · (z −∆z)) · e−iky,py (F.45)

With the following constants:

Ω2 = −gkz,p · tan(kz,ph) (F.46)

ky,p = ±
√
k2
f − k2

z,p (F.47)

The same conditions for the positive and negative ky,p apply as stated for the separate
systems.=

F.4 Fluid response in terms of structural coefficients

The interface condition is now used to link the two systems and express the fluid response
in terms of the structural modal coefficients. The interface condition was as follows:

∂φ

∂y

∣∣∣
y=0

= ∂w

∂t
(F.48)

Substitution of the found expressions for both the structure and fluid, yields:

−ikp
∞∑
p=1

BpZp(z) · e−ikp0 = iΩ
∞∑
m=1

AmWm(z) (F.49)

At y=0, the solutions for Y are thus simply equal to 1. The orthogonality of the fluid
modes is used to rewrite the above equation. When multiplied with another fluid mode
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(Zq), and integrated of the water depth, the following applies:

∫ H

∆z
ZpZqdz = δpq∆p δpq =

0, p 6= q

1, p = q
(F.50)

In this, δpq is the dirac delta function and ∆p is the solution of the integration, which is a
constant for each p = q. equation (F.49) therewith becomes10:

−kp
∞∑
p=1

Bpδpq∆p = Ω
∞∑
m=1

Am

∫ H

0
Wm(z)Zq(z)dz (F.51)

The integral on the right-hand side can be determined for each m and q and is renamed to
Qmq. Since the left-hand side of above equation is only non-zero when p = q, the equation
reduces to:

Bp = − Ω
kp∆p

∞∑
m=1

AmQmp (F.52)

Bp is thus described in terms of the structural modal coefficients. The (dynamic) fluid
pressures are described by:

pf = −ρf
δΦ
δt

= −iΩρfφ (F.53)

The found solution for φ is substituted.

pf (y = 0, z, t) = −iΩρf
∞∑
p=1

BpZp(z) (F.54)

When Bp is now replaced by the expression found in equation (F.52), the following expres-
sion for the fluid pressure is found:

pf (y = 0, z) = −iΩρf
∞∑
p=1

(
− Ω
kp∆p

∞∑
m=1

AmQmp

)
Zp(z) (F.55)

pf (y = 0, z) = iΩ2ρf

∞∑
m=1

Am

∞∑
p=1

Qmp
kp∆p

Zp(z) (F.56)

F.5 Forced system of equations

The solutions for the fluid pressures and W(x), both described in terms of the modal
coefficients Am, are now substituted into the forced equation:

∞∑
m=1

Am

[
EI

d4Wm(z)
dz4 − ρbΩ2Wm(z)

]
= Ff (z)− Fext(Ω, z)+

∞∑
m=1

Am
[
[H(z − z1)−H(z − z2)] ·

(
ρp · Ω2 − cpump · iΩ

)
·Wm(z)− k∗ ·Wm(z)

] (F.57)

10Since their is no motion of the beam for z < 0, the integral on the right-hand side is zero for those
coordinates and can be evaluated from z = 0 to z = H.
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The structural modes were determined for the homogeneous equations and thus must satisfy
to this:

EI
d4Wm(z)
dz4 − ρbω2

mWm(z) = 0 (F.58)

In which ω2
m is the natural frequency corresponding to each structural eigenmode. The

above equation is used to eliminate the differential equation from equation (F.57). Fur-
thermore, the found expression for the fluid pressures is substituted:

∞∑
m=1

Am ·
[
ρb · (ω2

m − Ω2) + k∗
]
·Wm(z) = −Fext(Ω, z)

+
∞∑
m=1

Am · [H(z − z1)−H(z − z2)] ·
(
ρp · Ω2 − cpump · iΩ

)
·Wm(z)

−iΩ2ρf

∞∑
m=1

Am

∞∑
p=1

1
kp∆p

QmpZp(z)

(F.59)

The above equation is now multiplied by another structural mode Wn and integrated over
the structure’s height:

∞∑
m=1

Am ·
[
ρb · (ω2

m − Ω2) + k∗
]
·
∫ Lz

0
Wm(z)Wn(z)dz = −

∫ Lz

0
Fext(Ω, z)Wn(z)dz

+
∞∑
m=1

Am ·
∫ Lz

0
[H(z − z1)−H(z − z2)] ·

(
ρp · Ω2 − cpump · iΩ

)
·Wm(z)Wn(z)dz

+iΩ2ρf

∞∑
m=1

Am

∞∑
p=1

Qmp
kp∆p

∫ Lz

0
Zp(z)Wn(z)dz

(F.60)

Similar to the orthogonality used with the fluid modes, the following integral can be eval-
uated as follows: ∫ Lz

0
Wm(z)Wn(z)dz = δmn · Γn (F.61)

The integral
∫ Lz

0 Zp(z)Wn(z)dz is renamed to Qpn. The fluid contribution is denoted by
Znm. The orthogonality of the structure modes only applies when the integral is evaluated
over the full domain. The inertia force and damping of the pumps therefore also contains
values for m 6= n.

The final system of equations therewith becomes:

∞∑
m=1

[(
ρb · (ω2

m − Ω2) + k∗
)
· δmn · Γn + ZN,mn + ZS,mn − Imn + Pmn

]
·An = Fn (F.62)

Fluid impedance (north/south): ZN,mn or ZS,mn = iΩ2ρf

∞∑
p=1

QmpQpn
kp∆p

(F.63)

Pump intertia: Imn = ρp · Ω2 ·
∫ z2

z1
Wm(z) ·Wn(z) dz (F.64)

Pump damping: Pn = cpump · iΩ ·
∫ z2

z1
Wm(z) ·Wn(z) dz (F.65)
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Modal force: Fn =
∫ Lz

0
Fext(z,Ω) ·Wn(z) dz (F.66)

And for completeness the two integrals that are part of the fluid impedance are repeated:

Qpn =
∫ H

0
Zp(z)Wn(z)dz (F.67)

Qpm =
∫ H

0
Zp(z)Wm(z)dz (F.68)

Hydrodynamic damping and mass
In the expression for the fluid impedance, the hydrodynamic mass and damping can be
identified. It can be seen that the evanescent modes, kp = −keva,p, result in an added mass.
In case of the incompressible surface waves equations these are all modes except for the
first fluid mode:

Zmn = iΩ2
∞∑
m=1

Am

∞∑
p=2

ρf
QmpQpn
−keva,pi∆p

=

−Ω2 · ρf
∞∑
m=1

Am

∞∑
p=2

QmpQpn
keva,p ∆p

(F.69)

As the mass of a structure M will result in an inertia force of M · Ẅ = −Ω ·W , the hydro-
dynamic mass of the incompressible wave system for a certain mode n can be considered
(p = 2, 3, ..,∞):

Mwn =
∞∑
m=1

Am

∞∑
p=2

(F.70)

As can be seen, this hydrodynamic mass is the sum of the hydrodynamic mass causes by
all other modes on this particular mode n. The fluid thus couples all modes. This results in
the non-diagonal fluid impedance matrix. The same applies to the hydrodynamic damping,
which is found for the propagating mode (in case of the incompressible wave system p = 1):

Zmn = iΩ2
∞∑
m=1

Amρf
QmpQpn
kprop ·∆p

=

iΩ2 · ρf
QmpQpn
kprop ·∆p

(F.71)

This contribution divided by iΩ can be considered the hydrodynamic damping:

Cwn = Ω ·
∞∑
m=1

Am · ρf
QmpQpn
kprop ·∆p

(F.72)

The coupled modal analysis method used, does not require however to explicitly describe
these components.

F.6 Additional results
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Hydrodynamic damping of the horizontally vibrating rigid gate
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(a) Significant compressibility

Figure F.3: The total hydrodynamic damping compared for the compressible and incom-
pressible system of equations for a water level of h = 7.2 m
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Figure F.4: Maximum beam response of the beam and the pump’s center to a unit dis-
tributed pump load at hS = 5.3 and hN = 7.2 metre
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G | Analytical derivations and additional results
plate model

In this appendix, the system of equations of the plate model is derived. This includes
expressing the displacement of plate and fluid into a summation of eigenmodes. Through
the interface condition, the fluid response at the plate’s surface is expressed into modal
coefficients of the plate. Subsequently, a system of analytical expressions is obtained for
which the plate’s vibration amplitudes can be solved. This method is the same as was
elaborated in more detail for the beam system in section 5.1.

In section G.5 additional results of the plate model for the analysed Den Oever designs are
given.

G.1 Structural modes

In section 6.3.1 the two dimensional plate shapes are described and evaluated. These are a
product of modes in x- and z-direction:

Wkm(x, z) = Wx,k(x) ·Wz,m(z) (G.1)

The plate’s equation of motion can not be separated into two directions directly and there-
fore a solution in x-direction was assumed based on the simply supported edges:

Wx,k(x) = sin(βkx), βk = kπ

Lx
, with: k = 1, 2, ..,∞ (G.2)

When this solution is substituted in (6.3), and subsequently divided by sin(βkx), the fol-
lowing is obtained:

−ρsω2
km ·Wz,m(z) +D · β4

k ·Wz,m(z)− 2D · β2
k ·

∂2Wz,m(z)
∂z2 +D · ∂

4Wz,m(z)
∂z4 = 0↔

D · ∂
4Wz,m(z)
∂z4 − 2D · β2

k ·
∂2Wz,m(z)

∂z2 +
[
D · β4

k − ρsω2
km

]
·Wz,m(z) = 0

(G.3)
For each mode k in x-direction, a homogeneous fourth order differential equation must thus
be solved. An infinite number of modesm can be found for each differential equation. These
modes are numerically evaluated with Matlab’s bvp4c function. To do so, the differential
equation (G.3) is written as a system of ordinary differential equations (with z1 = Wz,m):

z′1 = z2 z′2 = z3 z′3 = z4 z′4 = 2 · β2
k · z3 +

[ 1
D
· ρs · ω2

km − β4
k

]
· z1 (G.4)
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Since the natural frequency ωkm a fifth condition is necessary. The deflection at z = Lz

was set to 1 for this purpose. As an initial guess for each mode m, the shapes of the
vertical beam modes derived in appendix F were used. The first four eigenmodes and
corresponding eigenfrequencies evaluated numerically were shown in chapter 6, but are
repeated in figure G.1 for the readers convenience. The total plate deflection is again an
infinite summation of these modes.

ω1,1 = 361.5 rad/s

0 2 4 6 8 10 12
x-direction [m]

0

1

2

3

4

5

6

7

z-
d
ir
ec
ti
on

[m
]

-1

-0.5

0

0.5

1
ω2,1 = 536.1 rad/s

0 2 4 6 8 10 12
x-direction [m]

0

1

2

3

4

5

6

7

z-
d
ir
ec
ti
on

[m
]

-1

-0.5

0

0.5

1

ω3,1 = 850.2 rad/s

0 2 4 6 8 10 12
x-direction [m]

0

1

2

3

4

5

6

7

z-
d
ir
ec
ti
on

[m
]

-1

-0.5

0

0.5

1
ω1,2 = 1060 rad/s

0 2 4 6 8 10 12
x-direction [m]

0

1

2

3

4

5

6

7

z-
d
ir
ec
ti
on

[m
]

-1

-0.5

0

0.5

1

Figure G.1: The first four numerically evaluated eigenmodes of the plate (without pump
weights) for the regular pump gate design. The deflection of each mode is normalised to a
unit maximum.

G.2 Fluid modes

Separation of variables is again used to solve the partial differential equation. It is assumed
the solution can be written as follows:

Φ̃(x, y, z) = X(x) · Y (y) · Z(z) (G.5)

When substituted in the equation of motion (6.8), this results in:

X(x)Y (y)d
2Z(z)
dz2 +X(x)Z(z)d

2Y (y)
dy2 + Y (y)Z(z)d

2X(x)
dx2 + Ω2

c2
p

·X(x) · Y (y) · Z(z) = 0

(G.6)
1

Z(z)
d2Z(z)
δz2 + 1

Y (y)
d2Y (y)
dy2 + 1

X(x)
d2X(x)
dx2 + Ω2

c2
p

= 0 (G.7)
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The latter expression can only be valid if each of these expressions is equal to a (separation)
constant:

1
Z(z)

d2Z(z)
dz2 = −k2

z

1
Y (y)

d2Y (y)
dy2 = −k2

f + k2
z + k2

x

1
X(x)

d2X(x)
dx2 = −k2

x (G.8)

With k2
f = Ω2

c2
p
. When ky is now defined as k2

y = k2
f − k2

z − k2
x. The following three ordinary

differential equations must now be solved for the boundary conditions.

d2X(x)
dx2 + k2

xX(x) = 0 (G.9)

d2Y (z)
dy2 + k2

yY (y) = 0 (G.10)

d2Z(z)
dz2 + k2

zZ(z) = 0 (G.11)

The boundary conditions for the z-direction are unchanged from those of the beam model.
The following solution was obtained (see appendix F.3)

Z(z) = A · cos(kz · (z −∆z)) (G.12)
Ω2 = −gkz · tan(kzh) (G.13)

The expressions for X(x) is derived from substitution of the general solution into the bound-
ary conditions.

X(x) = A cos(kxx) +B sin(kxx) (G.14)
dX(x)
dx

∣∣∣
x=∆x

= 0 (G.15)

dX(x)
dx

∣∣∣
x=Lx−∆x

= 0 (G.16)

Solving of this system is simplified by using a local coordinate system for the fluid x′ =
x − ∆x, which is zero at one sluice wall and has a value of Lx′, the sluice width, at the
other. The first derivative of this general solution is then equal to:

dX(x′)
dx′

= −A sin(kxx′) +B cos(kxx′) (G.17)

The first boundary condition then results in B = 0. And the second in:

−A sin(kxL′x) = 0↔ sin(kxL′x) = 0↔ kx = pπ

L′x
(G.18)

The solution of X(x’) is therefore:

X(x′) = Ap cos(kx,rx′)), kx,p = pπ

Lx′
with: p = 1, 2, ..,∞ (G.19)
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Substituting the expression for the original coordinate system, the following solution is
obtained:

X(x) = Ar cos(kx,p(x−∆x)), kx,p = rπ

Lx− 2∆x with: p = 1, 2, ..,∞ (G.20)

The solutions for the x- and z-direction thus resulted in two infinite series for the respective
separation constants, which are named kx,p and kz,r. From the definition of the constants,
ky,pr is then expressed as follows:

ky,pr = ±
√
k2
f − k2

x,p − k2
z,r = 0 (G.21)

Similar to the two-dimensional the solution for the y-direction, obeying the boundary con-
dition at infinity, can be written as:

Yp(y) = Ap · e−iky,pry (G.22)

With:

Re(ky,pr) ≥ 0 (G.23)
Im(ky,pr) ≤ 0 (G.24)

Again, the real values for ky,pr correspond to a propagating wave and the imaginary to
evanescent shapes. In contrast to the two-dimensional case, it is less clear in advance which
values of kz will lead to a real or imaginary ky,pr.

The total solution for Φ is:

Φ̃(x, y, z) = Z(z)X(x)Y (y) =
∞∑
p=1

∞∑
r=1

Bpr cos(kz,p · (z −∆z)) · cos(kx,r · (x−∆x)) · e−ikpry

(G.25)

G.3 Fluid response in terms of structural coefficients

The interface condition is now used to link the two systems and solve the forced solution:

∂φ

∂y

∣∣∣
y=0

= ∂w

∂t
(G.26)

−ikpr
∞∑
p=1

∞∑
r=1

BprΦpr(x, z) · e−ikpry = iΩ
∞∑
m=1

∞∑
k=1

AkmWmk(x, z) (G.27)

The orthogonality of the fluid modes is used to rewrite the above equation. When multiplied
with another fluid mode Φqs, and integrated of the water depth and sluice width, the
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following applies:

∫∫ L′x,H

∆x,−∆z
Φpr(x, z) · Φqs dxdz = δpqδrs∆pr δpqδrs =

0, else
1, and(p = q, r = s)

(G.28)

(G.29)

In this, δpq and δrs are dirac delta functions and ∆pr is the solution of the surface integration
(
∫∫

), which is constant for each p = q and r = s. Equation (G.27) therewith becomes:

−kpr
∞∑
p=1

∞∑
r=1

Bprδpqrs∆p∆r · e−ikpry = Ω
∞∑
m=1

∞∑
k=1

Akm

∫∫ L′x,H

∆x,0
Wmk(x, z)Φpr(x, z)dxdz

(G.30)
The integral on the right-hand side will be named Qkmpr. Since the left-hand side of above
equation is only non-zero when p = q and r = s, the equation reduces to:

−kprBpr∆pr = Ω
∞∑
m=1

∞∑
k=1

AmkQkmpr (G.31)

Bpr is thus described in terms of the structural modal coefficients:

Bpr = − Ω
kpr∆pr

∞∑
m=1

∞∑
k=1

AmkQkmpr (G.32)

The (dynamic) fluid pressures are defined as:

pf = −ρδΦ
δt

= −iΩρφ (G.33)

The found solution for Φ is substituted.

pf (y, z) = −iΩρf
∞∑
p=1

∞∑
r=1

BprΦpr(x, z) · e−iky,pry (G.34)

And subsequently the found solution for Bpr is substituted:

pf (x, y, z) = iΩ2ρ
∞∑
m=1

∞∑
k=1

Amk

∞∑
p=1

∞∑
r=1

Qkmpr
ky,pr∆pr

· Φpr(x, z) · e−iky,pry (G.35)

At the gates’ interface (y = 0), the pressures are thus described by:

pf (x, y = 0, z) = iΩ2ρ
∞∑
m=1

∞∑
k=1

Amk

∞∑
p=1

∞∑
r=1

Qkmpr
ky,pr∆pr

Φpr(x, z) (G.36)
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G.4 Forced system of equations

The solutions for the fluid pressures and W(x,z), both described in terms of the modal
coefficients Akm, are now substituted into the forced equation:

∞∑
k=1

∞∑
m=1

Akm

[
−ρsΩ2 ·Wkm(x, z) +D ·

[
∂4Wkm(x, z)

∂x4 + 2 · ∂
4Wkm(x, z)
∂x2∂y2 + ∂4Wkm(x, z)

∂z4

]]

=
∞∑
k=1

∞∑
m=1

Akm
[
H̃(x, z) · ρpΩ2 ·Wkm(x, z)

]
− FfN+S (x, z)− P (x, z)− Fext(Ω, x, z)

(G.37)

The structural modes all satisfy the homogeneous structural equation of motion:

−ρsω2
km ·Wkm(x, z) +D ·

[
∂4Wkm(x, z)

∂x4 + 2 · ∂
4Wkm(x, z)
∂x2∂y2 + ∂4Wkm(x, z)

∂z4

]
= 0 (G.38)

In which ω2
km is the natural frequency corresponding to each structural eigenmode. The

above equation is used to eliminate the derivative terms from equation (G.37). Furthermore,
the found expression for the fluid pressures is substituted:

∞∑
k=1

∞∑
m=1

Akm · ρs · (ω2
km − Ω2) ·Wkm(x, z) = −P (z)− Fext(Ω, z)

+
∞∑
k=1

∞∑
m=1

Akm · H̃(x, z) · ρp · Ω2 ·Wkm(x, z)

−

iΩ2ρf

∞∑
k=1

∞∑
m=1

Akm

∞∑
p=1

∞∑
r=1

Qkmpr
ky,pr∆pr

Φpr(x, z)


N+S

(G.39)

The above equation is now multiplied by another structural mode Wln and integrated over
the structure’s height and width:

∞∑
k=1

∞∑
m=1

Akm · ρs · (ω2
km − Ω2) ·

∫∫ Lx,Lz

0,0
Wkm(x, z) ·Wln(x, z) dxdz =

−
∫∫ Lx,Lz

0,0
P (x, z) ·Wln(x, z) dxdz −

∫∫ Lx,Lz

0,0
Fext(Ω, z) ·Wln(x, z) dxdz

+
∞∑
k=1

∞∑
m=1

Akm ·
∫∫ Lx,Lz

0,0
H̃(x, z) · ρp · Ω2 ·Wkm(x, z) ·Wln(x, z) dxdz

−

iΩ2ρf

∞∑
k=1

∞∑
m=1

Akm

∞∑
p=1

∞∑
r=1

Qkmpr
ky,pr∆pr

∫∫ Lx,Lz

0,0
Φpr(x, z) ·Wln(x, z) dxdz


N+S

(G.40)

Similar to the orthogonality used with the fluid modes, the following integral can be eval-
uated as follows: ∫∫ Lx,Lz

0,0
Wkm(x, z) ·Wln(x, z) dxdz = δklδmn · Γln (G.41)

176



Appendix G. Analytical derivations and additional results plate model

The integral
∫∫ Lx,Lz

0,0 Φpr(x, z) ·Wln(x, z) dxdz will be renamed to Qlnpr. The total fluid
contribution is denoted by Zklmn. The orthogonality of the structure modes only applies
when the integral is evaluated over the full domain. The inertia force caused by the pump
weights therefore also contains values for k 6= l and m 6= n. The final system of equations
therewith becomes:

∞∑
k=1

∞∑
m=1

[
ρs · (ω2

km − Ω2) · δklδmn · Γln + Zklmn − Iklmn + Pklmn
]
·Aln = Fln (G.42)

Fluid impedance (N/S): ZN,kmln or ZS,kmln = iΩ2ρf

∞∑
p=1

QkmprQlnpr
ky,pr∆p

Inertia pumps: Iklmn = ρp · Ω2 ·
∫∫
S

H̃(x, z) ·Wkm(x, z) ·Wln(x, z) dxdz

Pump damping: Pln = cpump · iΩ ·
∫∫
S

H̃(x, z) ·Wkm(x, z) ·Wln(x, z) dxdz

Modal force: Fln =
∫∫
S

Fext(z,Ω)Wln(x, z) dxdz

And for completeness the two integrals that are part of the fluid impedance are repeated:

Qlnpr =
∫∫
Sw

Wkm(x, z) · Φpr(x, z) dxdz

Qkmpr =
∫∫
Sw

Wln(x, z) · Φpr(x, z) dxdz

In which S is the total gate surface and Sw the wet surface of the gate.

G.5 Additional results
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Regular pump gate design: fluid eigenmodes at the southern side of the gate for maximum
water levels

Fluid pressure shape (south) at ω1 = 74 rad/s
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Fluid pressure shape (south) at ω4 = 278 rad/s
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Fluid pressure shape (south) at ω5 = 318 rad/s
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Fluid pressure shape (south) at ω6 = 364 rad/s
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Figure G.2: The shapes of the fluid pressures at the southern gate’s surface at the first
six (approximate) eigenfrequencies of the structure-fluid system (hS = 5.3 m, hN = 7.2
m). The locations of the pumps, where the interface condition is not applied, are shown
in black.
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Regular pump gate design: quantified fluid pressure response for maximum water levels

0 100 200 300 400 500

Frequency [rad/s]

0

0.1

0.2

0.3

0.4

0.5

F
lu
id

h
ea
d
a
m
p
li
tu
d
e
p̂
f
/
(ρ

f
g
)
[m

]

Plate surface eccentric pump

Plate surface center pump

Pump inlet of eccentric pump

Pump inlet of center pump

(a) Southern side of the gate, pump force in
phase

0 100 200 300 400 500

Frequency [rad/s]

0

0.1

0.2

0.3

0.4

0.5

F
lu
id

h
ea
d
a
m
p
li
tu
d
e
p̂
f
/
(ρ

f
g
)
[m

]

(b) Northern side of the gate, pump force in
phase

0 100 200 300 400 500

Frequency [rad/s]

0

0.1

0.2

0.3

0.4

0.5

F
lu
id

h
ea
d
a
m
p
li
tu
d
e
p̂
f
/
(ρ

f
g
)
[m

]

Plate surface eccentric pump 1

Plate surface center pump

Plate surface eccentric pump 2

Pump inlet of eccentric pump 1

Pump inlet of center pump

Pump inlet of eccentric pump 2

(c) Southern side of the gate, eccentric pump
force out of phase

0 100 200 300 400 500

Frequency [rad/s]

0

0.1

0.2

0.3

0.4

0.5

F
lu
id

h
ea
d
a
m
p
li
tu
d
e
p̂
f
/
(ρ

f
g
)
[m

]

(d) Northern side of the gate, eccentric pump
force out of phase

0 100 200 300 400 500

Frequency [rad/s]

0

0.1

0.2

0.3

0.4

0.5

F
lu
id

h
ea
d
a
m
p
li
tu
d
e
p̂
f
/
(ρ

f
g
)
[m

]

Plate surface eccentric pump

Plate surface center pump

Pump inlet of eccentric pump

Pump inlet of center pump

(e) Northern side of the gate, center pump force
out of phase

0 100 200 300 400 500

Frequency [rad/s]

0

0.1

0.2

0.3

0.4

0.5

F
lu
id

h
ea
d
a
m
p
li
tu
d
e
p̂
f
/
(ρ

f
g
)
[m

]

(f) Southern side of the gate, center pump force
out of phase

Figure G.3: Pump fluid head amplitude at water levels hS = 5.3 m and hN = 7.2 m for
the three pump phase combinations at both sides of the gate for the regular pump gate
design, quantified for the pump force envelope.
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Flood defence pump gate: deflection at maximum water levels
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Figure G.4: Maximum gate deflection at maximum water levels (hN = 7.2 m, hS = 5.3 m)
for the three pump phase possiblities, quantified for the pump force envelope.
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Flood defence pump gate: quantified fluid pressure response for cavitation-risk water levels
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Figure G.5: Pump fluid head amplitude at water levels hS = 4.1 m and hN = 6.1 m for
the three pump phase combinations at both sides of the gate for the flood defence gate
design, quantified for the pump force envelope.
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Flood defence pump gate: quantified fluid pressure response for maximum water levels
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Figure G.6: Pump fluid head amplitude at water levels hS = 5.3 m and hN = 7.2 m for
the three pump phase combinations at both sides of the gate for the flood defence gate
design, quantified for the pump force envelope.
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H | Numeric fluid model: cell equations

In chapter 7 the hydrodynamic mass is investigated for the following four fluid model
schematizations:

1. Closed gate (without pumps);
2. Closed gate with zero displacement/velocity at the location of the pumps;
3. Gate with openings and zero thickness
4. Gate with pump conduits of a certain length.

The amount and type of cell equations that must be evaluated for the numeric grid differs
for each of these schematizations. These are worked out in this appendix. The general basis
of these cell equations is elaborated and derived in section H.1. Schematizations 1 and 2
do not differ in model set-up, except for an input of zero velocity at the pump locations in
case of the latter. These two schematizations are treated in section H.2. The cell equations
for the other two schematizations are elaborated in section H.3 and H.4.

Note: in this appendix the axis system differs from what was used in the remainder of this
thesis. In figure H.2 the axes are shown as are used in these derivations.

H.1 Numerical grid

As mentioned in section 7.1.2, a cubic grid is used dividing the domain into Nx · Ny · Nz

cells. The center of the outer cells have a distance of 1
2∆L to the boundary conditions,

as can be seen in figure H.1, which shows the two dimensional example of the vibrating
strip used by Kolkman [20]. In the example the domain is divided into 7 ∗ 10 cells, each
represented by a point in figure H.1. The distance between the centers of neighboring cells
is (evidently) equal to the cell width ∆L.

The cell equations are based on continuity. For the incompressible fluid, the sum of the
discharges in every direction will be zero:

Σ∆q = ∆qL + ∆qR + ∆qU + ∆qD + ∆qF + ∆qB = 0 (H.1)

in which: ∆qL/R/U/D/F/B = discharge over ‘left/right/up/down/front/back’ bound-
ary of element

Using ∆qL = VL ∆y ∆z and the definition of the potential function in equation (4.14):

∆qL = −
(
δΦ
δx

)
L

∆y ∆z (H.2)
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Figure H.1: Grid points at the center of each two dimensional cell for the vibrating strip
example [20]

The same applies for the right boundary and the four other directions. Using the approxi-
mation −δΦ/δx = −∆Φ/∆x = (ΦL − Φ)/∆x and ∆x = ∆y = ∆z = ∆L, the following is
obtained:

∆qL = (ΦL − Φ) ·∆L (H.3)

In comparison to the two dimensional model used in Kolkman [20], a ∆L term remains in
equation (H.3). Combining equations equation (H.1) and (H.3), the potential function for
all inner elements is known:

Φ = (ΦL + ΦR + ΦU + ΦD + ΦF + ΦB)/6; (H.4)

In this equation, the ∆L term is voided due to the zero right hand side of equation (H.1).
In a numerically more practical notation:

Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z−1 + Φx,y,z+1)/6; (H.5)

All boundary elements have altered equations, with the corner elements again different
from the rest. The example of figure H.1, but three dimensional, is used to present these
equations for different boundary conditions. For the boundary elements at the left side
above the thin strip, the boundary condition is at a distance of only 1

2∆L. Therefore the
discharge coming from the left side is:

∆qL = 2 · (ΦL − Φ) ·∆L (H.6)

The anti-symmetry or free surface boundary condition implies ΦL = 0, and thus ∆qL =
−2Φ. The equation of those cells therewith becomes:

Φx,y,z = (Φx+1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z−1 + Φx,y,z+1)/7; (H.7)
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The derivation for a right side, bottom, upper, front or back Φ = 0 boundary condition, is
equal.

At moving boundaries the discharge is known: ∆qgatey,z = Vs ·∆L2. In this case, dividing
the ∆L term of equation (H.5) out of the equation has an effect on the qgate-term. In case of
the vibrating strip the cells in the middle of the strip (not at the edges), have the following
cell equation:

Φx,y,z = (∆qgatey,z/∆L+ Φx+1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z−1 + Φx,y,z+1)/5; (H.8)

Other cell equations are treated in the following section based on the geometry of the pump
gate used in the different model geometries.

H.2 Closed gate

For the reader’s convenience, figure H.2 is repeated below. The cell equations of the 27
regions, coded as x1-1 to x1-9, xbody-1 to xbody-9 and xend-1 to xend-9, are elaborated below.

Figure H.2: Calculation grid of symmetric gate with regions of different cell equations (27
total)

The first ‘slice’ is that of the x = 1 coordinate. These are the cells adjacent to the gate,
which is movement is defined by the matrix qgate in y,z direction, of which each element is
from now on denoted by qy,z.

(x1 − 1) The lower left corner element must, besides the moving boundary condition
q(y, z), obey two other boundary conditions. In the z-direction it is adjacent to
the closed sluice wall, which imposes the boundary conditions δΦ/δz = 0. The sluice
bottom imposes the same boundary conditions in y-direction: δΦ/δy = 0.
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These boundary conditions imply qF = 0 and qD = 0. The continuity equation (H.1)
therewith becomes:

Σ∆q = qy,z + ∆qR + ∆qU + ∆qB = 0 (H.9)

With ∆q(R/U/D) = (Φ(R/U/D) − Φ) ·∆L, the cell equation becomes:

Φx,y,z = (qy,z/∆L+ Φx+1,y,z + Φx,y+1,z + Φx,y,z+1)/3 (H.10)

(x1 − 2) The bottom elements have the gate and δΦ/δy = 0 boundary conditions. The
cell equation becomes:

Φx,y,z = (qy,z + Φx+1,y,z + Φx,y+1,z + Φx,y,z−1 + Φx,y,z+1)/4 (H.11)

(x1 − 3) The lower right corner element is similar to the lower left one, except for qB being
qF and thus Φx,y,z+1 = Φx,y,z−1:

Φx,y,z = (qy,z/∆L+ Φx+1,y,z + Φx,y+1,z + Φx,y,z−1)/3 (H.12)

(x1 − 4) These cells have similar conditions as the bottom cells (x1−2), but the z-direction
changes to the y-direction:

Φx,y,z = (qy,z/∆L+ Φx+1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z+1)/4 (H.13)

(x1 − 5) The only difference with ‘normal’ continuity equation cells, is the moving bound-
ary:

Φx,y,z = (qy,z/∆L+ Φx+1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z−1 + Φx,y,z+1)/5 (H.14)

(x1 − 6) Opposite from x1 − 4 in z-direction (z + 1 = z − 1):

Φx,y,z = (qy,z/∆L+ Φx+1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z−1)/4 (H.15)

(x1 − 7) The upper left element has three boundary conditions ΦU = 0, δΦ/δz = 0, and
qgate. Similar to what was elaborated in chapter 7, due to the 1

2∆L distance between
the cell center and the upper boundary conditions:

∆qU = 2 · (ΦU − Φ) = 2 · Φ (H.16)

And therefore:

Φx,y,z = (qy,z/∆L+ Φx+1,y,z + Φx,y−1,z + Φx,y,z+1)/5 (H.17)

(x1 − 8) Only the qgate and ΦU = 0 conditions:

Φx,y,z = (qy,z/∆L+ Φx+1,y,z + Φx,y−1,z + Φx,y,z−1 + Φx,y,z+1)/6 (H.18)
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(x1 − 9) Opposite from x1 − 7 in z-direction (z + 1 = z − 1):

Φx,y,z = (qy,z/∆L+ Φx+1,y,z + Φx,y−1,z + Φx,y,z−1)/5 (H.19)

The middle block of figure H.2, denoted by xbody, has to a great extend the same boundary
conditions as the x1 slice. The exception is the moving boundary, which is replaced by
‘normal’ adjacent cells. The qL in the continuity equation is therefore no longer equal to
qgate, but instead:

∆qL = (ΦL − Φ) ·∆L (H.20)

The qy,z/∆L in each of the previous nine equations therefore changes to Φx−1,y,z and the
value of the denominator in each equation increases by one.

xbody − 1 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y+1,z + Φx,y,z+1)/4 (H.21)
xbody − 2 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y+1,z + Φx,y,z−1 + Φx,y,z+1)/5 (H.22)
xbody − 3 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y+1,z + Φx,y,z−1)/4 (H.23)
xbody − 4 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z+1)/5 (H.24)
xbody − 5 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z−1 (H.25)

+ Φx,y,z+1)/6
xbody − 6 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z−1)/5 (H.26)
xbody − 7 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y−1,z + Φx,y,z+1)/6 (H.27)
xbody − 8 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y−1,z + Φx,y,z−1 + Φx,y,z+1)/7 (H.28)
xbody − 9 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y−1,z + Φx,y,z−1)/6 (H.29)

The third block at xend is again largely similar as the first and second blocks. In comparison
to the middle block, it does not have a ‘normal’ cell at the right side of each element, but
the ΦR = 0 condition. As is stated before, this condition leads to ∆qR = 2 · Φ ·∆L. Each
Φx+1,y,z therefore is removed from above equations. The value of the denominator increases
with one.

xend − 1 Φx,y,z = (Φx−1,y,z + Φx,y+1,z + Φx,y,z+1)/5 (H.30)
xend − 2 Φx,y,z = (Φx−1,y,z + Φx,y+1,z + Φx,y,z−1 + Φx,y,z+1)/6 (H.31)
xend − 3 Φx,y,z = (Φx−1,y,z + Φx,y+1,z + Φx,y,z−1)/5 (H.32)
xend − 4 Φx,y,z = (Φx−1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z+1)/6 (H.33)
xend − 5 Φx,y,z = (Φx−1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z−1 + Φx,y,z+1)/7 (H.34)
xend − 6 Φx,y,z = (Φx−1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z−1)/6 (H.35)
xend − 7 Φx,y,z = (Φx−1,y,z + Φx,y−1,z + Φx,y,z+1)/7 (H.36)
xend − 8 Φx,y,z = (Φx−1,y,z + Φx,y−1,z + Φx,y,z−1 + Φx,y,z+1)/8 (H.37)
xend − 9 Φx,y,z = (Φx−1,y,z + Φx,y−1,z + Φx,y,z−1)/7 (H.38)
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H.3 Pump openings

Compared to the geometry in previous section, only one type of cell equation is added at
x1. This is shown in figure H.3.

Figure H.3: Cell equations at x1 for the gate with openings

In chapter 7 the gate was first considered anti-symmetric in order to reduce the required
computational resources and give a quicker estimation of the change in added mass com-
pared to the closed gate. In that case the cell equation is as follows:

Φx,y,z = (Φx+1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z−1 + Φx,y,z+1)/7 (H.39)

When the potential is calculated for different water levels at both sides of the gate, and the
situation is therefore no longer anti-symmetric, this equation becomes as follows:

ΦNx,y,z = (ΦS1,y,z + ΦNx+1,y,z + ΦNx,y+1,z + ΦNx,y−1,z + ΦNx,y,z−1 + ΦNx,y,z+1)/6 (H.40)

in which: ΦNx,y,z = The potential at (x,y,z) at the northern side of the gate
ΦSx,y,z = The potential at (x,y,z) at the southern side of the gate

The axes at both sides of the gate are mirrored in x-direction, with x = 1 at the gate
x = end at the sluice end. The y-axis and z-axis are equal.

H.4 Complete geometry

In this schematization the shape of the pump gate is still simplified to a plate. The length of
the pumps is now taken into account by square conduits. The location of the pumps in the
gate and the magnitude of their flow surface are expected to have the largest influence on
the hydrodynamic mass, rather than their exact shape. The square shape of the conduits
greatly eases the numerical evaluation. The plate thickness of the gate is 10 or 15 mm,
depending on the design. This is negligible compared to the conduit length, which is
expected to be about 3.5 metre (see chapter 2).

The conduits are schematized as infinitely thin as well, so they ‘fit’ in any of the previous
grids. The cell equations adjacent to these conduits do however change. A ‘new domain’
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of cells with their own equations inside of the conduits is added. Furthermore, the body
cells in previous cells are split into two parts: the smaller part where the pump conduits
are present and the rest of the sluice length. The total number of cells, and therewith the
computation time, does not increase. The number of cell equations does however. The
different regions for x1 are shown in figure H.4. In the conduits a new domain of equations,
denoted by c1 to c9, is present.

Figure H.4: Cell equations for the complete schematization at x1. Cells in the conduits
are not included. The gate, pump openings and grid are not drawn to scale.

Cell equations x1 − 1 to x1 − 9 remain equal to those stated for the closed gate. Cell
equations x1−10 to x1−13 are added. Each of those cells is adjacent to the pump conduit,
which is a closed boundary:

dΦ
dy

or dΦ
dz

= 0 (H.41)

The cell equations of these cells are therefore similar to those of the cells adjacent to the
sluice walls and bottom (x1 − 2, x1 − 4,x1 − 6). For clarity, x1 − 1 to x1 − 9 are repeated
and completed with the remaining equations:

x1 − 1 Φx,y,z = (qy,z/∆L+ Φx+1,y,z + Φx,y+1,z + Φx,y,z+1)/3 (H.42)
x1 − 2 Φx,y,z = (qy,z/∆L+ Φx+1,y,z + Φx,y+1,z + Φx,y,z−1 + Φx,y,z+1)/4 (H.43)
x1 − 3 Φx,y,z = (qy,z/∆L+ Φx+1,y,z + Φx,y+1,z + Φx,y,z−1)/3 (H.44)
x1 − 4 Φx,y,z = (qy,z/∆L+ Φx+1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z+1)/4 (H.45)
x1 − 5 Φx,y,z = (qy,z/∆L+ Φx+1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z−1 (H.46)

+ Φx,y,z+1)/5
x1 − 6 Φx,y,z = (qy,z/∆L+ Φx+1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z−1)/4 (H.47)
x1 − 7 Φx,y,z = (qy,z/∆L+ Φx+1,y,z + Φx,y−1,z + Φx,y,z+1)/5 (H.48)
x1 − 8 Φx,y,z = (qy,z/∆L+ Φx+1,y,z + Φx,y−1,z + Φx,y,z−1 + Φx,y,z+1)/6 (H.49)
x1 − 9 Φx,y,z = (qy,z/∆L+ Φx+1,y,z + Φx,y−1,z + Φx,y,z−1)/5 (H.50)
x1 − 10 Φx,y,z = (qy,z/∆L+ Φx+1,y,z + Φx,y−1,z + Φx,y,z−1 + Φx,y,z+1)/4 (H.51)
x1 − 11 Φx,y,z = (qy,z/∆L+ Φx+1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z−1)/4 (H.52)

189



Appendix H. Numeric fluid model: cell equations

x1 − 12 Φx,y,z = (qy,z/∆L+ Φx+1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z+1)/4 (H.53)
x1 − 13 Φx,y,z = (qy,z/∆L+ Φx+1,y,z + Φx,y+1,z + Φx,y,z−1 + Φx,y,z+1)/4 (H.54)

For x2 to x(end counduit) the division is the same as given in figure H.4. These cells are
denoted by xbody,c. The cell equations differ only slightly, i.e. qy,z = Φx−1,y,z and the
denominator is increased by 1. From x(end conduit+1) the cell equations remain unchanged
to the xbody equations in previous sections.

xbody,c − 1 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y+1,z + Φx,y,z+1)/4 (H.55)
xbody,c − 2 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y+1,z + Φx,y,z−1 + Φx,y,z+1)/5 (H.56)
xbody,c − 3 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y+1,z + Φx,y,z−1)/4 (H.57)
xbody,c − 4 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z+1)/5 (H.58)
xbody,c − 5 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z−1 (H.59)

+ Φx,y,z+1)/6
xbody,c − 6 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z−1)/5 (H.60)
xbody,c − 7 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y−1,z + Φx,y,z+1)/6 (H.61)
xbody,c − 8 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y−1,z + Φx,y,z−1 + Φx,y,z+1)/7 (H.62)
xbody,c − 9 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y−1,z + Φx,y,z−1)/6 (H.63)
xbody,c − 10 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y−1,z + Φx,y,z−1 + Φx,y,z+1)/5 (H.64)
xbody,c − 11 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z−1)/5 (H.65)
xbody,c − 12 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z+1)/5 (H.66)
xbody,c − 13 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y+1,z + Φx,y,z−1 + Φx,y,z+1)/5 (H.67)

The cell equations c1 to c9 do not change for x1, xbody and x(end conduit) as there is not gate
present in the conduits and the motion of the pumps is not included in this model. At
x1, the Φx−1,y,z term given in the equations is the potential at the other side of the gate,
previously denoted by ΦS1,y,z .

The equations for cells c1 to c6 are simply equal to those of xbody − 1 to xbody − 6. The
equations for c7 to c9 or equal to those of c1 to c3, but with Φ(x, y+ 1, z) = Φ(x, y− 1, z):

c1 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y+1,z + Φx,y,z+1)/4 (H.68)
c2 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y+1,z + Φx,y,z−1 + Φx,y,z+1)/5 (H.69)
c3 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y+1,z + Φx,y,z−1)/4 (H.70)
c4 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z+1)/5 (H.71)
c5 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z−1 (H.72)

+ Φx,y,z+1)/6
c6 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y+1,z + Φx,y−1,z + Φx,y,z−1)/5 (H.73)
c7 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y−1,z + Φx,y,z+1)/4 (H.74)
c8 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y−1,z + Φx,y,z−1 + Φx,y,z+1)/5 (H.75)
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c9 Φx,y,z = (Φx−1,y,z + Φx+1,y,z + Φx,y−1,z + Φx,y,z−1)/4 (H.76)

As mentioned, the cell equations for x > (end conduit) remain equal to those stated for the
closed gate denoted by xbody and xend, each containing nine different cell equations.
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