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Summary. Front tracking methods can be used to accurately resolve discontinu-
ities in numerical simulations of Euler flows. They usually result in first-order error
convergence due to their piecewise constant approximation of the flow conditions.
In this chapter, a piecewise linear reconstruction of the solution is proposed based
on wave types which track the physical phenomena that the fronts represent. It is
demonstrated numerically that this approach results in second-order error conver-
gence. A verification and validation study is performed by comparing the results
with those of the Godunov method and experimental data.

1 Introduction

Front tracking can be used as a numerical method for resolving disconti-
nuities in the simulation of hyperbolic conservation laws. In this chapter,
front tracking is considered as a tool for the numerical simulation of the
Euler equations of inviscid gas dynamics. The Euler equations allow for
discontinuous solutions such as shock waves, slip lines, and two-fluid inter-
faces. Front tracking is often used for resolving these discontinuities in
addition to a background grid for resolving the continuous flow phenomena.
Richtmyer and Morton [RM67] have initiated this branch of front tracking
methods. Important contributions and applications have been presented by
Moretti [Mor87], Swartz and Wendroff [SW86], and Glimm, Grove, Chern,
Holmes, and coworkers [CGM86, HGS95].

Front tracking can also be used for resolving both the discontinuous and
continuous flow phenomena. In that case the continuous phenomena are
approximated by a piecewise constant function. This type of front track-
ing methods has been developed in the context of gas dynamics by Holden,
Lie, Risebro, Tveito, and coworkers [HLR99, RT92]. The latter class of
front tracking methods without background grid is considered in the current
chapter.

Front tracking methods in one dimension are based on the piecewise con-
stant approximation of the solution. In the simulation of an initial-boundary
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value problem, the initial conditions are approximated by a piecewise constant
function. At the discontinuities in this approximation, the flow conditions
resemble the initial conditions of a local Riemann problem. After solving the
local Riemann problems, their solutions are also approximated by a piece-
wise constant function. The position of the moving discontinuities in this
approximation is tracked by the fronts. At an intersection of two fronts, the
solution again resembles the initial condition of a local Riemann problem.
The piecewise constant approximation of the solution of the local Riemann
problem results in the creation of new fronts and so on until the solution in
the space-time domain has been found.

One-dimensional front tracking is of interest for, for example, pipe flows
and shock tube problems. A similar approach can also be employed to simulate
two-dimensional supersonic flows. In addition, front tracking in one dimen-
sion can be used for a basic comparison of different front tracking algorithms
and as a test for the implementation in a multidimensional code as a tool in
dimensional splitting. Extensions of front tracking methods to multiple spatial
dimensions can be found in for example [HLR99].

Due to the piecewise constant approximation of the solution, front tracking
methods usually result in first-order error convergence [RT92]. An example of
a second-order moving mesh method is the method by Lucier [Luc86] for scalar
conservation laws.

In this chapter, a second-order front tracking method for the system of
Euler equations is proposed. In [Wit06], it has been demonstrated numerically
that the position of the fronts is approximated with second-order accuracy
even for a first-order front tracking method. The first-order convergence is
caused by the piecewise constant approximation of the solution. Therefore, a
piecewise linear reconstruction of the solution of a first-order front tracking
method can result in second-order error convergence. For a correct piecewise
linear reconstruction, wave types are employed which track the physical phe-
nomena that the fronts represent. In [WKBO6], these wave types are used for
an improved front interaction modeling, which results in a physically more
correct, simulation.

This chapter is organized as follows. In Sect. 2, the second-order improved
front tracking method is introduced. In Sect. 3, numerical results are compared
with those of the Godunov method and experimental data. The conclusions
are summarized in Sect. 4.

2 A Second-Order Front Tracking Method

In this section, a second-order improved front tracking method for the Euler
equations is proposed based on a piecewise linear reconstruction of the solu-
tion of a first-order front tracking method. For the reconstruction the wave
types of the improved front tracking method [WKBO06] are employed. It is
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demonstrated in numerical experiments in Sect.3 that the piecewise linear
solution results in second-order error convergence.

2.1 Wave Types

In standard front tracking methods without background grid, the front inter-
actions are resolved by solving standard local Riemann problems at the
intersection points. This approach has some limitations; for example, it cannot
resolve isentropic compressions as truly isentropic phenomena. In [WKBOG],
an improved front interaction modeling is proposed, which employs wave front
types to track the physical phenomena that the fronts represent for a physi-
cally more correct modeling of the Euler equations. The wave types are also
employed for neglecting insignificant waves to avoid the build up of an infinite
number of fronts. The same wave type labels are employed here for a piecewise
linear reconstruction of the solution.

The basic waves in an Euler flow are shock waves, rarefaction or isen-
tropic compression waves, and contact waves. For a detailed review of wave
phenomena and classifications, the reader is referred to standard works as
[CM79, Smo94].

In the front tracking method, the discontinuous phenomena such as a shock
wave and a contact discontinuity are discretized by a single discontinuity. The
wave front types that are assigned to the fronts representing these disconti-
nuities are the shock wave (sw) and contact discontinuity (cd) wave types,
respectively.

The continuous phenomena such as a rarefaction or isentropic compression
wave are discretized by a series of small discontinuities. The fronts discretiz-
ing these continuous phenomena resemble characteristics. To represent both
the solution inside the rarefaction fan and its spatial dimension accurately,
three characteristic wave types are used: the left most characteristic (Ich),
the right most characteristic (rch), and an interior characteristic (ich) of a
fan of characteristics. The same wave types are used in discretizing isentropic
compression waves.

In contrast with a discontinuous change of entropy at a contact discon-
tinuity, a continuous change of entropy is discretized by a series of contact
waves. They are represented by similar wave types as rarefaction fans: the left
most contact wave (lew), the right most contact wave (rcw), and an interior
contact wave (icw) of a continuous change in entropy.

Finally, a wave family type is assigned to the fronts to track the velocity
of the wave relative to the flow. Left running (—1), right running (+1), and
waves with no relative velocity with respect to the flow (0) are used.

2.2 Piecewise Linear Reconstruction

A piecewise linear reconstruction of the solution of a front tracking method
is not straightforward due to the large variations in cell size from a cell to
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another. Based on the wave types, it can be identified whether the flow con-
ditions in a cell are truly uniform or not. In the latter case, a piecewise linear
reconstruction of the flow conditions is used based on the wave types.

Consider the piecewise constant solution of the improved front tracking
method with n¢ fronts and ngq cells in space-time. Let f; denote the fronts
and (2; denote the cells with flow conditions U; in the space—time solution.
Then the cell numbers of the cell to the left and the right of front f; are if;
and ig, r, respectively. The numbers of the fronts to the left and the right of
cell 2; are jo, 1(t) and jo, +(t), respectively.

Consider the simple example of a single discontinuity in the initial con-
dition at which only a centered rarefaction fan is created (see Fig.1). The
piecewise constant approximation results in ng uniform domains separated
by nt = ng — 1 discontinuities. At the local Riemann problem, the created
cells are labeled as domains with truly uniform or nonuniform flow conditions
based on the position of the cell in the solution of the Riemann problem. In
this case, the flow conditions in cells £, and (2, are labeled as uniform,
where the cells are numbered from the left to the right. These cells are not
affected by the piecewise linear reconstruction. In the other cells (2; with
i =2,...,nq — 1, which discretize the rarefaction wave, the flow conditions
are labeled as nonuniform.

Front f; in Fig. 1 has wave type Ich, front f,,, has wave type rch, and fronts
f; with 7 = 2,...,n¢ — 1 have wave type ich, where the fronts are numbered
from the left to the right. These wave types are used in the piecewise linear
reconstruction of the solution in the cells 2; with ¢ = 2,...,nqg — 1. At all
characteristic wave types, the flow conditions vary continuously. At front f;
with wave type Ich, the flow conditions are equal to those in the cell to its
left Uj,, ,. The flow conditions at front f,, with wave type rch are equal to
those in the cell to its right Uifnf,r' At the fronts with wave type ich, f; with
7 =2,...,n¢—1, the flow conditions are the average of those in the cell to its
left and its right (Uifj,1 + Uifj’r)/2.

Since the gradient of the flow conditions changes in time and in general,
the cells §2; can be bounded by different fronts f;, ) and fj, () in time,
the piecewise linear flow conditions in the cells £2; with i =2,...,nqg — 1 are
represented as follows. The flow velocity in a centered rarefaction wave, which
originates in a single point, varies exactly linear in space. Therefore, linear
flow conditions in the cells {2; are reconstructed as if the cell is a centered

> X > X

Fig. 1. The piecewise linear reconstruction of the solution of a rarefaction fan
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rarefaction wave with origin O; at (ze,,to,). The origin of the centered
rarefaction wave might be the actual origin of the cell or a virtual origin.
The flow conditions at the fronts bounding the cell initially at the left and
the right are linearly projected onto flow conditions at lines with velocity
u~ = —1 and ut = 1 through the cell origin O;, U;” and U;“ , respectively.
The piecewise linear flow conditions U;(z,t) in cell §2; are then based on the
linear relation through U;” and U;":

r — X,
t—toi7

1 _ 1 _
with (z,t) € ;. The result of this linearization is for the centered rarefac-
tion fan shown in Fig.1. This piecewise linear reconstruction can mostly be
employed as a postprocessing step. Special attention has to be paid at the
cells at the final time level and the piecewise linear reconstruction of the flow

conditions in nonsimple waves.

3 Numerical Results

In this section, the second-order front tracking method is verified by compari-
son of numerical results with those of Godunov method for a one-dimensional
unsteady Riemann problem. A validation study is performed by comparing
results for a supersonic wing section flow with experimental data.

3.1 Verification

The second-order front tracking method is applied to Sod’s Riemann prob-
lem [Sod78] to verify the convergence in comparison with the first-order
Godunov finite volume method [Tor97]. The initial left and right states
of Sod’s Riemann problem are defined as piery = plery = 1, Pright = 0.1,
Pright = 0.125, and zero velocity.

In Fig. 2, the solution for the density at ¢ = 1 is given for the front track-
ing (FT) method with ny = 8 and for the finite volume (FV) method with
nyx = 128 spatial cells, and cfl = 0.5. The front tracking method results in an
approximation of the shock wave and the contact discontinuity as true dis-
continuities, since the uniform domains in the solution are unaffected by the
piecewise linear reconstruction. The flow conditions in the rarefaction fan are
approximated accurately by the piecewise linear representation using eight
characteristics. The most profound difference with the finite volume results
is the numerical smearing of especially the contact discontinuity in the finite
volume results.

The L; error convergence with respect to ns and ny is shown in Fig.3
for the piecewise constant and piecewise linear front tracking method, and
the finite volume method. The piecewise linear reconstruction of the solution
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Fig. 2. Front tracking (FT) and finite volume (FV) solution for the density of Sod’s
Riemann problem at t =1

Fig. 3. Error convergence of the front tracking (FT) method and the finite volume
(FV) method for Sod’s Riemann problem at ¢t =1

results in second-order error convergence for the front tracking method. This
results in significantly lower error than for the first-order piecewise constant
front tracking method. The finite volume method converges approximately
with first-order accuracy toward the front tracking solution. The absolute
error is, however, larger than for the first-order front tracking method due to
the numerical smearing of the contact discontinuity.

3.2 Validation

A similar front tracking algorithm as for one-dimensional unsteady Euler flow
can also be applied to two-dimensional supersonic flow problems. Supersonic
flow over a circular arc wing section with a maximum thickness of 12% in a
free stream flow with Mach number 2 and 2.5 is considered. The numerical
results for the drag of the wing section are validated by comparison with
experimental data.

In Figs.4 and 5, the front tracking solution for the Mach number field is
shown for free stream Mach numbers of M, = 2 and M, = 2.5, respectively.
The surface of the wing section is approximated by ng = 41 points. The leading
and trailing edge shock wave are slightly curved due to their interaction with
the expansion created at the wing section surface. The front tracking method
also resolves a slight gradient of the Mach number downstream of the trailing
edge shock wave due to the entropy gradient caused by the curved shocks.
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0.2

Fig. 4. Front tracking solution for the Mach number field of the supersonic wing
section flow with My = 2

Fig. 5. Front tracking solution for the Mach number field of the supersonic wing
section flow with Mo = 2.5

Table 1. Drag of the supersonic wing section obtained from front tracking
simulations and experiments

Mach Cells Computed Measured

2 2,028 0.0450 0.0462
2.5 8,142 0.0339 0.0330

The case of My, = 2.5 in Fig.5 results in a slightly higher range of Mach
numbers and steeper shock wave angles compared to M., = 2 in Fig. 4.

In Table 1, the drag computed by the front tracking method is compared
with experimental data. The experimental data are obtained by pressure hole
measurements performed by Souverein, Van Oudheusden, and Scarano [Sou77,
SOS07]. The numerical results for the drag show good agreement with the
measured values for both M., = 2 and M., = 2.5.

4 Conclusions

A piecewise linear reconstruction of the solution of the improved front tracking
method is proposed. A comparison with the Godunov method demonstrated
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second-order error convergence for Sod’s Riemann problem. The results of
the application to two-dimensional supersonic wing section flow showed good
agreement with experimental data. More challenging test problems including
multidimensional unsteady problems will be considered in future work.
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