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Abstract

Situational awareness within port areas is crucial to avoid collisions, navigate efficiently and reduce
congestion. Maritime-traffic controllers constantly monitor the situation in the port and intervene when
needed. This study proposes a deep learning model that predicts future vessel positions to assist in this
process. The model employs a target conditioned trajectory prediction component composed of two
recurrent neural networks arranged in an encoder-decoder structure that utilizes historical data points
to forecast future trajectories. The model considers multiple factors, including vessel speed, location,
length, depth, draught, and the tide. Additionally, this study addresses the prediction of swing manoeu-
vres, which are special U-turn-like manoeuvres executed during terminal arrival or departure. These
manoeuvres can block a significant portion of the waterway and, as such, are essential to consider
when gaining a complete understanding of future situations within the port. An integration of both mod-
els is applied to a use case study in a scoped area of the Port of Antwerp-Bruges. The models were
trained using AIS and VTS data collected at 30-second intervals. Swing manoeuvres are predicted with
an accuracy of 84%, the locations of these manoeuvres are predicted with an average deviation of 212
meter and the duration error is 1.6 minutes on average. The complete predicted trajectories, including
potential swing manoeuvres, have an average displacement error and final displacement error of 147
and 117 meter on average, respectively. Overall, the study demonstrates the potential of deep learning
models for improving situational awareness within port areas and assisting traffic controllers in making
informed decisions.
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1
Introduction

The Port of Antwerp-Bruges is a busy hub of maritime activity with a complex nautical situation that
demands continuous monitoring. Given the large volume of vessels that navigate the port’s waterways,
ensuring safety is of crucial importance. In addition to preventing potential hazards and reducing con-
gestion, maintaining situational awareness can also help to minimize carbon emissions by optimizing
vessel traffic flows and reducing idle time. Monitoring the live positions of vessels contributes to the
situational awareness of maritime traffic controllers. Additionally, the implementation of a live prediction
model, as detailed in this study, can further improve the understanding of future situations in the port.

1.1. Port of Antwerp-Bruges

This thesis conducts a case study at the Port of Antwerp-Bruges. The port is the second largest seaport
in Europe and handled around 250 million tonnes of maritime freight volume in the year 2021 [5]. The
port has five deep-sea container terminals, which are used to load and unload large container ships
arriving and departing from the port.

Since these container vessels arrive and leave the port through one waterway (see Figure 1.1), they
need to make a U-turn somewhere within the port. Such a U-turn manoeuvre is done right before a
vessel arrives at the terminal location or just after it leaves the terminal place. The potential locations for
a large container vessel to execute a swing manoeuvre are dependent upon various factors, including
but not limited to the vessel’s draught and the tide conditions. Chapter 4 will explain and investigate
these swing manoeuvres in more detail, but the main takeaway is that these swing manoeuvres are
required, block a large part of the waterway, and can take some time.

1.1.1. Scoped area

This study narrows its focus to a small, scoped area of the port, see red rectangle in Figure 1.1. This
scoped area is of particular interest, because it connects the southern parts of the port to the North
Sea and it contains two terminals and two locks in a relatively small area. A bird eye view of this area
can be seen in Figure 1.2. The Europa Terminal (EUT) and Noordzee Terminal (NZT) are used to dock
container vessels and load and unload them. Furthermore, the Zandvliet Lock and Berendrecht Lock
are used to enter or leave the inland waters of the port. As can be seen in Figure 1.1, the waterway
which goes through the scoped area connects the port with the sea. This means that all vessels leaving
the port to the sea or arriving from the sea will pass this scoped area. Due to this high traffic intensity
and the presence of two terminals and locks, this area is considered of critical importance.

Swing manoeuvres especially have impact in the scoped area of the port. In this area there are
namely two terminals which are connected to a busy waterway. Swinging vessels blocking the waterway
in front of the Noordzee Terminal restrict traffic to more southern parts of the port and to the locks.
Moreover, swinging vessels in front of the Europa Terminal block traffic to the southern parts of the
port. Since it is crucial to avoid collisions in the port and minimize congestion and delays, these swing
manoeuvres play an important role in the management of traffic.

1



1.1. Port of Antwerp-Bruges 2

Due to its high traffic volume and bottlenecking characteristics, the scoped area serves as a crucial
point in the Port of Antwerp-Bruges. As such, it is critical for the Port of Antwerp-Bruges to maintain an
attentive watch over both current and future traffic situations in the area.

Figure 1.1: Location of the Port of Antwerp-Bruges and the Scheldt river. The red rectangle contains the area of the port which
this study focuses on. Map data @2023, Google.

Figure 1.2: A bird eye view of the scoped area of the Port of Antwerp-Bruges
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1.2. Research objective

According to a study that analyzed marine collision reports, 71% of human error is caused due to lack
of situational awareness. Specifically, of the errors related to situational awareness, around 9% were
attributed to a lack of awareness regarding future actions in the marine environment [20]. The objective
of this study is to assist maritime traffic controllers in obtaining situational awareness. Traffic controllers
must be aware of the current situation and look ahead in time to foresee congestion. To aid them in
this process, this study aims to create a model that can predict future vessel trajectories. Since swing
manoeuvres are crucial parts of these trajectories, the model must also take them into account.

Given this objective, the main research question is:

How can a vessel trajectory prediction model that accounts for swinging manoeuvres be
developed and applied to a case study at the Port of Antwerp-Bruges?

This question is further broken down in the following sub questions.

RQ1. How is the problem of trajectory prediction formalized?
RQ2. What methods can be used to tackle the trajectory prediction problem?
RQ3. How are swing manoeuvres defined and extracted from historical trajectories?
RQ4. How effective are the found trajectory prediction methods in predicting simple trajec-
tories without swinging manoeuvres?
RQ5. Can these same trajectory prediction methods predict trajectories with swinging ma-
noeuvres or is a special model needed for this purpose?
RQ6. How is a single model constructed which can accurately predict complete vessel
trajectories, including swinging manoeuvres?

1.3. Thesis contributions

Trajectory prediction is a well-known area of study and quite some research has been done in this
domain. These studies do not only concern vessel trajectory prediction, but similar methods are used
in other domains, such as car, aircraft or pedestrian trajectory prediction. A more detailed overview of
the state-of-the-art methods for trajectory prediction can be found in Chapter 3. Although substantial
literature is present on trajectory prediction, limited research is done on trajectory prediction including
swingmanoeuvres. The present literature only analyses swingmanoeuvre with the objective to improve
port design. However, to the best of the author’s knowledge, predicting swing trajectories is not done
before.

As mentioned in section 1.1, swing manoeuvres do form a critical part of the trajectories of vessel
in the Port of Antwerp-Bruges. Therefore, in this case study they must be incorporated in the trajectory
predictions.

Therefore, the contribution of this study is two-fold:

• This study extends state-of-the-art vessel trajectory prediction methods to incorporate swing ma-
noeuvres.

• This study applies trajectory prediction models on a specific use case scenario at the Port of
Antwerp-Bruges.

1.4. Thesis outline

The structure of the remainder of this thesis is guided by the research questions. First of all, Chapter 2
introduces the data used in this thesis and gives some useful insights in this data. Chapter 3 formulates
the problem of trajectory prediction and provides an overview of existing methods to tackle this problem.
At the end of this chapter the trajectory prediction model used for this study is introduced. The next
chapter, Chapter 4, elaborates on the topic of swing manoeuvres and introduces the swing prediction
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model. Next, Chapter 5 presents the full model which combines the trajectory prediction model from
Chapter 3 and the swing prediction model from 4 to predict complete future trajectories including swing
manoeuvres. After all models have been discussed, Chapter 6 discusses the evaluation and perfor-
mance of these models. This document ends with a summary, conclusion, discussion and pointers for
future work in Chapter 7.



2
Data

With around 90 percent of global trade conducted via sea transport and continued growth in marine
traffic [24], ensuring the safety and security of ships and their cargo is of great importance. To this
end, the International Maritime Organization (IMO) has introduced Automatic Identification Systems
(AIS) that periodically transmit data for vessels at sea, with the goal of improving navigation efficiency
and safety [23]. AIS data provides a real-time view of vessel positions and can enhance situational
awareness, making it a valuable tool for maritime traffic controllers. When vessels enter a port, a
vessel traffic service (VTS) communicates with the vessels with the goal of improving the safety and
efficiency of the vessels within the port. A VTS typically uses radar to keep track of the locations of
vessels within the port. The data collected by the VTS combined with the AIS data can be used for
reporting and analysis purposes. In this study this data is used to train neural networks.

This chapter presents the two years of historical vessel data from the Port of Antwerp-Bruges which
is used in this research. Section 2.1 provides an overview of the data structure, while section 2.2
describes the necessary preprocessing steps.

2.1. Features

The Port of Antwerp-Bruges continuously records the positional data and meta data of the vessels
entering the port. For this study, The Port of Antwerp-Bruges provided two years of vessel data. Most
data come from the AIS source, but a part originates from the VTS. The data was recorded in the
scoped area of the port as described section 1.1. However, complete data covering two years is only
available for container vessels. For other vessel types, only data from September and October 2022
is present. The availability of a significant amount of container vessel data is crucial, as trajectories
of container vessels interacting with the Noordzee Terminal or Europa Terminal are less frequent than
those bypassing the scoped area of the port. The Port of Antwerp-Bruges provided the data in three
parts:

1. Vessel positional data
2. Vessel meta data
3. Vessel trajectory data

The positional data records were captured at approximately 30-second intervals and include the
relevant features shown in Table 2.1. Additionally, static data for each vessel that passed through the
port was provided in the vessel meta data file. The relevant features from the meta data are listed in
Table 2.2. The vessel origin and destination contain the exact name of a specific location, such as
”Loodskotter West” or the terminal location ”S853”. The vessel trajectory data file consists of a list of
vessel trajectories, each characterized by a start time (in case of departure) or end time (in case of
arrival), along with additional meta data fields. Notably, the draught of a vessel during its trajectory,
which is the distance between the waterline and the bottom of the vessel, was included as a useful
feature that is not present in the meta data file.

5



2.2. Preprocessing 6

MMSI The unique identification number of the vessel
Timestamp An epoch timestamp of the time at which this data point was recorded.
Latitude The latitude position of the vessel
Longitude The longitude position of the vessel
Speed over ground The ground speed of the vessel in knots
Heading The heading of the vessel in degrees, where zeros degrees is the north.

Table 2.1: Useful sequence features from AIS data

MMSI The unique identification number of the vessel
Vessel type The type of vessel
Depth The vessel’s depth
Length The vessel’s length
Width The vessel’s width
Destination The vessel’s destination
Origin The vessel’s origin

Table 2.2: Useful meta data features from AIS data

2.2. Preprocessing

Before the data can be used in the models described in Chapters 3, 4, and 5, several preprocessing
steps are necessary. This section provides a detailed description of each of these steps. Firstly, sub-
section 2.2.1 explains how all the positional data is combined. Subsection 2.2.2 outlines how tide data
is integrated, followed by subsection 2.2.3, which details the process of extracting and interpolating
vessel trajectories. Lastly, subsection 2.2.4 explains how the destinations of these trajectories were
determined.

2.2.1. Positional data and meta data

The first step in the data preprocessing is to merge the vessel meta data with the positional data using
the vessel’s unique Maritime Mobile Service Identity (MMSI) number. The merged vessel data contains
all the features presented in Tables 2.1 and 2.2 for each vessel. In total, the dataset contains 6, 613, 409
positional data records within the scoped area. Meta data is available for 5060 different vessels. How-
ever, not all vessel types are relevant for the scope of this research. The Port of Antwerp-Bruges is
primarily interested in seagoing vessels, as manoeuvres performed by these large vessels can signif-
icantly affect the flow of traffic within the port. Therefore, only data from five vessel types is retained:
Dry, Liquid, RoRo, Container, and General Cargo. These vessel types are not present directly in the
data, so a mapping must be applied to correctly categorize the vessels. Table 2.3 displays how the
vessel types are mapped to the correct vessel category as used by the Port of Antwerp-Bruges. After
filtering for the vessel categories of interest, meta data for 2203 unique vessels are in the dataset.

2.2.2. Tide data

As tide data could be an important factor in the models according to domain knowledge, it is beneficial
to add it to the existing AIS data. The original delivered data does not contain tide data. However,
the Flemish government provides tide tables on their website [37], which indicate the water levels at
different locations in the Belgium waters. The tide data in the port was estimated by using the water
levels at ”Prosperpolder”, which is the closest location to the port where tide data is available.

2.2.3. Trajectory extraction and interpolation

Once the vessel positional data, vessel meta data, and tide data are combined, the vessel trajectories
file is processed to group the data points per trajectory. Since the departure time or arrival time is known
and the interval between two data points is assumed to be approximately 30 seconds, the process of
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Vessel type Vessel category
container ship (full) Container
chemical tanker Liquid
gastanker Liquid
liquefied gas tanker Liquid
tanker Liquid
LNG gastanker Liquid
LPG gastanker Liquid
general cargo GeneralCargo
general cargo/container ship GeneralCargo
general cargo/tanker GeneralCargo
heavy load carrier GeneralCargo
refrigerated cargo GeneralCargo
special cargo GeneralCargo
ore/bulk/oil carrier Dry
bulk carrier Dry
bulk carrier/chemical tanker Dry
ore/oil carrier Dry
roro cargo RoRo
roro cargo/container ship RoRo
roro cargo/general cargo RoRo
roro cargo/vehicles carrier RoRo
roro containers RoRo
vehicles carrier RoRo

Table 2.3: Mapping of AIS data Vessel type to vessel category used by the Port of Antwerp-Bruges

grouping the points by trajectory is possible.
The output of this extraction step is a list of data points per trajectory. However, since the data points

are not uniformly spaced in time, an interpolation step is necessary to ensure that the interval between
adjacent data points is always 30 seconds. Specifically, linear interpolation is applied to the longitude,
latitude, and speed over ground, while nearest neighbor interpolation is used for the heading. All these
attributes are interpolated individually. However, to avoid inaccurate interpolations, trajectories with
more than 15 missing points are removed from the dataset. The number of missing points is calculated
by subtracting the expected number of points, i.e. a point every 30 seconds, from the actual number
of points in the data.

To limit the scope of this research, trajectories which only consist of internal port movements are
excluded from the data. These movements are quite rare and are mostly executed by smaller vessels
within the port. Additionally, outlier trajectories are removed from the data to smooth the training of
the model. Outlier trajectories are identified manually and contain invalid data points (e.g., outside the
sailable area or impossible positional or heading changes). These outliers are a result of imperfections
in the vessel positional data.

After filtering a total of 16238 are extracted. All these remaining trajectories are shown in Figure 2.1.
Figure 2.2 provides an overview of the number of trajectories per vessel category. As can be seen, the
majority of the trajectories are from container vessels.
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Figure 2.1: All trajectories in the scoped area of the Port of Antwerp-Bruges

Figure 2.2: Trajectories per vessel category
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2.2.4. Trajectory destinations

The vessels passing the area of interest (as defined in section 1.1), have more than 200 different unique
destinations. Since most of these final destinations are outside the area of interest, a categorization
of the final destinations is conducted. The trajectories are grouped in six distinct categories based on
their final destination, see Table 2.4.

New route destination Group of vessels
EUT Vessels that have a destination at the Europa Terminal
NZT Vessels that have a destination at the Noordzee Terminal
NORTH Vessels that leave the port, i.e. are heading north
SOUTH Vessels continuing upriver past EUT

ZVS Vessels with a destination behind the locks which are passing the
Zandvliet Lock to reach this destination

BES Vessels with a destination behind the locks which are passing the
Berendrecht Lock to reach this destination

Table 2.4: The new route destination categories

The categories EUT, NZT, NORTH, SOUTH, ZVS and BES are considered to be the new destina-
tions of the vessel. Figure 2.3 illustrates the vessel trajectories split by this new destination and Figure
2.4 shows the number of trajectories per destination type. The start positions of vessels are marked in
blue, and the end positions in red. In most cases, mapping the actual final destination to one of these
categories is straightforward. For instance, if the final destination is a place at the Europa Terminal
such as ”S853”, the category is EUT. However, when the final destination is behind locks, the specific
lock through which the vessel will pass cannot be determined in advance. Nevertheless, by utilizing
the full historical trajectory it can determined by geographical inspection through which lock the vessel
went. In live scenarios, available lock schedules can be used to deduct the lock the vessel will pass
through. Thus, it can be assumed that this method of mapping final destinations to the six categories
can be applied to each vessel during both the training and inference phases.
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(a) Destination: EUT (b) Destination: NZT

(c) Destination: NORTH (d) Destination: SOUTH

(e) Destination: BES (f) Destination: ZVS

Figure 2.3: All vessel trajectories categorized by destination. Blue points indicate the start of a trajectory, red points indicate
the end
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Figure 2.4: Number of trajectories per destination



3
Trajectory Prediction

The goal of this study is to develop a model for predicting the future trajectory of a vessel, including
swing manoeuvres, based on its past trajectory. This chapter focuses on the methods for predicting
trajectories, before delving into swing manoeuvres in Chapter 4. The problem formulation is presented
in section 3.1, while section 3.2 provides an overview of the relevant literature on this topic. In section
3.4, the model utilized in this study to predict simple trajectories (i.e., those without swing manoeuvres)
is introduced.

3.1. Problem formulation

A trajectory is a path that a vessel sails within a certain time period. Since this study only focuses on a
scoped area of the Port of Antwerp-Bruges, trajectories only contain vessel positions within this area.
Figure 2.3 visualises some example trajectories.

A trajectory can formally be defined as a set V of n data points V = {v1, v2, . . . , vn−1, vn}. Each
data point vi is a vector vi = (pi, qi, ti, si, hi), representing the current state of the vessel. pi holds
the longitude position of the vessel, qi the latitude position, ti the epoch timestamp in milliseconds, si
the speed over ground in knots and hi the heading of the vessel in degrees. The time between two
consecutive data points is assumed to be constant. This constant time window is established through
an interpolation preprocessing step, described in section 2.2. Additionally, the vector m holds meta
data about the vessel and its journey. Specifically, m holds the following information: destination of
the journey, category of the journey (i.e. arrival or departure), the vessel type, the vessel’s length, the
vessel’s width, the vessel’s depth and the draught of the vessel during the journey.

Given a meta data vectorm and a historical trajectory which can be of varying length, the task is to
predict a future trajectory. Since this study only considers a scoped area of the Port of Antwerp-Bruges
in this study, the predicted future trajectory should stay inside this area. Therefore, the length of the
future trajectory is automatically limited by this requirement. This formalization of the problem provides
an answer to research question RQ1: How is the problem of trajectory prediction formalized?

3.2. Background

The large availability of AIS data records has enabled the possibility of predicting trajectories in the
domain of vessels. However, the task of trajectory prediction is not unique to the prediction of vessel
movements and is relevant in more domains, such as human, aircraft or car trajectory prediction. This
section reviews the approaches used in the existing literature on agent trajectory prediction, where an
agent can be a vessel, human, car, etc.

12
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3.2.1. Modelling and data based approaches

A basic and commonly used model for vessel trajectory prediction is to assume near constant speed
and course [28]. Improvements on such a model are made by modelling the speed of a vessel using
an Ornstein-Uhlenbeck process [38]. The Kalman filter is a different algorithm which can also be used
to model and predict the movement of objects [42]. However, these physic-based approaches do not
utilise the knowledge of historical AIS data. Prediction methods which are based on historic AIS data
often cluster historical trajectories, classify incoming AIS data points to one of these clusters and then
construct a prediction [21, 3]. These methods can differ in clustering algorithms and trajectory distance
measures [29, 15, 22]. Besides such a trajectory-based similarity search prediction model, Alizadeh et
al. presents a point-based similarity search prediction approach [3]. Here, each AIS record is treated as
a singular point, and spatial, speed, and course variables are used to calculate the distances between
the vessel’s most recent point and all the historical points measured. By identifying the most similar
historical point to the target point, the subsequent locations of the vessel can be predicted based on
that point. A similar approach is used by Hexeberg et. al [21].

3.2.2. Deep learning-based approaches

The success of deep neural networks has led to a significant advancement in the field of trajectory
prediction in recent years. Deep learning approaches used in literature take a historic agent state rep-
resentation, pass this to a deep learning model and output a certain representation of the predicted
future trajectory. The agent state is often represented as a vector of features, which include the times-
tamp, speed, heading and position under a certain coordinate system [9, 35, 6, 27, 2]. The input of
the learning model then consists of a vector of these historic agent states. Next to this agent state,
some researches use additional scene context representations to give the model more information. A
popular scene context representation are images [9, 36, 40, 11, 30].

The future trajectory, i.e. the model’s output, can simply be given as a point set [45, 35, 27, 2]. This
single modality representation aligns with the input representation. Outputs can also be represented
as probability heat-maps [31] or probabilities can be attached to each prediction [36, 30]. Instead of
outputting exact positional values, a model could also predict a mean position µ and variance σ around
it. Controlling uncertainty in this manner is done in [10].

In the literature, several neural network architectures are proposed for the actual deep-learning
model. Since the input representation is often a vector of trajectory points, recurrent neural networks
can be used to encode the historic trajectory [9, 45, 6, 34, 1]. Given this encoding, a second recurrent
neural network can decode the vector to a future trajectory, this encoder-decoder architecture is also
used in other studies [16, 45, 8]. Image inputs are often processed using convolutional neural networks
(CNN) [36, 31] and graph neural networks (GNN) can be used to model interaction effects [41, 32, 13].

Supervised learning is the most common method used to train these deep learning models and
the loss function commonly uses a mean-square-error (MSE) loss to compare the predicted trajectory
against the truth [46]. Additional components can be added to the loss function to smooth the prediction,
such as an inconsistency penalty, penetration penalty or dispersion penalty as used in [12].

A good trajectory prediction model should be able to capture the multimodality of the task, i.e. the
model should be able to handle distinct end locations properly. However, models tend to suffer from
mode collapse, which means average and non-realistic trajectories are predicted instead of diverse
predictions. Dendorfer et al. give an excellent example of a neural network suffering from mode col-
lapse when predicting pedestrian trajectories near a crossroad [14]. A way to counter this problem is
to first use a model to cluster trajectories and then use a trajectory prediction model per cluster [17, 43].
By first clustering the trajectories, the neural network needs to learn less trajectory variations and can
potentially generalize better.

In literature, an alternative method that is employed involves making a prediction of the goal location
of the trajectory, followed by a prediction of the trajectory itself. Instead of asking a model to extrapolate
a past trajectory, this method changes the problem to an interpolation task between the predicted goal
position and the historic trajectory. Such approaches are commonly two staged, a target location is
predicted based on the historical trajectory and scene context and this target prediction assists later
trajectory forecasting [12, 18, 46, 47]. Target conditioned trajectory prediction has shown to perform
better on diverse trajectories [14].
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3.3. Neural networks for sequential data

A possible way to solve the challenge of predicting a vessel’s future trajectory from its historical posi-
tions is by formulating it as a sequence-to-sequence task, which can be tackled using recurrent neural
networks. Using recurrent neural networks for trajectory prediction is often done in other studies (3.2.2).
This section will explain neural network structures which can be used to process sequential data. A
good resource for more in-depth explanations of mathematics and ideas behind the different neural
networks can be found in the book ”Deep Learning” by Ian J. Goodfellow, Yoshua Bengio and Aaron
Courville [19].

3.3.1. Recurrent Neural Network

A recurrent neural network (RNN) is a type of neural network specifically designed to handle sequential
data and to memorize previously seen inputs. Its architecture differs from that of a normal feedforward
neural network, as depicted in Figure 3.1a. In an RNN, the input is processed sequentially, and a
hidden state is maintained throughout the process. The next hidden state is calculated as a function
of both the current input xi and the previous hidden state hi. The current output is computed as a
function of the current hidden state. To perform these computations, the model uses weight vectors wx,
wh, wy, and bias bh as its parameters. These parameters are optimized during the training phase. The
computation of the next hidden state is represented by the formula hi+1 = f(wxxt + whht + bh), while
the current output at yi is computed as yi = f(wyht + by), where f is an activation function such as the
sigmoid function. It’s worth noting that each unit in an RNN uses the same set of parameters wx, wh,
wy, and bh. This parameter sharing approach not only reduces the number of model parameters, but
also enables RNNs to handle variable-length sequential inputs, which is a key advantage of this type
of network.

3.3.2. Long Short-Term Memory

A Long Short Term Memory neural network is a variant of the vanilla recurrent neural network as de-
scribed in the previous section. It is considered an improvement, since it is capable of modelling long-
term dependencies in the input sequence better. Although a vanilla RNN can theoretically keep track
of both long-term and short-term dependencies in input sequences, a problem arises during the back-
propagation algorithm. During training gradients are backpropagated through the unfolded network.
Since input sequences can be long, the network can contain a lot of RNN units. Therefore, gradients
are multiplied quite often. If small gradients are repeatedly multiplied, the final gradient used in the
parameter update step tends to go to zero and if large gradients are repeatedly multiplied then the
gradients used in the update step will be extremely large. Both a vanishing gradient and an exploding
gradient do no good to the learning process.

A LSTM network tries to solve this problem of vanishing and exploding gradients and is therefore
considered to be better in keeping track of long-term dependencies in input sequences than the vanilla
RNN. It does this by not only keeping track of a hidden state hi, but also a cell state ci, see Figure 3.1c.
This cell state is updated in each unit of the network. A LSTM has three gates to control this update
of the cell state: a forget gate, input gate and output gate. The forget gate controls what information
in the cell state can be forgotten after processing the current input. The input gate controls what new
information will be encoded in the cell state given the current input. Finally, the output gate controls
what information in the cell state is used for the hidden state of the next unit. By using these three gates,
the LSTM can update its cell state depending on whether the currently processed input is important or
not.
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3.3.3. Gated Recurrent Unit

A gated recurrent neural network is again an advancement over the vanilla RNN discussed in section
3.3.1. Similar to the LSTM network, GRUs can address the issue of vanishing or exploding gradients.
A GRU architecture has a hidden state and internally updates this hidden state using an update gate
and reset gate. The update gate determines which past information should be carried forward to the
output, i.e. the next hidden state, while the reset gate decides what past information to discard. By
utilizing these gates, a GRU can retain essential information from the distant past and discard irrelevant
information.

Both a LSTM and GRU network can handle long-term dependencies better than a vanilla RNN.
GRUs require fewer computations and memory, making them faster than LSTMs. However, LSTMs
may perform better on datasets with long sequences. Ultimately, the choice between using a LSTM or
GRU depends on the specific use case [44, 7].

(a) (Vanilla) Recurrent Neural Network

(b) Gated Recurrent Neural Network

(c) Long Short-Term Memory Network

Figure 3.1: Schematic overview of neural networks for sequential data
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3.4. Target conditioned trajectory prediction

Predicting the future trajectory of a vessel based on its historical positions can be treated as a sequence-
to-sequence task, which can be addressed using recurrent neural networks as discussed in the previous
section. This section delves into the model utilized for predicting future trajectories based on past data
points.

3.4.1. Encoder-decoder structure

An encoder-decoder architecture with two recurrent neural networks can be utilized to predict future
vessel trajectories based on historical positions. The first recurrent neural network encodes the historic
trajectory into a vector embedding, while the second recurrent neural network generates a future trajec-
tory based on this vector embedding. The vessel meta data can also be incorporated into the decoder
network. This model can be trained end-to-end on the historical trajectories. A schematic representa-
tion of this model utilizing gated recurrent units can be observed in Figure 3.2. In this encoder-decoder
setup, the encoding network essentially summarizes the historic trajectory in a vector embedding and
gives this summary to the decoder network to generate a future trajectory.

(a) Overview (b) Unfolded

Figure 3.2: Schematic overview of a GRU encoder-decoder network

3.4.2. Complete model

During model training, the decoder can be constrained to produce a future trajectory of the same length
as the training sample. However, during inference, it is uncertain when the decoder should terminate the
generation of trajectory points. As explained in section 3.1, the length of the predicted future trajectory
is unknown. The only known requirement is that the predicted trajectories must stop once the vessel
leaves the scoped area. Formulating a clear stopping criterion for the decoder would be beneficial,
and this can be achieved if the target position, which is the last position of the future trajectory, was
known. If the target position is known, a stopping criterion that uses the distance to the target position
can determine whether the decoder should generate more future trajectory points or not. However,
the nature of the trajectory prediction problem does not provide access to the last future trajectory
point since the future trajectory is something that needs to be predicted. Despite the lack of knowledge
about the target point, it can still be predicted using the output of the encoder, which is a summary of the
historic trajectory, and the meta data. Given a predicted target position and the known historic trajectory,
the decoder can construct the future trajectory. The task for the decoder now has now changed from
extrapolation to interpolation given this target position.

A complete trajectory prediction model can now be constructed by incorporating the concepts from
the encoder-decoder network structure and the target prediction process. Figure 3.3 illustrates the
complete model, where the yellow portion represents the encoder. The encoder uses a recurrent neural
network to encode the historical data points into a vector embedding. Before the encoder does this,
it embeds the input in a higher dimension using a multilayer perceptron. The encoder output vector
is combined with the meta data and fed through a feedforward neural network to predict the target
position, which consists of a latitude, longitude and heading. Once the target position is predicted, it is
concatenated with the encoder output and then passed through a multilayer perceptron to produce the
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initial hidden state of the decoder. The decoder sequentially generates future points by taking predicted
future points as input for the next block. For the first input, the last point in the historical trajectory is
used. Besides these future points the decoder also uses the target position as input. The future point
and target position are concatenated and passed through a multilayer perceptron to form the input
of the decoder. The decoder is given the target position at each time stamp to help remember this
important piece of information.

Figure 3.3: Complete target conditioned trajectory prediction model network structure using gated recurrent units

During training a fixed prediction window is used, i.e. the decoder will return the correct number of
future trajectory points. However, during inference a stopping criterion is still required. Since a target
point is now predicted, a stopping criterion can be formulated based on this point. The decoder should
stop generating points if one of these criteria is met:

1. The current point is less than 500meters from the target point and the decrease in distance to the
target position between the current point and the previous point is less than δ

2. The future trajectory contains more than F points

The first criterion that the vessel comes closer to the target position every timestamp, i.e. 30 seconds
and the second criterion provides an upper bound on the trajectory length. This upper bound is set to
100, as the majority (97%) of the historic trajectories contain less than 100 data points.

Figure 3.4 shows a distribution of the decrease in distance to the target point. A distinction is
made between trajectories with destination NORTH or SOUTH and trajectories going to the locks or
terminals (without swing). These latter categories of trajectories will approach their target point with a
lower speed namely. It can be concluded that most of the historical data is in line with the assumption
that the distance to the target point keeps decreasing over time. A reasonable value to use for δ would
be that of the first percentile. Given the historical data, this would mean δ = 3 and δ = 65 are used for
trajectories with destination ZVS, BES, NZT or EUT and destinations NORTH or SOUTH, respectively.
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Figure 3.4: Distribution of decrease in distance to target for all points within 500 meters of the final location

3.4.3. Loss function

The final goal of the complete model is to predict the future trajectory as accurately as possible by
using a predicted target point that should be as close as possible to the actual target point. Therefore,
the loss of the model should align with this goal. Given a historic trajectory {x0, x1, . . . , xm}, a future
trajectory {y0, y1, . . . , ym}, a predicted target point t and a predicted future trajectory {ŷ0, ŷ1, . . . , ŷm},
the loss of the model is calculated with equation 3.1

L = c1 ∗
1

m

m∑
i=0

(yi − ŷi)
2 + c2 ∗ (t− ŷm)2 + c3 ∗ (ym − ŷm)2 + c4 ∗

1

m

m∑
i=0

(yi − ŷi−1)
2. (3.1)

In this equation, c1, c2, c3, c4 are constants. In the last term of the formula xn is used for ŷ−1 (i.e.
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when i = 0 in the sum).
The first term of the loss function is a mean squared error component on the full future trajectory.

The second and third terms are both squared errors on the target prediction and the last predicted
trajectory point. Finally, the last term is a mean squared error between the predicted trajectory and the
predicted trajectory shifted back one time stamp. By adding this term, themodel is restricted from taking
unrealistic speed and position changes between adjacent frames. Such an inconsistency penalty term
to smooth the predicted trajectories by encouraging temporal consistency between trajectory points is
used more often in trajectory prediction models [12].



4
Swing manoeuvres

Swings are U-turn-like manoeuvres which occur when container vessels arrive at or depart from termi-
nals. Container vessels interacting with terminals are required to make a swing manoeuvre on arrival or
departure, which means about half of the container trajectories will contain swing manoeuvres. Since
swing manoeuvres are such a big part of container vessel trajectories, they cannot be ignored in tra-
jectory predictions. This chapter delves deeper into swing manoeuvres.

Section 4.1 defines what a swingmanoeuvre exactly is and section 4.2 explores the current literature
around swing manoeuvres. The process of detecting swings from trajectories is discussed in section
4.3, followed by section 4.4 explaining how swing manoeuvres can be extracted from the full trajectory.
Once the swing manoeuvres are detected and extracted, properties of the historical swing manoeuvres
in the Port of Antwerp-Bruges can be investigated. This is done in section 4.5. Lastly, in section 4.6, a
model for predicting swings is presented.

4.1. Swing definition

The Port of Antwerp-Bruges is situated far inland, making it Europe’s most inland port [5]. The journey
to the port area for container vessels arriving from the sea involves navigating 80 kilometers through
The Scheldt river, which is the only waterway linking the port to the North Sea. As there is only one entry
and exit point for sea vessels, a U-turn manoeuvre is necessary for vessels on a round-trip, commonly
known as a swing manoeuvre. Typically, swing manoeuvres are executed near the terminal location of
the vessel, either before it docks on arrival or after it is released from the quay during departure. These
manoeuvres are time-consuming and require tugboat assistance. Moreover, for safety reasons, a buffer
zone must be maintained around the swinging vessel, which can block parts of the waterway, affecting
the passage of other vessels. Environmental factors such as tide conditions and wind strength also
play a crucial role in deciding to swing or not. If a captain decides not to swing on arrival, it essentially
postpones this manoeuvre to departure. Ultimately, the captain makes the decision to swing or not
while taking all environmental and traffic related factors into account.

4.2. Background

Swing manoeuvres are not unique for the Port of Antwerp-Bruges. More ports use swing manoeuvres
to align container vessels with their desired direction. Especially in ports with only one waterway for
entering and leaving the port, vessels need to make such a manoeuvre. Since it often raises difficul-
ties to find a suitable location for container vessel to execute a swing manoeuvre, as is the problem
in the Port of Antwerp-Bruges (section 1.1), studies have been conducted on designing port areas in
an optimal manner that considers swing manoeuvres [26, 25]. However, changing existing port lay-
outs is difficult and the fact that container vessels have become longer over time adds to the problem.
Paulauskas discusses the influence of these big container vessels on ports designed using old safety
and navigation standards [39]. With his analysis on turning basins, he claims that due to modern accu-

20
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rate navigational and measurement equipment, the old safety standards implemented in several ports
should be reviewed.

The trajectory prediction model presented by Hexeberg et. al obtained some large errors on certain
trajectories, which were caused by swing manoeuvres as reported by the authors [21]. Besides this
notion of swing manoeuvres in the vessel trajectory prediction literature, no literature has been found
on trajectory prediction methods which incorporate swing manoeuvres.

4.3. Swing detection

Swing detection is the process of determining whether a historical trajectory of a vessel contains a
swing manoeuvre or not. Such manoeuvres are distinguished by a considerable change in the vessel’s
heading over a short duration of time. As the vessel executes a U-turn, the heading change is typically
around 180 degrees over the entire manoeuvre. Additionally, swing manoeuvres usually take around
±20minutes to complete. Based on these observations, swing detection logic can be created to identify
trajectories with swing manoeuvres.

Given is a trajectory representation V of n data points V = {v⃗1, v⃗2, . . . , v⃗n−1, v⃗n}. Each data point
v⃗i is a vector v⃗i = (pi, qi, ti, si, hi), where pi ∈ P represents the longitude position, qi ∈ Q the latitude
position, ti ∈ T the epoch timestamp in milliseconds, si ∈ S the speed over ground in knots and hi ∈ H
the heading of the vessel in degrees.

Now define a function f : H × H → [0, 180] which takes two headings and outputs the smallest
difference in degrees between these headings. The smallest difference between the headings is con-
sidered, because of the modular 360 nature of circles. As an example, take hi = 40 and hi+1 = 345,
visualised in Figure 4.1. By using the formula |hi − hi+1| to calculate the difference between headings,
the difference would be |hi−hi+1| = |40−345| = 305 degrees. This angle is visualised in blue in Figure
4.1. Although this is not a wrong answer to the question ”what is the difference between angle hi and
hi+1?”, it is more likely that the vessel made a anticlockwise turn and the actual change in heading is
α = 65 degrees.

Therefore, to make sure the detection process does not extract false positives, i.e. trajectories
without a swing indicated as having a swing, f returns the smallest difference between two headings.
Thus, the following formula is used for f :

f(hi, hj) = 180− ||hi − hj | − 180| (4.1)

Figure 4.1: Two headings of an anticlockwise swinging vessel

By combining domain knowledge and this function, it is possible to formalize a definition for a tra-
jectory that includes a swing manoeuvre:
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V contains a swing manoeuvre ⇔ {(i, j)|1 ≤ i, j ≤ n∧j > i∧tj−ti ≤ 25∗60000∧f(hi, hj) ≥ 125} ̸= ∅
(4.2)

This formalisation means that a vessel makes a swing manoeuvre if and only if there exist two data
points on the trajectory which are no more than 25 minutes apart and have a difference in heading
larger or equal to 125 degrees, where the difference in heading is calculated using equation 4.1. Note
that a factor 60000 is used to convert the 25 minutes to milliseconds, which is the unit of ti and tj .

Domain knowledge indicates that swingmanoeuvres can take up to 20minutes, therefore 25minutes
is a reasonably safe upper bound. The choice for 125 degrees is based on visual inspection. In the
histogram in Figure 4.2 the red dotted line at x = 125 clearly splits two clusters of trajectories. To
the left of this line are trajectories who do not contain a swing manoeuvre and too the right of this
line are those who do. An expected peak around 180 degrees is visible, which represents full U-turn
manoeuvres. There are also some swings outside this peak, i.e. the smaller cluster of swings around
150 degrees. These originate from vessels arriving to and departing from the Europa Terminal (EUT).
Figure 4.3 shows an example of a container vessel departing from the EUT using a anticlockwise swing.
Since the EUT is not parallel to the waterway which container vessels use to arrive from and depart to
the sea, a swing of around 150 degrees is sufficient.

Figure 4.2: Distribution of maximum directional change in container vessel trajectories
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Figure 4.3: Example of vessel leaving the EUT with an anticlockwise swing

4.4. Swing extraction

Once swing manoeuvres are detected from historical trajectories, it is important to extract them from
the entire trajectory. This means that only the segment of the trajectory in which the vessel performs a
swing manoeuvre is kept. For instance, if a trajectory lasts for 40 minutes, the relevant portion of the
trajectory is only the 10 minutes in which the vessel is performing the swing manoeuvre.

Swing manoeuvres are often done approximately in place, which means the speed of a vessel
during its trajectory is an important factor to look at. Furthermore, the change of the vessel’s heading
over time is something to look at. This is expressed by the yaw rate, which is the directional change in
heading in degrees per minute. For the directional change between two headings equation 4.1 can be
used again.

Using the same trajectory definition as in section 4.3, a swing window w = [bswing, eswing] can be
defined where bswing, eswing ∈ {1, . . . , n}. This window indicates the part of the trajectory in which the
vessel is swinging.

Further let γ : {1, . . . , n − 1} → R be a function which, given i ∈ {1, . . . , n − 1}, computes the yaw
rate in the interval [i, i+ 1].

γ(i) =
f(hi, hi+1)

(ti+1 − ti) ∗ 1
30000

(4.3)

Next, let the indicator function ψ : {1, . . . , n − 1} → {0, 1} indicates if a data point v⃗i is during a
swing manoeuvre or not. If ψ(i) = 1, then the vessel is performing a swing manoeuvre. However, the
inverse is not necessarily true.

ψ(i) =

{
1, if 1 ≤ i ≤ n ∧ γ(i) ≥ 10 ∧ si ≤ 2

0, otherwise
(4.4)

Hence, a data point is classified to be during a swing manoeuvre if the change in heading is currently
larger or equal to 10 degrees per minute and the speed is lower or equal to 2 knots, which is approxi-
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mately 3.7 kilometers per hour. The motivation behind these numbers come from domain knowledge
and visual inspection.

Using the indicator functionψ awindow [b′swing, e
′
swing] can be defined in which the vessel is definitely

swinging. An assumption is made that each trajectory comprises a single swing manoeuvre, which is
reasonable.

b′swing = min
i
[ψ(i) = 1] where i ∈ {1, . . . , n− 1} (4.5)

e′swing = max
i

[ψ(i) = 1] where i ∈ {1, . . . , n− 1} (4.6)

Vessels can have a lower yaw rate than 10 degrees per minute in the beginning or ending of a
swing. Moreover, small vessels could swing at larger speeds than 2 knots, especially in front of the EUT.
This means that the use of the indicator function in equation 4.5 and 4.6 might mean that the window
[b′swing, e

′
swing] is smaller than the actual swinging window [bswing, eswing], i.e. b′swing > bswing∧e′swing <

eswing. Using a lower yaw rate bound and higher speed bound in the definition of ψ to solve the problem
is not possible. ψ will violates its meaning then, as it will be too sensitive and falsely classify small course
changes during the trajectory of a vessel as being part of a swing manoeuvre.

To still be able to extract the full swing window, the window is extended on both sides by including
data points where the yaw rate is still above 6 degrees per minute. This procedure is written down in
equation 4.7 and 4.8.

bswing = min{i ∈ {1, . . . , b′swing}|(∀k ∈ {i− 1, . . . , b′swing})[γ(k) ≥ 6]} (4.7)

eswing = min(n, 1 +max{i ∈ {e′swing, . . . , n}|(∀k ∈ {e′swing, . . . , n})[γ(k) ≥ 6]}) (4.8)

An example of swing extraction for a specific trajectory using the procedure described above is
shown in Figure 4.4. The points in this graph are plotted in one-minute intervals for clarity. In this
example [b′swing, e

′
swing] = [6, 10] and [bswing, eswing] = [4, 13]. The horizontal lines are plotted at a yaw

rate of 6 and 10.
Figure 4.5 shows the vessel heading, yaw rate and speed of four more example trajectories. The

extracted swing window using equation 4.7 and 4.8 is indicated using two dotted black lines. In these
plots the time between two adjacent points is 30 seconds.

Figure 4.4: A tight swing window (grey dotted line) and extended swing window (black dotted line). Interval between points is
one minute.
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Figure 4.5: The vessel heading, yaw rate, speed and swing window during four different trajectories (interval is 30 seconds)
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4.5. Historical swings

Given the historical AIS data (chapter 2) and the swing detection (section 4.3) and swing extraction
(section 4.4) procedures, an analysis on historical swing manoeuvres is possible.

The Port of Antwerp-Bruges provided all container vessel trajectory AIS data during the years 2021
and 2022. Figure 4.6 shows an overview of the number of swing manoeuvres per route type and
terminal within these years and Figure 4.7 visualises the swing duration per terminal. As can be seen
from the latter figure, swing manoeuvres took between 6 to 15 minutes. The swing manoeuvres at
the Noordzee Terminal seem to take a bit longer on average. Given that it takes longer to swing large
vessels, one possible explanation for the latter observation is that swinging vessels at the Noordzee
Terminal have a mean length of 258 meters, while those at the Europa Terminal have a mean length of
232 meters.

Figure 4.6: The number of swing manoeuvres per route type and terminal

Figure 4.7: The duration of swing manoeuvres per terminal. Outliers outside 3 standard deviations are removed.

The length of a vessel and the draught of a vessel can influence the duration of a swing manoeuvre.
Small vessels can make a swing manoeuvre relatively quickly on their own, but larger vessel need
tugboats. Figure 4.8 shows the impact of vessel length and draught on the swing manoeuvre duration.
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As expected, a positive relationship between vessel length and swing duration and vessel draught and
swing duration is observed.

Figure 4.8: The influence of the vessel length and draught on the swing manoeuvre duration

As discussed in section 1.1, the location of the swing manoeuvre is hard to pick, as all locations
block different parts of the waterway. Therefore, it is useful to gain some insights in the location of
historical swing manoeuvres. Figure 4.9 visualises the trajectory during all swing manoeuvres and
the location for all historic swing manoeuvres can be seen in Figure 4.10. The location of a swing is
defined as the location halfway through the swing manoeuvre. It seems that smaller vessels swinging
at the Europa Terminal often do this near their terminal location, whereas larger vessel swing more
in front of the locks. At the Noordzee Terminal both small and large vessel swing approximately in
front of their terminal location. However, smaller vessels tend to swing a bit closer to the terminal than
larger vessels. At the Noordzee Terminal, small vessels made a swing manoeuvre 294 meters from
the terminal location on average, while large vessels did this 389 meters from the quay. For the Europa
Terminal, smaller vessels also made the swing manoeuvre closer to the terminal, namely 308 meters
compared to 650 meters for large vessels.
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Figure 4.9: Historic swings of all container vessels in the year 2021 and 2022

Figure 4.10: Historic swing locations of all container vessels in the year 2021 and 2022
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4.6. Swing prediction

Swing manoeuvres are crucial for determining the paths of container vessels. In order to have a precise
understanding of upcoming situations in the port, it is essential to consider these manoeuvres. As a
result, the need to anticipate the occurrence and movement of swing manoeuvres becomes apparent.
Predicting swing manoeuvres can be done in different levels of details. An option is to predict the whole
swing manoeuvre, i.e. the location and headings during the whole manoeuvre. However, prediction
of the full swing manoeuvre is a difficult problem to solve since these manoeuvres are relatively rare
and can vary a lot in their exact details. The goal of the study is to make a capacity prediction of the
waterways. Exact heading and position of the vessel during the swing manoeuvre is less important than
the occupation of the waterway resources and the duration of this occupation. Therefore, an alternative
could be to only model the location and duration of the swing and assume the vessel will swing in place.
However, the downside of this approach is that it ignores the movements which the vessel sometimes
makes during the swing manoeuvre. Therefore, this study uses an in-between approach by predicting
the start location, end location and duration of the swing. This abstraction keeps the relevant details of
the swing while not modelling unnecessary details. Figure 4.11a, 4.11b and 4.11c visualise these three
different ways of modelling a swing manoeuvre.

(a) Option 1: full swing manoeuvre (reality) (b) Option 2: start and end of swing manoeuvre

(c) Option 3: in place swing manoeuvre

Figure 4.11: Different options for modelling a swing manoeuvre

4.6.1. Swing occurrence prediction

Container vessels interacting with terminals need to swing either on arrival or departure. The captain’s
preference plays a crucial role in the decision whether to swing or not when arriving in the port. The
captain bases its choice mainly on environmental factors, of which the tide condition is really important,
and traffic conditions.

Determining whether a departing vessel will swing is easy. The way these vessels are oriented
against the terminal reveal whether they require to swing or not. At the Europa Terminal, vessels of
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which the heading is pointing to the south need to swing (see Figure 4.12a). Vessels with a heading
pointing to the north can immediately leave without a swing manoeuvre (see Figure 4.12b). At the
Noordzee Terminal, vessels with a heading pointing to the east need to swing (see Figure 4.12c) and
vessels with a heading pointing to the west do not require a manoeuvre (see Figure 4.12d).

(a) Departing EUT, swing (b) Departing EUT, no swing

(c) Departing NZT, swing (d) Departing NZT, no swing

Figure 4.12: Vessels departing from the terminal

For arriving vessels, it is not straightforward whether they will swing or not. If an arriving vessel does
not swing, it essentially postpones this manoeuvre to its departure and when the vessel does swing, it
can later immediately depart. Given data about the vessel’s journey and the environmental conditions,
a prediction can be made on whether the vessel will swing on arrival or not. Locations of containers
on the vessel are not taken into account and it is assumed that all captains have the same preference
profile.

Based on vessel’s meta data and on a fraction of the trajectory of varying length before the swing,
the goal is to predict whether the vessel will swing or not. For this task the model visualised in Figure
4.13 is used. This model takes the historical trajectory (i.e. before the swing) and encodes it in a
vector. This encoding is done in the same manner as historical trajectories are encoded in the target
conditioned trajectory prediction model (section 3.4). In Figure 4.13 the historical trajectory is encoded
using a GRU, but a LSTM or vanilla RNN could also be used. To this encoded vector, the meta data
vector is concatenated and then the result is passed through a final dense neural network. The output
layer of this neural network has one neuron with a sigmoid activation function. Therefore, this neuron
outputs a value ŷ ∈ [0, 1], ŷ ≥ 0.5 is considered a swing prediction and ŷ < 0.5 as a prediction without
a swing.
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Figure 4.13: Swing occurrence prediction deep learning model architecture using a gated recurrent unit

4.6.2. Swing location prediction

After establishing through the methodology detailed in 4.6.1 that the vessel will undergo a swing ma-
noeuvre, a follow up question is how this swing manoeuvre should look like. For the maritime traffic
controllers in the port of Antwerp-Bruges, the most important knowledge to obtain is the location and
duration of the swing. Knowing the exact movement during the swing is of less importance. With this
requirement in mind, the problem can be simplified from predicting the whole swing manoeuvre to pre-
dicting only the location of the manoeuvre. From Figure 4.9, it becomes clear that vessels do not always
swing in place: their longitude and latitude position often changes during the manoeuvre. Therefore,
predicting only one swing location (as in Figure 4.10) and assuming in place swinging would abstract
reality too much and result in inaccurate predictions. Instead, predicting the start and end position of
the swing seems a usable approach. The start and end position are characterised by their longitude
position, latitude position and heading. Therefore, a swing location prediction model should be able to
predict these three characteristics for both the start and end of the swing based on a historic trajectory
before the swing manoeuvre.

For this purpose, the same neural network architectural setup as in section 4.6.1 is used again. An
encoder network will encode the historic trajectory in a vector and this encoded vector will be concate-
nated to the meta data vector and passed through a final feedforward neural network. The output layer
of this feedforward neural network will contain 9 neurons:

• Neuron 1: the latitude position at the start of the swing
• Neuron 2: the longitude position at the start of the swing
• Neuron 3: the sine of the heading at the start of the swing
• Neuron 4: the cosine of the heading at the start of the swing
• Neuron 5: the latitude position at the end of the swing
• Neuron 6: the longitude position at the end of the swing
• Neuron 7: the sine of the heading at the end of the swing
• Neuron 8: the cosine of the heading at the end of the swing
• Neuron 9: the duration of the swing manoeuvre in minutes.

The first four neurons predict the start of the swing, the next four neurons the end of the swing and
the last neuron predicts the duration of the swing. Using these neuron is the most straightforward way
to model the start, end and duration of a swing manoeuvre. The sine and cosine of the headings are
used instead of the heading directly because of the circular nature of the heading values. A heading
change from 2 degrees to 359 degrees seems like a huge difference numerically, but visually these
headings are quite close. The cosine and sine values of a heading of 2 degrees and a heading of 359
degrees have the property of being quite close to each other numerically.



5
Trajectory and manoeuvre prediction

model

In order to make precise predictions of the future trajectory of a vessel in the Port of Antwerp-Bruges,
a model must be capable of handling two crucial aspects of vessel movement: sailing a trajectory and
swing manoeuvres. Chapter 3 delved extensively into the topic of trajectory prediction, while Chapter
4 focused on the analysis of swing manoeuvres and the models used to predict their occurrence and
location.

This chapter builds upon these concepts by discussing amodel that integrates both trajectory predic-
tion and swing manoeuvre handling. By incorporating these two factors into a single model, it becomes
possible to predict complete vessel trajectories in the Port of Antwerp-Bruges. Section 5.1 will discuss
all possible route options which the model should consider and section 5.2 will give an overview of the
model.

5.1. Vessel route options

To be able to predict complete trajectories, the model must be able to handle all scenarios, i.e. all vessel
types and route origin and destination combinations in the scoped area of the Port of Antwerp-Bruges
must be dealt with. Given the data, as described in section 2, an overview of all vessel route options
is visible in Table 5.1.

Identifier Route type Route start Route end Involved terminal Swing
R1 Arrival NORTH EUT EUT No
R2 Arrival NORTH EUT EUT Yes
R3 Departure EUT NORTH EUT No
R4 Departure EUT NORTH EUT Yes
R5 Arrival NORTH NZT NZT No
R6 Arrival NORTH NZT NZT Yes
R7 Departure NZT NORTH NZT No
R8 Departure NZT NORTH NZT Yes
R9 Arrival NORTH ZVS - -
R10 Arrival NORTH BES - -
R11 Arrival NORTH SOUTH - -
R12 Departure ZVS NORTH - -
R13 Departure BES NORTH - -
R14 Departure SOUTH NORTH - -

Table 5.1: All possible route options in the scoped area of the Port of Antwerp-Bruges

The last six route options, i.e. R9-14 in Table 5.1, do not involve any terminal and will not contain

32
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a swing manoeuvre. Non-container vessels can only do route options R9-R14. The target conditioned
trajectory prediction model as presented in Chapter 3 can therefore be used to predict the future trajec-
tory of vessels within these categories. Route options R1 to R8 do involve interaction with one of the
terminals. Four of these route options, R1, R3, R5 and R7, do not contain a swing manoeuvre. There-
fore, the same trajectory prediction model can be used again to predict the future trajectories for these
vessels. Thus, the only route options which need special attention are those with a swing manoeuvre,
i.e. R2, R4, R6 and R8.

5.2. Model overview

Asmentioned in section 5.1, all route options which do not contain a swing manoeuvre can be dealt with
by using the target conditioned trajectory prediction model as presented in Chapter 3. For the route
options which do include a swing manoeuvre, a combination of this trajectory prediction model and
the swing location prediction model (Chapter 4) can be used. The swing location prediction model will
predict the start and end location of the swing manoeuvre and the trajectory prediction model will take
care of predicting the trajectory to the start position of the swing or from the end position of the swing
onwards. Using this procedure, a model can be constructed which follows the steps as visualized in
the diagram in Figure 5.1.

Figure 5.1: Overview of steps within the complete trajectory prediction model
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The first step in the model is to determine whether the vessel will interact with a terminal, i.e. depart
from or arrive to a terminal location. Determining this is rather straightforward, as the destination and
origin of the vessel is known. If the vessel is not interacting with the terminal, the target conditioned
trajectory prediction model can be used to predict the future trajectory. If the vessel is interacting with
a terminal, the model checks whether the vessel is currently swinging. If so, the model finishes the
swing manoeuvre and then predicts the trajectory from the end of the swing onwards. If the vessel is
arriving in the port, this latter step boils down to predicting the short trajectory from the end of the swing
to the terminal location, i.e. the docking trajectory (see section 5.2.1), and if the vessel is departing,
the target conditioned trajectory prediction model is used again to predict the trajectory from the swing
end onwards.

For vessels which are currently not swinging, the model checks if the vessel will swing in the future.
For this the prediction model presented in section 4.6.1 is used. If the vessel won’t swing in the future,
the trajectory prediction model is used again. On the other hand, if the vessel does swing in the future,
the swing start location, end location and duration is predicted using the model detailed in section 4.6.2.
In this latter case, once the swing is predicted the model has to predict the trajectory to the swing
start, interpolate the swing and then predict the trajectory from the swing end onwards. Predicting
the trajectory to the swing start for departing vessels means predicting the undocking trajectory (see
section 5.2.1) and for arriving vessels this means predicting a longer trajectory, for which the trajectory
prediction model can be used again. The latitude, longitude and heading during the swing manoeuvre
itself are linear interpolated. This is a simplification of the reality, but is sufficient since the duration of
the swing manoeuvre and the approximate location are most important to maritime traffic controllers.
Knowing the exact position and heading during the swing manoeuvre is of less importance.

Once the swing manoeuvre is interpolated, only the trajectory from the swing end onwards is left
to complete the full trajectory. For arriving vessels this means predicting the docking trajectory (see
section 5.2.1) and for departing vessels this means predicting a longer trajectory. In the latter case the
trajectory prediction model is used again.

The steps in this model can handle all route options as presented in section 5.1. Table 5.2 gives an
overview of the steps that the model takes to predict a complete trajectory for each of the route options.

Route option identifier Steps
R1 1 → 3 → 4 → 2
R2 1 → 3 → ((4 → 6 → 8) ∨ (5 → 7 → 9))
R3 1 → 3 → 4 → 2
R4 1 → 3 → ((4 → 6 → 8) ∨ (5 → 7 → 2))
R5 1 → 3 → 4 → 2
R6 1 → 3 → ((4 → 6 → 8) ∨ (5 → 7 → 9))
R7 1 → 3 → 4 → 2
R8 1 → 3 → ((4 → 6 → 8) ∨ (5 → 7 → 2))
R9 1 → 2
R10 1 → 2
R11 1 → 2
R12 1 → 2
R13 1 → 2
R14 1 → 2

Table 5.2: Overview of the model steps for all route options

5.2.1. Docking and undocking trajectories

The trajectory from the terminal location to the start of a swing manoeuvre is called the undocking
trajectory for departing vessels. Similarly, the trajectory from the end of the swing manoeuvre to the
terminal location is called the docking trajectory for arriving vessels. The docking trajectory on arrival
is not a crucial part of the trajectory. At this point the vessel already sailed through the port area
and made its swing manoeuvre namely, which are more important parts of the trajectory. Therefore
linear interpolating the vessel position and heading from the end of the swing to the known terminal
location is a sufficiently good way to model this docking trajectory. For departing vessel, this undocking
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trajectory to the swing start can also be estimated using linear interpolation. In both cases the model
does need to know how long the undocking or docking trajectory will take. Especially the duration for
undocking trajectories is of importance, as a duration error in this beginning part of the trajectory will
accumulate. This could possibly lead to a larger average displacement error and final displacement
error between the predicted and true future trajectory. Figure 5.2 and Figure 5.3 show the docking
speeds and undocking speeds, respectively. Given the average docking and (un)docking speed, the
model can determine how long the (un)docking trajectory will take. Therefore the values in Table 5.3
are used as average speeds in the linear interpolation of docking and undocking trajectories.

Figure 5.2: Docking speeds at both terminals

Figure 5.3: Undocking speeds at both terminals



5.2. Model overview 36

Terminal Trajectory type Average speed (km/h)
EUT Docking trajectory 0.31
NZT Docking trajectory 0.20
EUT Undocking trajectory 2.01
NZT Undocking trajectory 1.30

Table 5.3: Average docking and undocking speeds at both terminals

5.2.2. Finishing swing manoeuvres

In the case a vessel is in the middle of a swing manoeuvre (block 3 in Figure 5.1), this swing manoeuvre
should be completed before further parts of the trajectory are predicted. The model can complete the
swing manoeuvre by extrapolating the vessel position and heading, until the heading approximately
aligns with an expected value. The expected heading value depends on whether the vessel arrives
at or departs from the terminal. Figure 5.4 shows all the end heading values of arriving and departing
vessel at both terminals. The circular mean of all these end headings, as displayed in Table 5.4, can be
used as a target heading when extrapolating swing manoeuvres. The model can stop extrapolating the
swing manoeuvre once the difference between the current heading and the target heading is smaller
than a constant δ. This difference can be calculated using equation 4.1. A reasonable value of δ is 20.
The exact value doesn’t matter too much, as trajectory prediction component (i.e. the target condition
trajectory prediction model or the docking trajectory interpolation process) after the swing can handle
differences in the heading.

Terminal Route category Circular mean of end swing heading (degrees)
NZT Departure 293
NZT Arrival 299
EUT Departure 315
EUT Arrival 343

Table 5.4: Circular mean of end swing headings for all terminal and route category combinations
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Figure 5.4: Heading at the end of a swing manoeuvre



6
Results

Chapters 3, 4, and 5 presented models for predicting short-term trajectories, including swing manoeu-
vres, in the Port of Antwerp-Bruges. This chapter discusses how the models were trained, using two
years of vessel data, in section 6.1. The performance metrics used to evaluate the models’ outputs
are discussed in section 6.2, followed by the presentation of the results for the target-conditioned tra-
jectory prediction model, swing prediction model, and integrated model in sections 6.3, 6.4, and 6.5,
respectively.

6.1. Model training

The trajectories extracted from the raw vessel data as presented in Chapter 2 are split in an 80% train
set and 20% test set. All model components are trained on the train set and evaluated using the test set.
This section provides a detailed description of which part of the data the different models are trained
on and which preprocessing steps were required.

6.1.1. Trajectory prediction training

To ensure that all models can handle variable-length inputs, they are trained on inputs of different
lengths. For a trajectory consisting of n data points, n − 1 sub-trajectories of lengths 1, 2, 3, . . . , n − 1
are extracted. Thus, each sub-trajectory always contains the first point and differs in the number of
additional historical trajectory points it contains. Sub-trajectories are constructed in this way because
in a live scenario you always have all historical points available until the current time. To speed up
training and limit the number of gradient steps in each iteration, the sub-trajectories are processed in
batches, where each batch contains sub-trajectories of the same length.

Although one trajectory prediction model could be trained given the sub-trajectories and train-test
split, it has been suggested in the literature that clustering trajectories and training different models per
cluster could improve overall performance [17] [43]. Since the start and end locations of each trajectory
are known, a dedicated clustering algorithm is not needed. Instead, trajectories can be clustered based
on their origin and destination. A trajectory prediction model is trained for each category of trajectories
(i.e., cluster) presented in Table 6.1. It is important to note that M11 and M12 have the ability to use
the output of the swing location prediction model as the target location. Additionally, one big model is
trained which handles all clusters of trajectories at once.

6.1.2. Swing prediction training

Similar to the process used in section 6.1.1, a sub-trajectory extraction process is utilized for the swing
occurrence and swing prediction model. However, only trajectories that interact with terminals and
sub-trajectories before the swing manoeuvre are used. For the swing occurrence prediction model, the
data is filtered even further, as only arriving trajectories are considered. This filtering is done because
swing occurrence prediction for departing vessels is straightforward, as explained in section 4.6.1. Two
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Model Origin Destination Trajectories
M1 ZVS NORTH Trajectories from ZVS to NORTH
M2 BES NORTH Trajectories from BES to NORTH
M3 SOUTH NORTH Trajectories from SOUTH to NORTH
M4 NORTH SOUTH Trajectories from NORTH to SOUTH
M5 NORTH ZVS Trajectories from NORTH to ZVS
M6 NORTH BES Trajectories from NORTH to BES
M7 NORTH EUT Arriving at EUT, no swing manoeuvre
M8 NORTH NZT Arriving at NZT, no swing manoeuvre
M9 EUT NORTH Departing from EUT, no swing manoeuvre
M10 NZT NORTH Departing from NZT, no swing manoeuvre
M11 NORTH EUT Arriving at EUT with swing manoeuvre
M12 NORTH NZT Arriving at NZT with swing manoeuvre
M13 EUT NORTH Departing from EUT with swing manoeuvre
M14 NZT NORTH Departing from NZT with swing manoeuvre

Table 6.1: Trajectory categories used for the target conditioned trajectory prediction models

separate models are employed for the swing occurrence prediction model, one for EUT and one for NZT.
The swing location prediction model uses four different models, one for each combination of terminal
and route type (i.e., arrival or departure).

6.2. Performance metrics

The most widely used performance metrics in the field of trajectory prediction are the final displacement
error and average displacement error [33]. The final displacement error (FDE) is calculated as the
Euclidean distance between the last point of the predicted trajectory and the last point of the true
trajectory (as shown in equation 6.1). The average displacement error (ADE) is computed as the
average pointwise Euclidean distance between the predicted trajectory and ground truth (as shown in
equation 6.2). Since the models in this research output latitude and longitude positions, the Haversine
distance between locations is used instead of the Euclidean distance to correct for the spherical surface
of the earth [4]. In the remainder of this chapter, all ADE and FDE metrics are reported in meters.

FDE =
√
(yn − ŷn)2 (6.1)

ADE =
1

n

n∑
i=1

√
(yi − ŷi)2 (6.2)

In addition to the distance metrics, other metrics are utilized to assess the quality of trajectory pre-
dictions. The positional miss rate (PMR) is a performance metric that measures the ratio of unaccept-
able predictions. Here, an unacceptable prediction is defined as one that involves a positional change
greater than 250 meters. Based on two years of data, no such positional changes occurred within a
30-second time frame, as illustrated in Figure 6.1. Hence, it is assumed that such changes are phys-
ically impossible. The positional miss rate performance metric has two types, namely the trajectory
positional miss rate (TPMR) and point positional miss rate (PPMR). The trajectory positional miss rate
measures the ratio of unacceptable trajectory predictions, where an unacceptable trajectory prediction
is defined as one that contains at least one impossible positional change. The point positional miss
rate, on the other hand, evaluates the proportion of unacceptable point predictions.
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Figure 6.1: Distribution of positional change between two adjacent trajectory points

The evaluation of trajectory predictions involves another important metric known as the sailable
area violation rate (SAVR), which measures the proportion of predictions that lie outside the sailable
area. The sailable area is a region within the buoy lines and is visualised as the green region in Figure
6.2. Again, two variations of this metric are used for evaluation: the trajectory sailable area violation
rate (TSAVR) and point sailable area violation rate (PSAVR).

Figure 6.2: Sailable area in the scoped area of the Port of Antwerp-Bruges
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6.3. Target conditioned trajectory prediction results

The performance of the target-conditioned trajectory prediction models trained on 14 different trajectory
clusters is shown in Table 6.2. These results were obtained using the model outlined in section 3.4,
with the configuration specified in Table 6.4. The results of training one model on all the different route
options can be found in Table 6.3.

Model Origin Destination Swing ADE (m) FDE (m) TPMR PPMR TSAVR PSAVR
M1 ZVS NORTH No 125 183 0.14 0.01 0.00 0.00
M2 BES NORTH No 130 206 0.12 0.01 0.01 0.01
M3 SOUTH NORTH No 99 140 0.13 0.01 0.01 0.01
M4 NORTH SOUTH No 78 85 0.03 0.00 0.03 0.01
M5 NORTH ZVS No 117 64 0.01 0.00 0.01 0.01
M6 NORTH BES No 155 180 0.04 0.00 0.01 0.01
M7 NORTH EUT No 87 74 0.01 0.00 0.01 0.01
M8 NORTH NZT No 76 77 0.00 0.00 0.01 0.01
M9 EUT NORTH No 155 114 0.22 0.02 0.02 0.01
M10 NZT NORTH No 128 117 0.01 0.00 0.01 0.01
M11 NORTH EUT Yes 149 274 0.01 0.00 0.01 0.01
M12 NORTH NZT Yes 99 212 0.01 0.00 0.00 0.00
M13 EUT NORTH Yes 128 150 0.05 0.01 0.00 0.00
M14 NZT NORTH Yes 65 115 0.03 0.00 0.00 0.00

Table 6.2: Results of the 14 target conditioned trajectory prediction models

Origin Destination Swing ADE (m) FDE (m) TPMR PPMR TSAVR PSAVR
ZVS NORTH No 115 127 0.18 0.02 0.02 0.01
BES NORTH No 111 131 0.20 0.02 0.02 0.01
SOUTH NORTH No 109 134 0.22 0.03 0.01 0.01
NORTH SOUTH No 100 117 0.23 0.02 0.10 0.03
NORTH ZVS No 182 423 0.01 0.00 0.01 0.01
NORTH BES No 185 422 0.00 0.00 0.01 0.01
NORTH EUT No 200 398 0.01 0.00 0.01 0.01
NORTH NZT No 187 336 0.00 0.00 0.00 0.00
EUT NORTH No 149 146 0.16 0.02 0.08 0.01
NZT NORTH No 154 216 0.01 0.00 0.03 0.02
NORTH EUT Yes 123 261 0.01 0.00 0.01 0.01
NORTH NZT Yes 150 301 0.01 0.00 0.00 0.00
EUT NORTH Yes 106 143 0.02 0.00 0.00 0.00
NZT NORTH Yes 73 108 0.00 0.00 0.00 0.00

Table 6.3: Results of using one target conditioned trajectory prediction model
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Configuration Value
Encoder input features Latitude, longitude, heading, speed over ground
Meta input features Tide, vessel category, length, depth, width and draught
Encoder input dimension 64
Encoder hidden dimension 64
Encoder input MLP layers 8, 16, 32
Target prediction MLP layers 64, 32, 16, 8
Decoder hidden input MLP layers 64, 64
Decoder input features Latitude, longitude, heading, target
Decoder input dimension 64
Decoder hidden dimension 64
Decoder input MLP layers 8, 16, 32
Decoder output MLP layers 32, 16, 8
Recurrent unit type Gated Recurrent Unit (GRU)
Optimizer Adam
Learning rate 0.001 (Adam default)
Batch size 10000
Loss function c1 = 1, c2 = 1, c3 = 1, c4 = 0.4

Table 6.4: Target conditioned trajectory prediction model configuration

The average displacement error and final displacement error are acceptable for all models. More-
over, the sailable area violation rates and point miss rates are near perfect for all models. However,
the trajectory positional miss rate is high for some models, especially M1, M2, M3 and M9. This low
point positional miss rate and high trajectory positional miss rate indicate that the point misses are not
clustered in certain trajectories but instead a lot of trajectories contain a small number of these misses.
M1, M2 and M9 contain trajectories in which a vessel needs to accelerate in order to leave the port. It
seems that the model has some difficulty in avoiding too large accelerations.

No extremely large differences are found when comparing the results of training a separate model
per cluster (Table 6.2) and the results of training one model to handle all route options (Table 6.3). The
ADE, FDE, positional miss rates and sailable area violation rates are just slightly higher for most route
options when using one model. Therefore, it seems that the benefits of using a different neural network
per trajectory cluster is minimal.

Visualisations of a few random example trajectory predictions are presented in Figure 6.3, 6.4, and
6.5. The predicted points are shown in blue, the ground truth is shown in green and the historical
trajectory is shown in black.

The results of the target conditioned trajectory prediction model, given the configuration from Table
6.4, are satisfactory. The current configuration utilises GRUs, since the training time is lowest when
using these kind of units compared to LSTM units. Zhao et al. employed a comparable setup where
they set the hidden state of the encoder and decoder to 128, and allowed the MLPs surrounding it to
either double or halve the number of neurons in each subsequent hidden layer [47]. A similar approach
is used in this study, but a hidden state of size 64 is used to reduce training time. Reasonable values
are picked for the constants in the loss function. All terms have equal weight except the somewhat less
important inconsistency component. It is possible that additional performance improvements could be
achieved by adjusting the configuration values in Table 6.4. However, given that the primary objective of
this research is to determine the feasibility of creating a trajectory prediction model, further optimization
of these parameters is not pursued. Devoting a lot of resources and training time to finding better
parameter configurations is a significant investment with limited return, as it would not alter the answer
to the research question.
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(a) NORTH to ZVS (ADE = 353 meter, FDE = 10 meter) (b) NORTH to ZVS (ADE = 64 meter, FDE = 43 meter)

(c) NORTH to BES (ADE = 8 meter, FDE = 73 meter) (d) NORTH to BES (ADE = 15 meter, FDE = 42 meter)

(e) NORTH to SOUTH (ADE = 112 meter, FDE = 163 meter) (f) NORTH to SOUTH (ADE = 277 meter, FDE = 51 meter)

(g) NORTH to NZT, no swing (ADE = 55 meter, FDE = 83 meter) (h) NORTH to EUT, no swing (ADE = 87 meter, FDE = 89 meter)

Figure 6.3: Several arrival example trajectory predictions using the target conditioned trajectory prediction model. Blue points
indicate the predicted trajectory, green points the ground truth and black points the historic trajectory.
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(a) ZVS to NORTH (ADE = 111 meter, FDE = 357 meter) (b) ZVS to NORTH (ADE = 184 meter, FDE = 132 meter)

(c) BES to NORTH (ADE = 119 meter, FDE = 175 meter) (d) BES to NORTH (ADE = 94 meter, FDE = 314 meter)

(e) SOUTH to NORTH (ADE = 315 meter, FDE = 450 meter) (f) SOUTH to NORTH (ADE = 127 meter, FDE = 96 meter)

(g) NZT to NORTH, no swing (ADE = 133 meter, FDE = 114 meter) (h) EUT to NORTH, no swing (ADE = 99 meter, FDE = 23 meter)

Figure 6.4: Several departing example trajectory predictions using the target conditioned trajectory prediction model. Blue
points indicate the predicted trajectory, green points the ground truth and black points the historic trajectory.
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(a) NZT to NORTH (b) NZT to NORTH

(c) NORTH to NZT (d) NORTH to NZT

(e) EUT to NORTH (f) EUT to NORTH

(g) NORTH to EUT (h) NORTH to EUT

Figure 6.5: Several example trajectory predictions using the target conditioned trajectory prediction model before or after a
swing manoeuvre. (a), (b), (e) and (f) show a trajectory prediction after a swing manoeuvre. (c), (d), (g) and (h) visualise the
trajectory prediction to the swing start location. Blue points indicate the predicted trajectory, green points the ground truth and

black points the historic trajectory.
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6.4. Swing prediction results

The encoder structure and configuration of the swing occurrence prediction model are the same as
used in the target conditioned trajectory prediction model, which can be found in Table 6.4. The final
hidden state of the encoder has a length of 64, and the multilayer perceptron that produces the swing
probability has hidden layers of sizes 32, 16, and 8, respectively. Table 6.5 shows the accuracy results
of the swing occurrence prediction model for arriving vessels. No model is necessary for departing
vessels, as their heading alone indicates whether the vessel will swing or not.

Terminal (arrival) Accuracy
NZT 0.84
EUT 0.83

Table 6.5: Accuracy results of the swing occurrence prediction model

The swing location prediction model again uses the same encoder structure and configuration as
the target conditioned trajectory prediction model. However, it uses a multilayer perceptron with hidden
layers of sizes 64, 32, and 16 to embed the encoder hidden state of dimension 64 to the output layer
consisting of nine neurons (as explained in section 4.6.2). The outcomes of this model can be found in
Table 6.6.

Terminal Route type Positional error (m) Heading error (degrees) Duration error (min.)
Start End Start End

NZT Arrival 237 216 7.4 12.8 1.4
NZT Departure 132 140 15.3 6.7 1.9
EUT Arrival 254 217 9.9 15.7 1.7
EUT Departure 199 301 9.6 14.2 1.5

Table 6.6: Results of the swing location prediction model. Positional errors are in meters, heading errors in degrees and
duration errors in minutes.

6.5. Full model results

The previous two sections provided separate evaluations of the individual components of the complete
model. This section presents the evaluation of the full model, as described in 3.4.2. Four metrics
are used to compare a complete trajectory prediction with the ground truth. The first metric is the
duration error, which is simply the time difference between the predicted and actual trajectory in minutes.
Additionally, the final displacement error (FDE) and sailable area violation rate (SAVR) can be used as
metrics. The average displacement error (ADE) can also be used but requires some adjustment since
the length of the predicted and actual trajectory can differ. To calculate the ADE, the length of the
ground truth trajectory is used to compare against the predicted trajectory. If the predicted trajectory is
longer, some points are not considered in the metric. On the other hand, if the predicted trajectory is
shorter, the last predicted point is used multiple times.

Using the given performance metrics, Table 6.7 presents the results of the complete model. The
results are categorized into trajectories interacting with terminals and trajectories just passing through
the scoped area.

Terminal interaction Duration error (min.) FDE (m) ADE (m) TPMR PPMR TSAVR PSAVR
No 1.3 102 149 0.01 0.01 0.01 0.01
Yes 11.0 194 146 0.06 0.01 0.25 0.01
Combined 3.2 117 147 0.05 0.01 0.06 0.01

Table 6.7: Results of complete model

A large difference in duration error is visible between the two categories of trajectories. The duration
errors for the terminal trajectories aremainly made in the undocking and docking portion of the trajectory.
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These parts of the trajectory take relatively long, meaning there is room for large duration errors. The
model currently uses an average for the (un)docking speed. However, since these speeds seem to vary
for each trajectory it leads to the large average duration error. For docking trajectories the impact of
these duration errors is minimal, since the crucial part of the trajectory is already done. However, for the
trajectories leaving the terminal, this duration error has accumulating impact resulting in an inaccurate
view of the situation in the future. The combined duration error is quite low, because there are more
non terminal trajectories in the test set. For both categories the point positional miss rate and point
sailable area violation rate are acceptable. Interesting is to see that the small portion of sailable area
violation errors for terminal trajectories are spread over a lot of trajectories, the TSAVR is namely 0.25.

While an average FDE of 117 and average ADE of 147 may appear high, these predictions seem
acceptable on a complete map, particularly given the average vessel length of 227 meters. To put
these numbers in a bit of context, Figure 6.3 and Figure 6.4 report the ADE and FDE of some plotted
trajectories. The terminal trajectories show a slightly higher final displacement error since the final
location at the terminal is harder to predict than the final location of a simple trajectory going to, for
example, the Zandvliet Lock. The port is satisfied with the the presented results of the model.

Figure 6.7 presents a visualisation of several random examples of complete trajectory predictions.
Additionally, to provide more context on the quality of the predictions, Figure 6.8 and Figure 6.8 show a
distribution of the average displacement error of the trajectories per destination. For this calculation all
trajectories in the test set are evaluated using one historic point, i.e. the most difficult case. Moreover,
Figure 6.10 and 6.11 show the predictions with the highest average displacement error for each route
option in this same scenario.

Interesting to analyse is how the performance of the complete trajectory prediction models evolves
when more historic data points are used. Figure 6.6 visualises the ADE and FDE when using a different
amount of historical data points. For all trajectories, the average displacement error seems to decrease
whenmore historical data points are used. The final displacement error doesn’t seem to relate toomuch
to the number of historical data points for the trajectories not interacting with the terminals. However,
for trajectories which do interact with the terminals, the number of historic data points does seem to
make an impact on the final displacement error. Intuitively this makes sense, since for arriving vessels
more historic data points give a better idea on where the final terminal location will be.

(a) Trajectories not interacting with a terminal (b) Trajectories interacting with NZT or EUT

Figure 6.6: Performance of complete model for different number of historical data points used
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(a) EUT to NORTH, swing (b) EUT to NORTH, no swing

(c) NORTH to EUT, swing (d) NORTH to EUT, no swing

(e) NZT to NORTH, swing (f) NZT to NORTH, no swing

(g) NORTH to NZT, swing (h) NORTH to NZT, no swing

Figure 6.7: Several complete trajectory predictions example. Blue points indicate the predicted trajectory, green points the
ground truth and black points the historic trajectory.
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(a) ZVS to NORTH (b) NORTH to ZVS

(c) BES to NORTH (d) NORTH to BES

(e) SOUTH to NORTH (f) NORTH to SOUTH

Figure 6.8: The distribution of average displacement errors per route option which does not involve any terminal interaction.
All trajectories in the test set are evaluated using one historic data point.
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(a) NORTH to EUT, no swing (b) NORTH to EUT, swing

(c) NORTH to NZT, no swing (d) NORTH to NZT, swing

(e) EUT to NORTH, no swing (f) EUT to NORTH, swing

(g) NZT to NORTH, no swing (h) NZT to NORTH, swing

Figure 6.9: The distribution of average displacement errors per route option which involve a terminal interaction. All
trajectories in the test set are evaluated using one historic data point.
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(a) ZVS to NORTH (b) NORTH to ZVS

(c) BES to NORTH (d) NORTH to BES

(e) SOUTH to NORTH (f) NORTH to SOUTH

Figure 6.10: The worst trajectory predictions, in terms of average displacement error, for each route option not interacting with
a terminal. Blue points indicate the predicted trajectory, green points the ground truth and black points the historic trajectory.
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(a) NORTH to EUT, no swing (b) NORTH to EUT, swing

(c) NORTH to NZT, no swing (d) NORTH to NZT, swing

(e) EUT to NORTH, no swing (f) EUT to NORTH, swing

(g) NZT to NORTH, no swing (h) NZT to NORTH, swing

Figure 6.11: The worst trajectory predictions, in terms of average displacement error, for each route option interacting with a
terminal. Blue points indicate the predicted trajectory, green points the ground truth and black points the historic trajectory.



7
Conclusion

This final chapter presents a comprehensive overview of the work done throughout the project, high-
lighting the main findings and conclusions. In section 7.1, a summary of the key aspects of the research
is provided, including the research questions, methodology, and results.

Following this, in section 7.2, the main conclusions and answer to the research question are pre-
sented. This section provides an overview of the research findings and identifies the most significant
contributions made by the study.

Finally, in section 7.3, the research is reflected upon and suggestions for future directions are given.
This section discusses the limitations and strengths of the research, along with potential areas for future
investigation. It also highlights the impact of implementation of the developed models in real-world
scenarios.

7.1. Summary

Vessel safety and navigation are essential components of maritime operations. Proper navigation prac-
tices and safety procedures are critical to ensure that vessels and their crews reach their destinations
safely without causing significant congestion. The maritime industry continues to invest in technology
to improve vessel safety and navigation practices. This study takes the initial step towards the integra-
tion of an artificial intelligence tool that can aid maritime traffic controllers at the Port of Antwerp-Bruges
in their work. The study is conducted as a case study at the Port of Antwerp-Bruges and focuses only
on a scoped area of the port. The area under consideration in this study has the characteristic of a
bottleneck, as it serves as a connection point between the entire port and the North Sea. Moreover, it
attracts a lot of traffic due to the presence of two terminals and two locks. The goal of this study is to
examine the feasibility of developing a model that can predict vessel position in a short time horizon
in this scoped area of the port. Such a complete model for vessel trajectory prediction should have
the ability to predict trajectories while taking swing manoeuvres into account. Swing manoeuvres are
U-turn manoeuvres executed by container vessels upon arrival or departure at a terminal. Due to the
presence of the Europa Terminal (EUT) and Noordzee Terminal (NZT) in the scoped area, swing ma-
noeuvres play a significant role. The Port of Antwerp-Bruges provided two years of historical vessel
trajectory data. The structure of this data along with relevant preprocessing steps are examined in
Chapter 2. The problem of trajectory prediction is formulated in Chapter 3, which also delves in the
historical method to utilize the historical vessel data to predict trajectories. From the literature study it
becomes apparent that deep learning-based approach are popular methods to use on trajectory predic-
tion related problems. Therefore, a target conditioned trajectory prediction model is presented, which
takes a variable number of past positions of a vessel and predicts a future trajectory. This model uses
an encoder-decoder structure, where the encoder is a recurrent neural network which encodes the his-
toric trajectory and the decoder is again a recurrent neural network which generates a future trajectory
based on this encoding. As an intermediate step, the model predicts a target location for the future
trajectory. This target location is passed to the decoder along with the encoding of the historic trajec-
tory. The model uses the distance between the predicted trajectory and actual future trajectory as loss
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function. Additionally, penalty terms are added to the loss function to smooth the prediction. Multiple
trajectory prediction models are trained on different clusters of trajectories. These models obtain a final
displacement error of 142 meters and average displacement error of 91 meters on average.

However, this target conditioned trajectory prediction model is not sufficient, as it doesn’t consider
these crucial swing manoeuvres. Chapter 4 delves into the definition, detection and extraction of swing
manoeuvres. Next, this chapter presents an approach to predict swing manoeuvres. The prediction is
split in two steps. First of all, the occurrence of a swing manoeuvre is predicted and secondly the start
and end location of the manoeuvre are predicted along with the duration. The heading and position of
the vessel are interpolated in between the predicted start and end position. Both the swing occurrence
and swing location prediction model use an encoder recurrent neural network to encode the historical
trajectory in a vector embedding. A multilayer perceptron is used to convert this vector embedding to
a swing occurrence or swing location prediction. Predicting swing manoeuvres for departing vessels
is trivial, so the model only considers arriving vessels. On these arriving vessels the model obtains
an accuracy of 84% at the Noordzee Terminal and 83% at the Europa Terminal. The swing location
prediction model predicts the start of a swing with an error of 206 meters and the end of a swing with
an error of 219 meters on average.

Given the target conditioned trajectory prediction model and the swing manoeuvre prediction model,
Chapter 5 presents an integration of the two models. The resulting complete model can handle the
prediction of complete trajectories, including swing manoeuvres.

7.2. Conclusions

The main goal of this research was to explore the feasibility of constructing a model that could accu-
rately predict short-term vessel trajectories in a specific area of the Port of Antwerp-Bruges. The study
identified and investigated the components of such a model and developed a complete model that
achieved an average displacement error of 149 meters on trajectories interacting with terminals and
146 meters on trajectories that did not interact with terminals. The findings indicate that it is possible
to construct a model that can accurately predict short-term vessel trajectories using swing manoeuvre
prediction and target conditioned trajectory prediction as subroutines.

Notably, the study highlights that swing manoeuvres are a crucial component of vessel trajectory
prediction. Swingmanoeuvres aremodelled by predicting their start position, end position, and duration.
The research shows that while the model can predict these factors accurately, there are relatively large
duration errors during the undocking and docking phases of terminal trajectories.

Additionally, the study found that training several models per trajectory cluster did not significantly
impact overall model performance compared to using one large model for all trajectories. This finding
could have practical implications for the future scalability of the model to cover larger areas of the port,
where the number of available route options could increase.

This research is considered to be an initial pilot for the Port of Antwerp-Bruges. The port has been
satisfied with the obtained results so far and now the next step in the pilot is to integrate the model with
their live data sources.

The primary contribution of this research is the addition of the swing manoeuvre extension to the
trajectory prediction model and the application of this model in a real-world setting. The model shows
that incorporating swing manoeuvres can lead to accurate short-term trajectory predictions.

7.3. Discussion and future work

Even though the predicted trajectories are of sufficient quality, additional performance could be obtained
by incorporating certain changes.

First of all, wind direction and strength are not incorporated into the analysis; including these factors
may be beneficial. Based on domain knowledge, these factors are namely believed to be linked with
the trajectory path and the location of the swing manoeuvre. Additional accuracy could probably also
be obtained by using the exact planned final location of the vessel. Currently the terminal number is
used as the destination for vessels arriving at terminals. However, the mooring bollards that the vessel
will use are also known in advance. These bollards give a more accurate indication of the destination
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of the vessel along the terminal.
Another key aspect which is omitted in this research are interaction effects. Trajectory, swing occur-

rence and swing location prediction are currently all based on solely the historical trajectory and meta
data factors. However, in reality a swing decision or the sailing course could be affected by the current
or even future traffic condition. If the traffic keeps increasing in the Port of Antwerp-Bruges, taking inter-
actions effects into account becomes even more important. The decision to not take interaction effects
into account in this study was based on the limited presence of vessel interaction in the given data.
A suggestion for future research would be to use graph neural networks (GNN) to include interaction
effects once more of these effects are visible in the data.

The miss rate and sailable area compliance rate are two metrics used to evaluate the performance
of predicted trajectories. Given the fact that a good output has a low number of misses and number
of points outside the sailable area, various correction layers could be built to address these points. An
example correction layer could simply map a point outside the sailable area to the closest point within
the sailable area polygon.

Furthermore, several data preprocessing steps could potentially reduce the complexity of the pre-
diction and therefore improve performance. A suggestion could be to use the position of the vessel at
the last historical data point as the origin of the coordinate system for representing trajectories. Simi-
larly, the heading of the vessel could be represented such that the heading at the last data point aligns
with the x-axis.

Lastly, important to mention is that extensive parameter and architectural configuration optimisation
is left out of this study. Additional performance can possibly be gained by tweaking the neural network
architectures or other parameters listed in Table 6.4. The search for better parameters is omitted, as the
goal of this thesis was to show the feasibility and method for creating a model which could predict short
term trajectories including swing manoeuvres rather than creating the most optimal model. Further
research could improve on the models presented in this thesis. An interesting suggestion would be
to retrain the models using LSTM units instead of GRU. LSTMs could perform better on datasets with
long sequences.

7.3.1. Model generalization

The model as presented in this thesis is created with the scoped area of the Port of Antwerp-Bruges
in mind. Therefore, it contains some assumptions which are specific to the use case in this area. The
exact model cannot not be transferred directly to other uses cases. However, the main ideas behind
the models can be used on other port locations. To facilitate the adaptation to other use cases, one
has to identify the possible route options first. If the possible route options are limited, as is the case
in the scoped area under study, a similar approach of training a model per route option can be used
(see section 5.1). However, if the number of possible route origin and route destination combinations
is too large, a single model can be used. Probably a bit of performance is then traded off against the
ability to handle all route options with one model. Moreover, the swing detection and extraction process
contains some constants which are partly use case specific. Equation 4.2 uses a heading difference
of 125 degrees to distinguish between swing manoeuvres and normal trajectories. This value is based
on historical data of the scoped area and could be different for other ports. Moreover, it could be that
the swing detection and extraction process should be restricted even more in other use cases. Sudden
large turns could namely be identified as swing manoeuvres by the current detection and extraction
logic. A straightforward way to restrict swing detection is to define only certain areas in the port where
swing manoeuvres are expected.
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Abstract
Situational awareness within port areas is crucial
to avoid collisions, navigate efficiently and reduce
congestion. Maritime traffic controllers constantly
monitor the situation in the port and intervene when
needed. This study proposes a deep learning model
that predicts future vessel positions to assist in this
process. The model employs a target conditioned
trajectory prediction component composed of two
recurrent neural networks arranged in an encoder-
decoder structure that utilizes historical data points
to forecast future trajectories. The model considers
multiple factors, including vessel speed, location,
length, depth, draught, and the tide. Additionally,
this study addresses the prediction of swing ma-
noeuvres, which are special U-turn-like manoeu-
vres executed during terminal arrival or departure.
These manoeuvres can block a significant portion
of the waterway and, as such, are essential to con-
sider when gaining a complete understanding of
future situations within the port. An integration
of both model is applied to a use case study in a
scoped area of the Port of Antwerp-Bruges. The
models were trained using AIS and VTS data col-
lected at 30-second intervals. Swing manoeuvres
are predicted with an accuracy of 84%, the loca-
tions of these manoeuvres are predicted with an av-
erage deviation of 212 meter and the duration error
is 1.6 minutes on average. The complete predicted
trajectories, including potential swing manoeuvres,
have an average displacement error and final dis-
placement error of 147 and 117 meter on average,
respectively. Overall, the study demonstrates the
potential of deep learning models for improving sit-
uational awareness within port areas and assisting
traffic controllers in making informed decisions.

1 Introduction
The Port of Antwerp-Bruges is the second largest seaport in
Europe and handled around 250 million tonnes of maritime
freight volume in the year 2021 [4]. It is a busy hub of mar-
itime activity with a complex nautical situation that demands
continuous monitoring. Given the large volume of vessels

that navigate the port’s waterways, ensuring safety is of cru-
cial importance. In addition to preventing potential hazards
and reducing congestion, maintaining situational awareness
can also help to minimize carbon emissions by optimizing
vessel traffic flows and reducing idle time.

The Antwerp port area has five deep-sea container termi-
nals, which are used to load and unload large container ships
arriving and departing from the port. Since these container
vessels arrive and leave the port through one waterway, they
need to make a U-turn somewhere within the port. Such a
U-turn manoeuvre is tugboat assisted and is performed either
on arrival or departure. Swinging is performed at the terminal
or in a dedicated turning basin. The exact location of a swing
is dependent upon various factors, including but not limited
to the vessel’s draught and the tide conditions. These swing
manoeuvres are required, block a large part of the waterway,
and take substantial time.

This study narrows its focus to a small, scoped area of the
Antwerp port area. This scoped area is of particular inter-
est, because it connects the southern parts of the port to the
North Sea and it contains two terminals and two locks in a
relatively small area. A bird eye view of this area can be seen
in Figure 1. The Europa Terminal (EUT) and Noordzee Ter-
minal (NZT) are used to dock container vessels and load and
unload them. Furthermore, the Zandvliet Lock (ZVS) and
Berendrecht Lock (BES) are used to enter or leave the inland
waters of the port. All vessels leaving the port to the sea or
arriving from the sea will pass this scoped area. Due to this
high traffic intensity and the presence of two terminals and
locks, this area is considered of critical importance.

The presence of the Europa Terminal and Noordzee Termi-
nal significantly affects the area of the port, particularly when
it comes to swing manoeuvres. Swinging vessels blocking
the waterway in front of the Noordzee Terminal restrict traf-
fic to more southern parts of the port and to the locks. More-
over, swinging vessels in front of the Europa Terminal restrict
traffic to the southern parts of the port. Since it is crucial to
avoid collisions in the port and minimize congestion and de-
lays, these swing manoeuvres play an important role in the
management of traffic.

According to a study that analyzed marine collision re-
ports, 71% of human error is caused due to lack of situational
awareness. Specifically, of the errors related to situational
awareness, around 9% were attributed to a lack of awareness



regarding future actions in the marine environment [17]. The
objective of this study is to assist maritime traffic controllers
in obtaining situational awareness. To aid them in this pro-
cess, this study aims to create a model that can predict future
vessel trajectories. Since swing manoeuvres are crucial parts
of these trajectories, the model must also take them into ac-
count. Given this objective, the main research question is:

How can a vessel trajectory prediction model that
accounts for swinging manoeuvres be developed
and applied to a case study at the Port of Antwerp-
Bruges?

By creating such a model, the contribution of this case
study is two-fold:

• This study extends state-of-the-art vessel trajectory pre-
diction methods to incorporate swing manoeuvres.

• This study applies trajectory prediction models on a spe-
cific use case scenario at the Port of Antwerp-Bruges.

Figure 1: A bird eye view of the scoped area of the Port of Antwerp-
Bruges

2 Background
The large availability of AIS data records has enabled the
possibility of predicting trajectories in the domain of vessels.
However, the task of trajectory prediction is not unique to the
prediction of vessel movements and is relevant in more do-
mains, such as human, aircraft or car trajectory prediction.

A basic and commonly used model for vessel trajectory
prediction is to assume near constant speed and course [23].
Improvements on such a model are made by modelling the
speed of a vessel using an Ornstein-Uhlenbeck process [31].
The Kalman filter is a different algorithm which can also
be used to model and predict the movement of objects [36].
However, these physic-based approaches do not utilise the
knowledge of historical AIS data. Prediction methods which
are based on historic AIS data often cluster historical tra-
jectories, classify incoming AIS data points to one of these
clusters and then construct a prediction [3, 18]. These meth-
ods can differ in clustering algorithms and trajectory distance
measures [13, 19, 24]. Besides such a trajectory-based sim-
ilarity search prediction model, Alizadeh et al. presents a
point-based similarity search prediction approach [3]. Here,

each AIS record is treated as a singular point, and spatial,
speed, and course variables are used to calculate the distances
between the vessel’s most recent point and all the historical
points measured. By identifying the most similar historical
point to the target point, the subsequent locations of the ves-
sel can be predicted based on that point. A similar approach
is used by Hexeberg et. al [18].

The success of deep neural networks has led to a signifi-
cant advancement in the field of trajectory prediction in re-
cent years. Deep learning approaches used in literature take a
historic agent state representation, pass this to a deep learning
model and output a certain representation of the predicted fu-
ture trajectory. The agent state is often represented as a vector
of features, which include the timestamp, speed, heading and
position under a certain coordinate system [1,5,7,22,29]. The
input of the learning model then consists of a vector of these
historic agent states. Next to this agent state, some researches
use additional scene context representations to give the model
more information. A popular scene context representation are
images, used in for example [7, 9, 30, 33] and [25].

The future trajectory, i.e. the model’s output, can simply be
given as a point set [1, 22, 29, 38]. This single modality rep-
resentation aligns with the input representation. Outputs can
also be represented as probability heat-maps [26] or proba-
bilities can be attached to each prediction [25, 30]. Instead
of outputting exact positional values, a model could also pre-
dict a mean position µ and variance σ around it. Controlling
uncertainty in this manner is done in [8].

In the literature, several neural network architectures are
proposed for the actual deep-learning model. Since the in-
put representation is often a vector of trajectory points, re-
current neural networks can be used to encode the historic
trajectory [2, 5, 7, 28, 38]. Given this encoding, a second re-
current neural network can decode the vector to a future tra-
jectory, this encoder-decoder architecture is used in [14, 38]
and [6] for example. Image inputs are often processed us-
ing convolutional neural networks (CNN) [26, 30] and graph
neural networks (GNN) can be used to model interaction ef-
fects [11, 27, 34].

Supervised learning is the most common method used to
train these deep learning models and the loss function com-
monly uses a mean-square-error (MSE) loss to compare the
predicted trajectory against the truth [39]. Additional compo-
nents can be added to the loss function to smooth the predic-
tion, such as an inconsistency penalty, penetration penalty or
dispersion penalty as used in [10].

A good trajectory prediction model should be able to cap-
ture the multimodality of the task, i.e. the model should be
able to handle distinct end locations properly. However, mod-
els tend to suffer from mode collapse, which means average
and non-realistic trajectories are predicted instead of diverse
predictions. Dendorfer et al. [12] give an excellent exam-
ple of a neural network suffering from mode collapse when
predicting pedestrian trajectories near a crossroad. A way
to counter this problem is to first use a model to cluster tra-
jectories and then use a trajectory prediction model per clus-
ter [15,37]. By first clustering the trajectories, the neural net-
work needs to learn less trajectory variations and can poten-
tially generalize better.
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In literature, an alternative method that is employed in-
volves making a prediction of the goal location of the tra-
jectory, followed by a prediction of the trajectory itself. In-
stead of asking a model to extrapolate a past trajectory, this
method changes the problem to an interpolation task between
the predicted goal position and the historic trajectory. Such
approaches are commonly two staged, a target location is
predicted based on the historical trajectory and scene con-
text and this target prediction assists later trajectory forecast-
ing [10, 16, 39, 40]. Target conditioned trajectory prediction
has shown to perform better on diverse trajectories [12].

As shown, there is a lot of literature present on plain tra-
jectory prediction. However, no relevant literature has been
found which involves swing manoeuvres in these predicted
trajectories. Swing manoeuvres are not unique for the Port of
Antwerp-Bruges. More ports use swing manoeuvres to align
container vessels with their desired direction. Especially in
ports with only one waterway for entering and leaving the
port, vessels need to make such a manoeuvre. Since it often
raises difficulties to find a suitable location for container ves-
sel to execute a swing manoeuvre, as is the problem in the
Port of Antwerp-Bruges, studies have been conducted on de-
signing port areas in an optimal manner that considers swing
manoeuvres [20, 21]. However, changing existing port lay-
outs is difficult and the fact that container vessels have be-
come longer over time adds to the problem. Paulauskas dis-
cusses the influence of these big container vessels on ports
designed using old safety and navigation standards [32]. With
his analysis on turning basins, he claims that due to modern
accurate navigational and measurement equipment, the old
safety standards implemented in several ports should be re-
viewed.

The trajectory prediction model presented by Hexeberg et.
al obtained some large errors on certain trajectories, which
were caused by swing manoeuvres as reported by the authors
[18]. Besides this notion of swing manoeuvres in the vessel
trajectory prediction literature, no literature is available on
trajectory prediction methods which incorporate swing ma-
noeuvres to the best of the authors’ knowledge.

3 Data
The Port of Antwerp-Bruges continuously records the posi-
tional data and meta data of the vessels entering the port.
For this study, The Port of Antwerp-Bruges provided two
years of vessel data. This study only considers data of the
seagoing vessels, internal port movements are ignored. Most
data come from the AIS source, but a part originates from
the VTS. Complete data covering two years is only available
for container vessels. For other vessel types, only data from
September and October 2022 is present. The availability of a
significant amount of container vessel data is crucial, as tra-
jectories of container vessels interacting with the Noordzee
Terminal or Europa Terminal are less frequent than those by-
passing the scoped area of the port. The Port of Antwerp-
Bruges provided the data in three parts: vessel positional data,
vessel meta data and vessel trajectory data

The positional data records were captured at approximately
30-second intervals and include a timestamp, latitude posi-

tion, longitude position, speed over ground (in knots) and
heading of the vessel. Additionally, static data for each vessel
that passed through the port was provided in the vessel meta
data file. The relevant features from the meta data are the
type, depth, draugt, length, width, origin and destination of
the vessel. The vessel origin and destination contain the ex-
act name of a specific location, such as ”Loodskotter West”
or the terminal location ”S853”. A pre-processing step is ap-
plied to classify these origins and destinations into these cat-
egories: ZVS, BES, EUT, NZT, NORTH and SOUTH. The
vessel trajectory data file consists of a list of vessel trajecto-
ries, each characterized by a start time (in case of departure)
or end time (in case of arrival), along with additional meta
data fields. Notably, the draught of a vessel during its tra-
jectory, which is the distance between the waterline and the
bottom of the vessel, was included as a useful feature that is
not present in the meta data file. The trajectory data is used
to extract trajectories from the positional data. An interpo-
lating pre-processing step is applied to these trajectories such
that the time difference between successive points is always
exactly 30 seconds.

As tide data is be an important factor in vessel traffic plan-
ning according to domain knowledge, it is beneficial to add it
to the existing AIS data. The original delivered data does not
contain tide data. However, the Flemish government provides
tide tables on their website [35], which indicate the water lev-
els at different locations in the Belgium waters. The tide data
in the port was estimated by using the water levels at ”Pros-
perpolder”, which is the closest location to the port where tide
data is available.

4 Swing manoeuvres
Since there is only one entry and exit point for sea vessels,
a U-turn manoeuvre is necessary for vessels on a round-trip,
commonly known as a swing manoeuvre. Typically, swing
manoeuvres are executed near the terminal location of the
vessel, either before it docks on arrival or after it is released
from the quay during departure. These manoeuvres are time-
consuming and require tugboat assistance. Moreover, for
safety reasons, a buffer zone must be maintained around the
swinging vessel, which can block parts of the waterway, af-
fecting the passage of other vessels. Environmental factors
such as tide conditions and wind strength also play a crucial
role in deciding to swing or not.

4.1 Swing detection
Swing detection is the process of determining whether a his-
torical trajectory of a vessel contains a swing manoeuvre or
not. Such manoeuvres are distinguished by a considerable
change in the vessel’s heading over a short duration of time.
As the vessel executes a U-turn, the heading change is typi-
cally around 180 degrees over the entire manoeuvre. Addi-
tionally, swing manoeuvres usually take around ±20 minutes
to complete. Based on these observations, swing detection
logic can be created to identify trajectories with swing ma-
noeuvres.

Given is a trajectory representation V of n data points
V = {v⃗1, v⃗2, . . . , v⃗n−1, v⃗n}. Each data point v⃗i is a vector
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v⃗i = (pi, qi, ti, si, hi), where pi ∈ P represents the longi-
tude position, qi ∈ Q the latitude position, ti ∈ T the epoch
timestamp in milliseconds, si ∈ S the speed over ground in
knots and hi ∈ H the heading of the vessel in degrees.

Now define a function f : H ×H → [0, 180] which takes
two headings and outputs the smallest difference in degrees
between these headings. The smallest difference between the
headings is considered, because of the modular 360 nature of
circles.

f(hi, hj) = 180− ||hi − hj | − 180| (1)
By combining domain knowledge and this function, it is

possible to formalize a definition for a trajectory that includes
a swing manoeuvre:

V contains a swing manoeuvre ⇔
{(i, j)|1 ≤ i, j ≤ n ∧ j > i ∧ tj − ti ≤ 25 ∗ 60000

∧f(hi, hj) ≥ 125} ≠ ∅
(2)

This formalisation means that a vessel makes a swing ma-
noeuvre if and only if there exist two data points on the tra-
jectory which are no more than 25 minutes apart and have a
difference in heading larger or equal to 125 degrees, where
the difference in heading is calculated using equation 1. Note
that a factor 60000 is used to convert the 25 minutes to mil-
liseconds, which is the unit of ti and tj .

Domain knowledge indicates that swing manoeuvres can
take up to 20 minutes, therefore 25 minutes is a reasonably
safe upper bound. The choice for 125 degrees is based on
visual inspection. In the histogram in Figure 2 the red dotted
line at x = 125 clearly splits two clusters of trajectories. To
the left of this line are trajectories who do not contain a swing
manoeuvre and too the right of this line are those who do. An
expected peak around 180 degrees is visible, which represents
full U-turn manoeuvres.

Figure 2: Distribution of maximum directional change in container
vessel trajectories

4.2 Swing extraction
Once swing manoeuvres are detected from historical trajecto-
ries, it is important to extract them from the entire trajectory.

This means that only the segment of the trajectory in which
the vessel performs a swing manoeuvre is kept. Swing ma-
noeuvres are often done approximately in place, which means
the speed of a vessel during its trajectory is an important fac-
tor to look at. Furthermore, the change of the vessel’s head-
ing over time is something to look at. This is expressed by
the yaw rate, which is the directional change in heading in
degrees per minute. For the directional change between two
headings equation 1 can be used again.

A swing window w = [bswing, eswing] can be defined
where bswing, eswing ∈ {1, . . . , n}. This window indicates
the part of the trajectory in which the vessel is swinging. Fur-
ther let γ : {1, . . . , n − 1} → R be a function which, given
i ∈ {1, . . . , n − 1}, computes the yaw rate in the interval
[i, i+ 1].

γ(i) =
f(hi, hi+1)

(ti+1 − ti) ∗ 1
30000

(3)

Next, let the indicator functionψ : {1, . . . , n−1} → {0, 1}
indicates if a data point v⃗i is during a swing manoeuvre or not.
Ifψ(i) = 1, then the vessel is performing a swing manoeuvre.
However, the inverse is not necessarily true.

ψ(i) =

{
1, if 1 ≤ i ≤ n ∧ γ(i) ≥ 10 ∧ si ≤ 2

0, otherwise
(4)

Hence, a data point is classified to be during a swing ma-
noeuvre if the change in heading is currently larger or equal
to 10 degrees per minute and the speed is lower or equal to 2
knots, which is approximately 3.7 kilometers per hour. The
motivation behind these numbers come from domain knowl-
edge and visual inspection.

Using the indicator function ψ a window [b′swing, e
′
swing]

can be defined in which the vessel is definitely swinging. An
assumption is made that each trajectory comprises a single
swing manoeuvre.

b′swing = min
i
[ψ(i) = 1] where i ∈ {1, . . . , n− 1} (5)

e′swing = max
i

[ψ(i) = 1] where i ∈ {1, . . . , n− 1} (6)

Vessels can have a lower yaw rate than 10 degrees per
minute in the beginning or ending of a swing. Moreover,
small vessels could swing at larger speeds than 2 knots, es-
pecially in front of the EUT. This means that the use of the
indicator function in equation 5 and 6 might mean that the
window [b′swing, e

′
swing] is smaller than the actual swinging

window [bswing, eswing], i.e. b′swing > bswing ∧ e′swing <
eswing . Using a lower yaw rate bound and higher speed
bound in the definition of ψ to solve the problem is not possi-
ble. ψ will violates its meaning then, as it will be too sensitive
and falsely classify small course changes during the trajectory
of a vessel as being part of a swing manoeuvre.

To still be able to extract the full swing window, the win-
dow is extended on both sides by including data points where
the yaw rate is still above 6 degrees per minute. This proce-
dure is written down in equation 7 and 8.

4



bswing = min{i ∈ {1, . . . , b′swing}|
(∀k ∈ {i− 1, . . . , b′swing})[γ(k) ≥ 6]}

(7)

eswing = min(n, 1 + max{i ∈ {e′swing, . . . , n}|
(∀k ∈ {e′swing, . . . , n})[γ(k) ≥ 6]})

(8)

An example of swing extraction for a specific trajectory
using the procedure described above is shown in Figure 3.
The points in this graph are plotted in one-minute intervals
for clarity. In this example [b′swing, e

′
swing] = [6, 10] and

[bswing, eswing] = [4, 13]. The horizontal lines are plotted at
a yaw rate of 6 and 10.

Figure 3: A tight swing window (grey dotted line) and extended
swing window (black dotted line). Interval between points is one
minute.

4.3 Swing modelling
Predicting swing manoeuvres can be done in different levels
of details. An option is to predict the whole swing manoeu-
vre, i.e. the location and headings during the whole manoeu-
vre. However, prediction of the full swing manoeuvre is a
difficult problem to solve since these manoeuvres are rela-
tively rare and can vary a lot in their exact details. The goal
of the study is to make a capacity prediction of the water-
ways. Exact heading and position of the vessel during the
swing manoeuvre is less important than the occupation of
the waterway resources and the duration of this occupation.
Therefore, an alternative could be to only model the location
and duration of the swing and assume the vessel will swing
in place. However, the downside of this approach is that it
ignores the movements which the vessel sometimes makes
during the swing manoeuvre. Therefore, this study uses an
in-between approach by predicting the start location, end lo-
cation and duration of the swing. This abstraction keeps the

Figure 4: Option 1: modelling a swing manoeuvre fully (reality)

Figure 5: Option 2: modelling only the start and end of a swing
manoeuvre)

relevant details of the swing while not modelling unnecessary
details. Figure 4, 5 and 6 visualise these three different ways
of modelling a swing manoeuvre.

5 Model
The model which makes short term vessel trajectory predic-
tions consists of two parts: a trajectory prediction component
and a swing manoeuvre prediction component.

5.1 Trajectory prediction
Predicting the future trajectory of a vessel based on its his-
torical positions can be treated as a sequence-to-sequence
task, which can be addressed using recurrent neural networks.
An encoder-decoder architecture with two recurrent neural
networks can be utilized to predict future vessel trajectories
based on historical positions. The encoder uses a recurrent
neural network to encode the historical data points into a vec-
tor embedding. Before the encoder does this, it embeds the
input in a higher dimension using a multilayer perceptron.
The encoder output vector is combined with the meta data and
fed through a feedforward neural network to predict the target
position, which consists of a latitude, longitude and heading.
Once the target position is predicted, it is concatenated with
the encoder output and then passed through a multilayer per-
ceptron to produce the initial hidden state of the decoder. The
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Figure 6: Option 3: modelling the swing manoeuvre in place

decoder sequentially generates future points by taking pre-
dicted future points as input for the next block. For the first
input, the last point in the historical trajectory is used. Be-
sides these future points the decoder also uses the target posi-
tion as input. The future point and target position are concate-
nated and passed through a multilayer perceptron to form the
input of the decoder. The decoder is given the target position
at each time stamp to help remember this important piece of
information. A schematic overview of this target conditioned
trajectory prediction model can be seen in Figure 7.

The final goal of the complete model is to predict the future
trajectory as accurately as possible by using a predicted target
point that should be as close as possible to the actual target
point. Therefore, the loss of the model should align with this
goal. Given a historic trajectory {x0, x1, . . . , xm}, a future
trajectory {y0, y1, . . . , ym}, a predicted target point t and a
predicted future trajectory {ŷ0, ŷ1, . . . , ŷm}, the loss of the
model is calculated with equation 9

L = c1 ∗
1

m

m∑
i=0

(yi − ŷi)
2 + c2 ∗ (t− ŷm)2+

c3 ∗ (ym − ŷm)2 + c4 ∗
1

m

m∑
i=0

(yi − ŷi−1)
2.

(9)

In this equation, c1 = 1, c2 = 1, c3 = 1, c4 = 0.75 are
reasonable values for these constants. In the last term of the
formula xn is used for ŷ−1 (i.e. when i = 0 in the sum).

The first term of the loss function is a mean squared error
component on the full future trajectory. The second and third
terms are both squared errors on the target prediction and the
last predicted trajectory point. Finally, the last term is a mean
squared error between the predicted trajectory and the pre-
dicted trajectory shifted back one time stamp. By adding this
term, the model is restricted from taking unrealistic speed and
position changes between adjacent frames. Such an inconsis-
tency penalty term to smooth the predicted trajectories by en-
couraging temporal consistency between trajectory points is
used more often in trajectory prediction models [10].

Figure 7: Target conditioned trajectory prediction model network
structure using gated recurrent units

5.2 Swing prediction
Container vessels interacting with terminals need to swing
either on arrival or departure. The captain’s preference plays
a crucial role in the decision whether to swing or not when
arriving in the port. The captain bases its choice mainly on
environmental factors such as tide conditions and on traffic
conditions.

Determining whether a departing vessel will swing is easy.
The way these vessels are oriented against the terminal reveal
whether they require to swing or not. For arriving vessels, it
is not straightforward whether they will swing or not. If an
arriving vessel does not swing, it essentially postpones this
manoeuvre to its departure and when the vessel does swing,
it can later immediately depart. Given data about the vessel’s
journey and the environmental conditions, a prediction can be
made on whether the vessel will swing on arrival or not. Lo-
cations of containers on the vessel are not taken into account
and it is assumed that all captains have the same preference
profile.

Based on vessel’s meta data and on a fraction of the trajec-
tory of varying length before the swing, the goal is to predict
whether the vessel will swing or not. For this task the model
visualised in Figure 8 is used. This model takes the historical
trajectory (i.e. before the swing) and encodes it in a vector.
This encoding is done in the same manner as historical tra-
jectories are encoded in the target conditioned trajectory pre-
diction model. To this encoded vector, the meta data vector
is concatenated and then the result is passed through a final
dense neural network. The output layer of this neural network
has one neuron with a sigmoid activation function. Therefore,
this neuron outputs a value ŷ ∈ [0, 1], ŷ ≥ 0.5 is considered a
swing prediction and ŷ < 0.5 as a prediction without a swing.

After establishing that the vessel will undergo a swing ma-
noeuvre, a follow up question is how this swing manoeuvre
should look like. For the maritime traffic controllers in the
port of Antwerp-Bruges, the most important knowledge to
obtain is the location and duration of the swing. Therefore,
predicting the start and end position of the swing is a us-
able approach. The start and end position are characterised
by their longitude position, latitude position and heading. A
swing location prediction model should be able to predict
these three characteristics for both the start and end of the
swing based on a historic trajectory before the swing manoeu-
vre. For this purpose, the same neural network architectural
setup as before is used again. An encoder network will en-
code the historic trajectory in a vector and this encoded vec-
tor will be concatenated to the meta data vector and passed
through a final feedforward neural network, see Figure 8. The

6



output layer of this feedforward neural network will contain
9 neurons:

• Neuron 1: the latitude position at the start of the swing
• Neuron 2: the longitude position at the start of the swing
• Neuron 3: the sine of the heading at the start of the swing
• Neuron 4: the cosine of the heading at the start of the

swing
• Neuron 5: the latitude position at the end of the swing
• Neuron 6: the longitude position at the end of the swing
• Neuron 7: the sine of the heading at the end of the swing
• Neuron 8: the cosine of the heading at the end of the

swing
• Neuron 9: the duration of the swing manoeuvre in min-

utes.
The sine and cosine of the headings are used instead of the

heading directly because of the circular nature of the head-
ing values. A heading change from 2 degrees to 359 degrees
seems like a huge difference numerically, but visually these
headings are quite close. The cosine and sine values of a
heading of 2 degrees and a heading of 359 degrees have the
property of being quite close to each other numerically.

Figure 8: Swing prediction deep learning model architecture using
a gated recurrent unit

5.3 Complete model
Given the target conditioned trajectory prediction model and
the swing prediction model, a complete model can be con-
structed which integrates both components and can make full
short term trajectory predictions.

All route options which do not contain a swing manoeuvre
can be dealt with by just using the target conditioned trajec-
tory prediction model. For the route options which do include
a swing manoeuvre, a combination of this trajectory predic-
tion model and the swing location prediction model can be
used. The swing location prediction model will predict the
start and end location of the swing manoeuvre and the trajec-
tory prediction model will take care of predicting the trajec-
tory to the start position of the swing or from the end position
of the swing onwards.

6 Results
The trajectories extracted from the raw vessel data are split
in an 80% train set and 20% test set. To ensure that all mod-
els can handle variable-length inputs, they are trained on in-
puts of different lengths. For a trajectory consisting of n data

points, n− 1 sub-trajectories of lengths 1, 2, 3, . . . , n− 1 are
extracted. Thus, each sub-trajectory always contains the first
point and differs in the number of additional historical trajec-
tory points it contains.

The performance of the target-conditioned trajectory pre-
diction model can be found in Table 1. The average displace-
ment error (ADE) and final displacement error (FDE) are re-
ported for different trajectory options, identified by their ori-
gin and destination.

Origin Destination ADE FDE
Zandvliet Lock North 115 127
Berendrecht Lock North 111 131
South North 109 134
North South 100 117
North Zandvliet Lock 182 423
North Berendrecht Lock 185 422
North Europa Terminal 200 398
North Noordzee Terminal 187 336
Europa Terminal North 149 146
Noordzee Terminal North 154 216

Table 1: Results of the target conditioned trajectory prediction
model. ADE and FDE are both in meters.

Table 2 shows the accuracy results of the swing occurrence
prediction model for arriving vessels. No model is necessary
for departing vessels, as their heading alone indicates whether
the vessel will swing or not. Table 3 presents the results of the
swing location prediction model.

Terminal (arrival) Accuracy
Noordzee Terminal 0.84
Europa Terminal 0.83

Table 2: Accuracy results of the swing occurrence prediction model

Terminal Route type Pe He De

Start End Start End
Noordzee Arrival 237 216 7.4 12.8 1.4
Noordzee Departure 132 140 15.3 6.7 1.9
Europa Arrival 254 217 9.9 15.7 1.7
Europa Departure 199 301 9.6 14.2 1.5

Table 3: Results of the swing location prediction model. Pe indicate
the positional errors n meters, He the heading errors in degrees and
De the duration errors in minutes.

The results of the complete model are presented in Table
4. These results are categorized into trajectories interact-
ing with terminals and trajectories just passing through the
scoped area.

A large difference in duration error is visible between the
two categories of trajectories. The duration errors for the
terminal trajectories are mainly made in the undocking and
docking portion of the trajectory. These parts of the trajec-
tory take relatively long, meaning there is room for large du-
ration errors. The complete model uses an average for the
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Terminal interaction De FDE ADE
No 1.3 102 149
Yes 11.0 194 146
Combined 3.2 117 147

Table 4: Results of complete model. ADE and FDE are both in
meters. De is the duruation error in minutes

(un)docking speed as approximation. However, since these
speeds seem to vary for each trajectory it leads to the large
average duration error. For docking trajectories the impact of
these duration errors is minimal, since the crucial part of the
trajectory is already done. However, for the trajectories leav-
ing the terminal, this duration error has accumulating impact
resulting in an inaccurate view of the situation in the future.
The combined duration error is quite low, because there are
more non terminal trajectories in the test set. The terminal tra-
jectories show a slightly higher final displacement error since
the final location at the terminal is harder to predict than the
final location of a simple trajectory going to, for example, the
Zandvliet Lock.

While an average FDE of 117 and average ADE of 147
may appear high, these predictions seem acceptable on a
complete map, particularly given the average vessel length
of 227 meters. To put these numbers in a bit of context, Fig-
ure 9 and Figure 10 report the ADE and FDE of some plotted
trajectories. Additionally, to give some insights in how the
trajectories with swing predictions look like, Figure 11 illus-
trates several complete trajectory predictions including swing
manoeuvres.

7 Discussion
Even though the predicted trajectories are of sufficient qual-
ity, additional performance could be obtained by incorporat-
ing certain changes.

First of all, wind direction and strength are not incorpo-
rated into the analysis; including these factors may be bene-
ficial. Based on domain knowledge, these factors are namely
believed to be linked with the trajectory path and the location
of the swing manoeuvre. Additional accuracy could proba-
bly also be obtained by using the exact planned final location
of the vessel. Currently the terminal number is used as the
destination for vessels arriving at terminals. However, the
mooring bollards that the vessel will use are also known in
advance. These bollards give a more accurate indication of
the destination of the vessel along the terminal.

Another key aspect which is omitted in this research are
interaction effects. Trajectory, swing occurrence and swing
location prediction are currently all based on solely the his-
torical trajectory and meta data factors. However, in reality
a swing decision or the sailing course could be affected by
the current or even future traffic condition. If the traffic keeps
increasing in the Port of Antwerp-Bruges, taking interactions
effects into account becomes even more important. The deci-
sion to not take interaction effects into account in this study
was based on the limited presence of vessel interaction in the
given data. A suggestion for future research would be to use
graph neural networks (GNN) to include interaction effects

once more of these effects are visible in the data.
Furthermore, several data pre-processing steps could po-

tentially reduce the complexity of the prediction and there-
fore improve performance. A suggestion could be to use the
position of the vessel at the last historical data point as the
origin of the coordinate system for representing trajectories.
Similarly, the heading of the vessel could be represented such
that the heading at the last data point aligns with the x-axis.

Lastly, important to mention is that extensive parameter
and architectural configuration optimisation is left out of this
study. Additional performance can possibly be gained by
tweaking the neural network architectures or hyperparame-
ters parameters, such as the loss function constants. The
search for better parameters is omitted, as the goal of this
study was to show the feasibility and method for creating
a model which could predict short term trajectories includ-
ing swing manoeuvres rather than creating the most optimal
model. Further research could improve on the models pre-
sented in this thesis. An interesting suggestion would be to
retrain the models using LSTM units instead of GRU. LSTMs
could perform better on datasets with long sequences.

8 Conclusions
The main goal of this research was to explore the feasibility of
constructing a model that could accurately predict short-term
vessel trajectories in a specific area of the Port of Antwerp-
Bruges. The study identified and investigated the compo-
nents of such a model and developed a complete model that
achieved an average displacement error of 149 meters on tra-
jectories interacting with terminals and 146 meters on trajec-
tories that did not interact with terminals. The findings indi-
cate that it is possible to construct a model that can accurately
predict short-term vessel trajectories using swing manoeuvre
prediction and target conditioned trajectory prediction as sub-
routines.

Notably, the study highlights that swing manoeuvres are
a crucial component of vessel trajectory prediction. Swing
manoeuvres are modelled by predicting their start position,
end position, and duration. The research shows that while
the model can predict these factors accurately, there are rela-
tively large duration errors during the undocking and docking
phases of terminal trajectories.

The primary contribution of this research is the addition of
the swing manoeuvre extension to the trajectory prediction
model and the application of this model in a real-world set-
ting. The model shows that incorporating swing manoeuvres
can lead to accurate short-term trajectory predictions.
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Goal-gan: Multimodal trajectory prediction based on
goal position estimation. In Proceedings of the Asian
Conference on Computer Vision, 2020.

[13] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei
Xu, et al. A density-based algorithm for discovering
clusters in large spatial databases with noise. In kdd,
volume 96, pages 226–231, 1996.

[14] Nicola Forti, Leonardo M Millefiori, Paolo Braca, and
Peter Willett. Prediction oof vessel trajectories from
ais data via sequence-to-sequence recurrent neural net-
works. In ICASSP 2020-2020 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 8936–8940. IEEE, 2020.

[15] Shaojun Gan, Shan Liang, Kang Li, Jing Deng, and
Tingli Cheng. Ship trajectory prediction for intelli-
gent traffic management using clustering and ann. In
2016 UKACC 11th International Conference on Control
(CONTROL), pages 1–6. IEEE, 2016.

[16] Harshayu Girase, Haiming Gang, Srikanth Malla, Ji-
achen Li, Akira Kanehara, Karttikeya Mangalam, and
Chiho Choi. Loki: Long term and key intentions for
trajectory prediction. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
9803–9812, 2021.

[17] Michelle R Grech, Tim Horberry, and Andrew Smith.
Human error in maritime operations: Analyses of ac-
cident reports using the leximancer tool. In Proceed-
ings of the human factors and ergonomics society an-
nual meeting, volume 46, pages 1718–1721. Sage Pub-
lications Sage CA: Los Angeles, CA, 2002.

[18] Simen Hexeberg, Andreas L Flåten, Edmund F Brekke,
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(a) NORTH to ZVS (ADE = 353 meter, FDE = 10 meter) (b) NORTH to ZVS (ADE = 64 meter, FDE = 43 meter)

(c) NORTH to BES (ADE = 8 meter, FDE = 73 meter) (d) NORTH to BES (ADE = 15 meter, FDE = 42 meter)

(e) NORTH to SOUTH (ADE = 112 meter, FDE = 163 me-
ter)

(f) NORTH to SOUTH (ADE = 277 meter, FDE = 51 meter)

(g) NORTH to NZT, no swing (ADE = 55 meter, FDE = 83
meter)

(h) NORTH to EUT, no swing (ADE = 87 meter, FDE = 89
meter)

Figure 9: Several arrival example trajectory predictions using the target conditioned trajectory prediction model. Blue points indicate the
predicted trajectory, green points the ground truth and black points the historic trajectory.
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(a) ZVS to NORTH (ADE = 111 meter, FDE = 357 meter) (b) ZVS to NORTH (ADE = 184 meter, FDE = 132 meter)

(c) BES to NORTH (ADE = 119 meter, FDE = 175 meter) (d) BES to NORTH (ADE = 94 meter, FDE = 314 meter)

(e) SOUTH to NORTH (ADE = 315 meter, FDE = 450 me-
ter)

(f) SOUTH to NORTH (ADE = 127 meter, FDE = 96 meter)

(g) NZT to NORTH, no swing (ADE = 133 meter, FDE =
114 meter)

(h) EUT to NORTH, no swing (ADE = 99 meter, FDE = 23
meter)

Figure 10: Several departing example trajectory predictions using the target conditioned trajectory prediction model. Blue points indicate the
predicted trajectory, green points the ground truth and black points the historic trajectory.
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(a) EUT to NORTH (b) NORTH to EUT

(c) NZT to NORTH (d) NORTH to NZT

Figure 11: Several complete trajectory predictions examples which include swing manoeuvres. Blue points indicate the predicted trajectory,
green points the ground truth and black points the historic trajectory.
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