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A B S T R A C T

The universal approximation theorem is generalised to uniform convergence on the (noncompact) input space
R𝑛. All continuous functions that vanish at infinity can be uniformly approximated by neural networks with one
hidden layer, for all activation functions 𝜑 that are continuous, nonpolynomial, and asymptotically polynomial
at ±∞. When 𝜑 is moreover bounded, we exactly determine which functions can be uniformly approximated
by neural networks, with the following unexpected results. Let  𝑙

𝜑(R𝑛) denote the vector space of functions
that are uniformly approximable by neural networks with 𝑙 hidden layers and 𝑛 inputs. For all 𝑛 and all 𝑙 ≥ 2,
 𝑙

𝜑(R𝑛) turns out to be an algebra under the pointwise product. If the left limit of 𝜑 differs from its right
limit (for instance, when 𝜑 is sigmoidal) the algebra  𝑙

𝜑(R𝑛) (𝑙 ≥ 2) is independent of 𝜑 and 𝑙, and equals the
closed span of products of sigmoids composed with one-dimensional projections. If the left limit of 𝜑 equals
its right limit,  𝑙

𝜑(R𝑛) (𝑙 ≥ 1) equals the (real part of the) commutative resolvent algebra, a C*-algebra which
is used in mathematical approaches to quantum theory. In the latter case, the algebra is independent of 𝑙 ≥ 1,
whereas in the former case  2

𝜑 (R𝑛) is strictly bigger than  1
𝜑 (R𝑛).
1. Introduction

Neural networks can uniformly approximate any continuous func-
tion only when the magnitude of the considered input values is bounded
by a predetermined constant. Typical universal approximation the-
orems that use the entire noncompact input space R𝑛 make use of
convergence ‘uniformly on compacts’ (Barron, 1993; Cybenko, 1989;
Hartman, Keeler, & Kowalski, 1990; Hornik, 1991; Hornik, Stinch-
combe, & White, 1989; Leshno, Lin, Pinkus, & Schocken, 1993; Long,
Wu, & Nan, 2007) or convergence with respect to an integral norm on
R𝑛 (Hornik, 1991; Kidger & Lyons, 2020). Such theorems do not rule
out errors in the approximation growing exponentially (or worse) in
the magnitude of the input values.

Noncompact and uniform approximation – which uses convergence
with respect to the supremum norm over R𝑛 – is a much stronger
notion. In theory, it allows one to train a network up to a desired
precision which is then respected by all input values. It also gives a
more honest picture of the generalisation capability of neural networks,
as we shall see later.

It is a common misconception that every continuous function on R𝑛

can be uniformly approximated; in fact many commonplace continuous
functions cannot.1 The question remains: precisely which functions can
be uniformly approximated?

E-mail address: teunvn@gmail.com.
1 E.g., sin(𝑥), 𝑒𝑥, unless the activation function is specially tailored for these.
2 If a neural network vanishes (approximately) at infinity, it means that the network responds consistently to large inputs, like outliers.
3 See Theorem 6.1.

Let the activation function 𝜑 ∶ R → R be continuous and nonlin-
ear, with asymptotically linear behaviour near ±∞. One-layer neural
networks are by definition linear combinations of functions of the form

𝑥 ↦ 𝜑(𝑎 ⋅ 𝑥 + 𝑏) (𝑎 ∈ R𝑛, 𝑏 ∈ R), (1)

where ⋅ is the standard inner product on R𝑛. Such functions are constant
in 𝑛 − 1 directions. If 𝑛 ≥ 2, a nonzero one-layer neural network will
therefore never be in 𝐶0(R𝑛), the space of continuous functions that
vanish at infinity,2 no matter the activation function or the amount of
nodes.3 Our first result is that, nonetheless, all functions in 𝐶0(R𝑛) are
uniformly approximable by one-layer neural networks (and therefore
also by arbitrarily deep neural networks). This generalises the universal
approximation theorem to a truly noncompact statement.

We also precisely characterise the space of (uniformly) approx-
imable functions in the case that 𝜑 is moreover bounded. The above
result then implies that the space of approximable functions is some
vector space between 𝐶0(R𝑛) and the space of bounded continuous
functions, 𝐶b(R𝑛).

By giving an explicit characterisation, we shall prove that this vector
space is an algebra under the usual pointwise operations. Equivalently,
products of neural networks are approximable by neural networks.

This uncovers a novel connection between neural networks and
the theory of C*-algebras (J., 1990), as any norm-closed subalgebra of
vailable online 15 February 2024
893-6080/© 2024 Published by Elsevier Ltd.
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Fig. 1. Example of a neural network in which wedge functions (cf. Definition 5.7 and
Fig. 3) are clearly visible in the contour plot. The network has been given insufficient
nodes/layers/time to fit the data at all relevant scales, and has only succeeded on the
small scale. At a slightly larger scale the wedge functions already become apparent, and
this paper proves that this behaviour is in fact unavoidable at sufficiently large scale.
This image was produced using https://www.matlabsolutions.com/visualize-neural-
network/neural-network.html.

𝐶b(R𝑛) is a real C*-algebra. We do not rely on the theory of C*-algebras
in this paper, but one should know that this theory initiated these
findings, and might have merit for the machine learning community
for reasons discussed in Hashimoto, Wang, and Matsui (2022).

Below, we discuss the explicit characterisation of the space of
approximable functions, which notably does not depend greatly on the
activation function 𝜑, but only on the question whether 𝜑(−∞) ∶=
lim𝑥→−∞ 𝜑(𝑥) equals 𝜑(∞) ∶= lim𝑥→∞ 𝜑(𝑥).

1.1. The case 𝜑(−∞) = 𝜑(∞)

We first consider the class of 𝜑 satisfying 𝜑(−∞) = 𝜑(∞). We find
that, for any amount of hidden layers, the vector space of approximable
functions is equal to the real part of the commutative resolvent algebra,
defined in van Nuland (2019).

In Bauer and Fulsche (2023), van Nuland (2019, 2022), van Nuland
and Stienstra (2020), the commutative resolvent algebra is studied be-
cause it is the classical counterpart of the resolvent algebra, a quantum
observable algebra that was introduced in Buchholz and Grundling
(2007, 2008) for the purpose of (nonrelativistic) algebraic quantum
field theory. This establishes a connection between machine learning
and quantum algebra that seems unexplored so far, and for instance dif-
ferent from standard approaches to quantum neural networks (Schuld,
Sinayskiy, & Petruccione, 2014). A useful application of the noncom-
pact uniform approximation theorem to mathematical quantum physics
will be demonstrated in a separate paper (Buchholz & van Nuland,
2023).

1.2. The case 𝜑(−∞) ≠ 𝜑(∞)

Our final main theorem expresses the space of approximable func-
tions in the case of 𝜑(−∞) ≠ 𝜑(∞) and gives novel insight into the
approximation capability and limitations of neural networks.

When using two or more hidden layers, the space of approximable
functions equals the closed span of products (with arbitrarily many
factors) of sigmoids composed with one-dimensional projections. A way
to visualise these products is as the wedge-shaped functions appearing
in Fig. 3 and Definition 5.7, related to Voronoi diagrams (Montu-
far, Pascanu, Cho, & Bengio, 2014) and tropical geometry (Mara-
gos, Charisopoulos, & Theodosis, 2021; Zhang, Naitzat, & Lim, 2018),
and familiar to anyone who has ever visualised the approximation
behaviour of neural networks in cases were there is a sufficiently
2

complicated structure in the data. Indeed, when a neural network is
prioritising the fitting of a small-scale structure, at a slightly larger
scale one can often see the wedge functions of Definition 5.7 appearing.
See, for example, Fig. 1. In fact, the rigidity of these wedge functions
can prevent the neural network from converging locally if there are
not enough nodes or there is not enough time. Thus, although the
mathematical novelty of this paper resides at the ‘infinitely large’ scale,
the proof in Section 5 offers an insightful perspective on the appearance
of wedge shapes in general.

Opposite to the earlier case, in the present case (𝜑(−∞) ≠ 𝜑(∞))
there are two-layer neural networks which cannot be approximated by
one-layer neural networks. We shall give a class of examples of such
functions, including quite simple ones.

2. Notation and summary of main results

We let N = {1, 2,…}. We work over the field R. For any 𝑛 ∈ N,
we denote by 𝐶(R𝑛), 𝐶b(R𝑛), 𝐶0(R𝑛), and 𝐶c(R𝑛) respectively the con-
tinuous functions from R𝑛 to R, the bounded ones, the ones vanishing
at infinity (i.e., lim

‖𝑥‖→∞ 𝑓 (𝑥) = 0), and the compactly supported ones.
The support of a function 𝑓 is denoted by supp 𝑓 . By 𝑆 we denote the
uniform closure of a set 𝑆 of functions R𝑛 → R, i.e., the closure in the
topology induced by the extended metric obtained from the supremum
norm. We denote span𝑆 ∶= span𝑆, where span𝑆 is the R-linear span
of 𝑆. For 𝑎, 𝑥 ∈ R𝑛, we denote by 𝑎 ⋅ 𝑥 ∶=

∑𝑛
𝑗=1 𝑎𝑗𝑥𝑗 the Euclidean

inner product, and define functions 𝑝𝑎 ∶ R𝑛 → R by 𝑝𝑎(𝑥) ∶= 𝑎 ⋅ 𝑥.
We let 𝑃𝑉 ∶ R𝑛 → 𝑉 denote the orthogonal projection onto any linear
subspace 𝑉 ⊆ R𝑛.

Let 𝜑 ∶ R → R be a function. We define the space of (feedforward)
neural networks with 𝑛 input nodes, one hidden layer, one output node,
and activation function 𝜑, as the following subspace of the vector space
of all functions R𝑛 → R:

 1
𝜑(R

𝑛) ∶= span
{

𝑥 ↦ 𝜑(𝑎 ⋅ 𝑥 + 𝑏) ||
|

𝑎 ∈ R𝑛, 𝑏 ∈ R
}

. (2)

The space of networks with 𝑙 hidden layers can then be defined recur-
sively4:

 𝑙
𝜑(R

𝑛) ∶= span
{

𝑥 ↦ 𝜑(𝑓 (𝑥) + 𝑏)||
|

𝑓 ∈  𝑙−1
𝜑 (R𝑛), 𝑏 ∈ R

}

. (3)

The space of networks with an arbitrary amount of hidden layers is
denoted by ∞

𝜑 (R𝑛) ∶=
⋃∞
𝑙=1 

𝑙
𝜑(R

𝑛). Most results shall be stated for
networks with only one output node, because extending these results
to 𝑚 output nodes, i.e., to the spaces  𝑙

𝜑(R
𝑛,R𝑚) ∶=  𝑙

𝜑(R
𝑛)⊕𝑚 and

∞
𝜑 (R𝑛,R𝑚) ∶= ∪𝑙 𝑙

𝜑(R
𝑛,R𝑚), is straightforward.

The following theorem summarises our first main result, which
is formulated for the largest possible class of activation functions in
Theorem 3.7.

Theorem 2.1. Let 𝑛, 𝑙 ∈ N, and let 𝜑 ∈ 𝐶(R) be nonlinear with
lim𝑥→∞(𝜑(𝑥) − 𝑎1𝑥− 𝑏1) = 0 and lim𝑥→−∞(𝜑(𝑥) − 𝑎2𝑥− 𝑏2) = 0 for certain
𝑎1, 𝑏1, 𝑎2, 𝑏2 ∈ R. Then,

𝐶0(R𝑛) ⊆ 𝑙
𝜑(R𝑛).

The following theorem summarises our second and third main
result, which are written in stronger form as Theorem 4.5 and Theo-
rem 5.9, combined with Theorem 5.10.

Theorem 2.2. Let 𝑛 ∈ N, and let 𝜑 ∈ 𝐶(R) be nonconstant such that
𝜑(−∞) = lim𝑥→−∞ 𝜑(𝑥) and 𝜑(∞) = lim𝑥→∞ 𝜑(𝑥) exist and are finite.

(1) If 𝜑(−∞) = 𝜑(∞) then  1
𝜑(R𝑛) = ∞

𝜑 (R𝑛) and

∞
𝜑 (R𝑛) = span

{

𝑥 ↦ 𝑔(𝑃 (𝑥))
|

|

|

|

|

𝑃 ∶ R𝑛 → R𝑘 linear,
𝑔 ∈ 𝐶0(R𝑘), 𝑘 ∈ Z≥0

}

. (4)

4 The biases 𝑏 are redundant for 𝑙 ≥ 2.

https://www.matlabsolutions.com/visualize-neural-network/neural-network.html
https://www.matlabsolutions.com/visualize-neural-network/neural-network.html
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(2) If 𝜑(−∞) ≠ 𝜑(∞) then  2
𝜑(R𝑛) = ∞

𝜑 (R𝑛) and

∞
𝜑 (R𝑛) = span

{

𝑥↦
𝑚
∏

𝑗=1
tanh(𝑎𝑗 ⋅ 𝑥)

|

|

|

|

|

𝑚 ∈ Z≥0, 𝑎𝑗 ∈ R𝑛
}

. (5)

If, moreover, 𝑛 ≥ 2, then  1
𝜑(R𝑛) ≠  2

𝜑(R𝑛).

The sigmoid tanh is used for explicitness, but can be replaced by any
igmoid of choice, as will be discussed in Section 5.

orollary 2.3. Let 𝑛, 𝑚 ∈ N and let 𝜑 ∈ 𝐶(R) be such that lim𝑥→−∞ 𝜑(𝑥)
and lim𝑥→∞ 𝜑(𝑥) exist and are finite. Then the vector space ∞

𝜑 (R𝑛) is an
algebra. Equivalently, pointwise products of neural networks are uniformly
approximable by neural networks.

Proof. If 𝜑 is constant, ∞
𝜑 (R𝑛) consists of constant functions, so the

tatement holds.
Otherwise, Theorem 2.2 allows us to consider two cases. For case 1

𝜑(−∞) = 𝜑(∞)), we will now show that the right-hand side of (4) is
n algebra. For 𝑖 = 1, 2 we fix 𝑘𝑖 ∈ Z≥0, 𝑔𝑖 ∈ 𝐶0(R𝑘𝑖 ) and linear maps
𝑃𝑖 ∶ R𝑛 → R𝑘𝑖 . We may always write

𝑃𝑖(𝑥) = (𝑎𝑖,1 ⋅ 𝑥,… , 𝑎𝑖,𝑘𝑖 ⋅ 𝑥) (𝑥 ∈ R𝑛, 𝑖 = 1, 2),

for vectors 𝑎𝑖,1,… , 𝑎𝑖,𝑘𝑖 ∈ R𝑛. We define the number 𝑘 ∶= 𝑘1+𝑘2, define
the linear function 𝑃 ∶ R𝑛 → R𝑘 by

(𝑥) ∶= (𝑎1,1 ⋅ 𝑥,… , 𝑎1,𝑘1 ⋅ 𝑥, 𝑎2,1 ⋅ 𝑥,… , 𝑎2,𝑘2 ⋅ 𝑥) (𝑥 ∈ R𝑛),

nd define the function 𝑔 ∶ R𝑘 → R by

(𝑦1,… , 𝑦𝑘) ∶= 𝑔1(𝑦1,… , 𝑦𝑘1 )𝑔2(𝑦𝑘1+1,… , 𝑦𝑘) (𝑦 ∈ R𝑘).

t follows that 𝑔 ∈ 𝐶0(R𝑘), and the pointwise product of 𝑔1◦𝑃1 and 𝑔2◦𝑃2
valuates to

𝑔1◦𝑃1) ⋅ (𝑔2◦𝑃2) = 𝑔◦𝑃 .

ence, by (4), ∞
𝜑 (R𝑛) is an algebra.

In case 2 (𝜑(−∞) ≠ 𝜑(∞)), the explicit characterisation of ∞
𝜑 (R𝑛)

iven by Theorem 2.2 is an algebra by construction. □

We remark that the number 𝑘 used in the above proof is not
ecessarily minimal, in the sense that the representation 𝑔◦𝑃 in (4) is
ot unique. An in-depth analysis of the algebra in (4) is made in van
uland (2019), including an alternative to the above proof in van
uland (2019, Lemma 2.2(i)), cf. Section 4.

A particular aspect of Theorem 2.2 is that, for 𝜑(−∞) ≠ 𝜑(∞), there
xist functions in  2

𝜑(R𝑛) that are not in  1
𝜑(R𝑛). In Section 5.2 we give

a class of explicit examples (including a mollified AND function) and
thus prove the following stronger statement.

Theorem 2.4. Let 𝑛 ∈ N, 𝑛 ≥ 2, and let 𝜑 ∈ 𝐶(R) be such that
im𝑥→−∞ 𝜑(𝑥) and lim𝑥→∞ 𝜑(𝑥) exist and are finite and distinct. For every
> 0, there are two-layer networks 𝑓 ∈  2

𝜑(R
𝑛) with a fixed uniform

distance 𝑑 from the whole collection of one-layer networks,  1
𝜑(R

𝑛).

That is, no matter how hard you train the one-layer network 𝑔 to
approximate 𝑓 , no matter the amount of nodes, there will exist an input
value 𝑥 such that |𝑓 (𝑥) − 𝑔(𝑥)| > 𝑑.

3. Approximation of continuous functions vanishing at infinity

The purpose of this section is to prove Theorem 3.7, which states
that 𝐶0(R𝑛) can be approximated by neural networks with one hidden
layer. This result holds for a slightly larger class of activation functions
than mentioned in Theorem 2.1 (in fact, the optimal class), allowing
discontinuities and polynomial growth.

However, we shall first prove this approximation theorem in the
simpler case that 𝜑 ∈ 𝐶0(R) ⧵ {0}. Furthermore, it will be useful to first
3

consider 𝑛 = 1 and 𝑛 = 2.
Lemma 3.1. Let 𝜑 ∈ 𝐶0(R) ⧵ {0}. We have  1
𝜑(R) = 𝐶0(R)⊕ R1.

roof. We observe that any function

↦ 𝜑(𝑎𝑥 + 𝑏) (𝑎, 𝑏 ∈ R)

s in 𝐶0(R) when 𝑎 ≠ 0. If 𝑎 = 0, then the above map is constant,
.e., in R1. By using (2) we find that  1

𝜑(R) ⊆ 𝐶0(R) ⊕ R1, and since
0(R)⊕R1 is closed with respect to the supremum norm, we conclude

hat  1
𝜑(R) ⊆ 𝐶0(R)⊕ R1.

The rest of the proof proceeds exactly as in the proof of Cybenko
1989, Theorem 1), replacing 𝐶([0, 1]𝑛) with 𝐶0(R) and replacing (Cy-
enko, 1989, Lemma 1) with (Hornik, 1991, Theorem 5) (quite similar
o the proof of Proposition 3.5). It is however good to note that this
trategy naively fails for 𝐶0(R𝑛) when 𝑛 > 1, as the functions 𝑥 ↦

(𝑎 ⋅ 𝑥 + 𝑏) are not in 𝐶0(R𝑛) when 𝑛 > 1. □

For 𝑛 > 1, a noncompact uniform approximation theorem requires
ew ideas not considered by, e.g., Cybenko (1989), Hornik (1991),
idger and Lyons (2020).

The core idea in the case 𝑛 = 2 is to give meaning to the formal
xpression

∫

2𝜋

0
𝑔◦𝑝(cos 𝜃,sin 𝜃) 𝑑𝜃, (6)

or 𝑝(cos 𝜃,sin 𝜃)(𝑥, 𝑦) = 𝑥 cos 𝜃 + 𝑦 sin 𝜃, and a suitable function 𝑔 such
hat (6) is in  1

𝜑(R2) and in a way generates 𝐶0(R2). What complicates
the proof is that, whatever (6) means, it is not a Bochner integral
with respect to the supremum norm. Worse yet, the integrand both
has inseparable range and is discontinuous, because ‖𝑔◦𝑝(cos 𝜃,sin 𝜃) −
𝑔◦𝑝(cos 𝜃′ ,sin 𝜃′)‖∞ ≥ ‖𝑔‖∞ for every 𝜃 ≠ 𝜃′ ∈ [0, 𝜋). The following lemma
hows that at least its pointwise interpretation is in 𝐶0(R2).

emma 3.2. Let 𝑔 ∈ 𝐶c(R), and define

(𝑥, 𝑦) ∶= ∫

2𝜋

0
(𝑔◦𝑝(cos 𝜃,sin 𝜃))(𝑥, 𝑦) 𝑑𝜃 (7)

or all (𝑥, 𝑦) ∈ R2. Then 𝑓 ∈ 𝐶0(R2). If moreover ∫R 𝑔(𝑥)𝑑𝑥 = 0, then there
xists 𝐶 ∈ R such that

𝑓 (𝑥, 𝑦)| ≤ 𝐶
1 + ‖(𝑥, 𝑦)‖3

((𝑥, 𝑦) ∈ R2). (8)

Proof. We rewrite (7) by noting that, for (𝑥, 𝑦) = 𝑅(cos𝜑, sin𝜑), we
have 𝑝(cos 𝜃,sin 𝜃)(𝑥, 𝑦) = 𝑅 sin(𝜃 − 𝜑 + 𝜋). By a substitution 𝜃 ↦ 𝜃 + 𝜑 − 𝜋,
it follows that

𝑓 (𝑥, 𝑦) = ∫

2𝜋

0
𝑔(𝑅 sin 𝜃) 𝑑𝜃, (9)

where 𝑅 =
√

𝑥2 + 𝑦2. Uniform continuity of 𝑔 implies that 𝑔(𝑅𝑛 sin 𝜃)
converges to 𝑔(𝑅 sin 𝜃) uniformly in 𝜃 whenever 𝑅𝑛 → 𝑅, hence proving
continuity of 𝑓 .

Let 𝑎 > 0 be such that supp 𝑔 ⊆ [−𝑎, 𝑎]. If 𝑅 > 𝑎 then there
xists a 𝛿 = 𝛿(𝑅) ∈ [0, 𝜋∕2) such that sin(𝛿) = 𝑎∕𝑅, implying that
sin(𝜃) ∉ supp 𝑔 whenever | sin 𝜃| > sin 𝛿. Using this 𝛿 and subsequently

making the substitution 𝑢 = sin 𝜃, we find

𝑓 (𝑥, 𝑦)

= ∫

𝛿

0
𝑔(𝑅 sin 𝜃)𝑑𝜃 + ∫

𝜋+𝛿

𝜋−𝛿
𝑔(𝑅 sin 𝜃)𝑑𝜃 + ∫

2𝜋

2𝜋−𝛿
𝑔(𝑅 sin 𝜃)𝑑𝜃

= ∫

𝛿

−𝛿
(𝑔(𝑅 sin 𝜃)) + 𝑔(𝑅 sin(𝜃 + 𝜋))𝑑𝜃

= ∫

𝑎∕𝑅

−𝑎∕𝑅
(𝑔(𝑅𝑢) + 𝑔(−𝑅𝑢)) 1

√

1 − 𝑢2
𝑑𝑢

= ∫

𝑎∕𝑅

−𝑎∕𝑅
𝑔(𝑅𝑢) 2

√

1 − 𝑢2
𝑑𝑢.



Neural Networks 173 (2024) 106181T.D.H. van Nuland
Fig. 2. First three elements of a sequence of 1-layer neural networks uniformly
approximating a function in 𝐶0(R2). Cf. Lemma 3.3. To increase the locality of the
limit function, the ridge functions 𝑔◦𝑝𝑎 need to satisfy ∫ 𝑔(𝑥)𝑑𝑥 = 0, unlike what is
shown in the picture. Note that 𝐿𝑝 convergence is out of the question, as each element
of the sequence has infinite 𝐿𝑝 norm, cf. Pinkus (1999, Section 7) and Theorem 6.1(2).

As 2
√

1−𝑢2
= 2 + (𝑢2) for 𝑢 → 0, there exists a 𝐶 > 0 such that, for

large enough 𝑅, we have |

2
√

1−𝑢2
− 2| ≤ 𝐶𝑢2 for all 𝑢 ∈ [−𝑎∕𝑅, 𝑎∕𝑅]. We

obtain
|

|

|

|

|

𝑓 (𝑥, 𝑦) − 2∫

𝑎∕𝑅

−𝑎∕𝑅
𝑔(𝑅𝑢)𝑑𝑢

|

|

|

|

|

≤ ∫

𝑎∕𝑅

−𝑎∕𝑅
|𝑔(𝑅𝑢)|𝐶𝑢2𝑑𝑢,

which by substitution 𝑢 ↦ 𝑅−1𝑢 becomes
|

|

|

|

𝑓 (𝑥, 𝑦) − 2𝑅−1
∫

𝑎

−𝑎
𝑔(𝑢)𝑑𝑢

|

|

|

|

≤ 𝑅−3
∫

𝑎

−𝑎
|𝑔(𝑢)|𝐶𝑢2𝑑𝑢.

Hence 𝑓 (𝑥, 𝑦) = (𝑅−1) = (‖(𝑥, 𝑦)‖−1), in particular 𝑓 ∈ 𝐶0(R2). If
moreover ∫ 𝑔(𝑢)𝑑𝑢 = 0, then for large enough 𝑅 = ‖(𝑥, 𝑦)‖ we obtain

|𝑓 (𝑥, 𝑦)| ≤ 𝑅−3
∫

𝑎

−𝑎
|𝑔(𝑢)|𝐶𝑢2 𝑑𝑢, (10)

which implies the lemma. □

The following result shows that, although (6) is not a Bochner
integral, its pointwise interpretation is a limit of a particular sequence
of Riemann sums as depicted in Fig. 2. Hence, besides being in 𝐶0(R2),
the function 𝑓 of Lemma 3.2 is also an element of  1

𝜑(R2) for any
𝜑 ∈ 𝐶0(R) ⧵ {0}.

Lemma 3.3. Let 𝑔 ∈ 𝐶c(R) be Lipschitz continuous. We define

𝑓 (𝑥, 𝑦) ∶= ∫

2𝜋

0
(𝑔◦𝑝(cos 𝜃,sin 𝜃))(𝑥, 𝑦) 𝑑𝜃 (11)

for all (𝑥, 𝑦) ∈ R2 and

𝑓𝑁 ∶= 2𝜋
𝑁

𝑁−1
∑

𝑘=0
𝑔◦𝑝(cos 2𝜋𝑘

𝑁 ,sin 2𝜋𝑘
𝑁 ),

for all 𝑁 ∈ N. We have 𝑓𝑁 ∈  1
𝜑(R2) for all 𝜑 ∈ 𝐶0(R) ⧵ {0}. Moreover,

the sequence (𝑓2𝑚 )𝑚≥1 converges uniformly to 𝑓 .

Proof. The fact that 𝑓𝑁 ∈  1
𝜑(R2) follows by noting that Lemma 3.1

implies that 𝑔 ∈ 𝐶0(R) ⊆  1
𝜑(R) and that the map 𝑓 ↦ 𝑓◦𝑝𝑎 is linear

and bounded (with respect to the uniform norm) and sends  1
𝜑(R) into

 1
𝜑(R

2), and hence sends 𝑔 ∈  1
𝜑(R) to 𝑔◦𝑝𝑎 ∈  1

𝜑(R2).
For all (𝑥, 𝑦) ∈ R2, we define the number

𝛷𝑁 (𝑥, 𝑦) ∶= #
{

𝑘 ∈ {0,… , 𝑁 − 1}
|

|

|

|

𝑝(cos 2𝜋𝑘
𝑁 ,sin 2𝜋𝑘

𝑁 )(𝑥, 𝑦) ∈ supp 𝑔
}

,

which leads to the bound

|𝑓𝑁 (𝑥, 𝑦)| ≤
2𝜋 ‖𝑔‖∞

𝑁
𝛷𝑁 (𝑥, 𝑦). (12)

If 𝑅[𝜃] ∶ R2 → R2 denotes the rotation by an angle 𝜃, we have

𝛷𝑁 (𝑥, 𝑦) =
𝑁−1
∑

𝑘=0
𝛷1

(

𝑅[ 2𝜋𝑘𝑁 ](𝑥, 𝑦)
)

. (13)

By using (13) twice, we obtain, for every 𝑀,𝑝 ∈ N,

𝛷2𝑀+𝑝 (𝑥, 𝑦) =
2𝑀+𝑝−1
∑

𝛷1
(

𝑅[ 2𝜋𝑘
2𝑀+𝑝 ](𝑥, 𝑦)

)

4

𝑘=0
=
2𝑀−1
∑

𝑗=0

2𝑝−1
∑

𝑟=0
𝛷1

(

𝑅[ 2𝜋(2
𝑝𝑗+𝑟)

2𝑀+𝑝 ](𝑥, 𝑦)
)

=
2𝑝−1
∑

𝑟=0

2𝑀−1
∑

𝑗=0
𝛷1

(

𝑅[ 2𝜋𝑗2𝑀 ]
(

𝑅[ 2𝜋𝑟
2𝑀+𝑝 ](𝑥, 𝑦)

))

=
2𝑝−1
∑

𝑟=0
𝛷2𝑀

(

𝑅[ 2𝜋𝑟
2𝑀+𝑝 ](𝑥, 𝑦)

)

. (14)

Moreover, for all 𝑀 ∈ N, the vectors 𝑎𝑘 ∶= (cos 2𝜋𝑘
2𝑀 , sin 2𝜋𝑘

2𝑀 ) are
pairwise linearly independent for 𝑘 = 0,… , 2𝑀−1 − 1 (and likewise for
𝑘 = 2𝑀−1,… , 2𝑀 − 1). Any such linearly independent pair 𝑎𝑘, 𝑎𝑘′ forms
a basis of R2 inducing a norm that is equivalent to the Euclidean norm,
hence inducing a number 𝐶𝑘𝑘′ > 0 such that

‖(𝑥, 𝑦)‖ ≤ 𝐶𝑘𝑘′ (|𝑎𝑘 ⋅ (𝑥, 𝑦)| + |𝑎𝑘′ ⋅ (𝑥, 𝑦)|) (𝑥, 𝑦 ∈ R).

We obtain discs 𝐵𝑟𝑘𝑘′ (0) ⊆ R2 around 0 with radii 𝑟𝑘𝑘′ such that (𝑥, 𝑦) ∉
𝐵𝑟𝑘𝑘′ (0) implies that 𝑝𝑎𝑘 (𝑥, 𝑦) ∉ supp 𝑔 or 𝑝𝑎𝑘′ (𝑥, 𝑦) ∉ supp 𝑔, and hence
we obtain a radius 𝑟 = 𝑟(𝑀) > 0 such that for all (𝑥, 𝑦) ∉ 𝐵𝑟(0) there
is at most one 𝑘 ∈ {0,… , 2𝑀−1 − 1} such that 𝑝𝑎𝑘 (𝑥, 𝑦) ∈ supp 𝑔, and
similarly for 𝑘 ∈ {2𝑀−1,… , 2𝑀 − 1}. It follows that

𝛷2𝑀 (𝑥, 𝑦) ≤ 2 ((𝑥, 𝑦) ∈ R2 ⧵ 𝐵𝑟(0)).

Because the disc 𝐵𝑟(0) is rotation invariant, it follows from (14) that
𝛷2𝑀+𝑝 (𝑥, 𝑦) ≤ 2𝑝 ⋅ 2 for all 𝑝 ∈ N and (𝑥, 𝑦) outside 𝐵𝑟(0). By (12), we
conclude that for all 𝑀 ∈ N there exists an 𝑟 > 0 such that

|𝑓2𝑀+𝑝 (𝑥, 𝑦)| ≤
4𝜋 ‖𝑔‖∞

2𝑀
(𝑝 ∈ N, (𝑥, 𝑦) ∈ R2 ⧵ 𝐵𝑟(0)).

As 𝑓 ∈ 𝐶0(R2) by Lemma 3.2, it follows that for every 𝜖 > 0 there exists
an 𝑀 ∈ N and an 𝑟 > 0 such that, for all 𝑚 ≥𝑀 we have

sup
(𝑥,𝑦)∈R2⧵𝐵𝑟(0)

|𝑓2𝑚 (𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)| < 𝜖. (15)

Restricting to the compact 𝐵𝑟(0), the function

[0, 2𝜋) → 𝐶b(𝐵𝑟(0)), 𝜃 ↦ (𝑔◦𝑝(cos 𝜃,sin 𝜃))↾𝐵𝑟(0)

is ‖⋅‖∞-continuous and separable valued, and hence Bochner inte-
grable. We define simple functions 𝑠𝑁 ∶ [0, 2𝜋) → 𝐶b(𝐵𝑟(0)) by

𝑠𝑁 ∶=
𝑁−1
∑

𝑘=0
(𝑔◦𝑝(cos 2𝜋𝑘

𝑁 ,sin 2𝜋𝑘
𝑁 ))↾𝐵𝑟(0) ⋅ 1[ 2𝜋𝑘

𝑁 , 2𝜋(𝑘+1)𝑁

),

where 1 is the indicator function. We obtain ∫[0,2𝜋) 𝑠𝑁 = 𝑓𝑁↾𝐵𝑟(0) and

‖𝑠𝑁 (𝜃) − (𝑔◦𝑝(cos 𝜃,sin 𝜃))↾𝐵𝑟(0) ‖∞

≤ 𝑐𝑟
(

|

|

|

cos 2𝜋𝑘𝑁,𝜃
𝑁 − cos 𝜃||

|

+ |

|

|

sin 2𝜋𝑘𝑁,𝜃
𝑁 − sin 𝜃||

|

)

, (16)

where 𝑐 is the Lipschitz constant of 𝑔 and 𝑘𝑁,𝜃 is the unique number
such that 𝜃 ∈

[ 2𝜋𝑘𝑁,𝜃
𝑁 , 2𝜋(𝑘𝑁,𝜃+1)𝑁

)

. As the latter interval has length 2𝜋
𝑁

and cos has a Lipschitz constant of 1, we can bound (16) by 2𝑐𝑟 2𝜋𝑁 ,
which is independent of 𝜃. Hence (16) converges to 0 uniformly in
𝜃 ∈ [0, 2𝜋). Therefore, by using that the Bochner integral commutes
with the bounded linear map 𝑓 ↦ 𝑓↾𝐵𝑟(0) , and subsequently applying
the definition of the Bochner integral, we obtain

𝑓↾𝐵𝑟(0) = ∫

2𝜋

0
(𝑔◦𝑝(cos 𝜃,sin 𝜃))↾𝐵𝑟(0) 𝑑𝜃 = lim

𝑁→∞
𝑓𝑁↾𝐵𝑟(0)

uniformly. Combining this with (15), we obtain the lemma. □

The importance of the following lemma can be appreciated by
noting that, for all 𝑓 ∈  1

𝜑(R
2), the corresponding 𝜓 is either constant

or undefined.

Lemma 3.4. Let 𝜑 ∈ 𝐶0(R), and let 𝑔 ∈ 𝐶c(R) be Lipschitz continuous
and satisfy ∫ 𝑔(𝑥) = 0 and ∫ 𝑔(𝑥)𝑥2 ≠ 0. Let 𝑓 be defined by (11). Then
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
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𝑔

𝑓 ∈ 𝐶0(R2) ∩  1
𝜑(R2) and 𝑓 (𝑥, 𝑦) = (‖(𝑥, 𝑦)‖−3) for ‖(𝑥, 𝑦)‖ → ∞.

Furthermore, the integral

𝜓(𝑥) = ∫R
𝑓 (𝑥, 𝑦) 𝑑𝑦

defines a function 𝜓 ∈ 𝐿1(R)∩𝐶0(R), in fact, 𝜓(𝑥) = (|𝑥|−2) for |𝑥| → ∞.
Lastly, 𝜓 is nonzero.

Proof. The statements 𝑓 ∈ 𝐶0(R2) ∩ 1
𝜑(R2) and 𝑓 (𝑥, 𝑦) = (‖(𝑥, 𝑦)‖−3)

follow from Lemmas 3.2 and 3.3. We moreover deduce that

|𝜓(𝑥)| ≤ ∫R
|𝑓 (𝑥, 𝑦)| 𝑑𝑦 ≤ 𝐶 ′

∫R
1

(1 + |𝑥| + |𝑦|)3
𝑑𝑦

= 2𝐶 ′
∫

∞

0

1
(1 + |𝑥| + 𝑦)3

𝑑𝑦 = 2𝐶 ′
∫

∞

1+|𝑥|
𝑧−3 𝑑𝑧 = 𝐶 ′(1 + |𝑥|)−2.

Continuity of 𝜓 follows from (8) and the dominated convergence
theorem, and hence 𝜓 ∈ 𝐿1(R) ∩𝐶0(R). For the last statement, we note
that the proof of (10) can be sharpened by using 2

√

1−𝑢2
= 2+𝑢2+(𝑢4).

Again denoting 𝑅 =
√

𝑥2 + 𝑦2, we obtain

𝑓 (𝑥, 𝑦) = 𝑅−3
∫

𝑎

−𝑎
𝑔(𝑢)𝑢2 𝑑𝑢 + (𝑅−5).

Without loss of generality, ∫ 𝑔(𝑢)𝑢2 > 0. We have 𝑅 ≥ |𝑥|, so if |𝑥| is
large enough, 𝑓 (𝑥, 𝑦) > 0 for all 𝑦 ∈ R. Hence 𝜓(𝑥) > 0 for such 𝑥. □

Proposition 3.5. For all 𝜑 ∈ 𝐶0(R) ⧵ {0} we have 𝐶0(R2) ⊆ 1
𝜑(R2).

Proof. With the intention of finding a contradiction, we assume that
 1
𝜑(R2) ∩ 𝐶0(R2) ≠ 𝐶0(R2). By the Hahn–Banach theorem, we obtain a

ontinuous linear map 𝐿 ∶ 𝐶0(R2) → R such that 𝐿
(

 1
𝜑(R2) ∩ 𝐶0(R2)

)

=
{0} and 𝐿 ≠ 0. By the Riesz–Markov–Kakutani theorem, there exists a
finite signed Borel measure 𝜇 on R2 such that

(𝑓 ) = ∫R2
𝑓 (𝑥, 𝑦)𝑑𝜇(𝑥, 𝑦) (𝑓 ∈ 𝐶0(R2)).

s 𝐿 ≠ 0, we obtain 𝜇 ≠ 0. Let 𝑔, 𝑓 , 𝜓 be as in Lemma 3.4.
For all 𝑎 ∈ R2 and 𝑏, 𝑦 ∈ R, let 𝑎⟂ ∈ R2 be a unit vector such that

⋅ 𝑎⟂ = 0. Define 𝑓𝑎,𝑎⟂ ,𝑏,𝑦(𝑣) ∶= 𝑓 (𝑎 ⋅ 𝑣 + 𝑏, 𝑎⟂ ⋅ 𝑣 + 𝑦) for 𝑣 ∈ R2. If ℎ ∈
1
𝜑(R

𝑛), then 𝑥↦ ℎ(𝐴𝑥 + 𝑏) belongs to  1
𝜑(R

𝑛) as well, for any matrix
∈ R𝑛×𝑛 and any 𝑏 ∈ R𝑛; this follows directly from the definition. This

asily extends to the closure, and hence 𝑓𝑎,𝑎⟂ ,𝑏,𝑦 ∈  1
𝜑(R2) ∩𝐶0(R2). By

a substitution, and (8), we find

∫R2
𝜓(𝑎 ⋅ 𝑣 + 𝑏) 𝑑𝜇(𝑣) = ∫R2 ∫R

𝑓 (𝑎 ⋅ 𝑣 + 𝑏, 𝑦) 𝑑𝑦 𝑑𝜇(𝑣)

= ∫R ∫R2
𝑓 (𝑎 ⋅ 𝑣 + 𝑏, 𝑎⟂ ⋅ 𝑣 + 𝑦) 𝑑𝜇(𝑣) 𝑑𝑦

= ∫R
𝐿(𝑓𝑎,𝑎⟂ ,𝑏,𝑦) 𝑑𝑦 = 0. (17)

But, since 𝜓 is bounded and nonconstant, Hornik (1991, Theorem 5)
implies that there exists no nonzero finite measure 𝜇 such that (17)
holds for all 𝑎 ∈ R2 and 𝑏 ∈ R. We obtain a contradiction, which implies
the lemma. □

We now move to higher dimensions, and obtain a noncompact
uniform approximation theorem in the case that 𝜑 ∈ 𝐶0(R) ⧵ {0}.

Proposition 3.6. Let 𝜑 ∈ 𝐶0(R) ⧵ {0}, and let 𝑛 ∈ N. Any function in
𝐶0(R𝑛) is uniformly approximable on R𝑛 by functions of the form

𝑥↦
𝑘
∑

𝑗=1
𝑐𝑗 𝜑(𝑎𝑗 ⋅ 𝑥 + 𝑏𝑗 ),

for 𝑘 ∈ N, 𝑏𝑗 , 𝑐𝑗 ∈ R, and 𝑎𝑗 ∈ R𝑛. In fact, for any 𝑙 ∈ N,

𝑛  𝑙 (R𝑛).
5

𝐶0(R ) ⊆ 𝜑
Proof. We prove the first statement of the proposition by induction on
𝑛, and notice that 𝑛 = 1 is Lemma 3.1 and 𝑛 = 2 is Proposition 3.5.
For 𝑛 > 2, we use 𝐶0(R𝑛) = 𝐶0(R)⊗𝐶0(R𝑛−1), which follows since
𝐶0(R)⊗ 𝐶0(R𝑛−1) is a subalgebra of 𝐶0(R𝑛) that vanishes nowhere and
eparates points, and hence its closure equals 𝐶0(R𝑛) by the locally
ompact version of the Stone–Weierstrass theorem. Therefore, in order
o prove the first statement of the proposition it suffices to show that
ny function

𝑥1,… , 𝑥𝑛) ↦ 𝑓1(𝑥1)𝑓2(𝑥2,… , 𝑥𝑛)

an be uniformly approximated by one-layer networks, for 𝑓1 ∈ 𝐶0(R)
nd 𝑓2 ∈ 𝐶0(R𝑛−1). By induction hypothesis, 𝑓2 can be uniformly
pproximated by linear combinations of functions of the form 𝜑◦𝑝, for
ffine maps 𝑝 ∶ R𝑛−1 → R, so we may assume without loss of generality
hat 𝑓2 = 𝜑◦𝑝 for a fixed affine map 𝑝 ∶ R𝑛−1 → R. It then suffices to
pproximate the function

𝑥1,… , 𝑥𝑛) ↦ 𝑓1(𝑥1)(𝜑◦𝑝)(𝑥2,… , 𝑥𝑛),

which equals (𝑓1 ⊗ 𝜑)◦𝑃 for the affine map 𝑃 ∶ R𝑛 → R2 given by
𝑃 (𝑥1,… , 𝑥𝑛) = (𝑥1, 𝑝(𝑥2,… , 𝑥𝑛)). The function 𝑓1 ⊗ 𝜑 ∈ 𝐶0(R2) can
be approximated by one-layer networks by using Proposition 3.5, and
one-layer networks composed with an affine map 𝑃 are still one-layer
networks, yielding the first statement of the proposition.

Let 𝑓 ∈  𝑙−1
𝜑 (R𝑛) and let 𝑔 ∈ 𝐶0(R) equal the identity on the range

of 𝑓 . By Lemma 3.1, 𝑔 is uniformly approximated by one-layer networks
(𝑔𝑚)𝑚≥1 ⊆ 1

𝜑(R). We write 𝑔◦𝑓−𝑔𝑚◦𝑓𝑚 = (𝑔◦𝑓−𝑔◦𝑓𝑚)+(𝑔◦𝑓𝑚−𝑔𝑚◦𝑓𝑚)
for a sequence (𝑓𝑚)𝑚≥1 ⊆  𝑙−1

𝜑 (R𝑛) converging uniformly to 𝑓 . By
the uniform continuity of 𝑔 and an 𝜖∕2 argument, we obtain 𝑔◦𝑓 =
lim𝑚 𝑔𝑚◦𝑓𝑚 ∈  𝑙

𝜑(R𝑛). Hence, 𝑓 = 𝑔◦𝑓 ∈  𝑙
𝜑(R𝑛). A straightforward

induction argument yields the proposition. □

As a consequence, we obtain a noncompact uniform approximation
theorem for all activation functions in the optimal class, which – as
argued below – has Theorem 2.1 as a special case.

Theorem 3.7. A function 𝜑 ∶ R → R satisfies

 1
𝜑(R) ∩ 𝐶0(R) ≠ {0} (18)

if and only if for all 𝑛, 𝑙 ∈ N we have

𝐶0(R𝑛) ⊆ 𝑙
𝜑(R𝑛).

roof. The ‘if’ direction follows by taking 𝑙 = 𝑛 = 1.
For the converse direction, fix any 𝜒 ∈  1

𝜑(R) ∩ 𝐶0(R) ⧵ {0}. By
roposition 3.6, we obtain 𝐶0(R𝑛) ⊆ 𝑙

𝜒 (R𝑛). It will therefore suffice to
how that  𝑙

𝜒 (R𝑛) ⊆  𝑙
𝜑(R𝑛), which we will do by induction on 𝑙. By

efining the space of 0-layer neural networks as
0
𝜙 (R

𝑛) = {𝑝 ∶ R𝑛 → R ∶ 𝑝 linear},

ndependently of 𝜙, the induction basis  0
𝜒 (R𝑛) ⊆  0

𝜑(R𝑛) follows
rivially, and, (3) holds also for 𝑙 = 1 and can hence be applied in the
nduction step. Let 𝑙 ∈ N and assume as an induction hypothesis that
 𝑙−1
𝜒 (R𝑛) ⊆  𝑙−1

𝜑 (R𝑛). We will show that  𝑙
𝜒 (R

𝑛) ⊆  𝑙
𝜑(R𝑛) by taking

𝑔 ∈  𝑙
𝜒 (R

𝑛) arbitrary. There exist 𝐽 ∈ N, 𝑓𝑗 ∈  𝑙−1
𝜑 (R𝑛), and 𝑏𝑗 , 𝑐𝑗 ∈ R

(𝑗 = 1,… , 𝐽 ) such that

𝑔(𝑥) =
𝐽
∑

𝑗=1
𝑐𝑗 𝜒(𝑓𝑗 (𝑥) + 𝑏𝑗 ).

We let (𝜒𝑚)𝑚≥1 ⊆  1
𝜑(R) be such that ‖𝜒𝑚 − 𝜒‖∞ → 0, and we let

(𝑓𝑗,𝑚)𝑚≥1 ⊆  𝑙−1
𝜑 (R𝑛) be such that ‖𝑓𝑗,𝑚 − 𝑓𝑗‖∞ → 0. We define the

unctions

𝑚(𝑥) ∶=
𝐽
∑

𝑐𝑗 𝜒𝑚(𝑓𝑗,𝑚(𝑥) + 𝑏𝑗 ),

𝑗=1
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and conclude – from the uniform continuity of 𝜒 ∈ 𝐶0(R) and an 𝜖∕2-
argument – that ‖𝑔𝑚 − 𝑔‖∞ → 0. We may assume that 𝜒𝑚 is of the form

𝑚(𝑥) =
𝐾𝑚
∑

𝑘=1
𝑐𝑘,𝑚𝜑(𝑎̃𝑘,𝑚𝑥 + 𝑏̃𝑘,𝑚),

or 𝐾𝑚 ∈ N, 𝑎̃𝑘,𝑚, 𝑏̃𝑘,𝑚, 𝑐𝑘,𝑚 ∈ R, which implies

𝑚(𝑥) =
𝐽
∑

𝑗=1

𝐾𝑚
∑

𝑘=1
𝑐𝑗𝑐𝑘,𝑚𝜑(𝑎̃𝑘,𝑚𝑓𝑗,𝑚(𝑥) + 𝑎̃𝑘,𝑚𝑏𝑗 + 𝑏̃𝑘,𝑚),

nd therefore 𝑔𝑚 ∈  𝑙
𝜑(R

𝑛) (conceptually, we have inserted the hidden
ayer of 𝜒𝑚 inside each node of the last hidden layer of 𝑔𝑚). We deduce
hat 𝑔 ∈  𝑙

𝜑(R𝑛), hence,  𝑙
𝜒 (R

𝑛) ⊆ 𝑙
𝜑(R𝑛), which immediately implies

 𝑙
𝜒 (R𝑛) ⊆  𝑙

𝜑(R𝑛), the required induction step. We conclude that for
ll 𝑛, 𝑙 ∈ N we have

0(R𝑛) ⊆ 𝑙
𝜒 (R𝑛) ⊆ 𝑙

𝜑(R𝑛),

ompleting the proof. □

We make the case that the assumption (18) is satisfied by most ac-
ivation functions. First of all, we show that this assumption is implied
y the assumptions of Theorem 2.1, which hold for activation functions
ike for instance ReLU, Leaky ReLU, ELU, GELU, Swish, Softplus, and
ll sigmoidal or 𝐶0 functions.

roof of Theorem 2.1. We define 𝜒 ∶= 𝜑1 − 𝜑 ∈ 𝐶b(R), where
𝑚(𝑥) ∶= 𝜑(𝑥 − 𝑚). It follows that 𝜒 has finite limits at ±∞.

We now claim that 𝜒 is nonconstant, which we shall prove by
ontradiction.

Suppose that 𝜒 is constant, and define

(𝑥) ∶= 𝜑(𝑥) − 𝑎2𝑥 − 𝑏2. (19)

hen lim𝑥→−∞ 𝜓(𝑥) = 0. Furthermore, 𝜉(𝑥) ∶= 𝜓(𝑥 − 1) − 𝜓(𝑥) satisfies

(𝑥) = 𝜑(𝑥 − 1) − 𝑎2(𝑥 − 1) − 𝜑(𝑥) + 𝑎2𝑥 = 𝜒(𝑥) + 𝑎2.

o 𝜉 is constant, and moreover 𝜉(𝑥) = lim𝑥→−∞ 𝜉(𝑥) = 0, which implies
𝜓(𝑥) = 𝜓(𝑥−1) for all 𝑥 ∈ R, i.e. 𝜓 is periodic. Because 𝜓 has a defined
limit at −∞, it must be constant. It follows from (19) that 𝜑 is linear,
which contradicts our assumptions.

As 𝜒 is nonconstant, we obtain a nontrivial function

𝜒1 − 𝜒 = 𝜑2 − 2𝜑1 + 𝜑 ∈  1
𝜑(R) ∩ 𝐶0(R) ⧵ {0},

so the assumption of Theorem 3.7 is satisfied. □

The same argument repeated shows that continuous and nonpolyno-
mial but asymptotically polynomial activation functions (converging to
potentially different polynomials at −∞ and ∞) satisfy  1

𝜑(R)∩𝐶0(R) ≠
{0}, i.e. (18). This offers an alternative perspective on (Leshno et al.,
1993) (cf. Pinkus (1999, Theorem 3.1)). The noncompact case is more
subtle (e.g., there are activation functions that are ‘universal’ but which
are not asymptotically polynomial), as exemplified by the fact that the
sum of a sigmoid and any even function satisfies (18). Another stan-
dard argument shows that (18) is satisfied by discontinuous activation
functions like the binary step function as well.

4. Bounded activation functions with identical left and right lim-
its

In this section we precisely characterise the space of uniformly
approximable functions in the easiest situation, namely in the case that
𝜑(−∞) and 𝜑(∞) are finite and equal.

We recall the definition of the commutative resolvent algebra
6

from (van Nuland, 2019): w
Definition 4.1. For 𝑛 ∈ N, the (real-valued part of the) commutative
resolvent algebra on R𝑛 is given by

𝐶(R𝑛) = span
{

𝑔◦𝑃𝑉
|

|

|

|

|

𝑉 ⊆ R𝑛 linear subspace,
𝑔 ∈ 𝐶0(𝑉 )

}

,

where 𝑃𝑉 denotes the orthogonal projection onto the linear subspace
𝑉 ⊆ R𝑛.

There exists a slightly different characterisation of 𝐶(R𝑛).

emma 4.2. For all 𝑛 ∈ N we have

(R𝑛) = span
{

𝑔◦𝑃
|

|

|

|

|

𝑃 ∶ R𝑛 → R𝑘 linear,
𝑔 ∈ 𝐶0(R𝑘), 𝑘 ∈ Z≥0

}

. (20)

Proof. Each function 𝑔◦𝑃 , for 𝑃 ∶ R𝑛 → R𝑘 linear and 𝑔 ∈ 𝐶0(R𝑘), can
e written in the form

◦𝑃 = 𝑔̃◦𝑃𝑉 (21)

or 𝑉 ∶= (ker 𝑃 )⟂, 𝑃𝑉 ∶ R𝑛 → 𝑉 the corresponding orthogonal
rojection, and 𝑔̃ ∶= 𝑔◦𝑃 ↾𝑉 . As 𝑃 ↾𝑉 ∶ 𝑉 → ran𝑃 ⊆ R𝑘 is a linear

isomorphism, and 𝑔↾ran𝑃 ∈ 𝐶0(ran𝑃 ), it follows that 𝑔̃ ∈ 𝐶0(𝑉 ). This
mplies ⊇ of (20) and the converse inclusion follows similarly (if not
lightly easier). □

The (real part of the) commutative resolvent algebra is a closed
ubalgebra of 𝐶b(R𝑛), as shown in the proof of Corollary 2.3, or,
lternatively, in van Nuland (2019, Lemma 2.2). Although (van Nuland,
019) works over the complex numbers, the above remark (over the
eal numbers) follows immediately by taking the real part.

Closed subalgebras of 𝐶b(R𝑛) relate to deep neural networks in the
ollowing way.

emma 4.3. Let 𝜑 ∈ 𝐶b(R) and 𝑛 ∈ N. If 𝐴 is a (uniformly) closed
ubalgebra of 𝐶b(R𝑛) with  1

𝜑(R
𝑛) ⊆ 𝐴, then  𝑙

𝜑(R
𝑛) ⊆ 𝐴 for any 𝑙 ∈ N.

roof. The claim is trivial if 𝜑 = 0. Thus, assume that 𝜑 ≠ 0 and note
hat then  1

𝜑(R
𝑛) ⊆ 𝐴 contains the constant functions. For 𝑙 ≥ 2, assume

hat  𝑙−1
𝜑 (R𝑛) ⊆ 𝐴 and let 𝑓 ∈  𝑙−1

𝜑 (R𝑛) and 𝑏 ∈ R. We are to prove
hat 𝜑◦(𝑓+𝑏) ∈ 𝐴. As 𝑓+𝑏 is a bounded function, the Stone–Weierstrass
heorem supplies a sequence of polynomials (𝑝𝑘)𝑘≥1 converging to 𝜑
niformly on the range of 𝑓 + 𝑏. Hence 𝑝𝑘◦(𝑓 + 𝑏) converges uniformly
o 𝜑◦(𝑓 + 𝑏). Because 𝐴 is a unital algebra, 𝑓 + 𝑏 ∈ 𝐴 implies that

𝑘◦(𝑓 + 𝑏) = 𝑝𝑘(𝑓 + 𝑏) ∈ 𝐴.

s 𝐴 is closed, we obtain 𝜑◦(𝑓 + 𝑏) ∈ 𝐴, which by induction implies
hat  𝑙

𝜑(R
𝑛) ⊆ 𝐴 for every 𝑙 ≥ 1. □

We now turn to the case 𝜑(−∞) = 𝜑(∞). Without loss of generality
because we are considering neural networks with biases 𝑏) we can
ssume that 𝜑(−∞) = 𝜑(∞) = 0, i.e., 𝜑 ∈ 𝐶0(R).

emma 4.4. For any 𝜑 ∈ 𝐶0(R) and 𝑛 ∈ N we have
∞
𝜑 (R𝑛) ⊆ 𝐶(R𝑛).

roof. Any network in  1
𝜑(R

𝑛) is a linear combination of functions of
he form

↦ 𝜑(𝑎 ⋅ 𝑥 + 𝑏), (22)

or 𝑎 ∈ R𝑛 and 𝑏 ∈ R. By taking 𝑃 (𝑥) ∶= 𝑎⋅𝑥 and 𝑔(𝑦) ∶= 𝜑(𝑦+𝑏), we find
hat the function (22) equals 𝑔◦𝑃 ∈ 𝐶(R𝑛). Hence,  1

𝜑(R
𝑛) ⊆ 𝐶(R𝑛).

y Lemma 4.3, this completes the proof. □

An immediate corollary of the above lemma is

∞
𝜑 (R𝑛) ⊆ 𝐶(R𝑛).

he following theorem is the main result of this section, and states that
he above inclusion is an equality. In fact, equality is already obtained
ith one hidden layer.
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Theorem 4.5. For any 𝑛 ∈ N and any 𝜑 ∈ 𝐶0(R) ⧵ {0} we have

∞
𝜑 (R𝑛) =  1

𝜑(R𝑛) = 𝐶(R𝑛).

egarding systems with 𝑚 output nodes, we therefore have

∞
𝜑 (R𝑛,R𝑚) = 𝐶(R𝑛)⊕𝑚.

roof. Let 𝑔◦𝑃 ∈ 𝐶(R𝑛) be a function of the form of (20), namely
ith 𝑃 ∶ R𝑛 → R𝑘 a linear map and 𝑔 ∈ 𝐶0(R𝑘). By Proposition 3.6,

𝑔 ∈ span{𝑥 ↦ 𝜑(𝑎 ⋅ 𝑥 + 𝑏) ∣ 𝑎 ∈ R𝑘, 𝑏 ∈ R}. Hence, by the continuity of
the map 𝑔 ↦ 𝑔◦𝑃 ,

𝑔◦𝑃 ∈ span
{

𝑥 ↦ 𝜑(𝑎 ⋅ 𝑃 (𝑥) + 𝑏) ∣ 𝑎 ∈ R𝑘, 𝑏 ∈ R
}

⊆ span {𝑥↦ 𝜑(𝑎̃ ⋅ 𝑥 + 𝑏) ∣ 𝑎̃ ∈ R𝑛, 𝑏 ∈ R} ,

here the inclusion is obtained by noting that R𝑛 → R, 𝑥 ↦ 𝑎 ⋅ 𝑃 (𝑥) is
inear, and hence given by 𝑥↦ 𝑎̃ ⋅ 𝑥 for an 𝑎̃ ∈ R𝑛. □

The following corollary will be used in Section 5.

orollary 4.6. For any 𝑛, 𝑙 ∈ N and any nonconstant 𝜑 ∈ 𝐶(R) with
inite left and right limits we have

(R𝑛) ⊆ 𝑙
𝜑(R𝑛).

roof. If 𝜑1(𝑥) ∶= 𝜑(𝑥 − 1) denotes the shift of 𝜑, we have 𝜑 −
1 ∈ 𝐶0(R) ⧵ {0}. Furthermore, we see that  𝑙

𝜑−𝜑1
(R𝑛) ⊆  𝑙

𝜑(R
𝑛)

for any number of hidden layers 𝑙. Hence, the result follows from
Theorem 4.5. □

5. Bounded activation functions with distinct left and right limits

For this section, we let 𝜑 be continuous with finite and distinct
left and right limits. In this case, describing the set of uniformly
approximable functions is slightly more involved.

Definition 5.1. We define

S(R) ∶=
{

𝑓 ∈ 𝐶(R)
|

|

|

|

lim
𝑥→−∞

𝑓 (𝑥) and lim
𝑥→∞

𝑓 (𝑥) exist in R
}

.

More generally, for 𝑛 ∈ N, we define

S(R𝑛) ∶= span
{ 𝑚

∏

𝑗=1
(𝑔𝑗◦𝑝𝑎𝑗 )

|

|

|

|

|

𝑚 ∈ N, 𝑔𝑗 ∈ S(R), 𝑎𝑗 ∈ R𝑛
}

,

where we recall that 𝑝𝑎(𝑥) = 𝑎 ⋅ 𝑥.

We note that S(R𝑛) is a closed subalgebra of 𝐶b(R𝑛). We may give
a more explicit characterisation of S(R𝑛).

Lemma 5.2. For all 𝑛 ∈ N we have

S(R𝑛) = span
{ 𝑚

∏

𝑗=1
(tanh ◦𝑝𝑎𝑗 )

|

|

|

|

|

𝑚 ∈ Z≥0, 𝑎𝑗 ∈ R𝑛
}

.

n the above formula, tanh can be replaced by any strictly monotonous
lement of S(R).

Remark 5.3. The above remarks can be formulated in C*-algebraic
language quite concisely. Namely, for any fixed strictly monotonous
𝜎 ∈ S(R), S(R𝑛) is the smallest C*-subalgebra of the real C*-algebra

b(R𝑛) that contains the functions 1 and 𝜎◦𝑝𝑎 (𝑎 ∈ R𝑛).

Proof of Lemma 5.2. The inclusion ⊇ follows by taking 𝑔𝑗 = tanh. The
right-hand side is therefore a subalgebra of S(R𝑛). Because composition
with 𝑝𝑎 is a continuous mapping, it thus suffices to show that, for all
𝑔 ∈ S(R),

𝑔 ∈ span
{ 𝑚

∏

𝜎
|

|

|

|

𝑚 ∈ Z≥0

}

,

7

𝑗=1 |
for a fixed strictly monotonous element 𝜎 ∈ S(R) such as 𝜎 = tanh.
The above set contains all limits of all polynomials in 𝜎, and hence,
by Stone–Weierstrass, it contains 𝑓◦𝜎 for every continuous function
𝑓 ∈ 𝐶(ran 𝜎). It therefore also contains 𝑔 = (𝑔◦𝜎−1)◦𝜎, as required. □

The algebra S(R) is closely related to the space of one-layer neural
etworks.

emma 5.4. For any 𝜑 ∈ S(R) we have  1
𝜑(R) ⊆ S(R). If moreover

𝜑(−∞) ≠ 𝜑(∞), then we have  1
𝜑(R) = S(R).

Proof. For any 𝜑 ∈ S(R), the space  1
𝜑(R) is spanned by functions

𝑥 ↦ 𝜑(𝑎𝑥 + 𝑏) (𝑎, 𝑏 ∈ R),

which are also functions in S(R). Since S(R) is a closed linear space,
we obtain  1

𝜑(R) ⊆ S(R).
If we furthermore assume that 𝜑(−∞) ≠ 𝜑(∞), then for every 𝑓 ∈

S(R) there exist 𝑎, 𝑏 ∈ R such that 𝑓 − 𝑎𝜑− 𝑏 ∈ 𝐶0(R). Hence, by using
heorem 2.1,

∈ 𝑎𝜑 + 𝑏 + 𝐶0(R) ⊆ 1
𝜑(R).

The combination of both inclusions finishes the proof. □

One of the two desired inclusions is now derived as follows.

Proposition 5.5. For every 𝑛 ∈ N and every 𝜑 ∈ S(R), we have

∞
𝜑 (R𝑛) ⊆ S(R𝑛).

roof. The space  1
𝜑(R

𝑛) is spanned by functions of the form 𝑓 = 𝑔◦𝑝𝑎
or 𝑔 ∈  1

𝜑(R) and 𝑎 ∈ R𝑛. By Lemma 5.4, we have 𝑔 ∈ S(R), which
mplies that 𝑓 ∈ S(R𝑛). Therefore,  1

𝜑(R
𝑛) ⊆ S(R𝑛), and since S(R𝑛) is

closed subalgebra of 𝐶b(R𝑛), Lemma 4.3 implies the proposition. □

We proceed with the converse inclusion, in order to obtain equality
f the spaces ∞

𝜑 (R𝑛) and S(R𝑛).

.1. Converse inclusion

Denote by Sc(R) the set of functions 𝑓 ∈ S(R) such that 𝑓 (R) =
[0, 1] and 𝑓−1((0, 1)) is bounded.

Lemma 5.6. The span of Sc(R) is dense in S(R).

Proof. Our definitions imply that 𝐶0(R) + spanSc(R) ⊆ S(R). Let
𝑓 ∈ S(R) be arbitrary. If 𝑓 (−∞) = 𝑓 (∞) then 𝑓 − 𝑓 (∞)𝑣 ∈ 𝐶0(R),

here 𝑣 ∈ Sc(R) is defined as 𝑣(𝑥) ∶= min(1, |𝑥|). It follows that
∈ 𝐶0(R) + spanSc(R).
Define 𝑣1, 𝑣2 ∈ Sc(R) by

1(𝑥) = max{0,min{1, 𝑥}} and 𝑣2(𝑥) = 𝑣1(−𝑥),

o that 𝑣1(∞) = 1 = 𝑣2(−∞) and 𝑣1(−∞) = 0 = 𝑣2(∞). Then, setting
∶= 𝑓 − 𝑓 (∞)𝑣1 − 𝑓 (−∞)𝑣2, we have 𝑔 ∈ 𝐶0(R) and

= 𝑔 + 𝑓 (∞)𝑣1 + 𝑓 (−∞)𝑣2 ∈ 𝐶0(R) + spanSc(R).

herefore,

0(R) + spanSc(R) = S(R). (23)

For an arbitrary 𝑓 ∈ 𝐶c(R), decompose 𝑓 = 𝑓+ − 𝑓− for the positive
nd negative parts 𝑓+, 𝑓− ≥ 0 of 𝑓 . If 𝑓± ≠ 0, we have 𝑓±

‖𝑓±‖∞
∈ Sc(R),

which implies 𝑓± ∈ spanSc(R). Hence,

𝐶c(R) ⊆ spanSc(R). (24)

By taking closures of (23) and (24), we obtain spanSc(R) = 𝐶0(R)+
spanS (R) = S(R), as claimed. □
c
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Fig. 3. Contour plot of two wedge functions on R2.

Definition 5.7. Let 𝐽 be a finite set. A wedge function with support
vectors {𝑎𝑗}𝑗∈𝐽 ⊆ R𝑛 is a function of the form

(𝑔◦𝑃𝑉 )
∏

𝑗∈𝐽
(𝑔𝑗◦𝑝𝑎𝑗 ),

for some linear subspace 𝑉 ⊆ R𝑛, 𝑔 ∈ 𝐶c(𝑉 ) and 𝑔𝑗 ∈ Sc(R) for each
𝑗 ∈ 𝐽 .

The following proposition is the key to Theorem 5.9.

Proposition 5.8. Fix 𝜑 ∈ S(R) with 𝜑(−∞) ≠ 𝜑(∞) and let 𝑚 ∈ N. Any
wedge function with 𝑚 support vectors is in  2

𝜑(R𝑛).

Proof. The proof proceeds by induction on 𝑚. The induction basis
follows immediately, since wedge functions with no support vectors are
in  2

𝜑(R𝑛) by Corollary 4.6.
Let 𝐽 be an index set of support vectors {𝑎𝑗}𝑗∈𝐽 such that all wedge

functions with strictly less support vectors are in  2
𝜑(R𝑛) – this is

the induction hypothesis. To obtain the induction step, we shall fix
a generic wedge function (𝑔◦𝑃𝑉 )

∏

𝑗∈𝐽 (𝑔𝑗◦𝑝𝑎𝑗 ) and prove that it is in
 2
𝜑(R𝑛). That is, we fix a linear subspace 𝑉 ⊆ R𝑛, functions 𝑔 ∈ 𝐶c(𝑉 )

and 𝑔𝑗 ∈ Sc(R) and support vectors 𝑎𝑗 ∈ R𝑛 for all 𝑗 ∈ 𝐽 . Without
loss of generality, we may assume that 0 ≤ 𝑔 ≤ 1. We define a function
ℎ ∈ 𝐶b(R) by

ℎ(𝑥) ∶=

⎧

⎪

⎨

⎪

⎩

0 if 𝑥 ≤ 0,
𝑥 if 0 ≤ 𝑥 ≤ 1,
1 if 1 ≤ 𝑥,

as well as the shifts ℎ𝑚(𝑥) ∶= ℎ(𝑥 − 𝑚). For every 𝐼 ⊆ 𝐽 , we recursively
define

𝑓∅ ∶= 0,

𝑓𝐼 ∶= (𝑔◦𝑃𝑉 )
∏

𝑗∈𝐼
(𝑔𝑗◦𝑝𝑎𝑗 ) − ℎ#𝐼◦

(

𝑔◦𝑃𝑉 +
∑

𝑗∈𝐼
(𝑔𝑗◦𝑝𝑎𝑗 )

)

−
∑

𝐻⊆𝐼
𝐻≠𝐼

𝑓𝐻
∏

𝑗∈𝐼⧵𝐻
(𝑔𝑗◦𝑝𝑎𝑗 ) . (25)

We note that the two definitions are consistent by taking 𝐼 = ∅ and
using 𝑔◦𝑃𝑉 − ℎ0◦(𝑔◦𝑃𝑉 ) = 0. We also define the space 𝑊𝐼 ∶= 𝑉 +
span{𝑎𝑗 ∣ 𝑗 ∈ 𝐼}. By induction on #𝐼 , and using that 𝑝𝑎𝑗 = 𝑝𝑎𝑗 ◦𝑃𝑊𝐼
for every 𝑗 ∈ 𝐼 , we find that 𝑓𝐼 = 𝑓𝐼◦𝑃𝑊𝐼

. Moreover, we claim that
𝑓𝐼 ↾𝑊𝐼

∈ 𝐶c(𝑊𝐼 ). The latter claim is shown by proving the following
statement by induction (i.e., we are using nested induction). Here,
8

𝑥 ∈ R𝑛 is fixed.

𝛼(𝐼) ∶

‘‘If 𝑔(𝑃𝑉 (𝑥)) = 0

or 𝑔𝑗0 (𝑎𝑗0 ⋅ 𝑥) ∈ {0, 1} for some 𝑗0 ∈ 𝐼 ,
then 𝑓𝐼 (𝑥) = 0."

We prove 𝛼(𝐼) by induction on #𝐼 . By definition, 𝛼(∅) is true. Now
suppose 𝛼(𝐻) is true for all 𝐻 ⊊ 𝐼 . Then 𝛼(𝐼) follows from the following
three statements:

• If 𝑔(𝑃𝑉 (𝑥)) = 0, then 𝑓𝐻 (𝑥) = 0, so (25) gives 𝑓𝐼 (𝑥) = 0.
• If 𝑔𝑗0 (𝑎𝑗0 ⋅ 𝑥) = 0 for a certain 𝑗0 ∈ 𝐼 , then the first and second

term of (25) drop out, leaving us with

𝑓𝐼 (𝑥) = −
∑

𝐻⊆𝐼
𝐻≠𝐼

𝑓𝐻 (𝑥)
∏

𝑗∈𝐼⧵𝐻
𝑔𝑗 (𝑎𝑗 ⋅ 𝑥).

If 𝑗0 ∈ 𝐻 , then we have 𝑓𝐻 (𝑥) = 0, and if 𝑗0 ∉ 𝐻 , then
∏

𝑗∈𝐼⧵𝐻 𝑔𝑗 (𝑎𝑗 ⋅ 𝑥) = 0. Hence, in both cases, 𝑓𝐼 (𝑥) = 0.
• If 𝑔𝑗0 (𝑎𝑗0 ⋅ 𝑥) = 1 for a certain 𝑗0 ∈ 𝐼 , then

𝑓𝐼 (𝑥) =𝑔(𝑃𝑉 (𝑥))
∏

𝑗∈𝐼⧵{𝑗0}
𝑔𝑗 (𝑎𝑗 ⋅ 𝑥)

− ℎ#𝐼−1

(

𝑔(𝑃𝑉 (𝑥)) +
∑

𝑗∈𝐼⧵{𝑗0}
𝑔𝑗 (𝑎𝑗 ⋅ 𝑥)

)

−
∑

𝐻⊆𝐼
𝐻≠𝐼

𝑓𝐻 (𝑥)
∏

𝑗∈(𝐼⧵{𝑗0})⧵𝐻
𝑔𝑗 (𝑎𝑗 ⋅ 𝑥).

For all 𝐻 ⊊ 𝐼 with 𝑗0 ∈ 𝐻 we have 𝑓𝐻 (𝑥) = 0, so the third term
becomes

−
∑

𝐻⊆𝐼
𝐻≠𝐼

𝑓𝐻 (𝑥)
∏

𝑗∈(𝐼⧵{𝑗0})⧵𝐻
𝑔𝑗 (𝑎𝑗 ⋅ 𝑥)

= −
∑

𝐻⊆𝐼⧵{𝑗0}
𝐻≠𝐼⧵{𝑗0}

𝑓𝐻 (𝑥)
∏

𝑗∈𝐼⧵𝐻
𝑔𝑗 (𝑎𝑗 ⋅ 𝑥) − 𝑓𝐼⧵{𝑗0}(𝑥) .

We conclude that 𝑓𝐼 (𝑥) = 𝑓𝐼⧵{𝑗0}(𝑥) − 𝑓𝐼⧵{𝑗0}(𝑥) = 0.

Therefore 𝛼(𝐻) is true for every 𝐻 ⊆ 𝐽 . We will now deduce that
𝑓𝐻 ↾𝑊𝐻

has compact support. The assertion 𝛼(𝐻) shows that for
𝑥 ∈ 𝑊𝐻 with 𝑓𝐻 (𝑥) ≠ 0 we have 𝑃𝑉 (𝑥) ∈ supp 𝑔 and 𝑎𝑗 ⋅𝑥 ∈ 𝑔−1𝑗 ((0, 1)) for
𝑗 ∈ 𝐻 , which by compactness of supp 𝑔 and 𝑔−1𝑗 ((0, 1)) implies that there
exists 𝑅 > 0 independent of 𝑥 such that ‖𝑃𝑉 (𝑥)‖ ≤ 𝑅 and |𝑎𝑗 ⋅ 𝑥| ≤ 𝑅. It
is not hard to see that

‖𝑥‖∗ ∶= ‖𝑃𝑉 (𝑥)‖ +
∑

𝑗∈𝐻
|𝑎𝑗 ⋅ 𝑥| (𝑥 ∈ 𝑊𝐻 ),

defines a seminorm, and also positive definiteness is proven as follows.
If ‖𝑥‖∗ = 0, then 𝑥 ⟂ 𝑉 and 𝑥 ⟂ 𝑎𝑗 for all 𝑗 ∈ 𝐻 . Since 𝑥 ∈ 𝑊𝐻 =
𝑉 + span{𝑎𝑗 | 𝑗 ∈ 𝐼}, this implies 𝑥 ⟂ 𝑥 and hence 𝑥 = 0. Now, the
considerations from above imply that the set {𝑥 ∈ 𝑊𝐻 | 𝑓𝐻 (𝑥) ≠ 0} is
bounded with respect to the norm ‖ ⋅ ‖∗ (hence bounded with respect
to any norm on 𝑊𝐻 ), which implies that 𝑓𝐻↾𝑊𝐻

has compact support.
We have noted earlier that 𝑓𝐻 = 𝑓𝐻◦𝑃𝑊𝐻

, so we conclude that

𝑓𝐻 = 𝑓𝐻↾𝑊𝐻
◦ 𝑃𝑊𝐻

and 𝑓𝐻↾𝑊𝐻
∈ 𝐶𝑐 (𝑊𝐻 ), (26)

in particular, 𝑓𝐻 is a wedge function without support vectors.
By rearranging (25) in the case 𝐼 = 𝐽 , we obtain

(𝑔◦𝑃𝑉 )
∏

𝑗∈𝐽
(𝑔𝑗◦𝑝𝑎𝑗 ) =

∑

∅≠𝐻⊆𝐽
𝑓𝐻

∏

𝑗∈𝐽⧵𝐻
(𝑔𝑗◦𝑝𝑎𝑗 )

+ ℎ#𝐽◦
(

𝑔◦𝑃𝑉 +
∑

𝑗∈𝐽
(𝑔𝑗◦𝑝𝑎𝑗 )

)

. (27)

We can summarise (26) and (27) by saying that any wedge function
can be written as a sum of wedge functions with strictly less support
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vectors (that are therefore in  2
𝜑(R𝑛) by the induction hypothesis) plus

a remainder term which we denote by

𝑟 ∶= ℎ#𝐽◦
(

𝑔◦𝑃𝑉 +
∑

𝑗∈𝐽
(𝑔𝑗◦𝑝𝑎𝑗 )

)

.

We now show that 𝑟 ∈  2
𝜑(R𝑛). Corollary 4.6 implies that 𝑔◦𝑃𝑉 ∈

𝐶(R𝑛) ⊆  1
𝜑(R𝑛). Moreover, Lemma 5.4 shows that 𝑔𝑗 ∈ Sc(R) ⊆

 1
𝜑(R) and hence 𝑔𝑗◦𝑝𝑎𝑗 ∈  1

𝜑(R𝑛). Therefore,

𝑔◦𝑃𝑉 +
∑

𝑗∈𝐽
(𝑔𝑗◦𝑝𝑎𝑗 ) ∈  1

𝜑(R𝑛).

y Lemma 5.4, ℎ#𝐽 ∈  1
𝜑(R). By uniform continuity of elements in

 1
𝜑(R), it follows that 𝑟 ∈  2

𝜑(R𝑛).
Hence, the function in (27) is in  2

𝜑(R𝑛), which completes the
induction step initiated at the beginning of this proof. We conclude that
all wedge functions are in  2

𝜑(R𝑛).

Theorem 5.9. Let 𝜑 ∈ 𝐶(R) be such that lim𝑥→−∞ 𝜑(𝑥) and lim𝑥→∞ 𝜑(𝑥)
are finite and unequal. We have

∞
𝜑 (R𝑛) =  2

𝜑(R𝑛) = S(R𝑛).

egarding systems with 𝑚 output nodes, we therefore have

∞
𝜑 (R𝑛,R𝑚) = S(R𝑛)⊕𝑚.

roof. By Proposition 5.8 we know that all wedge functions belong
o  2

𝜑(R𝑛). In particular, taking 𝑉 = {0}, wedge functions of the form
∏

𝑗∈𝐽 (𝑔𝑗◦𝑝𝑎𝑗 ) belong to  2
𝜑(R𝑛). By using Lemma 5.6, this implies that

(R𝑛) ⊆  2
𝜑(R𝑛). Combining the latter inclusion with the inclusion

rom Proposition 5.5, we obtain equality. □

.2. Difference between one-layer and two-layer networks

Let 𝜑 ∈ S(R) with 𝜑(−∞) ≠ 𝜑(∞). Let ℎ ∈ S(R) be a continuous
unction satisfying ℎ(𝑥) = 0 for 𝑥 ≤ 0 and ℎ(𝑥) = 1 for 𝑥 ≥ 1. Then

𝑓 (𝑥, 𝑦) ∶= ℎ(𝑥)ℎ(𝑦) (28)

(a mollified AND function) is approximable by two-layer neural net-
works by Theorem 5.9. However, the following reasoning shows that it
is at least a (supremum norm) distance of 1/4 from all one-layer neural
networks.

Theorem 5.10. Let 𝜑 ∈ S(R) with 𝜑(−∞) ≠ 𝜑(∞), and define 𝑓 ∈
 2
𝜑(R2) by (28). Then

‖𝑓 − 𝑔‖∞ ≥ 1
4

for all 𝑔 ∈  1
𝜑(R

2).

roof. For any function 𝑔 ∈ 𝐶(R2) we define

𝑔(𝑣) ∶= lim
𝑡→∞

(𝑔(𝑡𝑣) + 𝑔(−𝑡𝑣)) ,

or the 𝑣 ∈ 𝑆1 ⊆ R2 for which this limit exists.
If 𝑔(𝑥) = 𝑐𝜑(𝑎 ⋅ 𝑥 + 𝑏), then 𝑙𝑔 will be defined on the full unit circle

1, and constant almost everywhere, namely on all 𝑣 ∈ 𝑆1 satisfying
⋅ 𝑣 ≠ 0 (or everywhere, if 𝑎 = 0). Taking a sum, linearity of limits

mplies that, for all 𝑔 ∈  1
𝜑(R

2), the partial function 𝑙𝑔 is defined
everywhere and constant almost everywhere on 𝑆1. (In fact, this holds
for all 𝑔 ∈  1

𝜑(R2).) However,

𝑓 ((cos 𝜃, sin 𝜃)) =

{

1 𝜃 ∈ (0, 12𝜋) ∪ (𝜋, 32𝜋)
1 3
9

0 𝜃 ∈ ( 2𝜋, 𝜋) ∪ ( 2𝜋, 2𝜋),
which is manifestly not constant almost everywhere. Hence, there exists
a 𝑣 ∈ 𝑆1 with
|

|

|

|

lim
𝑡→∞

𝑔(𝑡𝑣) − lim
𝑡→∞

𝑓 (𝑡𝑣)
|

|

|

|

≥ 1
4
,

which implies that ‖𝑔 − 𝑓‖∞ ≥ 1
4 . □

The above reasoning for showing 𝑓 ∉  1
𝜑(R𝑛) will work for all 𝑓 ∈

𝐶(R𝑛) with 𝑙𝑓 not constant almost everywhere on 𝑆𝑛−1, hence supplying
a large list of examples of functions not uniformly approximable by one-
layer neural networks. By scaling, the uniform distance can be made
arbitrary large, so there are functions in  2

𝜑(R
𝑛) with arbitrarily large

distance from  1
𝜑(R

𝑛), proving Theorem 2.4.

6. Nonzero one-layer networks do not vanish at infinity

As an encore, we prove a claim made in the introduction. We also
prove a claim made in the caption of Fig. 2, which is stated without
proof in Pinkus (1999, Section 7). An elegant proof of the latter (i.e. the
proof of point 2 below) was supplied by a very generous anonymous
referee.

Theorem 6.1. Let 𝑚 ∈ N, 𝑛 ∈ N≥2 be numbers, 𝑎1,… , 𝑎𝑚 ∈ R𝑛 be vectors,
and 𝑓1,… , 𝑓𝑚 ∶ R → R be functions. Define 𝑓 (𝑥) ∶= ∑𝑚

𝑗=1 𝑓𝑗 (𝑎𝑗 ⋅ 𝑥).

1. If 𝑓 ∈ 𝐶0(R𝑛) then 𝑓 = 0. In particular,

 1
𝜑(R

𝑛) ∩ 𝐶0(R𝑛) = {0},

for every function 𝜑 ∶ R → R.
2. If 𝑓 ∈ 𝐿𝑝(R𝑛) for some 𝑝 ∈ (0,∞), then 𝑓 = 0 almost everywhere.
In particular,

 1
𝜑(R

𝑛) ∩ 𝐿𝑝(R𝑛) = {0},

for every function 𝜑 ∶ R → R and every 𝑝 ∈ (0,∞).

roof. Since 𝑛 ≥ 2, we can choose for each 𝑗 ∈ {1,… , 𝑚} a nonzero
ector 𝑣𝑗 ∈ R𝑛 satisfying

𝑗 ⋅ 𝑣𝑗 = 0 and ‖𝑣𝑗‖ > ‖𝑣1‖ +…+ ‖𝑣𝑗−1‖.

or brevity, write [𝑚] ∶= {1,… , 𝑚}. For 𝐼 ⊆ [𝑚], define

(𝐼) ∶=
∑

𝑖∈𝐼
𝑣𝑖 , in particular, 𝑣(∅) = 0.

y choice of the 𝑣𝑗 we have that 𝑣(𝐼) ≠ 0 for all ∅ ≠ 𝐼 ⊆ [𝑚].
For all 𝑗 ∈ [𝑚], 𝑥 ∈ R𝑛, and 𝑡 ∈ R, we note that, since 𝑎𝑗 ⋅ 𝑣𝑗 = 0,
∑

⊆[𝑚],𝑗∉𝐼
(−1)#𝐼𝑓𝑗 (𝑎𝑗 ⋅ (𝑥 + 𝑡𝑣(𝐼))) =

∑

𝐼⊆[𝑚],𝑗∈𝐼
(−1)#𝐼−1𝑓𝑗 (𝑎𝑗 ⋅ (𝑥 + 𝑡𝑣(𝐼))),

nd hence,
∑

⊆[𝑚]
(−1)#𝐼𝑓𝑗 (𝑎𝑗 ⋅ (𝑥 + 𝑡𝑣(𝐼))) =

∑

𝐼⊆[𝑚],𝑗∈𝐼
(−1)#𝐼𝑓𝑗 (𝑎𝑗 ⋅ (𝑥 + 𝑡𝑣(𝐼)))

+
∑

𝐼⊆[𝑚],𝑗∉𝐼
(−1)#𝐼𝑓𝑗 (𝑎𝑗 ⋅ (𝑥 + 𝑡𝑣(𝐼)))

=0.

By summing the above over 𝑗 and interchanging the sums, we see
∑

𝐼⊆[𝑚](−1)#𝐼𝑓 (𝑥 + 𝑡𝑣(𝐼)) = 0. Since the summand for 𝐼 = ∅ is simply
𝑓 (𝑥), we thus get

𝑓 (𝑥) = −
∑

∅≠𝐼⊆[𝑚]
(−1)#𝐼𝑓 (𝑥 + 𝑡𝑣(𝐼)) (𝑥 ∈ R𝑛, 𝑡 ∈ R). (29)

The above formula allows us to prove both 1 and 2.

1. If 𝑓 ∈ 𝐶0(R𝑛) then for every 𝑥 ∈ R𝑛 and every 𝜖 > 0 there exists a
𝑡 ∈ R large enough such that the right-hand side of 29 is smaller
than 𝜖, hence |𝑓 (𝑥)| < 𝜖 for every 𝑥 and every 𝜖, implying 𝑓 = 0.
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2. If 𝑓 ∈ 𝐿𝑝(R𝑛) then 𝑔 = |𝑓 |𝑝 ∈ 𝐿1(R𝑛). For completeness, let
us prove a folklore assertion related to the Poisson summation
formula, namely the claim that for every 𝑔 ∈ 𝐿1(R𝑛) and any
lattice 𝛬 ⊆ R𝑛, the series

ℎ(𝑥) ∶=
∑

𝑘∈𝛬
𝑔(𝑥 + 𝑘)

converges for almost all 𝑥 ∈ R𝑛. Indeed, if 𝑈 ⊆ R𝑛 is a
measurable subset such that R𝑛 = ⊔𝑘∈𝛬(𝑈 + 𝑘), then

∞ > ∫R𝑛
|𝑔(𝑥)| = ∫𝑈

∑

𝑘∈𝛬
|𝑔(𝑥 + 𝑘)| 𝑑𝑥 .

So there exists a null-set 𝑁0 ⊆ 𝑈 such that ℎ(𝑥) < ∞ for
𝑥 ∈ 𝑈 ⧵ 𝑁0. As ℎ(𝑥 + 𝑙) = ℎ(𝑥) for every 𝑙 ∈ 𝛬, we have for
the null-set 𝑁𝛬 ∶= 𝑁0 + 𝛬 that ℎ(𝑥) <∞ for every 𝑥 ∈ R𝑛 ⧵𝑁𝛬.
For every non-empty 𝐼 ⊆ [𝑚], 𝛬 ∶= Z𝑣(𝐼) is a nontrivial lattice
and so the above statement in particular supplies a null-set 𝑁𝐼 ⊆
R𝑛 such that

lim
𝑙∈N,𝑙→∞

𝑔(𝑥 + 𝑙𝑣(𝐼)) = 0 (𝑥 ∈ R𝑛 ⧵𝑁𝐼 ).

Hence,

lim
𝑙∈N,𝑙→∞

𝑓 (𝑥 + 𝑙𝑣(𝐼)) = 0 (𝑥 ∈ R𝑛 ⧵𝑁𝐼 ).

Now, 𝑁 ∶=
⋃

∅≠𝐼⊆[𝑚]𝑁𝐼 is a null-set, and 29 shows for 𝑥 ∈ R𝑛⧵𝑁
that

𝑓 (𝑥) = −
∑

∅≠𝐼⊆[𝑚]
(−1)#𝐼𝑓 (𝑥 + 𝑙𝑣(𝐼)) → 0 (𝑙 ∈ N, 𝑙 → ∞).

Thus, 𝑓 = 0 almost everywhere. □

7. Open questions

As practitioners are asking for mathematically founded ways to
choose the right architecture for their specific problems, there is still
much to learn regarding the influence of the number of neurons, the
width, the depth, et cetera, on the approximation capabilities of neural
networks. This paper indicates that the uniform topology on R𝑛 is apt
to gain new insights. Yet, there remains a lot of unexplored terrain.

Density theorems and analytic bounds expressing the quality of
the optimal approximation in terms of the width and depth of the
neural network, as well as the regularity of the activation function,
have thus far been developed with respect to the topology of compact
convergence and with respect to 𝐿𝑝-convergence (Gripenberg, 2003;
Shen, Yang, & Zhang, 2021, 2022; Yarotsky, 2021). The spaces 𝐶(R𝑛)
and 𝐿𝑝(R𝑛) naturally form the arenas of functions for which those
bounds can be sought. By the present results, the spaces 𝐶0(R𝑛), 𝐶(R𝑛),
and S(R𝑛) are the analogous arenas in which one should search for
similar bounds and density theorems for global uniform convergence.

One concrete and fascinating question would be whether there
exists an activation function such that every element of 𝐶0(R𝑛) can be
globally uniformly approximated up to arbitrary accuracy with a fixed
width and depth dependent only on 𝑛, i.e., whether there exist globally
superexpressive activations.

It would also be very informative to get theoretical bounds on
the number of nodes that are needed to obtain a certain uniform
precision (possibly constraining the amount of nodes per layer (Gripen-
berg, 2003; Kidger & Lyons, 2020) and also the amount of nodes in
totality (Ismailov, 2021, Section 5)).

The same questions can be asked for specific classes of neural
networks, such as convolutional neural networks or finite impulse
recurrent neural networks, as then the ‘upper bound’ of Proposition 5.5
still holds. For instance, if a certain class of convolutional neural
networks can be expressed as feedforward ANNs (the neural networks
considered in this paper) with sigmoidal activation function, it follows
that a function outside S(R𝑛) will not be uniformly approximated.
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Whether the converse is true is not immediately clear.
A reason to favour the uniform norm over the 𝐿𝑝-norms has already
been highlighted in the caption of Fig. 2. Namely, while the latter is
infinite for all neural networks, the former can be finite and actually
describe convergence to local (𝐶0) functions. One may also compare
our results with those of weighted 𝐿𝑝 spaces, although they surrender
translation invariance of the norm. A related class of topologies is
given by the weighted supremum norms, as considered in Cuchiero,
Schmocker, and Teichmann (2023). They form a natural class of topolo-
gies on 𝐶(R𝑛) that lie between the uniform topology and the topology
of compact convergence, and it would therefore be interesting to relate
the results of Cuchiero et al. (2023) to those obtained here.

On a different note, precisely because our results concern the uni-
form topology, they may yield quite tangible statements about the
structure of a neural network after training. For instance, the results of
Sections 4 and 5 imply that deep neural networks can be represented
well as one-layer or two-layer neural networks without significant
information loss at any scale, i.e., preserving the generalisation. Simi-
larly, Theorem 5.9 relates deep feedforward neural networks to Sum
Of Product Neural Networks, as in Lin and Li (2000), Long et al.
(2007), which might be more light-weight than the corresponding deep
neural network. It is unclear whether these observations lead to a
practically feasible compression method, but the fact that there are
ways to alternatively represent neural networks with arbitrary small
loss deserves further investigation.

A final question is whether one can use the results of Theorem 2.4
to reasonably decide whether to believe that an unknown model is a
neural network, based on its responses to suitably chosen inputs.

The author expects further investigation of uniform universal ap-
proximation outside [0, 1]𝑛 to be worthwhile, not in the least because
it will require thinking outside the box.
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