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Abstract 

Different types of sensors that monitor the driver, the vehicle, and the surroundings are 

increasingly being implemented in vehicles. These developments are relevant to formal driving test 

organizations for the use of sensors in the assessment of driving behaviour. However, no guidelines 

exist about the exact use of sensor-generated data for driving assessment purposes, such as the driving 

exam. Relatively low-cost and easily implementable sensors such as accelerometers (g-force sensors) 

could be used to assess driving behaviour during the driving exam to distinguish between desired and 

undesired driving behaviour. Earlier studies have already investigated the use of accelerometers to 

distinguish between driving styles using threshold values, but do not agree on the most optimal 

threshold to do this.  

In this study, thresholds were created based on scripted driving exams driven by professional 

driving examiners, who portrayed driving styles commonly observed at the driving exam. These rides 

were driven over a period of three weeks at the Dutch driving license organisation (CBR) in Leusden, 

The Netherlands, where scripted exam rides are part of the training for new examiners. Using the 

accelerometer of an iPhone X, the accelerations generated during 21 rides were measured supported 

by a dashcam recording the road ahead. The experimenter drove along all rides and registered driving 

events, including turns, speed increases/decreases and lane changes to relate the measured 

accelerations to these specific events. The rides included in the dataset were divided into four 

different driving styles: aggressive, desired, overcautious and negligent, from which the first three 

were analysed due to their direct link with accelerations. The obtained acceleration data was analysed 

using 63 initial features which describe the amplitude of the acceleration signal through the various 

events, speed zones and acceleration directions. 

It was found that accelerations differ significantly between aggressive and desired driving 

styles, whilst the difference between overcautious and desired driving is less apparent. The thresholds 

determined in this study were able to classify the created dataset between desired and undesired 

driving behaviour with accuracies varying from 50% to 83% (M = 69.1, SD = 11.4).  

The results show that using acceleration data obtained during the driving exam can aid the 

examiner during the driving exam by giving insight into how well a candidate performed in terms of 

smooth driving through traffic. Concomitantly, a recent report from the Dutch government (Roemer, 

2020) addressed that the CBR should investigate the possibilities for using sensor-collected driving 

data to give more insight to a driving exam candidate as to how to improve his/her driving behaviour 

after failing the driving exam, giving further rise to researching the use of driving data for practical 

use.  
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1 Introduction 

Enhancing driving performance and automated driving has been the subject of 

extensive research over the past years, covering topics such as in-vehicle sensors (Marti et al., 

2019; Schoettle, 2017), computer vision in traffic (Ranft & Stiller, 2016; Rangesh & Trivedi, 

2019), car path planning (Gonzalez et al., 2015; Marin-Plaza et al., 2018), and vehicle control 

(Farag, 2020; Lima et al., 2018). The realisation that fully autonomous driving might not be 

achieved within the next three to five decades is also becoming more and more apparent 

(Shladover, 2016; Tabone et al., 2021; Wei et al., 2021). Even the most advanced prototypes 

of automated vehicles require human intervention or behave in unexpected ways (Goodall, 

2021; Boggs et al., 2020), suggesting that drivers will still need to be trained and licensed for 

driving purposes in the coming decades. 

With the growing number of vehicular monitoring systems, the opportunity arises to 

use the earlier mentioned systems to aid in the assessment of driving behaviour. The current 

literature already contains a plethora of promising results in using intelligent systems to 

inspect driving behaviour and increase driver safety, for instance, by using driver-facing 

cameras to detect drowsiness and distraction (Chowdhury et al., 2018; Zhang et al., 2021) and 

more general unsafe driving behaviours (Figueredo et al., 2019; Hickman & Hanowski, 

2011). In-vehicle data recorders (Shimshoni et al., 2015) and smartphones are commonly 

used to gather the data which is used to assess driving behaviour (Kalra et al., 2021; Zhang et 

al., 2019). Nowadays, some driving insurance companies monitor features such as speeding, 

hard braking, or similar undesired events to reward people for safe driving behaviour with 

reduced insurance fees (Arumugam & Bhargavi, 2019; Handel et al., 2013). In most of these 

cases, acceleration and speed measurements are used, as these measurements require 

relatively low-end/low-cost equipment and can, therefore, be implemented easily (Zhang et 

al., 2019). Sensors specifically used for these types of measurements are Inertial 

Measurement Units (IMU; Engelbrecht et al., 2014), accelerometers (Miyajima et al., 2007), 

or sensors of on-board diagnostics (OBD) systems (Malik & Nandal, 2021).  
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Driving licensing organisations may profit from the previously described vehicular 

monitoring systems in assessing driving behaviour, as their decision about desired and 

undesired driving is based on the human-intensive interpretation of driving behaviour 

conveyed by a driving examiner. Moreover, these organisations are sometimes challenged by 

candidates in terms of the examiner's verdict's reliability and validity, such as test-retest 

reliability (i.e., when the driving exam is performed twice with different examiners) and 

inter-examiner reliability (i.e., where two examiners take place in the car during the test). 

Although there are only a few studies in this area, those that exist show a test-retest reliability 

(pass/fail congruence of 64% in Baughan & Simpson, 1999, and 63% in Alger & Sundstrom, 

2013), as well as inter-examiner reliability of the same test (72% in Bjørnskau, 2003, and 

93% in Alger & Sundström, 2013). These studies show that there is still room for 

improvement regarding the validity and reliability of the driving exam. 

Until now, the use of data such as in-vehicle accelerations in the driving exam is very 

limited in both the research field and practice. One of the challenges with the use of data for 

assessing driving behaviour, in the driving exam, and in general, is the absence of a data 

standard that sets guidelines on how to use the acceleration data to distinguish between 

desired and undesired driving. In fact, there are multiple implementation options for data 

processing within driving behaviour models (e.g. anomaly detection, machine learning). In 

addition, studies that investigated driving behaviour mostly have their own subjective 

interpretation in terms of desired driving behaviour (Osafune et al., 2017; Ylizaliturii-Salcedo 

et al., 2015), which they base on their perception of desired driving behaviour. These 

perceptions are often denoted in thresholds, which are used throughout different models for 

driving behaviour and create a boundary between two driving styles (i.e. discriminating 

between aggressive and desired driving behaviour). Other studies rely mostly on thresholds 

set by earlier works (e.g., Girbes et al., 2019). It has been found that overall, studies adopting 

a threshold for specific acceleration events adhere to thresholds ranging from 0.1 g to 0.5 g 

(see Table 1). 
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Table 1. 

Acceleration thresholds for various events concerning the assessment of driving behaviour. 

Threshold Aggressive acceleration Aggressive deceleration Aggressive turn 

0.1 g Paefgen et al. (2012) Paefgen et al. (2012) Baldwin et al. (2004) 

0.2 g Baldwin et al. (2004) 
Malik and Nandal, (2021); 

Osafune et al. (2017) 
 

0.3 g 

Osafune et al. (2017); 

Ylizaliturri-Salcedo et al. 

(2015); Chigurupati et al. 

(2012) 

Chigurupati et al. (2012) 
Chigurupati et al. (2012); 

Miyajima et al. (2007) 

0.4 g  

Zeeman and Booysen 

(2013); Bergasa et al. 

(2014) 

Dai et al. (2010); 

Ylizaliturri-Salcedo et al. 

(2015) 

0.5 g Fazeen et al. (2012) 
Fazeen et al. (2012); 

Miyajima et al. (2007) 
 

Table 1 shows disagreement between studies in terms of the threshold value for when 

a person drives aggressively in terms of accelerations. This is in contrast to speed, where the 

speed limit on any road could always be used as threshold for classifying between desired 

and undesired driving behaviour, where the use of this threshold can vary from applying it as 

a strict upper bound (e.g. exceeding the speed limit means failing the driving exam) or using 

it via a severity score (e.g. calculating the deviation from the speed limit during the whole 

driving exam). 

In order to determine an objective threshold for acceleration data, establishing a 

threshold based on professional judgement, such as that of driving examiners, could be a way 

forward. Driving examiners assess driving behaviour based on their experience during the 

exam, including the perceived accelerations. Moreover, driving examiners are trained 

intensively including a training course where only 10% of applicants actually pass all the 

requirements before they are eligible to assess driving behaviour.  In this study, thresholds for 

desired accelerations in cars will be determined with the help of driving examiners from the 

Dutch driving exam organisation (CBR). The main research question to be answered in this 

study is: 

“How can in-vehicle acceleration measurements indicate (un)desired driving 

behaviour during the driving exam?” 
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The following sub-questions will be answered: 

1. What acceleration features can be used to determine differences between desired 

and undesired driving behaviour? 

2. What acceleration threshold values measured during the exam can be used to 

determine differences between desired and undesired driving behaviour? 

3. What accuracy can be achieved by classifying between desired and undesired 

driving using accelerations? 

This study focused on the identification of thresholds for perceived acceleration (or g-

forces) during driving. A dataset was created containing scripted driving exam rides which 

were used to analyse the accelerations perceived within the car. All rides were driven with 

specific driving behaviours through written scenarios, which will be used to compare the 

acceleration amplitude between different driving styles. The difference in acceleration 

amplitude between the driving styles was determined, and an acceleration threshold was 

defined. 
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2 Method 

2.1 Creating the dataset 

The data were collected in cooperation with the driving examiner training centre of 

the CBR. At this training facility, located in Leusden, The Netherlands, driving examiner 

trainees are trained to become licensed driving examiners. A part of their training consists of 

on-road training sessions, in which qualified coaches mimic exam candidates and driving 

styles commonly found (e.g., the nervous candidate, the sportive candidate) at the driving 

exam. The trainee takes the role of the examiner and is expected to make a pass or fail verdict 

based on the acted driving style.  

The acceleration measurements were conducted during 21 of these training sessions 

from 28 March 2022 to 16 April 2022. All coaches involved were asked for consent before 

the start of the experiment, see Appendix A. The rides themselves all mimicked a standard 

driving exam conducted by the CBR, having a duration of 30 to 35 minutes and including the 

seven exam parts of the Rijprocedure B (desired driving procedure; CBR, 2020) listed in 

Appendix B. 

2.1.1 Scenarios 

During each of these 21 rides, the coach behind the steering wheel acted out a 

prescribed scenario. For each scenario, the driving behaviour acted out during the ride is 

defined with respect to the seven exam parts listed in the Rijprocedure B (CBR, 2020; i.e., 

road area, traffic situation or driving manoeuvre). In Appendix C, the scenarios driven during 

the 21 rides are listed. 

For analysis purposes, the 21 scenarios driven have been categorized into four distinct 

driving style categories: aggressive driving behaviour (AGG), desired driving behaviour 

(DES), overcautious driving behaviour (CAU) and negligent driving behaviour (NGL). From 

these four driving style categories, only Category DES contains rides that should result in 

passing the driving exam. A detailed description of these four driving styles is listed in 

Appendix D. The four driving style categories were created as follows: After each ride, the 

coach driving and the experimenter together performed the categorization, which was based 

on the traits listed per scenario (i.e., taking speed bumps too harsh, being too careful at cross-

sections) and the subjective interpretation of the scenario by the experimenter and the coach 

acting out the driving style. In order to validate the categorization, two colleague researchers 
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were given the written descriptions of the 21 scenarios and asked to classify them into the 

same four driving style categories, resulting in an inter-rater agreement of κ = 76%, 

indicating a substantial agreement (McHugh, 2012). 

2.1.2 Experimental setup 

In total, four coaches and four cars were used during the experiment: a 2015 Skoda 

Octavia, a 2014 Peugeot 308 SW, a 2016 Seat Ateca and a 2015 Volkswagen T-Roc. During 

each of the 21 rides, three persons were present in the car: the coach acting out the scenario 

was driving the car, the examiner trainee was in the passenger seat, and the experimenter was 

sitting in the backseat, behind the examiner trainee (see Figure 1). 

 
Figure 1. Measurement system (red) and person (blue) placement within the car during the experiment. 

 

2.1.3 Measurements 

During all 21 rides, the built-in accelerometer and GPS of an iPhone X were used to 

measure three-axis accelerations and position, respectively. The iPhone was mounted on the 

backseat of the car, aligned with the orientation frame of the car. Any misalignment between 

the orientation of the iPhone and the car was corrected using an alignment function as 

described in section 2.1.4. Using MATLAB mobile (version 9.1.2), the accelerations and 

GPS coordinates during each ride were logged to separate .mat files. The acceleration and 

location signals were sampled at 10 Hz and 1 Hz, respectively. In addition to the acceleration 

and location measurements, a GoPro Hero Max was used to film the road ahead during the 

rides. The video data from the GoPro was used for illustration purposes and to facilitate the 

analysis of anomalies from the accelerometer (i.e., excessive spikes in the acceleration 

signal). 
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The experimenter also used an open-source event-recorder app to manually register 

four types of events: 

• Turns; driving over a curved road with an angle between about 60 and 120 

degrees. 

• Speed increase; noticeably increasing the speed of the vehicle by pressing the 

gas pedal; subjectively determined by experimenter.  

• Speed decrease; noticeably decreasing the speed of the vehicle by pressing the 

brake pedal; subjectively determined by experimenter. 

• Lane changes; switching lanes. Also includes exiting and merging the 

highway. 

Note that speed increases and decreases were registered on all road types, including 

turns, curvy roads and straight roads. In addition to events, the maximum speed allowed in 

the zone where the event was driven was also registered (i.e. 30 km/h, 50 km/h, 80 km/h and 

100 km/h). The event registration was based on the experimenter’s own interpretation of the 

traffic situation from the backseat of the vehicle. In Figure 2, a snapshot from the GoPro 

video is shown together with the respective location, corresponding to the exact moment of 

the (turn) event registration by the experimenter. In Appendix E, similar snapshots are 

provided for other types of events. 

Figure 2. Snapshot of an event registration (turn in 30 km/h speed zone). The red dot marks the GPS location 

where the event was registered. The driving direction is given by the red arrows. 
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2.1.4 Acceleration signal pre-processing 

The acceleration signal was pre-processed by (1) removing the noise from the 

acceleration signal and (2) aligning any offset between the iPhone’s orientation frame and the 

orientation frame of the vehicle (see Figure 3). 

To remove the noise from the acceleration signal, a low pass filter with a cut-off 

frequency of 0.66 Hz was utilized. By determining the frequency of the acceleration signal 

whilst the vehicle was stationary (i.e., running engine in front of a traffic light), the frequency 

of the noise was determined at 0.66 Hz and higher, and henceforth eliminated using the low 

pass filter. 

In order to ensure the accelerations of the phone were in line with the orientation 

frame of the vehicle, the offset between the two orientation frames was calculated and 

removed using an alignment function. For all three acceleration directions (lateral (x), 

longitudinal (y), and gravitational (z)), the equilibrium position was placed at 0 g. The offset 

from the equilibrium position was calculated by taking the mean of the acceleration signal 

and subsequently subtracting the mean of every acceleration data point. 

 
Figure 3. Acceleration pre-processing. The top plot shows a signal which is misaligned and contains noise. In 

the middle plot, the noise has been removed, and in the lower plot, the alignment is done. 
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2.2 Data analysis 

Together, 63 features (e.g., mean acceleration amplitude through turns in 30 km/h 

speed zone) were estimated from the acceleration measurements included in the dataset. 

Specifically, in the full-ride analysis, three features were analysed: full-ride mean amplitude 

in lateral, longitudinal, and gravitational directions. In the event analysis, acceleration was 

analysed for four event types (i.e., turns, speed increases, speed decreases, and lane changes), 

five speed zones (i.e., 30 km/h, 50 km/h, 80 km/h, 100 km/h, and all speed zones combined), 

and three acceleration directions (i.e., lateral, longitudinal, and gravitational), totalling 60 

features. Note that some features are dependent on each other: for example, the event 

registered in all speed zones includes the events registered in the 30 km/h, 50 km/h, 80 km/h 

and 100 km/h speed zones. 

The rides categorized as NGL contain traits in the driving behaviour such as improper 

looking behaviour (i.e. overviewing traffic situations) and road misplacement (i.e. improper 

positioning on cross-sections). Because these traits are not directly associated with 

acceleration behaviour, as also stated by the coach acting out the respective scenario (see 

Appendix D), the NGL rides were excluded from further analysis. Eventually, of the 21 rides, 

10 were analysed since these make up the correctly measured rides measured in styles AGG 

(n = 3), DES (n = 5), and CAU (n = 2), see Figure 5. 

2.2.1 Full-ride analysis 

The first type of analysis looked into the acceleration data over the entirety of a single 

ride. The mean, standard deviation, and maximum and minimum of the acceleration 

amplitude signal in all three directions were calculated for each ride. Each ride was treated as 

an independent sample in its corresponding driving style (AGG, DES, or CAU).  

2.2.2 Event analysis 

Lateral, longitudinal, and gravitational acceleration during each of the four event 

types (i.e., turns,  speed increases/decreases, and lane changes) were compared between the 

three driving styles. For each of the four events, first, an analysis was performed across speed 

zones, followed by an analysis per speed zone. The latter analysis was only conducted when 

the sample size for an event/feature in a specific speed zone was equal to or higher than five, 

to avoid overfitting (see Figure 5). 



MSC THESIS – DAVID STEFAN   10 

 

 

The main variable used in this analysis was the amplitude of the acceleration signal 

during an event. The duration of a driving event and the moment of registering an event 

varied. In order to minimize the effect of these two factors, the highest amplitude of the ten 

amplitudes before and after the event was taken (i.e., the maximum value of 20 acceleration 

amplitudes). Even though a number of these events were part of the same ride and driven by 

the same coach, each registered event was treated as an independent sample because the 

environment (i.e. location, speed, traffic) differed per event. 

A Kolmogorov-Smirnov (KS) test revealed that the data used to compare events 

between driving style categories was not normally distributed, as shown in Appendix G. As a 

result, a non-parametric Kruskal-Wallis test was used. Effect size Cohen’s d is also reported.  

2.2.3 Thresholds 

To discriminate between driving style categories (AGG, DES, and CAU), a lower 

bound and upper bound acceleration threshold was determined. Not all acceleration features 

analysed in sections 2.2.1 and 2.2.2 were used to develop thresholds since a lower and upper 

bound threshold can only be created if the accelerations for any feature in category AGG are 

higher than the accelerations in category DES and CAU, respectively. Therefore, for a 

threshold to be created for any feature, the mean of category AGG must be highest, followed 

by category DES and category CAU, respectively, as stated in criterion 1. This criterion is 

designed to operationalize the theoretically anticipated hypothesis that the more assertive and 

aggressively a driver drives, the higher the in-vehicle accelerations will be (Chhabra et al., 

2019; Wang et al., 2022). This criterium also ensures consistency between the thresholds 

determined for the features, where the upper bound always discriminates between AGG and 

DES, and the lower bound always discriminates between CAU and DES. 

𝑥̅𝐶𝐴𝑈 < 𝑥̅𝐷𝐸𝑆 < 𝑥̅𝐴𝐺𝐺   Crit. (1) 

The baseline driving style was DES, since this driving style includes rides which passed the 

driving exam. If the feature (e.g., acceleration during turns in 30 km/h zones) complied with 

criterion 1, the threshold was calculated using the difference in means between style CAU 

and DES for the lower bound and between style DES and AGG for the upper bound, see 

equations 1 and 2. 
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𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  
|𝑥̅𝐴𝐺𝐺 − 𝑥̅𝐷𝐸𝑆|

2
+ 𝑥̅𝐷𝐸𝑆 Eq. (1) 

𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  
|𝑥̅𝐷𝐸𝑆 − 𝑥̅𝐶𝐴𝑈|

2
+ 𝑥̅𝐶𝐴𝑈 Eq. (2) 

The thresholds determined using equations 1 and 2 do not take statistical differences 

or effect size into account. In order to determine the meaningfulness of a threshold with 

regard to discriminating between driving styles, a second criterion is stated where the 

Cohen’s d effect size of a feature between two driving style categories must indicate a large 

effect size (i.e., >0.8). 

𝐶𝑜ℎ𝑒𝑛′𝑠 𝑑 > 0.8  Crit. (2) 

2.2.4 Classification 

A classification between driving styles and pass/fail verdict was done to investigate 

how well the features and their associated thresholds were able to discriminate between the 

three different driving styles and, subsequently, desired and undesired driving behaviour. Due 

to the possibility that some features did not comply with criterion 1, the classification using 

these features was not performed, since no thresholds were created for these features (see 

section 2.2.3).  

The first classification was done for the ten rides included in categories AGG, DES, 

and CAU. Based on the thresholds determined using equations 1 and 2 and the features 

calculated from the acceleration measurements, the rides were classified into the three 

categories (see Figure 4: driving style level) using only one individual feature and their 

associated upper and lower bound threshold.  The accuracy is defined as the percentage of the 

cases where the prediction of a driving style by means of the thresholds is equal to the actual 

driving style as described in the scenario. 

After that, the rides listed in the earlier neglected category, NGL, were also included 

for classification purposes, totalling 18 rides. These rides cannot be classified over the three 

analysed driving styles (i.e. AGG, DES, and CAU), and were therefore classified over the 

exam result associated with the ride (see Figure 4: exam result level) based on the 

accelerations. Here, the accuracy is defined as the percentage of the cases where the 

prediction of the exam verdict is equal to the actual exam verdict. 



MSC THESIS – DAVID STEFAN   12 

 

 

 
Figure 4. Classification tree. The feature (FTR) is classified using the lower bound threshold (TLB) and the 

upper bound threshold (TUB). The outcome variables are CAU/DES/AGG at the driving style level, and 

PASS/FAIL at the exam result level. 

  



MSC THESIS – DAVID STEFAN   13 

 

 

3 Results 

An overview of the ride setup for each of the 21 rides is provided in Table 2. In total, 

the 21 rides took 670 min (M = 32.07, SD = 4.94) of driving, and covered a total distance of 

567 km (M = 27.22, SD = 7.32). In Figure 5, three exemplary routes driven during the 

experiments are shown. 

Table 2.  

All 21 rides driven during the experiment with their environmental factors. The ride ID is based on test day (i.e., 

Ride 3.2 was the second ride on the third day of the experiment). Note that rides 1.1, 1.2 and 2.1 were excluded 

due to incorrect placement of the iPhone between the backseats of the car. 

Ride Coach ID Car Day Time Weather conditions 

1.1 1 Skoda Octavia 30/03/2022 10:12-10:45 Cloudy 
1.2 1 Skoda Octavia 30/03/2022 11:20-11:53 Cloudy 
1.3 1 Skoda Octavia 30/03/2022 13:13-13:47 Cloudy 
1.4 1 Skoda Octavia 30/03/2022 14:26-14:55 Cloudy 
2.1 1 Peugeot 308 sw 31/03/2022 10:18-10:55 Rainy 
2.2 1 Peugeot 308 sw 31/03/2022 11:27-11:58 Rainy 
2.3 1 Peugeot 308 sw 31/03/2022 13:22-13:56 Rainy 
3.1 2 Peugeot 308 sw 04/04/2022 09:23-09:50 Rainy 
3.2 2 Peugeot 308 sw 04/04/2022 10:13-10:46 Rainy 
3.3 2 Peugeot 308 sw 04/04/2022 11:35-12:04 Rainy 
3.4 2 Peugeot 308 sw 04/04/2022 13:11-13:40 Rainy 
3.5 2 Peugeot 308 sw 04/04/2022 13:58-14:31 Rainy 
4.1 2 Peugeot 308 sw 07/04/2022 09:21-09:55 Sunny 
4.2 2 Peugeot 308 sw 07/04/2022 10:10-11:07 Sunny 
5.1 3 Volkswagen T-Roc 11/04/2022 10:50-11:20 Sunny 
5.2 3 Volkswagen T-Roc 11/04/2022 13:06-13:31 Sunny 
5.3 3 Volkswagen T-Roc 11/04/2022 14:01-14:30 Sunny 
6.1 4 Seat Ateca 13/04/2022 09:21-09:54 Cloudy 
6.2 4 Seat Ateca 13/04/2022 10:06-10:33 Cloudy 
6.3 4 Seat Ateca 13/04/2022 11:00-11:30 Cloudy 
6.4 4 Seat Ateca 13/04/2022 13:01-13:58 Cloudy 

Due to incorrect placement of the iPhone between the backseats of the car, rides 1.1, 

1.2, and 2.1 showed corrupted acceleration data. These rides were therefore excluded from 

further analyses, thus resulting in a total of 10 rides with valid acceleration recordings 

(Category NGL also being excluded; see Figure 5).  
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Figure 5. Flowchart indicating how some of the rides included in the dataset were excluded. 

       

 
Figure 6. The routes of three rides driven during the experiment (i.e., rides 1.3, 2.3, and 3.3), colour coded per 

driving style: Category AGG = red, Category DES = black, Category CAU = blue.  
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3.1 Full-ride analysis 

Table 3 shows the lateral, longitudinal and gravitational acceleration per driving style. 

For the corresponding values per ride, see Appendix F. 

Table 3. 

Descriptive statistics of the acceleration amplitudes per driving style measured during the entire driving exam. 

Direction Category M SD Max Min n 

Lateral 

 AGG 0.0474 0.0795 0.0524 0.0433 3 

 DES 0.0415 0.0690 0.0444 0.0389 5 

 CAU 0.0364 0.1039 0.0398 0.0329 2 

Longitudinal 

 AGG 0.0638 0.0965 0.0752 0.0502 3 

 DES 0.0513 0.0732 0.0636 0.0432 5 

 CAU 0.0538 0.1137 0.0697 0.0377 2 

Gravitational 

 AGG 0.0607 0.0983 0.0618 0.0400 3 

 DES 0.0554 0.0796 0.0684 0.0387 5 

 CAU 0.0400 0.1141 0.0493 0.0308 2 

The mean amplitude in g-force of the acceleration signal is highest for the rides in 

category AGG for all three acceleration directions. The lowest mean amplitude for lateral and 

gravitational accelerations was for Category CAU, whereas for longitudinal acceleration, 

category DES portrayed the lowest values on average. 
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3.2 Event analysis 

In Figure 7, three snapshots (of ride 3.1) are given of a heatmap in which acceleration 

data has been plotted for the three acceleration directions (lateral, longitudinal, and 

gravitational). From the snapshots in this example, it can be seen that the lateral acceleration 

is the highest through corners. In addition, no clear signs of discrimination between straight 

roads or corners can be seen based on longitudinal and gravitational accelerations.  

 
Figure 7. Snapshots of heat maps of lateral (left), longitudinal (middle), and gravitational acceleration (right). 

The scale ranges from 0 g (red) to 0.5 g (yellow). 

In total, 270 turns (M = 28.94, SD = 6.82), 59 speed increases (M = 7.00, SD = 2.50), 

129 speed decreases (M = 14.33, SD = 6.30), and 51 lane changes (M = 5.22, SD = 3.12) 

were registered by the experimenter during the 10 rides included in this analysis. An 

overview of the total number of events per driving style is listed in Table 4. 

Table 4. 

Total events registered for each driving style, with n representing the number of rides listed in each driving style 

category.  

Driving 

style 
Turns 

Speed 

increases 

Speed 

decreases 

Lane 

changes 
n 

AGG 70 29 58 13 3 

DES 143 18 47 27 5 

CAU 57 12 24 11 2 

Total 270 59 129 51 10 
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3.2.1 Turns 

Figure 8 shows the amplitude of the acceleration signal during the turns per driving 

style. In Appendix G, Table 14, descriptive statistics are given for the turns in each category. 

 
Figure 8. Box plots of the acceleration amplitude measured during each turn event per driving style category 

and acceleration direction. 

The lateral and longitudinal accelerations during turns show the highest amplitude for 

the AGG driving style. The difference in the average amplitude between the three driving 

styles is statistically significant for lateral (Χ²(269) = 74.19, p < 0.001) and longitudinal 

(Χ²(269) = 25.56, p < 0.001) directions. The gravitational direction did not show a significant 

difference between the driving styles (Χ²(269) = 12.05, p = 0.109). 

Figure 9 and Figure 10 show the amplitude of the acceleration per driving style for 

turns in 30 km/h and 50 km/h zones, respectively. 
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Figure 9. Box plots of the amplitude measured during each event per driving style category and acceleration 

direction. 

 
Figure 10. Box plots of the amplitude measured during each event per driving style category and acceleration 

direction. 

The average amplitude for all three acceleration directions in these 30 km/h zones was 

significantly different between styles (lateral: Χ²(119) = 33, p < 0.001; longitudinal: Χ²(119) 

= 12.41, p < 0.001; gravitational: Χ²(119)  = 10.03, p < 0.001). For the turns in 50 km/h 

zones, the lateral and longitudinal accelerations were highest in Category AGG, followed by 

Category DES. A significant difference between categories was found for lateral (Χ²(112)  = 
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37.47, p < 0.001) and longitudinal acceleration (Χ²(112)  = 12.73, p = 0.002). For 

gravitational acceleration, no significant difference between the three categories was found 

(Χ²(112)  = 4.44, p < 0.001). 

The Cohen’s d effect sizes between the three categories for all three acceleration 

directions are listed in Table 5. 

Table 5.  

Overview of all Cohen’s d effect sizes between the three driving style categories for turns through different 

speed zones (i.e. all, 30 km/h and 50 km/h zones). In the driving style column (1st column), the two compared 

categories are listed for each table row. 

Driving 

styles 

Lateral Longitudinal Gravitational 

All 30 50 All 30 50 All 30 50 

AGG 

DES 
1.13 1.29 1.01 0.72 1.16 0.61 0.46 0.72 0.30 

DES  

CAU 
0.59 0.56 0.22 0.24 0.34 0.15 0.45 0.31 0.58 

AGG 

CAU 
1.99 1.81 1.79 0.87 1.07 0.80 0.03 0.53 0.19 

From Table 5, it can be observed that the largest difference among the compared 

groups is found between the lateral accelerations of categories AGG and CAU. From the 

three speed zone groups, the 30 km/h zone shows the largest effect size for all three 

acceleration directions when comparing categories AGG and DES. In general, the effect sizes 

between categories AGG and DES are larger than the effect sizes between categories DES 

and CAU. 
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3.2.2 Speed increases 

Figure 11 shows the mean amplitude of the acceleration signal during the speed 

increase events per driving style. In Appendix G, Table 15, descriptive statistics are given for 

the speed increases in each category. 

 
Figure 11. Box plots of the amplitude measured during each event per driving style category and acceleration 

direction. 

Overall, the acceleration amplitudes of the events in Category AGG were the highest 

for all three directions. There is a significant difference between the acceleration events for 

lateral accelerations (Χ²(67) = 6.83, p = 0.033), longitudinal accelerations (Χ²(67) = 8.22, p = 

0.016) and gravitational accelerations (Χ²(67) = 21.13, p < 0.001). 

Figure 12 and Figure 13 show the amplitude of the acceleration per driving style for 

speed increase events in 30 km/h and 50 km/h zones, respectively. 
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Figure 12. Box plots of the amplitude measured during each event per driving style category and acceleration 

direction. 

 
Figure 13. Box plots of the amplitude measured during each event per driving style category and acceleration 

direction. 

In the 30 km/h speed zones, no clear distinction is visible in terms of amplitude 

between categories or acceleration direction. Comparing the categories, no significant 

differences were found for speed increase events in this speed zone (lateral: Χ²(16) = 1.87, p 

= 0.393; longitudinal: Χ²(16) = 1.47, p = 0.479; gravitational: Χ²(16) = 2.2, p = 0.333). From 

the 50 km/h speed increase events listed in Figure 13, it can be seen that the acceleration 

events are highest in Category AGG for both longitudinal and gravitational directions. No 
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significant difference was found comparing the three categories in terms of their lateral 

acceleration amplitude (Χ²(23) = 2.03, p = 0.363), whilst the other two directions did show 

significant differences (longitudinal: Χ²(23) = 8.02, p = 0.018; gravitational: Χ²(23) = 8.48, p 

= 0.014). 

The effect sizes between the three categories for all three acceleration directions are 

listed in Table 6. 

Table 6.  

Overview of all Cohen’s d effect sizes between each of the three driving style categories for speed increases 

turns through different speed zones (i.e. all, 30 km/h and 50 km/h zones). In the driving style column (1st 

column), the two compared categories are listed for each table row. 

Driving 

styles 

Lateral Longitudinal Gravitational 

All 30 50 All 30 50 All 30 50 

AGG 

DES 
0.64 0.06 0.20 0.39 0.38 1.04 0.21 0.34 1.21 

DES 

CAU 
0.18 0.54 0.54 0.48 0.76 0.03 0.00 0.37 0.30 

AGG 

CAU 
0.71 0.85 0.64 0.93 0.66 1.05 0.90 0.86 1.58 

Overall, the largest effect sizes are present in the 50 km/h speed zones, with Cohen’s 

d values larger than 1. In terms of acceleration directions, lateral and gravitational show the 

largest effect sizes.  
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3.2.3 Speed decreases 

Figure 14 shows the mean amplitude during the speed decrease events per driving 

style, regardless of the speed zone they were driven in. In Appendix G, Table 16, descriptive 

statistics are given for the speed decreases in each category. 

 
Figure 14. Box plots of the amplitude measured during each event per driving style category and per 

acceleration direction. 

A clear pattern is visible from Figure 14, where for longitudinal and gravitational 

accelerations Category AGG shows the highest amplitudes, followed by Category DES. 

Looking at the lateral accelerations, Category CAU shows a higher amplitude than Category 

DES. All three acceleration directions show significant differences between the categories 

(lateral: Χ²(143) = 16.94, p < 0.001; longitudinal: Χ²(143) = 21.41, p < 0.001; gravitational: 

Χ²(143) = 58.45, p < 0.001). 

Figure 15 and Figure 16 show the amplitude of the acceleration per driving style for 

speed decrease events in 30 km/h and 50 km/h zones, respectively. 
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Figure 15. Box plots of the amplitude measured during each event per driving style category and acceleration 

direction. 

 
Figure 16. Box plots of the amplitude measured during each event per driving style category and acceleration 

direction. 

In both Figure 15 and Figure 16, it can be seen that Category AGG shows the highest 

amplitudes during the speed decrease events in 30 km/h and 50 km/h speed zones 

respectively. For lateral acceleration in the 30 km/h speed zones, no significant differences 

were found (Χ²(35) = 2.14, p = 0.344). For longitudinal and gravitational acceleration during 

the speed decrease events, there was a significant difference between the three categories 

(longitudinal: Χ²(35) = 9.75, p < 0.001; gravitational: Χ²(35)= 35, p < 0.001). 
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The effect sizes between the three categories for all three acceleration directions are 

listed in Table 7. 

Table 7. 

Overview of all Cohen’s d effect sizes between each of the three driving style categories for speed decreases 

turns through different speed zones (i.e. all, 30 km/h and 50 km/h zones). In the driving style column (1st 

column), the two compared categories are listed for each table row. 

Driving 

styles 

Lateral Longitudinal Gravitational 

All 30 50 All 30 50 All 30 50 

AGG  

DES 
0.76 0.40 0.98 0.83 0.92 0.64 1.16 1.25 1.48 

DES 

CAU 
0.11 0.14 0.29 0.36 0.35 0.46 0.74 0.31 0.46 

AGG  

CAU 
0.61 0.54 0.83 0.87 0.98 0.74 1.74 1.30 1.01 

Overall, the effect sizes are largest for gravitational acceleration for all speed zones, 

followed by longitudinal and lateral subsequently.  
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3.2.4 Lane changes 

Figure 17 shows the mean amplitude during the lane changes per driving style, 

regardless of the speed zone they were driven in. In Appendix G, Table 17, descriptive 

statistics are given for the lane changes in each category. 

 
Figure 17. Box plots of the amplitude measured during each event per driving style category and acceleration 

direction. 

For all three acceleration directions, the amplitudes in Category AGG are highest 

followed respectively by the amplitudes in category DES and CAU. The differences between 

the three categories are statistically significant for all three acceleration directions (lateral: 

Χ²(54) = 11.08, p < 0.001; longitudinal: Χ²(54) = 7.44, p = 0.024; gravitational: Χ²(54)  = 

13.45, p < 0.001). 

In Figure 18, the mean amplitude is given of the lane changes driven in 50 km/h speed 

zones. In contrast to the significant differences found whilst disregarding speed zones, the 

lane changes within 50 km/h speed zones do not show significant differences for any 

acceleration direction (lateral: Χ²(24) = 2.96, p = 0.228; longitudinal: Χ²(24) = 0.68, p = 

0.713; gravitational: Χ²(24)  = 3.52, p = 0.172). 
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Figure 18. Box plots of the amplitude measured during each event per driving style category and acceleration 

direction. 

The effect sizes between the three categories for all three acceleration directions are 

listed in Table 8. 

Table 8.  

Overview of all Cohen’s d effect sizes between each of the three driving style categories for lane changes turns 

through different speed zones (i.e. all, 30 km/h and 50 km/h zones). In the driving style column (1st column), the 

two compared categories are listed for each table row. 

Driving 

styles 

Lateral Longitudinal Gravitational 

All 50 All 50 All 50 

AGG 

DES 
0.99 0.60 0.43 0.14 1.23 0.88 

DES  

CAU 
0.01 0.75 0.42 0.09 0.00 0.05 

AGG 

CAU 
0.97 0.61 0.89 0.01 1.15 0.79 

From Table 8, it can be observed that the effect sizes are larger between AGG and 

DES opposed to DES and CAU. As for the speed zones, the effect sizes are larger for all 

speed zones, as opposed to only the effect sizes measured at the 50 km/h zone lane changes. 
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3.3 Thresholds 

In Table 9, the thresholds for the features analysed through sections 3.1 and 3.2 

features are listed. The threshold for each feature consists of an upper bound for 

discriminating AGG from DES and a lower bound to discriminate between DES and CAU. 

Some features did not comply with criterion 1 and therefore do not have thresholds (see 

Figure 19). 

 
Figure 19. Flowchart indicating why some features were excluded from the data analyses and why some 

features were not included when making thresholds. 

 

Table 9.  

Thresholds determined for all features analyses in section 3.1 and 3.2. The asterisk notes a threshold for which 

the effect size is larger than 0.8 (i.e. complying with criterion 2, see 2.2.3). 

Feature Lower bound 

threshold  

Upper bound 

threshold  Speed zone 
Dir. 

 (km/h) (g) (g) 

Full ride mean All 

Lat 0.039 0.044 

Lon 0.053 0.058 

Gra 0.048 0.058 

Turns 

All 

Lat 0.084 0.148* 

Lon 0.060 0.092 

Gra N.A. N.A. 

30 

Lat 0.075 0.134* 

Lon 0.060 0.088 

Gra N.A. N.A. 

50 

Lat 0.092 0.162* 

Lon 0.064 0.104* 

Gra N.A. N.A. 

Speed increases 

All 

Lat N.A. N.A. 

Lon 0.075 0.113 

Gra 0.055 0.078 

30 

Lat 0.059 0.070 

Lon 0.068 0.093 

Gra 0.052 0.058 

50 
Lat N.A. N.A. 

Lon 0.056 0.118* 
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Gra 0.050 0.097* 

Speed decreases 

All 

Lat N.A. N.A. 

Lon 0.094 0.147* 

Gra 0.044 0.091* 

30 

Lat 0.065 0.091 

Lon 0.079 0.134* 

Gra 0.039 0.074* 

50 

Lat N.A. N.A. 

Lon 0.100 0.163* 

Gra 0.034 0.091* 

Lane changes 

All 

Lat 0.041 0.047 

Lon 0.045 0.056 

Gra N.A. N.A. 

50 

Lat N.A. N.A. 

Lon 0.051 0.052 

Gra N.A. N.A. 

The ten features that did not comply with criterium 1 include gravitational 

acceleration during turns (n = 3; 30 km/h, 50 km/h, all speed zones), speed decreases (n = 2; 

30 km/h, 50 km/h) and lane changes (n = 2; 50 km/h, all speed zones) and lateral acceleration 

during speed increases (n = 2; 50 km/h, all speed zones), speed decreases (n = 1; all speed 

zones). 

The effect sizes between categories DES and CAU were not large (i.e. Cohen’s d < 

0.8) for any of the features, and did thus not comply with criterium 2. The features which 

complied with both criteria 1 and 2 are marked with an asterisk in Table 9 

. 

  



MSC THESIS – DAVID STEFAN   30 

 

 

3.4 Classification 

The thresholds listed in Table 9 were used to classify the rides between the three different 

driving style categories AGG, DES, and CAU. Table 10 shows the results of the 

classification.  

Table 10. 

Accuracies for all thresholds listed in Table 9. The number of rides included in the classification is annotated 

with ‘n = ’. 

Feature Accuracy based on 

driving style (n = 10) 

Accuracy based on 

pass/fail (n = 18)  Speed zone  
Dir. 

 (km/h) (%) (%) 

Full ride mean 
All 

 

Lat 50.00 83.33 

Lon 40.00 77.78 

Gra 20.00 66.67 

Turns 

All 

Lat 90.00 77.78 

Lon 70.00 66.67 

Gra N.A.  N.A. 

30 

Lat 70.00 72.22 

Lon 70.00 83.33 

Gra N.A. N.A. 

50 

Lat 70.00 72.22 

Lon 60.00 72.22 

Gra N.A. N.A. 

Speed increases 

All 

Lat N.A. N.A. 

Lon 60.00 72.22 

Gra 70.00 72.22 

30 

Lat 40.00 66.67 

Lon 70.00 55.56 

Gra 60.00 72.22 

50 

Lat N.A. N.A. 

Lon 70.00 55.56 

Gra 30.00 50.00 

Speed decreases 

All 

Lat N.A. N.A. 

Lon 60.00 77.78 

Gra 80.00 50.00 

30 

Lat 50.00 61.11 

Lon 50.00 66.67 

Gra 30.00 44.44 

50 

Lat N.A. N.A. 

Lon 60.00 72.22 

Gra 60.00 44.44 

Lane changes 

All 

Lat 70.00 66.67 

Lon 50.00 66.67 

Gra N.A. N.A. 

50 

Lat N.A. N.A. 

Lon 50.00 77.78 

Gra N.A. N.A. 
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The individual features classified with an average accuracy of 55.4% (SD = 15.9) 

between the three driving styles. The highest accuracy was found with the mean of the lateral 

acceleration during turns in all speed zones (90%). Three features had an accuracy lower than 

a random guess (33.3%): Full ride gravitational, speed increases 50 km/h gravitational and 

speed decreases 30 km/h gravitational. 

For the classification between pass and fail, the average accuracy was 69.1% (SD = 

11.4). The feature with the highest accuracy was the mean longitudinal acceleration during 

lane changes, with an accuracy of 88.9%. Furthermore, it can be seen that all lateral and 

longitudinal features outperform a random guess (50%) whilst four gravitational features (i.e. 

speed increase in 50 km/h zone and speed decrease in all, 50 and 30 km/h zones) do not.   
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4 Discussion 

This study aimed to investigate the use of in-vehicle acceleration data to distinguish 

between desired and undesired driving behaviour with thresholds. Scripted exam rides were 

driven whilst an accelerometer measured all perceived accelerations during the ride. The data 

from the accelerometer was analysed to investigate differences between different driving 

styles. Ultimately, thresholds for accelerations were determined and used to classify the rides 

over different driving style categories and through a pass/fail verdict. In this discussion, the 

results of the study will be reviewed and the use of thresholds for assessing driving behaviour 

will be discussed. Lastly, limitations of the study will be addressed whereafter 

recommendations for further reach are proposed.  

4.1 Assessing driving behaviour using accelerations 

In order to assess driving behaviour in terms of desired and undesired driving 

behaviour, one has to determine when it becomes (un)desired, for instance by means of 

determining thresholds. Commonly, this is left to a researcher’s own interpretation (see e.g., 

Fazeen et al., 2012; Handel et al., 2014; Malik & Nandal, 2021). The research presented here 

is unique in using professional driving examiners of the Dutch driving test organisation 

(CBR) who were following a professional driving examiner training programme for the 

assessment of driving behaviour. Due to the help of the driving examiners (i.e. coaches), who 

combined had over a century of experience in the examination of driving behaviour, and their 

professional driving examiner training programme, the thresholds created in this study have a 

professional foundation, in terms of assessing driving behaviour. The scenarios used in their 

training allowed for clear-cut, professionally distinguished differences between desired and 

undesired behaviour, which served as reliable input to this study.  

Since the thresholds were created with the help of examiners, it is important to discuss 

how assessing driving behaviour using data would be applied in practice. Driessen et al. 

(2021) investigated the view of examiners on using data to aid during the driving exam. 

Among other things, they asked examiners what kind of data would be beneficial to aid 

during the driving exam, rated from not useful at all (1) to very useful (5). Although distance 

to objects scored highest in terms of usefulness (4.35 out 5), information concerning de-

/acceleration scored third highest, with 3.54 out 5. Overall, it was concluded that “examiners 

are positive about receiving data in the driving test, especially if the data could help them 
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explain their verdict to the candidate” (Driessen et al., 2021, p. 74). The findings from 

Driessen et al. (2021) and the present study are pertinent in light of recently published 

recommendations suggesting that the Dutch driving education system might need to consider 

a shift from a test-led system to a test-and-education-driven approach (Roemer, 2021; see 

Helman et al., 2017 for comparable European proposals). The report from Roemer (2021) 

also suggests performing experiments with instrumented vehicles in order to move toward a 

more competency-based assessment.  

Using data to enhance the driving exam verdict can be related to the levels of 

automation as proposed by Sheridan (2003, p. 358). Driessen et al. (2021) also asked 

examiners for their opinion on how far they would like the automation of the driving exam to 

go. On a scale from 1, “the computer offers no assistance, human must do it all”, to 10, “the 

computer decides everything and acts autonomously, ignoring the human”, the examiners 

would accept Level 2 or 3 at maximum: “the computer offers a complete set of action 

alternatives” and “narrows the selection down to a few” (Driessen et al., 2021). In other 

words, the examiners were open to having access to computer-generated material like graphs 

or scores, but they did not want higher levels of assistance from a computer. The findings of 

this study, particularly the developed thresholds, could be used here to allow the computer to 

make a classification, stating the pass/fail verdict based on accelerations measured during the 

exam. This classification would not be seen as final outcome of the exam, but may aid the 

examiner in his decision and argumentation.  

Although the thresholds would not be used for a direct final exam verdict (e.g. level 

10 proposed by Sheridan, 2003), it is relevant to discuss how well the thresholds perform 

individually. Overall, the thresholds show a wide array in terms of the accuracies from the 

thresholds, with some performing with accuracies between 80 and 90 percent and some 

features underperforming a random guess (i.e. lower than 33 or 50 percent for classifying 

between driving style and exam result, respectively). It is difficult to compare these results 

with earlier studies since other studies mainly focused on event classification (Bergasa et al., 

2014; Chen et al., 2019) or event detection (Daptardar et al., 2015; Fazeen et al., 2011; Sun et 

al., 2019), whilst this study focused on classifying entire rides (i.e., driving exams). However, 

Pramunanto et al. (2019) used a Naive Bayes model to classify drivers as defensive, normal, 

or aggressive using thresholds, where each ride was driven with all three driving styles, and 

the model classified when each driving style was driven within that specific ride. Their model 

performed with accuracies varying from 87% to 95% over the different rides. Other 



MSC THESIS – DAVID STEFAN   34 

 

 

approaches in the literature use clustering and/or machine learning techniques, with which 

higher accuracies can be obtained in the classification between desired and undesired driving 

(Stefanowski, 2007: 95%; Qin et al., 2018: 97%). Some studies do not classify between 

driving styles but rather calculate a score based on acceleration measured during the ride 

(Liao et al., 2020; Warren et al., 2019; Chen et al., 2019) for a more continuous driving 

behaviour assessment.  

For all events investigated in this research, all three acceleration directions (i.e., 

lateral, longitudinal and gravitational) have been considered to encompass all features 

possibly obtainable from the accelerometer. The classification accuracies for these directions 

show that longitudinal accelerations were highest (M = 72.22; SD = 10.64), followed by 

lateral accelerations (M = 69.23; SD = 9.52) and gravitational acceleration (M = 65.81; SD = 

13.58). In terms of events, it was determined that lateral accelerations were highest in turns, 

whilst for speed increase/decrease events, the longitudinal accelerations showed the largest 

amplitude. In other studies, only a single acceleration direction was noted as a meaningful 

threshold (e.g., only lateral acceleration for turns; Fazeen et al., 2011), without looking at 

how other acceleration directions could influence the classification results. In terms of effect 

size, not encompassing all three acceleration directions could lead to missing capable features 

such as gravitational acceleration during speed decrease events. Even though the effect size 

of the longitudinal acceleration was larger for speed decreases, the gravitational acceleration 

was still able to classify with an accuracy of 80% between driving styles using the current 

dataset.  

Although most features and acceleration directions complied with criterium 1, ten 

features did not. This was caused by the fact that for all events, all acceleration directions 

were taken into account without avoiding any mismatches. Such a mismatch is for example 

looking at gravitational accelerations during turn events. Most turns did not feature any type 

of vertical displacement and therefor have limited gravitational accelerations. In addition, 

most speed increases/decreases took place on straight roads and therefor mostly have higher 

longitudinal acceleration amplitudes and lower lateral acceleration amplitudes. For the other 

26 features which did comply with criterium 1, the relation implied with the criterium might 

seem trivial as it is expected that aggressive rides contain higher acceleration amplitudes as 

opposed to the amplitudes from overcautious rides. However, it is to be reminded that the 

coaches acted out driving behaviour commonly observed during the exam without 

exaggerating certain aberrant behaviours. For example, when acting out an aggressive 
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scenario (i.e., ride 1.3), the goal of the coach was not to drive as aggressively as possible for 

the entire ride but rather to act as a driving exam candidate who drives more aggressively 

than desired. The coaches drove these scripted exam rides based on their years of experience 

in examining driving behaviour. Because most features satisfied criterium 1, it was possible 

to actually make upper and lower bound thresholds that could differentiate between the three 

analysed driving styles and classify a proper pass/fail verdict. 

4.2 Thresholds for ride classification 

In this study, the method to create upper and lower bound thresholds was based on the 

means of the three analysed driving styles (see section 2.2.3, equation 1 and 2). Reflecting on 

this method, there are more combinations of upper and lower bound thresholds, which would 

result in different receiver operator characteristics (ROC). Moreover, by placing the threshold 

in the middle of two means, as done in this study, the specificity and sensitivity of the 

classification were both set at 50%. Increasing the upper bound threshold or decreasing the 

lower bound threshold would result in an increased specificity, meaning that more rides 

would be predicted as “pass”, but also decreasing its sensitivity (i.e. increasing the false 

positives). In Figure 20, two ROC curves are shown which show the ROC of both the 

threshold created in this study (see section 3.3) and a fluctuating threshold, where the upper 

bound increases and lower bound decreases, starting with 100% sensitivity (i.e. small 

threshold range) and ending with 100% specificity (i.e. large threshold range). A commonly 

used performance metric for such comparisons is area under curve (AUC), which is higher 

for the fluctuating threshold (AUC = 0.64) opposed the threshold created in section 3.3 (AUC 

= 0.60). 
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Figure 20. ROC curve of the thresholds created in this study, compared to a threshold with increasing upper 

bound and decreasing lower bound in step sizes of 0.01g. 

ROC optimization is a commonly used technique to optimize classification algorithms 

and thresholds (e.g. Carrington et al., 2020; Huang & Ling, 2005). However, the higher AUC 

for the fluctuating threshold and a higher AUC in general do not directly imply a better 

performance, due to classification-threshold invariance not always being desirable (Lobo et 

al., 2008). Looking at driving exams, it might be most optimal to have 100% sensitivity, 

where it is ensured that when a candidate is predicted as “pass”, the true outcome also is 

“pass”. Due to the overlap between the acceleration amplitudes, more false negatives (i.e. 

failing the exam, whilst should pass) will arise due the 100% sensitivity. In the end, the goal 

of using the thresholds is to aid the driving examiner in their verdict, therefore, a 50/50 

balance between sensitivity and specificity (as used in this study) is argued to be the most 

optimal in giving the examiner a fair judgement from the computer. If the computer would be 

used for higher level automation, further research should be conducted to investigate the 

optimal ROC. 

In addition to choosing other thresholds and fluctuating upper and lower bounds, the 

classification using the thresholds can also be performed differently. The introduction shows 

the wide variety of thresholds used to assess driving behaviour. Although these thresholds are 

listed alongside each other, it must be stated that these studies vary in the exact use and 
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implementation of the thresholds. In the current study, classification was not based on a 

single event, but rather on the average of multiple events which occurred during the ride. 

Alternatively, classification could for instance be based on the number of exceedances within 

a certain time window of a given threshold (e.g. five times in 60 seconds). The driving exam 

as conducted by the CBR assesses the driving of the candidate based on the total package, 

meaning that although a candidate driver could make an error for one or two driving events 

(e.g. accelerating too harsh through turns), he/she could still pass the exam. The CBR uses a 

so-called AEX matrix, where the nature (‘Aard’: A), the severity (‘Ernst’: E) and the number 

of times (X) of a certain driving error are interpreted by the examiner and taken into account 

for the final verdict (CBR, 2020). Using a single threshold for a certain driving event would 

not align with the AEX matrix, since the nature (A) and the severity (E) of an event simply 

cannot be determined using a binary classifier.  

An alternative approach to determine the threshold could be based on the largest 

discriminatory distance. This approach is visualized in Figure 21,where the threshold is 

varied from 0 to 0.5 to see where the discrimination between any of the three categories is the 

largest, when the rides are normalized for each minute. For an upper bound threshold (i.e. 

discriminating AGG from DES) the largest relative distance is found at 0.31 g for lateral 

acceleration, 0.19 g for longitudinal acceleration and 0.37 g for gravitational acceleration. 

The main pitfall with this approach is that it does not account for driving events or any 

contextual relation to the measured accelerations, making it less viable to use as an aid for an 

examiner.   

 
Figure 21. Fluctuating threshold for analyses with respect to the acceleration amplitude. All rides have been 

normalized for each minute, where in each minute, the number of exceedances is listed per threshold and per 

driving style.  
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4.3 Limitations 

This study showed how in-vehicle acceleration measurements can be used to classify 

between desired and undesired driving behaviour. Although the results indicate that for some 

features the accuracy was as high as 90%, there are some limitations which need to be 

considered regarding the study. 

With a coach acting out a scripted driving behaviour on the open road, it is inevitable 

to sometimes deviate from the script to avoid hazardous situations. Therefore, where the 

situation on the road was not suitable to show a certain driving behaviour trait (e.g. 

aggressive turning or overcautious braking), even though it was listed in the scenario, other 

than aggressive or overcautious driving has been displayed, and therefor recorded. This could 

explain the regular overlaps between the three different driving styles in terms of 

accelerations measured. More data (i.e., more rides) could create a more complete picture of 

the various driving styles investigated in this study, and therewith overcome this limitation. 

A second limitation of this study is with the event registration. The experimenter 

personally interpreted every traffic situation and registered an event if it was in line with the 

rules for event registering (section 2.1.3). Due to the fact that detecting events automatically 

through accelerometer measurements (Bennajeh & Said, 2022; Ylizaliturri-Salcedo et al., 

2015) or using GPS and map matching (Zhao et al., 2019) did not show promising results (i.e. 

accuracies under 90%), the choice for manual even registering was made. Registering turns 

and lane changes was done objectively, since both events do not require any other metric 

(such as speed or acceleration) to qualify as an event. However, both speed increases and 

speed decreases are registered subjectively, since the trigger for registering either of these 

events would be different between experimenters. In this study, the mean longitudinal 

acceleration amplitude was 0.1 g (SD = 0.06) for all speed increase events and 0.12 g (SD = 

0.09) for speed decrease events. However, for the experimenter, it was the actual speed 

increase/decrease which was the main trigger for registering these events instead of taking the 

severity (i.e. high acceleration amplitude) into account. The experimenter mostly registered 

an event when the driver increased/decreased their speed with respect to traffic situations 

such as roundabouts, traffic lights or traffic jams, where speed increases/decreases were 

required. Although the manual event registering was based on a subjective interpretation of 

the experimenter in these cases, the experimenter was responsible for the event registering 

during all of the rides, in order to preserve consistency. 
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The created dataset included several different information streams (i.e. accelerometer, 

video, scenarios, event logs), while the dataset was limited in terms of the number of samples 

and the variety in the driven scenarios. The 21 rides driven during the experiment resulted in 

only 10 rides which were usable to create the thresholds to classify between the three driving 

style categories AGG, DES and CAU. Due to this fact, the sample size for the full ride 

analysis also did not allow for testing for significant differences, since this sample size was 

simply too small for a proper statistical test (Field, 2017, p. 871). Relatedly, the reason there 

was an uneven distribution over the driven driving styles (i.e. AGG: n = 3, DES: n = 5, CAU: 

n = 2 and NGL: n = 11) was due to the fact that the scenarios driven were part of the 

examiner training programme and not the experimenter’s choice. More rides would allow for 

a more enhanced dataset, while specific (pre-)selection of the rides subject to the research 

would be necessary to guarantee an even driving style distribution, which inevitably calls for 

a large time window of the research execution. 

The event analysis had a substantially larger number of samples with 509 registered 

driving events. Even though this made for the possibility to perform statistical tests, there was 

a sign of violation of independence. For proper functionality, statistical tests such as the 

Kruskal-Wallis test used in this study require the samples to be independent of one another 

(Field, 2017). In this study, each event registered was treated independently, although some 

were registered in the same ride. In such a ride, environmental factors such as the driver, the 

car and the driven scenario were all consistent for each registered event. Since other 

environmental factors such as traffic, event location, road type, and duration differed for each 

event, the assumption of independence for each event was justified because these factors 

violated the dependence between the events. 

4.4 Recommendations  

As discussed in section 4.1, many other studies rely on machine learning (ML) 

techniques for the classification and assessment of driving behaviour such as neural networks 

(Zhang et al., 2019), dynamic time warping (Chigurupati et al., 2012; Sun et al., 2021) and 

fuzzy logic (Bennajah & Said, 2020; Kalra et al., 2021). In this study, the classification 

(section 3.4) was based on a single node decision tree, without looking further into other 

classification methods. However, the features calculated for all 21 rides could be used with 

other classification methods, to investigate the performance of other classification techniques 

besides the technique used in this study. A pitfall of many ML algorithms is overfitting when 
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small sample sizes are used (Subramanian & Simon, 2013). With the dataset created in this 

study, a ML algorithm appeared unreliable, since the sample size (i.e. 21 rides) is too small 

(Figueroa et al., 2012; Gowen et al., 2019). For further investigation of the possibilities of 

using ML on this dataset, it is recommended that the sample size in terms of rides must be 

significantly expanded (i.e. include more rides/driving exams). 

The events being compared still differ in terms of environmental factors such as 

location, road type, and traffic rules. A more in-depth look could be obtained by comparing 

the driving styles over the same event, such as a specific cross section commonly taken 

during a driving exam. Although each ride took a slightly different route in the current 

dataset, each ride exited the CBR parking area via the same turn. As an example, in Figure 

22, the lateral acceleration of three rides from three different driving styles is given. For 

additional research, it may be preferable to drive over a specific cross section hundreds of 

times with three different driving styles where external factors such as traffic, vehicle, 

weather and driver are consistent over each sample. This ensures that the only main 

difference between samples is the driving style. Another discovery could be the path driven 

during a driving event. If GPS data were sampled at a higher frequency (50-100 Hz), it could 

provide extra insight to see the path driven by each driving style during a driving event using 

merely GPS data (see for example Driessen et al., 2022, where the GPS data of lane changes 

is investigated). 

Another recommendation for further research would be to also include other vehicle 

data types such as speed (e.g. full-ride average speed, speed through turns; e.g., in Eboli et 

al., 2019), following distance (e.g. average following distance on highways; e.g., Yimer et al., 

2020) or looking behaviour (e.g. average gaze time on the road ahead; e.g., Navarro et al., 

2016). Also jerk, the first time derivative of acceleration, is commonly used in other studies 

to detect undesired driving behaviour (see e.g. Zaki et al., 2014). Whereas acceleration can 

indicate the severity of a speed decrease event (e.g. abrupt braking), jerk can indicate the 

smoothness of the speed decrease event (e.g. smooth braking). Including more vehicle data 

measured during driving exams within the dataset could create a better performance for the 

classification of driving exams and also give driving examiners more data to explain their 

verdict to a driving exam candidate. 
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Figure 22. Comparison of the lateral acceleration same turn event (i.e. first turn after leaving CBR parking 

area). The left image shows the acceleration data, whilst the right image shows the path of the car through 

extracted using GPS data. This turn is made in a 30 km/h speed zone on cobbled road with traffic inbound from 

one direction. For this example, three rides from three different driving style categories are shown. 
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5 Conclusion 

With the increasing number of mobile devices that can generate driving-related data, 

the possibility for using data-driven assessments for driving exams rises. One of the possible 

data streams, accelerations, was used in this study to classify driving exam rides between 

driving styles and pass/fail verdicts. An experiment was conducted where 21 recreated 

driving exams were driven with different driving styles, in order to investigate the differences 

between driving styles based on in-vehicle acceleration measurements taken during each ride. 

It is concluded that to discriminate between desired and undesired driving behaviour, 

more data streams are needed to achieve perfect classification accuracy. However, there are 

features which do show significant differences, such as the lateral acceleration through turns 

in 30 km/h speed zones and longitudinal acceleration during speed decreases in 50 km/h 

speed zones. Using the thresholds, a classification between the driving style categories (i.e. 

aggressive, desired, overcautious) can be performed with an accuracy up to 90.0% and 

classification between pass/fail with accuracies up to 88.9%, all based on the existing dataset. 

In the end, from the 63 acceleration features derived from the iPhone’s accelerometer, only 

15 features showed large effect sizes when compared between the three different driving 

styles. 

This study shows results for solely relying on data to classify between desired and 

undesired driving behaviour. From the results, it can be concluded that a 100% classification 

accuracy is not yet achievable using this type of data. In addition, a computer may find it 

difficult to assess a candidate's higher-order driving skills (e.g. traffic anticipation and 

intentions) for the same reason that automated vehicles struggle to understand traffic context 

and predict what other road users will do (Rudenko et al., 2020; Vinkhuyzen & Cefkin, 

2016). Altogether, the study emphasizes the fact examiners will still be the main factor 

responsible for subjecting a pass/fail verdict over a driving exam, aided by data. Not only the 

examiner could benefit from these developments since candidates could also use it to better 

understand why they passed/failed their exam. 
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A.  Consent form 
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B.  Seven exam parts CBR 

3.1 Driving away 

3.2 Driving on straight and curvy roads 

3.3 Behaviour near and around cross sections 

3.4 Merging and exiting 

3.5 Overtaking and side way movements 

3.6 Behaviour near and around special road sections (i.e. bus stop, parking area, roundabouts) 

3.7 Special road manoeuvres (i.e. parallel parking, driving reverse). 

  



MSC THESIS – DAVID STEFAN   55 

 

 

C.  Scenarios overview 

Table 11. 

Overview of all the scenarios driven during the 21 rides.  

Ride number Title Description/traits Result 

Ride 1.1 The good driving candidate Candidate drives carefully, 

seems a bit slow at times, but 

it is sufficient 

Pass 

Ride 1.2 Not adapted / indecisive 

candidate 

3.2 and 3.4: Candidate does 

not dare to drive at speed on 

through roads, after warning 

nevertheless relapse 

Fail 

Ride 1.3 Candidate drives too fast 3.2 bumps too fast 

3.4 being stuck 

3.5 overtaking cyclists too 

fast 

3.7 parking too fast 

Fail 

Ride 1.4 Over casual candidate 3.4 Inserting too early on 

highway 

3.5 overtaking where it is not 

allowed 

Fail 

Ride 2.1 Not adapted / indecisive 

candidate 

3.3 Candidate brakes on 

every cross-section 

3.4 too late with looking 

3.6 stop at every roundabout 

and does not show signs of 

decisiveness 

Fail 

Ride 2.2 Candidate drives too fast 3.2 Driving too fast 

3.3 harsh braking and 

accelerating 

3.6 approaching cross 

section too fast 

Fail 

Ride 2.3 The good driving candidate Candidate drives well, but 

makes a mistake at 3.1, 3.3, 

3.4, 3.5, 3.6 and 3.7 in terms 

of viewing behaviour. 

Normal accelerations and 

speeds driven. 

Pass 
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Ride 3.1 Over casual candidate 3.3 Does not look left 

3.6 multiple errors, looking 

behaviour and road 

placement 

3.7 inappropriate looking 

behaviour 

Fail 

Ride 3.2 Candidate struggles with 

road placement 

3.4 too far left on the driving 

lane 

3.4 too close to block lines 

3.5 too close around cyclists 

and parked cars 

Fail 

Ride 3.3 Inappropriate looking 

behaviour 

3.3 no looking at all once 

3.5 no looking at all once 

Pass 

Ride 3.4 Clumsy candidate Inappropriate grip on 

steering wheel 

3.3 driving with clutch 

activated through corners 

3.4 Looking to far over 

shoulder, leading to wrong 

placement on road 

Fail 

Ride 3.5 Inappropriate timing, too 

late with car controls 

3.3 Too late with looking on 

cross sections, too late with 

the gear shifts 

3.4 Too late with mering on 

highway, too late with lane 

switch 

Fail 

Ride 4.1 Not adapted / indecisive 

candidate 

3.3 stops at every busy cross 

section 

3.4 too late with looking 

3.6 stops at every roundabout 

Fail 

Ride 4.2 Clumsy candidate 3.2 Does not shift properly, 

too far right driving on the 

road 

3.3 forget to use indicator, 

corners taken too wide 

Fail 

Ride 5.1 Doubting candidate 3.1 Does not look good, 

engine stops several times 

Fail 
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3.2 road placement too far 

right 

3.3 corners too wide 

Ride 5.2 Dangerous driving 3.2 till 3.6 too fast on all 

sections. Multiple 

interferences 

Fail 

Ride 5.3 Candidate has only one 

large error 

3.5 at switching lanes, the 

candidate does not look at 

all, happens only once 

Pass 

Ride 6.1 Doubtful candidate 3.2 too slow 

3.4 too slow 

3.7 too slow 

Fail 

Ride 6.2 Doubtful candidate 3.3, 3.4 and 3.6 inappropriate 

looking behaviour on all 

sections 

Fail 

Ride 6.3 Doubtful candidate 3.1 forget to look once 

3.3 forget to look once 

3.4 candidate does not look 

in dead corner once 

Pass 

Ride 6.4 Unpredictable candidate Drives without proper 

intentions and misplaces 

road placement constantly 

Fail 
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D.  Scenario categorization 

The 21 different rides each have their own scenario which differs from the others 

based on factors such as errors made and candidate behaviour. To analyse driving behaviour, 

the drives are categorised based on the scenarios explaining the driving behaviour driven 

during each of the 21 rides. In the scenarios, the errors made during the ride are listed and 

give an impression of what mistakes were made during the drive. Using these mistakes 

written up in the scenario (i.e. inadequate braking, driving too fast over speed bumps), the 

overall ride can be classified as belonging to one of the four categories.  

A categorization in driving style is chosen over a categorization based on pass/fail. 

This is mainly because of the assumption that a driving exam candidate can fail due to low 

accelerations (i.e. driving overcautious) or high accelerations (i.e. aggressive). If opting for 

only discriminating between pass/fail opposed to driving style, the fail group would contain 

rides with all kinds of acceleration, not necessarily high or low. 

The following four categories are used to categorise the driving styles: Aggressive 

driving behaviour (AGG), desired driving behaviour (DES, overcautious driving behaviour 

(CAU)  and negligent driving behaviour (NGL). In order to properly categorize the rides, the 

experimenter provided a clear description of each category: 

Category AGG aggressive driving 

The aggressive driving style can be clearly identified by traits such as high speeds and 

accelerations. Common events found in this behaviour are harsh braking, harsh lane changing 

and exceeding the speed limit. The aggressive driver does not brake for road bumps and 

approaches cross sections with excessive speeds. In terms of the driving exam, the aggressive 

driver will fail the driving exam at CBR. 

 Category DES: desired driving  

As stated in the title of this category, the desired driver shows good interactions with 

traffic and blends in with the everyday traffic. In addition, the desired driving also considers 

safety of other road users and the safety of the passengers within the car. Driving scenarios 

placed within this category will pass the driving exam at CBR. However, it does not mean 

that the ride was completely flawless. Errors could have been made during the ride, but the 

severity was not too much and the errors only occurred a few times. 
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 Category CAU: overcautious driving 

The rides placed within this Category CAU drove too slowly and showed errors which 

hindered other traffic users. Common events occurring within this driving style are stopping 

at every cross-section or roundabout without any traffic present. The driver from this 

category doesn’t show any signs of insight into traffic, and isn’t able to blend in with the 

other road users. At the driving exam, the person driving with an overcautious driving style 

will fail. 

 Category NGL: clumsy/negligent driving 

The final category is different from the others, since it is expected that this driving 

style will not have specific characteristics as the other three in terms of acceleration data. 

Common traits found in this driving style are not being aware of the surrounding traffic, 

wrong placement on the road or inappropriate handling of the clutch and gas pedal. At the 

driving exam, a driver driving with this driving style will fail. 

In Table 12, an overview is given of all the rides and the categories they have been 

placed in by the experimenter who drove along during all of the 21 rides. In the latter two 

columns, two other people from within the CBR organisation also categorised the rides over 

the same four categories. Note that the experimenter clustered the rides based on his 

experience during the ride and the scenarios and in cooperation with the driver (examiner), 

whilst the CBR staff members only read the prescribed scenario, as listed in Table 12. 
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Table 12 

Driving style categorization based on the driving behaviour listed in each scenario. 

Ride Experimenter CBR colleague CBR colleague  

1.1 Category DES Category DES Category DES 

1.2 Category CAU Category CAU Category CAU 

1.3 Category AGG Category AGG Category AGG 

1.4 Category NGL Category AGG Category NGL 

2.1 Category CAU Category CAU Category CAU 

2.2 Category AGG Category AGG Category AGG 

2.3 Category DES Category DES Category DES 

3.1 Category NGL Category NGL Category NGL 

3.2 Category NGL Category NGL Category NGL 

3.3 Category DES Category DES Category DES 

3.4 Category NGL Category NGL Category NGL 

3.5 Category NGL Category NGL Category NGL 

4.1 Category CAU Category CAU Category CAU 

4.2 Category NGL Category NGL Category NGL 

5.1 Category NGL Category NGL Category CAU 

5.2 Category AGG Category AGG Category AGG 

5.3 Category DES Category DES Category DES 

6.1 Category CAU Category CAU Category CAU 

6.2 Category NGL Category NGL Category CAU 

6.3 Category DES Category DES Category DES 

6.4 Category NGL Category NGL Category NGL 

Overall, the three different participants were unanimous on 76.2% of all the scenarios 

and their corresponding category. Taking into account the experimenter’s extra information, a 

100% unanimity was identified with either of the two other CBR staff members. Based on 

this categorising, the overall categories would then contain the following rides: 

● Category AGG: 1.3, 2.2 and 5.2 

● Category DES: 1.1, 2.3, 3,3, 5.3 and 6.3 

● Category CAU: 1.2, 2.1, 4.1 and 6.1 

● Category NGL: 1.4, 3.1, 3.2, 3.4, 3.5, 4.2, 5.1, 6.2 and 6.4 

Categorising the drives based on the text written in the scenario shows promising 

results, since all three people subjected all drives to the same category (76.2%). However, 

this categorising approach is purely based on the interpretation of the text written in the 

scenario and not on any of the acceleration data. On the other hand, the categorization done 

using the acceleration data as main input created very blurred and indecisive categories. This 

is mostly because the three acceleration directions measured all showed different properties 

per ride. In other words, the acceleration signal of for example ride 2.3 placed the ride in 

different categories, using different acceleration data as input (lateral and longitudinal).  
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E.  Driving event registration 

Using the event recorder, four types of events have been registered: turns, speed 

increases, speed decreases and lane changes. The event registration was based on the 

experimenter’s own interpretation of the traffic situation from the backseat of the vehicle and 

the driving event. In this appendix, three snapshots have been given per event, where the 

video recording and location indicate the exact moment the experimenter registered the event. 

E.1 Turns 

 
Figure 23. Turn event registered. Ride 1.3 in 30 km/h speed zone in Leusden, NL. 

 

 
Figure 24. Turn event registered. Ride 5.2 in 50 km/h speed zone in Achterberg, NL. 

 

 
Figure 25. Turn event registered. Ride 3.1 in 30 km/h speed zone in Leusden, NL. 
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E.2 Speed increase 

 
Figure 26. Speed increase event registered. Ride 2.3 in 50 km/h speed zone in Leusden, NL. 

 

 
Figure 27. Speed increase event registered. Ride 3.4 in 30 km/h speed zone in Leusden, NL. 

 

 
Figure 28. Speed increase event registered. Ride 3.4 in 30 km/h speed zone in Leusden, NL. 
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E.3 Speed decrease 

 
Figure 29. Speed decrease event registered. Ride 2.3 in 30 km/h speed zone in Amersfoort, NL. 

 

 
Figure 30. Speed decrease event registered. Ride 2.3 in 50 km/h speed zone in Amersfoort, NL. 

 

 
Figure 31. Speed decrease event registered. Ride 3.4 in 50 km/h speed zone in Leusden, NL. 
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E.4 Lane changes 

 
Figure 32. Lane change even registered. Ride 2.3 in 100 km/h speed zone in Leusden, NL. 

 

 
Figure 33. Lane change event registered. Ride 3.4 in 50 km/h speed zone in Leusden, NL. 

 

 
Figure 34. Lane change event registered. Ride 5.3 in 50 km/h speed zone in Amersfoort, NL. 
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F. Full ride analysis 

In Table 13, an overview is given of the mean absolute amplitude (M) and the 

absolute amplitude standard deviation (SD) of each ride. 

Table 13 

Descriptive statistics of the amplitude measured during each ride including mean (M) and standard deviation 

(SD) for lateral (Lat), longitudinal (Lon) and gravitational (Gra) accelerations.  

Ride ID 
M SD 

Lat Lon Gra Lat Lon Gra 

Ride 1.1 0,044 0,046 0,039 0,063 0,067 0,063 

Ride 1.2 0,184 0,085 0,097 0,245 0,120 0,140 

Ride 1.3 0,087 0,087 0,087 0,079 0,097 0,096 

Ride 1.4 0,062 0,061 0,048 0,047 0,059 0,061 

Ride 2.1 0,472 0,113 0,729 0,536 0,150 0,782 

Ride 2.2 0,063 0,070 0,062 0,084 0,084 0,106 

Ride 2.3 0,050 0,070 0,058 0,066 0,077 0,080 

Ride 3.1 0,057 0,047 0,040 0,088 0,093 0,079 

Ride 3.2 0,169 0,175 0,139 0,229 0,212 0,170 

Ride 3.3 0,039 0,063 0,068 0,068 0,062 0,095 

Ride 3.4 0,040 0,037 0,068 0,068 0,052 0,096 

Ride 3.5 0,037 0,047 0,075 0,064 0,068 0,083 

Ride 4.1 0,040 0,070 0,031 0,069 0,061 0,054 

Ride 4.2 0,007 0,024 0,011 0,009 0,025 0,013 

Ride 5.1 0,043 0,067 0,051 0,076 0,093 0,074 

Ride 5.2 0,046 0,075 0,060 0,073 0,109 0,091 

Ride 5.3 0,042 0,064 0,049 0,073 0,089 0,069 

Ride 6.1 0,033 0,038 0,049 0,057 0,053 0,068 

Ride 6.2 0,038 0,042 0,058 0,067 0,061 0,082 

Ride 6.3 0,042 0,048 0,064 0,076 0,069 0,088 

Ride 6.4 0,048 0,045 0,065 0,074 0,062 0,087 
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G. Event analysis 

G.1 Test for normality 

In Figure 35, the absolute amplitude of all four different events is shown, together 

with a normal distribution fit based on the mean and standard deviation of the amplitudes per 

acceleration direction. 

 
Figure 35. Histograms of the amplitudes for each event in all speed zones. Fitted with normal distribution based 

on mean and standard deviation of each group. 

From Figure 35, it can be observed that the amplitude data of the events don’t show a 

fit with the normal distribution. Using a Kolmogorov Smirnov test, it has been found that no 

samples available in the dataset come from a normal distribution. 
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G.2 Descriptive statistics 

Table 14 

Descriptive statistics of the amplitude for all turn events registered. 

Turns 
30 km/h 50 km/h 80 km/h 100 km/h 

M SD Max Min n M SD Max Min n M SD Max Min n M SD Max Min n 

AGG 

Lat 0,26 0,12 0,50 0,06 25 0,25 0,10 0,48 0,12 36 0,26 0,30 0,47 0,05 2 0,23 0,11 0,33 0,06 5 

Lon 0,17 0,09 0,33 0,05 25 0,18 0,11 0,48 0,04 36 0,17 0,16 0,28 0,06 2 0,19 0,11 0,28 0,04 5 

Gra 0,15 0,14 0,52 0,00 25 0,18 0,12 0,46 0,00 36 0,07 0,05 0,10 0,03 2 0,08 0,03 0,12 0,05 5 

DES 

Lat 0,14 0,08 0,51 0,01 67 0,16 0,09 0,39 0,03 50 0,17 0,16 0,35 0,06 3 0,17 0,11 0,31 0,04 4 

Lon 0,11 0,07 0,44 0,01 67 0,12 0,07 0,33 0,03 50 0,08 0,02 0,10 0,05 3 0,08 0,02 0,11 0,05 4 

Gra 0,10 0,08 0,34 0,01 67 0,13 0,10 0,38 0,00 50 0,07 0,05 0,13 0,03 3 0,17 0,16 0,35 0,03 4 

CAU 

 

Lat 0,10 0,05 0,21 0,03 28 0,10 0,06 0,30 0,05 27 - - - - 0 0,21 0,00 0,21 0,21 1 

Lon 0,09 0,04 0,19 0,04 28 0,10 0,07 0,39 0,03 27 - - - - 0 0,17 0,00 0,17 0,17 1 

Gra 0,11 0,06 0,31 0,02 28 0,17 0,11 0,44 0,02 27 - - - - 0 0,22 0,00 0,22 0,22 1 

NGL 

 

Lat 0,10 0,07 0,32 0,01 108 0,14 0,11 0,79 0,00 154 0,11 0,12 0,31 0,02 5 0,12 0,10 0,25 0,03 6 

Lon 0,09 0,08 0,40 0,00 108 0,09 0,08 0,46 0,00 154 0,07 0,05 0,13 0,00 5 0,05 0,01 0,07 0,04 6 

Gra 0,07 0,06 0,30 0,00 108 0,09 0,10 0,44 0,00 154 0,06 0,06 0,16 0,02 5 0,10 0,09 0,25 0,02 6 

All 

 

Lat 0,13 0,09 0,51 0,01 228 0,15 0,11 0,79 0,00 267 0,16 0,16 0,47 0,02 10 0,17 0,11 0,33 0,03 16 

Lon 0,10 0,08 0,44 0,00 228 0,11 0,09 0,48 0,00 267 0,09 0,08 0,28 0,00 10 0,11 0,08 0,28 0,04 16 

Gra 0,06 0,11 0,52 0,00 228 0,12 0,11 0,46 0,00 267 0,07 0,05 0,16 0,02 10 0,12 0,10 0,36 0,02 16 

 

Table 15 

Descriptive statistics of the amplitude for all speed increase events registered. 

Speed 

increases 

30 km/h 50 km/h 80 km/h 100 km/h 

Mu SD Max Min n M SD Max Min n M SD Max Min n M SD Max Min n 

AGG 

Lat 0,11 0,03 0,15 0,08 5 0,15 0,08 0,33 0,05 15 0,23 0,10 0,41 0,15 6 0,12 0,06 0,19 0,07 3 

Lon 0,11 0,06 0,19 0,05 5 0,17 0,08 0,36 0,06 15 0,18 0,08 0,35 0,12 6 0,15 0,06 0,19 0,07 3 

Gra 0,12 0,05 0,20 0,07 5 0,11 0,09 0,26 0,01 15 0,18 0,12 0,34 0,05 6 0,14 0,02 0,16 0,12 3 

DES 

Lat 0,11 0,05 0,19 0,05 8 0,13 0,07 0,21 0,04 4 0,12 0,01 0,12 0,11 3 0,10 0,08 0,19 0,03 3 

Lon 0,15 0,10 0,36 0,02 8 0,09 0,04 0,13 0,04 4 0,16 0,09 0,24 0,07 3 0,13 0,08 0,22 0,06 3 

Gra 0,07 0,04 0,13 0,02 8 0,05 0,02 0,07 0,02 4 0,01 0,01 0,02 0,01 3 0,10 0,09 0,19 0,02 3 

CAU 

Lat 0,08 0,04 0,12 0,05 4 0,10 0,04 0,14 0,05 5 - - - - 0 0,14 0,04 0,18 0,10 3 

Lon 0,08 0,02 0,10 0,06 4 0,09 0,04 0,14 0,06 5 - - - - 0 0,13 0,07 0,21 0,07 3 

Gra 0,08 0,06 0,17 0,04 4 0,05 0,03 0,07 0,02 5 - - - - 0 0,16 0,23 0,42 0,02 3 

NGL 

Lat 0,09 0,08 0,30 0,01 19 0,07 0,06 0,24 0,00 42 - - - - 0 0,07 0,05 0,14 0,02 6 

Lon 0,09 0,07 0,22 0,01 19 0,06 0,05 0,25 0,00 42 - - - - 0 0,07 0,04 0,13 0,04 6 

Gra 0,08 0,11 0,38 0,00 19 0,07 0,07 0,29 0,00 42 - - - - 0 0,05 0,05 0,14 0,00 6 

All 

Lat 0,10 0,06 0,30 0,01 36 0,10 0,07 0,33 0,00 66 0,14 0,07 0,33 0,05 9 0,13 0,08 0,33 0,02 15 

Lon 0,10 0,08 0,36 0,01 36 0,09 0,07 0,36 0,00 66 0,17 0,08 0,35 0,07 9 0,11 0,06 0,22 0,04 15 

Gra 0,08 0,09 0,38 0,00 36 0,07 0,07 0,29 0,00 66 0,13 0,13 0,34 0,01 9 0,10 0,11 0,43 0,00 15 
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Table 16 

Descriptive statistics of the amplitude for all speed decrease events registered. 

Speed 

decreases 

30 km/h 50 km/h 80 km/h 100 km/h 

M SD Max Min n M SD Max Min n M SD Max Min n M SD Max Min n 

AGG 

Lat 0,16 0,07 0,26 0,02 18 0,18 0,10 0,42 0,01 34 0,29 0,33 0,53 0,05 2 0,14 0,10 0,25 0,04 4 

Lon 0,20 0,11 0,45 0,03 18 0,23 0,14 0,71 0,01 34 0,12 0,11 0,20 0,05 2 0,11 0,10 0,25 0,02 4 

Gra 0,10 0,12 0,42 0,00 18 0,12 0,10 0,34 0,00 34 0,06 0,02 0,07 0,05 2 0,05 0,03 0,08 0,01 4 

NGL 

Lat 0,12 0,09 0,29 0,01 13 0,09 0,07 0,27 0,01 22 0,09 0,03 0,13 0,06 5 0,14 0,09 0,28 0,01 7 

Lon 0,11 0,05 0,20 0,01 13 0,15 0,10 0,45 0,01 22 0,18 0,07 0,27 0,10 5 0,14 0,09 0,26 0,03 7 

Gra 0,07 0,05 0,16 0,00 13 0,06 0,06 0,23 0,00 22 0,08 0,05 0,15 0,03 5 0,10 0,09 0,29 0,02 7 

CAU 

Lat 0,11 0,11 0,27 0,01 5 0,11 0,07 0,29 0,01 18 - - - - 0 0,18 0,00 0,18 0,18 1 

Lon 0,09 0,09 0,22 0,02 5 0,10 0,08 0,38 0,01 18 - - - - 0 0,20 0,00 0,20 0,20 1 

Gra 0,06 0,07 0,16 0,00 5 0,03 0,03 0,10 0,00 18 - - - - 0 0,01 0,00 0,01 0,01 1 

NGL 

Lat 0,07 0,06 0,25 0,00 34 0,08 0,07 0,35 0,00 87 0,05 0,04 0,10 0,01 4 0,12 0,09 0,25 0,07 4 

Lon 0,07 0,06 0,26 0,01 34 0,08 0,09 0,40 0,00 87 0,03 0,02 0,06 0,02 4 0,08 0,02 0,11 0,06 4 

Gra 0,07 0,07 0,27 0,00 34 0,05 0,05 0,22 0,00 87 0,03 0,03 0,07 0,00 4 0,10 0,08 0,18 0,00 4 

All 

Lat 0,11 0,08 0,29 0,00 70 0,11 0,08 0,42 0,00 161 0,11 0,14 0,53 0,12 11 0,14 0,08 0,28 0,11 16 

Lon 0,11 0,09 0,45 0,01 70 0,12 0,12 0,71 0,00 161 0,12 0,89 0,27 0,02 11 0,12 0,08 0,26 0,17 16 

Gra 0,07 0,08 0,42 0,00 70 0,06 0,07 0,34 0,00 161 0,06 0,05 0,15 0,00 11 0,08 0,07 0,29 0,00 16 

 

Table 17 

Descriptive statistics of the amplitude for all lane change events registered. 

Lane 

changes 

30 km/h 50 km/h 80 km/h 100 km/h 

M SD Max Min n M SD Max Min n M SD Max Min n M SD Max Min n 

AGG 

Lat 0,10 0,02 0,13 0,08 4 0,12 0,05 0,20 0,07 7 0,17 0,06 0,21 0,12 2 - - - - 0 

Lon 0,12 0,04 0,17 0,07 4 0,09 0,03 0,13 0,05 7 0,13 0,01 0,13 0,12 2 - - - - 0 

Gra 0,14 0,09 0,27 0,07 4 0,08 0,06 0,16 0,01 7 0,14 0,12 0,22 0,06 2 - - - - 0 

DES 

Lat - - - - 0 0,09 0,05 0,21 0,03 14 - - - - 0 0,07 0,03 0,13 0,03 13 

Lon - - - - 0 0,08 0,04 0,16 0,03 14 - - - - 0 0,08 0,05 0,17 0,03 13 

Gra - - - - 0 0,06 0,04 0,18 0,01 14 - - - - 0 0,06 0,04 0,11 0,00 13 

CAU 

Lat 0,08 0,05 0,17 0,05 5 0,09 0,07 0,19 0,05 4 - - - - 0 0,06 0,01 0,07 0,05 2 

Lon 0,06 0,04 0,13 0,04 5 0,09 0,07 0,19 0,05 4 - - - - 0 0,05 0,00 0,05 0,05 2 

Gra 0,08 0,07 0,19 0,03 5 0,05 0,03 0,10 0,02 4 - - - - 0 0,07 0,01 0,08 0,07 2 

NGL 

Lat - - - - 0 0,06 0,05 0,18 0,01 20 - - - - 0 0,07 0,07 0,33 0,00 23 

Lon - - - - 0 0,07 0,07 0,34 0,00 20 - - - - 0 0,06 0,04 0,13 0,01 23 

Gra - - - - 0 0,04 0,03 0,09 0,00 20 - - - - 0 0,04 0,03 0,14 0,00 23 

All 

Lat 0,09 0,38 0,16 0,05 9 0,08 0,05 0,21 0,01 45 0,17 0,17 0,21 0,12 2 0,07 0,05 0,33 0,00 38 

Lon 0,08 0,04 0,17 0,04 9 0,08 0,06 0,34 0,00 45 0,13 0,13 0,13 0,12 2 0,69 0,04 0,17 0,01 38 

Gra 0,10 0,08 0,27 0,30 9 0,05 0,04 0,18 0,00 45 0,14 0,14 0,22 0,06 2 0,05 0,03 0,14 0,00 38 

 


