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All that other folk can do,
Why, with patience, should not you?

Only keep this rule in view,
Try, try again.
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SUMMARY

Reinforcement Learning (RL) methods aim to find near-optimal solutions to sequen-
tial decision-making problems with initially unknown dynamics. These methods learn
by interacting with the environment and observing the outcomes of their actions. RL
methods have made significant progress in recent years and good solutions to difficult
problems have been found in rapid succession. However, these successes often rely on
access to a simulator, which makes it possible to generate a lot of experience cheaply
and safely. In contrast, there are many real-world applications of RL where learning
must occur solely through experience obtained in the environment itself. This is often
time-consuming and expensive, with risks such as damage to equipment. This makes
efficiently collecting and using experience of crucial importance. The thesis focuses on
improving the learning efficiency of RL methods.

Two methods to improve learning efficiency are Model-based Reinforcement Learning
(MBRL) and state abstraction. MBRL methods learn a model and use it for planning and
learning, which drives efficient learning by directing exploration to unknown areas of
a problem. On the other hand, state abstraction reduces the size of a problem, which
achieves efficient learning in an alternative way.

This thesis focuses on combining these two methods, aiming to achieve even greater
learning efficiency. We first survey methods that have previously combined MBRL and
abstraction, including approaches ranging from state aggregation to abstractions based
on deep learning. We identify challenges resulting from the combination of MBRL and
abstraction, particularly focusing on the view of RL plus abstraction as a partially ob-
servable problem. From this perspective, we demonstrate how this combination leads
to perceptual aliasing, where different states are perceived as the same state. This implies
the observed behavior is no longer guaranteed to adhere to the assumptions required for
most analyses.

Next, this thesis addresses the issue of perceptual aliasing with a theoretical analysis
of the combination of MBRL and abstracted observations. While there are many algo-
rithms with performance guarantees without abstraction, it may come as a surprise that
no such guarantees are available when combining MBRL and abstraction, where MBRL
merely observes abstract states. We prove that, even in this context, it is still possible to
guarantee that an accurate model can be learned. Based on this result, we extend the
performance guarantees of MBRL methods to learning with abstract observations.

Finally, we shift our focus to partially observable problems. Previously, we assumed
the problems were fully observable and it was only the abstraction that rendered them
partially observable. However, many complex problems are partially observable by na-
ture. A difficulty in these problems is the belief space the agent needs to reason about,
which is typically too large to find an exact solution. Online planning, which involves
choosing actions within a limited amount of time, is often used as an alternative for find-
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ing solutions. In this setting, abstraction can provide additional benefits by potentially
increasing the planning speed, since it reduces the size of the model.

We propose and investigate an abstraction method that uses the structure of the prob-
lem to define different levels of abstraction. We evaluate our approach empirically in
several domains and find that abstract models can indeed enable faster planning which
can increase performance, even when the abstraction leads to a loss of information. Fur-
ther, we show that abstractions can improve performance even under a fixed number of
simulations. This occurs because abstract models can aggregate multiple samples that
the original model treats independently, thereby using experience more efficiently.

This thesis theoretically and empirically shows that we can learn efficiently by combin-
ing MBRL and abstraction. The results of this investigation advance our understanding
of this combination, furthering knowledge in this important area of research and provid-
ing a foundation that can support effective learning in complex real-world problems.



SAMENVATTING

Het doel van Reinforcement Learning (RL) methodes is om bijna-optimale oplossingen
te vinden voor sequentiële besluitvormingsproblemen met aanvankelijk onbekende dy-
namica. Deze methodes leren door hun interactie met de omgeving en het observeren
van de resultaten. RL methodes hebben de laatste jaren aanzienlijke vooruitgang geboekt
en goede oplossingen voor moeilijke problemen werden snel na elkaar gevonden. Deze
successen zijn echter vaak afhankelijk van toegang tot een simulator, waardoor het mo-
gelijk is om op een goedkope en veilige manier veel ervaring op te doen. Daarentegen
zijn er veel toepassingen van RL in de echte wereld waarbij het leren uitsluitend moet
plaatsvinden op basis van ervaring die direct in de omgeving wordt opgedaan. Dit is
vaak tijdrovend en duur, met risico’s zoals schade aan apparatuur. Dit maakt het effi-
ciënt verzamelen en gebruiken van ervaring van cruciaal belang. Deze dissertatie richt
zich op het verbeteren van de leerefficiëntie van RL methodes.

Twee methodes om de leerefficiëntie te verbeteren zijn Model-based Reinforcement
Learning (MBRL) en toestandsabstractie. MBRL methodes leren een model en gebruiken
dit voor planning en leren, wat efficiënt leren stimuleert door exploratie te richten op
onbekende gebieden van een probleem. Aan de andere kant verkleint toestandsabstrac-
tie de omvang van een probleem, waardoor efficiënt leren op een andere manier wordt
bereikt.

Deze dissertatie richt zich op het combineren van deze twee methodes, met als doel
een nog grotere leerefficiëntie te bereiken. We geven eerst een overzicht van methodes
die eerder MBRL en abstractie hebben gecombineerd, inclusief benaderingen die var-
iëren van toestandsaggregatie tot abstracties gebaseerd op diep leren. We identificeren
uitdagingen die voortkomen uit de combinatie van MBRL en abstractie, waarbij we ons
vooral richten op de kijk op MBRL plus abstractie als een gedeeltelijk waarneembaar
probleem. Vanuit dit perspectief laten we zien hoe deze combinatie leidt tot perceptuele
aliasing, waarbij verschillende toestanden worden waargenomen als dezelfde toestand.
Dit houdt in dat het waargenomen gedrag niet langer gegarandeerd voldoet aan de aan-
names die nodig zijn voor de meeste analyses.

Vervolgens wordt in dit proefschrift het probleem van perceptuele aliasing aangepakt
met een theoretische analyse van de combinatie van MBRL en geabstraheerde waarne-
mingen. Hoewel er veel algoritmen zijn met prestatiegaranties zonder abstractie, kan het
als een verrassing komen dat zulke garanties niet beschikbaar zijn bij het combineren
van MBRL en abstractie, waarbij MBRL alleen abstracte toestanden observeert. We be-
wijzen dat het zelfs in deze context nog steeds mogelijk is om te garanderen dat er een
accuraat model geleerd kan worden. Op basis van dit resultaat breiden we de prestatie-
garanties van MBRL methodes uit naar leren met abstracte waarnemingen.

Tot slot verschuiven we onze aandacht naar gedeeltelijk waarneembare problemen.
Eerder gingen we ervan uit dat de problemen volledig waarneembaar waren en dat het
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alleen de abstractie was die ze gedeeltelijk waarneembaar maakte. Veel complexe prob-
lemen zijn echter van nature gedeeltelijk waarneembaar. Een moeilijkheid bij deze prob-
lemen is de enorme hoeveelheid mogelijkheden waarover de agent moet redeneren, die
meestal te groot is om een exacte oplossing te vinden. Online planning, waarbij acties
worden gekozen binnen een beperkte tijd, wordt vaak gebruikt als alternatief voor het
vinden van oplossingen. In deze setting kan abstractie extra voordelen bieden door mo-
gelijk de planningssnelheid te verhogen, omdat het de grootte van het model verkleint.

We creëren en onderzoeken een abstractiemethode die de structuur van het probleem
gebruikt om verschillende abstractieniveaus te definiëren. We evalueren onze aanpak
empirisch in verschillende domeinen en bevinden dat abstracte modellen inderdaad
snellere planning mogelijk maken, wat de prestaties kan verhogen, zelfs als de abstractie
leidt tot een verlies van informatie. Verder laten we zien dat abstracties de prestaties kun-
nen verbeteren, zelfs bij een vast aantal simulaties. Dit komt doordat abstracte modellen
meerdere ervaringen kunnen samenvoegen die het oorspronkelijke model onafhankelijk
behandelt, waardoor ervaring efficiënter wordt gebruikt.

Dit proefschrift toont zowel theoretisch als empirisch aan dat we efficiënt kunnen
leren door MBRL te combineren met abstractie. De resultaten van dit onderzoek ver-
groten ons begrip van deze combinatie, verdiepen de kennis op dit belangrijke onder-
zoeksgebied en bieden een basis die effectief leren in complexe toepassingen in de echte
wereld kan ondersteunen.



1
INTRODUCTION

Intelligence can be defined as the ability to learn, understand, or adapt to new
or challenging situations [1]. In artificial intelligence, Reinforcement Learning (RL)
embodies this concept by enabling systems to discover optimal solutions autonomously.
I find this notion particularly fascinating, and recent advancements have demonstrated
that RL can achieve performance levels surpassing those of top human players in
strategic games like chess, Go, Starcraft, and Stratego [2–5]. In a practical application,
researchers have employed RL to improve data center cooling, reducing costs and
energy consumption [6].

Looking to the future, RL holds promise for addressing challenges such as space
exploration. The vast distances involved create lengthy travel times, making human
exploration impractical. Moreover, the significant delays in communication mean that
robots must autonomously adapt to unforeseen challenges, such as a malfunctioning
motor or a sudden sandstorm. In such scenarios, the ability to learn and adapt is
crucial, underscoring the potential of RL.

A key challenge in RL is the trade-off between exploration and exploitation [7].
Exploration is crucial in gaining the knowledge required for employing near-optimal
solutions. In real-world problems, RL methods must be efficient in terms of the
experience they require, as experience can be costly in terms of time and money.
However, current methods are often not provably efficient or rely on simulators that
may not be available in unknown environments [2–6, 8–12].

This thesis investigates two methods and their integration to enhance the efficiency
of RL. We focus on Model-based Reinforcement Learning (MBRL), which learns and
utilizes a model to guide exploration [13, 14], and state abstraction, which creates
compact problem representations for faster learning [15, 16]. Most importantly, we
explore how combining these methods can result in more efficient learning. In
the following sections, we give an overview of these techniques and the challenges
associated with their integration. We assume the reader is familiar with the main
principles of RL and planning, such as the Markov assumption, Markov decision
processs (MDPs), (optimal) policies [7, 17, 18], and Partially Observable Markov
Decision Processes (POMDPs) [19].

1
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2 1. INTRODUCTION

1.1. REINFORCEMENT LEARNING
We are interested addressing sequential decision-making problems through RL. As
the term suggests, these problems require a sequence of actions to reach a desired
outcome. For example, consider the example in Figure 1.1. Here, the goal is for
an exhausted researcher to receive coffee. To achieve this, the robot must navigate
towards the researcher and hand over the coffee. It can take several actions, such as
moving right or left and handing over the coffee. Here it can accomplish its goal by
moving right twice and then handing over the coffee.

Of course, this is a simple example. Real-world problems are often more complex
and have additional challenges such as stochasticity. Stochasticity is often present
as randomness in the outcomes of actions. In the coffee robot example, this could
mean that an attempt to move right only succeeds 70% of the time, for instance, due
to the difficulty of navigating the floor surface.

Figure 1.1: A robot that has to bring coffee to the vicinity of an exhausted researcher.

Due to the stochastic nature of most problems, the solution to these problems is
typically not simply a fixed sequence of actions. Instead, solutions specify the best
action to take in any given situation that could arise. This kind of solution is called
a policy. For example, in the case of the coffee robot, For the coffee robot, a policy
might state: move right if the robot is in one of the first two columns, and hand
over the coffee if it is in the third column. Two cases can be distinguished when
finding policies for sequential decision-making problems.

The first case concerns applications where we know how the world works and thus
can construct or estimate a sufficiently accurate model. In this scenario, planning
methods can be applied to find the best policy for the problem. Planning uses the
model to compute a policy before taking any real-world actions.

The second case applies to problems where we do not know how the world works,
and thus do not have access to a model of the problem. We can turn to RL methods
to find a policy in these situations. This approach requires learning (the dynamics
of the problem) through interaction with the real world. Learning happens through
trying out actions and observing the outcomes.

RL has made significant progress in the last years, particularly in Atari games [8],
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and games like chess [3], poker [10], and other simulation-based problems [9]. More
difficult problems with a huge state space are being mastered all the time, for
example, the games Unreal [11], Dota [12] and Stratego [5]. However, these problems
also have a simulator, meaning that generating a lot of experience is not a problem.
The created methods require a lot of experience to learn, which could be challenging
in the real world for several reasons: the number of different situations that could
be encountered might be huge, collecting experience can be time-consuming, and it
might be expensive (equipment could break). Thus, being efficient is important in
RL.

In RL, the objective is to learn efficiently and quickly find a good policy. This task
is difficult because, initially, the environment is unknown. The challenge of learning
to act optimally with minimal experience can be illustrated through the example of
the coffee robot. At first, the robot will not know the outcomes of any actions it
can choose and must experiment to observe the outcomes. Imagine that the first
path the robot finds is the one in Figure 1.2. While this path achieves its goal of
delivering coffee to the tired researcher, it is suboptimal since the researcher would
like his coffee as quickly as possible (time is often an important component).

For instance, moving to the right from the starting position would be faster, but
the robot is unaware of this possibility. It has to try out the action first to observe
the outcome. This also means that the robot does not know whether or not there
is any faster route, as it has only followed the path in Figure 1.2. When the robot
starts again from the initial position, it must choose whether to exploit its current
knowledge by following the path it has learned will lead to the goal (though this
may not always succeed due to stochasticity), or to explore by trying out alternative
actions in order to learn more and possibly discover a better policy.

Figure 1.2: Example initial path followed by the robot.

Having to balance visiting the states and taking the actions you believe are most
rewarding (exploiting) with learning about what you do not know (exploration) is
called the exploration-exploitation trade-off, and is one of the main challenges in
RL [7]. As illustrated by the example, exploring generally comes at the expense of
exploitation, and vice versa. Finding the right balance is important in RL, especially
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for efficient learning.

There are multiple definitions of efficient learning in RL [14, 20]. Efficiency is
typically measured in terms of sample efficiency, related to the number of samples
required to learn, and computational efficiency, related to the amount of storage and
computation required. In some cases, we might be concerned with only one of
these aspects. For example, if a fast simulator of the problem is available, generating
samples might be very cheap, making computational efficiency the primary concern.
In real-world settings, such as operating with robots, collecting many samples can
be time-consuming or expensive, so sample efficiency may be the priority.

1.2. MODEL-BASED RL AND EXPLORATION

A way to learn efficiently is to maintain a (learned) model of the environment
along with a measure of uncertainty about this model, as this allows for balancing
exploration and exploitation. When you learn a model of the environment, you can
use it to plan to reach any state you want. At the same time, you can also use it to
take the actions you believe are most rewarding. This is the idea on which MBRL
methods are based. They try to learn an accurate model of the environment, which
allows these methods to do targeted exploration. They can purposefully take actions
that have not been taken yet, or attempt to reach a certain state of a problem that
has not been visited often, to explore that state.

For example, the coffee robot from the earlier example could keep track of the
outcomes of its actions in each state while following the path in Figure 1.2. When
it starts again from the beginning, the robot can prioritize actions it has not tried
before. This targeted exploration helps the robot learn more about the environment
and more quickly discover a better policy.

Exploration methods are important for efficiently navigating and learning within
an environment, and several near-optimal methods for exploration in MBRL have
been developed [13, 14, 20–25]. In this thesis, we focus on two such methods:
interval estimation [14] and Bayesian learning [21, 23]. Both maintain a model of
the environment together with a measure of uncertainty around that model, and use
this uncertainty to guide action selection. These methods will be discussed in more
detail in Chapters 3 and 4.

A limitation of the mentioned exploration methods is that they typically require
visiting all the states, which makes them impractical for large problems. This is
both because exploration can become too time-consuming, and because the learned
model could exceed memory capacity. Most of the methods discussed above relate
to tabular methods. In model-based RL, tabular methods are methods were we store
the whole model in memory. However, as problems grow larger this might not be
feasible. It might simply not be possible because it does not fit into the memory, or
finding a solution will take too long. Two alternatives to tabular learning are learning
factored representations and deep RL, which will be discussed in Chapters 2 and 4.



1.3. STATE ABSTRACTION

1

5

1.3. STATE ABSTRACTION

We are interested in finding other ways to learn in large problems. One such
alternative is abstraction. There are many forms of abstraction in reinforcement
learning. For a recent survey, see [26]. Key categories include temporal
abstraction [27–29], action abstraction [30, 31], influence-based abstraction [32, 33],
and state abstraction [15, 16, 34, 35]. These approaches generally remove (or
abstract away) information from the environment, particularly information that is
not (as) relevant for finding the optimal policy. For example, depending on the type
of abstraction, the removed information could relate to actions, state information,
or other components of the MDP. We focus on state abstraction [15, 16], which
partitions the state space by grouping states into abstract states. We present a
high-level overview here and provide a more detailed description in the following
chapters.

Figure 1.3: The coffee robot problem, with abstraction. A representation of the
problem and the view of the robot.

As an example of abstraction, consider the coffee robot problem shown in
Figure 1.1 on page 2. In this case, an abstract representation can be created by
removing information about the robot’s row position, as illustrated in Figure 1.3.
Using this representation, the robot cannot distinguish the row it is in. This is no
issue since the optimal action is to move right and then deliver the coffee, regardless
of the row the robot is in. Importantly, the abstraction reduces the size of the
problem from nine distinct states to only three. This makes the problem significantly
easier since it reduces the amount of states the robot needs to learn the dynamics
of to find the optimal policy.

As the example shows, abstraction can reduce the size of the state space. Many
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different types of state abstraction have been studied, see [15] for an excellent
survey. In state abstractions, states in the MDP are grouped, based on some criteria,
creating an abstract MDP.

Figure 1.4: Illustrating the idea of applying a solution for an abstract MDP to the
original problem. Image inspired by [36].

Ultimately, we want a policy that performs well in the original problem. This
idea is displayed in Figure 1.4. First, we construct an abstract model by using
the abstraction function, and then we compute an optimal policy in this abstract
model. When this policy is applied to the original problem, some value may
be lost, as the abstraction is often only an approximate representation of the
dynamics. Nevertheless, for several classes of approximate abstractions, this loss can
be bounded and depends on the quality of the abstraction [16]. The quality of an
abstraction depends on the type of state abstraction and a parameter that measures
the closeness of the approximation to the true model. The closer the approximation
is to the real model, the closer one can get to the optimal solution. Conversely, when
the abstraction is far away from the real model, there is no guarantee of learning
anything useful.

A challenge arises from the use of abstraction when the abstract model is not
close to the true model. This issue can be illustrated by the example in Figure 1.5, a
modified version of the examples in Figures 1.1 and 1.3. In the previous setup, there
was no difference between the rows. In the current version, the middle location is
blocked by a trashcan, making it impossible for the robot to pass through. Instead,
the robot has to navigate around it to reach the goal. If the robot uses the abstract
representation it only knows at which abstract location (the column) it is. This
means it cannot distinguish whether it is in the top, middle, or bottom row. Without
the information about which row it is in, it is difficult for the robot to navigate
around this blockade. This demonstrates how abstraction can result in the loss of
information important for estimating the exact dynamics of a problem.

1.4. CHALLENGES IN COMBINING ABSTRACTION WITH

MBRL
Both abstraction and MBRL can improve learning efficiency. Our goal is to combine
these methods to increase learning efficiency. Specifically, we aim to optimally
balance exploration and exploitation through quickly learning a compact abstract
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Figure 1.5: The coffee robot problem, with approximate abstraction. A representation
of the problem and the view of the robot.

model. We call this combination MBRL from Abstracted Observations (MBRLAO),
where the agent acts in an MDP but receives observations of the abstract states
instead of the regular states. This combination is not trivial, and a lot of work has
been done that has combined abstraction and RL in some shape or form [34, 35,
37–42].

To illustrate the difficulties arising from this combination, consider a simple case
in which we aim to find a solution in an MDP and are provided with an abstraction
function. An MBRL algorithm could use this abstraction function to observe abstract
states instead of raw states. However, as illustrated in Section 1.3, this approach can
make learning the problem much more difficult. As a result of using the abstraction
function, the efficiency of the MBRL methods may be reduced in this setting, as
they typically rely on the Markov assumption [13, 14, 20]. The Markov assumption
states that the transition from the current state to the next one depends only on the
current state and the chosen action. However, this assumption may no longer hold
in MBRLAO. This raises an important question: is it possible to directly transfer the
results for MBRL without abstraction to MBRLAO?

So far, we have focused on the situation where an abstraction is given, meaning we
use an existing abstraction during the learning process without creating or learning
one ourselves. A good abstraction generally groups states that behave similarly and
still allows learning a near-optimal policy. However, constructing such an abstraction
requires knowledge of the dynamics of the problem. Since RL problems typically
involve environments that are (largely) unknown, this can be a challenge. This leads
to an important question: how could we create a good abstraction before we start
learning?



1

8 1. INTRODUCTION

Finally, we have not addressed yet that in many problems the state is not fully
observable. This is similar to the example in Figure 1.5, where the robot does not
observe the full state. However, the problem was fully observable, and abstraction
made it partially observable in that example. In other problems, the state is
inherently partially observable, even without abstraction. This complicates learning
and generally leads to a much larger state space, as the history of observations and
actions becomes important in finding a good policy.

1.5. CONTRIBUTIONS OF THIS THESIS

This thesis investigates the intersection of MBRL and abstraction, called MBRLAO.
We provide an overview of work and open questions in this area and address,
theoretically and empirically, some of the identified open questions. Theoretically,
we study and prove how to provide efficient learning guarantees in MBRLAO.
Empirically, we investigate using the structure of environments to create good
abstractions and leveraging these abstractions in online planning and learning in
partially observable environments.

CHAPTER 2: MODEL-BASED RL WITH STATE ABSTRACTION: A SURVEY [43]

In Chapter 2, we focus on previous work in the MBRLAO setting. MBRLAO is
of interest for improving the sample efficiency of learning methods that aim to
solve sequential decision-making problems. Even though MBRL and abstraction
have received considerable attention, e.g., [15, 41, 44, 45], there has been no
comprehensive overview of the intersection between these fields.

Chapter 2 addresses this gap by reviewing existing MBRLAO approaches and
introducing a novel framework for interpreting these methods. The framework
categorizes the work into two groups: those that utilize one or more predefined
abstraction functions and those that simultaneously learn both the environment and
an abstraction function. The lens provided by this framework helps to establish a
clear overview of various facets of integrating abstraction and MBRL, as well as to
identify problems and opportunities for further research.

An important insight from our analysis is that MBRLAO can be viewed as changing
the problem from fully observable to partially observable. This transformation from
an MDP to a POMDP means that guarantees for MBRL methods, which assume an
MDP, may no longer hold in MBRLAO. This presents an important open question:
can results for MBRL in MDPs be directly applied to MBRLAO?

We also highlight a promising direction for online planning using abstractions
and MBRL. Research has demonstrated that, with limited planning time, planning
with a compact learned model outperformed planning with the actual model of the
environment [46]. Employing abstraction to create a smaller model could enhance
performance through quicker planning and accelerated learning. However, there
may be a trade-off in learning with abstraction, as a coarser model could yield
better results with shorter planning times but worse outcomes with longer ones.
An interesting open question is: under what conditions could an abstract model
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facilitate improved performance by balancing computational efficiency, learning
speed, and model accuracy?

CHAPTER 3: AN ANALYSIS OF MODEL-BASED RL FROM ABSTRACTED

OBSERVATIONS [47]

Chapter 3 presents a theoretical perspective on MBRLAO and focuses on approximate
state abstractions, particularly the approximate model-similarity abstraction.
Approximate abstractions are interesting because they allow for a larger reduction in
the problem size compared to exact abstractions. However, using abstractions can
lead to a loss of information. The complications associated with this have largely
been avoided by work in MBRLAO [37, 48–52], leaving the open question posed
before: whether results for MBRL without abstraction can be directly transferred to
MBRLAO.

As a first contribution, we investigate the challenges of combining MBRL and
abstraction. Using the insight from Chapter 2 that MBRLAO makes the problem
partially observable, we analyze how the characteristics of the observed examples are
affected by an abstraction function. We construct a counterexample to demonstrate
that samples obtained in MBRLAO are no longer Markovian: they cannot be
guaranteed to be independent nor identically distributed. This is important since it
means guarantees of MBRL methods in MDPs do not directly transfer to MBRLAO
since the Markov assumption is key in establishing performance guarantees of MBRL
methods.

We then focus on a way around this negative result, to still provide guarantees in
MBRLAO. Key in establishing performance guarantees of MBRL is showing that an
accurate model can be learned, which normally relies on the Markov assumption.
While we cannot rely on the Markov assumption, we show that samples in MBRLAO
are only weakly dependent and that the learning process constitutes a martingale
difference sequence [53, 54]. We use this insight and the properties of martingale
processes to establish a theoretical result that proves we can accurately learn a
model in MBRLAO.

Proving that we can still learn an accurate model in MBRLAO is a significant
result, as this establishes, for the first time, that it is possible to transfer the
guarantees of MBRL to MBRLAO. Finally, we demonstrate this explicitly through
transferring the results of the R-max algorithm [13] to MBRLAO using an approximate
model-similarity abstraction. These results exemplify that MBRL and abstraction can
be combined in a way that leads to efficient learning.

CHAPTER 4: ABSTRACTION FOR BAYESIAN RL IN FACTORED POMDPS [55]

Chapter 4 presents a more practical perspective, focusing on creating abstractions
and empirically utilizing them in partially observable environments. From this
perspective, it is important to focus on sample complexity, especially in real-world
applications where data collection is expensive, difficult, or dangerous. Many
real-world applications offer prior knowledge, and incorporating this knowledge into
the learning process is crucial for efficient learning [56–58]. Model-based Bayesian
RL (BRL) [21, 23, 59] offers a way to incorporate prior knowledge via Bayesian priors.
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We build on the Factored Bayes-Adaptive POMDP (FBA-POMDP) framework [60,
61], a model-based BRL approach that combines partial observability and structured
factored models. It uses factorized representations of the dynamics of the
environment, allowing agents to exploit problem structure for improved scalability.
While this framework is promising as factorization enables better generalization,
irrelevant state factors in the model can lead to unnecessarily large model spaces,
making planning and learning more difficult. Abstraction can play an important
role by removing less important factors, which can simultaneously improve both
planning and learning. We incorporate abstraction into the FBA-POMDP framework
to enhance scalability and learning efficiency. In doing so, Chapter 4 addresses how
to create effective abstractions before learning begins and how to leverage them in
domains that require both learning and online planning.

As a first contribution, we introduce a method to create effective abstractions in
RL. This is challenging due to the need to group states with similar characteristics,
requiring knowledge of the problem domain, which is often limited. The factored
Bayesian model enables us to incorporate prior knowledge and leverage the structural
characteristics of the problem to inform the abstraction process. The structural
characteristics help identify which factors can be considered less relevant and safely
removed, minimizing the loss of essential details. Our method creates abstractions
automatically based on the problem’s structure, enabling agents to plan and learn
more effectively. Further, by maintaining a belief in the structure and dynamics of
the problem, we can automatically adapt the abstraction based on observations.
This represents a novel step toward combining abstraction with BRL in Factored
POMDPs (F-POMDPs).

Empirically, we used several domains to evaluate our approach and investigate
the benefits of abstraction for planning and learning, yielding several important
insights. We demonstrate that abstract models can improve performance through
faster online planning due to the reduction in the model size. Interestingly, this also
occurred when the abstract model did not accurately represent the original problem,
where information crucial for optimal performance was removed, and the increased
simulation speed provided by the abstraction compensated for the loss of model
accuracy.

Furthermore, additional experiments under a fixed number of simulations show
that abstractions can improve performance due to their greater statistical strength.
Abstract models can use experience more efficiently because they aggregate multiple
samples that the original model treats independently. As we gather more data, the full
model may eventually surpass the performance of the abstract model. Nevertheless,
this can require a lot of observations, especially when a reduction of the model size
due to abstraction results in substantial planning speed improvements. Before the
full model catches up, the performance of the abstract models can be significantly
better, highlighting their importance in learning.
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1.6. OTHER RESEARCH CONTRIBUTIONS
Outside the scope of this thesis, I have contributed to research on influence-based
abstraction and have supervised several bachelor’s and master’s students on projects
and theses. One of these bachelor projects focused on exploration approaches in
deep RL, which resulted in a publication.

INFLUENCE-BASED ABSTRACTION

I collaborated on a project to improve efficiency in deep RL, led by Miguel Suau [33,
62]. My involvement was in discussions during the project’s ideation and designing
initial experiments. The work was inspired by the influence-based abstraction
framework [32]. This type of abstraction captures a smaller part of the environment,
the local problem. To accurately capture the dynamics of the local part, a predictor
that quantifies the influence of variables outside the local problem on the local
problem is used. Our work uses the influence-based abstraction idea in the form
of an influence-aware memory, a novel neural network architecture. It improves
learning in partially observable environments by filtering out observation variables
that do not influence and are not influenced by hidden states. This approach makes
learning easier for the network and improves training speed and policy performance
compared to standard methods.

EXPLORATION IN DEEP RL

Yaniv Oren, a former bachelor’s student, investigated the importance of exploration
in traffic light control tasks by comparing several deep exploration methods [63].
Reducing traffic congestion could lead to a large saving in costs as it is estimated to
be 1% of the GDP in the EU [64]. RL could be a promising method for reducing
traffic congestion by providing better traffic light control, and research applying deep
RL has been carried out in this area [65]. We explored the importance of efficient
exploration in the traffic control setting to improve traffic light control. Specifically,
we used a standard approach of ϵ-greedy exploration in deep Q-networks [8]. We
compared this to two state-of-the-art deep exploration methods, bootstrapped deep
Q-networks [66] and randomized prior functions [67], and their combination. We
used three different traffic scenarios of varying complexity to investigate these
methods. The results suggest that the gain of efficient exploration becomes more
important the more complex the scenario and the larger the observation space of
the agent.





2
MODEL-BASED RL WITH STATE

ABSTRACTION: A SURVEY

Model-based reinforcement learning methods are promising since they can increase
sample efficiency while simultaneously improving generalizability. Learning can
also be made more efficient through state abstraction, which delivers more compact
models. Model-based reinforcement learning methods have been combined with
learning abstract models to profit from both effects. We consider a wide range of
state abstractions that have been covered in the literature, from straightforward state
aggregation to deep learned representations, and sketch challenges that arise when
combining model-based reinforcement learning with abstraction. We further show
how various methods deal with these challenges and point to open questions and
opportunities for further research.

Parts of this chapter have been published in Artificial Intelligence and Machine Learning, 34th
Joint Benelux Conference, BNAIC/Benelearn 2022, Mechelen, Belgium, November 7–9, 2022, Revised
Selected Papers (2023) [43].
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2.1. INTRODUCTION

With roots in sequential analysis [68], Reinforcement Learning (RL) is a general
framework for learning how to act near-optimally in sequential decision-making
problems. A key challenge for RL is sample efficiency. Sample efficiency is important
because, in many problems, it can be expensive, in time or monetary costs, to collect
samples. The combination of Model-based Reinforcement Learning (MBRL) and
abstraction is of interest for improving the sample efficiency of learning methods
that aim to find solutions for sequential decision-making problems. We define
MBRL as an RL method that explicitly learns a model of the environment. MBRL
provides a way to find solutions to complex problems efficiently [14] and allows for
transfer in shifting or related tasks [41, 69]. The state representation, the input to
RL methods, plays an essential role in the learning process. A state representation
will often contain irrelevant details, e.g., when the input is an image, a large amount
can consist of a background that has no direct relevance to the task. Abstracting the
state representation to remove irrelevant parts for optimal decision-making allows
RL methods to learn much faster. Learning to decide which parts of the state
representation are relevant is a key aspect of abstraction learning.

State abstraction can be carried out in various ways, ranging from state
aggregation [15, 16] to deep learned representations [45, 46]. We provide a high-level
view of the promising research in the field, covering a wide range of different types
of state abstractions known from the literature.

Recently MBRL, abstraction learning, and related topics have received much
attention. There are surveys of decision-making under uncertainty [70], MBRL in
general [69], deep MBRL [71], and representation learning in both robotics [72] and
MBRL [73]. Our work takes a broad view of abstraction and focuses on the additional
challenges that arise when combining MBRL and abstraction. For these additional
challenges, see also [34, 38, 41] and Chapter 3. The contributions of this work are
the following: We detail challenges that arise from the combination of MBRL with
abstraction using the view of abstraction plus RL as a Partially Observable Markov
Decision Process (POMDP). We show how different approaches for MBRL with state
abstraction deal with these challenges, providing a unified view of a wide range of
approaches in the process. We identify open questions and opportunities for further
research.

Figure 2.1: RL with abstraction, the agent observes s̄ =φ(s) instead of s. Image based
on Abel et al. [41].
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2.2. AN OVERVIEW OF STATE ABSTRACTION FOR RL
We consider RL in sequential decision-making problems, which can be defined as a
Markov decision process (MDP) [74]: 〈S, A,T,R,γ〉, where S is a set of states s ∈ S,
A a set of actions a ∈ A, T a transition function T (s′|s, a) = Pr(s′|s, a), R a reward
function R(s, a) which gives the reward received when the agent executes action a in
state s, and γ the discount factor (0 ≤ γ< 1). For realistic problems, the state space
of the MDP representation is often too large to tackle directly. One way to reduce
the size is to use compact representations such as state abstractions. Section 2.2.1
characterizes different state abstractions methods and briefly describes some of their
properties. Section 2.2.2 describes how abstraction in an MDP can be viewed as a
POMDP and the resulting challenge.

2.2.1. CHARACTERIZATION OF ABSTRACTIONS

State abstraction can be used to reduce the problem size by clustering states into
abstract states. This clustering can be defined by using an abstraction function
φ, which maps (or aggregates) ground states s to abstract states s̄, where the bar
notation denotes objects in the abstract space. Here we consider a discrete state
space and write this mapping as φ(s) = s̄, such that the abstract state space can be
written as S̄ = {φ(s) | s ∈ S}. The agent then uses the abstract states s̄ and the rewards
for learning transitions and rewards over the abstract state space. State abstraction
can result in an abstract state space that is much smaller than the original state
space, |S̄|≪ |S|, which can make learning easier.

In the planning setting, where we have access to the model of a problem, many
different abstraction functions have been considered [15, 16]. Abstractions group
states based on specific criteria of the state or state-action pairs. An example is the
(stochastic) bisimulation [75], also known as model-irrelevance abstraction [15]. In
this abstraction, states are only grouped if their reward and transition functions in
the abstract space are the same, i.e., φ(s1) =φ(s2) iff

∀a∈A R(s1, a) = R(s2, a), (2.1)

and ∀s̄′∈S̄ T (s̄′|s1, a) = T (s̄′|s2, a). (2.2)

Here T (s̄′|s, a) is the transition to an abstract state s̄′ which is defined as

T (s̄′|s, a) := ∑
s′∈s̄′

T (s′|s, a). (2.3)

If we have access to the MDP, we can compute a more compact abstract MDP [76]
and find a solution for this smaller problem. An important aspect of these
abstractions is whether or not (near) optimal policies for the original policy can
be obtained when the policy is learned from the abstract problem. Several
results showing that this is possible have been obtained for multiple forms of
abstraction [15, 16]. These results make abstractions interesting for RL as they show
that it is possible to significantly reduce the problem size while still being able to
obtain (near) optimal policies for the original problem.
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To allow for further reduction in the problem size, approximate versions of
abstractions, such as the ϵ-bisimulation, have been considered [15, 16]. In the
approximate versions, the grouping criteria are relaxed. E.g., in the ϵ-bisimulation,
the transition and reward functions for grouped states will be close but not
necessarily the same, i.e., φ(s1) =φ(s2) iff

∀a∈A |R(s1, a)−R(s2, a)| ≤ ϵ, (2.4)

and ∀s̄′∈S̄ |T (s̄′|s1, a)−T (s̄′|s2, a)| ≤ ϵ, (2.5)

where T (s̄′|s, a) is defined as in (2.3). Several other examples of exact and
approximate state abstraction functions can be found in the literature [15, 16]. For a
given MDP, it is possible to build an abstract MDP using ϵ-bisimulation criteria [77].
Recent work has introduced transitive state abstractions, which can be computed
efficiently [41]. If we have a compact model, the goal is to find a good policy.
A potential issue is that if a learned model only approximates the true model,
minor errors can compound when planning for long horizons [78, 79]. Results for
planning have shown that for particular approximate state representations, such as
ϵ-bisimulation, the learned policy can still be approximately optimal [16]. There is a
similar result for using RL in an abstract MDP [80]. However, these results assume
that we have access to the MDP or an abstract MDP, which requires the problem to
be known, and this is typically not the case in RL.

2.2.2. ABSTRACTION IN AN MDP AS A POMDP
In the general case of MBRL in an unknown MDP with an abstraction φ, the
situation will be as depicted in Figure 2.1. Without abstraction, the agent receives a
state s as an observation. With abstraction, the agent instead observes an abstract
state s̄ = φ(s) through the abstraction function φ. In this case, the agent will no
longer know precisely which state it is in, making the environment (a special case
of) a POMDP, see [30, 34, 35, 73, 81] and Chapter 3. Abstraction can be seen as
a special case of POMDPs because the observation results from perceptual aliasing,
i.e., multiple states are perceived as the same. Perceptual aliasing may not be a
problem when the resulting problem behaves as an MDP, as for a bisimulation [75,
82], but this is often not the case as shown in [38, 41] and Chapter 3.

To formalize the combination of abstraction and RL in an MDP as a special case
of a POMDP, we first give the general definition of an infinite horizon POMDP [19],
which can be described by the tuple 〈S, A,T,R,Ω,O,γ〉, where S, A,T,R, and γ are
the same as in the MDP. The Ω is a finite set of observations o ∈Ω that an agent
can receive, and O is an observation function O(o|a, s′) = Pr(o|a, s′) that gives the
probability of receiving an observation o after taking an action a and ending in state
s′. Now, when an RL agent acts in an MDP but receives observations through φ, the
uncertainty is only due to perceptual aliasing, which means that the observation is a
deterministic function of the state: O(o|a, s′) = Pr(o =φ(s′)|a, s′) = Pr(o =φ(s′)|s′). For
deterministic functions φ, this is 1 iff o =φ(s′). The abstraction function φ has taken
the role of the observation function O, with the observation space being S̄.

Since we can view the combination of abstraction and RL in an MDP as a special
case of a POMDP, RL methods for POMDPs could be used to find a solution. A
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common approach to finding solutions in POMDPs is through Bayesian RL, for which
the Bayes-Adaptive POMDP (BA-POMDP) provides a framework [59]. Extensions of
Bayesian RL for POMDPs are covered in the survey of Ghavamzadeh et al. [23]. In
Deep RL, using recurrent neural networks is one way in which partial observability
has been addressed [83, 84]. Specific focus has been on using variational inference
methods [85, 86] and belief tracking [84, 87, 88]. However, these POMDP approaches
are often general solutions for any POMDP, and they are not necessarily optimal for
the special case of the POMDP induced by abstraction.

Instead of applying POMDP solution methods, it can be tempting to treat the
resulting problem as a Markov problem and try to find a solution in this way.
For instance, this could be tempting when the abstraction clusters together states
with similar transition and reward functions in the abstract space, such as with a
ϵ-bisimulation abstraction. However, as noted by [38, 41] and discussed in Chapter 3,
treating this problem as a Markov process can lead to policies that are far from
optimal, and there could be no guarantee of finding an optimal solution. In general,
non-stationarity of the collected data, due to changing behavior of the policy, has
been shown to lead to worse performance in Deep RL [89], and non-stationarity due
to perceptual aliasing can lead to similar problems when not addressed. Therefore,
to find good solutions, methods that combine RL and abstraction should take into
account perceptual aliasing.

2.3. UTILIZING GIVEN ABSTRACTION FUNCTIONS
This section presents an overview of the literature that utilizes an abstraction
function for MBRL. First, Section 2.3.1 discusses the relation between abstract MDPs
and Robust MDPs (RMDPs) and how solution methods for RMDP can allow for
obtaining better policies when using an abstract learned model. Section 2.3.2
considers the RL setting where we do not have such a model, but we are given
some abstraction function φ and see how abstraction can be leveraged to improve
performance. Section 2.3.3 deals with the setting where we are given a set of
abstractions and have to learn which one leads to optimal performance. Afterward,
Section 2.4 deals with the setting where we do not have an abstraction function φ

and have to learn one online.

2.3.1. ROBUST OPTIMIZATION

The RMDP [90] and the related Bounded Parameter MDP (BPMDP) [91] extend the
MDP definition by allowing for uncertainty in the transition and reward functions, as
quantified by intervals. This uncertainty is generally motivated by not having enough
data to be sure about the transition functions but still being able to give some
confidence intervals. Another motivation is inherent uncertainty, for instance caused
by having a ϵ-bisimulation, where the uncertainty intervals are ϵ wide. If we learn
an ϵ-bisimulation model and can estimate ϵ, we could apply solution methods for
RMDPs, this makes solution methods for RMDPs interesting for RL with abstraction.
For a comprehensive introduction and overview of RMDPs, see the survey by Suilen
et al. [92].
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To solve problems with inherent uncertainty, the RMDP extends the MDP definition
by including an extra set of outcomes B . The transition probabilities and reward
function are then modeled as functions of both an action a ∈ A and an outcome
b ∈ B . From a game-theoretic perspective, B can be interpreted as the actions of
an adversary [93]. A solution to an RMDP therefore also includes the policy of the
adversary.

In the RMDP setting, it has been shown that the problem of finding an optimal
robust policy is computationally intractable. In particular, early work established that
the problem is strongly NP-hard [90], and later research strengthened this result by
proving that analyzing non-rectangular RMDPs is ETR-complete [94]. To make the
problem tractable, different assumptions about the policy of the adversary have been
considered [90, 93]. In one case, the adversary can independently choose an outcome
for each state s. In another case, outcomes are chosen independently for each
state s and action a pair. More recent work has studied less restrictive adversarial
policies [95, 96]. Overall, accounting for uncertainty with robust optimization can
lead to policies that perform better in real environments [90, 97].

There has also been work that combines abstraction with RMDP [93, 97]. The
RAAM algorithm [93] receives an abstraction function and an MDP as input. It first
constructs an RMDP and uses this to compute an approximately optimal policy for
the original MDP. It is shown that this can be beneficial in the limit; bounds on the
performance are given that are similar to the bounds for ϵ-bisimulation abstractions
in planning [16]. The RAAM approach was later extended by Lim and Autef [97], who
use a kernel-based approach, of which state abstraction can be seen as a special
case.

The work in this section shows that uncertainty about the transition and reward
functions can be dealt with in a principled way, given some uncertainty intervals.
While some work connects this work to abstraction, it only focuses on results in the
limit.

2.3.2. LEVERAGING AN ABSTRACTION FUNCTION

In this setting, we make use of a given abstraction function φ, which maps the
original state space into a smaller abstract space. This φ could, for instance, come
from a domain expert or result from the discretization of a continuous problem.
Rather than learning a model of the full environment, the idea is to learn a model
directly in the abstract state space created by the mapping of φ. This is typically
done by collecting data and then constructing a maximum-likelihood estimate of the
transition and reward functions over the abstract states.

If we learn a correct abstract model and find the optimal policy for this abstract
model, this policy can be near-optimal in the true MDP, depending on the
abstraction used [16]. Learning in this way could be more sample-efficient than
learning a model of the full MDP because the abstract space is smaller than the
original state space.

One difficulty in this setting is learning a correct abstract model in the first place.
In RL, samples can usually be considered independent, and this is used to show
that an accurate model can be learned. In the combination of RL and abstraction,
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samples can no longer be considered independent due to perceptual aliasing as
observed by [34, 98] and detailed in Chapter 3. In order to give sample efficiency
results for RL plus abstraction, some work assumes that the collected samples are
independent [37, 99]. The work by Paduraru et al. [37] assumes that they receive
a data set with independent and identically distributed (i.i.d.) samples and show
a trade-off between the quality of the abstraction and the quality of the transition
model. The quality of the abstraction is measured in terms of the ϵ of ϵ-bisimulation.
A larger ϵ means a coarser abstraction and a larger error. The second error relates
to the number of samples we can get for a state-action pair, where a coarser
abstraction gives more samples per state-action pair and a lower error. Like the work
by Paduraru et al. [37], other work has also shown that the error of the agent can
be decomposed into multiple components, which are based on the asymptotic bias
of the representation and overfitting due to limited data (variance) [99, 100]. This
bias-variance trade-off indicates that using abstractions can be especially beneficial
when the available data is limited while being less beneficial when much data is
available, which has been illustrated in experiments [99].

The assumption that the generated data consists of independent samples does not
hold in general. Another way to show that we can learn an accurate abstract model
is by looking at convergence in the limit. The convergence to an accurate estimation
of the abstract model is possible under several conditions, e.g., when the policy is
fixed or when the abstraction is a bisimulation [34, 98]. Having to use a fixed policy
can be seen as a downside because a changing policy that explores helps to learn
efficiently [14]. Another downside is that, in the limit, using the full model will be
better than using an abstract model since only the error introduced by the bias
remains, which is zero for the full model.

In Chapter 2, we show that an accurate abstract model can still be learned
by applying martingale theory [101]. We give the first finite-sample performance
analysis for model-based RL plus abstraction by extending the results of an existing
algorithm (R-MAX [13]) with the use of an ϵ-bisimulation abstraction.

This section shows that abstractions can lead to better performance with fewer
data, trading it off with less accuracy when much data is available. For these
methods to work, it is required to already have a good abstraction function, which
can be challenging.

2.3.3. ABSTRACTION SELECTION

While the work in the previous section mainly focused on the case where we have
one particular abstraction function, there is also a considerable amount that has
focused on state representation selection, where the agent is provided with a set
of state representations (or abstraction functions). It is usually assumed that a
domain expert provides these representations, and the goal is to select the best
representation, often in terms of regret.

Most of this work focuses on finding representations that make the problem
Markov instead of focusing on finding good approximate abstractions. In order to
deal with perceptual aliasing, most work assumes that the provided set contains
a Markov model of the environment [48, 49, 51, 102, 103]. In order to find a
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correct representation in the online setting, these algorithms eliminate non-Markov
models by comparing the obtained rewards during execution with a threshold based
on a Markov model. The work by Lattimore, Hutter, and Sunehag [104] considers
a similar setting where the dynamics of the true environment depend arbitrarily
on the history of actions, rewards, and observations. Instead of getting a set of
representation functions, they assume access to a given set of models, one of which
is a correct model of the true environment. In this way, they can compare the
calculated expected reward for the given model with the rewards obtained during
the process and eliminate the unlikely models.

Other work does not assume that a Markov representation is available [39, 40],
these both use an ϵ-bisimulation type abstraction. The work of Ortner, Maillard, and
Ryabko [39] builds on the work of Maillard et al. [49] by removing the necessity
of having a Markov representation in the set of available representations. However,
it has been shown that the regret proof of Maillard et al. [49] assumes a certain
difference is always positive, which is not guaranteed Fruit, Pirotta, and Lazaric [105].
This makes the bound used in the analysis incorrect, and the claimed guarantees
no longer hold. They also do not take into perceptual aliasing since they use a
concentration inequality that requires i.i.d. samples. The work by Jiang, Kulesza, and
Singh [40] deals with perceptual aliasing by explicitly assuming in their analysis that
a data set consisting of samples that are i.i.d. is available. They give a performance
bound for policies based on a learned abstract model and split the error into two
components, similar to some of the work mentioned in Section 2.3.2 [37, 99]. These
two components are used to create an algorithm that decides which representation
should be used based on the available data.

The methods in this section show that we can learn to select a correct
(Markov) representation, given an initial set of representations. Most of these
methods are not very scalable, as they are tabular, and finding a good (Markov)
representation/abstraction in larger problems can be challenging.

2.4. ONLINE ABSTRACTION LEARNING
The previously discussed works have mostly assumed that an abstract representation
(or a set thereof) is readily available. However, this is not always possible. In
this section, we consider the situation where such an abstraction is unavailable
and has to be learned first while simultaneously learning about the environment.
Two early studies on this topic provided promising experimental results [81, 106].
Section 2.4.1 covers tabular approaches, which have mostly been more theoretical,
and Section 2.4.2 covers deep learned representations focused on scaling up.

2.4.1. TABULAR APPROACHES

The combination of MBRL and abstraction has also been approached theoretically.
The work by Bernstein and Shimkin [107] gives results for online abstraction when
the transition functions are deterministic. The work by Ortner Ortner [38] explores
the more general case of stochastic transition functions when trying to learn a
ϵ-bisimulation. To learn a ϵ-bisimulation they maintain an interval on the estimation
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of the transition and reward functions for each state-action pair, which is used to
create a BPMDP [91]. Subsequently, the BPMDP is abstracted by clustering the states
that overlap in the transition and reward function for all actions, but only if they
have a similar amount of samples. They give an example to show that clustered
states must have a similar amount of samples for all the actions to obtain good
performance. This is an interesting observation since it points out a problem that
should be taken into account when learning an abstraction in combination with
MBRL. A downside of the method is that it focuses on the computational benefit
abstraction can bring; from the perspective of sample efficiency, a method that
utilizes abstraction to learn more efficiently is desirable.

In the Bayesian RL setting, the work by Mandel et al. [108] proposes an algorithm
that does online clustering and exploration. The clustering is done over state-action
pairs rather than only over states. State-action abstractions allow for a broader class
of abstractions since state abstractions can be considered a subset of state-action
abstractions while potentially still being optimality preserving. This gives additional
power in doing the abstraction since, in some domains, there could be no similar
states while similar state-action pairs exist. State-action pairs are grouped when
the relative outcomes are likely to be the same. Relative outcomes are similar to
observations. Given a relative outcome, the agent knows both the transition and
reward. However, it needs to learn the distribution over relative outcomes for each
state.

Work in block MDPs, or MDPs with rich observations, is a related approach where
the assumption is that each state can generate multiple different observations [52,
109–112]. Instead of having multiple states that generate the same observation (due
to the abstraction function), each type of observation is only generated by one state,
but each state can generate multiple observations. This is similar to representation
learning, specifically to learning a bisimulation [52, 109, 112]. A common approach
in this setting is to use spectral methods [109–111]. For these to work, it is necessary
to be able to uniquely identify states from the observation function. While this
is possible for model-irrelevance abstractions, this is generally not possible in the
abstraction setting.

The focus of tabular approaches has been on block MDPs, which can lead to a
considerable reduction in the state space in suitable problems. However, this does
require the problem to have many states with the same behavior in an abstract
space, i.e., there needs to be a bisimulation abstraction. This restricts the number of
problems to which these methods can be applied.

2.4.2. DEEP LEARNED REPRESENTATIONS

There have also been several Deep RL approaches that focus on learning compact
state representations, which can be viewed as an instance of state abstraction. For
instance, see the approaches by [35, 45, 46, 79, 113–116]. One crucial notion for
abstraction in deep RL is a collapse of the latent representation [35, 45, 57, 116].
When considering only the transition function, it would be optimal to cluster all
states into exactly one abstract state. It has been shown that losses that require
both the transition and reward function of grouped states to be the same can avoid
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this collapse [117], making it essential to group states based on both transitions and
rewards.

Recently, multiple contrastive methods have been used to learn compact
representations for predicting the next state [118–120]. Their representation learning
tries to maximize the mutual information between the present and future samples.
To train the network, they use positive and negative next-state samples, where
the positive samples are transitions that occurred, while the negative samples are
transitions that did not occur. These negative samples should help prevent the
potential collapse of the state representation. Their methods do not use the model
to plan the policy but instead use actor-critic and policy optimization methods on
top of the representation. The proposed representation learning method was able to
help improve the performance of these methods.

Other work has focused on learning deep representations for robotics [56, 57,
121]. This has investigated adding several types of robotic priors to bias the
representation learning, which are added to the network as an auxiliary loss [83].
These priors encode knowledge about physics, e.g., that changes in the state are often
gradual rather than abrupt. The state-representation objectives were instrumental
in generalizing, as they significantly improved the results in the test domain. This
shows that learning a compact model of the environment can be beneficial even if
the model itself is not directly used for planning. Other methods for robotics focus
on finding compact linear representations of a problem and finding a policy for this
smaller model [122–124]. This has shown promising results for robotics, where many
of the essential state features could be approximately linear.

Most of the work in this section focused on learning exact abstractions. They try
to reduce the problem so that the resulting latent representation still makes the
problem an MDP. This can be difficult to ensure, especially in Deep RL, so it is likely
that the resulting representation is an approximate abstraction. Since most work
does not acknowledge this, they do not consider the resulting perceptual aliasing,
and algorithms can experience the problem illustrated by [38]: when states with a
different number of visitations are grouped, this can lead to suboptimal policies.
When this is not taken into account, this can lead an agent to be stuck in a
suboptimal loop.

2.5. DISCUSSION AND CONCLUSION

We summarize our overview in Table 2.1, which compares the approaches on the
type of environment, whether or not a model is given, how an abstraction φ is
obtained, what kind of abstraction is used, available theoretical support, scalability,
and how they deal with perceptual aliasing.

The methods in Sections 2.2 and 2.3 generally have strong theoretical support
(V) in the form of bounded loss (e.g., [16, 90]), finite-sample guarantees (e.g.,
Chapter 3, [37]), or regret bounds (e.g., [102]). Most of these methods are not (X)
scalable due to being tabular or only somewhat scalable (∼) due to needing to be
given a model, which in many cases is not possible. In most of these works, the
problem of perceptual aliasing does not arise, either because of assumptions on
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data gathering or because an MDP, or MDP representation, is provided. We show
in Chapter 2 that finite-sample bounds for MBRL in an MDP with an ϵ-bisimulation
can be obtained, without assuming that samples are independent. Extending these
results to other types of abstractions is still an open question.

In Section 2.3.2, we saw a bias-variance trade-off with abstractions [37, 40, 99,
100]. Because of this trade-off, an interesting direction would be to combine learning
multiple representations with abstraction selection to decide which representation to
use at which time.

As discussed in Section 2.3.1, results for optimization under uncertainty could
make it interesting to maintain confidence intervals for the learned models and use
robust optimization to find policies. Since the model will generally not be completely
accurate during learning, robust optimization could improve performance [97].
Tabular work discussed in Sections 2.3.1 and 2.4.1 investigated this idea [38, 93],
scaling such approaches to larger problems is an interesting future direction.

Most of the focus has been on abstractions related to bisimulation. As touched
upon in Section 2.4.1, abstractions that aggregate state-action pairs can be more
potent than state abstractions [108]. An open question is what are the best types
of abstraction to use? Non-deterministic abstraction [34], temporal abstraction,
or combinations of abstractions could be powerful but have not been as well
studied [125].

In [46], there is some indication that, in online planning, using a coarser learned
model rather than the true model can be beneficial. With limited planning time,
planning with a compact learned model outperformed planning with the true model
of the environment. There could be a trade-off for learning between the coarseness of
the model and the allotted planning time; a coarser model could perform better with
a shorter planning time but worse with a longer planning time.

The methods in Section 2.4.2 focus on learning abstractions that result in a Markov
representation, e.g., bisimulation abstractions. However, during learning, when the
abstraction is likely not a Markov representation, perceptual aliasing occurs. How
can the resulting non-stationarity be addressed? In Section 2.4.1, we saw that the
tabular work by Ortner [38] deals with perceptual aliasing, but to do so, it maintains
visitation counts for all state-action pairs. Methods that can maintain counts in an
approximate way, such as pseudo-counts [80], could enable a scalable version of
the approach by Ortner [38]. Another approach to deal with perceptual aliasing
in a more sample-efficient way could be using an algorithm such as ITER [89],
which tackles the general non-stationarity of the data distribution caused by the RL
algorithm. The idea of the algorithm is to frequently transfer the knowledge of the
trained network to a new network and then use the new network for training. The
knowledge is transferred through samples that are obtained from the collected data
set as if they had been generated with the final policy of the trained network.

In multi-agent RL, the challenge is to behave optimally in the presence of other
agents whose behavior may be non-stationary [126]. Approaches for the multi-agent
RL problem that address non-stationarity could be insightful for the combination of
RL and abstraction. One approach that could be relevant is trying to capture the
non-stationarity that is the result of perceptual aliasing, which could, for instance,
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be done by using influence-based abstraction [32]. Influence-based abstraction aims
to abstract a problem into a smaller local problem with a predictor that quantifies
the influence of variables outside the local problem on the local problem. Given
an accurate predictor, this results in a Markov problem. Such a predictor could
capture the non-stationarity due to perceptual aliasing and improve performance.
Influence-based abstraction has been applied together with Deep model-free RL,
using a recurrent neural network to capture the influence, which has shown
promising results [62].

Other approaches in multi-agent RL do not deal with the non-stationarity but
simply ignore it by abstracting away the internal states of the other agents. Since this
can be seen as a special case of the non-stationarity in the combination of RL and
abstraction, insights from this combination on how to deal with non-stationarity as a
result of perceptual aliasing could provide interesting directions for these multi-agent
RL approaches.





3
AN ANALYSIS OF MODEL-BASED RL
FROM ABSTRACTED OBSERVATIONS

Many methods for Model-based Reinforcement learning (MBRL) in Markov decision
processes (MDPs) provide guarantees for both the accuracy of the model they can
deliver and the learning efficiency. At the same time, state abstraction techniques
allow for a reduction of the size of an MDP while maintaining a bounded loss with
respect to the original problem. Therefore, it may come as a surprise that no such
guarantees are available when combining both techniques, i.e., where MBRL merely
observes abstract states. Our theoretical analysis shows that abstraction can introduce
a dependence between samples collected online (e.g., in the real world). That means
that, without taking this dependence into account, results for MBRL do not directly
extend to this setting. Our result shows that we can use concentration inequalities
for martingales to overcome this problem. This result makes it possible to extend
the guarantees of existing MBRL algorithms to the setting with abstraction. We
illustrate this by combining R-MAX, a prototypical MBRL algorithm, with abstraction,
thus producing the first performance guarantees for model-based ‘RL from Abstracted
Observations’: model-based reinforcement learning with an abstract model.

Parts of this chapter have been published in Transactions on Machine Learning Research [47].
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3.1. INTRODUCTION
Tabular Model-based Reinforcement Learning (MBRL) methods provide guarantees
that show they can learn efficiently in Markov decision processs (MDPs) [13, 14,
20, 127–130]. They do this by finding solutions to a fundamental problem for
Reinforcement Learning (RL), the exploration-exploitation dilemma: when to take
actions to obtain more information (explore) and when to take actions that maximize
reward based on the current knowledge (exploit). However, MDPs can be huge,
which can be problematic for tabular methods. One way to deal with large problems
is by using abstractions, such as the mainstream state abstractions [16, 82]. State
abstractions reduce the size of the problem by aggregating together states according
to different criteria, depending on the specific type of abstraction. We can view state
abstraction as a special case of function approximation, where every state maps to
its abstract state [131], and we can roughly divide them into exact and approximate
abstractions [16, 82].

Approximate abstractions relax the criteria of exact abstractions, and therefore
allow for a larger reduction in the state space. Typically, this approximation leads
to a trade-off between performance and the amount of required data [37, 40]. In
this paper, we will assume the use of abstraction as a given, e.g., because the
complete state space is too large to deal with. Nevertheless, we explore the trade-off
in Section 3.4, where we compare the performance of the prototypical R-MAX
algorithm [13] with and without abstraction.

In our setting, the agent acts in an MDP that returns states s, but instead
of observing the true state s, the agent only observes abstract states φ(s) (see
Figure 3.1). This setting, which has been considered before [39, 41],1 is what we call
RL from Abstracted Observations (RLAO). Surprisingly, there are relatively few results
for RLAO, even though many results for the planning setting are available [15, 16].
The main difference between these two settings is that in planning with abstraction
the resulting problem can still be considered an MDP, but in RLAO, while the
underlying problem is still an MDP, the observed problem is not.

The observation that the observed problem is not an MDP can be understood
when we realize that RLAO corresponds to RL in a Partially Observable Markov

1We refer to Section 3.5 for a comparison with the related work.

Figure 3.1: RL from Abstracted Observations, the agent receives the abstract state
s̄ = φ(s) as an observation instead of the state s. Image based on Abel
et al. [41].
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Decision Process (POMDP) [19], as previously described [30]. Specifically, the
abstraction function serves as an observation function. Rather than observing its
true state s, the agent observes the abstract state φ(s) and its policy chooses an
action based on this abstract state. It is well known that policies for POMDPs
that only base their action on the last observation can be arbitrarily bad [132].
Fortunately, there is also good news, as this worst-case does not apply when φ is
an exact model similarity abstraction 2 [82], because the resulting problem can be
considered an MDP; this abstraction maps states to the same abstract state only
when their reward and transition functions in the abstract space are the same [15].
We focus on the related approximate model similarity abstraction [16], which maps
states to the same abstract state only when their reward and transition functions in
the abstract space are close. Intuitively, because of its connection to the exact model
similarity, one could expect that for this abstraction the worst-case also does not
apply. However, as we discuss in detail in Section 3.2.2, MBRL methods typically use
results that rely on the assumption of independent and identically distributed (i.i.d.)
samples to prove efficient learning [14, 20, 127, 130]. This is not appropriate in
RLAO: with abstraction, the transitions between abstract states need not be Markov,
and the samples may depend on the history.

We analyze collecting samples in RLAO and prove that, with abstraction, samples
are not guaranteed to be independent. This means that most guarantees of existing
MBRL methods do not hold in the RLAO setting. 3 The primary technical result in
this work shows that we can still learn an accurate model in RLAO by replacing
concentration inequalities that rely on independent samples with a well-known
concentration inequality for martingales [54]. This result allows us to extend the
guarantees of MBRL methods to RLAO. We illustrate such an extension for the
prototypical R-MAX algorithm [13], thus producing the first performance guarantees
for model-based methods in RLAO. These results are important for the often
adopted state abstraction framework, as they allow us to conclude under what
cases performance guarantees in MBRL can be transferred to settings with state
abstraction.

3.2. BACKGROUND
Section 3.3 will cover the combination of MBRL and abstraction in MDPs, in this
section we introduce the required background.

3.2.1. MODEL-BASED RL
As is typical for RL problems, we assume the environment the agent is acting in
can be represented by an infinite horizon MDP M ≜ 〈S, A,T,R,γ〉 [74]. Here S is
a finite set of states s ∈ S, A a finite set of actions a ∈ A, T a transition function

2Also known as stochastic bisimulation [75].
3Of course, certain guarantees on the combination of abstraction and RL are known. However, in

most related work in abstraction settings (e.g., abstraction selection), the complication of samples
not being independent does not occur due to particular assumptions [37, 48–52]. Section 3.5 gives
details for individual papers.
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T (s′|s, a) = Pr(s′|s, a), R a reward function R(s, a) which gives the reward received
when the agent executes action a in state s, and γ is a discount factor with 0 ≤ γ≤ 1
that determines the importance of future rewards. We use Rmax to denote the
maximum reward the agent can obtain in one step. The agent’s goal is to find
an optimal policy π∗ : S → A, i.e., a policy that maximizes the expectation of the
cumulative reward in the MDP. V π(s) denotes the expected value of the cumulative
reward under policy π starting from state s. Similarly, Qπ(s, a) denotes the expected
value of the cumulative reward when first taking action a from state s and then
following policy π afterward.

MBRL methods learn a model from the experience that the agent gains by
taking actions and observing the rewards it gets and the states it reaches. For a
fixed state-action pair (s, a), we let τ1,τ2, · · · ,τN (s,a) be the first N (s, a) time steps
at which the agent took action a in state s. The first N (s, a) states s′ that
the agent reached after taking action a in state s are stored as the sequence
Ys,a ≜ (s′(τ1+1), s′(τ2+1), · · · , s′(τN (s,a)+1)). We use Y to refer to the collection of all Ys,a .
Typically, in MBRL, the obtained experience is used to construct the empirical model
TY [13, 14, 20, 127–130]. This model is constructed simply by counting how often
the agent reached a particular next state s′ and normalizing the obtained quantity
by the total count:

∀s′ ∈ S : TY (s′|s, a)≜
1

N (s, a)

N (s,a)∑
i=1

1{Y (τi+1)
s,a = s′}. (3.1)

Here 1{·} denotes the indicator function of the specified event, i.e., 1{Y (τi+1)
s,a = s′} is

1 if Y (τi+1)
s,a = s′ and 0 otherwise.

3.2.2. GUARANTEES FOR MBRL
The quality of the empirical model TY is crucial for performance guarantees,
irrespective of the form of the guarantee, e.g., PAC-MDP [14] or regret [20]. The
quality of the empirical model is high when the distance between TY (·|s, a) and the
ground truth T (·|s, a) is small. We can, for instance, measure this distance with the
L1 norm, defined as follows:

||TY (·|s, a)−T (·|s, a)||1 ≜
∑

s′∈S

|TY (s′|s, a)−T (s′|s, a)|. (3.2)

Concentration inequalities are often used to guarantee that, with enough samples,
this distance will be small, e.g.:

Lemma 3.1 (L1 inequality [133]). Let Ys,a = Y (1)
s,a ,Y (2)

s,a , · · · ,Y (N (s,a))
s,a be i.i.d. random

variables distributed according to T (·|s, a). Then, for all ϵ> 0,

Pr(||TY (·|s, a)−T (·|s, a)||1 ≥ ϵ) ≤ (2|S|−2)e−
1
2 N (s,a)ϵ2

. (3.3)

These inequalities typically make use of the fact that samples are i.i.d. It is not
necessarily evident that these bounds can be applied without problem. Let us
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explore the transitions from a particular state, say state 42, in a Markov chain (we
can ignore actions for this argument). Let k and l denote the time steps of two
different visits to state 42. Without abstraction, the conditional distributions from
which next states are sampled are identical. So the question now is if these are
independent. That is, is it the case that:

P (Sk+1,Sl+1|Sk = 42,Sl = 42) = P (Sk+1|Sk = 42)∗P (Sl+1|Sl = 42)? (3.4)

We have that

P (Sk+1,Sl+1|Sk = 42,Sl = 42) = P (Sk+1|Sk = 42,Sl = 42)P (Sl+1|Sk = 42,Sk +1,Sl = 42)
(3.5)

= P (Sk+1|Sk = 42,Sl = 42)P (Sl+1|Sl = 42) (due to the Markov property) (3.6)

So the question is if P (Sk+1|Sk = 42,Sl = 42) = P (Sk+1|Sk = 42)? In general, this is not
the case, since the information that Sl = 42 gives information about what Sk+1 was.

However, as shown for instance by Strehl and Littman [14], concentration
inequalities for i.i.d. samples, such as Hoeffding’s Inequality, can still be used as
an upper bound in this case, because of the Markov property and the identical
distributions of the samples. In this way, MBRL can upper bound the probability
that the empirical model TY (·|s, a) will be far away (≥ ϵ) from the actual model
T (·|s, a). When the empirical model is accurate, a policy based on this model leads
to near-optimal performance in the MDP M [13, 14, 20, 130].

3.2.3. STATE ABSTRACTION FOR KNOWN MODELS

We can formulate state abstraction as a mapping from states to abstract states [15].
This mapping is done with an abstraction function φ, a surjective function that
maps from states s ∈ S to abstract states s̄ ∈ S̄: φ(s) : S → S̄. We use the ¯ notation
to refer to the abstract space and define S̄ as S̄ = {φ(s)|s ∈ S}. We slightly overload
the definition of s̄ to be able to write s ∈ s̄. In this case, s̄ is the set of states
that map to s̄, i.e., s̄ = {s ∈ S | φ(s) = s̄}. This form of state abstraction is general,
and clusters states with different dynamics into abstract states. We assume that
the state abstraction deterministically maps states to an abstract state. Since each
state maps to precisely one abstract state and multiple states can map to the same
abstract state, the abstract state space is typically (much) smaller than the original
state space, |S̄| ≤ |S|.

We focus on a type of abstraction approximate model similarity abstraction [16],
also known as approximate stochastic bisimulation [75, 134]. In this abstraction, two
states can map to the same abstract state only if their behavior is similar in the
abstract space, i.e., when the reward function and the transitions to abstract states
are close. We can determine the transition probability to an abstract state T (s̄′|s, a)
as:

T (s̄′|s, a) = ∑
s′∈s̄′

T (s′|s, a). (3.7)

Then, we can use (3.7) to define approximate model similarity abstraction:
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Definition 3.1. An approximate model similarity abstraction, φmodel ,ηR ,ηT , for fixed
ηR ,ηT , satisfies

φmodel ,η(s1) =φmodel ,η(s2) =⇒ ∀a ∈ A : |R(s1, a)−R(s2, a)| ≤ ηR ,

∀s̄′ ∈ S̄, a ∈ A : |T (s̄′|s1, a)−T (s̄′|s2, a)| ≤ ηT . (3.8)

From now on, we will refer to φmodel,ηR ,ηT as φ. We note that this abstraction is
still quite generic. It can cluster together states that have different transition and
reward functions.

3.2.4. PLANNING WITH ABSTRACT MDPS

In the planning setting, where the model is known a priori, we can use the
abstraction function φ to construct an abstract MDP. An abstract MDP can be
helpful because it is smaller, making it easier to find a solution, and a solution for
the abstract MDP can work well in the original MDP [15, 16]. We construct an
abstract MDP M̄ω from the model of an MDP M , an abstraction function φ, and an
action-specific weighting function ω. 4 The weighting function ω gives a weight to
every state-action pair: ∀s ∈ S, a ∈ A : 0 ≤ω(s, a) ≤ 1. The weights of the state-action
pairs associated with an abstract state s̄ sum up to 1:

∑
s′∈φ(s)ω(s′, a) = 1. We can use

the weighting function to create an abstract transition and reward function, which
are weighted averages of the original transition and reward functions. In this way,
from M , φ, and any ω, we can construct an abstract MDP M̄ω:

Definition 3.2 (Abstract MDP). Given an MDP M , φ, and ω, an abstract MDP
M̄ω = 〈S̄, A, T̄ω, R̄ω〉 is constructed as: S̄ = {φ(s) | s ∈ S}, A = A,

∀s̄ ∈ S̄, a ∈ A : R̄ω(s̄, a)≜
∑
s∈s̄
ω(s, a)R(s, a), (3.9)

∀s̄, s̄′ ∈ S̄, a ∈ A : T̄ω(s̄′|s̄, a)≜
∑
s∈s̄

∑
s′∈s̄′

ω(s, a)T (s′|s, a). (3.10)

Note that the abstract MDP M̄ω itself is an MDP. So we can use planning methods
for MDPs to find an optimal policy π̄∗ for M̄ω. A desirable property of the
approximate model similarity abstraction is that we can upper bound the difference
between the optimal value V ∗ in M and the value V π̄∗ obtained when following
the policy π̄∗ in M . These bounds exists in different forms [16, 80, 135]. For
completeness, we give these bounds for both the undiscounted finite horizon and
the discounted infinite horizon:

Theorem 3.1. Let M = 〈S, A,T,R〉 be an MDP and M̄ = 〈S̄, A, T̄ , R̄〉 an abstract MDP,
for some defined abstract transitions and rewards. We assume that

∀s̄, s̄′ ∈ S̄, s ∈ s̄, a ∈ A : |T̄ (s̄′|s̄, a)−Pr(s̄′|s, a)| ≤ ηT (3.11)

and |R̄(s̄, a)−R(s, a)| ≤ ηR . (3.12)

4The action-specific weighting function is more general than the typically used weighting function,
which is not action-specific and only depends on the state s [15]. More formally, it is the case
where ∀a, a′ ∈ A, s ∈ S :ω(s, a) =ω(s, a′).
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Then, for a finite horizon problem with horizon h we have:

V ∗(s)−V π̄∗ (s) ≤ 2hηR + (h +1)hηT |S̄|Rmax. (3.13)

And for a discounted infinite horizon problem with discount γ we have:

V ∗(s)−V π̄∗ (s) ≤ 2ηR

1−γ + 2γηT |S̄|Rmax

(1−γ)2 . (3.14)

The proof of Theorem 3.1 is in Appendix 3.8.1. These bounds show that an optimal
abstract policy π̄∗ for M̄ can also perform well in the original problem M when
the approximate errors ηR and ηT are small. They hold for any abstract MDP M̄
created from an approximate model similarity abstraction φ and any valid weighting
function ω.

3.3. MBRL FROM ABSTRACTED OBSERVATIONS
In RLAO, we have an abstraction function φ and instead of observing the true state
s, the agent observes the abstract state φ(s). In contrast to the planning setting in
Section 3.2.3, here we act in an MDP M of which we do not know the transition
and reward functions. As mentioned in the introduction, there are surprisingly
few results for the RLAO setting (Section 3.5 discusses special cases people have
considered). Specifically, results of MBRL from Abstracted Observations (MBRLAO)
are lacking. Section 3.3.2 explains why this is by analyzing how abstraction
leads to dependence between samples, which means that the methods for dealing
with Markov transitions, as covered in Section 3.2.2, no longer suffice. Then, in
Section 3.3.4, we show how concentration inequalities for martingales can be used
to still learn an accurate model in RLAO. To illustrate how this result can be used to
extend the results of MBRL methods to RLAO, we extend the results of the R-MAX
algorithm [13]. R-MAX is a well-known and straightforward method that guarantees
sample efficient learning.

3.3.1. THE GENERAL MBRL FROM ABSTRACTED OBSERVATIONS

APPROACH

In RLAO, the agent collects data for every abstract state-action pair (s̄, a), stored as
sequences Ȳs̄,a :

Ȳs̄,a : {s̄′(τ1+1), s̄′(τ2+1), · · · , s̄′(τN (s̄,a)+1)}. (3.15)

Like in (3.1), we construct an empirical model T̄Y , now looking at the abstract
next-states that the agent reached:

T̄Y (s̄′|s̄, a)≜
1

N (s̄, a)

N (s̄,a)∑
i=1

1{Ȳ (i )
s̄,a = s̄′}. (3.16)

Suppose we could guarantee that the empirical model T̄Y was equal, or close, to
the transition function T̄ω of an abstract MDP M̄ω constructed from the true MDP
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with φ and a valid ω. In that case, we could bound the loss in performance due to
applying the learned policy π̄∗ to M instead of applying the optimal policy π∗ [16,
80]. Our main question is: do the finite-sample model learning guarantees of MBRL
algorithms still hold in the RLAO setting?

3.3.2. REQUIREMENTS FOR GUARANTEES FOR MBRL FROM ABSTRACTED

OBSERVATIONS

In order to give guarantees, we need to show that the empirical model T̄Y is close to
the transition model of an abstract MDP M̄ω. Before defining this transition model
of M̄ω, we examine the data collection. In the online data collection, the agent
obtains a sample for Ȳs̄,a when it is in a state s ∈ s̄ and takes action a. Specifically,
the agent obtains the i -th sample Ȳ (i )

s̄,a = s̄′τ1+1 from state X (i )
s̄,a = sτi ∈ s̄:

Ȳ (i )
s̄,a ∼ T (·|X (i )

s̄,a = sτi , a). (3.17)

Let X s̄,a = (X (i )
s̄,a)N (s̄,a)

i=1 denote the sequence of states s ∈ s̄ from which the agent took
action a. Each state s gets a weight according to how often it appears in X s̄,a , which
we formalize with the weighting function ωX :

∀s ∈ s̄, a ∈ A : ωX (s, a)≜
1

N (s̄, a)

N (s̄,a)∑
i=1

1{X (i )
s̄,a = s}. (3.18)

We use ωX to define T̄ωX analogous to (3.10):

∀s̄, s̄′ ∈ S̄, a ∈ A : T̄ωX (s̄′|s̄, a)≜
∑
s∈s̄
ωX (s, a)

∑
s′∈s̄′

T (s′|s, a). (3.19)

To highlight the close connection between T̄ωX and T̄Y (build of samples from

T (·|X (i )
s̄,a = sτi , a)), we give a second, but equivalent, 5 definition of T̄ωX :

∀(s̄, a), s̄′ : T̄ωX (s̄′|s̄, a)≜
1

N (s̄, a)

N (s̄,a)∑
i=1

T (s̄′|X (i )
s̄,a , a). (3.20)

Note that ωX and thus T̄ωX are not fixed a priori. Instead, like T̄Y , they are
empirical quantities that change at every time step and depend on the policy and
the (stochastic) outcomes. Importantly, by its definition, ωX is a valid ω at every
timestep. It is not a problem that ωX and T̄ωX change over time, as long as
the empirical model T̄Y can be shown to be close to T̄ωX . For this, we want a
concentration inequality to provide bounds on the deviation of the empirical model
T̄Y from T̄ωX ; we refer to this inequality as the abstract L1 inequality, similar in form
to (3.3):

P (|T̄Y (·|s̄, a)− T̄ωX (·|s̄, a)|1 ≥ ϵ) ≤ δ, (3.21)

where T̄Y (·|s̄, a) is defined according to (3.16) and T̄ωX according to (3.19).

5In the proof of Theorem 3.2 we show that these two definitions are equivalent.
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3.3.3. WHY THE PREVIOUS STRATEGY FAILS: DEPENDENT SAMPLES

THAT ARE NOT IDENTICALLY DISTRIBUTED

Suppose we could directly obtain i.i.d. samples from T̄ωX and base our empirical
model T̄Y on the obtained samples. In that case, we could show that the abstract L1
inequality holds by applying Lemma 3.1. This lemma would be applicable because
we could obtain a number N (s̄, a) of i.i.d. samples per abstract state-action pair,
distributed according to T̄ωX (·|s̄, a). However, the samples are not i.i.d. in RLAO: the
samples are neither identically distributed nor independent, and this combination
means that previous techniques fail. We will first cover the distribution of the
samples and show that samples not being identically distributed is not a problem.
Then we prove that samples are not guaranteed to be independent. Afterward,
Section 3.3.4 shows that we can still learn when the samples are dependent.

WHY WE CAN NOT USE LEMMA 3.1: DEPENDENT SAMPLES.

The samples are not necessarily identically distributed in RLAO since the agent
obtains a sample Ȳ (i ) when taking action a from state X (i )

s̄,a = s ∈ s̄, as in (3.17). If

X (i )
s̄,a ̸= X ( j )

s̄,a , these states can have different transition distributions. This implies that
in general we might not be able to apply Lemma 3.1, because it assumes identically
distributed random variables. However, different distributions by themselves need
not be a problem; we show that the result also holds when the random variables are
not identically distributed:

Lemma 3.2. Let X s̄,a = s1, · · · , sm be a sequence of states s ∈ s̄ and let
Ȳs̄,a = Ȳ (1), Ȳ (2), · · · , Ȳ (m) be independent random variables distributed according to
Pr(·|s1, a), · · · ,Pr(·|sm , a) (3.7). Then, for all ϵ> 0,

Pr(||T̄Y (·|s̄, a)− T̄ωX (·|s̄, a)||1 ≥ ϵ) ≤ (2|S̄|−2)e−
1
2 mϵ2

. (3.22)

The proof can be found in Appendix 3.8.2. Therefore, if the samples in RLAO were
independent, then we could apply Lemma 3.2 to guarantee an accurate model.

Independence. One could be tempted to assume the samples are independent, i.e.,

∀s̄′1, · · · , s̄′m ∈ (S̄)m : Pr(Ȳ (1)
s̄,a = s̄′1, · · · , Ȳ (m)

s̄,a = s̄′m) = Pr(Ȳ (1)
s̄,a = s̄′1) · · ·P (Ȳ (m)

s̄,a = s̄′m). (3.23)

However, this is not true in general in RLAO:

Observation 3.1. When collecting samples online using an abstraction function,
such samples are not necessarily independent.

Samples can be dependent when 1) samples are collected online in the real
environment, of which we do not know the transitions, and 2) the samples are
collected for abstract states s̄. Observation 3.1 can be understood from the
perspective that the RLAO problem corresponds to RL in a POMDP [30]. The
corresponding POMDP uses the abstraction function as the observation function
and the abstract states as observations. Since the transitions between observations
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Figure 3.2: Simple MDP, with only 1 action, and abstraction. The small circles are
states (1,2,3,4). A, B and C are the abstract states. The arrows show the
transition probabilities, e.g. P (3|1) = 0.6.

need not be Markov in POMDPs, the samples from abstract states can depend on
the history. While this observation may be clear from the POMDP perspective,
work in RLAO regularly assumes (explicitly or implicitly) that independent samples
can somehow be obtained [37, 39, 40, 51]. In the following counterexample, we
rigorously show that samples are not necessarily independent.

Counterexample. We use the example MDP and abstraction in Figure 3.2, where
we have four states, three abstract states, and only one action. Since the example
MDP has only one action, we omit the action from the notation. We examine the
transition function of abstract state A, T̄Y (·|A) and consider the first two times we
transition from A. These two transition samples, s̄′1 and s̄′2, are the first two entries
in ȲA . We show that the samples are not independent for at least one combination
of s̄′1 and s̄′2.

Let s̄′1 = s̄′2 = B , i.e., the first two times we experience a transition from the abstract
state A, we end up in B . We denote the i -th experienced transition from abstract
state A as Ȳ (i )

A . Let state 1 be the starting state.

We start with the product of the probabilities:

Pr(Ȳ (1)
A = B)Pr(Ȳ (2)

A = B). (3.24)

We have Pr(Ȳ (1)
A = B) = Pr(B |1) = 0.6 for the first term since state 1 is the starting

state. The second term is more complex since it includes the probability of starting
the transition from state 1 and state 2.
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We have:

Pr(Ȳ (2)
A = B) = ∑

s̄∈S̄

Pr(Ȳ (2)
A = B |Ȳ (1)

A = s̄)Pr(Ȳ (1)
A = s̄) (3.25)

= Pr(Ȳ (2)
A = B |Ȳ (1)

A = A)Pr(Ȳ (1)
A = A)+Pr(Ȳ (2)

A = B |Ȳ (1)
A = B)Pr(Ȳ (1)

A = B)

+Pr(Ȳ (2)
A = B |Ȳ (1)

A =C )Pr(Ȳ (1)
A =C ). (3.26)

= Pr(Ȳ (2)
A = B |Ȳ (1)

A = B)Pr(Ȳ (1)
A = B)+Pr(Ȳ (2)

A = B |Ȳ (1)
A =C )Pr(Ȳ (1)

A =C ). (3.27)

= Pr(Y (2)
A = 3|Ȳ (1)

A = 3)Pr(Y (1)
A = 3)+Pr(Y (2)

A = 3|Y (1)
A = 4)Pr(Y (1)

A = 4) (3.28)

= 0.6 ·0.6+0.4 ·0.4 = 0.52. (3.29)

For the step from (3.26) to (3.27), Pr(Ȳ (1)
A = A) is 0 because there is no

transition from a state in A to a state in A. Then, from (3.27) to (3.28),
we use that both abstract states B and C consist of exactly 1 state. So, e.g.,
Pr(Ȳ (2)

A = B |Ȳ (1)
A = B) = Pr(Y (2)

A = 3|Ȳ (1)
A = 3). So, for the product of the probabilities,

we end up with: Pr(Ȳ (1)
A = B)Pr(Ȳ (2)

A = B) = 0.6 ·0.52 = 0.321.
For the joint probability, we have:

Pr (Ȳ (1)
A = B , Ȳ (2)

A = B) = Pr(Ȳ (1)
A = B)Pr(Ȳ (2)

A = B |Ȳ (1)
A = B) (3.30)

= Pr(B |1)(Pr(B |1)Pr(1|B)) (3.31)

= 0.6 · (0.6 ·1) (3.32)

= 0.6 ·0.6 (3.33)

= 0.36. (3.34)

Here, Pr(Ȳ (2)
A = B |Ȳ (1)

A = B) = Pr(B |1)Pr(1|B) because the first transition ends
in state B and we always transition to state 1 from state B . Hence,
Pr(Ȳ (2)

A = B |Ȳ (1)
A = B) = Pr(B |1)Pr(1|B) = 0.6 ·1.

Combining the joint probability and the product of probabilities, we end up with:

0.36 = Pr(Ȳ (1)
A = B , Ȳ (2)

A = B) ̸= Pr(Ȳ (1)
A = B)Pr(Ȳ (2)

A = B) = 0.6 ·0.52. (3.35)

Thus, the samples are not independent. Leading us to the second observation.

Observation 3.2. As independence cannot be guaranteed, Lemmas 3.1 and 3.2
cannot be readily applied to show that the abstract L1 inequality holds.

This claim follows from the fact that Lemmas 3.1 and 3.2 both use the assumption
of independence in their proofs. It would still be possible to obtain independent
samples if we could, for example, have access to a simulator of the problem. In that
case, it is still possible to give guarantees on the accuracy of the model, which we
show in Appendix 3.8.6. However, we consider the setting where a simulator is not
available.

WHY THE APPROACH BY STREHL AND LITTMAN [14] FAILS

While the counterexample above is informative as to why Lemmas 3.1 and 3.2
cannot be applied, the failure to apply these lemmas may not come as a surprise:
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in the end, as shown by Strehl and Littman [14], more work is needed. They are
able to use these concentration inequalities due to an additional proof that shows
that even though the samples are drawn from a Markov chain, and thus not fully
independent, the inequality still serves as an upper bound. This raises the question
whether we could not follow the same approach, and show that Lemma 3.1 (or 3.2)
is still an upper bound in the RLAO setting.

It turns out that this is not possible, as that result uses the Markov property
and requires each sample to be identically distributed. Without abstraction, only
(s, a) and the next states s′ ∼ P (·|s, a) are considered, which indeed have the same
distribution. In RLAO, the outcomes of multiple states are grouped together and
for a pair (s̄, a) both the state s ∈ s̄ that we reach and the resulting next state s̄′
need to be considered. Since the distributions s′ ∼ P (·|s1, a) and s′ ∼ P (·|s2, a) of two
states s1, s2 ∈ s̄ do not have to be the same, these samples are not guaranteed to be
identically distributed.

SUMMARY: WHY PREVIOUS STRATEGIES FAIL

Summarizing, we have seen that previous strategies fail due to the combination of
samples neither being independent, nor being identically distributed. We showed
that if the samples would only be non-identically distributed (but independent) we
could modify the proof of Lemma 3.1, leading to Lemma 3.2, that could be directly
used. On the other hand, if the samples were only dependent (but still identically
distributed), it would be possible to follow the strategy of Strehl and Littman [14].
However, given that we are dealing with the dependent non-identically distributed
setting, neither of these previous strategies work, and a new approach is needed, as
we present next.

3.3.4. GUARANTEES FOR ABSTRACT MODEL LEARNING USING

MARTINGALES

Now we want to give a guarantee in the form of the abstract L1 inequality from
(3.21).6 In Section 3.3.2, we found this was not possible with concentration
inequalities such as Hoeffding’s inequality because the samples are not guaranteed
to be independent. Here we consider a related bound for weakly dependent samples,
the Azuma-Hoeffding inequality. This inequality makes use of the properties of a
martingale difference sequence, which are slightly weaker than independence:

Definition 3.3 (Martingale difference sequence [54]). The sequence Z1, Z2, · · · is a
martingale difference sequence if, ∀i , it satisfies the following conditions:

E [Zi |Z1, Z2, · · · , Zi−1] = 0,

|Zi | <∞.

The properties of the martingale difference sequence can be used to obtain the
following concentration inequality:

6We focus on the transition function, for the reward function we make some simplifying assumptions
in Section 3.4. We discuss in Section 3.6 how these assumptions can be relaxed and the result
extended for the reward function.
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Lemma 3.3 (Azuma-Hoeffding Inequality [53, 54]). If the random variables Z1, Z2, · · ·
form a martingale difference sequence (Def. 3.3), with |Zi | ≤ b, then

Pr(
n∑

i=1
Zi > ϵ) ≤ e−

ϵ2

2b2n . (3.36)

Our main result, Theorem 3.2, shows that we can use Lemma 3.3 to obtain a
concentration inequality for the abstract transition function in RLAO (as in (3.21)).
Specifically, we show that, with high probability, the empirical abstract transition
function T̄Y will be close to the abstract transition function T̄ωX :

Theorem 3.2 (Abstract L1 inequality). If an agent has access to a state abstraction
function φ and uses this to collect data for any abstract state-action pair (s̄, a) by
acting in an MDP M according to a policy π̄, we have that the following holds with
a probability of at least 1−δ for a fixed value of N (s̄, a):

||T̄Y (·|s̄, a)− T̄ωX (·|s̄, a)||1 ≤ ϵ, (3.37)

where we use the definitions of T̄Y (·|s̄, a) and T̄ωX (·|s̄, a) in (3.16) and (3.19),

respectively, and where δ= 2|S̄|e−
1
8 N (s̄,a)ϵ2

.

This theorem shows that the empirical model constructed by MBRLAO is close to
an abstract MDP M̄ωX , and here Theorem 3.1 gives performance loss guarantees. By
assuming that M̄ωX is the results of an approximate model irrelevance abstraction,
we can give end to end guarantees. In simpler words: our result just shows that
whatever T̄Y you might end up with (indeed, regardless of changing policies, etc.), it
was generated by some underlying states X , and the implied T̄ωX will concentrate
on T̄Y .

Note that, unlike in planning with abstract MDPs (Section 3.2.4), there is no fixed
set of weights T̄ωX that can be used as ground truth that needs to be estimated.
As illustrated in Section 3.3.3, the RLAO setting corresponds to a POMDP, which
means that depending on the history there would be a different distribution over
the states (and thus different weights) in each abstract state (called ’the belief’ in
a POMDP). Instead, both T̄ωX and T̄Y change over time. We show in the proof
of Theorem 3.2 (in Appendix 3.8.3) that T̄Y will concentrate on T̄ωX as they are
intimately connected. This is possible because Lemma 3.3 can be applied as long as
the Zi form a martingale difference sequence, with |Zi | ≤ b. In the proof, we define
a suitable Zi and show that T̄Y will thus concentrate on T̄ωX , with high probability.

We demonstrated that performance guarantees of MBRL methods can be extended
to the setting with abstracted observations using an approximate model-similarity
abstraction. We also claim that similar results can be obtained for at least one other
type of abstraction:

Claim 3.1. The analysis and result of Theorem 3.4 can be extended to hold for
approximate Q∗ abstractions.

A proof sketch can be found in Appendix 3.1. This claim demonstrates that
approximate state abstractions can generally be used to find a good policy, as long
as the Q∗ values are similar and an optimal policy for an abstract model performs
well in the original problem.
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3.4. AN ILLUSTRATION: R-MAX FROM ABSTRACTED

OBSERVATIONS
Here we give an illustration of how we can use Theorem 3.2 to provide guarantees
for MBRL methods in RLAO with an approximate model similarity abstraction. We
illustrate this using the R-MAX algorithm [13]. We start with a short description of
R-MAX and how it operates with abstraction.

The R-MAX algorithm maintains a model of the environment. It uses this model to
compute a policy periodically and then follows this policy for several steps. Initially,
all the state-action pairs are unknown and the algorithm optimistically initializes their
reward and transition functions: R(s, a) = Rmax (the maximum reward), T (s|s, a) = 1,
and ∀s′ ̸= s : T (s′|s, a) = 0. This initialization means that, in the model the algorithm
maintains, these unknown (s, a) lead to the maximum reward, hence the name
R-MAX. A state-action pair’s transition and reward function are only updated once
they have been visited sufficiently often, at which point the state-action pair is
considered known. Together, this ensures that the algorithm explores sufficiently.
During execution, the algorithm operates in episodes of n-steps. At the start of every
episode it calculates an optimal n-step policy and follows this for n timesteps, or
until a state-action pair becomes known. Once all the state-action pairs are known
it calculates the optimal policy for the final model and then runs this indefinitely.
The algorithm has the following guarantee:

Theorem 3.3 (R-MAX in MDPs without abstraction [13]). Given an MDP M, with
|S| states and |A| actions, and inputs ϵ and δ. With probability of at least 1−δ the
R-MAX algorithm will attain an expected average return of Opt(

∏
M (ϵ,Tϵ))−2ϵ within

a number of steps polynomial in |S|, |A|, 1
ϵ

1
δ ,Tϵ. Where Tϵ is the ϵ-return mixing

time of the optimal policy, the policies for M whose ϵ-return mixing time is Tϵ
are denoted by

∏
M (ϵ,Tϵ), the optimal expected Tϵ-step undiscounted average return

achievable by such policies are denoted by Opt(
∏

M (ϵ,Tϵ)).

Here Tϵ is the ϵ-return mixing time of a policy π, it is the minimum number of
steps needed to guarantee that the expected average return is within ϵ of the optimal
expected average return [136].

For R-MAX from Abstracted Observations, we make the following assumptions that
stem from the original analysis: we assume that the MDP is ergodic [74], 7 that
we know S and A, that the reward function is deterministic, and that we know the
minimum and maximum reward. W.l.o.g., we assume the rewards are between 0
and Rmax, with 0 < Rmax <∞. We add the assumption that the agent has access to
an approximate model similarity abstraction function φ and that each state in an
abstract state has the same reward function. 8

Algorithm 1 shows the procedure for R-MAX from Abstracted Observations. It
follows the same steps as the original algorithm, except that it makes use of an
abstraction function φ and maintains an abstract model. As in the original, the

7An ergodic, or recurrent, MDP is an MDP where every state is recurrent under every stationary
policy, i.e., asymptotically, every state will be visited infinitely often [74].

8Note that this is just a slight simplification as any empirical estimate R̄ is guaranteed to be within
ηR of any R̄ω, under the assumption that the rewards are deterministic.
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Algorithm 1 Procedure: R-MAX from Abstracted Observations

Input: φ,δ,ϵ,Tϵ
for all (s̄, a) ∈ S̄ × A do

T̄Y (s̄|s̄, a) = 1
R̄Y (s̄, a) = Rmax

Ȳs̄,a = [ ]
end for
M̄Y = 〈S̄, A, T̄Y , R̄Y 〉
Select m, the number of samples required per (abstract) state-action pair to make
them known.
// While there is still an unknown state-action pair.
while min(s̄,a) |Ys̄,a | < m do

Compute optimal Tϵ-step policy π̄ in M̄Y for the current abstract state.
for Tϵ timesteps do

s̄ =φ(s)
a = π̄(s̄)
s′,r = Step(s, a)
s = s′
if |Ȳs̄,a | < m then

Ȳs̄,a .append(φ(s′))
if |Ȳs̄,a | = m then

// State-action pair has become known.
for all s̄′ ∈ S̄ do

T̄Y (s̄′|s̄, a) = 1
m

∑m
i=11{Ȳ (i )

s̄,a = s̄′}
end for
R̄Y (s̄, a) = r
break

end if
end if

end for
end while
Compute optimal policy π̄∗ for M̄ and run indefinitely.

input to the algorithm is the allowed failure probability δ, the error bound ϵ, and
the ϵ-return mixing time Tϵ of an optimal policy. We add the abstraction function φ

as a new input. The algorithm uses this function to observe φ(s), as in Figure 3.1,
and it builds an empirical (abstract) model from the observations it obtains.

Because the algorithm uses an abstraction function φ, we cannot guarantee the
ϵ error bound. However, with Theorem 3.4 we can still guarantee an error bound
that is a function of ϵ and the error η of the abstraction, thus providing the first
finite-sample guarantees for RLAO:

Theorem 3.4. Given an MDP M, an approximate model similarity abstraction φ,
with ηR and ηT , and inputs |S̄|, |A|,ϵ,δ,Tϵ. With probability of at least 1−δ the R-MAX
algorithm adapted to abstraction (Algorithm 1) will attain an expected average
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return of Opt(
∏

M (ϵ,Tϵ))−3g (ηT ,ηR )−2ϵ within a number of steps polynomial in
|S̄|, |A|, 1

ϵ
1
δ ,Tϵ. Where Tϵ is the ϵ-return mixing time of the optimal policy, the

policies for M whose ϵ-return mixing time is Tϵ are denoted by
∏

M (ϵ,Tϵ), the
optimal expected Tϵ-step undiscounted average return achievable by such policies
are denoted by Opt(

∏
M (ϵ,Tϵ)), and

g (ηT ,ηR ) = TϵηR + (Tϵ−1)Tϵ
2

ηT |S̄|.

The proof can be found in Appendix 3.8.5 and follows the line of the original
R-MAX proof, using the assumptions mentioned at the start of Section 3.3. To
translate the results to the RLAO setting, we first use the Abstract L1 inequality
(Theorem 3.2) to show that the empirical abstract model is accurate with high
probability. Then the performance bounds from Theorem 3.1 can be used to bound
the loss in performance by using an abstract policy based on the empirical abstract
model in the MDP M instead of the optimal (ground) policy π∗. These bounds hold
for any ωX as long as ωX is a valid weighting function. That ωX will be a valid
weighting function follows from its definition in (3.18). Because Theorem 3.1 allows
us to directly bound the loss in performance for using an abstract policy, based on
an abstract empirical model, in the original problem M , the amount of steps is
polynomial only in |S̄| instead of |S|.

As is typical with abstraction, there is a trade-off between the performance and
the required number of steps: a coarser abstract model can potentially learn
much faster but could sacrifice optimality, while a non-abstract model might
have the best performance in the limit of infinite experience. We can see this
trade-off in the results of Theorems 3.3 and 3.4. When we directly model M
without abstraction, Theorem 3.3 shows that the algorithm will attain an expected
return of Opt(

∏
M (ϵ,Tϵ))−2ϵ within a number of steps polynomial in |S|, |A|, 1

ϵ
1
δ ,Tϵ.

Theorem 3.4 shows that, when we use an approximate model similarity abstraction
to learn an abstract model, this leads to an additional performance loss of 3g (ηT ,ηR )
due to the approximation. However, the advantage of using the abstraction is that
the number of steps within which this is achieved is polynomial only in the size of
the abstract space |S̄| rather than the (larger) original state space |S|. Thus, these
results show that the performance is not arbitrarily bad with approximate model
similarity abstraction. Moreover, when the abstraction errors (ηT and ηR ) are small
and the reduction in state space is large, abstraction helps to reach near-optimal
performance significantly faster.

3.5. RELATED WORK
The problem we resolved in this paper may seem intuitive, but as we will make
clear here, it is a fundamental problem in rich literature. Many studies have
considered the combination of abstraction with either planning or RL. Some studies
avoid, or ignore, the issue of dependency by simply assuming that samples are
independent [37, 40, 42, 137]. Others avoid it by looking at convergence in the
limit [34, 50, 98] or by assuming access to an MDP model [48, 49, 51].
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RL With Abstraction. A negative result has been provided in the RLAO setting,
showing that R-MAX [13] no longer maintains its guarantees when paired with
any state abstraction function [41]. For this negative result, they give an example
that uses approximate Q∗ similarity abstractions [16]. Our counterexample is
more powerful: indicating problems with the analysis even for approximate model
similarity abstractions (an approximate model similarity abstraction is also an
approximate Q∗ abstraction, but not the other way around). Nevertheless, our
second result shows that it is still possible to give guarantees in RLAO for R-MAX-like
algorithms when we use an approximate model similarity abstraction and take the
ηR and ηT inaccuracies into account.

Another study considered a setting related to abstraction, where the transition and
reward functions can change over time, either abruptly or gradually [138]. The
reward and transition probabilities depend on the timestep t , so T (s′|s, a, t ) instead
of T (s′|s, a). They bound the variation in the reward and transition functions over
time. By taking the variation over time into account they are able to give results.
In their setting, the MDP is fixed given the timestep. However, in RLAO this is not
fixed. Each time the transition function at a timestep t could be different.

Recently regret guarantees have been found for the episodic (continuous) RL
setting [139]. Their abstraction method learns an abstraction adaptively. The
model-based version of their algorithm requires that the state and actions spaces are
embedded in compact metric spaces. In this way, they can define a measure of the
difference between state-action pairs in these metric spaces. However, they require
oracle access to this metric. In our setting this would require knowing the transition
and reward functions, which we assume we do not.

Abstraction Selection. There are quite a few studies in the area of abstraction
selection, where the agent has access to a set of abstraction functions (state
representations)[39, 48, 49, 51, 104]. Several studies assume that the given set of
state representations contains at least one Markov model [48, 49, 51]. One study
gives asymptotic guarantees for selecting the correct model and building an exact
MDP model [48]. The assumption that an MDP model exists in the given set of
representations is crucial in their analysis since the samples are i.i.d. for this MDP
model. Similarly, other studies also assume that the given set of state representations
contains a Markov model [49, 51]. They create an algorithm for which they obtain
regret bounds, and their analysis also uses the Markov representation.

Some studies in abstraction selection do not assume the given abstraction
functions contain a Markov model [39, 104]. Lattimore, Hutter, and Sunehag [104]
deal with a more general setting where the problem may be non-Markovian. Instead
of assuming access to a set of abstractions, they assume access to a set of models,
including a model of the true environment. Since they are given models, they do not
focus on learning them, making it very different from our setting. By observing the
rewards obtained while executing a policy they are able to exclude unlikely models,
and eventually find the true model of the environment. The other study [39] uses
Theorem 2.1 from Weissman et al. [133], which requires i.i.d. samples. We have
shown that independent samples cannot be guaranteed in RLAO.
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MDPs With Rich Observations. Other related work is in MDPs with rich
observations or block structure [35, 52, 109]. In that setting, each observation
can only be generated from a single hidden state, which means that the issue of
non-i.i.d. data due to abstraction does not arise. We can view the rich observation
setting as an aggregation problem, where the observations can be aggregated to
form a small (latent) MDP [109]. Their setting is related to exact model similarity
(or bisimulation) [52]. In contrast, in RLAO, each observation can be generated
from multiple hidden states, and we do not try to learn the MDP, as it is not
small. Furthermore, we focus on approximate model similarity, which introduces the
problems as described in Section 3.3.2.

I.I.D. Samples. One way to avoid the issue of dependent samples is by assuming
that samples are obtained independently [37, 40, 42, 137]. One study considers
the setting with a continuous domain where we are given a data set with i.i.d.
samples [37]. They use discretization to aggregate states into abstract states and
give a guarantee that, with a high probability, the model will be ϵ-accurate given a
fixed data set. While they assume that the data has been gathered i.i.d., our results
show that martingale concentration inequalities could be used to extend their results
to the online data collection in the RLAO setting. Discretization has been used in
another study in a continuous space [42]. They search for a solution for a linear
dynamical system, where the transitions are deterministic, except for an additive
noise component. They assume this noise is distributed i.i.d. and try to learn
the resulting abstract transition functions by iteratively sampling N samples per
abstract-state action pair until a threshold is reached. They assume that samples can
be obtained cheaply, e.g., through a simulator, whereas we focus on the exploration
problem where data has to be collected online and is expensive. Another study
operates in the abstraction selection setting [40]. While they do not assume that a
Markov model exists in the given set of abstraction functions, they assume a given
data set, with i.i.d. data. They give a bound on how accurate the Q-values based
on the (implicitly) learned model will be rather than on the accuracy of the model
itself. As we showed, the assumption that the data is i.i.d. is not trivial since it
means the data cannot just be collected online. Another study’s primary focus is on
bandits but also gives results for MDPs with a coloring function [137]. We can view
state aggregation as a special case of this coloring. They extend the results from
UCRL2 [20] to the setting with a coloring function. They use the Azuma-Hoeffding
inequality for the transition function, which holds for weakly dependent samples.
However, they assume the samples are independent and do not show the martingale
difference sequence property for the (actually dependent) samples.

Asymptotic Results. Another way to deal with dependence between samples is by
looking at convergence in the limit [34, 50, 98]. One study gives an asymptotic result
for convergence of Q-learning and TD(0) in MDPs with soft state aggregation [34].
In soft state aggregation, a state s belongs to a cluster x with some probability
P (x|s), which means a state s can belong to several clusters. Their result requires
an ergodic MDP and a stationary policy that assigns a non-zero probability to every
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action. Together these imply a limiting state distribution, and they use this to
show convergence asymptotically. Another study gives multiple results focusing on
approximate and exact abstractions in environments without MDP assumptions [98].
Several of these results are in the planning setting, similar to other planning results
for approximate abstractions [16]. Most relevant for us is their Theorem 12, which for
online RL shows convergence in the limit of the empirical transition function under
weak conditions, e.g., when the abstract process is an MDP. Under this condition,
however, the problem reduces to RL in an (abstract) MDP rather than RLAO.
Follow-up work builds on some of these results and focuses on the combination
of model-free RL and exact abstraction, also without MDP assumptions [50].
They define and operate in a Q-Value Uniform Decision Process, with a mapping
from histories to (non-Markovian) states and a “state-uniformity condition”. The
state-uniformity means that if two histories map to the same state s, their optimal
Q-values are also the same. They show that, under state-uniformity, Q-learning
converges in the limit to the optimal solution. In contrast to our setting, they used
an exact abstraction and left extending the results to approximate abstraction as an
open question.

Planning and Abstraction. For planning in abstract MDPs, there are results for
exact state abstractions [15] and approximate state abstractions [16]. The results for
approximate state abstractions allow for quantifying an upper bound on performance
for the optimal policy of an abstract MDP, e.g., as in Theorem 3.1 for approximate
model similarity in Section 3.2.3. A study built on these results by giving a result
for performing RL interacting with an explicitly constructed abstract MDP [80]; since
the abstract MDP is still an MDP, this is different from RLAO.

MBRL Using I.I.D. Bounds. Concentration inequalities for i.i.d. samples, such as
the result from Weissman et al. [133], are often directly applied to the empirical
transition function [13, 20, 127, 130], without mentioning that these samples in a
simple RL trajectory may not be independent as shown for instance by Strehl and
Littman [14] in a non-communicating MDP. 9 Strehl and Littman [14] show that
there dependence is not a problem because it is still possible to use a concentration
inequality for independent samples, e.g., Hoeffding’s inequality, as an upper bound,
which implies that derived performance loss bounds are valid. However, their proof
uses that transitions and rewards are identically distributed, which is not guaranteed
in RLAO.

RL Using Martingale Bounds. Martingale concentration inequalities have been
used regularly in online RL analysis [14, 20, 49, 51, 82, 104, 109, 137, 138]. Our
novelty is in using it in RLAO, where we use it to show that we can learn an
accurate model and provide performance guarantees in this setting. Several works
that employ martingale concentration inequalities are not in the RLAO setting or

9An MDP is communicating if, for all s1, s2 ∈ S, a deterministic policy exists that eventually leads from
s1 to s2 [74].
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do not use them for the transition model, and instead apply them to other parts
of the analysis such as bounding the difference between the actual and expected
returns [14, 20, 39, 49, 51, 104]. Other works do use martingales for a transition
model [82, 109, 137, 138]. However, these either (implicitly or explicitly) assume
samples to be independent [137, 138] or identically distributed [82, 109], unlike our
analysis. Since, as we detailed in Section 3.3, independent nor identically distributed
samples cannot be guaranteed in RLAO, their analyses do not extend to this setting.

3.6. DISCUSSION AND FUTURE WORK

Some assumptions we made, i.e., that the reward function is deterministic and each
state in an abstract state has the same reward function, can be relaxed. To accurately
learn an abstract reward function, one should define a suitable martingale difference
sequence, after which Lemma 3.3 can be used. We considered approximate model
similarity abstraction and used the properties of this abstraction to establish an
upper bound on the difference in value between the original MDP and an abstract
MDP under any abstract policy. This bound was imperative for our results. We
established this bound by proof of induction on the difference in value for a horizon
n. This technique could be used to establish similar bounds and extend our
results for other abstractions, e.g., approximate Q∗ similarity abstractions [16], see
Claim 3.1.

Our analysis showed how to extend the results of R-MAX [13] to RLAO. Extending
results of other algorithms, e.g., MBIE [14] and UCRL2 [20], requires adapting
to slightly different assumptions. For instance, R-MAX assumes ergodicity, while
UCRL2 and MBIE assume the problem is communicating and non-communicating,
respectively. Other algorithms sometimes use concentration inequalities other
than Hoeffding’s Inequality, e.g., the empirical Bernstein inequality [140, 141] or
the Chernoff bound. To adapt these, we could, for instance, use Bernstein-type
inequalities for martingales [142].

Theorem 3.4 shows that, despite problems with dependence, we can give
finite-sample guarantees when combining approximate model similarity abstractions
with MBRL. For good abstraction functions, i.e., when ηR and ηT are small and
|S|≫ |S̄|, this leads to near-optimal solutions while needing fewer samples, compared
to learning without abstraction. Practically, for tabular methods, these results mostly
mean that concentration inequalities for independent samples have to be replaced
in RLAO, for example by concentration inequalities based on martingales, as we
have shown here. In deep model-based RL, several recent empirical works have
shown promising results by focusing on learning exact abstractions [45, 143]. An
interesting direction is adapting these methods to learn approximate abstractions
instead of exact abstractions. Since, compared to exact model similarity abstractions,
approximate model similarity abstraction generally results in a smaller (abstract)
state space; this could lead to faster learning.

Our results shed further light on the observation from Abel et al. [41] that RLAO
is different from performing RL in an MDP constructed with abstraction. As our
observations show, in RLAO the transition functions are not static, the samples are
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not identically distributed, and cannot be guaranteed to be independent. This could
mean that in situations where we want to learn an abstraction, the behavior is
also not quite as expected. In such situations, similar approaches that we applied
here may prove useful, as many situations in RL have already been shown to not
be independent processes. While our results hold for approximate model similarity
models, there could be even more compact representations for which our techniques
could lead to similar results. One clear example would be abstractions that focus
not on state abstraction, but rather on state-action abstraction, of which state
abstraction is simply a special case.

People have been applying MDPs and RL to all kinds of problems, even though we
know that the Markov property very rarely holds. Given that almost all theory of RL
critically depends on this property, one could wonder why these things even work?
Intuitively, we expect that the states in these successful applications are somehow
“Markovian enough”. In this work, we provide an understanding of this vague
concept. Specifically, we show that an existing criterion of state representations
(approximate model similarity) in fact is a formal notion of “Markovian enough” in
MBRL. Thus, it provides critical insight into under what circumstances (and therefore
in what applications) MBRL methods are expected to work.

3.7. CONCLUSION
We analyzed RLAO: online MBRL combined with state abstraction when the model
of the MDP is unavailable. Via a counterexample, we showed that it cannot be
guaranteed that samples obtained online in RLAO are independent. Many current
guarantees from MBRL methods use concentration results that assume i.i.d. samples,
e.g., Theorem 2.1 from Weissman et al. [133], the empirical Bernstein inequality [140,
141], or the Chernoff bound. Because they use these concentration inequalities, their
guarantees do not hold in RLAO. In fact, none of the existing analyses of MBRL
apply to RLAO. We showed that samples in RLAO are only weakly dependent and
that concentration inequalities for (weakly) dependent variables, such as Lemma 3.3,
are a viable alternative through which we can come to guarantees on the empirical
model. We used this result to present the first sample efficient learning results for
RLAO, thus showing it is possible to combine the benefits of abstraction and MBRL.
These results showcase under what circumstances performance guarantees in MBRL
can be transferred to settings with abstraction.
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3.8. APPENDIX

3.8.1. WELL KNOWN RESULTS

We restate some well-known results that we use in the proofs in the other sections.

HOEFFDING’S INEQUALITY

Hoeffding’s inequality can tell us the probability that the average of m random
independent (but not necessarily identically distributed) samples deviates more than
ϵ from its expectation.

Let Z (1), Z (2), · · · , Z (m) be bounded independent random variables, and let Z̄ and µ

be defined as

Z̄ ≜
Z (1) +·· ·+Z (m)

m
, (3.38)

µ≜ E [Z̄ ] = E [Z (1) +·· ·+Z (m)]

m
. (3.39)

Then Hoeffding’s inequality states:

Lemma 3.4 (Hoeffding’s inequality [53]). If Z (1), Z (2), · · · , Z (m) are independent and
0 ≤ Z (i ) ≤ 1 for i = 1, · · · ,m, then for 0 < ϵ< 1−µ we have the following inequalities

Pr(Z̄ −µ≥ ϵ) ≤ e−2mϵ2
, (3.40)

Pr(|Z̄ −µ| ≥ ϵ) ≤ 2e−2mϵ2
, (3.41)

Pr(
m∑

i=1
(Z (i ) −µ) ≥ ϵ) ≤ e−2 ϵ2

m , (3.42)

Pr(|
m∑

i=1
(Z (i ) −µ)| ≥ ϵ) ≤ 2e−2 ϵ2

m . (3.43)

UNION BOUND

Given that we have a set of events, the union bound allows us to upper bound the
probability that at least one of the events happens, even when these events are not
independent.

Lemma 3.5 (Union Bound [144]). For a countable set of events A1, A2, A3, · · · , we
have

Pr(∪i Ai ) ≤∑
i

Pr(Ai ). (3.44)

I.e., the probability that at least one of the events happens is, at most, the sum of
the probabilities of the individual events.

VALUE BOUNDS FOR ABSTRACT AND TRUE MODELS

Here we give upper bounds on the difference in value between the real MDP and an
abstract MDP under various policies. We will use these bounds in Appendix 3.8.5 to
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adapt the results of R-MAX [13] to RLAO. These bounds and proofs are very similar
to existing bounds [13, 14, 16, 80]. Here we repeat these for abstract models in the
undiscounted finite horizon and in the discounted infinite horizon.

We define the finite horizon value function ∀s ∈ S:

V π,n(s) = R(s,π(s))+ ∑
s′∈S

T (s′|s,π(s))V π,n−1(s′), (3.45)

V π,1(s) = R(s,π(s)). (3.46)

We use V π̄,n to denote the value in M under policy π̄ and V̄ π̄,n to denote the value
in M̄ under policy π̄.

Theorem 3.1. Let M = 〈S, A,T,R〉 be an MDP and M̄ = 〈S̄, A, T̄ , R̄〉 an abstract MDP,
for some defined abstract transitions and rewards. We assume that

∀s̄, s̄′ ∈ S̄, s ∈ s̄, a ∈ A : |T̄ (s̄′|s̄, a)−Pr(s̄′|s, a)| ≤ ηT

and |R̄(s̄, a)−R(s, a)| ≤ ηR .
(3.47)

Then, for a finite horizon problem with horizon h we have:

V ∗(s)−V π̄∗ (s) ≤ 2hηR + (h +1)hηT |S̄|Rmax. (3.48)

And for a discounted infinite horizon problem with discount γ we have:

V ∗(s)−V π̄∗ (s) ≤ 2ηR

1−γ + 2γηT |S̄|Rmax

(1−γ)2 . (3.49)

We will use the following two Lemmas to proof the Theorem.

Lemma 3.6. Under the assumption of (3.47) and for every abstract policy π̄ and
for every state s ∈ s̄, we have: for a finite horizon problem with horizon h:

|V π̄,h(s)− V̄ π̄,h(s)| ≤ hηR + (h −1)h

2
ηT |S̄|Rmax, (3.50)

and for a discounted infinite horizon problem with discount γ:

|V π̄(s)− V̄ π̄(s)| ≤ ηR

1−γ + γηT |S̄|Rmax

(1−γ)2 . (3.51)

Proof. The proof follows the same steps for both the discounted infinite horizon and
the undiscounted finite horizon. For completeness, we show them both here.

First, for the undiscounted finite horizon. By induction, we will show that for n ≥ 1

∀s̄ ∈ S̄, s ∈ s̄ : |V π̄,n(s)− V̄ π̄,n(s)| ≤ nηR + (n −1)n

2
ηT |S̄|Rmax. (3.52)

For n = 1, we have

|V π̄,1(s)− V̄ π̄,1(s)| = |R(s,π(s̄))− R̄(s̄, π̄(s̄))| ≤ ηR . (3.53)
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Now assume that the induction hypothesis, (3.52), holds for n −1, then

|V π̄,n(s)− V̄ π̄,n(s)| = |R(s, π̄(s̄))− R̄(s̄, π̄(s̄))

+ ∑
s′∈S

T (s′|s, π̄(s))V π̄,n−1(s′)− ∑
s̄′∈S̄

T̄ (s̄′|s̄, π̄(s̄))V̄ π̄,n−1(s̄′)| (3.54)

≤ |R(s, π̄(s̄))− R̄(s̄, π̄(s̄))|+ | ∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, π̄(s))V π̄,n−1(s′)− ∑
s̄′∈S̄

T̄ (s̄′|s̄, π̄(s̄))V̄ π̄,n−1(s̄′)|

(3.55)

≤ ηR +| ∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, π̄(s))V π̄,n−1(s′)− ∑
s̄′∈S̄

V̄ π̄,n−1(s̄′)
∑

s′∈s̄′
T (s′|s, π̄(s̄))|

+ | ∑
s̄′∈S̄

V̄ π̄,n−1(s̄′)
∑

s′∈s̄′
T (s′|s, π̄(s̄))− ∑

s̄′∈S̄

T̄ (s̄′|s̄, π̄(s̄))V̄ π̄,n−1(s̄′)| (3.56)

≤ ηR +| ∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, π̄(s))
[
V π̄,n−1(s′)− V̄ π̄,n−1(s̄′)

]|
+ | ∑

s̄′∈S̄

[
T̄ (s̄′|s̄, π̄(s̄))− ∑

s′∈s̄′
T (s′|s, π̄(s̄))

]
V̄ π̄,n−1(s̄′)| (3.57)

≤ ηR + (n −1)ηR + (n −1−1)(n −1)

2
ηT |S̄|Rmax +ηT |S̄|(n −1)Rmax (3.58)

= nηR + (n −2)(n −1)

2
ηT |S̄|Rmax +ηT |S̄|(n −1)Rmax (3.59)

= nηR + (n −1)n

2
ηT |S̄|Rmax. (3.60)

For the step from (3.55) to (3.56), we subtract and add
∑

s̄′∈S̄ V̄ π̄,n−1(s̄′)
∑

s′∈s̄′ T (s′|s, π̄(s̄)),
and from (3.57) to (3.58), we use the inductive hypothesis and the fact that
(n−1)Rmax is an upper bound on V̄ π̄,n−1(s̄′) since the maximum reward per timestep
is Rmax.

Now, for the discounted infinite horizon. By induction, we will show that for n ≥ 1

∀s̄ ∈ S̄, s ∈ s̄ : |V π̄,n(s)− V̄ π̄,n(s)| ≤ ηRγ
n−1 +

n−2∑
i=0

γi (ηR + γηT |S̄|Rmax

1−γ ). (3.61)

For n = 1, we have

|V π̄,1(s)− V̄ π̄,1(s)| = |R(s, π̄(s̄))− R̄(s̄, π̄(s̄))| ≤ ηR . (3.62)
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Now assume that the induction hypothesis, (3.61), holds for n −1, then

|V π̄,n(s)− V̄ π̄,n(s)| = |R(s, π̄(s̄))− R̄(s̄, π̄(s̄))

+γ(
∑

s′∈S

T (s′|s, π̄(s))V π̄,n−1(s′)− ∑
s̄′∈S̄

T̄ (s̄′|s̄, π̄(s̄))V̄ π̄,n−1(s̄′))| (3.63)

≤ |R(s, π̄(s̄))− R̄(s̄, π̄(s̄))|+γ| ∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, π̄(s))V π̄,n−1(s′)− ∑
s̄′∈S̄

T̄ (s̄′|s̄, π̄(s̄))V̄ π̄,n−1(s̄′)|

(3.64)

≤ ηR +γ| ∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, π̄(s))V π̄,n−1(s′)− ∑
s̄′∈S̄

V̄ π̄,n−1(s̄′)
∑

s′∈s̄′
T (s′|s, π̄(s̄))|

+γ| ∑
s̄′∈S̄

V̄ π̄,n−1(s̄′)
∑

s′∈s̄′
T (s′|s, π̄(s̄))− ∑

s̄′∈S̄

T̄ (s̄′|s̄, π̄(s̄))V̄ π̄,n−1(s̄′)| (3.65)

≤ ηR +γ| ∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, π̄(s))
[
V π̄,n−1(s′)− V̄ π̄,n−1(s̄′)

]|
+γ| ∑

s̄′∈S̄

[
T̄ (s̄′|s̄, π̄(s̄))− ∑

s′∈s̄′
T (s′|s, π̄(s̄))

]
V̄ π̄,n−1(s̄′)| (3.66)

≤ ηR +γ(ηRγ
n−2 +

n−3∑
i=0

γi (ηR + γηT |S̄|Rmax

1−γ ))+γηT |S̄|Rmax

1−γ (3.67)

= ηR +ηRγ
n−1 +

n−2∑
i=1

γi (ηR + γηT |S̄|Rmax

1−γ )+γηT |S̄|Rmax

1−γ (3.68)

= ηRγ
n−1 +

n−2∑
i=0

γi (ηR + γηT |S̄|Rmax

1−γ ). (3.69)

For the step from (3.64) to (3.65), we subtract and add
∑

s̄′∈S̄ V̄ π̄,n−1(s̄′)
∑

s′∈s̄′ T (s′|s, π̄(s̄)),

and from (3.66) to (3.67), we use the inductive hypothesis and the fact that Rmax
1−γ is

an upper bound on V̄ π̄,n−1(s̄′).
Finally, taking the limit for n →∞, we get:

|V π̄(s)− V̄ π̄(s)| ≤ ηR ×0+ 1

1−γ (ηR + γηT |S̄|Rmax

1−γ )

= ηR

1−γ + γηT |S̄|Rmax

(1−γ)2 .

Lemma 3.7. Under the assumption of (3.47) and for every state s ∈ s̄, we have: for a
finite horizon problem with horizon h:

|V ∗,h(s)− V̄ ∗,h(s)| ≤ hηR + (h −1)h

2
ηT |S̄|Rmax, (3.70)

and for a discounted infinite horizon problem with discount γ:

|V ∗(s)− V̄ ∗(s)| ≤ ηR

1−γ + γηT |S̄|Rmax

(1−γ)2 . (3.71)
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Proof. First, we define

∀s̄ ∈ S̄, s ∈ S : V ∗,n(s) = max
a∈A

[
R(s, a)+γ ∑

s′∈S

T (s′|s, a)V ∗,n−1(s′)
]
, (3.72)

V̄ ∗,n(s̄) = max
a∈A

[
R̄(s̄, a)+γ ∑

s̄′∈S̄

T̄ (s̄′|s, a)V̄ ∗,n−1(s̄′)
]
. (3.73)

For the undiscounted case γ= 1, so we can drop γ from the notation.
The proof follows the same steps as the proof of Lemma 3.6. We start again with

the undiscounted finite horizon.
By induction, we will show that for n ≥ 1

∀s̄ ∈ S̄, s ∈ s̄ : |V ∗,n(s)− V̄ ∗,n(s̄)| ≤ nηR + (n −1)n

2
ηT |S̄|Rmax. (3.74)

Making use of the fact that |max f −max g | ≤ max | f − g |, we have for n = 1

|V ∗,1(s)− V̄ ∗,1(s)| = |max
a∈A

R(s, a)−max
a∈A

R̄(s̄, a)| ≤ max
a∈A

|R(s, a)− R̄(s̄, a)| ≤ ηR . (3.75)

Now assume that the induction hypothesis, (3.74), holds for n −1, then

|V ∗,n(s)− V̄ ∗,n(s̄)| = max
a∈A

|R(s, a)− R̄(s̄, a)

+ ∑
s′∈S

T (s′|s, a)V ∗,n−1(s′)− ∑
s̄′∈S̄

T̄ (s̄′|s̄, a)V̄ ∗,n−1(s̄′)| (3.76)

≤ max
a∈A

|R(s, a)− R̄(s̄, a)|+max
a∈A

| ∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, a)V ∗,n−1(s′)− ∑
s̄′∈S̄

T̄ (s̄′|s̄, a)V̄ ∗,n−1(s̄′)|

(3.77)

≤ ηR +max
a∈A

| ∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, a)V ∗,n−1(s′)− ∑
s̄′∈S̄

V̄ ∗,n−1(s̄′)
∑

s′∈s̄′
T (s′|s, a)|

+max
a∈A

| ∑
s̄′∈S̄

V̄ ∗,n−1(s̄′)
∑

s′∈s̄′
T (s′|s, a)− ∑

s̄′∈S̄

T̄ (s̄′|s̄, a)V̄ ∗,n−1(s̄′)| (3.78)

≤ ηR +max
a∈A

| ∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, a)
[
V ∗,n−1(s′)− V̄ ∗,n−1(s̄′)

]|
+max

a∈A
| ∑

s̄′∈S̄

[
T̄ (s̄′|s̄, a)− ∑

s′∈s̄′
T (s′|s, a)

]
V̄ ∗,n−1(s̄′)| (3.79)

≤ ηR + (n −1)ηR + (n −1−1)(n −1)

2
ηT |S̄|Rmax +ηT (n −1)|S̄|Rmax (3.80)

= nηR + (n −1)n

2
ηT |S̄|Rmax. (3.81)

For the step from (3.77) to (3.78), we subtract and add
∑

s̄′∈S̄ V̄ ∗,n−1(s̄′)
∑

s′∈s̄′ T (s′|s, a),
and from (3.79) to (3.80), we use the inductive hypothesis and again the fact that
(n−1)Rmax is an upper bound on V̄ ∗,n−1(s̄′) since the maximum reward per timestep
is Rmax.

Now, for the discounted infinite horizon. By induction, we will show that for n ≥ 1

∀s̄ ∈ S̄, s ∈ s̄ : |V ∗,n(s)− V̄ ∗,n(s)| ≤ ηRγ
n−1 +

n−2∑
i=0

γi (ηR + γηT |S̄|Rmax

1−γ ). (3.82)
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For n = 1, we have

|V ∗,1(s)− V̄ ∗,1(s)| = |max
a∈A

R(s, a)−max
a∈A

R̄(s̄, a)| ≤ max
a∈A

|R(s, a)− R̄(s̄, a)| ≤ ηR . (3.83)

Now assume that the induction hypothesis, (3.82), holds for n −1, then

|V ∗,n(s)− V̄ ∗,n(s̄)| = max
a∈A

|R(s, a)− R̄(s̄, a)

+γ ∑
s′∈S

T (s′|s, a)V ∗,n−1(s′)−γ ∑
s̄′∈S̄

T̄ (s̄′|s̄, a)V̄ ∗,n−1(s̄′)| (3.84)

≤ max
a∈A

|R(s, a)− R̄(s̄, a)|+max
a∈A

γ| ∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, a)V ∗,n−1(s′)− ∑
s̄′∈S̄

T̄ (s̄′|s̄, a)V̄ ∗,n−1(s̄′)|

(3.85)

≤ ηR +max
a∈A

γ| ∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, a)V ∗,n−1(s′)− ∑
s̄′∈S̄

V̄ ∗,n−1(s̄′)
∑

s′∈s̄′
T (s′|s, a)|

+max
a∈A

γ| ∑
s̄′∈S̄

V̄ ∗,n−1(s̄′)
∑

s′∈s̄′
T (s′|s, a)− ∑

s̄′∈S̄

T̄ (s̄′|s̄, a)V̄ ∗,n−1(s̄′)| (3.86)

≤ ηR +max
a∈A

γ| ∑
s̄′∈S̄

∑
s′∈s̄′

T (s′|s, a)
[
V ∗,n−1(s′)− V̄ ∗,n−1(s̄′)

]|+
max
a∈A

γ| ∑
s̄′∈S̄

[
T̄ (s̄′|s̄, a)− ∑

s′∈s̄′
T (s′|s, a)

]
V̄ ∗,n−1(s̄′)| (3.87)

≤ ηR +γ(ηRγ
n−2 +

n−3∑
i=0

γi (ηR + γηT |S̄|Rmax

1−γ ))+γηT |S̄|Rmax

1−γ (3.88)

= ηR +ηRγ
n−1 +

n−2∑
i=1

γi (ηR + γηT |S̄|Rmax

1−γ )+γηT |S̄|Rmax

1−γ (3.89)

= ηRγ
n−1 +

n−2∑
i=0

γi (ηR + γηT |S̄|Rmax

1−γ ). (3.90)

For the step from (3.85) to (3.86), we subtract and add
∑

s̄′∈S̄ V̄ π̄,n−1(s̄′)
∑

s′∈s̄′ T (s′|s, π̄(s̄)),

and from (3.87) to (3.88), we use the inductive hypothesis and the fact that Rmax
1−γ is

an upper bound on V̄ ∗,n−1(s̄′).

Finally, taking the limit for n →∞, we get:

|V ∗(s)− V̄ ∗(s)| ≤ ηR ×0+ 1

1−γ (ηR + γηT |S̄|Rmax

1−γ )

= ηR

1−γ + γηT |S̄|Rmax

(1−γ)2 .

Proof of Theorem 3.1. We can now proof Theorem 3.1, by using the triangle inequality
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and the results of Lemmas 3.6 and 3.7. For the undiscounted finite horizon:

|V ∗,h(s)−V π̄∗,h(s)| ≤ |V ∗,h(s)− V̄ ∗,h(s)|+ |V̄ ∗,h(s)−V π̄∗,h(s)|
= |V ∗,h(s)− V̄ ∗,h(s)|+ |V̄ π̄∗,h(s)−V π̄∗,h(s)|

≤ hηR + (h −1)h

2
ηT |S̄|Rmax +hηR + (h −1)h

2
ηT |S̄|Rmax

= 2hηR + (h −1)hηT |S̄|Rmax.

For the discounted infinite horizon:

|V ∗(s)−V π̄∗ (s)| ≤ |V ∗(s)− V̄ ∗(s)|+ |V̄ ∗(s)−V π̄∗ (s)|
= |V ∗(s)− V̄ ∗(s)|+ |V̄ π̄∗ (s)−V π̄∗ (s)|

≤ ηR

1−γ + γηT |S̄|Rmax

(1−γ)2 + ηR

1−γ + γηT |S̄|Rmax

(1−γ)2

= 2ηR

1−γ + 2γηT |S̄|Rmax

(1−γ)2 .

VALUE DIFFERENCE FOR SIMILAR MDPS

Finally, we give a simulation lemma for two MDPs on the same state-action space.

Lemma 3.8. Let M and M ′ be two MDPs on the same state-action space, with

∀s, a ∈ S × A : |RM (s, a)−RM ′ (s, a)| ≤ ηR , (3.91)

∀s, a, s′ ∈ S × A×S : |TM (s′|s, a)−TM ′ (s′|s, a)| ≤ ηT . (3.92)

Then, for every policy π and for every state s ∈ S we have:

|V π,n
M (s)−V π,n

M ′ (s)| ≤ nηR + (n −1)n

2
ηT |S|Rmax. (3.93)

Proof. By induction, we will show that for n ≥ 1

∀s ∈ S : |V π,n
M (s)−V π,n

M ′ (s)| ≤ nηR + (n −1)n

2
ηT |S|Rmax. (3.94)

For n = 1, we have

|V π,1
M (s)−V π,1

M ′ (s)| = |RM (s,π(s))−RM ′ (s,π(s))| ≤ ηR . (3.95)
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Now assume that the induction hypothesis, (3.94), holds for n −1, then

|V π,n
M (s)−V π,n

M ′ (s)| = |RM (s,π(s̄))−RM ′ (s,π(s))

+ ∑
s′∈S

TM (s′|s,π(s))V π,n−1
M (s′)− ∑

s′∈S

TM ′ (s′|s,π(s)))V π,n−1
M ′ (s′)| (3.96)

≤ |RM (s,π(s))−RM ′ (s,π(s))|+ | ∑
s′∈S

TM (s′|s,π(s))V π,n−1
M (s′)− ∑

s′∈S

TM ′ (s′|s,π(s))V π,n−1
M ′ (s′)|

(3.97)

≤ ηR +| ∑
s′∈S

TM (s′|s,π(s))V π,n−1
M (s′)− ∑

s′∈S

TM (s′|s,π(s))V π,n−1
M ′ (s′)|

+ | ∑
s′∈S

TM (s′|s,π(s))V π,n−1
M ′ (s′)− ∑

s′∈S

TM ′ (s′|s,π(s))V π,n−1
M ′ (s′)| (3.98)

≤ ηR +| ∑
s′∈S

TM (s′|s,π(s))
[
V π,n−1

M (s′)−V π,n−1
M ′ (s′)

]|
+ | ∑

s′∈S

[
TM (s′|s,π(s))−TM ′ (s′|s,π(s))

]
V π,n−1

M ′ (s′)| (3.99)

≤ ηR + (n −1)ηR + (n −1−1)(n −1)

2
ηT |S|Rmax +ηT (n −1)|S|Rmax (3.100)

= nηR + (n −2)(n −1)

2
ηT |S|Rmax +ηT (n −1)|S|Rmax (3.101)

= nηR + (n −1)n

2
ηT |S|Rmax. (3.102)

For the step from (3.97) to (3.98), we add and subtract
∑

s̄′∈S TM (s′|s,π(s))V π,n−1
M ′ (s′),

and from (3.99) to (3.100), we use the inductive hypothesis and the fact that
(n−1)Rmax is an upper bound on V π,n−1

M ′ (s′) since the maximum reward per timestep
is Rmax.

This shows that the values under any policy are similar for similar MDPs.

3.8.2. L1 INEQUALITY FOR INDEPENDENT BUT NOT IDENTICALLY

DISTRIBUTED VARIABLES

We show that we can adapt the proof of Weissman et al. [133] for independent, but
not identically distributed, samples to obtain the following result:

Lemma 3.2. Let X s̄,a = s1, · · · , sm be a sequence of states s ∈ s̄ and let
Ȳs̄,a = Ȳ (1), Ȳ (2), · · · , Ȳ (m) be independent random variables distributed according to
Pr(·|s1, a), · · · ,Pr(·|sm , a). Then, ∀ϵ> 0,

Pr(||T̄Y (·|s̄, a)− T̄ωX (·|s̄, a)||1 ≥ ϵ) ≤ (2|S̄|−2)e−
1
2 mϵ2

. (3.103)

Proof of Lemma 3.2. The proof mostly follows the steps by Weissman et al. [133].
To shorten the notation, we define PY ≜ T̄Y (·|s̄, a) and PωX ≜ T̄ωX (·|s̄, a).
We will make use of the following result (Proposition 4.2 by Levin and Peres [145]),

that for any distribution Q on S̄

||Q −PωX ||1 = 2max
S̄ ⊆S̄

(Q(S̄ )−PωX (S̄ )),
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where S̄ is a subset of S̄, and PωX (S̄ ) =∑
s̄′∈S̄ PωX (s̄′). Thus, we have that

||PY −PωX ||1 = 2max
S̄ ⊆S̄

(PY (S̄ )−PωX (S̄ )). (3.104)

Using this, we can write

Pr(||PY −PωX ||1 ≥ ϵ) = Pr
[

2max
S̄ ⊆S̄

[
PY (S̄ )−PωX (S̄ )

]≥ ϵ] (3.105)

= Pr
[

max
S̄ ⊆S̄

[
PY (S̄ )−PωX (S̄ )

]≥ ϵ

2

]
(3.106)

= Pr
[
∪S̄ ⊆S̄

[
PY (S̄ )−PωX (S̄ ) ≥ ϵ

2

]]
(3.107)

≤ ∑
S̄ ⊆S̄

Pr
[

PY (S̄ )−PωX (S̄ ) ≥ ϵ

2

]
, (3.108)

where the last step follows from the union bound (Lemma 3.5).
Assuming ϵ> 0, we have that Pr(PY (S̄ )−PωX (S̄ ) ≥ ϵ

2 ) = 0 when S̄ = S̄ or S̄ =;.
For every other subset S̄ , we can define a random binary variable that is 1 when
Y (i ) ∈ S̄ and 0 otherwise. Here PωX (S̄ ) acts as µ (3.39) from Lemma 3.4 and PY (S̄ )
as Z̄ (3.38). Thus, by applying Lemma 3.4 to this random variable, we have

Pr(PY (S̄ )−PωX (S̄ ) ≥ ϵ

2
) ≤ e−2m ϵ

2
2 = e−

1
2 mϵ2

. (3.109)

Then it follows that

Pr(||PY −PωX ||1 ≥ ϵ) ≤ ∑
S̄ ⊆S̄

Pr(PY (S̄ )−PωX (S̄ ) ≥ ϵ

2
) (3.110)

≤ ∑
S̄ ⊂S̄:S̄ ̸=S̄,;

Pr(PY (S̄ )−PωX (S̄ ) ≥ ϵ

2
) (3.111)

≤ (2|S̄|−2)e−
1
2 mϵ2

, (3.112)

where S̄ ⊂ S̄ : S̄ ̸= S̄ ,; denotes that the empty set ; and the complete set S̄ are
excluded.

3.8.3. PROOF OF MAIN RESULT

Here we show how we can use a concentration inequality for martingales to learn an
accurate transition model in RLAO. Specifically, the following result shows that, with
a high probability, the empirical abstract transition function T̄Y will be close to the
abstract transition function T̄ωX . In the proof, which follows the general approach
of Ortner, Gajane, and Auer [138], we define a suitable martingale difference
sequence for the abstract transition function and use this to obtain the following
result for learning a transition function in RLAO:
Theorem 3.2 (Abstract L1 inequality). If an agent has access to a state abstraction
function φ and uses this to collect data for any abstract state-action pair (s̄, a) by



3.8. APPENDIX

3

57

acting in an MDP M according to a policy π̄, we have that the following holds with a
probability of at least 1−δ for a fixed value of N (s̄, a):

||T̄Y (·|s̄, a)− T̄ωX (·|s̄, a)||1 ≤ ϵ, (3.113)

where δ= 2|S̄|e−
1
8 N (s̄,a)ϵ2

.

Proof of Theorem 3.2. We first define an abstract transition function based on X s̄,a as

∀(s̄, a), s̄′ : T̄ωX (s̄′|s̄, a)≜
1

N (s̄, a)

N (s̄,a)∑
i=1

T (s̄′|X (i )
s̄,a , a), (3.114)

where T (s̄′|X (i )
s̄,a , a) ≜

∑
s′∈s̄′ T (s′|X (i )

s̄,a , a). We write T̄ωX because this definition is
equivalent to using a weighting function as in (3.19):

∀(s̄, a), s̄′ : T̄ωX (s̄′|s̄, a)≜
∑
s∈s̄
ωX (s, a)

∑
s′∈s̄′

T (s′|s, a) (Eq. 3.19) (3.115)

= ∑
s∈s̄

1

N (s̄, a)

N (s̄,a)∑
i=1

1{X (i )
s̄,a = s}

∑
s′∈s̄′

T (s′|s, a) (3.116)

= 1

N (s̄, a)

N (s̄,a)∑
i=1

∑
s∈s̄
1{X (i )

s̄,a = s}
∑

s′∈s̄′
T (s′|s, a) (3.117)

= 1

N (s̄, a)

N (s̄,a)∑
i=1

∑
s′∈s̄′

T (s′|X (i )
s̄,a , a) (3.118)

= 1

N (s̄, a)

N (s̄,a)∑
i=1

T (s̄′|X (i )
s̄,a , a). (Eq. 3.114) (3.119)

Now we use z to denote a vector of size |S̄| with entries ±1, and we write z(s̄) for
the entry in z with index s̄. Then we have

||T̄Y (·|s̄, a)− T̄ωX (·|s̄, a)||1 =
∑
s̄′
|T̄Y (s̄′|s̄, a)− T̄ωX (s̄′|s̄, a)| (3.120)

= max
z∈{−1,1}S̄

∑
s̄′

(
T̄Y (s̄′|s̄, a)− T̄ωX (s̄′|s̄, a)

)
z(s̄′) (3.121)

= max
z∈{−1,1}S̄

∑
s̄′

( 1

N (s̄, a)

N (s̄,a)∑
i=1

1{Ȳ (i )
s̄,a = s̄′}− 1

N (s̄, a)

N (s̄,a)∑
i=1

T (s̄′|X (i )
s̄,a , a)

)
z(s̄′) (3.122)

= max
z∈{−1,1}S̄

∑
s̄′

1

N (s̄, a)

N (s̄,a)∑
i=1

1{Ȳ (i )
s̄,a = s̄′}z(s̄′)−∑

s̄′

1

N (s̄, a)

N (s̄,a)∑
i=1

T (s̄′|X (i )
s̄,a , a)z(s̄′) (3.123)

= max
z∈{−1,1}S̄

1

N (s̄, a)

N (s̄,a)∑
i=1

z(Ȳ (i )
s̄,a )− 1

N (s̄, a)

N (s̄,a)∑
i=1

∑
s̄′

T (s̄′|X (i )
s̄,a , a)z(s̄′) (3.124)

= max
z∈{−1,1}S̄

1

N (s̄, a)

N (s̄,a)∑
i=1

(
z(Ȳ (i )

s̄,a )−∑
s̄′

T (s̄′|X (i )
s̄,a , a)z(s̄′)

)
(3.125)

= max
z∈{−1,1}S̄

1

N (s̄, a)

N (s̄,a)∑
i=1

Zτi (z , X (i )
s̄,a , a, Ȳ (i )

s̄,a ), (3.126)
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where we set

Zτi (z , X (i )
s̄,a , aτi , Ȳ (i )

s̄,a )≜ z(Ȳ (i )
s̄,a )−∑

s̄′
T (s̄′|X (i )

s̄,a , aτi )z(s̄′).

To show that
∑N (s̄,a)

i Zτi (z , X (i )
s̄,a , aτi , Ȳ (i )

s̄,a ) is a martingale difference sequence, we

should follow Definition 3 and show that ∀i : E [Zτi (z , X (i )
s̄,a , aτi , Ȳ (i )

s̄,a )|Zτ1 , Zτ2 , · · · , Zτi−1 ] =
0 and |Zi | <∞. For the second part, we have that ∀i : |Zτi (z , X (i )

s̄,a , aτi , Ȳ (i )
s̄,a )| ≤ 2, since

|z(Ȳ (i )
s̄,a )| ≤ 1 and |∑s̄′ T (s̄′|X (i )

s̄,a , aτi )z(s̄′)| ≤ 1. For the first part, we use the following
Lemma, the proof of which follows after the current proof.

Lemma 3.9. Let π be a policy, and suppose the sequence s1, a1 · · · , st−1, at−1, st is to
be generated by π. If 1 ≤ τ1 < τ2 < ·· · < τi−1 < τi ≤ t , then

E [Zτi (z , X (i )
s̄,a , aτi , Ȳ (i )

s̄,a )|Zτ1 , Zτ2 , · · · , Zτi−1 ] = 0.

Lemma 3.9 shows that
∑N (s̄,a)

i Zτi (z , X (i )
s̄,a , aτi , Ȳ (i )

s̄,a ) is a martingale difference

sequence with ∀i : |Zτi (z , X (i )
s̄,a , aτi , Ȳ (i )

s̄,a )| ≤ 2 for any fixed z and fixed N (s̄, a) = n so
that by the Azuma-Hoeffding inequality (Lemma 3.3):

Pr(
N (s̄,a)∑

i=1
Zτi > ϵ) ≤ e−

ϵ2
8N (s̄,a) . (3.127)

Similarly,
∑N (s̄,a)

i
1

N (s̄,a) Zτi (z , X (i )
s̄,a , aτi , Ȳ (i )

s̄,a ) is a martingale difference sequence with

∀i : | 1
N (s̄,a) Zτi (z , X (i )

s̄,a , aτi , Ȳ (i )
s̄,a )| ≤ 2

N (s̄,a) for any fixed z and N (s̄, a) = n so that, by the
Azuma-Hoeffding inequality (Lemma 3.3), the following holds:

Pr(
1

N (s̄, a)

N (s̄,a)∑
i=1

Zτi > ϵ) ≤ e
− ϵ2

2 4
N (s̄,a)2 N (s̄,a)

(3.128)

= e
− ϵ2

8
N (s̄,a) (3.129)

= e−
1
8 N (s̄,a)ϵ2

. (3.130)

From (3.120) and (3.126), we then obtain

Pr(||T̄Y (·|s̄, a)− T̄ωX (·|s̄, a)||1 > ϵ) = Pr( max
z∈{−1,1}S

1

N (s̄, a)

N (s̄,a)∑
i=1

Zτi > ϵ). (3.131)

A union bound (Lemma 3.5) over all 2|S̄| vectors z for a fixed value of N (s, a) shows

Pr( max
z∈{−1,1}S

1

N (s̄, a)

N (s̄,a)∑
i=1

Zτi > ϵ) ≤ ∑
z∈{−1,1}S

Pr(
1

N (s̄, a)

N (s̄,a)∑
i=1

Zτi > ϵ). (3.132)

So, using (3.130), we have that the following holds with probability 1−2|S̄|e−
1
8 N (s̄,a)ϵ2

:

||T̄Y (·|s̄, a)− T̄ωX (·|s̄, a)||1 ≤ ϵ. (3.133)
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Now we give the proof of Lemma 3.9:

Proof of Lemma 3.9. We follow the general structure of the proof of Lemma 8
by Strehl and Littman [14]. We have

E [Zτi (z , X (i )
s̄,a , aτi , Ȳ (i )

s̄,a )] = ∑
cτi +1

Pr(cτi+1)Zτi (z , X (i )
s̄,a , aτi , Ȳ (i )

s̄,a ) (3.134)

=∑
cτi

Pr(cτi )
∑
Ȳ (i )

s̄,a

Pr(Ȳ (i )
s̄,a |cτi , aτi )Zτi (z , X (i )

s̄,a , aτi , Ȳ (i )
s̄,a ) (3.135)

=∑
cτi

Pr(cτi )
∑
Ȳ (i )

s̄,a

Pr(Ȳ (i )
s̄,a |X (i )

s̄,a , aτi )Zτi (z , X (i )
s̄,a , aτi , Ȳ (i )

s̄,a ). (3.136)

The sum
∑

cτi +1 is over all possible sequences cτi+1 that end in a state s̄τi+1, resulting
from τi actions chosen by an agent following policy π. Conditioning on the sequence
of random variables Zτ1 , Zτ2 , · · · , Zτi−1 can make some sequences cτi more likely and
others less likely, that is

E [Zτi (z , X (i )
s̄,a , aτi , Ȳ (i )

s̄,a )|Zτ1 , Zτ2 , · · · , Zτi−1 ] (3.137)

=∑
cτi

Pr(cτi |Zτ1 , Zτ2 , · · · , Zτi−1 )
∑
Ȳ (i )

s̄,a

Pr(Ȳ (i )
s̄,a |X (i )

s̄,a , aτi )Zτi (z , X (i )
s̄,a , aτi , Ȳ (i )

s̄,a ). (3.138)

Significantly, since P (Ȳ (i )
s̄,a |s̄τi , aτi , Zτ1 , · · · , Zτi−1) = P (Ȳ (i )

s̄,a |s̄τi , aτi ), fixed values of
Zτ1 , Zτ2 , · · · , Zτi−1 do not influence the innermost sum of (3.138). For this innermost
sum, we have∑

Ȳ (i )
s̄,a

Pr(Ȳ (i )
s̄,a |X (i )

s̄,a , aτi )Zτi (z , X (i )
s̄,a , aτi , Ȳ (i )

s̄,a ) (3.139)

= ∑
Ȳ (i )

s̄,a

Pr(Ȳ (i )
s̄,a |X (i )

s̄,a , aτi )

[
z(Ȳ (i )

s̄,a )−∑
s̄′

T (s̄′|X (i )
s̄,a , aτi )z(s̄′)

]
(3.140)

= ∑
Ȳ (i )

s̄,a

Pr(Ȳ (i )
s̄,a |X (i )

s̄,a , aτi )z(Ȳ (i )
s̄,a )− ∑

Ȳ (i )
s̄,a

Pr(Ȳ (i )
s̄,a |X (i )

s̄,a , aτi )
∑
s̄′

T (s̄′|X (i )
s̄,a , aτi )z(s̄′) (3.141)

= ∑
Ȳ (i )

s̄,a

Pr(Ȳ (i )
s̄,a |X (i )

s̄,a , aτi )z(Ȳ (i )
s̄,a )−∑

s̄′
T (s̄′|X (i )

s̄,a , aτi )z(s̄′) (3.142)

= 0. (3.143)

So we conclude

E [Zτi (z , X (i )
s̄,a , aτi , Ȳ (i )

s̄,a )|Zτ1 , Zτ2 , · · · , Zτi−1 ] (3.144)

=∑
cτi

Pr(cτi |Zτ1 , Zτ2 , · · · , Zτi−1 )
∑

s̄τi +1

Pr(s̄τi+1|X (i )
s̄,a , aτi )Zτi (z , X (i )

s̄,a , aτi , Ȳ (i )
s̄,a ) (3.145)

=∑
cτi

Pr(cτi |Zτ1 , Zτ2 , · · · , Zτi−1 )×0 (3.146)

= 0. (3.147)
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3.8.4. PROOF SKETCH OF CLAIM 3.1
Proof sketch for Claim 3.1, which we repeat here:
Claim 3.1. The analysis and result of Theorem 3.4 can be extended to hold for
approximate Q∗ abstractions.

Proof sketch. To prove this claim, we will use a result from Abel, Hershkowitz, and
Littman [16]. In their proof of Lemma 1, they show that the optimal policy for
an abstract model M̄ , constructed using an approximate Q∗ abstraction, is also
near-optimal for the original problem M . Crucially, their proof uses that the Q∗
values of the abstract model are close to those of the original problem.

Let ˆ̄M denote the model learned through MBRLAO, constructed from T̄Y (·|s̄, a)
and T̄ωX (·|s̄, a) in (3.16) and (3.19) (on pages 33 and 34, respectively). We can use

Theorem 3.2 (on page 39) to show that learned model ˆ̄M will be close to the abstract
model M̄ since the theorem is agnostic to the specific type of state abstraction.
Because the models are close, we can show that their Q∗ values are also close
together. This can be shown through a proof similar to that of Lemma 3.8 (on page
54), but using Q-values instead of V-values. By extension, the Q∗ values of the
learned model will be close to the Q∗ values of the original problem M . This result
could replace the one of Lemma 3.11 (on page 61), which is used in the proof of
Theorem 3.4 (on page 63).

In the proof of Theorem 3.4, the step from (3.169) to (3.170) can be skipped since
we can directly compare (3.169) with (3.171) using the result described here. Then
the rest of the proof follows, as it is agnostic to the type of abstraction used.

3.8.5. R-MAX FROM ABSTRACTED OBSERVATIONS

Here we use the result of Theorem 3.2 to show that we can provide efficient learning
guarantees for R-MAX [13] in RLAO. In Appendix 3.8.5, we use Theorem 3.2 and
the value bounds in Appendix 3.8.1 to establish two supporting Lemmas. Then, in
Appendix 3.8.5, we adapt one lemma and the guarantees of R-MAX to RLAO.

SUPPORTING LEMMAS

We can use Theorem 3.2 to determine the number of samples required to guarantee
that the distance ||T̄Y (·|s̄, a)− T̄ωX (·|s̄, a)||1 will be smaller than ϵ with probability
1−δ:

Lemma 3.10. For inputs κ and ϵ (0 < κ < 1,0 < ϵ < 2), the following holds for a

number of samples m ≥ 2[ln(2|S̄|−2)−ln(κ)]
ϵ2 :

Pr(||T̄Y (·|s̄, a)− T̄ωX (·|s̄, a)||1 ≥ ϵ) ≤ κ. (3.148)

Proof. To shorten the notation, we use the definitions PY ≜ T̄Y (·|s̄, a) and
PωX ≜ T̄ωX (·|s̄, a). It follows from Theorem 3.2 that

Pr(||PY −PωX ||1 ≥ ϵ) ≤ 2|S̄|e−
1
8 mϵ2

. (3.149)
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We need to select m such that κ≥ 2|S̄|e−
1
8 mϵ2

:

κ≥ 2|S̄|e−
1
8 mϵ2

(3.150)
κ

2|S̄|
≥ e−

1
8 mϵ2

(3.151)

ln(κ)− ln(2|S̄|) ≥−mϵ2

8
(3.152)

mϵ2

8
≥ ln(2|S̄|)− ln(κ) (3.153)

m ≥ 8[ln(2|S̄|)− ln(κ)]

ϵ2 . (3.154)

Thus if m ≥ 8[ln(2|S̄|)−ln(κ)]
ϵ2 , we have

Pr(||PY −PωX ||1 ≥ ϵ) ≤ κ.

We want to give results for an empirical abstract model ˆ̄M in the abstract
space from φ, whose transition probabilities and rewards are within ηT and ηR ,
respectively, from those of an abstract MDP M̄ . We use V ∗,n to denote the value in

M under the n-step optimal policy and V ˆ̄π∗,n to denote the value in M under the

n-step optimal policy ˆ̄π∗ for ˆ̄M . The following lemma shows that we can upper
bound the loss in value when applying ˆ̄π∗ to M :

Lemma 3.11. Let M be an MDP, M̄ an abstract MDP constructed using an

approximate model similarity abstraction φ, with ηR and ηT , and ˆ̄M an MDP in the
abstract space from φ with

|T̄ (s̄′|s̄, a)− ˆ̄T (s̄′|s̄, a)| ≤ ϵ, |R̄(s̄, a)− ˆ̄R(s̄, a)| = 0. (3.155)

Then

V ∗,n(s)−V
ˆ̄π∗,n(s) ≤ 2nηR + (n −1)n(ηT +ϵ)|S̄|Rmax. (3.156)

Proof. Note that we assume that |R̄(s̄, a)− ˆ̄R(s̄, a)| = 0 because we assume a
deterministic reward. Then, we have

∀s̄, a ∈ S̄ × A, s ∈ s̄ : |R(s, a)− ˆ̄R(s̄, a)| ≤ ηR , (3.157)

∀s̄, a, s̄′ ∈ S̄ × A× S̄, s ∈ s̄ : | ∑
s′∈s̄′

T (s′|s, a)− ˆ̄T (s̄′|s̄, a)| ≤ ηT +ϵ. (3.158)

We use ˆ̄V ˆ̄π∗,n
(s̄) to denote the n-step value under the n-step optimal policy ˆ̄π∗,n for

the empirical abstract MDP ˆ̄M . Then, by Theorem 3.1, we have ∀s ∈ s̄, s̄ ∈ S̄:

V ∗,n(s)−V
ˆ̄π∗,n(s) = 2nηR + (n −1)n(ηT +ϵ)|S̄|Rmax. (3.159)
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PROOF OF THEOREM 3.4

First, we restate an Implicit Explore or Exploit Lemma that is used in the proof
of R-MAX. We are interested in the event AM , the event that we encounter an
unknown state-action pair during an n-step trail in M . For two MDPs with different
dynamics only in the unknown state-action pairs, the probability that we encounter
an unknown state-action pair in an n-step trial is tiny if the difference in the n-step
value between the two MDPs is slight. The proof follows the steps the proof of
Lemma 3 from Strehl and Littman [14].

Lemma 3.12 (Implicit Explore or Exploit). Let M be an MDP. Let L be the set of
known abstract state-action pairs, and let ML be an MDP that is the same as M on
the known pairs (s̄, a) ∈ L, but different on the unknown pairs (s̄, a) ∉ L. Let s be some
state, and AM the event that an unknown abstract state-action pair is encountered
in a trial generated by starting from state s1 and following π for n steps in M . Then,

V π,n
M (s1) ≥V π,n

ML
(s1)−nRmax Pr(AM ). (3.160)

Proof. For a fixed path pt = s1, a1,r1, · · · , st , at ,rt , we define PrM (pt ) as the probability
that pt occurs when running policy π in M starting from state s1. We let Lt be the
set of paths pt such that there is at least one unknown state si in pt (φ(si ), a) ∉ L).
We further let rM (t ) be the reward received at time t and rM (pt , t ) the reward at
time t in the path pt . We have the following:

E
[
rML (t )

]−E
[
rM (t )

]= ∑
pt∈Lt

(
Pr
ML

(pt )rML (pt , t )−Pr
M

(pt )rM (pt , t )
)

(3.161)

+ ∑
pt∉Lt

(
Pr
ML

(pt )rML (pt , t )−Pr
M

(pt )rM (pt , t )
)

(3.162)

= ∑
pt∉Lt

(
Pr
ML

(pt )rML (pt , t )−Pr
M

(pt )rM (pt , t )
)

(3.163)

≤ ∑
pt∉Lt

Pr
ML

(pt )rML (pt , t ) ≤ Rmax Pr(AM ). (3.164)

Here
∑

pt∈Lt

(
PrML (pt )rML (pt , t )−PrM (pt )rM (pt , t )

)= 0 because, by definition, M and
ML behave identically on the known state-action pairs, and

∑
pt∉Lt PrML (pt )rML (pt , t ) ≤

Rmax Pr(AM ) is true because rML (pt , t ) is at most Rmax. Finally we can write

V π,n
ML

(s1)−V π,n
M (s1) =

n∑
t=0

(E
[
rML (t )

]−E
[
rM (t )

]
) (3.165)

≤ nRmax Pr(AM ). (3.166)

Thus, V π,n
M (s1) ≥V π,n

ML
(s1)−nRmax Pr(AM ).

Now we are ready to prove the theorem.
Theorem 3.4. Given an MDP M, an approximate model similarity abstraction φ, with
ηR and ηT , and inputs |S̄|, |A|,ϵ,δ,Tϵ. With probability of at least 1−δ the R-MAX
algorithm adapted to abstraction (Algorithm 1) will attain an expected return of

Opt(
∏

M (ϵ,Tϵ))−3 g (ηT ,ηR )
Tϵ

−2ϵ within a number of steps polynomial in |S̄|, |A|, 1
ϵ

1
δ ,Tϵ.
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Here Tϵ is the ϵ-return mixing time of the optimal policy, the policies for M
whose ϵ-return mixing time is Tϵ are denoted by

∏
M (ϵ,Tϵ), the optimal expected

Tϵ-step undiscounted average return achievable by such policies are denoted by
Opt(

∏
M (ϵ,Tϵ)), and

g (ηT ,ηR ) = TϵηR + (Tϵ−1)Tϵ
2

ηT |S̄|Rmax.

Proof of Theorem 3.4. The proof uses elements of the Theorem from Brafman and
Tennenholtz [13]. The proof follows the following steps:

1. We show that the expected average reward of the algorithm is at least as stated
if the algorithm does not fail.

2. The probability of failing is at most δ. We can decompose this probability into
three elements.

a) Probability that the transition function estimates are not within the
desired bounds.

b) The probability that we do not attain the number of required visits in
polynomial time.

c) The probability that the actual return is lower than the expected return.

Now we first assume the algorithm does not fail. We define an abstract
MDP M̄ωX constructed from φ with ηT and ηR . Similar to ML , M̄ωX ,L is the
same as M̄ωX on the known abstract state-action pairs, but with a self-loop
and the maximum reward (Rmax) on the unknown abstract state-action pairs, i.e.,
∀(s̄, a) ∉ L : T̄ωX ,L(s̄|s̄, a) = 1, R̄ωX ,L(s̄, a) = Rmax. We also define an empirical abstract
MDP M̄Y , of which the transition probabilities T̄Y (s̄′|s̄, a) are within some ϵ2 (defined
later) of those in M̄ωX and with R̄ωX (s̄, a) = R̄Y (s̄, a) because of the assumption that
the rewards are deterministic. Then, M̄Y ,L is the abstract MDP that is the same
as M̄Y on the known abstract state-action pairs and the same as M̄ωX ,L on the
unknown abstract state-action pairs. We denote the R-MAX policy with π̄.

Let AM be the event that, following π̄, we encounter an unknown abstract
state-action pair (φ(s), a) ∉ L in Tϵ steps. From Lemma 3.12, we have that:

∀s ∈ S : V π̄,n
M (s) ≥V π̄,n

ML
(s)−TϵRmax Pr(AM ). (3.167)

Now suppose that Rmax Pr(AM ) < ϵ1, for some ϵ1 (defined later), then we have

V π̄,Tϵ
M (s) ≥V π̄,Tϵ

ML
(s)−TϵRmax Pr(AM ) (3.168)

≥V π̄,Tϵ
ML

(s)−Tϵϵ1 (3.169)

≥V π̄,Tϵ
M̄ωX ,L

(s)−Tϵϵ1 − g (ηT ,ηR ) (3.170)

≥V π̄,Tϵ
M̄Y ,L

(s)−Tϵϵ1 − g (ϵ2)− g (ηT ,ηR ) (3.171)

≥V ∗,Tϵ
M̄Y

(s)−Tϵϵ1 − g (ϵ2)− g (ηT ,ηR ) (3.172)

≥V ∗,Tϵ
M (s)−Tϵϵ1 − g (ϵ2)− g (ηT ,ηR )−2g (ηT +ϵ2,ηR ). (3.173)
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Here the step from (3.168) to (3.169) follows because of the assumption that
Rmax Pr(AM ) < ϵ1. The step from (3.169) to (3.170) follows from Lemma 3.6, where
g (ηT ,ηR ) = TϵηR + (Tϵ−1)Tϵ

2 ηT |S̄|Rmax. The step from (3.170) to (3.171) follows from

Lemma 3.8, where g (ϵ2) = (Tϵ−1)Tϵ
2 ϵ2|S̄|Rmax. The step from (3.171) to (3.172) follows

because the R-MAX policy π̄ is the optimal policy for M̄Y ,L , and M̄Y ,L is the same
as M̄Y on the known state-action pairs and overestimates the value of the unknown
state-action pairs (to the maximum value). Finally, the step from (3.172) to (3.173)
follows from Lemma 3.11.

In (3.173) the results are for the undiscounted Tϵ-step sum of rewards, so to obtain
the result for the average reward per step, we have to divide (3.173) by Tϵ. We get

Opt(
∏
M

(ϵ,Tϵ))−Tϵϵ1/Tϵ− g (ϵ2)/Tϵ− g (ηT ,ηR )/Tϵ−2g (ηT +ϵ2,ηR )/Tϵ (3.174)

= Opt(
∏
M

(ϵ,Tϵ))−ϵ1 − (Tϵ−1)Tϵ
2

ϵ2|S̄|Rmax/Tϵ

− (TϵηR + (Tϵ−1)Tϵ
2

ηT |S̄|Rmax)/Tϵ−2(TϵηR + (Tϵ−1)Tϵ
2

(ηT +ϵ2)|S̄|Rmax)/Tϵ (3.175)

= Opt(
∏
M

(ϵ,Tϵ))−ϵ1 − (Tϵ−1)

2
ϵ2|S̄|Rmax

−ηR − (Tϵ−1)

2
ηT |S̄|Rmax −2ηR − (Tϵ−1)(ηT +ϵ2)|S̄|Rmax (3.176)

= Opt(
∏
M

(ϵ,Tϵ))−ϵ1 − (Tϵ−1)

2
ϵ2|S̄|Rmax

−3ηR − (Tϵ−1)

2
ηT |S̄|Rmax − (Tϵ−1)ϵ2|S̄|Rmax − (Tϵ−1)ηT |S̄|Rmax (3.177)

= Opt(
∏
M

(ϵ,Tϵ))−ϵ1 −3
(Tϵ−1)

2
ϵ2|S̄|Rmax −3ηR −3

(Tϵ−1)

2
ηT |S̄|Rmax (3.178)

= Opt(
∏
M

(ϵ,Tϵ))−ϵ1 −3
(Tϵ−1)

2
ϵ2|S̄|Rmax −3

g (ηT ,ηR )

Tϵ
(3.179)

= Opt(
∏
M

(ϵ,Tϵ))− 3

8
ϵ−3

(Tϵ−1)

2
ϵ2|S̄|Rmax −3

g (ηT ,ηR )

Tϵ
(3.180)

= Opt(
∏
M

(ϵ,Tϵ))− 3

8
ϵ−3

(Tϵ−1)

2

3ϵ

4|S̄|Rmax(Tϵ−1)
|S̄|Rmax −3

g (ηT ,ηR )

Tϵ
. (3.181)

= Opt(
∏
M

(ϵ,Tϵ))− 3

8
ϵ− 9

8
ϵ−3

g (ηT ,ηR )

Tϵ
. (3.182)

= Opt(
∏
M

(ϵ,Tϵ))− 3

2
ϵ−3

g (ηT ,ηR )

Tϵ
. (3.183)

In the step from (3.178) to (3.179) we use that g (ηT ,ηR ) = TϵηR + (Tϵ−1)Tϵ
2 ηT |S̄|Rmax.

Then, in the last steps, we define ϵ1 and ϵ2. In the step from (3.179) to (3.180) we
set ϵ1 = 3

8ϵ. And in the step from (3.180) to (3.181) we set ϵ2 = 3ϵ/(4|S̄|Rmax(Tϵ−1)).
The above assumed that the algorithm did not fail, but we cannot guarantee this

with probability 1 within a number of steps that is polynomial in the input. We
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will show that we can upper bound the probability of failure by δ. There are three
reasons why the algorithm could fail.

1. First, we need to show that the transition functions of M̄Y are within
ηT + ϵ2 of the transition functions of M̄ωX , with high probability. This
is to ensure that, once all the abstract state-action pairs are known, the
loss of value because of an inaccurate transition model, V ∗,Tϵ

M̄Y
−V ∗,Tϵ

M is

within 2g (ηT + ϵ2,ηR ) = 2TϵηR + (Tϵ−1)Tϵ(ηT + ϵ2)|S̄|Rmax by Lemma 3.11. We
can use the martingale concentration inequality to choose a number of
samples K1 so that the probability that our transition estimate is outside
the desired bound is less than δ

3|S̄||A| for every abstract state-action pair if

we sample each pair K1 times. By Lemma 3.10, we can guarantee this by

using K1 ≥ 2[ln(2|S̄|−2)−ln(δ/(3|S̄||A|))]
( 3ϵ

4|S̄|Rmax(Tϵ−1)
)2 = 32|S̄|2R2

max(Tϵ−1)2[ln(2|S̄|−2)−ln(δ/(3|S̄||A|))]
9ϵ2 . Then, by

applying the Union Bound on all |S̄|A pairs, we have that the total probability
that any transition function is outside the desired bound is less than δ/3.

2. Before we assumed that Rmax Pr(AM ) < ϵ1(= 3ϵ
8 ). Here we can show that after

K2 Tϵ-step trials where Rmax Pr(AM ) ≥ 3ϵ
8 , all the abstract state-action pairs are

visited at least K1 times (become known) with a probability of at least 1−δ/3
by using Hoeffding’s Inequality. Let Xi be the indicator variable that is 1 if we
visit an unknown abstract state-action pair in a trial, and 0 otherwise. For the
trials where

Rmax Pr(Xi = 1) ≥ 3ϵ

8

Pr(Xi = 1) ≥ 3ϵ

8
/Rmax,

we can use Hoeffding’s Inequality to establish an upper bound, we have:

Pr(
K2∑

i=1
((

3ϵ

8
/Rmax)−Xi ) ≥ K 2/3

2 ) = (3.184)

Pr(
3ϵ

8

K2

Rmax
−

K2∑
i=1

Xi ≥ K 2/3
2 ) ≤ e

− 2(K 2/3
2 )2

K2 ≤ e
− 2(K 2/3

2 )2

K2 = e−2K 1/3
2 , (3.185)

Pr(
3ϵ

8

K2

Rmax
−K 2/3

2 ≥
K2∑

i=1
Xi ) ≤ e−2K 1/3

2 . (3.186)

After K2 exploring episodes we want
∑K2

i=1 Xi , the number of visits to
unknown state-action pairs, to be K1|S̄||A|. So we can choose K2 such that
3ϵ
8

K2
Rmax

−K 2/3
2 ≥ K1|S̄||A|, and e−2K 1/3

2 ≤ δ/3 to guarantee that the probability of
failing to explore enough is at most δ/3.

3. Finally, the actual return may be lower than the expected return when we
perform a Tϵ-step trial where we do not explore. We use Hoeffding’s Inequality
to determine the number of steps K3 needed to ensure that the actual average
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return is within ϵ/2 of Opt(
∏

M (ϵ,Tϵ))− 3
2ϵ−3 g (ηT ,ηR )

Tϵ
. We need to choose K3

so that the probability of obtaining an actual return that is smaller than

the desired Opt(
∏

M (ϵ,Tϵ))−2ϵ−3 g (ηT ,ηR )
Tϵ

is at most δ/3 within K3 = Z |S̄|Tϵ
exploitation steps, with some number Z > 0. Let Xi denote the average
return in the i -th exploitation step and µ the average expected return in an

exploitation step so that µ is at least Opt(
∏

M (ϵ,Tϵ))− 3
2ϵ−3 g (ηT ,ηR )

Tϵ
. Then

Pr(
K3∑

i=1
(
µ−Xi

Rmax
) ≥ K 2/3

3 ) ≤ e
−2

(K 2/3
3 )2

K3 = e−2K 1/3
3 . (3.187)

This means that, with a probability of at most e−2K 1/3
3 , the average return for

K3 exploitation steps is more than Rmax

K 1/3
3

lower than µ:

Pr(
K3∑

i=1
(
µ−Xi

Rmax
) ≥ K 2/3

3 ) ≤ e−2K 1/3
3 , (3.188)

Pr(K3
µ

Rmax
−

K3∑
i=1

Xi

Rmax
≥ K 2/3

3 ) ≤ e−2K 1/3
3 , (3.189)

Pr(K3µ−
K3∑

i=1
Xi ≥ RmaxK 2/3

3 ) ≤ e−2K 1/3
3 , (3.190)

Pr(µ−
K3∑

i=1

Xi

K3
≥ Rmax

K 1/3
3

) ≤ e−2K 1/3
3 . (3.191)

We can now choose Z , so that ϵ/2 ≤ Rmax

(Z |S̄|Tϵ)
1
3

and e−2(Z |S̄|Tϵ)1/3 ≤ δ/3, to get the

desired result: with probability at most δ/3 the obtained value will be more
than ϵ/2 lower than the expected value.

The probability of failure is thus at most 3∗δ/3 = δ, and an average return at most

2ϵ+3 g (ηT ,ηR )
Tϵ

lower than Opt(
∏

M (ϵ,Tϵ)) will be obtained with a probability of at least
1−δ.

3.8.6. SIMULATOR DATA COLLECTION

Here we assume that we have access to a simulator and use this in our procedure
to give a guarantee in the form of the abstract L1 inequality from (3.21). To some
extent, this is not surprising, but to the best of our knowledge, this is the first
work that explicitly shows how to combine MBRL and abstraction using a simulator.
We assume that the simulator allows us to select (or move to) any state and draw
a sample from its transition function, which we call the independent samples
assumption:

Assumption 3.1 (Independent samples). We assume we can obtain independent
samples, e.g., for any state-action pair (s, a), we can draw samples directly from its
transition function T (·|s, a).
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Algorithm 2 Procedure: MBRLAO

Input: M ,φ,δ,ϵ,π
Ȳ = COLLECTSAMPLES(M ,φ,δ,ϵ,π)
The sampling results in sequences Ȳs̄,a , one for every pair (s̄, a):
Ȳs̄,a =φ(s′(1)), · · · ,φ(s′(m))
= s̄′(1), · · · , s̄′(m)

for all (s̄, a, s̄′) ∈ S̄ × A× S̄ do
T̄Y (s̄′|s̄, a) = 1

m

∑m
i=11{Ȳ (i )

s̄,a = s̄′}
end for
M̄Y ≜ 〈S̄, A, T̄Y , R̄,γ〉
π̄∗

Y = Value Iteration(M̄Y )
Apply π̄∗

Y to M

Algorithm 3 COLLECTSAMPLES with Simulator

Input: M ,φ,δ,ϵ
κ= δ

|S̄||A|
m = ⌈ 2[ln(2|S̄|−2)−ln(κ)]

ϵ2 ⌉
for all (s̄, a) ∈ S̄ × A do

Ȳs̄,a = [ ]
x s̄,a = select a prototype state s ∈ s̄
for i = 1 : m do

s′ = Sample(T (·|x s̄,a , a))
Ȳs̄,a .append(φ(s′))

end for
end for
Return: all Ȳs̄,a

If a simulator of the MDP is available, this is a reasonable assumption. For every
pair (s̄, a), the simulator sampling procedure (Algorithm 3) selects a prototype x s̄,a ∈ s̄
from which to sample. We define a weighting function ωX (s, a) that has a weight of
1 if s is the prototype x s̄,a and 0 otherwise:

∀(s̄,a),s∈s̄ ωX (s, a)≜1{s = x s̄,a}. (3.192)

Then we use this ωX to define the abstract transition function T̄ωX according to
(3.10). T̄ωX (s̄′|s̄, a) =∑

s′∈s̄′ T (s′|s = x s̄,a , a). This way, the samples we collect for one
pair (s̄, a) are i.i.d. They are independent because of Assumption 3.1 and identically
distributed because we sample from the prototype. Because the samples are i.i.d.,
we can use Lemma 3.1. We show that, with the simulator we can combine MBRL
with abstraction and still learn an accurate model. We can guarantee that T̄Y will be
close to T̄ωX , with a high probability:

Theorem 3.5. Under assumption 3.1, following the procedure in Algorithm 1, with
the data collection from Algorithm 3 and inputs |S̄|, A,ϵ, and δ. For T̄Y constructed
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by the algorithm, we have that with probability 1−δ, the following holds:

∀(s̄,a) ||T̄Y (·|s̄, a)− T̄ωX (·|s̄, a)||1 ≤ ϵ. (3.193)

PROOF OF THEOREM 3.5

Before starting with the actual proof, we first go over Algorithm 3 and give two
lemmas the proof uses.

The agent will draw samples using the simulator as described in Algorithm 3.
Since we assume we can sample directly from the transition functions T (·|s, a), this
algorithm loops over all pairs (s̄, a) and samples m times10 from each transition
function. More formally, for every pair (s̄, a), the algorithm selects one prototype
state x s̄,a = s ∈ s̄. Then, it loops over every pair (s̄, a) and samples m transitions from
T (·|x s̄,a , a). The set of collected experiences for each abstract state-action pair (s̄, a)
is represented by Ȳs̄,a , as defined by (3.15).

Given Ȳs̄,a , we define the learned model T̄Y (·|s̄, a) according to (3.16), T̄ωX

according to (3.19), and ωX according to (3.192). It follows from Lemma 3.1
that we can derive a number of samples that we require to guarantee that
Pr(||T̄Y (·|s̄, a)− T̄ωX (·|s̄, a)||1 ≥ ϵ) ≤ κ is true for inputs κ and ϵ:

Lemma 3.13. For inputs κ and ϵ (0 < κ < 1,0 < ϵ < 2), we have that the following

holds for m ≥ 2[ln(2|S̄|−2)−ln(κ)]
ϵ2 :

Pr(||T̄Y (·|s̄, a)− T̄ωX (·|s̄, a)||1 ≥ ϵ) ≤ κ. (3.194)

Proof. To shorten the notation, we use the definitions PY ≜ T̄Y (·|s̄, a) and
PωX ≜ T̄ωX (·|s̄, a). From Lemma 3.1, we have that

Pr(||PY −PωX ||1 ≥ ϵ) ≤ (2|S̄|−2)e−
1
2 mϵ2

. (3.195)

We need to select m such that κ≥ (2|S̄|−2)e−
1
2 mϵ2

:

κ≥ (2|S̄|−2)e−
1
2 mϵ2

(3.196)
κ

2|S̄|−2
≥ e−

1
2 mϵ2

(3.197)

ln(κ)− ln(2|S̄|−2) ≥−mϵ2

2
(3.198)

mϵ2

2
≥ ln(2|S̄|−2)− ln(κ) (3.199)

m ≥ 2[ln(2|S̄|−2)− ln(κ)]

ϵ2 (3.200)

Thus, if m ≥ 2[ln(2|S̄|−2)−ln(κ)]
ϵ2 we have

Pr(||PY −PωX ||1 ≥ ϵ) ≤ κ.
10The value of m in Algorithm 3 is chosen based on the results further along in this section.
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Using the Union bound, we can give a lower bound on the probability that
T̄Y (·|s̄, a) and T̄ωX (·|s̄, a) are ϵ close for every (s̄, a):

Lemma 3.14. If

∀(s̄,a)
[

Pr(||T̄Y (·|s̄, a)− T̄ωX (·|s̄, a)||1 ≥ ϵ)
]≤ δ

|S̄||A| (3.201)

then the following holds with a probability of at least 1−δ:

max
(s̄,a)

[||T̄Y (·|s̄, a)− T̄ωX (·|s̄, a)||1
]≤ ϵ. (3.202)

Proof. We define

∆s̄,a ≜ ||T̄Y (·|s̄, a)− T̄ωX (·|s̄, a)||1. (3.203)

Then Pr(max(s̄,a){∆s̄,a ≥ ϵ}) is the probability that ∆s̄,a ≥ ϵ for at least one abstract
state-action pair. From the union bound, it follows that Pr(max(s̄,a){∆s̄,a ≥ ϵ}) ≤ δ:

Pr(max
(s̄,a)

{∆s̄,a ≥ ϵ}) ≤∑
s̄,a

Pr(∆s̄,a ≥ ϵ) (3.204)

≤∑
s̄,a

δ

|S̄||A| (3.205)

= δ. (3.206)

It follows that Pr(max(s̄,a){∆s̄,a ≤ ϵ}) ≥ 1 − δ since Pr(max(s̄,a){∆s̄,a ≤ ϵ}) = 1 −
Pr(max(s̄,a){∆s̄,a ≥ ϵ}). Thus the probability that (3.202) holds is at least
1−δ.

Now we are ready to proof Theorem 3.5:

Proof of Theorem 3.5. By Assumption 3.1, and the earlier assumption that |S| and |A|
are finite, we have that we can obtain m samples in finite time for every abstract
state-action pair and any m > 0. Given the inputs |S̄|, A,ϵ, and δ, Algorithm 3

sets m = ⌈ 2[ln(2|S̄|−2)−ln(κ)]
ϵ2 ⌉, where κ= δ

|S̄||A| . Then, for every (s̄, a), a prototype state

x s̄,a = s ∈ s̄ is selected. We use (3.192) to define ωX and (3.19) to define T̄ωX .
For all (s̄, a), Algorithm 3 obtains a sequence Ȳs̄,a by sampling from the transition

function from the prototype state x s̄,a and Algorithm 2 constructs the empirical
transition functions as in (3.16).

Given our choice of m and the inputs κ= δ
|S̄||A| and ϵ, it follows from Lemma 3.10

that

∀(s̄,a) Pr(||T̄Y (·|s̄, a)− T̄ωX (·|s̄, a)||1 ≥ ϵ) ≤ δ

|S̄||A| . (3.207)

By the union bound, we have that the following holds with a probability of at least
1−δ:

∀(s̄,a) ||T̄Y (·|s̄, a)− T̄ωX (·|s̄, a)||1 ≤ ϵ. (3.208)





4
ABSTRACTION FOR BAYESIAN RL IN

FACTORED POMDPS

Bayesian reinforcement learning provides an elegant solution to addressing the
exploration–exploitation trade-off in Partially Observable Markov Decision Processes
(POMDPs) when the environment’s dynamics and reward function are initially
unknown. By maintaining a belief over these unknown components and the state,
the agent can effectively learn the environment’s dynamics and optimize their policy.
However, scaling Bayesian reinforcement learning methods to large problems remains
to be a significant challenge. While prior work has leveraged factored models and
online sample-based planning to address this issue, these approaches often retain
unnecessarily complex models and factors within the belief space that have minimal
impact on the optimal policy. While this complexity might be necessary for accurate
model learning, in reinforcement learning, the primary objective is not to recover the
ground truth model but to optimize the policy for maximizing the expected sum of
rewards. Abstraction offers a way to reduce model complexity by removing factors that
are less relevant to achieving high rewards. In this work, we propose and analyze the
integration of abstraction with online planning in factored POMDPs. Our empirical
results demonstrate two key benefits. First, abstraction reduces model size, enabling
faster simulations and thus more planning simulations within a fixed runtime.
Second, abstraction enhances performance even with a fixed number of simulations
due to greater statistical strength. These results underscore the potential of abstraction
to improve both the scalability and effectiveness of Bayesian reinforcement learning in
factored POMDPs.

Parts of this chapter have been published in Transactions on Machine Learning Research [55].
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4.1. INTRODUCTION

Deep reinforcement learning methods have achieved significant milestones, such
as attaining superhuman performance on Atari games with only 100k frames [79],
solving highly complex games such as Go [146], and achieving high performance in
simulated control tasks [147]. Most of these achievements rely on recent function
approximation advances made with the work on deep neural networks. However,
despite these advances, Reinforcement Learning (RL) still faces critical hurdles that
must be addressed to enable its application in diverse real-world scenarios. One of
the most pressing challenges is the high sample complexity of deep RL methods,
which remains problematic in real-world applications where data collection is
expensive, difficult, or dangerous. Fortunately, many such applications offer prior
knowledge that can be leveraged to reduce sample complexity. To effectively utilize
this knowledge, it is crucial to move away from the tabula rasa approaches of
neural networks and incorporate domain-specific prior knowledge into the learning
process [56–58].

Another critical challenge is exploration, which is strongly tied to sample
complexity. Effective exploration of unknown and interesting parts of the
environment is essential in almost every application. A better exploration strategy
means faster learning and improved sample efficiency. Importantly, in RL, an agent
must balance exploration (i.e., learning) with exploitation (i.e., maximizing reward).
Most deep RL methods rely on heuristics for exploration, which can perform poorly
in complex domains [66]. These challenges are particularly pronounced in partially
observable environments, where agents must make decisions based on limited
information.

Model-based Bayesian RL (BRL) [59] offers a principled approach to addressing the
exploration-exploitation trade-off by maintaining a belief over the environment’s state
and dynamics. This belief enables the agent to balance the exploration–exploitation
trade-off effectively. In this work, we build on the Factored Bayes-Adaptive POMDP
(FBA-POMDP) framework [60, 61], a model-based BRL approach that combines
partial observability and structured factored models. FBA-POMDPs incorporate
factorized representations of the environment’s dynamics, allowing agents to exploit
problem structure for improved scalability. Additionally, thanks to its Bayesian
nature, prior knowledge can be incorporated into FBA-POMDPs in a principled way
via Bayesian priors, further improving sample efficiency.

Despite its advantages, the FBA-POMDP framework faces significant challenges.
While factorization enables better generalization, the inclusion of irrelevant state
factors in the model can lead to unnecessarily large model spaces. This
increases computational demands during planning and reduces statistical strength
by hypothesizing dependencies that are irrelevant to maximizing rewards. For
instance, in a cluttered environment, an agent may only need to consider the
positions of objects to navigate effectively, while features such as their colors or
shapes are irrelevant for the reward. Abstracting away such unnecessary details can
simplify the model space, improve computational efficiency, and enhance learning
performance. Previous studies have demonstrated that even lossy abstractions can
improve performance in planning [148, 149]. This is because simplified models



4.2. BACKGROUND

4

73

can generate more simulations within a fixed runtime, potentially leading to better
results in sampling-based online planning. Motivated by this insight, we propose
incorporating abstraction into the FBA-POMDP framework to improve scalability and
learning efficiency.

We focus on discrete Factored POMDPs (F-POMDPs) and explore the application
of abstraction within the FBA-POMDPs framework to enhance planning efficiency,
scalability, and learning performance. To achieve this, we augment Factored
BA-POMCP (FBA-POMCP) [60, 61], an established online planning and learning
algorithm for FBA-POMDPs, to incorporate multiple levels of abstraction. This
contribution addresses abstraction discovery in the partially observable reinforcement
learning setting, where the lack of access to the true model and the complexity of
dealing with partial observability make the creation and utilization of abstractions
both important and challenging.

We base ourselves on a previous abstraction method for planning in fully
observable factored Markov decision processs (MDPs) [135]. It creates abstractions
automatically based on the problem’s structure, enabling agents to plan and learn
more effectively. Our approach extends this idea to a partially observable learning
setting, where the underlying dynamics are not known beforehand, introducing
additional complexities. In this setting, the combination of an unknown model,
partial observability, and inherent inexactness of approximate abstractions makes it
difficult to evaluate abstractions in advance, making the ability to dynamically update
abstract models during learning crucial. To address this challenge, we propose to
automatically construct abstractions based on the hypothesized connectivity of state
factors to the reward function and leverage the Bayes-adaptive framework to adapt
the abstract model over time. A key feature of our approach is its ability to maintain
a belief over multiple candidate structures and their corresponding abstract models,
ensuring consistent belief updates of the (abstract) models.

Our work represents a novel step toward combining abstraction with BRL in
F-POMDPs. Empirically, we demonstrate that abstraction improves performance in
two critical ways: (1) by reducing model size, allowing for more simulations within
a given computation time, and (2) by simplifying the learning problem, leading
to faster learning and improved performance in fewer episodes. These findings
highlight the potential of abstraction to address key challenges in BRL for F-POMDPs
and open a promising direction for future research into leveraging abstractions
to improve scalability, exploration, and decision-making in complex, real-world
environments.

4.2. BACKGROUND

In this section, we introduce the rich body of literature that our work builds upon.
In particular, Section 4.2.1 introduces the POMDP as the general mathematical
model for sequential decision-making. We then describe (model-based) Bayesian
reinforcement learning in factored POMDPs in Section 4.2.2, which is a (belief-space)
Partially-observable Markov decision process itself. Lastly, we discuss algorithmic
approaches for solving these decision problems in Section 4.2.3.
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4.2.1. POMDPS AND FACTORIZATION

Sequential decision-making in stochastic domains with hidden states can be
formalized as a POMDP [19, 150]. The POMDP is defined by the tuple
(S,A,O,D,R,γ, H), where S, A, and O are the (discrete) set of states, actions,
and observations, respectively. The dynamics D specify the system’s transition
probabilities D ∈D: (S×A) →∆(S×O), and R: (S×A×S) →R is the reward function.
The (maximum) number of time steps in an episode is the horizon H ∈ Z, and
γ ∈ [0,1] is the discount factor.

The goal of the agent is to maximize the discounted return,
∑

t γ
t rt . To

do so, it can use the observable action (a ∈ A) and observation (o ∈ O) history
ht = (a0,o1, . . . , at−1,ot ), or it can use the belief as a sufficient statistic. The belief
is the probability distribution over the current state b ∈ B: ∆S, which can be
updated with Bayes’ rule: b′(s′) = τ(b, a,o)(s′) ∝∑

s D(s′,o|s, a)b(s). However, in most
problems, the computation of the belief update is intractable. Section 4.2.3 will
cover how to find a solution.

Running Example As a simple intuitive example, consider the Corridor domain
shown in Figure 4.1a. The agent starts at the “Start” location and its goal is to reach
the “Reward” location. As depicted in the figure, there is also a “Boots” location and
a “Button” location. To reach the reward the “Door” must be open. There is also
always a “Person” present in the environment. There are 8 different persons, with
exactly one present during each episode. The probability of the person opening the
door at some point during an episode varies depending on which person is present,
but this probability is generally very low, ranging from about 1.25% to 10%. The
agent cannot interact with the person.

The state consists of the location of the agent, the person present and the binary
statuses of the boots, button, and door. The agent has four actions: move left or
right, put on boots, push button, and lock pick the door. Moving left or right succeeds
30% of the time without boots and 95% of the time with boots. The probability of
success for both put on boots and push button is 90%, provided the agent is in the
correct location. When the button is pressed, there is a 100% chance that the door
opens. The lock pick action only has an effect when the agent is standing next to
the door and has a 40% chance of success. The agent can also open the door by
“bashing” into it, specifically by using the move right action to collide with the door.
This method is not very effective and has only a 5% chance of opening the door.
The state is not fully observable to the agent; instead, it receives a noisy observation,
which will be explained later.

Factorization The dynamics of POMDPs can often be captured efficiently through
factorization and graphical models, such as Dynamic Bayes networks (DBNs) [151,
152]. Throughout this work, the graphical model we rely on is specifically a
two-stage DBN [151]. Such models represent random variables by their features
(also referred to as factors) and provide the ability to capture independence between
these features. We assume that the full set of state factors and their (discrete) set of
possible values is known.
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Figure 4.1: a) The Corridor domain. b) ground truth graph representing the dynamics
of the Corridor domain for the action right. All the factors are partially
observable, the agent gets an independent but noisy observation of each
state factor. c) The abstract models for different levels of abstraction
(denoted by k0,k1,k2), constructed from the true Corridor DBN for the
action right. d) We use particle filters to represent the belief, each particle
contains a DBN of the corridor, this is an example of such a DBN, and e)
the abstract models constructed from this example DBN.

A Bayes network (BN) is defined by a topology and conditional probability tables
(CPTs). The topology G ∈G describes the structure of the nodes in the graph, whether
there is a dependency between pairs of nodes, where G is the set of all possible edge
configurations. These directed edges define the parents Pa(x ′

i ;G) of each node x ′
i as

the set of incoming nodes (where we typically drop the dependency on the topology
G in the notation). The CPTs θ ∈Θ govern the conditional probability distribution
of a node x ′

i given the full set of nodes x : p(x ′
i |x) = p(x ′

i |Pa(x ′
i ;G);θi ).1 In discrete

environments, for example, these typically are categorical distributions; one for each

1Here, x denotes the full set of nodes, and Pa(x′i ;G) ⊆ x is the subset that directly influences x′i .
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parent value combination for each node. The Dynamic BN (DBN) restricts the space
of graph topologies by allowing only directed edges from variables at one time step
to variables at the next. This is convenient for (Markovian) dynamic systems, where
random variables change over time. The Factored POMDP (F-POMDP) factorizes the
state and observation space into nodes and describes the dynamics with a DBN for
each action [150] (e.g., see Figure 4.1 as a DBN of the running example). In this
work, we propose to learn abstract models that remove factors from the graph based
on the reward node’s dependency on them.

Bayesian inference over DBNs When the parameters of a model are not given, the
Bayesian approach is to assume a prior (to compute posteriors) instead. The DBN is
defined by — and thus a prior must describe a probability distribution over — its
topology and CPTs. The prior over the topology assigns a (prior) probability to each
graph structure: the probability that a next state and observation factor depends on
a current state factor. The CPTs are categorical distributions and, hence, the Dirichlet
distribution is a natural prior [153]. Dirichlet distributions are parameterized by
a collection of conditional count tables (CCCT), with one conditional counts table
(CCT) χ ∈ X for each unique set of parent values for each node.

Given initial counts specified by a prior and data from a categorical distribution,
the posterior is again a Dirichlet (with new counts CCCT). In particular, given a
topology G , prior CCCT and a new data point (x, x ′), the Bayesian posterior is
computed by incrementing the count χx′

i ,x[Pa(x′
i )] of each node x ′

i that is associated

with its parent’s values x[Pa(x ′)]. This incrementing operation on POMDP transitions
will be used frequently and we denote updating counts χ ∈ X given a transition
(s, a, s′,o) with U : (X ×S×A×S×O) → X . Note that there is no closed-form solution
to the posterior over topologies.

4.2.2. FACTORED BA-POMDPS

If the state transitions were not hidden, one could simply maintain a set of the
counts CCTs associated with each transition and over time converge to the true
dynamics. This is the case under full observability (MDPs), and is called the
Bayes-Adaptive MDP (BA-MDP) [21]. Unfortunately, this is not the case in partially
observable environments2, and hence, there is uncertainty over these counts χ.

The Factored Bayes-Adaptive POMDP (FBA-POMDP) [61] captures this uncertainty
by using the POMDP formalism. In particular, this Bayes-adaptive model is a
POMDP whose state space consists of both the state and the dynamics of the
original POMDP [59]. Formally, the FBA-POMDP is a tuple (Ṡ,A,O,Ḋ,Ṙ,γ, H), where
Ṡ is the augmented state space: Ṡ=S×G×X . I.e., each (hyper-)state ṡ ∈ Ṡ contains
a domain state s, a topology G , and a CCCT χ: ṡ = 〈s,G ,χ〉.3 The action and
observation spaces, the horizon, and the discount factor are taken directly from

2In an MDP we see the whole transition (s,a,s’), so we can update the count χ(s, a, s′). In contrast,
both s and s′ are hidden in the partially observable case. So we have to update χ(s, a, s′) based on
our belief resulting from the action-observation history rather than the real transitions.

3In Section 4.3, we extend these hyperstates to incorporate an abstract model, comprising an abstract
topology Ḡ and a corresponding abstract set of counts χ̄.



4.2. BACKGROUND

4

77

the original POMDP. Similarly, the reward function relies on the underlying system:
Ṙ(ṡ, a, ṡ′) = R(s, a, s′). Note that, while this function is typically assumed known
in BRL, we also conduct experiments in which this too is uncertain. Lastly, the
dynamics Ḋ dictate how augmented states transition:

Ḋ = p(s′,o,G ′,χ′|s, a,G ,χ) (4.1)

= p(s′,o|s, a;G ,χ)1G (G ′)1χ′ (U (χ, s, a, s′,o)), (4.2)

where p(s′,o|s, a;G ,χ) can be written as:

p(s′,o|s, a;G ,χ) = p(s′|s, a;G ,χ)p(o|a, s′;G ,χ). (4.3)

In (4.2) the term p(s′,o|s, a;G ,χ) shows that the model (G ,χ) in state ṡ determines
the probabilities of the next state s′ and observation o. The 1·(·) is the indicator
function, and encodes that there is only one non-zero transition, namely where the
next topology equals the previous G ′ =G and the next counts are increments of the
previous according to U . Since the POMDP is fully specified, the original learning
problem is cast to a planning problem with known dynamics, given a prior pD .
Most importantly, the exact solution to this planning problem yields the optimal
policy, in terms of exploration-exploitation, with respect to the prior [59]. Now we
can apply our standard POMDP planning tools (e.g., particle filtering, planning) to
FBA-POMDPs, as anytime solvers provide good approximations which converge to
the exact solution in the limit of infinite compute [60, 61, 154].

4.2.3. SOLVING FBA-POMDPS

Unfortunately, FBA-POMDPs are very large, and naive applications of planning
techniques will fail. Specifically, methods that require exact belief updates cannot
be directly applied, as these updates are only feasible with a finite POMDP
representation, which is impractical for large problems. This limitation makes
it difficult to apply traditional POMDP planning methods without significant
modifications. We give a high-level description of how solutions for FBA-POMDPs
can be found, and refer to the original work [60, 61] for details. Just like in any other
POMDP, a planning solution requires two components: belief tracking and action
selection.4

Belief tracking in the FBA-POMDP The belief, the posterior over the current state,
is a probability distribution over the POMDP state and its distribution b ∈∆(S×D)
given the observed history ht = (a0,o1, . . . , at−1,ot ). Unfortunately, the computation
of the belief update is intractable in most problems. Thus, the belief is often
approximated with particles instead [155]. A particle filter represents a distribution
through particles, which in this case represent FBA-POMDP states, specifically each
particle is a weighted FBA-POMDP state (w, s,G ,χ) with (unnormalized) weight
w ∈ R+. There are numerous sampling mechanisms for updating the belief given a

4The original POMCP [154] implementation combined these steps to some extent, but we separate
them out.
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new action-observation pair [155], but in this work we applied sequential importance
sampling and re-invigorate the belief with a Metropolis-Hastings-within-Gibbs
sampling procedure [61] when necessary (details in Appendix 4.8.1). The initial
particles are sampled from a prior belief, which may encode varying degrees of
domain knowledge. Across experiments, we consider different settings in which parts
of the DBN structure or certain CPTs are assumed to be known, while others are
learned from data. Details on the prior knowledge used in the experiments can be
found in Sections 4.4 and 4.8.4.

Action selection in the FBA-POMDP Even with approximated belief updates, the
belief space can be very large, especially in high-dimensional problems. Thus it is
often infeasible to compute the action that maximizes the discounted return for
every possible belief the agent could end up in. As a result, we extend the planner for
FBA-POMDP [61] to pick actions online instead. Like any Monte Carlo Tree Search
(MCTS) method, this method incrementally builds a look-ahead tree of simulated
interactions in the (FBA-POMDP) environment. Each iterations samples a (hyper)
state (s,G ,χ) ∼ b and simulates an interaction in the FBA-POMDP, where actions
are picked according to Upper Confidence Bounds Applied to Trees (UCT) [156]
to trade-off exploration and exploitation. For more details, see [157] for a survey
on MCTS, [154] for MCTS in POMDPs, and [60, 61] for MCTS in Bayes-Adaptive
POMDPs (BA-POMDPs).

4.2.4. STATE ABSTRACTION FOR (FACTORED) MDPS

State abstraction can be used to simplify complex problems by mapping the original
state space to a smaller abstract state space [15]. This mapping is defined by
an abstraction function φ, which maps each state s to an abstract state s̄, where
the bar notation indicates the abstract state space. Related to our abstraction
approach is the notion of model-similarity abstraction. This comes in both an exact
form, model-irrelevance abstraction [15], and an approximate form, approximate
model-similarity abstraction [16]. These abstractions are also known as (approximate)
stochastic bisimulation [75, 134].

In the exact case, states are grouped if and only if they yield identical rewards
and transition functions in the abstract space under all actions. Formally, in a
model-irrelevance abstraction, φ(s1) =φ(s2) if and only if

∀a∈A R(s1, a) = R(s2, a), (4.4)

and ∀s̄′∈S̄ T (s̄′|s1, a) = T (s̄′|s2, a), (4.5)

where the transition probability to an abstract state s̄′ is given by T (s̄′|s, a) :=∑
s′∈s̄′ T (s′|s, a). In the approximate case, these equalities are relaxed, requiring that

the reward functions and transition probabilities to any abstract state s̄′ differ by
no more than a small parameter η. Exact abstractions preserve optimality, that
is, a solution in the abstract MDP is an optimal solution in the original MDP.
Approximate abstractions do not preserve optimality, but have a bounded loss in
value based on the value of η [16].
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In Factored MDPs (F-MDPs), Dearden and Boutilier [135] suggest leveraging the
structure of the problem to remove factors which are less relevant or irrelevant. An
abstract MDP can be constructed from the remaining factors. Such an abstraction
can be viewed implicitly as a mapping function φ, where each configuration of the
retained factors defines an abstract state, and all corresponding combinations of the
removed factors are mapped to this same abstract state.

4.3. ABSTRACTION FOR FBA-POMCP
FBA-POMCP is able to learn and exploit the structure in POMDPs in a Bayesian way.
However, it struggles when the number of factors grows large. On the one hand,
the presence of many state factors itself slows down sampling, potentially leading to
insufficient simulations to derive adequate actions. On the other hand, the prior
belief over models with many state factors typically have low probability for models
in which all factors have a small number of parents. As a consequence, the particle
filter typically contains models that have at least a few factors with many parents.
This leads to slow learning (low statistical strength) and possibly to exploration of
factors with little or no effect on the rewards. These issues are problematic because
our primary focus is on the task performance, rather than on learning the correct
model itself.

A natural idea, therefore, is to explore in how far abstraction can address these two
issues. While abstractions could lead to inaccurate models, in the regular (non-Bayes
adaptive) planning case, it has been demonstrated that abstracting away factors with
a weak influence can still improve the performance of online planning [148]. Further,
without abstraction, the agent could waste time exploring the dynamics of factors
with little impact on the performance, if they are falsely believed to be influential. By
removing these factors, abstraction can reduce unnecessary exploration and focus on
the factors relevant for performance. As such, we propose to explore the impact that
abstraction of state factors can have when learning in partially observable settings,
formalized as FBA-POMDPs.

Specifically, we propose to perform the Partially Observable Monte-Carlo Planning
(POMCP) simulations with an abstracted FBA-POMDP model. We hypothesize
that such abstraction can improve performance by 1) increasing the number of
simulations that can be done thus improving performance in online planning, and
2) reducing unnecessary exploration of factors with little impact on the performance,
and allowing to focus exploration on the relevant factors.

We cover the combination of abstraction with FBA-POMCP in four parts. First,
we give a high-level overview of the abstraction method and how it is added to
FBA-POMCP. Second, we define abstractions on different levels, denoted by k0,k1, ...,
where k0 represents the coarsest abstraction. We define these through subsets of state
factors and show how to generate a subset of state factors from a graph structure
for a particular level of abstraction. Third, we show how to use the subset of state
factors to construct the abstract structure and counts. Finally, we provide theoretical
support for the combination of FBA-POMCP with abstraction.
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4.3.1. ADDING ABSTRACTION TO FBA-POMCP
We propose a method to enable the FBA-POMDP framework to benefit from
abstraction. Specifically, we use abstract models for online planning with a variant
of FBA-POMCP. To operationalize this, we cover the following steps:

1. We expand the representations to include abstract states.

2. While we do not exploit abstraction in the belief update, the abstracted belief
state still needs to be updated. We cover the necessary modifications to the
belief update process.

3. Finally, we explain how FBA-POMCP can use abstracted states.

Expanding the Belief Representation When initializing the weighted particle filter
in FBA-POMCP, each particle is a hyper-state ṡ = 〈s,G ,χ〉 associated with a weight
w . The hyper-state ṡ contains a ground state s, a graph structure G , and a set of
counts χ. For the initialization we require a probability distribution over the possible
starting states, over the possible structures, and a probability distribution over the
counts given a structure. For the running example, Figure 4.1d shows a possible
structure of a hyper-state, in this case the factor Door is not believed to influence
the x factor, and the factor Button is not believed to influence the Door factor.
When combining FBA-POMCP with abstraction, we abstract G and χ and add the
resulting abstracted structure Ḡ and counts χ̄ to each hyper-state ṡ. This leads to
an abstract hyper-state: s̄ = 〈ṡ,Ḡ , χ̄〉. The particle filter thus stores both the original
hyper-state ṡ and the abstracted structure Ḡ and counts χ̄. The construction of the
abstract hyper-states is done during the initialization of the particle filter, as shown
in Algorithm 4.

For our running example, Figure 4.1e illustrates the structure Ḡ for different
levels of abstraction, corresponding to the original structure G in Figure 4.1d. In
Algorithm 4, the function Abstract creates the abstract model from a hyper-state ṡ,
as detailed in Algorithm 5. In the following sections we elaborate on the methods for
selecting a subset based on the level of abstraction k and on creating the abstract Ḡ
and χ̄.

The Belief Update Process To ensure consistency of the belief, we use the full
model (G and χ) during the belief update [18, 61], as described in Sections 4.2.2
and 4.2.3. This means that the belief update process remains largely the same. The
main difference is that we now track and update both the full and abstract models,
as shown in Algorithm 6. As in Section 4.2.2, the graph structures of both the full
and abstract models stay the same during the update. The counts χ are updated via
U . Since each state maps to exactly one abstract state, the abstract counts χ̄ can
be updated through the update of the counts χ. Essentially, the (abstract) graphs
remain unchanged, while the (abstract) counts are updated.

Using Abstracted States in FBA-POMCP The planning process exclusively uses
abstract models. Specifically, in Algorithm 11, the abstract representation is used
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Algorithm 4 Initialize Abstract Particle
Filter

1: Input: p ṡ0 : prior over initial state
n: number of desired particles
k: abstraction level

2: for i ∈ 0, . . . ,n do
3: 〈si ,Gi ,χi 〉 ∼ p ṡ0

4: 〈s̄i ,Ḡi , χ̄i 〉← Abstract(k,〈si ,Gi ,χi 〉)
5: wi ← 1

n
6: end for
7: return {s̄i ,Ḡi , χ̄i , wi }n

i=0

Algorithm 5 Abstract

1: Input: k: abstraction level
ṡ = 〈s,G ,χ〉: hyper-state

2: Q ← GetSubsetK(k,G)
3: Ḡ ←G
4: χ̄←χ

5: for (q, a) ∈Q × A do
6: Ḡ , χ̄← q .MarginalizeCounts(Ḡ , χ̄,Q, a)
7: end for
8: for x ∈G −Q do
9: Ḡ .remove(x) // Remove

factor
10: χ̄.remove(x) // Remove

factor
11: end for
12: return 〈ṡ,Ḡ , χ̄〉

to perform the environment Step function, which is utilized during simulations and
roll-outs in the look-ahead tree search. The Step function uses the hyper-state with
the abstract model and an action to sample a next abstract state by iteratively
sampling the factors. It is shown in Appendix 4.8.2.

The benefit of using an abstract model is that it speeds up planning since it
contains fewer state factors, allowing for fasting sampling of the next state. When
there is limited time for planning, this is one way in which abstraction can improve
performance. It is important to note that the abstract models are constructed at the
beginning of the agent’s lifetime, when its belief is initialized. As a result, these
abstract models are always available.

4.3.2. ABSTRACTION VIA SUBSETS OF STATE FACTORS

We introduce a method for performing abstraction in the Bayesian RL (BRL)
context. Since we are interested in understanding how abstraction impacts the
learning process, we base our approach on a relatively simple planning method for
F-MDPs [135], which is easy to understand and analyze. We make three important
adaptations: 1) we make it applicable to partially observable problems, 2) we extend
it to the RL setting, where the abstraction is not only used for planning but also for
learning, and 3) we incorporate the counts required in BRL. Our approach introduces
a level of abstraction that determines the factors to include based on the graph
structure.

We define different levels of abstraction based on their connection to the reward
in the graph structure. Each abstraction level is defined by a set of state factors that
is included in the model, observation factors are always kept in the model. After
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Algorithm 6 SIS with Abstraction

1: Input: {ṡ,Ḡ , χ̄, w}n
i=0: current

(weighted) filter
a,o: action and observation

2: for i ∈ 0, . . . ,n do
3: s′i ∼ p(·|si , a;Gi ,χi )
4: w ′

i ← wi ×p(o|s′i , a;Gi ,χi )
5: χ′i ←U (χi , si , a, s′i ,o)
6: χ̄′i ← Ū (χ̄i , si , a, s′i ,o)
7: end for
8: // Normalize & re-sample
9: return {s′i ,Gi ,χ′i ,Ḡi , χ̄′i w ′

i }n
i=0

Algorithm 7 GetSubsetK

1: Input: k: abstraction level
G : Graph structure.

2: Q ← GetMinimumSet() // k0, the IR
factors

3: if k == 0 then
4: return Q
5: end if
6: Q ′ ←Q
7: for L = 1; L ≤ k; L++ do
8: for (q, a) ∈Q × A do
9: Q ′ ← Q ′ ∪

G .getNode(q, a).parents()
10: end for
11: Q ←Q ′
12: end for
13: return Q

abstraction, this can lead to observation factors without parents, we explain how
we deal with this in Section 4.3.3. We start building abstractions from the factors
directly influencing the reward, the immediately relevant factors (IR). We first give a
formal definition and then illustrate it with an example.

Definition 4.1. The set of immediately relevant factors (IR) contains only the factors
q ∈G that directly influence the reward. Specifically, these are the factors that are
parents of the reward, denoted as Pa(reward). The smallest subset of state factors
k0 is equal to IR, k0 = IR. The set ki is the smallest set such that the following holds:

1. ki−1 ⊆ ki .

2. If q ∈ ki−1 then Pa(q) ∈ ki .

The set kinf refers to the full model.

In the running example, we see an example of a structure in Figure 4.1d. In this
problem, the agent only receives a reward when it is in the goal location, i.e., x = 4.
This is reflected in the graph structure where the only parent factor of the reward
is x. In this case, x is the only IR factor and the abstraction k0 only contains x
as shown in Figure 4.1e. To construct the subset of state factors for kn , we add
the parents of the factors in kn−1. So to see which factors to include in k1 in this
example, we check in Figure 4.1d which factors are parents of x. In this case, that
is only Boots. Finally, for k2, no new factors are added since in the structure in
Figure 4.1d the parents of Boots do not include any factors not yet in the set of k1.

The procedure to get the subset of state factors for a given level of abstraction k
and a particle (or hyper-state) ṡ is shown in Algorithm 7. First, it initializes a set Q
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with the set IR, retrieved with GetMinimumSet. For abstraction level k0, this is what
is returned immediately. For higher levels, it then builds the subset incrementally
by adding the parents of the factors in Q. That is, to construct the subset of state
factors kn , it starts with kn−1 and then adds the parents of these factors.

When the reward function is known, the function GetMinimumSubset directly
returns the set IR. When the reward function is unknown, the reward itself is also
modeled as a state factor that takes the same value as the reward. Uncertainty about
the reward function can then be incorporated in the belief, and hyper-states may
end up with different graph structures for the reward. The IR can then be retrieved
by finding the parents of the reward state factor. We demonstrate that our method
can deal with uncertainty about the reward and IR in Section 4.4.4.

4.3.3. ABSTRACT MODEL CONSTRUCTION

After retrieving a subset of state factors, we construct the abstract model. Since the
abstraction uses only a subset of the state factors, this involves removing factors, and
therefore we need to decide how to treat factors that have missing parents as a result
of this. To illustrate, when we abstract a full model such as the one in Figure 4.1d to
create the abstract model on level k0 (Figure 4.1e), we remove Boots and create a
distribution for x with only x itself as the parent factor. The question then is how we
can define a CCT that does not depend on ’Boots’ from the original one that does.

For probability distributions in known models it is logical to resort to
marginalization. However, in Section 4.3.3 we show that the problem is more
deeply rooted: marginalization leaves us with a term that is difficult to specify
since it depends not only on the values of its parents but also on the policy, and
it can change over time. As such there is no fundamentally right approach to
do this form of abstraction. Instead, novel ideas and approximate approaches are
needed. We explore two initial ideas for this form of abstraction in Sections 4.3.3
and 4.3.3. In Section 4.3.3 we make an assumption on the abstraction and show
that we can simply aggregate the counts in that case. In Section 4.3.3, we motivate
using approximate abstraction and discuss potential issues that arise with the
approximation.

MARGINALIZATION OF PROBABILITY DISTRIBUTIONS

Before considering the case of CCTs, we treat the case of probability distributions.
For a probability distribution, given a factor X with a set of parents Parents(X ), we
can marginalize out a parent Y or a set of parents. For ease of notation, we show
the marginalization for one parent, multiple parents can be removed by repeating
this process:

P (xi |z) =∑
y j

P (xi , y j |z) (4.6)

=∑
y j

P (xi | z, y j )P (y j | z), (4.7)

where z = (z1, z2, . . . , zn) denotes the realization of Parents(X ) \ Y , while xi and y j

represent a specific realization of the factors X and Y . The term P (y j | z) acts as a
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weight for the contribution of P (xi |z, y j ) to the marginal distribution P (xi | z).
However, estimating P (y j | z) for a DBN is nontrivial. In the running example,

consider the probability of moving from x = 1 to x ′ = 2 after taking the action right.
The sampled model in Figure 4.1d only has the factors x and Boots as parents of x,
and the abstract model k0 (Figure 4.1e) does not include Boots. Following (4.7), we
can obtain the marginal distribution for x by summing over the separate values of
Boots:

P right (x ′|x) = ∑
b∈Boots

P right (x ′|x,b)P (b|x). (4.8)

However, while the probabilities P right (x ′|x,b) are well defined (e.g., P right (x ′ =
2|1,b = On) = 0.95), the value of P (b|x) is not as clear. This probability represents the
likelihood that the boots are on given a specific location x. However, it does not
depend solely on x itself. For instance, we might know that the probability of the
boots being on is 0 at the start of the episode, but this probability generally depends
on the history of actions and observations. In general, we can make the following
observation:

Observation 4.1. Accurately estimating P (y |z) without additional information is
generally not possible. This is because y can depend on other variables, including
itself, and on the policy that can change over time.

The view of P (y |z) as a weight in (4.7) is related to the concept of a weighting
function in work on state abstraction [15, 135]. Theoretical work shows that, for some
abstractions, a policy based on the abstract model (with any weighting function) can
perform well in the real problem in planning [15, 16, 158] and in RL (see Chapter 3).
For probability distributions, Dearden and Boutilier [135] use a sort of average of the
probabilities but also remark this can lead to suboptimal solutions. The best way to
approach estimating P (y |z) for the optimal performance is still an open problem.

BELIEFS AND AGGREGATING COUNTS FOR EXACT ABSTRACTIONS

In the previous section we discussed the problem of dealing with conditional
probability tables (CPTs) where parents are abstracted, leading to dependence on
the policy and history for estimating P (y |z) in (4.7). In this section, we begin by
considering a simplified setting where the abstraction is assumed to be exact. This
assumption allows us to sidestep the difficulty of estimating P (y |z) and to introduce
the CCCT more cleanly under idealized conditions. This assumption is made only
in this subsection to clarify the conceptual difference between exact and inexact
abstractions. The more realistic and interesting case is when the assumption does
not hold, which we address in Section 4.3.3.

One situation where abstraction makes sense is when the model is overspecified;
it contains links that are unnecessary. This is the case when the abstract model
probabilistically behaves in the same way as the full model, which is what we
assume in this subsection:

Assumption 4.1. The abstraction is exact. That is, let Z be the set of removed
parents for a factor X , let z = (z1, z2, . . . , zn) denote a specific realization of the
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remaining parents Parents(X ) \ Z , and let zremoved
1 and zremoved

2 be two different
realizations of the removed parents Z . Then, for all realizations xi of X , we assume:

P (xi |z) = P (xi |z,zremoved
1 ) (4.9)

= P (xi |z,zremoved
2 ). (4.10)

This assumption implies that the links between the removed parents and the
corresponding child node were obsolete. For instance, consider a change in the
running example where the boots would have no effect on x, then this would
mathematically mean that P (x ′|x,Boots = On) = P (x ′|x,Boots = Off). We observe:

Observation 4.2. Under Assumption 4.1, P (y j |z) has no influence. That is, since

P (xi |z) =∑
y j

P (xi |z, y j )P (y j |z) (4.7) (4.11)

=∀y∈Y : P (xi |z, y). (4.12)

Thus, if boots had no influence, data collected with boots on and off can be used
to estimate P (x ′|x). For example, consider the conditional counts χ(x ′|x = 1,Boots)
in Table 4.1.

Observation 4.2 means that, to marginalize in the CCCT, we no longer have to
be concerned about P (y j |z). Which means that in Table 4.1 we can aggregate the
counts in the columns, formally:

χ̄(xi |z) =∑
y j

χ(xi |z, y j ). (4.13)

For example, to determine the conditional counts in Table 4.1, we apply (4.13) to

Table 4.1: Initial condi-
tional count ta-
ble, for x =
1 and action
right.

Boots x ′ = 1 x ′ = 2
On 2 8
Off 6 4

Table 4.2: Count table af-
ter aggregation,
for x = 1 and
action right.

x ′ = 1 x ′ = 2
2+6 = 8 8+4 = 12

Table 4.3: Count table af-
ter aggregation
and normaliza-
tion, for x =
1 and action
right.

x ′ = 1 x ′ = 2
1/2∗8 = 4 1/2∗12 = 6

construct the abstracted (or marginalized) counts χ̄ from the original counts χ. This
is done for every action by aggregating the counts as follows:

χ̄right (x ′|x) = ∑
b∈Boots

χright (x ′|x,b). (4.14)
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Writing out (4.14) we obtain the counts χ̄right (x ′|x = 1) after aggregation:

χ̄right (x ′ = 1|x = 1) = ∑
b∈Boots

χright (x ′ = 1|x = 1,b) = 2+6 = 8, (4.15)

and χ̄right (x ′ = 2|x = 1) = ∑
b∈Boots

χright (x ′ = 2|x = 1,b) = 8+4 = 12. (4.16)

The resulting conditional counts are shown in Table 4.2. Note that now the resulting
row has counts ({8,12}) which are higher than the individual previous rows for Boots
On ({2,8}) and Off ({6,4}). This implies that after abstraction we are (relatively) more
confident about these transitions than before. Under Assumption 4.1 this does not
have a large influence when the prior is close to the true distribution, as in that case
these estimates should be close together. However, this could be different when the
abstraction is not exact or if the prior is not close to the true distribution.

AGGREGATING COUNTS FOR APPROXIMATE ABSTRACTIONS

Previously, we assumed that the abstraction was exact. Of course, this may not
always be the case, or it may not be necessary to make this assumption. There
exist scenarios where one could argue for the use of approximate abstractions, as
discussed in [16, 135] and Chapter 3. For example, in cases where a parent only has
a small influence, abstracting these parents away can lead to faster learning (see
Chapter 3). Additionally, reducing the size of the model through abstraction can
enhance performance by facilitating faster planning [148].

However, when the abstraction is not exact, Observation 4.2 no longer holds.
Specifically, with an approximate abstraction, P (x|z, y) generally varies for different
instantiations of y . Consequently, P (y |z) does influence the result. In this case,
abstracting a candidate model could result in a probability distribution that deviates
significantly from the behavior of the candidate model.

As an example, consider again the running example where with Boots = On we
have a probability of moving of 95% and with Boots = Off only 30%. Table 4.1
shows are initial estimates where Boots is still included, counts of {2,8} and {6,4} for
Boots = On and Boots = Off, respectively. These are reasonably accurate with, if we
translate the counts to probabilities, an expected 80% and 40% chance of moving,
respectively. However, when Boots is removed we see in Table 4.2 this leads to counts
of {8,12}, or an expected probability of moving of 60%. With Boots being removed
from the model the agent is highly likely to be in a state with Boots = Off, and thus
this leads to an overestimation of the probability of moving for the agent.

As alluded to in the previous section, the abstraction also increases the confidence
in the resulting counts. When the abstraction is not exact, we could say
that the increased confidence in the resulting counts is not warranted, there is
overconfidence. This overconfidence can slow down learning since it will take more
experience to change the belief. For example, the change in Table 4.1 of adding
an extra observation to the row with Boots = Off has a relatively larger effect than
adding one extra observation after aggregation in Table 4.2.

This means that the proposed aggregation in (4.13) does not work as well when
Assumption 4.1 does not hold, since it can lead to incorrect estimations with a higher
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confidence. As such, we want to adapt the aggregation method. It is still an open
question what the best way to aggregate when using approximate abstraction.

We propose a way to reduce the overconfidence in the resulting dynamics through
a normalization scheme, which should lead to quicker learning in cases where the
prior and abstraction are biased. Let Z = Y1,Y2, . . . ,Yn denote the set of removed
parents. To normalize, we multiply each entry by

1∏
Y ∈Z |dom(Y )| , (4.17)

where |dom(Y )| represents the number of values that the parent Y can take.
For example, in the case of the position x from the running example, we have
|dom(x)| = 5.

Using χ̃ to represent normalized counts, applying the normalization factor (4.17)
to (4.13) results in:

χ̃(xi |z) = 1∏
Y ∈Z |dom(Y )|

∑
(y1,y2,...,yn )∈Y1×Y2×···×Yn

χ(xi |z, y1, y2, . . . , yn). (4.18)

Intuitively, the proposed normalization scheme reduces the counts proportionally
to the amount of rows that is removed during aggregation. Applying (4.18) to the
example where we remove Boots this leads to:

χ̃right (x ′ = 1|x = 1) = 1

|dom(Boots)|
∑

b∈Boots
χright (x ′ = 1|x = 1,b) = 1

2
(2+6) = 4,

(4.19)

and χ̃right (x ′ = 2|x = 1) = 1

|dom(Boots)|
∑

b∈Boots
χright (x ′ = 2|x = 1,b) = 1

2
(8+4) = 6,

(4.20)

also shown in Table 4.3.
By applying the normalization of (4.17) the amount of counts in the table after

aggregation is equal to the average amount of counts in the initial prior. For
example, in Table 4.1 the counts in the rows both sum up to 10, and the counts after
the aggregation and normalization also sum up to 10 (Table reftable:testmarg).

The proposed normalization provides a robustness against mistakes in the prior
and approximate abstraction, by lowering the impact that the prior has on the
learning. In our experiments, we investigate this normalization scheme, showing
that this can significantly speed up learning.

THE OBSERVATION SPACE FOR ABSTRACT MODELS

Since we remove state factors from the model in the abstraction, a natural question
is how we deal with the observation factors. We can consider two cases, 1) where a
part of the parents is removed, and 2) when all the parents are removed.

In the first case, we simply perform the aggregation in the same way as for the
state factors. It is the second state that poses a problem, as it leaves us with no
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parents for the observation factor. Since in this case the observation would provide
no actual information about the underlying state, we enhance the observation space
of the abstract model by including an observation “not observed” for all observation
factors. For observation factors where all parents are removed the observation
function simply returns “not observed”.

4.3.4. THEORETICAL SUPPORT

Here we will show how the combination of FBA-POMCP with the abstraction
method can lead to near-optimal performance when the abstraction is good. We
first show that transforming the original FBA-POMDP with the abstraction method
results in another FBA-POMDP. Because of this, the theoretical guarantees of
FBA-POMCP apply to the abstracted problem. Then we give a definition for the
quality of the abstraction that gives a guarantee on the performance in the original
FBA-POMDP. Together this shows that abstractions leads to near-optimal solutions
with FBA-POMCP, when a good abstraction is used.

First, we note that the abstraction results in another FBA-POMDP:

Lemma 4.1. The result of applying the abstraction method, as described in
Algorithm 5 and Section 4.3.3, to the original FBA-POMDP results in another
FBA-POMDP, the abstract FBA-POMDP.

In Appendix 4.8.3, we present a constructive proof. In essence, abstraction reduces
the state space and marginalization produces a dynamics function for the resulting
state space. Lemma 4.1 implies that we can use POMCP to find a near-optimal
solution with respect to the belief in the abstract FBA-POMDP, due to the following
result:

Theorem 4.1 (Katt et al., 2019 ). Given a belief b(s,G ,χ), FBA-POMCP converges to

an ϵ-optimal value function of a FBA-POMDP: V (b, a)
p−→V ∗(b, a)−ϵ.

The bias of the value function, ϵ, can be made arbitrarily small by increasing the
maximum search depth. If there is no limit on the search depth, the bias ϵ is

O( log(n)
n ) in the limit of the number of simulations n starting from the belief b [154].

The question that remains is, how good is the solution for the abstract FBA-POMDP
in the original FBA-POMDP? In general, the quality of a solution when using
abstraction depends on the type and quality of the abstraction [16, 135]. We define
the quality η of the abstraction as the upper bound of the difference between
optimal value function of the original FBA-POMDP and the value function of the
original FBA-POMDP under a ϵ-optimal policy for the abstracted FBA-POMDP:

Definition 4.2. An abstraction has a quality η, s.t. every ϵ-optimal solution π

of the abstract FBA-POMDP applied to the original FBA-POMDP has suboptimality
bounded by ϵ + η:

∀(b, a) ∈B×A : |V ∗(b, a)−V π(b, a)| ≤ ϵ+η. (4.21)
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This definition is based on existing suboptimality bounds for abstract models such
as the approximate model-similarity abstraction [16, 135], discussed in Section 4.2.4.
Informative bounds can be derived, for instance, by assessing how well the abstract
model can approximate the original model, see [135] and Chapter 3. In the case
of approximate model-similarity abstraction, the parameter η is small when the
grouped states have similar transition and reward functions. In Chapter 3, we show
that, in the context of learning with abstraction in MDPs, this type of abstraction
can yield such bounds. Analogously, in POMDPs, similar results could be expected
to hold if the dynamics of the abstract model closely resemble those of the true
model. Extending the findings in the fully observable to the partially observable
setting could be feasible by incorporating learning of the observation function and
applying a simulation lemma for POMDPs [159].

When combined with Theorem 4.1, definition 4.2 implies that combining
FBA-POMCP with abstraction leads to a near-optimal solution for the original
FBA-POMDP, particularly when the abstraction effectively captures the dynamics of
the original problem (i.e., when η is small):

Corollary 4.1. Given a belief b(s,G ,χ) and an abstraction, assuming there exists an
η for which (4.21) holds, FBA-POMCP combined with abstraction converges to an

ϵ+η-optimal value function of the original FBA-POMDP: V π(b, a)
p−→V ∗(b, a)− (ϵ+η).

Proof. By Lemma 4.1 the problem after abstraction is still an FBA-POMDP. By
Theorem 4.1, we can use FBA-POMCP to get a policy π within ϵ of the optimal
solution of this abstract FBA-POMDP. Then, by Definition 4.2 this leads to a solution
within ϵ+η of the optimal solution of the original FBA-POMDP.

This result shows that we can reach near-optimal performance in the original
problem with good abstractions, but that better performance can be achieved in
theory without abstraction when η > 0. However, in practice abstraction could
perform better through faster simulations, and it could get to a good performance
more quickly through greater statistical strength due to aggregation.

4.4. EXPERIMENTS
We aim to investigate three questions; 1) does abstraction lead to faster simulations
and enable scaling to more complex problems, 2) does abstraction lead to faster
learning by reducing unnecessary exploration, and 3) does abstraction provide these
benefits when the reward function is not known? We empirically evaluated our
approach on four domains to answer these questions. The first domain is the
Corridor problem from the running example, a simple problem where the trade-off of
using abstraction is shown. The second domain is Cracky Pavement Gridworld where
we show the advantage of abstraction in a very large problem, with a state space of
up to size |S| = 6×1025. In addition, in this domain we show the effectiveness of
the proposed normalization step for abstraction, (4.17), in the k0 model. The third
domain is an adjusted version of Collision Avoidance [61, 160], made more complex
to allow for more abstraction. The final domain is Room Configuration, where the
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agent must learn the reward function. For further details on the experimental setup
and the domains we refer to Appendix 4.8.4.

4.4.1. CORRIDOR

The Corridor domain is the domain described in the running example in
Section 4.2.1, where there are 8 different Persons that can be present, each with a
small probability of opening the door. The agent is uncertain about the transition
dynamics of the x-position, for the actions left and right, and the door. We evaluate
the abstractions k0, k1, and the full model kinf. The abstraction k0 only includes the
factor x. Abstraction k1 includes x and, depending on the structures included in the
belief, can also include the factors Boots, Button and Door.

Results We test the effectiveness of two levels of abstraction under a fixed number
of simulations. Figure 4.2a shows the simple moving average of the return per
episode, and the shaded areas show the 95% confidence interval. Figures 4.2b, 4.2c,
and 4.2d illustrate the behavior of the different models across episodes. Specifically,
these figures display how often the agent put on the boots, how often the door
was opened, and through which means the door was opened. For example, in

(a) (b)

(c) (d)

Figure 4.2: a) Performance in the Corridor domain. The learning behavior in the
Corridor domain is shown for different models: b) k0, c) k1, and d) kinf.
The y-axis shows the percentage of runs in which a certain behavior or
occurrence happened during each episode.
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Figure 4.2d, it can be seen that in the first episode, the agent rarely lock picked the
door (close to 0%), whereas after 20 episodes, the agent lock picked the door in
more than 50% of the runs.

First, there is a large difference in the performances between k0 and the other two
models. This difference occurs because the full model and model k1 can learn to
open the door through more effective means than simply bashing against it, while
k0 cannot. This is due to the fact that the model k0 only keeps the x factor and does
not include Door, Boots, and Button. Consequently, it does not recognize that the
actions to open the door, push the button, and put on the boots have any effect. In
addition, since these actions have no direct effect on the x-position, k0 is unable to
learn interactions with the environment beyond moving left and right. It ultimately
learns a strategy of just moving to the right. This strategy can still lead to reaching
the goal state, as there is a chance that the door opens when the agent bashes into
it by moving right, or when the person opens the door. This can be observed in
Figure 4.2b, which shows that most of the time the agent successfully opened the
door by bashing into it. While this shows the agent never learns to open the door by
pushing the button, it does occasionally open the door through the lock pick action.
This can happen near the end of the episode, with just one step remaining when the
agent is at location x = 3 and the door is still closed. In such situations, the values
for the different actions in the tree search will all be zero. Since the action is then
randomly chosen among those with the same value, this can lead to selecting the
lock pick action.

The k1 model can effectively learn to interact with a part of the environment
because it keeps not only the x factor but also the factors that influence x. This
means that if the believed model is the correct model, the k1 model also contains
Boots and Door. Consequently, k1 learns to put on boots and to lock pick the door,
leading to a much better performance than k0. Due to greater statistical strength
from aggregation, k1 learns to use lock pick more quickly than the full model.

Technically, it would be possible for k1 to also open the door by pushing the
button if the Button factor is also believed to influence x. However, as shown in
Figure 4.2c, this did not occur frequently in the experiments. Instead, k1 rapidly
learns to put on boots and lock pick.

When comparing the performance of k1 with the full model kinf, we can distinguish
three phases. Initially, k1 learns more quickly than kinf because the full model kinf

takes longer to learn to lock pick. Then, kinf catches up as it learns to lock pick.
Finally, kinf starts to surpass k1 by learning to open the door through pushing the
button, as is visible in Figure 4.2d.

This experiment shows that when the abstraction is not exact, it can initially still
lead to better performance because of greater statistical strength due to aggregation.
Since in this domain the abstract models cannot learn the optimal behavior, they
eventually get outperformed by the full model.

4.4.2. CRACKY PAVEMENT GRIDWORLD

The Cracky Pavement Gridworld is a grid world as shown in Figure 4.3a. The DBN
of the domain is shown in Figure 4.3b. The state space is factored into the x and



4

92 4. ABSTRACTION FOR BAYESIAN RL IN FACTORED POMDPS

Figure 4.3: a) The Cracky Pavement Gridworld, b) ground truth graph representing
the dynamics of the Cracky Pavement Gridworld problem with 3 extra
binary factors, c) example of a full model in the particle filter, d) examples
of two abstract models.

y locations, Rain, and 20 or 80 extra binary factors. Only x, y , and Rain influence
the movement of the agent, though the agent must infer this. Movement success
depends on tile type and rain conditions: movement is difficult on Trap tiles, and
on the Vendor tile when it is dry, due to the presence of a vendor. When it rains,
the vendor leaves and the tile becomes easier to traverse. The agent observes x
and y noisily and does not know which factors affect transitions. We evaluate
the abstractions k0, k1, and the full model kinf. The abstraction k0 includes only
the factors x and y since they are the ones that directly influence the reward
(Figure 4.3b). Abstraction k1 also includes the parents of x and y .

Results First, we examine the results for one particular setting, with 80 extra binary
factors and 2000 simulations. Figure 4.4a shows these results, where the lines
represent the simple moving average of the return per episode, and the shaded
regions indicate the 95% confidence interval. Both k1 and the full model kinf struggle
to learn a good policy, while k0 outperforms both.

The primary difference between k0 and the other two models is that k0 retains

(a) (b)

Figure 4.4: Performance in the Cracky Pavement Gridworld domain, a) with a fixed
thinking time, b) with a fixed number of simulations.
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Table 4.4: Average number of simulations in the Cracky Pavement Gridworld.

Size 20 Size 80

Time k0 k1 kinf k0 k1 kinf

5ms 634 550 272 521 429 149
10ms 1324 1263 573 1097 871 240
15ms 1978 1658 660 2044 1726 328
20ms 2571 2145 803 2433 2360 440

tb

Table 4.5: Average return over the first 500 episodes in the Cracky Pavement
Gridworld.

Size 20 Size 80

Time k0 k1 kinf k0 k1 kinf

5ms 0.33 0.26 0.23 0.31 0.25 0.18
10ms 0.39 0.29 0.26 0.37 0.28 0.21
15ms 0.41 0.31 0.27 0.41 0.30 0.23
20ms 0.42 0.30 0.28 0.42 0.30 0.25

only the x and y factor, while k1 includes any factor it believes influences x or y ,
such as Rain or parts of the additional binary factors, and kinf retains all factors as it
does not abstract. Although k0 sacrifices the ability to account for Rain, it performs
better because it simplifies learning about the trap states by only considering x and
y . This leads to greater statistical strength as it is much easier to learn P (x ′|x, y)
than P (x ′|x, y, rain,and numerous binary factors).

While k0 cannot distinguish between rain and no rain and therefore does not learn
when the vendor is on the tile, it can learn to navigate around this tile. Although this
is generally not optimal, it is optimal when rain and the vendor are not considered.
The full model kinf and k1 can eventually outperform k0 by learning that it is better
to cross the vendor tile when it is raining, as shown in Appendix 4.8.5. However, this
takes a considerable amount of time, and during the earlier episodes, k0 performs
much better earlier.

These results shows that the greater statistical strength obtained by removing
information, like Rain and extra binary factors, can result in a significant increase
in performance. Additionally, Figure 4.4a compares the performance of k0 with and
without the proposed normalization step for abstraction (4.18), demonstrating that
the normalization step can significantly improve learning performance.

In Figure 4.4b, where we compare the performance with a fixed amount of thinking
time instead of a fixed number of simulations, we see that k1 outperforms the full
model kinf. The main difference between k1 and kinf is that k1 abstracts away all
the factors that, given the graph topology, are not directly or indirectly relevant for
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the reward. This means that the k1 model is generally smaller than the kinf model,
leading to faster simulations. As shown in Table 4.4, k1 performs an average of
2360 simulations with 20ms of thinking time, while the full model only reaches 440
simulations. This increase in simulation speed results in the improved performance
shown in Figure 4.4b.

Table 4.5 shows that an increase in thinking time generally increases performance,
most notably when increasing from 5ms to 10ms, with diminishing returns for further
increases. The differences between k1 and kinf are also most pronounced at lower
thinking times, especially with 80 additional binary factors, where the abstraction
provides the most benefit. These findings demonstrate that augmenting FBA-POMCP
with abstraction can increase performance through computational efficiency.

Overall, these results show that abstraction can be beneficial in multiple ways.
Increasing the simulation speed leads to better performance, and simplifying the
problem leads to faster learning due to greater statistical strength. The improvement
in simulation speed is most pronounced when many factors are abstracted away,
maximizing the difference in simulation speed between the models with and without
abstraction.

4.4.3. COLLISION AVOIDANCE

In the Collision Avoidance domain, the agent flies from one side to the other in
a 10 (width) x 5 grid. The episode ends when the agent reaches the last column,
where it has to avoid colliding with a moving obstacle. This obstacle has a 20%
chance to stay stationary and otherwise randomly moves either up or down. The
agent can decide to move up, down, or stay level. We increased the complexity of
the original Collision Avoidance [61, 160] by adding additional factors: Speed (slow,

Figure 4.5: Ground truth graph representing the dynamics of the Collision avoidance
problem.
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fast), Traffic (low or high amount of traffic), Time of Day (day, night), and Obstacle
Type (3 types, e.g., helicopter, plane). These influence the agent’s forward movement
and the obstacle’s behavior, Figure 4.5 shows the resulting dynamics. Only the
obstacle’s transition function is uncertain and the agent receives noisy observations
of the obstacle. We evaluate the abstractions k0, k1, and k2, which is equivalent to
the full model kinf. The abstraction k0 includes the factors x, y , and Obstacle Y. The
abstraction k1 additionally includes the factors Speed and Obstacle Type, if Obstacle
Type has a connection to Obstacle Y.

Results We again test the effectiveness of two levels of abstraction under a fixed
number of simulations. One of the benefits of abstraction is a smaller and (therefore)
faster model. Another benefit is an increase in statistical strength through the
removal of factors. The lines in Figure 4.6 show the simple moving average of the
return per episode, and the shaded areas show the 95% confidence interval.

We see that abstraction k0 learns significantly faster than both k1 and kinf, both
with a fixed number of simulations and with a fixed thinking time. The abstraction
k0 allows for faster learning of the transition function of Obstacle Y since it removes
the (possible) parents Speed and Obstacle Type. When Speed and Obstacle Type are
parents of Obstacle Y in the sampled graph structure, k1 retains these connections.
As a result, k1 learns the transition function of Obstacle Y at a rate comparable to
kinf.

In k1, Time of Day and Traffic are removed. However, since their transition
functions, along with that of Speed, are considered known, this does lead to greater
statistical strength in learning Speed. The impact of Time of Day and Traffic is also
less pronounced, as they only influence x indirectly through Speed. Nevertheless, k1

tends to perform slightly better than kinf. This is not due to faster simulations; in
this domain, any speed up is minimal, and similar results are observed even with a
fixed number of simulations. One potential advantage of removing Time of Day and
Traffic is that it reduces the branching factor in the tree, as there will be no separate

(a) (b)

Figure 4.6: Performance in the Collision Avoidance domain, a) with a fixed thinking
time, b) with a fixed number of simulations.
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observations for these factors. This focuses the tree search by eliminating the need
to consider these factors, albeit at a slight cost to model accuracy.

4.4.4. ROOM CONFIGURATION

In the Room Configuration domain, the task of the agent is to configure items in a 4
(width) x 3 grid to satisfy a teacher’s preferences. Each tile contains a configurable
item with two settings. The teacher is concerned only with the configuration of
three specific items, but the agent does not initially know exactly which ones. The
reward is modeled via a fully observable Happy factor, which takes on the same
value as the reward. The agent must learn which configuration factors affect Happy.
Small rewards or penalties are given when changing item settings, and a large
reward is received once all desired configurations are set. The agent receives noisy
observations of its location and has imperfect knowledge of movement success. We
evaluate the abstraction k0 and the full model kinf.

Results We test learning of the reward function and the advantage of abstraction
when only factors that (the agent believes) are irrelevant to the reward are abstracted
away. The lines in Figure 4.8 show the moving average of the return per episode, and
the shaded areas show the 95% confidence interval. We can see that the agent learns
how to perform well in 10 episodes, after which the performance remains the same.

The abstraction k0 performs more simulations (455) than the full model kinf (365)
within a fixed amount of time (10ms). This computational advantage allows k0 to
outperform the full model, as shown in Figure 4.8b. Figure 4.8a further demonstrates
that there is no performance difference between the two models when the number
of simulations is fixed. These results show that the agent can quickly learn the
structure of the reward and that abstraction can increase performance through its

Figure 4.7: a) Ground truth graph representing the dynamics of the Room
Configuration domain for the switch action, b) example of a full model in
the particle filter, c) examples of two abstract models.
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(a) (b)

Figure 4.8: Performance in the Room Configuration domain, a) with a fixed thinking
time, b) with a fixed number of simulations.

increased simulation speed.

4.5. RELATED WORK

The FBA-POMDP is a factored version of the tabular BA-POMDP [59]. The
infinite-POMDP approach [161] is a non-parametric Bayesian approach. This
approach requires no knowledge of the state space. However, it assumes a
hierarchical Dirichlet Process as prior, for which providing an informative prior can
be difficult. BRL in continuous POMDPs typically makes Gaussian assumptions,
such as in Dallaire et al. [162], where Gaussian processes are the model of
choice. To extend our approach to continuous POMDPs, DBNs that work with
continuous variables [163] could be investigated. Alternatively, constructing different
levels of abstraction in a continuous domain could done through varying levels of
discretization.

The BA-MDP [21], and the respective solution methods [164–166], are the fully
observable counter-part to the (F)BA-POMDP. In this setting (BRL for MDPs), work
has been done on exploring applications of Deep RL [167, 168]. This line of work
solves the (easier) fully observable problem, and how to extend these methods to
POMDPs is unclear.

Other approaches make use of recurrent networks for dealing with partial
observability to generalize deep RL to POMDPs [169–172]. However, these networks
are general-purpose, requiring many samples. This realization has motivated
RL-specific architectures designed to capture history efficiently [11, 88]. Deep
variational methods are another approach that can be efficient [85, 86]. However,
none of these methods allow for encoding prior knowledge or tackling the exploration
problem, to which the FBA-POMDP framework provides an elegant solution.

In the last two decades, there have additionally been many different approaches
to (not deep or Bayes) learning in POMDPs, e.g., McCallum [81], Azizzadenesheli,
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Lazaric, and Anandkumar [109], Shani, Brafman, and Shimony [173], Liu and Zheng
[174], and Bennett and Kallus [175]. However, these also do not allow for encoding
prior knowledge or tackling the exploration problem.

Planning with abstractions has been studied before, mostly in the context of
MDPs. The method by Dearden and Boutilier [135], that our approach is based
on, applied abstraction to factored problems. We extend this work to the partially
observable BRL and planning setting and introduce a mechanism to automatically
create multiple levels of abstraction based on the structure of the problem. Another
line of work has focused on building abstractions during the tree search [176, 177].
Hostetler, Fern, and Dietterich [176] also provide results for doing the tree search
using an abstraction function. However, this means the simulations themselves need
to be done using the full model. Chitnis et al. [149] instead first learn an abstraction,
which they then use for planning. Rather than being given an abstraction, their goal
is to learn one. We investigate the effects of an abstraction method on learning
efficiency and performance. He, Suau de Castro, and Oliehoek [148] do planning
in the partially observable setting and construct an abstract model before the tree
search. The key difference with our approach is that we do not assume access to a
simulator of the real environment. Instead, we learn abstract dynamics while acting
in the real-world.

Our work is closely related to posterior sampling approaches in causal RL,
particularly the work by Mutti et al. [178]. Their method maintains a prior
distribution over potential factorizations of a F-MDP and performs posterior
sampling reinforcement learning accordingly. Our approach differs significantly in
several aspects. First, we extend the methodology from fully observable scenarios
(F-MDP) to partially observable ones (F-POMDP). Their approach explicitly notes
that exact solutions for the sampled F-MDPs are required, a condition generally
computationally intractable and even more prohibitive in the context of F-POMDPs.
In contrast, our method circumvents this exact-solution requirement by employing
an anytime planning algorithm (FBA-POMCP) within the “planning as learning”
paradigm.

4.6. DISCUSSION

A limitation of the FBA-POMCP method is that it does not plan beyond the current
episode. By not planning for future episodes, it does not consider the value that
knowledge obtained in the current episode can have for future episodes. Approaches
that quantify information gain [179–181] and those that plan for long horizons [182]
could address this limitation, and future work could explore combining these
strategies.

A difficulty of applying abstractions within FBA-POMCP lies in marginalizing the
belief. As discussed in Section 4.3.3, when aggregating counts for approximate
abstractions, it is unclear what the best solution is, since this is generally unknown
beforehand and can depend on the policy. Even for a fixed policy, marginalization
may lead to a belief that misrepresents the true (abstract) dynamics. For example, in
the corridor problem, marginalizing away the Button factor leads to misrepresented
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abstract dynamics because marginalizing it away combines the situations where
the button is in the non-pushed state with those where it is in the pushed state,
implicitly resulting in a belief that at each step there is a probability that the button
is in the pushed state. This is a misrepresentation since the button starts in the
non-pushed state and, since it is marginalized away, the agent will not learn to push
the button, so it will always be in the non-pushed state. Such situations can make it
more difficult for the agent to learn. An idea could be to use knowledge about the
starting position and the abstracted model in the marginalization. For instance, if
the Button factor is removed from the model, we could keep the counts for when
it is in the non-pushed state and ignore the counts for the pushed state since it is
always in the non-pushed state at the beginning of an episode.

In the Corridor experiment, we aimed to make the results more interpretable
by showing how the agent’s behavior changes during learning, across the different
models. This helped clarify the sources of the observed differences in return per
episode, as well as the adaptations the agent makes over time. The behavior of the
smaller abstract models is easier to understand than that of the full model, and this
improved interpretability offers an additional motivation for using abstraction and
could be an interesting perspective for future research.

The Corridor experiment also shows that abstraction does not always help, and can
in fact be detrimental. When crucial information is removed, it can make learning
impossible. In general, the usefulness of abstraction depends on how much value
(or information) is lost. If the loss in value is too great, more simulations will not
help to achieve a better performance. On the other hand, if there is no loss in value
or the loss in value is relatively small, abstraction can help improve performance by
making learning easier and by speeding up simulations during planning.

Combining learning abstractions with guarantees is challenging. In fact, whether it
was possible to bound the value loss of model-based RL using a given η-approximate
model-similarity abstraction was an open question until our work in Chapter 3.
What we can say is that theoretically, for any abstraction, there exists some η such
that the bound in (4.21) holds, even if this bound becomes vacuous at higher values.
However, it is challenging to estimate or verify the actual value of η in practice. This
motivates abstraction selection [39, 40] as an important direction for future work,
allowing agents to adaptively switch between representations over time.

Given the challenge of determining whether a specific abstraction will be beneficial,
abstraction selection could be a viable approach. This can be particularly challenging
in RL, where the problem is often not fully known. With abstraction selection, the
algorithm would choose which abstraction to select during learning. For instance,
selection could be done by deriving value loss bounds for specific abstractions [135]
and using these to make a decision. Alternatively, the problem of abstraction
selection could be viewed as a non-stationary multi-armed bandit problem, where
at each episode we select a (abstract) model. The problem is non-stationary since
the models the agent learns change each episode with the experience it obtains,
and thus the policy and the expected reward can also change. Multi-armed bandit
methods that deal with such non-stationarity could be used [183–185].

Regarding the quality of the abstraction, represented by η, we can consider
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different quantities of a problem to determine whether η is small. For example,
in the context of approximate abstractions in MDPs, we can consider approximate
model similarity or approximate Q∗ abstractions [16]. In an approximate model
similarity abstraction, the size of η depends on how close the transition functions
and rewards of the grouped states are. For approximate Q∗ abstractions, it depends
on the maximum difference in the Q∗ values of the grouped states. Extending
these notions to F-POMDPs requires accounting for the observation function and
the factorization structure, making such extensions non-trivial. Nevertheless, existing
work on approximate abstractions in MDPs provides valuable insights: results
indicate that η remains small when little information is lost through abstraction. In
our setting, this suggests that η is small when the abstraction primarily removes
largely irrelevant factors.

Our abstraction approach has been developed within the framework of FBA-
POMDPs. However, the proposed abstraction method is general and leverages
only the structural properties of the problem, making it potentially beneficial for
a broader range of F-POMDP algorithms. An interesting direction is to investigate
how Thompson Sampling [186], particularly its adaptation to POMDPs [187], could
be combined with factored representations and our abstraction framework. Such
a combination may reduce the dimensionality of the sampling space and further
improve scalability.

4.7. CONCLUSION
We proposed combining learning and online planning for BRL for FBA-POMDPs with
abstraction. We empirically showed that this combination significantly improves
learning, scalability, and performance, using an intuitive and straightforward form
of abstraction. This happens through several effects. First, we have shown that
abstraction improves performance by increasing the simulation speed. Moreover, we
have shown that abstraction improves performance even with a fixed number of
simulations through greater statistical strength. With an abstract model, the agent
takes different actions since it does not need to explore the dynamics of less relevant
factors. Finally, the abstraction method allows FBA-POMCP to learn in very large
problems with a state space up to |S| = 6×1025.

To the best of our knowledge, this is the first work to explore abstraction in BRL
for POMDPs, representing an initial step in investigating this combination. In the
future, abstraction could also be further incorporated into FBA-POMDP by directly
maintaining a belief over which factors should be part of the model.
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4.8. APPENDIX

4.8.1. EXTENSION BELIEF TRACKING IN THE FBA-POMDP
The belief, the posterior over the current state, is a probability distribution over
the POMDP state and its distribution b ∈ ∆(S×D) given the observed history
ht = (a0,o1, . . . , at−1,ot ). Unfortunately, the computation of the belief update is
intractable in most problems. Thus, the belief is often approximated with particles
instead [155]. A particle filter represents a distribution through particles, which
in this case represent FBA-POMDP states, specifically each particle is a weighted
FBA-POMDP state (w, s,G ,χ) with (unnormalized) weight w ∈R+.

There are numerous sampling mechanisms for updating the belief given a new
action-observation pair [155]. Here, we focus on sequential importance sampling
(SIS). SIS consists of two operations: propagation and re-weighting (see Algorithm 8).
First, the proposal distribution propagates a particle by sampling its next value
from the FBA-POMDP transition function p(ṡ′|ṡ, a). Then, the likelihood of the
particle generating the received observation p(o|ṡ, a, ṡ′) is used to re-weight the
particle (recall (4.3)). The initial belief (particle filter) is initialized by sampling
from the priors over the POMDP state and the DBNs describing the dynamics (see
Algorithm 9).

Specific to the FBA-POMDP, the belief over the topologies can deteriorate: the
number of unique graph structures is determined (and limited) by the initial
particle filter, as topologies do not get updated during the belief updates. When
that happens, Katt, Oliehoek, and Amato [61] re-invigorate the belief with a
Metropolis-Hastings-within-Gibbs sampling procedure [188].

4.8.2. ALGORITHMS

Algorithm 10 shows the main loop of the FBA-POMCP algorithm [61]. The Simulate
that is uses is shown in Algorithm 11. The GreedyActionSelection selects the action
that has the highest value. In case of a tie, it randomly selects one of the actions
with the highest value. Algorithm 12 shows the Step function when abstractions are
used.

Algorithm 8 Sequential Importance Sampling

1: Input: {ṡi , wi }n
i=0: current (weighted) filter

a,o: action and observation
2: for i ∈ 0, . . . ,n do
3: s′i ∼ p(·|si , a;Gi ,χi )
4: w ′

i ← wi ×p(o|s′i , a;Gi ,χi )
5: χ′i ←U (χi , si , a, s′i ,o)
6: end for
7: return {s′i ,Gi ,χ′i , w ′

i }n
i=0 // Normalize &

re-sample

Algorithm 9 Initialize Particle Filter

1: Input: p ṡ0 : prior over initial state
n: number of desired

particles
2: for i ∈ 0, . . . ,n do
3: 〈si ,Gi ,χi 〉 ∼ p ṡ0

4: wi ← 1
n

5: end for
6: return {si ,Gi ,χi , wi }n

i=0
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Algorithm 10 FBA-POMCP

1: Input: B : particle filter with hyper-states ṡ
num_sims: number of simulations to do.

2: h0 ← () // The empty history (i.e., now)
3: for i ∈ 1, . . . ,num_sims do
4: // First, we root sample a hyper-state:
5: ṡ ∼ B // Sample from belief
6: Simulate(ṡ,0,h0)
7: end for
8: a ← GreedyActionSelection(h0).
9: return a

Algorithm 11 Simulate

1: Input: ṡ = 〈s,G ,χ〉: hyper-state
d : search depth
h: simulated history.

2: if IsTerminal(h)||d == max_depth then
3: return 0
4: end if
5: a ← UCBactionSelection(h)
6: R ∼ R(ṡ, a)
7: ṡ′,o ← Step(ṡ, a)
8: h′ ← (h, a,o)
9: if h′ ∈ Tree then

10: r ← R +γ Simulate(ṡ′,h′)
11: else
12: ConstructNode(h′)
13: r ← R +γ RollOut(ṡ′,h′)
14: end if
15: (. . . ) // Update statistics in nodes
16: return r

Algorithm 12 Step (with abstraction)

1: Input: s̄: abstracted hyper-state
a: simulated action.

2: // Recall that s̄ = 〈ṡ,Ḡ , χ̄〉, with ṡ containing a current state s.
3: s′,o ∼ pḠ ,χ̄(·|s, a) // Sample next state and observation from abstracted counts.
4: ṡ′ ←〈s′,G ,χ〉
5: s̄′ ←〈ṡ,Ḡ , χ̄〉
6: return s̄′,o

4.8.3. PROOF

We restate the Lemma from Section 4.3.4 and give a proof sketch:
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Lemma 1. The result of applying the abstraction method, as described in Algorithm 5
and Section 4.3.3, to the original FBA-POMDP results in another FBA-POMDP, the
abstract FBA-POMDP.

Proof. First, we define the observation space and function, followed by the state
space for different levels of abstraction. The reward function does not require
changes since, during abstraction, the models in the particles will always keep the
factors that are believed to be part of the IR set.

As detailed in Section 4.3.3, the abstract observation space Ō is enhanced by
including a “not observed” option for all observation variables. This addition
addresses scenarios where the observation function depends on state factors that are
abstracted away; in such cases, the observation function will return “not observed”.
Otherwise, the observation space and function remain unchanged.

For the state space, we distinguish abstraction level k0 from other abstraction
levels. For k0, only the factors in the set IR are included, while higher abstraction
levels can include additional factors depending on the topology.

For level k0, the state space S̄ is derived by aggregating states based on the distinct
values of the remaining factors. Transition functions are adjusted for the new state
space through the marginalization procedure described in Section 4.3.3.

For higher abstraction levels, the belief specifies the factors that are relevant.
For example, for abstraction level k1, factors that directly influence the IR set are
also considered relevant. Similar to k0, factors that are never considered relevant
are removed. For state factors included in only some models, the abstract state
space is enhanced by adding a “not relevant” value. This value ensures transitions
default to “not relevant” when the factor is not present in a model. Transitions are
then adjusted for the new state space through the marginalization procedure. The
observation function is also adjusted to return "not observed" for factors that return
“not relevant”.

Combining these transformations, we obtain a fully specified FBA-POMDP after
abstraction.

In practice, implementing the “not relevant” value is unnecessary, as only factors
included in the simulated particle affect observations and actions during tree search.

4.8.4. EXTENDED EXPERIMENT DETAILS

EXPERIMENTAL SETUP

In the experiments, we investigated various levels of abstraction across different
domains and considered both a fixed amount of simulations and a fixed amount of
computation time. For each level of abstraction (including the full model) and each
of the different settings, we ran a separate experiment. Due to the stochasticity in
the runs, we conducted up to 10000 runs for each experiment. In the figures, we
report the moving average of the returns over a window of 10 ( xn+···+xn+9

10 ), with the
shaded areas indicating the 95% confidence interval. To avoid cluttering the figures
with markers, we placed only 5 markers per line, spaced evenly along the x-axis.
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Table 4.6: Fixed experiment settings.

Parameter Corridor Cracky Pavement Collision Room Conf
γ 0.95 0.95 0.95 0.95
# of particles in belief 500 500 500 10000
# of episodes 100 500 500 50
# of runs 100 100 10000 1000
Horizon (H) 20 12 20 13
UCT constant 5 1 500 10
Reinvigoration Yes No No Yes
Log-likelihood threshold -1500 N/A N/A -500
State factors 5 [23,83] 7 15
|S| 320 [5×107,6×1025] 6000 196608

The settings of the experiments, and some specifics of the environments, are
detailed in Table 4.6. In the table, γ denotes the discount factor, the UCT constant
is the exploration constant, and the log-likelihood threshold is the threshold below
which reinvigoration is triggered. The log-likelihood is obtained during the belief
update, and a low log-likelihood can indicate the belief does not adequately
represent the observed data. The parameters were chosen to maintain a reasonable
total run time. Because of this, we ran the experiments in the Cracky Pavement
Gridworld and the Collision avoidance domains without the invigoration step. We
show in Appendix 4.8.5 that the effect of abstraction is orthogonal to the effect of
reinvigoration.

We performed the experiments with a fixed number of simulations on three
different machines: Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz with 384GB RAM,
Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz with 190GB RAM, and AMD EPYC 7452
32-Core Processor CPU @ 2.0GHz with 256GB RAM. For the experiments with a
fixed amount of computation time, we used (2 cores of) an AMD EPYC 7452 32-Core
Processor CPU @ 1.5GHz with 512GB RAM. The software is written in C++.

DOMAIN DESCRIPTIONS

Corridor The Corridor domain is the domain described in the running example in
Section 4.2.1, where there are 8 different Persons that can be present. Each person
has a slightly different probability of opening the door, such that the probability that
the person opens the door during an episode is approximately between 0.0125 and
0.1. In this domain, we assume prior knowledge of all observation functions and
the locations of the start, boots, button, door, and goal. In addition, we assume
the structure of the transition functions of the factors Button, Boots and Person are
known, in other words, the prior includes only models where the parents of these
factors are correctly specified.

What is unknown is the structure of the transition function of the x-position,
for the actions left and right. For this transition, the prior includes the following
combinations of factors as parents for the x-position transitions, 1) x, 2) x and
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Boots, 3) x, Boots, and Door, and 4) x, Boots, Door, and Button. Each of these
combinations is assigned the same probability in the prior. The transition function
of the door is also not fully known, with the prior specifying a 50% chance of Button
being present as a parent. The prior is initialized optimistically, and so the agent
initially overestimates its chances of success and the probability that the person that
is present will open the door. It has to learn the correct structure and transition
probabilities.

We consider the abstractions k0, k1, and the full model kinf. The abstraction
k0 only includes the factor x. Abstraction k1 includes x and, depending on the
structures included in the belief, can also include the factors Boots, Button and Door.

Cracky Pavement Gridworld The Cracky Pavement Gridworld is a grid world as
shown in Figure 4.3a. The DBN of the domain is shown in Figure 4.3b. The state
space is factored into the x and y locations, Rain, and several extra binary factors.
These extra factors could be global (e.g., light conditions) or local (e.g., presence of a
chair in a specific location). In reality, only x, y , and Rain influence the movement
of the agent, as can be seen by the incoming edges of x and y . The “Trap” and
“Vendor” tiles depicted in Figure 4.3 do influence the movement of the agent but
are not included as separate factors because their dynamics are already captured by
x, y , and Rain. Their interaction is described in the next paragraph.

The agent is initially located at “Start” and is running low on battery, so it has to
move to a charging station at one of the “Goal” locations. The agent only observes
its x and y location and does so with a noisy sensor. For both x and y , the agent
makes the correct observation 90% of the time. If an incorrect observation occurs,
a randomly selected adjacent location is returned. At the edges, the probability
of receiving the correct observation increases to 95%. The agent can move in all
four directions, but the movements can fail. The chances of movement failure are
influenced by a global factor called Rain which represents whether the tiles are dry
or wet. The Rain factor is initialized randomly, and every timestep there is a 5%
chance that the rain condition changes. On normal tiles, actions succeed 95% of
the time when there is no rain and 66% of the time when it is raining. However,
on the Trap tiles with cracked pavement, moves succeed only 10% of the time.
Additionally, when it is not raining, a vendor with a cart occupies the Vendor tile,
making it harder to move past with only a 10% success rate for moving. Conversely,
during rain, the Vendor tile is vacant and functions like a normal tile. Therefore, to
behave optimally, the agent should traverse the Vendor tile when it is raining and
circumvent it when dry.

In this domain, we assume prior knowledge of all observation functions, the
transition functions of Rain and the extra binary factors, and the start and goal
locations. Additionally, we assume that it is known that the x and y factors both
(at least) depend on each other. However, there is no prior knowledge of the trap
locations and the vendor locations, meaning that none of the possible count tables
in the belief space specify different movement probabilities on these locations. Some
of the graph structures in the belief space include Rain and/or extra binary factors
(three in Figure 4.3b) as parents of x and y , implying the agent does not know
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whether or not these factors influence its movement. The extra binary factors are
initialized randomly and have a 20% of changing at each step. In this problem, the
agent has to learn that x, y , and Rain are the only relevant factors for its movement.
This task is complicated by the interaction between the trap states and several
uninformative factors, as the agent may mistakenly attribute its inability to move on
trap states to the presence of some of these uninformative factors.

As shown in Table 4.6 on page 104, we run the experiments with two different
amounts of extra binary factors: 20 and 80. The total amount of state factors is
23 and 83, respectively, since both settings also have the X ,Y , and Rain factors.
Scalability in the number of factors is very hard and important because the size
of the state space, and the possible graph structures, grow exponentially with the
number of factors. With 20 and 80 extra binary factors this domain has a state space
of approximately 5×107 and 6×1025 states, respectively. Factored representations
are needed to find solutions for problems of such sizes. Flat learning methods like
Bayes-Adaptive POMCP [60] are not feasible here, even in the simple case of 20 extra
binary factors. This is because representing the transition table for just 1 action, a
table of size |S|2, requires more than 9 million GB per particle.

We consider the abstractions k0, k1, and the full model kinf. The abstraction k0

includes only the factors x and y since they are the ones that directly influence the
reward (Figure reffig:overviewgridb). Abstraction k1 also includes the parents of x
and y . We scale the number of extra binary factors to test the speedup and to see
how it affects the performance.

Collision Avoidance In the Collision Avoidance domain, the agent flies from one
side to the other in a 10 (width) x 5 grid. The episode ends when the agent reaches
the last column, where it has to avoid colliding with a moving obstacle. This obstacle
has a 20% chance to stay stationary and otherwise randomly moves either up or
down. The agent can decide to move up, down, or stay level.

We increased the complexity of the original Collision Avoidance [61, 160] by adding
additional factors. These additional factors influence those in the original problem.
Figure 4.5 shows the resulting dynamics. We added the factors Speed (slow, fast),
Traffic (low or high amount of traffic), Time of Day (day, night), and Obstacle Type
(3 types, e.g., helicopter, plane). Obstacle Type and Time of Day are fully observable
and do not change during the episode. The agent receives a noisy observation of
the obstacle (accurate around 80% of the time). The agent has an 85% chance to
move one cell forward. If the Speed is high, it has a 15% chance to move forward
two columns. If the Speed is low, it has a 15% chance to stay in the same column.

The Speed is influenced by the Traffic. When the amount of Traffic is low, there
is a 90% chance that the Speed changes to (or stay at) high and a 10% chance that
the Speed changes to (or stay at) low. This is reversed when the Traffic is high. The
Traffic is influenced by the Time of Day in a similar way, when it day there is a 90%
chance that the Traffic changes to (or stay at) high and a 10% chance that the Traffic
changes to (or stay at) low. This is reversed when it is night. The Time of Day is
randomly chosen at the start of an episode, with a 50% chance of either day or
night.
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We assume prior knowledge of all transition and observation functions, except for
the transition probabilities of the obstacle. There are four different graph structures
for the obstacle transition function to which the prior assigns a positive probability.
These structures include: 1) the structure where Obstacle Y is only influenced by
itself; 2 and 3) the structures where it is influenced by itself and either Speed or
Obstacle Type; and 4) the structure where it is influenced by itself, Speed, and
Obstacle Type. Each structure has a 25% probability.

We consider the abstractions k0, k1, and k2, which is equivalent to the full model
kinf. The abstraction k0 includes the factors x, y , and Obstacle Y. The abstraction
k1 additionally includes the factors Speed and Obstacle Type, if Obstacle Type has a
connection to Obstacle Y.

Room Configuration In the Room Configuration domain, the task of the agent is
to set up a classroom in a desirable way for a teacher. We model this environment as
a 4 (width) x 3 grid, where each tile contains a configurable item with two settings.
The agent can change the configuration of these items. The teacher is concerned
only with the configuration of three specific items and is happy once these are
configured correctly.

The reward function is (largely) unknown to the agent in this domain, as the
agent does not initially know configuration factors that influence the reward. To
address this, we model the reward with a state factor called Happy, which takes
on the same value as the reward and is fully observable. While Happy is fully
observable, the agent does not know exactly which configuration factors influence it.
That is, the prior belief assigns a non-zero probability to multiple sets of parents of
Happy. Therefore, the agent must learn which configuration factors are relevant to
the reward. The Happy factor has four different states: neutral (0 reward), slightly
unhappy (−1), slightly happy (+1), and very happy (100). The agent receives a
reward when it performs the switch action, and this reward depends on its location
and the status of the configurable items. Specifically, the agent receives a small
reward or penalty (±1) when it changes the configuration of an item to the correct
or incorrect setting, respectively. Once it sets the configuration of all three items the
teacher desires, it receives a large reward (100).

While the configurations of the items are fully observable, the agent receives noisy
observations of its own location. For both x and y , the agent makes the correct
observation 95% of the time. If an incorrect observation occurs, a randomly selected
adjacent location is returned. At the edges, the probability of receiving the correct
observation increases to 97.5%. Movement actions have a 95% chance of moving
in the intended direction, whereas the switch action to change the item settings is
always successful. The agent has prior knowledge of the observation function and
the transition function for switching. Additionally, all the possible initial belief states
underestimate the probability that the move action is successful.

We consider the abstraction k0 and the full model kinf. The abstraction k0 keeps
the factors connected to the reward. The structures in the prior belief always include
x, y as parents of Happy. The prior belief is defined such that it assigns a non-zero
probability only to structures where the abstract models k1 and k0 are identical.
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Thus, in the experiment, we only use k0.

4.8.5. FURTHER EXPERIMENTS

Here, we demonstrate that abstraction can improve performance when we use
the invigoration step from FBA-POMCP, and that k1 and the full model kinf can
eventually outperform k0. We conducted 100 runs for each setting and report the
simple moving average of the return per episode, with the shaded areas showing the
standard error.

We ran an experiment with invigoration over a larger number of episodes, as
shown in Figure 4.9. Initially, k0 outperforms k1 and kinf. However, with enough
data, the k1 and kinf models become accurate enough to surpass k0 in performance.
The k1 model matches the performance of kinf because the number of simulations
is fixed.

For larger problem sizes and with a fixed thinking time instead of a fixed number
of simulations, k1 is expected to initially outperform kinf. Additionally, k0 should
show an even greater initial improvement over kinf, and it could take even longer for
kinf to surpass the performance of k0.
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Figure 4.9: Comparison with invigoration for a longer number of episodes.





5
DISCUSSION AND CONCLUSION

We provide a summary of the key findings and their implications as explored
in each chapter. We then review the scope of our work and current trends in
the field. Next, we examine the limitations of our methodologies and findings,
discussing recommendations for future research to address these challenges. Building
on the results of Chapter 3, we propose a way to extend its application to
alternative types of abstractions. Subsequently, we integrate the results from
Chapters 3 and 4, providing a unified perspective on abstraction dynamics and
their broader implications. Then, we go into the advancements presented in
Chapter 4, investigating how varying abstraction levels can be utilized to balance
the trade-off between accelerated learning and model accuracy. This incorporates
insights from research on abstraction selection and multi-armed bandits. Finally, we
address limitations in our current understanding of learning with abstractions from
a theoretical and practical perspective.

5.1. CHAPTER CONCLUSIONS
This thesis has aimed to increase the efficiency of Reinforcement Learning (RL) by
exploring the integration of abstraction and Model-based Reinforcement Learning
(MBRL). In this setting of MBRL from Abstracted Observations (MBRLAO), the
agent acts in an Markov decision process (MDP) but instead of observing the true
states, the agent only observes abstract states through an abstraction function φ(s).
Both abstraction and MBRL independently offer significant potential for improving
learning efficiency. However, their combination introduces not only opportunities but
also notable challenges, which have both been thoroughly analyzed and discussed
throughout this work.

In Chapter 2, we introduce a novel framework to interpret existing MBRLAO
approaches. Within this framework, we categorize approaches into two groups: those
that utilize one or more given abstraction functions and those that concurrently
learn abstractions while exploring and modeling the environment. Through this
lens, we identified benefits of integrating MBRL with abstraction, as well as open
challenges that warrant further investigation.

A key insight from our analysis is that MBRLAO can be conceptualized as
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transforming the learning problem from a (fully observable) MDP to a Partially
Observable Markov Decision Process (POMDP). This transformation to a POMDP has
implications for both learning dynamics and solution strategies, as guarantees for
methods in MDPs may no longer hold. This presents an important open question:
how can we ensure efficient learning in MBRLAO?

Furthermore, we identified an interesting opportunity for leveraging abstraction in
the context of MBRL with online planning. By simplifying state spaces, abstraction
has the potential to lead to faster planning, which can result in better performance
with limited planning time compared to planning with the full model. For RL
it could be that improved planning performance with abstraction also leads to
improved learning performance. This leads to an important open question: how
can abstractions be effectively employed in domains requiring both learning and
online planning? Specifically, under what conditions could a coarser model facilitate
improved performance by balancing computational efficiency, learning speed, and
model fidelity?

In Chapter 3, we examine the theoretical aspects and challenges associated
with MBRLAO. Building on the insight from Chapter 2 that MBRLAO transforms
a fully observable problem into a partially observable one, we investigate how
using the abstraction function affects the characteristics of the observed samples.
Specifically, we introduce an example that demonstrates that even in the context of
an approximate model-similarity abstraction, the resulting transitions are no longer
Markovian: for a given abstract state, the subsequent abstract states are neither
guaranteed to be identically distributed nor independent samples. Since the Markov
assumption is key in the performance guarantees of MBRL, these guarantees do not
directly transfer to learning with abstraction.

To address this challenge, we show that the learning process constitutes a
martingale difference sequence [53, 54]. Leveraging the properties of martingale
processes, we prove that it is possible to provide guarantees on the quality of
the learned model. For the first time, our results allow us to transfer the
theoretical results for MBRL to MBRLAO, particularly when using an approximate
model-similarity abstraction. We provide an explicit demonstration of this in the
context of the well-known R-max algorithm [13]. Our analysis proves that it is
indeed possible to integrate MBRL with abstraction, enabling more efficient learning
of near-optimal solutions. This work directly addressed the open question posed in
Chapter 2 regarding how we can ensure efficient learning in MBRLAO.

From a broader conceptual perspective, our results show that treating a non-Markov
problem as if it were Markov is feasible, provided the dynamics are sufficiently
similar. In this way, our findings provide a formal understanding of why MBRL can
be applied with success even though the Markov property rarely holds exactly.

In Chapter 4, we address the open questions raised in Chapter 2 regarding the
effective use of abstractions in domains that require both learning and online
planning. We investigated the creation of abstractions and their application in
learning and online planning within a partially observable setting.

Creating effective abstractions in RL is challenging due to the need to group
states with similar characteristics. Creating such an abstraction requires knowledge
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of the problem domain; however, in RL, we typically assume minimal or no prior
knowledge of the environment. To overcome this challenge, we adopt a factored
model framework combined with a Bayesian approach. The factored Bayesian model
enables us to incorporate prior knowledge and leverage the structural characteristics
of the problem to inform the abstraction process. The structural characteristics help
in identifying which factors can be considered less relevant and safely removed,
minimizing the loss of essential details. Our approach involves maintaining both
the original and abstract models throughout the learning process. This methodology
enables the abstract model to change over time, as we more accurately learn the
structure of the problem through the original model.

Empirically, we evaluated our approach in several domains to investigate the
potential benefits of abstraction. The experiments in these domains yielded several
important insights. First, abstract models can enhance performance by enabling
faster online planning, due to the reduction in the model size. This effect was
observed across multiple domains, with the performance gains being stronger as
the reduction in model size increased. Interestingly, this benefit was evident not
only when the abstract model accurately represented the original problem but also
when the abstract introduced a loss of information crucial for achieving optimal
performance. In online planning scenarios, the increased speed of simulations
provided by abstraction can compensate for the loss of model accuracy.

Furthermore, the experiments demonstrated that abstractions can improve
performance even under a fixed number of simulations, due to their greater
statistical strength. This advantage arises because abstract models can aggregate
multiple samples that the original model treats independently, thereby using
experience more efficiently. However, the full model may eventually surpass coarser
abstract models in performance as it receives enough data, depending on the
specific domain. Nevertheless, achieving this can take a significant amount of time,
especially when the abstraction results in substantial planning speed improvements
due to a reduction in model size. During this interim period, the performance
of the abstract models can be significantly better, highlighting their importance in
early-stage learning.

5.2. SCOPE AND RELEVANCE TO CURRENT TRENDS IN RL
We studied the combination of state abstraction and MBRL in MDPs and POMDPs,
with the primary goal of increasing the efficiency of RL. To study this, we surveyed
existing literature, with a particular focus on theoretical results. With the gained
oversight on the topic we identified current weaknesses in the knowledge on the
combination of MBRL and state abstraction and developed theory to address this.
To demonstrate the power of this combination we performed experiments in several
simulated domains.

Still, we would envision RL being more present in real life, and we have
only demonstrated their usefulness in relatively simple domains that are far from
real-world complexities. Despite this limitation, our theoretical and empirical results
are evidence that the combination of MBRL and abstraction can lead to more
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efficient learning. To demonstrate further usefulness in real-life scenarios limitations
need to be addressed and further steps taken, some of which we discuss in
Sections 5.3 and 5.4.

Since the success of deep RL in Atari games around 2015 [8], a clear trend in
RL has been to direct efforts toward deep neural networks. Our work is largely
independent of this trend, since we prioritize learning efficiency. As discussed in
Chapter 1, most current deep RL approaches either lack efficient exploration or
depend on simulators that may not always be available. That said, there is a
connection with our work since deep RL methods can be viewed as learning an
abstract representation through neural networks, and the insights developed here
may therefore prove useful in that context. We briefly review model-free and
model-based deep RL methods and consider how our contributions could benefit
work in this area.

The initial focus with deep neural networks was mainly on model-free deep
RL methods [8, 147, 189, 190]. In particular, deep Q-learning methods can be
interpreted as learning an exact Q∗ abstraction, since they attempt to learn optimal
Q-values. Our results show that approximate abstractions can still achieve strong
performance. Thus, it could be beneficial to concentrate on learning approximately
optimal Q-values, which could, for instance, be done by changing the loss function.
This could lead to improved learning speed and performance.

Despite these advances, model-free deep RL methods have often performed
poorly in more challenging environments. To improve the performance in complex
environments, where a good exploration strategy is more important, there has been
an emphasis on deep exploration [63, 66, 80, 191–197]. These deep exploration
methods essentially reimplement existing exploration techniques in deep RL and
often use some measure of uncertainty. While the theoretical guarantees of existing
exploration techniques can no longer be assured with neural networks, implementing
these techniques generally leads to better exploration and performance. Nevertheless,
recent studies have demonstrated that uncertainty estimation in deep RL can be
unreliable [198, 199]. This can be especially problematic in real-world applications
where mistakes can be costly.

To mitigate the difficulties associated with uncertainty estimation, current work
has proposed learning without relying on uncertainty estimation [200]. For example,
one line of work formulates the problem of RL in a pessimistic way by assuming
the worst case transitions, creating a pessimistic, or adversarial, MDP [201]. In
learning, they alternate between optimizing the policy and (adversarially) optimizing
the model. This pessimistic approach provides a principled way to sidestep the
need for explicit uncertainty estimation, and it may also prove valuable in MBRLAO,
where abstraction naturally introduces uncertainty. Our work, by contrast, does not
operate in the deep RL setting. Instead, we combine uncertainty estimation with
an optimistic perspective to demonstrate that efficient learning in MBRLAO can be
achieved not by avoiding uncertainty, but by exploiting it. While extensions to deep
RL may be less straightforward, our results highlight optimism as a powerful and
principled tool for addressing uncertainty in abstract models.

An emerging line of work has concentrated on addressing the lack of formal
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guarantees in learning with deep RL [202–204]. These approaches use variational
autoencoders [202, 205, 206] or Wasserstein autoencoders [203, 204, 207] to create
discrete latent space models. In [203], such models enable the distillation of
formally verifiable controllers from any RL policy, resulting in a so-called distilled
policy. The Wasserstein autoencoder improves upon the variational autoencoder
by addressing some of its limitations and providing abstraction and representation
guarantees, which support a more principled compression of the state space. This
approach also leads to bisimulation guarantees, representing a significant step
towards providing formal guarantees in deep RL. Furthermore, [204] demonstrates
that Wasserstein autoencoders can also provide guarantees for learning in POMDPs.
These results are complementary to our work, in that we focus primarily on
approximate (bisimulation) abstractions, and it may be possible to extend this line of
research to use approximate rather than exact abstractions while still retaining formal
guarantees. In this way, our results for MBRLAO with approximate abstractions
could be extended to deep RL, enabling a greater reduction of the state space and
potentially improving learning efficiency compared to the use of exact bisimulations.

The latest work shows growing interest in model-based deep RL [45, 46, 58, 79,
100, 117, 119, 124, 168, 208–212]. These methods learn a representation of the
environment and often contain a planning component, using the learned model
to plan actions. These methods are promising since they can guide exploration
and find solutions more efficiently. Our work suggests that learning approximate
representations instead of the exact dynamics could benefit both learning and
planning. Approximating the dynamics could speed up learning by aggregating
experience. For planning, while an approximate representation will not reduce the
size of the model, since the neural network will remain the same size, it can still be
beneficial since our results show that planning with an abstract model can improve
performance even when there is no speedup in the simulations.

Recent studies have explored combining temporal abstraction with deep RL [28,
213]. In [28], rewards are assumed to be compositional: they can be expressed
as a set of short-term subgoals with a final goal. The method employs a
hierarchical approach, using high-level planning together with model-free RL to
achieve the subgoals. For high-level planning, a graph is constructed from the reward
specification, where edges correspond to subtasks and vertices correspond to states
in which subtasks are achieved. A forward graph search algorithm is then applied
to compute a policy over the completion of subtasks. In [213], subgoal regions
(subsets of states) are also assumed to be specified and are used as a form of state
abstraction. Options are then learned as actions that transition between subgoal
regions, thereby integrating both state and action abstractions. Planning is done for
the resulting abstract problem. This is similar to our MBRLAO approach, where
planning is also performed in the abstract MDP, but instead of learning options, we
use the ground actions directly to model transitions between abstract states. Options
could be particularly useful for online planning, such as in the work of Chapter 4, by
shortening the effective planning horizon. In contrast, ground actions provide more
fine-grained control when precise behavior is needed.

Finally, ongoing development is the combination of planning and RL with
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foundation models [214]. Foundation models are trained on large-scale, diverse
data and can be adapted to a wide range of tasks. A prominent example is Large
Language Models (LLMs) such as ChatGPT [215]. These models have demonstrated
promising results for instance in zero-shot planning [216]. More recently, LLMs have
been integrated with RL, where the LLM guides exploration through its use as a
prior and the RL helps finetune performance in tasks through learning [217]. In
this context, the LLM can be viewed as providing prior knowledge. This approach
is particularly appealing for work on (deep) Bayesian learning, such as in Chapter 4
and related studies [167, 168], since reliable (even suboptimal) priors can enhance
learning performance in deep RL [218].

5.3. LIMITATIONS

We mention several limitations of our work, including new limitations that became
apparent upon further analysis and limitations already discussed in earlier chapters,
which we expand upon here.

Revisiting the results of Chapter 3 provided the insight that state-action abstraction
is a natural extension of state abstraction. While that chapter focused on state
abstraction, much of its analysis centered on state-action pairs. Since state
abstraction can be viewed as a special case of state-action abstraction, a greater
focus on state-action abstraction would have been warranted in Chapter 2. Further,
expanding the standard definitions of exact and approximate state abstractions
to state-action abstractions could have been used in Chapter 3 to yield more
generalizable results.

Chapter 3 establishes guarantees for learning with an approximate model-similarity
abstraction. A limitation of this work is the implicit assumption that a good
abstraction function is readily available. Guaranteeing the quality of such an
abstraction in advance is particularly difficult in RL, as the framework typically
operates under minimal prior knowledge of the problem domain. This was partially
addressed in Chapter 4, where we investigated how to construct abstractions a priori.
Still, it may not always be clear if an abstraction improves performance. In this case,
we may be able to resort to abstraction selection. We further discuss this idea in
Section 5.4.

While the results in Chapter 3 demonstrate that an abstract model can be learned
accurately for any type of state abstraction, we have extended the results of MBRL
to the setting with abstraction only for the approximate model-similarity abstraction.
Since the most effective type of abstraction for improving performance may vary
depending on the problem domain, it would be worthwhile to explore whether
similar theoretical results can be derived for other types of abstractions. This
possibility will be discussed further in Section 5.4.

In Chapter 4, our approach for creating abstract models decides which factors
to remove based on their distance to the factors directly relevant to the reward.
However, this may not always lead to good abstractions. For example, factors outside
the abstract model could strongly influence those inside the abstract model. More
sophisticated methods could be used for deciding which factors to exclude. Instead



5.4. FUTURE WORK

5

117

of removing factors based only on distance, one could estimate the impact of a
factor on the factors in the abstraction and only remove it if its impact is below a
threshold. Alternatively, a combination with influence-based abstraction [32] could
be effective, where we learn the influence of the factors outside the abstraction on
the factors inside the abstraction.

There is a clear similarity between the theoretical results of Chapters 3 and 4,
since both results relate to learning with abstraction and give learning results in
the setting where we learn an abstract model. There are also important differences
that were not discussed in the chapters. Chapter 3 highlighted that the abstract
solution might change over time and that the (abstract) samples are not identically
distributed and can not be expected to be independent. The results then showed
how we can deal with these difficulties and still provide important results. So why
does Chapter 4 seemingly ignore these difficulties? Two crucial differences allow the
results of Chapter 4 to implicitly address the issues encountered in Chapter 3.

First, in Chapter 4 we learn both the ground model and an abstract model.
Instead of directly learning an abstract model, we update the ground model and
use this to update the abstract model at each timestep. Learning the ground model
means we can rely on analysis without abstraction and do not directly need to deal
with dependent and non-identically distributed samples. A downside compared to
Chapter 3 is that this could be costly in terms of memory and is less scalable since
we have to keep track of the ground model.

Second, in Chapter 3, we provide guarantees on the quality of the learned abstract
model and demonstrate that abstractions can accelerate learning. In contrast,
Chapter 4 neither guarantees the quality of the learned abstract model nor shows
that we can learn quicker. Instead, it uses a different type of abstraction that
only relies on its quality η. For this abstraction with quality η, we define that
any ϵ-optimal solution π in the abstract model is an (ϵ+η)-optimal solution for
the original problem. This ensures that, at each time step, the solution converges
to an action that is (ϵ+η)-optimal in the original Factored Bayes-Adaptive POMDP
(FBA-POMDP). While the empirical results showed that this can lead to quicker
learning, this analysis does not directly prove this. An analysis similar to that in
Chapter 3 could be used for the results in Chapter 4, we will discuss this further in
Section 5.4.

5.4. FUTURE WORK

We give a concise discussion on potential extensions of important chapter results
and propose ideas for future directions.

EXTENDING RESULTS OF CHAPTER 3

In Chapter 3, we demonstrated that performance guarantees of MBRL methods
can be extended to the setting with abstracted observations using an approximate
model-similarity abstraction. We also claimed that similar results could be obtained
for at least one other type of abstraction: approximate Q∗ abstractions.
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The results from Chapter 3 show that at least two types of approximate abstractions
can be effectively used in MBRLAO. It may be possible to further extend our result
to other types of approximate state abstractions [16] and to create insights for
approximate abstractions similar to those for exact abstractions [15]. Next steps
could include investigating the relationships between the different abstractions.
For example, approximate Q∗ abstraction can compress more than approximate
model-similarity abstractions, since all model-similarity abstractions are approximate
Q∗ abstractions, but not the other way around.

Further insights into different types of abstraction could improve our understanding
of which is most useful for learning. The optimal choice depends on the balance
between the degree of compression and the resulting loss in value, which are
problem-specific. Understanding which abstraction is preferable in a particular
environment can lead to more efficient learning.

CONNECTING CHAPTERS 3 AND 4

In Chapter 3 we used approximate model-similarity abstractions to show that we
could efficiently learn in MDPs with abstraction. In Chapter 4 we used a more
general definition of abstraction quality, where any ϵ-optimal solution of the abstract
problem is ϵ+η-optimal in the original problem. We then used this definition to
show that applying Factored BA-POMCP (FBA-POMCP) with abstraction will lead
to ϵ+η-optimal solutions. There is a connection between these results, as an η

approximate model similarity abstraction can give η+ ϵ-optimal solutions in the
original problem.

It should be possible to extend the results for approximate model-similarity
abstractions in MDPs to POMDPs. There are still some steps to be made, as
it requires extending the definition of the abstraction to include the observations
and observation functions. Subsequently, the theoretical bounds also need to be
updated to take into account the observation space. Much of the analysis relies on
simulation lemmas for MDPs, which could be adjusted with a simulation lemma for
POMDPs [159]. These steps could more formally extend state-abstraction results for
MDPs to POMDPs.

MULTI-ARMED BANDITS FOR ABSTRACTION SELECTION IN RL

Chapter 4 showed that abstract models can accelerate learning and improve
performance. However, it was also shown that the optimal level of abstraction (or no
abstraction) varies across environments and over time. The optimal representation
depends on several factors. For example, it is influenced by the model fidelity
after abstraction, how accurately can the model still represent the true dynamics?
Losing too much information can result in not performing at all, while a slight
loss of information could improve performance through greater statistical strength.
This introduces a trade-off between the model fidelity and statistical strength. In
the context of online planning, there is an additional trade-off between the model
fidelity and the computational speedup that can be achieved from the reduced
model size through abstraction.
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Since the best abstraction might vary over time, the question of how to decide
which abstraction to select at what time is important for optimal performance.
As suggested in Chapter 4, abstraction selection methods and (non-stationary)
multi-armed bandits could be used for this. This suggestion deserves more attention
for two reasons: there are some difficulties with using (current) abstraction selection
techniques in our setting, and using (non-stationary) multi-armed bandit methods
could be a promising novel direction.

In our setting, we assume problems are partially observable. Since these
problems are huge, finding an optimal solution to the entire problem offline is
often impossible, making it necessary to rely on online solution methods. We also
assume we do not have access to the true model of the problem, and we want
to use (approximate) abstractions to learn more efficiently. Most existing work on
abstraction selection does not fit our setting for various reasons. As discussed
in Sections 2.3.3 and 3.5, these reasons include among others a focus on finding
solutions for a model offline, assuming access to the (abstract) model itself, or just
focusing on finding a Markov model instead of focusing on finding the model most
efficient for learning [39, 40, 48, 49, 51, 102–104].

We can view the problem of abstraction selection as a (non-stationary) multi-armed
bandit problem in the sense that we have multiple representations, and we have to
select one representation (abstract model) for each episode. The return obtained
within an episode would be the reward for using the selected abstraction, or arm.
This problem can be considered non-stationary since we update the models with
the experience gained in each episode, this can change the policy and thus lead to
different (expected) rewards. Multi-armed bandit methods are interesting since they
tackle the fundamental exploration-exploitation dilemma to efficiently learn which
arm is the most rewarding [219]. Using non-stationary multi-armed bandit methods
could help to efficiently select a good abstraction at any point in time as they are
flexible to changes in the model and different representations could be good at
various times.

A specific proposition for abstraction selection in episodic RL with abstraction
is to use the Sliding-Window UCB# algorithm [220]. This algorithm maintains an
estimate of the returns within a sliding window and can be used in environments
where the change in the expected rewards can be upper-bounded and is not too
large. In FBA-POMCP, some factors make the change in the expected reward likely
to be small. First, the change in the model within an episode is generally gradual, as
this depends on the experience gained. When the change in the model is small, we
expect the change in the policy, and thus the expected reward, to be small as well.
Assuming the reward function is known, only the change in the transition model
influences the policy. Furthermore, since we use online planning, the resulting policy
is stochastic since it depends on the (random) roll-outs in the tree.

ABSTRACTION BOUNDS

In Chapters 2 and 3, we discussed and used theoretical bounds for abstractions.
These theoretical bounds can quickly become vacuous, even when this might not be
obvious from merely observing the problem. For instance, in a theoretical example,
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it has been shown that using the R-MAX algorithm with an ϵ-approximate Q∗
abstraction can fail to learn even for small values of ϵ= 0.1 [41]. This example is
shown in Figure 5.1, with actions to move to the left and right or to loop. In states
1 and 2 looping leads to some small reward κ, and looping in state 3 leads to the
maximum reward Rmax.

Figure 5.1: Example chain problem. The agent can move left, right, or loop. Looping
results in a small reward of κ in states 1 and 2, and in a large reward
Rmax in state 3.

They grouped states 0 and 1, resulting in an abstract state space with two abstract
states, abstract state A containing states 1 and 2 and B containing state 3. They
assume that the R-MAX algorithm breaks ties in action selection by choosing actions
in a specific order. In this case, by first choosing the action left, then right, and
then loop. If this is the case, and the agent starts in state 1, it will only ever visit
states 1 and 2 and never reaches state 3. Thus it will just learn endlessly looping for
a reward of κ. This means that the R-MAX algorithm with this abstraction leads to
making an unbounded number of mistakes.

This was used as an example of an unexpected negative result with abstraction.
However, the theoretical bound for this example shows that the bound is vacuous,
meaning it is not unexpected that the algorithm does not perform. The ϵ-approximate
Q∗ bound states that the loss in value when using the abstraction is at most
2ϵRmax
(1−γ)2 = 80Rmax, which in this problem is four times the maximum value in any state

( Rmax
1−γ = 20Rmax).

Of course, in problems such as these treating the abstract problem as a POMDP
and applying solutions for POMDPs would also quickly lead to an optimal solution.
Interestingly, without treating it as a POMDP, a small change would still allow
learning an optimal solution using the abstract representation. Where we typically
focus on learning deterministic policies, it can lead to failure when using abstraction.
This was the case in this example, as their analysis relied on the fact that the
algorithm will select actions deterministically. As shown in POMDPs, stochastic
policies can perform much better than deterministic ones when treating a POMDP
as an MDP [132]. In the example problem, adding stochasticity could allow the
algorithm to reach the goal state and achieve the reward, leading to the algorithm
finding the correct solution. An interesting direction could be incorporating
stochasticity in learning with abstraction. This can prove difficult but could lead to
improved results.
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Even without stochasticity, abstraction can still be beneficial and provide a good
solution even when the bound is vacuous. This can be seen in the experiments
of Chapter 4. In the Cracky Pavement Gridworld, the agent cannot distinguish
whether or not the vendor is located on the tile. The differences in the transition
probabilities with or without the vendor are quite large, making this problematic
from a theoretical perspective. However, the agent can learn to simply avoid this
tile since, in expectation, it will sometimes cross this tile when the vendor is there,
which should lead to the agent learning that crossing this tile is worse than going
around it. While this is slightly suboptimal it still leads to a good solution. In this
way, even though an abstraction may not be “good” in the sense of the bounds
for approximate model similarity, it is still a good abstraction in the sense that an
optimal policy can still be learned. It could thus be interesting to look at bounds
that can be obtained from the starting state(s) or the path that the abstract policy
can learn to follow.
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