TOWARDS ZERO-WASTE STRUCTURES THROUGH INTEGRATION OF RECLAIMED WOOD AND 3D PRINTING

P5 Presentation
Aron Arend Bakker
5658004

Context

- 40% of primary energy goes to the building industry (European Commission, 2017)
- The EU pushes for greater reuse of building components (Didier, 2018)

What is the circular economy?

The Circular Economy

Current standing....

So, what seems to be the problem?

Design with a constrained stock increases the complexity of a design project

- Circular material hubs provide storage
- A dynamic stock of elements increases complexity
- Stock constrained design tools give complex connections
- Connections damage the reused elements.
- Remanufacturing is required, creating saw-off losses.

For example:

https://www.shutterstock.com/nl/image-photo/worried-woman-moving-into-new-apartment-663880423

- Like IKEA without instructions
- None of the right elements
- Nothing matches

https://vimeo.com/654116098

How can we solve this problem?

Stock-constrained design

Example: Reused/New elements

Example of stock-constrained designed structure

https://www.epfl.ch/labs/sxl/tools/phoenix3d/

What is stock constrained design?

https://www.epfl.ch/labs/sxl/tools/phoenix3d/

Disadvantages stock-constrained design

- Creates complex and unique joints
- Will use larger elements than necessary, creating saw-off loss
- Fills gaps with new elements

https://www.researchgate.net/figure/a-shows-the-optimal-structure-designs-and-element-usage-for-stocks-A-B-and-C-when_fig3_354270307

The proposed solution!

- Make connections grow towards elements
- Element >= element required
- No saw-off!

https://external-

content.duckduckgo.com/iu/?u=https%3A%2F%2Fi.redd.it%2Fnssgg09wcxe31.jpg&f=1&nofb=1&ipt=14d75fbdc56d6c583a62013f21d4a5b4d418125f0cd4cbf65037c5e64c2f6f06&ipo=images

How? Topology optimization + 3D printing

https://www.researchgate.net/figure/3D-printed-wooden-furniture-connectors-2_fig1_375886252

The research question

"Can stock-constrained digital design combined with 3D printing support the reuse of wooden structural elements without saw-off losses in a sustainable way?"

The desired end results

A design tool

LCA results

Carbon footprint

The casestudy

The scenario's

Original

New wood

Reused wood

Optimized design

Optimized connections

The scenario's

The workflow

01/08/2025

23

The stock

- Reclaimed timber
- Circulair hub
- 3D-digital copies for library

https://encryptedtbn2.gstatic.com/images?q=tbn:ANd9GcSnmCTwDgEoYhbhAsd5nQcgTsUhzaNseO4ldkPnF7eGr_m657ch

Recreating the original structure

Original

New wood

Reused wood

Creating freedom of motion

Optimized design

Optimized connections

Reuse optimizations

- Element >= element required
- No stock-constrained optimization
- With saw-off losses

Reused wood

- Element >= element required
- With stock-constrained optimization
- With saw-off losses

Optimized design

- Element <= element required
- with stock-constrained optimization
- Without saw-off losses

Optimized connections

Creating the printable box

- What goes into the connection?
- Angles, profiles, position etc.

Loads and materials

Loads and materials

Material properties:

- Density
- Youngs modulus
- Poisson ratio

https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcSzZsLJse_5FgLFHTOW3mvdlX8zKNwt1QMERN81_ArgzWGVJR25

Predefined settings

Generating the connections

The first result

- Fast calculation time
- Low resolution
- 65.176 cm3

Higher resolution

- Slow calculation time
- High resolution
- -54% volume
- 29.781 cm3

Higher iso-value

- Takes away "underutilized material"
- -67% volume
- 21.438 cm3

Smoothening surface

- Turning pixels into an surface
- -74% volume
- 16.673 cm3

The waste and LCA results

https://encrypted-tbn3.gstatic.com/images?q=tbn:ANd9GcSsi6Gw9_bk6TpXALxDeBsw3UhJFag9pE-05q5rSRBoMADt6-Uj

Waste production results

The LCA results

Carbon footprint comparison 1, 5 and 10 years

What happend?

How is this possible?

- 177 kg plastic
- 49 kg steel connections
- Volume increase 25x

Conclusion

The question

 "Can stock-constrained digital design combined with 3D printing support the reuse of wooden structural elements without saw-off losses in a sustainable way?"

My answer

- Yes, it is possible to use this method and design with zero waste
- However, it might not always be the most sustainable option when compared to the alternatives

- Structural validation of the connections
- Topos is limited for detailed work

- A working attachment that survives the simulation
- Attachment could be optimized to save material

Scale was limited during the research

- Fire safety
- Unthreaded wood + plastic connections

 $https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcReQOmKLDCkklg_0-Htpmqauy8e6xQc0IsyrMUvzLUXIhAgjHSf$

https://vimeo.com/654116098

Oportunities

 Different materials could lead to a more sustainable product

https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcSzZsLJse_5FgLFHTOW3mvdlX8zKNwt1QMERN81_ArgzWGVJR25

Oportunities

- More materials become available to designers with the help of the developed tool
- The supplies can come from more local places

https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTZwYWrrfb0sGKMYt0QLIg65a1mBSvS33t8uacb3xyIMek6b4Sy

Oportunities

- Only energy goes into the created stream
- If the energy is CO2 neutral, so is the product

https://encrypted-tbn3.gstatic.com/images?q=tbn:ANd9GcQt2tP1CjfXCJEtVc9YcuILBk0FTOljrHCGuvfJaijU0Fzj5wXi

Reflection

- Easy to compare strategies in a early design stage
- Results might change in the future with new materials and different energy sources

Thank you

