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Abstract—One of the key challenges for multi-agent systems
is collision free navigation in an unknown environment. In this
work, we propose a unified framework for joint localization,
control, and collision avoidance of multi-agent systems navigating
in an unknown environment in the presence of dynamic obstacles.
The cooperative agents rely on information from immediate
neighboring agents within their communication neighborhood,
and the dynamic obstacles are modelled as non-cooperative
agents. The agents achieve localization by exploiting the individ-
ual agent dynamics, and pairwise distance measurements with
agents in the sensing neighborhood of each cooperative agent.
To ensure collision-free navigation, we exploit a Model Predictive
Control (MPC) for each agent, with avoidance constraints using
safety radius between pairwise agents. Futhermore, to avoid
single point of failure, we propose Cooperative Positioning,
Control and Collision Avoidance (CPCCA), which is based on
distributed Method of Multipliers methods. We validate our
framework and algorithms through simulations, demonstrating
its effectiveness in real world scenarios, and propose directions
for future work.

Index Terms—Multi-agent systems, Collision avoidance,
ADMM, MPC, Distributed optimization.

I. INTRODUCTION

The past decade has seen a rise in the application of multi-
agent systems (MAS) in various sectors, including aerospace,
robotics, automotive, and aviation, to name a few. The po-
sitioning of a network of MAS have been well studied for
both anchored [1], [2], and anchorless scenarios [3]. These
localization algorithms typically take in measurements such as
Received Signal Strength (RSS), Time of Arrival (ToA), Time
Difference of Arrival (TDoA), and may use information from
on-board sensors e.g., IMU [4], [5]. Maximum likelihood and
convex optimization approaches to estimate stationary agent
positions from pairwise distance measurements (e.g., from
ToA) with full or time-varying (nonsymmetric) connectivity
have been proposed [6], [7].

In case of mobile MAS, there are various strategies ex-
plored in literature to track the state of the mobile agent
[8], including the exploitation of the agent dynamics, which
leads to adaptive parametric filtering methods e.g., distributed
Kalman filtering [9]. Alternatively, non-parametric methods
such as particle filtering or MCMC methods [10], [11] could
be used for non-linear models or when no information on the
underlying statistical noise is available. Multi-target tracking

This work is partially funded by TUD CRANES (Cooperative Relative Nav-
igation of Multi-agent Systems) and by the European Commission HORIZON-
KDT-JU-2023-2-RIA ShapeFuture projects.

uses message-passing and belief propagation algorithms suited
to nonlinear and non-Gaussian models, for both known and
unknown numbers of targets have been studied [12], [13].
More recently, relative kinematics of mobile MAS were mod-
eled based on time-varying pairwise distance measurements,
inferring positions and higher-order kinematics in conjunction
with accelerometer information available onboard [14], [15].

Collision-free navigation in MAS have been modeled in
various ways [16], from simple swarming behavior [17] to
optimal behaviors such a using a model predictive control
(MPC) with collision avoidance constraints [18]. Along similar
lines, dynamic obstacles have recently been included as non-
cooperative agents and solved using ADMM-based algorithms
[19]. However, to the best of our knowledge, the joint esti-
mation of agent positions, the dynamic prediction of optimal
future positions for both cooperative and non-cooperative
agents, in combination with collision avoidance has not been
addressed before, which is our key contribution in this work.

In this article, we propose a novel framework for localiza-
tion, control, and collision avoidance of multi-agent systems
navigating in an unknown environment in the presence of
dynamic obstacles. Our framework models dynamic obstacles
as non-cooperative agents and uses MPC in conjunction with
various constraints to ensure safe navigation. Our proposed
Cooperative, Positioning, Control and Collision Avoidance
(CPCCA) algorithm is decentralized and scalable, even with
increasing number of agents or multiple obstacles. We demon-
strate the robustness of our solution through simulations, and
propose directions for future work.

II. PROBLEM FORMULATION

Consider a set K = {1, 2, . . . ,K} of K agents in a D
dimensional space, which consist of a set of cooperative
mobile agents, and non-cooperative agents or obstacles. Thus,
K ≜ Kc ∪ Knc, where Kc and Knc denote cooperative and
non-cooperative agents respectively. The cooperative agents
are capable of bidirectional communication with other agents,
which is represented by the communication graph Gc(Kc, Ec),
where Ec denote the set of communication edges between
the agents. A communication edge between an agent pair
(k, j) ∈ (Kc×Kc) exists, if and only if the pairwise distance
is less than communication radius rc. In addition, a directed
sensing graph Gs(K, Es) is established between all agents,
where Es is the set of sensing edges. A sensing edge between
an agent pair (k, j) ∈ (Kc × K) exists, if an only if theIC
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pairwise agent distance is less than the sensing radius rs. The
sensing graph enables measurements of nearby agents, while
the communication graph allows for cooperative distributed
computation. The end goal of the agents is to reach their
respective individual targets or way points, while avoiding
obstacles on their way.

A. Dynamics and measurement model
Let pt

k ∈ RD×1 denote the position at t > 0 of the kth
agent ∀k ∈ K, we then consider a scenario where the agents
follow single integrator dynamics with underlying zero-mean
Gaussian noise, and subsequently the posterior probability
distributions with discrete state transitions are given by

p(pt
k|pt−1

k ,ut−1
k ) ∼ N(Fpt−1

k +Gut−1
k ,Σk)∀k ∈ Kc, (1a)

p(pt
k|pt−1

k ,vt−1
k ) ∼ N(F̄pt−1

k + Ḡvt−1
k ,Σk)∀k ∈ Knc,

(1b)

where the D-dimensional vectors ut
k and vt

k denote the control
input of the cooperative agent and the velocity of a non-
cooperative agent, respectively. The state transition matrices
are assumed to be known, along with the noise covariance
Σk∀ k ∈ K. Observe that the control inputs of cooperative
agents ut

k∀k ∈ Kc need to be estimated, however, the initial
velocity of non-cooperative agents can be estimated from
their respective previous positions. For a given time instant
t, we collect all the positions and control inputs of the
agents in the matrices Pt = [pt

1, . . . ,p
t
|K|] ∈ RD×K and

Ut = [ut
1, . . . ,u

t
|Kc|] ∈ RD×|Kc| respectively. In addition to

the dynamical model, we measure the noisy relative distance
measurements between the agents i.e.,

wt
kj =

∥∥pt
k − pt

j

∥∥2 + ξkj ∀ (k, j) ∈ Es, (2)

where the underlying noise is Gaussian i.e., ξkj ∼ N(0, σ2
k),

where the agent dependent variance σ2
k is known.

Given the initial positions P0 and the relative distance
measurements to their neighboring agents, the goal of all
cooperative agents is to navigate to their respective individual
target position p∗

k∀k ∈ Kc, by estimating their respective
positions Pt and their control input Ut at a discrete time
t > 0, and avoid (non-) cooperative obstacles during their
course. In addition to the system model, we assume the sensing
and communication radii {rs, rc} are known to all agents.

B. Localization
Given the dynamical model (1) and relative distance mea-

surements (2), we propose to estimate the discrete positions
of the agents at time t > 0 by minimizing the sum of the
corresponding negative log posterior distributions i.e.,

J1(P
t) := −

{ ∑
k∈Kc

ln p(pt
k|pt−1

k ,ut−1
k )+

+
∑

k∈Knc

ln p(pt
k|pt−1

k ,vt−1
k ) +

∑
(k,j)∈Es

ln p(pt
k,p

t
j |wt

kj)

}
,

(3)

Now, since each individual log posterior is quadratic and
convex, J1(Pt) is also convex and hence can be readily solved.

C. Model Predictive Control with Collision avoidance

In addition to the agent positions, we also need to estimate
the optimal control actions for cooperative agents, while
for non-cooperative agents, a constant velocity is assumed
to predict future positions. The control inputs are typically
obtained using finite-horizon Model Predictive Control (MPC),
where the optimal actions are calculated based on the pro-
jected future states over a given control horizon [20]. Let
T = {1, . . . , T} be a set of discrete time indices over control
horizon T , then our objective is to estimate all control inputs
Ũ t := {Ut+τ−1 ∀ τ ∈ T } at t. Since the positions over the
horizon are fully defined by the position at t and these control
inputs, we have the following objective function

J2(Ũ t) :=
1

T

∑
k∈Kc

∑
τ∈T
||pt+τ

k − p∗
k||2 ∀k ∈ Kc, (4)

where p∗
k is the target location for each cooperative agent, and

pt+τ
k is given by the linear state transition (1a) i.e.,

pt+τ
k = Fpt+τ−1

k +Gut+τ−1
k ∀ k ∈ Kc, τ ∈ T . (5)

To ensure a feasible solution, we bound the control effort
for each agent k i.e.,

||ut+τ−1
k || ≤ umax ∀ k ∈ Kc, τ ∈ T , (6)

where umax is the maximum control effort. In addition, to
ensure a collision-free path, we aim to maintain a safety radius
of rsafe for all agents. Let sτkj = pt+τ

j − pt+τ
k be the relative

position at τ between an agent pair (k, j), then we have the
following constraint i.e., ||sτkj || ≥ rsafe, ∀(k, j) ∈ E , τ ∈ T .
Unlike (6), since this constraint is nonconvex [21], we intro-
duce a first-order approximation of ||sτkj ||, which linearises the
constraint while guaranteeing the trajectories to be collision-
free [19], [22] i.e.,

||s̄τkj ||+
(

s̄τkj
||s̄τkj ||

)⊤

(sτkj − s̄τkj) ≥ rsafe, (7)

where the linearization points s̄τkj are relative positions cor-
responding to the approximated individual trajectory points
p̄t+τ
k ∀ k ∈ K, τ ∈ T . The approximation of the trajectory

points can be done in several ways, such as by assuming
constant velocity or by predicting over the horizon at time
t − 1. Due to underlying state transition noise, the safety
radius rsafe may not be guaranteed, and thus must be cho-
sen conservatively depending on application. In summary, to
achieve collision-free movement towards a target, given their
position at t, the cost function (4) must be minimized under
constraints (5), (6) and (7), which gives Ũ t and subsequently
P̃t := {Pt+τ−1 ∀ τ ∈ T }.

III. JOINT LOCALIZATION, CONTROL AND AVOIDANCE

We now propose a multi-objective joint localization, MPC
optimization and collision avoidance formulation by combin-
ing the cost functions of localization (3) and MPC (4) i.e.,

min
Pt,Ũt

αJ1(P
t) + (1− α)J2(Ũ t) s.t. (5), (6), (7), (8)
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where we introduce the hyperparameter α ∈ R s.t. 0 < α < 1
which weighs the trade-off between the two objectives (3)
and (4). Observe that the combined optimization problem
consists of quadratic objectives, quadratic constraints, and
linear constraints, which is readily solvable by a Second Order
Cone Programming (SOCP) under nominal conditions [23],
[24].

A. Distributed formulation

To avoid a single point of failure in a multi-agent network,
we now present a distributed formulation to solve (8). Observe
that the cost functions have both vertex dependent variables
for each agent k ∈ Kc, and edge dependent variables for their
neighbors. Now consider a shared vector ztkj ∈ R(2(T+1))D,
defined for each pair (k, j) ∈ Es i.e.,

ztkj := [(pt
k)

⊤, . . . , (pt+T
k )⊤, (pt

j)
⊤, . . . , (pt+T

j )⊤]⊤, (9)

and let the local copies of this shared vector ztkj at agent
k and j be given by yt

kj,k and yt
kj,j , respectively. If a

cooperative agent does not receive the necessary yt
kj,j , e.g.,

from a non-cooperative neighboring agent j ∈ Knc, then the
agent implements an augmentation strategy by substituting its
own local estimate i.e., yt

kj,j = yt
kj,k. Now, for a given agent

k ∈ Kc, we define

Yt
k := [yt

k1,k, . . . ,y
t
k|Nk|,k], Ũ

t
k := [ut

k, . . . ,u
t+T−1
k ] (10)

where Yt
k ∈ R(2(T+1))D×Nk denotes ykj,k w.r.t. all the agents

in the neighbourhood of agent k and Ũt
k are the control inputs

for the agent over the horizon.
Given the definitions (9) and (10), the centralized objective

in (8) can be rewritten for the kth agent as

Jk(Ũ
t
k,Y

t
k) := −α

{ ∑
j∈N c

k

ln p(pt
j |pt−1

j ,ut−1
j )

+
∑

j∈Nnc
k

ln p(pt
j |pt−1

j ,vt−1
j ) +

∑
j∈Nk

ln p(pt
k,p

t
j |wt

kj)

}
+ (1− α)

1

T

∑
τ∈T
||pt+τ

k − p∗
k||2 ∀k ∈ Kc, (11)

where N c
k and Nnc

k denote the set of cooperative and non-
cooperative neighbors respectively, and the overall distributed
optimization problem is

min
{Ũt

k,Y
t
k}k∈Kc

∑
k∈K

Jk(Ũ
t
k,Y

t
k)

s.t. yk
kj − zkj = 0,yj

kj − zkj = 0

Ũt
k satisfies (5), (6) ∀ k ∈ Kc

zkj satisfies (7) ∀ (k, j) ∈ Es. (12)

B. CPCCA

Note that (12) is separable since only local and neigh-
borhood information is required, and can be solved using
conventional distributed algorithms e.g., ADMM [25]. Let
ρ > 0 be a known penalty, and let λt

kj,k and λt
kj,j be the

Algorithm 1 CPCCA (for agent k ∈ Kc at t > 0)

1: Input: wk,j∀j ∈ Nk

2: Initialize: z0kj ← 0, λk(0)
kj ← 0, λj(0)

kj ← 0, i← 0
3: repeat
4: (Yt

k, Ũ
t
k)

i+1 ← minLt
k in (13)

5: Communicate (yk
kj)

i+1 to all neighbors j ∈ Nk

6: if j ∈ N c
k then

7: Receive (yt
kj,j)

i+1

8: else
9: (yt

kj,j)
i+1 = (yt

kj,k)
i+1

10: end if
11: Calculate z

(i+1)
kj = 0.5

[
(yt

kj,k)
i+1 + (yt

kj,j)
i+1

]
12: Update (λt

kj,k)
i+1 = (λkj,k)

i + ρ
[
(yt

kj,k)
i+1 − zi+1

kj

]
13: Update (λkj,j)

i+1 = (λt
kj,j)

i + ρ
[
(yt

kj,j)
i+1 − zi+1

kj

]
14: i← i+ 1
15: until convergence
16: Output: Yt

k, Ũ
t
k

Lagrange multipliers at agent k ∈ Kc and j ∈ Nk respectively,
then the Augmented Lagrangian for each agent k at time t > 0
can be expressed as

Lt
k := Jk(Ũ

t
k,Y

t
k)

+
∑
j∈Nk

(λt
kj,k)

⊤(yt
kj,k − ztkj) + (λt

kj,j)
⊤(yt

kj,j − ztkj)

+ 0.5ρ(||yt
kj,k − ztkj ||2 + ||yt

kj,j − ztkj ||2), (13)

which can be solved iteratively until convergence is reached,
as summarized in Algorithm 1, which we call Cooperative
Positioning, Control and Collision Avoidance (CPCCA). The
algorithm converges to a feasible solution, unless in the occur-
rence of a deadlock [26] [27], which is a scarce phenomenon,
due to underlying measurement noise in practise.

The computational complexity for solving the central-
ized problem is typically cubic in the number of variables:
O((K ×D × T )3). In the distributed setting, this reduces to
O(((1+ |Nk|)×D×T )3) computed in parallel by each agent,
at every iteration.

IV. SIMULATIONS

We conduct experiments to evaluate the performance of our
proposed distributed solution for joint positioning, control, and
collision avoidance. The code is available in https://github.
com/asil-lab/EHJR CPCCA. We consider a network of K = 8
agents, in an intersection scenario. The objective is for all
agents to reach their respective target locations P∗, marked
with a star from their initial positions P0, marked with a cross
in Figure 1a.

We employ Algorithm 1 for all agents individually, for 100
steps. After every step t, the resulting control input is given to
the system and executed. The trade-off parameter to weigh J1
and J2 is chosen as α = 0.99, and the collision radius is set
to rsafe = 7. The sensing and communication radius are equal:
rs = rc = 30. The maximum permitted control effort is set to
umax = 1.5, the control horizon is T = 15. The state transition
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(a) (b)

(c) (d)

(e) (f)

Fig. 1: Behavior of K = 8 agents in different scenarios, from
initial (left) to final positions (right). Dotted lines indicate the
planned trajectory over the horizon. (a) Shows the K = 8
cooperative agents at their initial positions, aiming to cross the
intersection. (b) shows the agents safely past the intersection to
their respective goals. (c) and (d) show a similar configuration,
but with one agent (in brown) being non-cooperative. The
non-cooperative agent crosses the intersection in a straight
line without adapting to others. Again the agents reach their
respective goals safely. In (e), the agents are spread out at
random initial points with random goals. In (f) we see all
agents reaching their goals, including the non-cooperative
agent.

matrices are taken as F = F̄ = I and G = Ḡ =

[
1
1

]
. The

noise variance levels are σ2
k = 0.2umaxI,Σk = 0.1, and the

penalty parameter for ADMM is ρ = 0.1. The optimization
problems are solved with Ipopt.jl [28] in JuMP [29].

First, we show the trajectories obtained using the proposed
algorithm with cooperative agents in Figure 1b. The shaded
circle visualizes the communication radius for one agent.
Then, one of the agents is non-cooperative, in the same initial
setting displayed in 1c. In 1d, we see that the non-cooperative

(a) (b)

(c) (d)

Fig. 2: Convergence rate of Algorithm 1 for different hyper-
parameter values. (a) and (b) show the convergence of Pt and
Ut respectively for different values of α at ρ = 0.5. (c) and (d)
show the convergence for different values of ρ with α = 0.99.

agent in brown crossing the intersection, while other agents
avoid collision. In the next scenario, we initialize the agents
at random locations in the environment, with corresponding
random goals in 1e. Again, the agent in brown is non-
cooperative and all agents reach the targets in 1f.

We investigate the influence of hyperparameters α and ρ
on the convergence rate. In Figure 2a and 2b, we see the
convergence rate separately of Pt and UT . With the increase
of α, the value of Pt converges marginally slower. Ut on
the other hand, converges slower at higher values of α, but
shows more stable behavior. We show the convergence rate for
different values of ρ in Figure 2c and 2d. For a value of ρ =
0.1, the algorithm converges quickly to the final value. With
the increase of ρ, the convergence rate decreases drastically,
for both Pt and UT . From this, we conclude that low values
of ρ are preferred. Benefits of higher values of ρ could include
more stable convergence behavior.

V. CONCLUSION

This paper introduced a novel distributed framework for
enhancing the navigation of multi-agent systems in dynamic
environments with obstacles. The proposed Cooperative Posi-
tioning, Control and Collision Avoidance (CPCCA) algorithm
uses Model Predictive Control alongside distributed optimiza-
tion techniques to achieve collision-free navigation in the
presence of non-cooperative agents. Future work will focus
on a deeper analytical exploration of the CPCCA framework.
Furthermore, we aim to investigate alternative optimization
methods to ADMM for distributed environments, and explore
the incorporation of non-linear state space models.
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[28] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical Programming, vol. 106, no. 1, pp. 25–57, Mar. 2006.

[29] M. Lubin, O. Dowson, J. D. Garcia, J. Huchette, B. Legat, and J. P.
Vielma, “JuMP 1.0: Recent improvements to a modeling language for
mathematical optimization,” Mar. 2023.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 19,2025 at 09:25:24 UTC from IEEE Xplore.  Restrictions apply. 


