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Summary

Compositional simulation is computationally intensive for high-fidelity models due to thermodynamic equi-
librium relations and the coupling of flow, transport and mass transfer. In this report, two methods for ac-
celerated compositional simulation are outlined and demonstrated for a gas vaporization problem. The first
method uses a proxy model that reduces the number of components and the second method reduces the
number of grid blocks (i.e. upscaling). Both methods are implemented within the operator-based lineariza-
tion framework of the Delft Advanced Research Terra Simulator.

Lebesgue integration is applied in the loss function of a neural network allowing the neural network to
discover the operator space of the reference model in reduced dimensions. Training is carried out for a one-
dimensional homogeneous reservoir and minimizes the misfit of the leading and trailing shocks of a com-
pressible pseudo-binary model with respect to observations of the reference model. The operator space of
the pseudo-binary model is initially approximated with the method of multiscale reconstruction of physics,
a numerical representation of the method of characteristics. Training is carried out in a two-stage transfer
learning scheme to increase computational efficiency. In the first stage, neural networks are trained to ap-
proximate the analytical reconstruction. In the second stage, a solver is embedded in the loss function of
the neural network and the forward solution is used to calculate the Lebesgue integral. The transfer training
scheme minimizes the misfit of the leading and trailing shocks for 10 discrete time steps in a one-dimensional
homogeneous reservoir. The misfit of the trained model shows a significant improvement in the location of
the trailing shock and a modest improvement in the estimation of the leading shock. The trained proxy is ap-
plied to the top and bottom 15 layers of the SPE10 model and the estimation of the first and last breakthrough
is assessed in conjunction with the error of the phase-state classification. The phase-state classification is sig-
nificantly improved through time which is also expressed in improvements of the estimation of breakthrough
times. The average difference in breakthrough time for the trained and untrained models with respect to the
reference model is 293d ay s versus 570d ay s for the trailing shocks and 15d ay s versus 16d ay s for the leading
shock. The established training framework enables the development of proxies with increased complexity
and can be extended to learn directly from field measurements.

Rigorous upscaling defines the upscaled operator space with dynamic and non-equilibrium thermody-
namic upscaling functions. These functions combined, define the upscaled operator space for the three-
dimensional compositional space (as opposed to single-point upstream weighting) and are inferred from
data points gathered from a limited, characteristic portion of the full-size model. Gathered data points are
interpreted with an interpolation function or neural networks to construct structured OBL meshes for im-
plementation within DARTS. This upscaled operator space can effectively be used for different boundary
conditions without reevaluating the upscaling functions. The method is tested for layered models with and
without gravity and/or vertical permeability and consistently outperforms the coarse model where only the
absolute permeability is upscaled.
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1
Introduction

Accurate reservoir simulation of gas injection problems for hydrocarbon production and gas storage or se-
questration is complex and computationally intensive due to non-linear thermodynamic equilibrium rela-
tions and the coupling of flow, transport and mass transfer. This complex nonlinear dynamic often requires a
very fine resolution of the computational grid. However, high-fidelity reservoir models contain a large num-
ber of grid blocks thus requiring even more computational resources. Developed methods to manage com-
putational resources attempt to reduce the size of the problem by reducing the number of components (i.e.
lumping, pseudo-models, etc.) or the number of blocks (i.e. upscaling) while still conserving key features of
the full compositional or high fidelity solution. In this report, two methods for accelerated compositional up-
scaling are utilized and applied to a gas-injection problem within the compositional framework of operator-
based linearization. In the first method, the number of components is reduced and in the second the number
of grid blocks is reduced. These proxies are useful for optimization or history-matching problems where a
large number of runs are required and simulation with the conservative high-fidelity model is prohibitively
expensive.

In the first method, a data-driven approach to proxy modeling is proposed and applied to a gas injection
problem. Neural networks are embedded in the operator space of a compressible pseudo-binary model and
a solver is included in the loss function to improve the model’s prediction with respect to the locations of
the shocks in space and time. The method trains the operator space with a one-dimensional homogeneous
model and improves the estimation of the proxy with regard to the breakthrough time of the injected gas. The
effectiveness of the trained model is further validated for two-dimensional heterogeneous cases of the SPE10
model.

In the second method, compositional upscaling of two-dimensional layered models is carried out with
a limited portion of the fine-scale model. A known drawback of compositional upscaling, where the global
solution of the fine-scale model is used, is that the upscaling functions used in the coarse-scale model must
be reevaluated whenever boundary conditions change. This is counterproductive when the coarse model
is used for optimization problems where controls or boundary conditions are changed to find an optimal
solution. In this work, a rigorous upscaling method is introduced that parameterizes the entire upscaled
operator space for different injection conditions. Furthermore, a deep neural network is used to learn the
upscaled operator space as a function of layer permeabilities.

The structure of this report is as follows. Chapter 2 contains a short overview of methods for accelerated
compositional modeling and further introduces deep machine learning methods including physics-informed
machine learning. In chapter 3, the compositional simulation framework is outlined and in the same chapter,
the applied methods for proxy modeling and upscaling are explained. In chapter 4, the results of the proxy
model training and rigorous upscaling are reported.
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2
Literature

This chapter provides an overview of select methods for accelerated compositional modeling and explains
the deep learning method of physics-informed machine learning.

2.1. Accelerated compositional modeling
In this section, different methods for improving the performance of compositional simulation are described.
Particular attention is paid to methods focusing on reducing the number of components or blocks and meth-
ods for accelerated phase behavior calculations.

2.1.1. Proxy modeling
Proxy modeling with a reduced number of components increases the efficiency of compositional simulation
by reducing the number of equations that need to be solved. In the lumping technique, the problem is re-
formulated by presenting the formulation with a limited number of equivalent components and delumping
the components at the production stream (Jessen and Moghadam, 2009; Rastegar and Jessen, 2009). Further
techniques rely on a numerical representation of the method of characteristics. Tang and Zick, 1993 propose
a limited compositional reservoir simulator that solves a four-component problem by solving an equivalent
pseudo-ternary problem. Ganapathy and Voskov, 2018 propose a physics-based method for proxy model-
ing, termed multi-scale reconstruction in physics. Their method uses a pseudo-binary proxy model to solve
any transport problem with an arbitrary number of components. Their model is applied to four and eight-
component systems with either the equation of state or constant K-value thermodynamics and accurately
locates the major features of the compositional displacement profile (Chen and Voskov, 2020).

2.1.2. Multiphase compositional upscaling
Upscaling techniques coarsen the spatial discretization of the reservoir, reducing the number of blocks and
cost in exchange for a controlled reduction of accuracy. This is frequently achieved via a global or local analy-
sis of the fine-scale solution where boundary conditions are applied globally or locally and the behavior of the
fine-scale model is characterized by defining upscaled quantities in the coarse model. These are the single-
phase parameters (absolute permeability, porosity) and the two-phase parameters (relative permeabilities,
mobilities).

In the case of multiphase models, with high mobility ratios and large upscaling ratios, upscaling of only
single-phase parameters is insufficient. Established methods, therefore, use transport coefficients and/or dy-
namic pseudo-functions in the coarse-scale conservation equation to capture the dynamic behavior of the
fine-scale model in the coarsened model. Dynamic pseudo functions are upscaling functions that represent
the behavior of dynamic quantities, such as the relative permeability in the function of the average of the up-
stream coarse grid block’s quantity (saturation or composition). Methods for upscaling two-phase functions
generally can be categorized into Kyte and Berry methods and the total mobility upscaling methods (Christie
et al., 1995; Kyte and Berry, 1975; Stone, 1991). See Darman et al., 2002 and Barker and Thibeau, 1997 for
reviews on (pseudo-)dynamic upscaling methods. Transport coefficients are also functions tabulated with
respect to the upstream block but work differently as they are included in the flux term and scale the flux
across the coarse grid block’s interface (Barker and Fayers, 1994; Christie and Clifford, 1998).
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A drawback of upscaling functions is that they need to be re-evaluated for new boundary conditions
(Barker and Thibeau, 1997; Durlofsky, 1998). Additionally, it is impractical to evaluate these functions at
each coarse grid block interface, so these functions are typically defined for different characteristic rock types
(Barker and Thibeau, 1997). Additionally, in the case of compositional upscaling, thermodynamic equilib-
rium does not hold on the coarse scale (Iranshahr et al., 2014). Therefore, Iranshahr et al., 2014 introduce a
methodology where thermodynamic equations are upscaled in conjunction with the single-phase and two-
phase parameters (mobility). Their method utilizes non-equilibrium thermodynamic functions to account
for differences in phase behavior between fine and coarse scales and achieves better results than upscaling
only single- and multiphase parameters. These upscaled thermodynamic functions can be incorporated into
the coarse model by including non-equilibrium transport coefficients or adjusted K-values (Salehi et al., 2013;
Salehi et al., 2019).

2.1.3. Thermodynamic equilibrium calculations
Further developments in the space of compositional simulation focus on accelerating phase-state or ther-
modynamic equilibrium calculations. Compositional Space Parameterization (CSP) and the following Com-
positional Space Adaptive Tabulation (CSAT) techniques parameterize the entire or part of the tie-line space
(Voskov and Tchelepi, 2009; Voskov and Tchelepi, 2008). CSP and CSAT are further extended to achieve an
equation-of-state-free general-purpose compositional simulation where the governing differential equations
are projected on the tie-simplex space (Zaydullin et al., 2013). Additional techniques that reduce the cost of
phase behavior computation include the reduced variable method and the shadow region method (Pan and
Tchelepi, 2011; Rasmussen et al., 2003).

As a logical extension of parameterization approaches, the Operator-Based Linearization (OBL) method
has been introduced in Voskov, 2017. In the OBL approach, the governing equations of the physical problem
are linearized and represented as a combination of space- and state-dependent functions. In addition, a
uniform mesh is introduced into the physical space of the problem where operators are interpolated. This
limited, linear approximation of the physical space provides better nonlinear convergence with controlled
error (Lyu et al., 2021; Wang et al., 2020).

2.2. Deep learning
In this section, the physics-informed machine learning method for machine learning is described. First, a
general description of the working mechanisms of deep neural networks is given. And secondly, a review of
relevant literature on the applications of physics-informed machine learning is given.

2.2.1. Deep neural networks
Deep learning methods are used to directly evaluate how to approximate the output from the input data. The
advantage of deep learning versus traditional machine learning is that it does not require feature extraction
from the input and instead learns which features are relevant from training data. Deep neural networks are
used for various tasks such as regression, classification, transcription and natural language processing. For
the task of regression, the neural network is tasked to predict the real value y given a vector of data x contain-
ing n number of features. Feedforward deep neural networks, also known as multilayer perceptions, consist
of a series of simple mathematical functions that map any input feature x to output y . They consist of nl

number of fully connected layers,
fθ(X) = znl (znl−1 (...(z2(z1(X))))), (2.1)

where each hidden layer consists of a stack of artificial neurons which process input feature matrix X as the
weighted sum of weights Wi and biases bi before passing through activation function σ

zi (X) =σ (Wi X+bi ) i = 1, ...,nl . (2.2)

Consequently function f is parameterized according to the ensemble of weights and biases θ,

θ = {W1,W2, ..,Wnl ,b1,b2, ...,bnl }. (2.3)

Training of neural networks is carried out iteratively with the gradient descent optimization algorithm. This
method uses two steps commonly referred to as the forward and backward pass. In the forward pass, the loss
is calculated, and in the back pass, the weights are updated with the gradient of the loss with respect to the
parameters of the neural network,

W :=W −α∇LW , (2.4)
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where α is the learning rate. This process is repeated and the loss is minimized, thus training the neural net-
work to approximate y accurately. Modern neural networks use the backpropagation algorithm to compute
the gradient. In backpropagation, the neural network is viewed as a mathematical graph. In the forward pass,
intermediate values are stored and used in the chain rule to compute the gradient for gradient descent.

When training the neural network, it is important to watch for overfitting or underfitting of the training
data. To ensure that the network can perform its intended task well. The quality of the function estimator is
expressed by its bias and variance, which need to be balanced. If overfitting occurs, the neural network will
not ‘generalize’ well. Consequently, it will poorly estimate y for previously unseen values of x. In the case of
overfitting, the bias is small, but the variance is large. Conversely, underfitting occurs if the bias is large, but
the variance is low. In the case of underfitting, the neural network cannot fit the data well. Overfitting of data
can be handled by increasing the amount of data or adding a regularization term to the loss function. The
regularization term expresses a preference for the model weights and helps prevent overfitting by decreasing
the neural network’s capacity. The network’s capacity is its ability to fit a wide range of functions (Goodfellow
et al., 2016).

2.2.2. Physics-informed machine learning (PIML)
Recently, the application of machine learning techniques to solve linear or nonlinear partial differential equa-
tions (PDEs) has attracted interest for their ability to solve PDEs without any labeled data of the solution.
These machine learning techniques, such as constrained learning and physics-informed machine learning
(PIML), utilize artificial neural networks to solve complex equations by encoding the known physics of the
problem into the loss function of the neural network as prior-knowledge (Raissi et al., 2019). For PDEs, this
is achieved by including the residual form of the equation as a regularization constant in the loss function in
addition to a regressive term that uses initial and boundary conditions. PIML is applied to a nonlinear PDE
of the form:

r := ut +N [u,λ], (2.5)

where ut is a scalar quantity and N [u,λ] the nonlinear operator parameterized by λ. The residual form of the
equation

rθ =
∂uθ
∂t

+N (uθ,λ), (2.6)

is included in the loss function in addition to a regular regressive loss term. In the first term, the mean squared
error (MSE) of a randomly selected set of boundary/initial points (Nu) is computed, and in the second term,
the MSE of the residual equation is computed for a random set of collocation points (Nr )

L(θ) = Lu(θ)+L f (θ) = 1

Nu

Nu∑
i=1

|ui
θ−ui

bc |2 +
1

Nr

Nr∑
i=0

|r i
θ|2. (2.7)

In the loss functions, the regularization term effectively constrains the hypothesis space of the neural net-
work, thus allowing the physics-informed neural network (PINN) to learn the solution without any labeled
data on the interior of the solution domain (Raissi et al., 2019; Stewart and Ermon, 2016).

Raissi et al., 2019 and Fuks and Tchelepi, 2020 demonstrate the application of PIML for nonlinear PDEs.
Raissi et al., 2019 use PIML to accurately solve the Burgers equation, a quasi-linear PDE, and find that with
a small number of initial and boundary points that their nonlinear behavior is accurately captured. They
conclude that if the PDE is well posed, PIML can solve the problem provided that the neural network is ex-
pressive and a sufficient number of collocation points are used. Fuks and Tchelepi, 2020 expressly tests the
limitations of PIML by application to a hyperbolic two-phase displacement problem. They find that encod-
ing the residual in the loss function does not produce an adequate estimation of saturation, irrespective of
the number of collocation points or neural architecture. In particular, the neural network cannot resolve the
shock’s location in space and time, which is a defining feature of the solution. Stewart and Ermon, 2016 apply
constrained learning to convolutional neural networks to track the movement of objects without any labeled
data and demonstrate the usefulness of PIML techniques for small data regimes where data is sparse. An
additional advantage of PIML for solving PDEs is that automatic differentiation is used to supply derivatives
for the residual and therefore, no mesh generation is required. Consequently, they are presented as an ef-
ficient alternative to traditional numerical modeling techniques such as the Galerkin, collocation, or finite
volume methods for higher dimensional problems (Blechschmidt and Ernst, 2021). However, for application
to hyperbolic problems where an exact solution is required, as opposed to a qualitative approximate solution,
PIML remains inadequate.
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Besides applying PIML to solve equations, PIML can be used to handle the inverse problem for data-
driven discovery of partial differential equations where unknown parameters within the nonlinear operator
of the PDE are approximated from observations of the auxiliary quantity. Raissi et al., 2018 use PIML to
qualitatively estimate the pressure and accurately determine hidden parameters within Navier-Stokes and
Burger’s equation.



3
Methods

In this chapter, two methods for accelerated compositional simulation are introduced and implemented
within the Delft Advanced Research Terra Simulator (DARTS). The working problem for which these methods
are applied is a gas injection problem containing either three or four components. Our main focus is a vapor-
izing gas drive where gas is injected to vaporize the intermediate component from the oil for an efficient gas
displacement (Orr, 2007).

Firstly, a physics-based proxy that reduces the number of components of a compressible four-component
problem to two is introduced. Thereafter, a physics-informed machine learning methodology for improving
the proxy model’s performance is explained. Secondly, a rigorous multiphase upscaling method is introduced
that applies established upscaling techniques to a characteristic pattern of the reservoir and defines the up-
scaled operator space in the full compositional space. The chapter is divided into three parts, in the first part,
the simulation framework and operator-based linearization are outlined. In the second part, the first method
of proxy modeling is introduced and in the third part, the upscaling method is explained.

3.1. Simulation framework
In this section, we briefly describe the governing equations of the isothermal compositional problem. The
problem is implemented within the operator-based linearization framework of DARTS.

3.1.1. Compositional simulation
Compositional simulation of a gas vaporization problem is carried out in Delft Advanced Research Terra Sim-
ulator (DARTS) framework. DARTS utilizes operator-based linearization (OBL) where the mass conservation
equation is written in operator form and a mesh is introduced into the physical space. In this approach,
operator values are computed for the mesh vertices onto which a multi-linear interpolant is applied for a
continuous representation of the physics (Voskov, 2017).

The mass conservation equation (eq.3.1) for nc components and np phases is written in its molar formu-
lation for an isothermal displacement. The mass conservation equation of component i reads:

∂

∂t

(
φ

np∑
j=1

xi jρ j s j

)
+∇·

np∑
j=1

xi jρ j u j +
np∑
j=1

xi jρ j q j = 0, i = 1, ..,nc , (3.1)

where xi j is the mole fraction of component i in phase j , ρ j is the phase molar density and s j the phase satu-
ration andφ the porosity. Furthermore, uj is the Darcy flow velocity and is a function of absolute permeability
k, phase relative permeability kr j and phase viscosity µ j . The ratio of relative permeability and viscosity is
henceforth referred to as phase mobility λ j .

u j =−k
kr j

µ j
∇p. (3.2)

Finite volume discretization is applied to the general mass conservation equation with two-point flux

6
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approximation and backward Euler approximation in time:

Vφ

((
np∑
j=1

xi , jρ j s j

)n+1

−
(

np∑
j=1

xi , jρ j s j

)n)
−∆t

∑
l∈L

(
np∑
j=1

x l
i , jρ

l
j T l

j∆P

)
+V∆t

np∑
j=1

xi , jρ j q j = 0, i = 1, ..,nc , (3.3)

where V is the control volume, φ the porosity and T l
j the phase transmissibility across the grid block interface

L. The phase saturation is calculated as a function of phase density and molar phase fraction v j :

s j =
v j /ρ j

(
∑np

k=1 vk /ρk

. (3.4)

3.1.2. Thermodynamic model
The thermodynamic model determines the phase behavior of the compositional problem by determining the
quantities and compositions of vapor and liquid at two-phase conditions (McCain, 1990). The stability of the
gas-liquid mixture is ensured by the thermodynamic equilibrium condition which states that the fugacities
(chemical potentials) fi , j of each component in both phases must be equal:

fi ,o(p,T, xi ,o) = fi ,g (p,T, xi ,g ). (3.5)

Further, auxiliary relations are that the sum of mole fractions,

nc∑
i=1

xi , j , j = 1, ...,np , (3.6)

and phase saturations are equal to one,
np∑
j=1

s j = 1. (3.7)

To determine the phase behavior of the system, flash calculations are carried out with the Rachford-Rice
equation and constant equilibrium ratios (K-values) are used. This assumption is valid for cases where the
phase behavior is a weak function of the composition (Orr, 2007). In this approach, the phase split is deter-
mined by solving the Rachford-Rice equation for the vapor fraction v and further deriving the partitioning
coefficients for liquid and vapor xi and yi from equation 3.9

h(v) =
nc∑

i=1

zi (Ki −1)

v(Ki −1)+1
= 0, (3.8)

zi = xi (1− v)+ yi v. (3.9)

3.1.3. Operator-based linearization (OBL)
Operator-based linearization introduces a mesh in the parameter space of the problem such that the oper-
ators only need to be assessed at the vertices of the mesh. Subsequent values α̂(p, z) and β̂(p, z) in between
these points are estimated with multilinear interpolators Fα and Fβ (Voskov, 2017)

α̂(p, z) = Fα(p, z), β̂(p, z) = Fβ(p, z). (3.10)

Following the OBL approach, the discretized equations are rewritten in their algebraic, operator form. In this
operator form (eq.3.11), state and spatial operators are defined. State variables (ω) are a function of physical
unknowns, pressure p and the overall composition z, whereas spatial variables (ξ) are a function of spatial
coordinates

ri (ω,ξ) =V (ξ)φ0(ξ)(αi (ω)−αi (ωn))−∆t
∑

l
βi (ω)T l (ξ)Λ(ω)∆p = 0, i = 1, ...,nc . (3.11)

The residual equation is defined according to the total velocity formulation and contains 2×nc +1 operators.
These operators are defined according to a set of equations 3.12 where α corresponds to the accumulation
operator, β the convective operator andΛ the total mobility which in turn is embedded into the flux operator:

αi (ω) = (1+ cr (p −pr e f ))
∑np

j=1 xi jρ j s j ,

βi (ω) =
∑np

j=1 xi jλ jρ j

Λ ,

Λ(ω) =∑np

j=1
kr j

µ j
.

(3.12)
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The equation is approximated using the fully implicit method for time approximation and the resulting non-
linear system is solved with the Newton-Raphson method.

3.2. Pseudo-binary proxy model
In this section, we introduce the main ideas behind our physics-based proxy-modeling methodology. The
method of Multiscale Reconstruction in Physics is used to develop an analytical approximation of the pseudo-
operator space of a compressible gas vaporization problem and reduce the number of components from four
to two. Thereafter, a physics-informed machine learning algorithm is proposed that minimizes the difference
in the shock estimation in space and time between proxy and reference model.

3.2.1. Multiscale Compositional Transport (MSCT)
Ganapathy and Voskov, 2018 introduce a proxy model to accurately reconstruct the trailing and leading shock
of a multicomponent problem by solving a pseudo-binary problem in an incompressible case without mass
exchange. Therefore, reducing the number of equations from nb ×nc to nb ×2. Their method utilizes a nu-
merical expression of the established analytical method of characteristics and defines a so-called pseudo-
fractional flow curve

Fr i = conv(F i ni
i ∪F i n j

i ), (3.13)

from the convex union of the fractional flow curves of the initial and injection tie-lines, F i ni
i and F i n j

i . The
fractional flow is a piece-wise function where values are a linear function of the overall composition for a
single-phase mixture and a nonlinear function for a two-phase mixture. For a two-phase mixture, the frac-
tional flow curve,

Fi = xi (1− fg )+ yi fg , (3.14)

is defined according to phase behavior which in turn is expressed in the partitioning coefficients xi and yi for
oil and gas. In their work, the reconstruction is applied to an isothermal transport problem and consists of
two stages. In the first stage, the pseudo-fractional flow curve is used in the restricted transport equation,

∂z

∂t
+ ut

φ

∂Fr i

∂x
= 0, (nb ×2), (3.15)

where the total velocity (ut ) is constant. At this stage, the location of the shocks in space and time is accurately
reconstructed. Thereafter, in the second stage, the full compositional solution is reconstructed by application
of the constant space parameterization technique thus reconstructing the entire compositional solution for
an isothermal transport problem.

As mentioned previously, the utilization of compositional simulation within optimization and uncertainty
quantification problems, where an adequately large number of simulations/realizations are required, be-
comes prohibitively expensive due to a large number of unknown variables and the nonlinear nature of the
equations (Shirangi and Durlofsky, 2015). However, it is vital that the development of miscibility is accurately
captured for gas injection problems. The first stage of the MSCT technique is used with the Peng-Robinson
EoS thermodynamic model by Chen and Voskov, 2020 and accurately captures miscibility. They utilize the
pseudo-binary model for a CO2 injection optimization problem and find that the proxy model produces sim-
ilar Net Present Values to the full multi-components model at a reduced computational cost as the number
of degrees of freedom is reduced. Besides, the reduced forward problem also makes the convergence better
in optimization due to the better feasibility of the solution (Chen and Voskov, 2020).

3.2.2. Multiscale reconstruction in physics for compressible fluids
In the transport problem, operators are defined for the simplified case where fluid densities are constant and
equal. In this case, the total density is constant and equal to the phase density. Consequently, the accumula-
tion operator is equal to the overall composition z, and the flux operator is equal to the fractional flow curve
F . In the single-phase regions, β is a linear function of z whereas in the two-phase region the fractional flow
curve is computed from the fractional flow of gas f and the partitioning coefficients x and y . The accumula-
tion and flux operators of component i for an incompressible system are defined according to

βi = Fi = yi f +xi (1− f )
αi = zi = yi v +xi (1− v),

(3.16)

and are shown in figure 3.1 for component C 1 of a four component gas vaporizing described in table 3.1.
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The MSCT method is adapted to include compressibility and flow. In this case, the phase densities are a
function of pressure according to the formula for compressibility.

ρ(p) = ρ0(1+ cr (p −p0)). (3.17)

As in the incompressible case, the operator space is computed as the convex hull of the initial and injec-
tion curves. Figure 3.2 illustrates the construction of the operator space for a compressible case where the
operators are defined according to equations 3.12.

(a) α-operator (b) β-operator

Figure 3.1: α- and β-operators of component C1 for incompressible fluids.

(a) α-operator (b) β-operator

Figure 3.2: α- andβ-operators of component C1 for non-equal fluid densities of 200 and 600kg /cm at p = 90bar . Fluid compressibilities
are equal to 10−3bar−1 and 10−5bar−1 for oil and gas.

3.2.3. Four-component gas vaporization problem
The multi-scale reconstruction of physics (MSRP) method proposed by Ganapathy and Voskov, 2018 is uti-
lized for a four-component gas vaporization problem with injection gas and initial oil compositions as de-
scribed in table 3.1 below. The reference solution to this problem is shown in figure 3.3. The injection gas
consists of 97% of methane while the initial oil composition consists of a mixture of all four components. In a
quaternary displacement, the solution is defined according to three key tie-lines, namely the initial, injection
and cross-over tie-lines. A tie-line is a line in the compositional space where the liquid and gas component
fractions xi and yi are fixed and only phase fraction v is changing. For gas injection processes, the compo-
sitional path enters and exits the two-phase zone through the extension of the initial and injection tie-lines
and is marked by discontinuities in the compositional and saturation profile (i.e. shocks). Consequently,
three zones are identified in the compositional profile according to their phase state. These zones are the
single-phase vapor, the single-phase liquid and the two-phase zones and are delineated by the leading and
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trailing shocks. Downstream of the leading shock, the mixture is liquid at initial composition conditions while
upstream of the trailing shock the composition consists purely of C1. Consequently, the area between these
two shocks is occupied by both phases simultaneously. The compositional profile within the two-phase zone
consists of tie-line and non-tie-line rarefactions connecting the tie-lines and following a compositional path.

Table 3.1: Vaporizing gas drive

Component C1 CO2 nC4 nC10

Initial 0.10 0.18 0.37 0.35
Injection 0.97 0.01 0.01 0.01
K-value 2.5 1.5 0.5 0.05

Figure 3.3: Composition (mole fraction) profile for a four-component vaporizing gas drive. The profile is characterized by the leading
shock and trailing shock located at approximately xd = 0.9 and xd = 0.12. From left to right, they delineate three zones where single-
phase vapor, both phases and single-phase liquid is present.

Since the solution of the compositional problem is characterized by the leading and trailing shocks, the
reduced-order proxy model by Ganapathy and Voskov, 2018 is used to partially construct the solution. The
displacement path can be constructed according to key tie-lines of the system as the leading- and trailing
shocks can only enter and leave the two-phase zone along tie-line extensions (Orr, 2007; Voskov and Entov,
2001). The first stage of the MSRP reconstruction is used with fluid compressibility and includes flow as well
as transport.

The pseudo-operator space for a given component is parameterized according to pseudo-composition zr

and pressure p. The lever rule is applied with fixed partitioning coefficients computed at initial and injection
compositions and the resulting gas fraction and saturation are used to define the operator space for the initial
and injection tie-lines βi ni /i n j .

zr = zi (3.18)

v = zr −xi

yi −xi
(3.19)

Thereafter, the pseudo-operator space βr (ω) is defined as the convex hull of the union of each of the key tie-
lines (eq.3.20). In the resulting operator space, the operator space switches from the initial to the injection
tie-lines at their point of intersection in the nonlinear, two-phase zone.

βr (ω) = conv(βi ni
i ∪βi n j

i ) (3.20)

Similarly, αr (ω) is defined as the product of the total density and pseudo-composition zr .

ρtot ,r = conv(ρi ni
tot ∪ρi n j

tot ) (3.21)

αr (ω) = ρtot ,r zr (3.22)

The analytical construction of the pseudo-operator space is illustrated in figures 3.4a and 3.4b.
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The total mobility operator is defined by tabulation of values from the reference solution with respect to
the state variables. Care is taken to carry out the reference simulation with variable bottom-hole pressure
controls in order to ensure that data points are distributed across the range of the entire parameter space.
After that, the scattered data points are used to compute a structured OBL mesh by application of a linear in-
terpolant. Figure 3.5 shows the gathered points and the resulting interpolation for the total mobility operator.

(a) (b)

Figure 3.4: Operator space of the binary proxy model.

(a) Collected data points from the reference simulation.
(b) Resulting interpolated operator space. In extremum, the total mobility is
equal to 2 and 10 in the single-phase liquid and vapor zones.

Figure 3.5: Total mobility operatorΛr (ω).

3.2.4. Lebesgue regularisation
The operator space of the aforementioned proxy model is adapted with neural networks to improve its pre-
dictive performance. The PIML-inspired method embeds neural networks in the nonlinear operator of the
proxy model and uses the Lebesgue integral of the forward solution with respect to the full compositional
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model in the loss function to improve the performance of the proxy. Our method is implemented in Tensor-
Flow and utilizes the operator-based linearization approach to compositional simulation. A transfer training
approach is employed for increased computational efficiency and solution accuracyJin et al., 2021.

In this work, a supervised learning scheme applies physics-informed machine learning to adapt the op-
erator space of the aforementioned proxy model and improve its predictive performance. This is achieved
by embedding neural networks into the nonlinear operator of the PDE and utilizing the forward solution in
a regularization term of the loss function. Our approach integrates the distance between the leading and
trailing shocks of the proxy model with respect to the reference model and penalizes the loss function so that
the neural network learns the operator space for which the misfit of the shocks is minimal. This can be effec-
tively implemented as an application of the Lebesgue integration in the loss function instead of the Riemann
integral.

A neural network, fθ is applied to the β and Λ operators of the PDE. Training is carried out with a two-
step transfer learning approach. First, neural networks are trained with labeled data consisting of No × No

OBL mesh of data points where input matrix X corresponds to state variables pressure and composition. The
loss function in the first step is the mean squared error of the analytical approximation of the proxy model
operator space, f (ω), and the neural network’s predictions, fθ(ω):

L1 = 1

N 2
o

N 2
o∑

i=1
( f i (ω)− f i

θ (ω))2. (3.23)

In the second step, model weights are copied/transferred to a new neural network and a fully implicit solver
is included in the loss function. The solver utilizes the predicted operator space and solves for pseudo-
composition zr . Next, the quality of the resulting solution is assessed by calculating the Lebesgue integral
between zr (x) and zr e f (x) for Nt number of time steps and adding it to the loss

L2 = 1

Nt Nz

Nt∑
t=1

Nz∑
i=1

√
(x t

i (z)−x t
i (zr ))2. (3.24)

This term within the loss function works to penalize the neural network if the distance between the shocks of
the reference and proxy model is large since for any given time-step, ∆x

∆x =−λ
(∫

∂Fθ
∂zr

∂t −
∫

∂F

∂zr e f
∂t

)
, (3.25)

must approach zero. The new total loss function then reads:

L = L1 +L2. (3.26)

After solving the proxy model and computing the loss function, TensorFlow’s reverse-mode automatic dif-
ferentiation is applied to handle back-propagation and update the ensemble of weights and biases θ (Abadi
et al., 2016). Effectively, this loads the analytical approximation of the operator space into the neural net-
work. Training in this step is carried out for 600 training iterations and the Adam stochastic optimizer with
a constant learning rate of 0.001 is used. Training is carried out for a one-dimensional homogeneous reser-
voir with constant permeability. Furthermore, the training scheme is described according to neural network
architecture, optimizer, and activation function. The architecture of the neural network is identical to that of
Raissi et al., 2019 and Fuks and Tchelepi, 2020. It consists of 8 hidden layers with 20 neurons per layer. Stan-
dard gradient descent is used for the optimizer with a constant learning rate of 0.0001. A small learning rate
is expressly chosen since it is necessary for the operator space to maintain the part of its form that defines
the shocks in accordance with the velocity constraint of the method of characteristics. The neural network
weights are initialized randomly with Xavier/Glorot initialization. The activation function σ is the hyperbolic
tangent function t anh and introduces nonlinearity to the system.

3.3. Compositional upscaling
Another alternative to the reduction of the degrees of freedom in the reservoir simulation model is upscaling.
Conventional upscaling methods for compositional models try to capture the dynamic behavior of the fine-
scale model in the coarse model by application of upscaling functions derived from the fine-scale model’s so-
lution. However, these upscaling functions need to be redefined whenever the boundary conditions change
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which is impractical for optimization problems. Besides, it is desirable to be able to carry out sensitivity anal-
yses of your model without having to recompute the fine-scale model. Furthermore, upscaling functions can
be difficult as they typically use single-point upstream weighting and require some degree of post-processing
where outliers, non-physical points and noise are removed (Barker and Thibeau, 1997).

In this work, a rigorous ML-based upscaling approach is proposed that defines the upscaled operator
space. The upscaled operators are defined for the entire compositional space (i.e. the vector of nc -compositions)
and generalize the conventional concepts of transport coefficients, upscaled multiphase functions or non-
equilibrium thermodynamics into a uniform operator-based upscaling in the parameter space which can be
directly applied in DARTS. This upscaled operator space is constructed from a limited, characteristic piece
of the fine-scale model and is applicable to models with variable injection compositions. Therefore, the pro-
posed approach negates the need for recomputing the fine-scale solution when boundary conditions are
changed.

The section is divided into two parts, firstly conventional methods for compositional upscaling are de-
scribed. These methods employ upscaling functions to adjust for dynamic and non-equilibrium effects on
the coarse scale and are phase molar mobilities and non-equilibrium adjusted transport coefficients.

3.3.1. Conventional upscaling
The compositional upscaling framework of Iranshahr et al., 2014 and Salehi et al., 2019 proves its efficiency in
many practical problems. In their methodology, thermodynamic equations as well as phase molar mobilities
and single-phase parameters are upscaled and used in the coarse-scale model. As an alternative, transport
coefficients, γi , j can be used to upscaled phase molar mobilities for each component, (ρ jλ j )∗. Transport
coefficients tabulate the sum of component fluxes across the fine-scale interfaces between two grid cells with
respect to the average composition or saturation of the upstream block. These coefficients are incorporated
in the flux term of the conservation equation of the coarse-scale model and effectively function as scalars of
the flux. The coarse-scale conservation equations reads,

∂(φ∗ρ∗
tot zc

i )

∂t
−∇

(
Np∑
j=1

γi , j x∗
i , jρ

∗
j k∗λ∗

j ∇pc

)
= 0, i = 1, . . . ,nc , (3.27)

where upscaled functions are denoted by ∗ and coarse-scale quantities denoted by c. Note that the form of
the coarse-scale conservation equation is identical to that of the fine-scale equation which strictly speaking is
not the case due to the nonlinearity of the governing equation (Durlofsky, 1998; Iranshahr et al., 2014). Note
that upscaled functions or transport coefficients are calculated at the interface of grid blocks and therefore
need to be tabulated for each of the flow directions.

In our study, vertical upscaling is carried out and only upscaled flow functions in the x-direction are re-
quired. Furthermore, the transmissibility T ∗ is upscaled using single-phase flow-based upscaling,

T ∗ =
∑

l (q f )l

∆p
, (3.28)

where the fine-scale flux across the fine-scale interface’s (l ) are summed and divided by the difference of the
average fine-scale pressures, ∆p.

In non-equilibrium thermodynamic upscaling, transport coefficients γi , j are assumed to be 1 and the
upscaled phase molar mobilities have related the sum of fine-scale molar flow rates to the total flow rate
computed with the upscaled permeability and averaged fine-scale pressure:

(ρ jλ j )∗ = ρ j u j

k∗(∆p/∆xc )
. (3.29)

The sum of fine-scale molar flow rates across the coarse-scale interface is calculated for blocks containing
two-phase (2p) and single-phase (1p) mixtures across all of the fine-scale interfaces of area A:

ρ j u j =
∑
1p

(ρ j u j Ai )l +
∑
2p

(ρ j u j Ai )l . (3.30)

Further quantities are computed from the molar amounts per component and phase, and are summed
over the fine-scale grid blocks:

n∗
i , j =

∑
1p

(Vφρ j zi )+∑
2p

(Vφρ j xi , j ). (3.31)
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The molar amounts are used to compute the upscaled partitioning coefficients,

x∗
i , j =

n∗
i , j∑nc

i n∗
i , j

=
n∗

i , j

n∗
tot , j

, (3.32)

and the total density,

ρ∗
tot =

∑np

j n∗
tot , j∑np

j V j

, (3.33)

with phase volumes V j ,
V ∗

j =∑
(S jφ(∆x∆y∆z))l . (3.34)

As an alternative to non-equilibrium thermodynamic relations, upscaled transport coefficients can be
computed per component and phase as the ratio of the sum of fluxes across fine-scale interfaces l and the
flux across the coarse-scale interface estimated with ∆pc :

γi , j =
∑

l qi , j

(ρ jλ j )∗T ∗x∗
i , j∆pc =

∑
l (ρ j u j xi , j A)l

(ρ jλ j )∗T ∗x∗
i , j∆p

. (3.35)

In this case, phase component fractions x∗
i , j and densities ρ∗

j will be computed based on the equation of state.

3.3.2. Rigorous upscaling
The coarse-scale conservation equation can be discretized and written in its operator form as

Vφ(α∗
i (ωn+1)−α∗

i (ωn))−∆t
∑

i
β∗

i (ω)T ∗(ξ)Λ∗(ω)∆pc = 0, i = 1, ...,nc . (3.36)

In the proposed rigorous upscaling method, observations of the fine-scale β(ω) are used to match the coarse
scale operator space to the fine-scale results,

βi (z)∗ =
∑

l (βi T∆p)l

T ∗∆pc , i = 1, ...,nc . (3.37)

This approach can be seen as a combination of multiphase flow and compositional upscaling. In addition,
it also generalizes both non-equilibrium thermodynamics and transport coefficients upscaling approaches
which are translated to the upscaled convective operators.

The upscaled operators are parameterized with respect to the complete compositional space. Data points
are compiled with a test bench where a smaller but characteristic portion of the full model is placed in be-
tween high permeability buffer cells. Figure 3.6 illustrates how the characteristic permeability pattern of a
fine-scale model (figure 3.6a) containing nx×nz grid blocks is placed in the test bench (figure 3.6b). In the test
bench, uniform pressure boundary conditions are applied and the left boundary cells are initialized at injec-
tion composition conditions. The upscaling functions making up the upscaled operator space are computed
at the interface between cells 1 and 2. This procedure is repeated for a series of injection compositions and
the resulting point cloud of data is interpreted with an interpolation function or regressive neural network to
create a structured OBL mesh. An example of the collected data points and the corresponding interpretation
for the operator space is shown in figure 3.8.

The compositional problem handled in this report is a gas injection problem where either carbon dioxide,
CO2, or methane, C1, is injected into a reservoir containing a mixture of CO2, C1 and oil nC10. Unless men-
tioned otherwise, the model neglects compressibility, diffusion, gravity, capillarity and chemical reactions.
Furthermore, the thermodynamic model uses constant K-values. The test bench is run for varying injection
compositions ranging between 100% of C1 to 100% of CO2. The initial composition remains constant at 15%
of C1, 29% of CO2 and 56% of nC10. Figure 3.7 illustrates the various injection points and the initial point used
in the test bench. Injection points are included with non-zero amounts of nC 10 to ensure that the resulting
point cloud of data is distributed so that the relevant operator space is well-defined. The compiled operator
space is tested for three cases where CO2, C1 or a mixture of both are injected into the reservoir. The exact
injection composition per case along with the K-values per component is given in table 3.2. The performance
of the model for each of the cases is assessed with the L2 and Li n f norms of the overall composition at the
production block.
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(a) Fine-scale permeability model. (b) Test bench.

Figure 3.6: A portion of the fine-scale model is supplanted into the test bench and subjected to varying injection compositions. Uniform
pressure boundaries are imposed where the left boundary is set at 180bar and the right boundary at 20bar . Injection compositions
range between 100mol%C 1 to 100mol%CO2.

Table 3.2: Injection compositions for each of the three test cases.

Component C1 CO2 nC10

case 1 0.95 0.05 0.00
case 2 0.05 0.95 0.00
case 3 0.50 0.50 0.00

Figure 3.7: Injection composition points are distributed along the axis between 100mol%C 1 to 100mol%CO2. Additional injection
points are included with a non-zero amount of nC10 in order to ensure that the operator space is well sampled.

(a) Collected data points from the test bench. (b) Interpreted operator space.

Figure 3.8: Example of collected data points and corresponding operator space



4
Results

4.1. Training of pseudo-binary proxy model
This section describes the main results achieved with the transfer learning approach. Three models are com-
pared, the reference model with nc components and the binary model before (’base ML’) and after transfer
training (’transfer ML’). Training is carried out with a one-dimensional reservoir model and the trained model
is further validated with two-dimensional heterogeneous layers of the SPE10 model. The trained proxy model
shows a marked improvement in the estimation of the trailing shock while estimations of the leading shock
remain the same as the base ML model already makes an accurate estimation of the leading shock. Addi-
tionally, the error of the phase-state classification of the proxy model is consistently reduced. The average
difference in breakthrough time for the transfer ML and base ML models with respect to the reference model
is 293d ay s versus 570d ay s for the trailing shocks and 15d ay s versus 16d ay s for the leading shock.

4.1.1. 1D-training
The operator space of the total mobility operatorΛ(ω) and the flux operator β(ω) is adapted with our transfer
training approach. In the first step, the neural network is exclusively trained to approximate the OBL mesh
with labeled data from the analytical construction. At this stage, it is found that the neural network has a
smoothing effect on the operator space which can be seen in figure 4.1. This figure compares the operator
space at base ML training with the labels. Additionally, due to the structured nature of the training data, it is
found that the neural network is able to accurately approximate OBL grids of different densities.

(a) Total mobility operator. (b) Flux operator.

Figure 4.1: Comparison of the operator space before (base ML) and after transfer training (transfer ML) to the labels at p = 180bar .

In the second step, the estimated operator space is used within a fully implicit solver embedded in the
loss function of the neural network as described previously. The solver utilizes the OBL approach as it in-
terpolates required values from the vertices of the OBL mesh. Training is carried out for a one-dimensional
homogeneous reservoir containing 200 grid blocks where the permeability is equal to 100mD and the length

16
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(a) Total mobility operator. (b) Flux operator.

Figure 4.2: Difference of the operator space before and after training. The greatest changes in the operator space are concentrated in the
area relevant to the trailing shock.

of the reservoir is 200m. During the training period, the bottom-hole pressures are fixed at the limits of the
OBL mesh, namely 1bar and 300bar . The Lebesgue integral of the leading and trailing shocks is computed at
10 discrete time steps ranging from t = 1d ay to 10d ay s. The range at which the Lebesgue integral of misfit is
calculated lies between zr = 0.90 and 0.96 for the trailing shock and between zr = 0.11 and 0.30 for the leading
shock.

Figure 4.3: Forward solution of the binary model versus the refer-
ence solution before transfer training (base ML).

Figure 4.4: Forward solution of the binary model versus the refer-
ence solution after transfer training (transfer ML).

The evolution of the loss function in the second step is plotted in figure 4.5 and the evolution of the misfit
of the trailing and leading shocks at every time step t s and training iteration is given in figure 4.6. A global
minimum is reached at training step 7 after which improvements remain negligible. The misfit of the leading
and trailing shock decreases and the estimation of the proxy model is improved with respect to the con-
servative reference solution of nc components. In particular, the estimation of the trailing shocks is visibly
improved as can be seen in figure 4.4 while changes in the position of the leading shock remain modest.
Correspondingly, changes in the operator space for both the total mobility and flux operators are generally
greatest in the area relevant to the trailing shock where the overall composition is changing the most. Changes
in the operator space before and after training are visualized in figure 4.2.
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Figure 4.5: Evolution of the loss function.

Figure 4.6: Evolution of the Lebesgue integral of the trailing and leading shocks that make up the L2 term of the loss function.

4.1.2. Horizontal layers of SPE10
The trained model is applied to two-dimensional heterogeneous layers from the SPE10 geological model.
The two-dimensional models consist of (220×60) cells. The SPE10 geological model is divided into two parts,
namely the Tarbert formation (top 35 layers) and the Upper Ness formation (bottom 50 layers), which are
representations of prograding near shore and fluvial environments (Christie and Blunt, 2001). The cells are
of size ∆x = 3m, ∆y = 6m and ∆z = 0.6m. A 5-spot well pattern is used with an injection well in the middle at
fixed bottom hole pressure of 300 bars injecting at 97% of methane and 4 production wells in the corners at 1
bar. The breakthrough times of the first and last breakthroughs are reported for each of the models. The first
and last breakthrough coincides with the breakthrough of the leading and trailing shock at any of the four
wells. In addition, the quality of the prediction of the locations of the shocks in space and time is quantified
by analysis of the phase state of each grid cell.

The performance of each model is evaluated by quantifying the error of the phase-state classification of
the resulting compositional profile. The phase-state maps identify three zones within the reservoir corre-
sponding to single- and two-phase zones where gas (2), oil and gas (1), or oil (0) are present. The state of each
cell is classified according to the tie-line end points of the injection and initial tie-lines and the error of the
model is quantified as the ratio of the number of misclassified grid blocks with respect to the reference model
and the total number of grid blocks.

T (Sr (x, y, t )−Sr e f (x, y, t )) = 1 f or Sr −Sr e f ̸= 0 (4.1)

Er r or (t ) =
∑nb

i T (Sr,i −Sr e f ,i )

nb
(4.2)
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(a) Log 10 of the permeability distribution of layer 7 of the SPE10
model. (b) Error of the base ML and transfer ML models.

Figure 4.7: Evolution of the error for layer 7 of the SPE10 model before (base ML) and after transfer training (transfer ML).

Figures 4.12a and 4.12b illustrate the distribution of the phases and the error of the proxy model before
and after training for layer 7 of the SPE10 model. The boundary between the zones delineates the location of
the leading and trailing shock within the reservoir and thus the error gives an approximation of how well the
location of the shock is approximated in space and time. From the error maps, it is observed that the esti-
mation of the location of the trailing shock is visibly improved for the trained model whereas the estimation
of the leading shock remains the same or is slightly better. The evolution of the error as the function of time
is reported in figure 4.7b and the permeability of layer 7 is shown in figure 4.7a. The error increases as the
displacement front grow and the region of displacement increases.

The performance before and after training of the proxy model is compared for the top 15 layers of the
SPE10 model. The breakthrough times of the leading and trailing shocks are reported per layer in figures 4.8
and 4.9 together with the corresponding error of the phase-state classification. The trained model consis-
tently outperforms the model trained at the first stage in terms of error and breakthrough time of the trailing
shock while the breakthrough time of the leading shock effectively remains the same as the base ML model
already makes a good estimation. The error of the trained model at breakthrough remains below 7.5%. The
average difference in breakthrough time for the trained and untrained models with respect to the reference
model is 293d ay s versus 570d ay s for the trailing shocks and 15d ay s versus 16d ay s for the leading shock.

The first and last breakthrough times per layer of the bottom 15 layers of the SPE10 model are reported in
figures 4.10 and 4.11. The estimation of the leading shock remains virtually the same while the estimation of
the trailing shock is consistently improved. Note that in the case where production wells are located outside
of sand channels, breakthrough takes a very long time for both the trailing and leading shocks. Consequently,
breakthrough times are reported in log form.

(a) Error of the phase-state classification at breakthrough of the leading
shock. (b) Breakthrough times of the leading shock at one of the wells.

Figure 4.8: The breakthrough time of the leading shock at one of the wells and the corresponding error of the phase-state maps is assessed
for the top 15 layers of the SPE10 model.
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(a) Error of the phase-state classification at breakthrough of the trailing
shock. (b) Breakthrough times of the trailing shock at one of the wells.

Figure 4.9: The breakthrough time of the trailing shock at one of the wells and the corresponding error of the phase-state maps is assessed
for the top 15 layers of the SPE10 model.

(a) Error of the phase-state classification at breakthrough of the leading
shock. (b) Breakthrough times of the leading shock at one of the wells.

Figure 4.10: The breakthrough time of the leading shock at one of the wells and the corresponding error of the phase-state maps is
assessed for the bottom 15 layers of the SPE10 model.

(a) Error of the phase-state classification at breakthrough of the trailing
shock. (b) Breakthrough times of the trailing shock at one of the wells.

Figure 4.11: The breakthrough time of the trailing shock at one of the wells and the corresponding error of the phase-state maps is
assessed for the bottom 15 layers of the SPE10 model.

4.2. Rigorous upscaling of layered models
This section contains the results of rigorous upscaling. To start, an initial demonstrative example consisting
of four layers is given. Thereafter, the ability of the method to handle nz number of layers and added physics
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(a) Base ML proxy model. (b) Transfer ML proxy model.

Figure 4.12: Distribution of the phase-states and the corresponding error at t = 150 days for layer 7 of the SPE10 model. The phase-states
correspond to single- and two-phase zones where gas (2), oil and gas (1), or oil (0) occupy the grid block. The transfer ML model indicates
a marked improvement in the estimation of the trailing shock.

is assessed. In the final part, a neural network is used to learn the operator space for a model containing
three layers. It is found that, the upscaling procedure provides a reliable method for upscaling compositional
models with different injection compositions.

4.2.1. Four-layer model
In the initial demonstrative example, a baseline idea of the performance of the upscaling procedure is devel-
oped. The four-layer model contains nx = 20 cells. Permeabilities from top to bottom are 2.6, 113, 0.4 and
5 mDarcy. Grid cell dimensions of the model are uniform and equal to 1 m in every direction. The opera-
tor space of the flux and total mobility operators is approximated with an interpolation function instead of a
neural network and a baseline idea of the performance is established. In this model fluid is incompressible
and phase densities are equal:

ρtot =
np∑

j
ρ j s j = ρ

np∑
j

s j , (4.3)

therefore the total density is constant and equal to the phase density (ρg = ρo = ρtot ). Further assumptions
include zero vertical permeability and constant K-values.

The quality of the upscaled model’s prediction is compared to that of the coarse-scale model, where only
the absolute permeability is upscaled. The cumulative production of oil and gas for each of the three cases is
plotted in figure 4.13. The upscaled model accurately captures the behavior of the fine-scale model while the
coarse model does not. In the case of injection of C1 the cumulative oil and gas production of the upscaled
model precisely matches that of the fine-scale model. Correspondingly, the predicted evolution of the molar
composition at the production well by the upscaled model for each of the cases is consistently better than
that of the coarse model. The evolution of the molar composition at the production block is reported per
case and model in figure 4.14. In figures 4.16 and 4.15, the L2 and Li n f norms are compared for each of the
models and cases. For cases 1 and 2, the injection component has the greater error however for case 3, where
both components are injected, the error is greatest for the production component nC10.
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(a) Case 1: injection of C1 at 95mol%. (b) Case 2: injection of CO2 at 95mol%.
(c) Case 3: injection of C1 and CO2 at 50mol%
each.

Figure 4.13: Cumulative production of oil and gas for the three different cases is compared to that of the coarse model fine-scale models.

4.2.2. Upscaling procedure for nz -layered models
The procedure for upscaling of nz ×nx layered models is tested for models containing 4, 8 and 16 layers.
The upscaled operator space is applied to models containing nx = 20 cells for the three cases described in
table 3.2 and the error is assessed for the production component nC10. Layer permeabilities for the models
are randomly sampled from a log-normal distribution of permeability where the reservoir is split into two
parts. The distribution from which the layer permeabilities are sampled is shown in figure 4.17. For the 4-
layer, figure A.1, 8-layer, figure A.2 and 16-layer, figure A.3, models that the L2 and Li n f norm is much greater
for the coarse model. Furthermore, the L2 norm remains below 1.0 and the Li n f norm remains below 0.15
for all three sets of models indicating that the procedure can be used for a larger number of layers. However, it
is important to point out that the vertical permeability is equal to zero. In the following section, the procedure
is tested for a model containing 24 layers and non-zero vertical permeability.

4.2.3. Added physics and vertical permeability
The upscaling procedure is tested for a layered model with permeabilities from a real-world example and
non-zero vertical permeability. The vertical permeability of the model is constant and equal to 1D . Addi-
tionally, the physics of the model is extended to include gravity and fluid compressibility. Fluid parameters
for the fine-scale simulation are described in table 4.1 below. The permeabilities of the model are shown in
figure 4.18a and the distribution of zC 1 at t = 0.1d ay s is shown in figure 4.18b. Two zones can be identified
in the permeability model. The lower part generally contains higher permeability layers while the upper part
has a relatively lower permeability. Between z = 10 and z = 15, a high permeability streak is present through
which C1 (gas) passes immediately. Due to the vertical communication of the layers and the buoyancy of
gas, C1 concentrates under low permeability layers and further facilitates the spread of C1 downstream of the
injection well into lower permeability layers.

Table 4.1: Fluid parameters

Gas Oil
Density (g /m3) 200 600

Compressibility (bar−1) 10−3 10−5

Viscosity (cP ) 0.1 0.5

The test bench is used to approximate the upscaled operator space and is shown in figure 4.19. In the
case of fluid compressibility and non-equal phase density, the total density has to be defined. Note that the
total density is reported in molar densities (mol/m3). The compositional profile for each of the models and
cases is shown in figure 4.21. It is obvious that the proposed upscaling approach demonstrates remarkably
good performance. The L2 and Li n f norms of the production component nC10 are reported in figure 4.22
and remain below 1.5 and 0.5 for all three cases.

The effect of including vertical permeability is demonstrated in figure 4.20. When vertical permeability
is added to the fine-scale model, the average compositional path of the downstream coarse-grid blocks be-
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(a) Case 1: injection of C1 at 95mol%.

(b) Case 2: injection of CO2 at 95mol%.

(c) Case 3: injection of C1 and CO2 at 50mol% each.

Figure 4.14: Evolution of the molar composition at the production well for the coarse-scale model and the upscaled model.
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Figure 4.15: Li n f norm of zi (t ) at the production well (nx = 20) for
each of the three cases.

Figure 4.16: L2-norm of zi (t ) at the production well (nx = 20) for
each of the three cases.

Figure 4.17: Log10(k) of the distribution of permeabilities.

(a) Log10 of the permeability distribution of the fine-scale model. (b) Fine-scale solution of the overall composition of C1 at t = 0.1d ay s.

Figure 4.18: Fine-scale model with added physics and real permeabilities.

comes straighter and less variable. This is because the vertical communication of layers enables the spreading
of the shocks. Consequently, the displacement becomes increasingly uniform. Therefore, data points gath-
ered from the test-bench fall closer to the real compositional path of the downstream coarse grid blocks. This
is advantageous for the construction of a quality upscaled operator space.
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Figure 4.19: Operator space for the upscaling of the well model. The total density is defined in addition to the flux and total mobility
operators. The total density is reported in mol/m3.

Figure 4.20: The inclusion of vertical permeability has a straightening effect on the compositional path of downstream coarse grid blocks.

4.2.4. Neural approximation of operator space
The operator space for a three-layer model is parameterized according to layer permeabilities and injection
composition. Three types of layers are defined by their permeability, namely 2.7, 50 and 0.4mDarcy, and
are treated as an analogue of geological facies or hydrological flow units. A data set is created from these
permeabilities by taking all possible combinations of the layers and defining a total of 27 models. Note that
in this approach some models contain layers with identical permeability. Furthermore, layer models with
identical upscaled absolute permeability are filtered from the data set. The resulting data set for training and
testing contains 11 models.

Three neural networks are used to learn and approximate the upscaled operator space of the flux op-
erator per component. The complete data set is split into models used for training and testing the neural
networks. The training set consists of 10 models and for testing the model containing 2.7, 50 and 0.4mDarcy
layer permeabilities from top to bottom are used. Here, the validation data and test data are identical as neu-
ral networks are used as black box functions and hyperparameter tuning is not carried out. Therefore the risk
of inadvertently overfitting the test data is negated. The complete training set has a design matrix consist-
ing of 29,228 samples and 6 features. These features are the permeabilities per layer, the mean of the layer
permeabilities (upscaled absolute permeability) and the overall molar fraction of components C1 and CO2.
Histograms of each of the input features and data labels are shown in figures A.4 and A.5 of the appendix.

The neural networks are trained with early stopping where training is halted if the loss of the test model no
longer decreases. This prevents overfitting of the training data and poor generalization. Figure 4.23 plots the
loss of the training and test sets. The trained neural network is used to approximate the upscaled β operator
for the test model. The resulting compositional profile is shown in figure 4.24. The results are compared to the
coarse-scale model and an upscaled model that uses an interpolation function to define its operator space.
The interpolation is applied directly to the test data points. Figure 4.28 summarizes the results in terms of
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(a) Case 1: injection of C1 at 100mol%.

(b) Case 2: injection of CO2 at 100mol%.

(c) Case 3: injection of C1 and CO2 at 50mol% each.

Figure 4.21: Evolution of the composition profile for the three cases with added physics (fluid compressibility and gravity) real well
permeabilities and non-zero vertical permeability.
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(a) L2-norm. (b) Li n f norm.

Figure 4.22: Error of zCO2 (t ) at the production well for the well model with added physics (fluid compressibility and gravity).

error. The upscaled model outperforms the coarse model but does not make an equally good approximation
of the operator space as the interpolated model. The neural approximated operator space is shown in fig-
ure 4.25 and the interpolated operator space is shown in figure 4.26. The neural networks make an accurate
qualitative approximation of the operator space. The differences between the two approximations of the op-
erator spaces are shown in figure 4.27. Note that both upscaled models use the same total mobility operator
which is interpolated from data and shown in figure 4.29.
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(a) Evolution of the loss for component C1. (b) Evolution of the loss for component CO2

(c) Evolution of the loss for component nC10.

Figure 4.23: Evolution of the loss curves for each of the neural networks used to approximate the flux operators for upscaling.
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(a) Case 1: injection of C1 at 100%.

(b) Case 2: injection of CO2 at 100%.

(c) Case 3: injection of C1 and C2 at 50% each.

Figure 4.24: Evolution of the composition profile for the three cases with operator space approximated by neural networks.
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Figure 4.25: Operator space approximated by neural networks. Note that the space above the initial composition point (marked with an
x) is non-sensical as no data is gathered in this area.

Figure 4.26: Interpolated operator space. Note that the space above the initial composition point (marked with an x) is non-sensical as
no data is gathered in this area.

Figure 4.27: Difference in operator space between neural approximated and interpolated operator space. The greatest differences are
located at the boundary of single- and two-phase zones.

(a) The L2 norm of the upscaled model with a neural network is greater
than that of the upscaled model using interpolated operator space (Interp.)

(b) The L2 norm of the upscaled model with neural approximated operator
space is smaller than that of the coarse models.

Figure 4.28: L2-norm of the upscaled and coarse models.
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Figure 4.29: For both the neural network approximated and interpolated models the same total mobility operator is used. The total
mobility operator is interpolated directly from data points.



5
Conclusion

Compositional simulation can be prohibitively expensive for optimization and history-matching problems
where a large number of model runs are required. In this report, two methods for efficient compositional
modeling are used namely, proxy modeling and upscaling. These methods are applied to a vaporizing gas
injection problem within the operator-based linearization framework of the Delft Advanced Research Terra
Simulator (DARTS).

In the first method, a pseudo-binary proxy model based on the Multiscale Reconstruction in Physics is
extended to include fluid compressibility. Thereafter, neural networks’ ability to function as universal func-
tion approximators is leveraged to learn the physical space of the full compositional simulation in the re-
duced dimension (1D) and improve the proxy model for multi-dimensional simulation. The approach uses
an adaptation of PIML by subjecting the operator space of the proxy model to neural networks and includ-
ing the Lebesgue integration of the forward solution in the loss function. Improvements in the estimation of
breakthrough times are realized for the bottom and top fifteen layers of the SPE10 model. This method can
be further extended for developing a generic physical proxy model with lower degrees of freedom trained at
data points generated by a high-fidelity physical model or based on real-world observations.

In the second method, the upscaled operator space is defined via rigorous upscaling. In this method,
the upscaled operator space is defined exhaustively in three-dimensional compositional space and accounts
for non-equilibrium and dynamic effects on the coarse scale. The upscaling procedure is carried out on a
limited, characteristic portion of the fine-scale model and is applicable to models with variable injection
compositions without having to rerun the fine-scale model. The method is found to work for models with nz -
number of layers, and added physics (gravity and compressibility). In addition, a neural network is trained
to approximate the operator space of a three-layer model in function of the injection composition and the
permeability distribution. The resulting neural network makes a qualitatively good approximation of the
operator space, however performance is diminished.

5.1. Discussion/recomendations
In both methods, a constant K-value equilibrium model is used. In order to capture the effect of miscibility it
is necessary to implement the proxy model with an equation of state thermodynamic model. This has already
been done in previous work by Chen and Voskov, 2020 and is readily implemntable in our machine-learning
framework. Furthermore, Iranshahr et al., 2014 utilize a Peng-Robinson equation of state in their coarse-scale
compositional framework.

The upscaling procedure maintains the same conservation equation on the coarse and fine model scales.
Yet, alternative methods include a diffusive term in the coarse-scale conservation equation (Efendiev and
Durlofsky, 2003) or use volume averaging of higher moments to define upscaled functions (Durlofsky, 1998).

Rigorous upscaling essentially requires that a portion, albeit limited in size, of the fine-scale model is run
several times for various injection conditions. An off-the-cuff timing of the upscaling procedure versus the
fine-scale model of the demonstrative example shown in chapter 4.2.1 has the following compute times: 164s
for the upscaling procedure versus 68s (case1), 44s(case2) and 56s(case3) for the fine-scale solution. Note
that these times depend heavily on the sampling strategy used.

Three-dimensional simulation is the standard for reservoir simulation. Here models are limited to two

32
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dimensions however gains in proxy model performance extend to three dimensions and the upscaling pro-
cedure described can be applied for three dimensions as well.

Neural networks are used as black box functions and no hyperparamter tuning of the neural architecture
is carried out. Therefore, it is recommended that the method is tested for different neural architectures to see
if the solution of the ML trained proxy can further be improved.
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A.1. Pseudo-binary model
A.1.1. Hydrodynamic parameters of pseudo-binary model

Table A.1: Hydrodynamic parameters

Oil Gas

Porosity 0.3 0.3
Residual saturation 0 0

End points kr (S) 1.0 1.0
Saturation exponents 2.0 2.0

Viscosity (cP ) 0.5 0.1
Density (kg /m3) 600 200

Compressibility (1/bar ) 10−5 10−3

Table A.2: Molar weights of each component in g /mol

C1 CO2 nC4 nC10

16.043 44.010 58.123 114.520

A.2. Rigorous upscaling
Multiphase upscaling is carried out rigorously in the full compositional space.

A.2.1. Sensitivity to number of layers
The error statistics of the production component are reported for nz -layered models.
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(a) Second norm. (b) Infinite norm.

Figure A.1: Error of zCO2 (t ) at the production well for four-layer models.

(a) Second norm. (b) Infinite norm.

Figure A.2: Error of zCO2 (t ) at the production well for eight-layer models.

(a) Second norm. (b) Infinite norm.

Figure A.3: Error of zCO2 (t ) at the production well for sixteen-layer models.

A.2.2. Histograms of training and test data
Training and test data set of a three-layer model.
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Figure A.4: Histogram of the input features of the neural network.

Figure A.5: Histogram of the output features of the neural network.
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Figure A.6: Histogram of the input features of the neural network.

Figure A.7: Histogram of the output features of the neural network.
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