
 
 

Delft University of Technology

Towards fast and reliable estimations of 3D pressure, velocity and wall shear stress in
aortic blood flow
CFD-based machine learning approach
Lin, Daiqi; Kenjereš, Saša

DOI
10.1016/j.compbiomed.2025.110137
Publication date
2025
Document Version
Final published version
Published in
Computers in Biology and Medicine

Citation (APA)
Lin, D., & Kenjereš, S. (2025). Towards fast and reliable estimations of 3D pressure, velocity and wall shear
stress in aortic blood flow: CFD-based machine learning approach. Computers in Biology and Medicine,
191, Article 110137. https://doi.org/10.1016/j.compbiomed.2025.110137

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.compbiomed.2025.110137
https://doi.org/10.1016/j.compbiomed.2025.110137


Computers in Biology and Medicine 191 (2025) 110137 

A
0

i An update to this article is included at the end
 

Contents lists available at ScienceDirect

Computers in Biology and Medicine

journal homepage: www.elsevier.com/locate/compbiomed  

Towards fast and reliable estimations of 3D pressure, velocity and wall shear 
stress in aortic blood flow: CFD-based machine learning approach
Daiqi Lin , Saša Kenjereš ∗

Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
J.M. Burgerscentrum Research School for Fluid Mechanics, Mekelweeg 2, 2628 CD Delft, The Netherlands

A R T I C L E  I N F O

Keywords:
Aortic blood flow
CFD
Machine learning
Wall shear stress
Pressure

 A B S T R A C T

In this work, we developed deep neural networks for the fast and comprehensive estimation of the most 
salient features of aortic blood flow. These features include velocity magnitude and direction, 3D pressure, 
and wall shear stress. Starting from 40 subject-specific aortic geometries obtained from 4D Flow MRI, we 
applied statistical shape modeling to generate 1,000 synthetic aorta geometries. Complete computational fluid 
dynamics (CFD) simulations of these geometries were performed to obtain ground-truth values. We then trained 
deep neural networks for each characteristic flow feature using 900 randomly selected aorta geometries. Testing 
on remaining 100 geometries resulted in average errors of 3.11% for velocity and 4.48% for pressure. For wall 
shear stress predictions, we applied two approaches: (i) directly derived from the neural network-predicted 
velocity, and, (ii) predicted from a separate neural network. Both approaches yielded similar accuracy, with 
average error of 4.8 and 4.7% compared to complete 3D CFD results, respectively. We recommend the second 
approach for potential clinical use due to its significantly simplified workflow. In conclusion, this proof-of-
concept analysis demonstrates the numerical robustness, rapid calculation speed (less than seconds), and good 
accuracy of the CFD-based machine learning approach in predicting velocity, pressure, and wall shear stress 
distributions in subject-specific aortic flows.
1. Introduction

Aortic pathologies are closely related to aberrant blood flow pat-
terns and hemodynamic metrics, such as wall shear stress (WSS) [1–3]. 
Computational Fluid Dynamics (CFD) offers the potential to simu-
late the aortic blood flow in great detail. To perform patient-specific 
hemodynamic simulations, researchers need to utilize both the geome-
try of blood vessels (e.g. obtained from magnetic resonance imaging 
(MRI) [4], ultrasound (US) [5] or computed tomography (CT) [6] 
scans), and measured blood flow rates (e.g. from 4D Flow MRI or 
US). These investigations have resulted in reporting on clinically rel-
evant hemodynamic metrics, including wall shear stress (WSS) and 
oscillatory shear index (OSI) [7–9]. CFD offers several advantages 
over pure imaging clinical studies in analyzing blood flow in aortas, 
primarily due to its significantly higher spatial and temporal reso-
lution [10]. These advantages include: (i) enhanced visualization of 
complex flow patterns, (ii) accurate quantification of hemodynamic 
parameters (e.g. WSS, OSI), (iii) ability to capture inherently transient 
flow phenomena throughout the cardiac cycle. Moreover, CFD simu-
lations enable modeling of various treatment scenarios and surgical 
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interventions before they are performed, which can be particularly 
valuable for complex cases of aortic aneurysm, coarctation or dissec-
tion. These predictive simulations can aid in treatment planning and 
optimization, potentially improving patient outcomes [11].

Another advantage of CFD is the availability of diverse physical 
models for hemodynamics simulation in modern CFD packages. These 
include advanced fluid–structure interactions (FSI), moving meshes, 
advanced turbulence models, multi-phase and non-Newtonian fluid 
models, which enhance the accuracy of blood flow simulations. Fur-
thermore, the field of cardiovascular biomechanics benefits from a 
strong culture of collaboration and sharing [12]. This has led to the 
development of high-quality open science resources including: (1) im-
age processing software: ITK-SNAP [13], 3D Slicer [14], VMTK [15], 
ITK [16]; (2) CFD packages: SimVascular [17], OpenFOAM [18]; (3) 
open data repositories: PhysioNet [19], Physiome Project [20]. These 
resources significantly contribute to the advancement of cardiovascular 
biomechanics simulations and facilitate the wider adoption of CFD 
techniques in clinical applications.

Despite the significant advantages of CFD and related open  sci-
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ence environments, its application in clinical diagnosis and treatment 
remains limited at present [21]. Several technical challenges contribute 
to this limitation: (1) relatively advanced technical user expertise re-
quired, (2) complex workflow, (3) time-consuming process, (4) com-
putational expenses, etc. However, recent developments in biomedical 
imaging and computational resources have paved the way for machine 
learning to address these challenges. Machine learning (ML) techniques 
have demonstrated great promise in: (1) simplifying CFD workflows, 
(2) reducing time consumption of conventional CFD methods, and 
(3) enhancing the accessibility of CFD for clinical applications. These 
recent advancements suggest a potential shift towards more efficient 
and user-friendly CFD implementation in clinical settings. Several stud-
ies have demonstrated the promising application of machine learning 
techniques in arterial and aortic blood flow simulations.

Liang et al. [22] conducted a feasibility study using deep neural 
networks (DNNs) to directly estimate steady-state distributions of pres-
sure and blood velocity in the human thoracic aorta. After training on 
hemodynamic data from CFD simulations, their DNNs could predict 
velocity magnitude fields with an average error of 1.96% in about one 
second, demonstrating potential as a fast and accurate surrogate model.

Morgan et al. [23] presented a novel physics-based machine learn-
ing technique to rapidly reconstruct wall shear stress and pressure 
fields in coronary arteries. Their method combined reduced-order CFD 
modeling (based on the proper orthogonal decomposition, POD) with 
machine learning to expedite the reconstruction of 3D pressure and 
shear stress fields.

Pajaziti et al. [24] developed deep neural networks to rapidly 
predict 3D pressure and velocity-magnitude in the aorta. Their model 
was trained on 3000 CFD simulations of synthetically generated 3D 
aortic shapes. The machine learning approach was able to perform CFD 
simulations about 4000 times faster than conventional solvers, with 
average errors of 6.01% for pressure and 3.99% for velocity magnitude 
compared to traditional CFD. These studies demonstrated how machine 
learning can significantly reduce computational time while maintaining 
acceptable accuracy of pressure and velocity magnitude predictions 
(which was within the 2%–6% error range), addressing key challenges 
in the clinical applications of CFD.

However, the suitability of machine learning-predicted velocity 
fields for post-processing and deriving hemodynamic metrics (such as 
WSS) in aortic blood flows has not been thoroughly tested or reported. 
To make predicted flow field more comprehensive and clinically useful, 
future models should aim to: (1) predict pressure, velocity vectors, 
and velocity magnitude simultaneously, and (2) accurately capture 
velocity gradients in the relatively thin boundary layer along the aorta. 
If these criteria are met, velocity fields predicted by CFD-based machine 
learning could potentially derive reasonable wall shear stress estimates 
on blood vessel walls. This advancement would significantly enhance 
the clinical applicability of machine learning-based flow predictions in 
vascular studies.

In this study, we first applied deep neural networks (DNNs) to pre-
dict the aortic velocity field (i.e. the velocity magnitude and direction). 
To test the predictive ability of this method, the obtained velocity field 
was used to directly calculate the wall shear stress (WSS). Additionally, 
a neural network was constructed and trained to predict the WSS. 
The results obtained from these two approaches were compared and 
analyzed against the ground-truth computational fluid dynamics (CFD) 
results. Furthermore, the 3D pressure fields were also predicted by 
neural networks, and the results were compared with those of previous 
work of [24]. The complete workflow of the present study is shown 
in Fig.  1, which integrates: (1) the data-augmented dataset of realistic 
aorta geometries, (2) detailed CFD simulations, (3) development and 
training of neural networks for pressure and velocity fields, and finally, 
(4) the derived and predicted WSS.

The present study contains the following novel elements: (i) Simul-
taneous predictions of physics-based DNNs for 3D pressure, velocity, 
and wall shear stress for aortic flows; (ii) Our neural network explicitly 
2 
incorporates the no-slip condition at the aortic wall, enabling physi-
cally accurate and consistent velocity predictions; (iii) We introduce a 
method to derive wall shear stress directly from the predicted velocity 
field, complementing neural network predictions; (iv) We present a 
comprehensive analysis of the relationships between aortic geometries 
and PCA modes.

2. Methodology

2.1. Aorta geometries

Our analysis begins with a total of 40 subject-specific aorta geome-
tries, segmented from 4D Flow MRI scans as described in previous 
studies [8,25,26], Fig.  A.14. This dataset contains scans from ten 
subjects, each processed using four different segmentation techniques. 
The morphometric characteristics and details of the considered aortic 
geometries are provided in [25]. In the current study, consistent with 
approaches presented in [8,24], aortic side-branches are excluded from 
the simulations. To prepare the segmented aortic geometry surfaces 
for CFD simulations, we undertook several steps including surface 
smoothing, clipping, centerline extraction, and necessary remeshing. 
All these processes were performed using the open-source Vascular 
Modeling Toolkit (VMTK), [15].

2.2. Statistical shape model

To perform data augmentation of aortic geometries (due to the 
relatively small size of the initial 4D Flow MRI-based dataset), we 
applied the method proposed in [24] to generate a statistical shape 
model (SSM) from the aortic geometries data shown in Fig.  A.14, using 
the open-source software Deformetrica 4.0 [27].

The statistical shape model was generated by applying the Large 
Deformation Diffeomorphic Metric Mapping (LDDMM) approach, as 
described in [28] (see Fig.  2). In this approach, the aorta wall surface 
is specified as a surface template, which should be as simple and 
representative as possible. A volume template is then generated by 
meshing the surface template with tetrahedral cells and a prismatic 
boundary layer within the aortic interior. The LDDMM method, based 
on control points, was used to calculate the non-linear deformation of 
3D ambient space for each subject relative to the surface template. We 
specified deformation using a pair set of control points and momenta 
vectors, with a total of 150 control points. The deformation for the 
entire dataset can be described with a matrix [40, 450]. To reduce 
the size of the deformation matrix , we applied Principle Component 
Analysis (PCA). The results (Fig.  B.15) show that the first 19 PCA modes 
were able to capture 99% of the variance of the matrix .

After performing PCA, the matrix  was reduced to dimensions 
[40, 19]. To generate 1000 virtual shapes, synthetic deformation vectors 
were generated using Gaussian distribution sampling (within 2 stan-
dard deviations). Following an inverse PCA operation, we obtained a 
synthetic deformation matrix with dimensions [1000, 450], which was 
then reshaped to [1000, 150, 3]. Note that the matrix elements of the 
latter indicate the number of geometries, number of control points, and, 
3D momenta (coordinate directions) for the control points, respectively.

The open-source software Deformetrica can utilize this deformation 
matrix to deform both the surface and volume templates of the aorta, 
producing 1000 virtual geometries. All of these geometries have an 
identical number of nodes and cells, ensuring structured mesh cor-
respondence. After performing mesh deformation, all corresponding 
volume meshes also have generated prismatic layers in the proximity of 
the aortic wall to properly resolve steep velocity gradients within the 
boundary layers. The importance of this approach will be elaborated in 
more detail in Section 4.1.
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Fig. 1. The workflow adopted in the present study: (i) the data-augmented dataset of realistic aorta geometries, (ii) detailed CFD simulations, (iii) development and training of 
neural networks for pressure and velocity fields, and finally, (iv) the derived and predicted WSS.
Fig. 2. Workflow of the applied statistical shape model (SSM).
Fig. 3. Structure of neural networks: a,b,c: multilayer perceptron, d: inverse PCA layer, e: no-slip condition layer. Two separate neural networks were built for velocity field 
prediction.
2.3. Computational fluid dynamics modeling

The steady-state blood flow is governed by the conservation of mass 
and momentum equations for the incompressible fluid [8], which are 
written as: 

∇ ⋅ u = 0 (1)

𝜌u ⋅ ∇u = −∇𝑝 + 𝜇∇2u (2)

where u is velocity vector, 𝜌 is the density, 𝑝 is the pressure and 𝜇
is the dynamic viscosity. The blood was assumed to be Newtonian 
fluid with a constant density 𝜌 = 1060 kg/m3 and dynamic viscosity 
𝜇 = 0.004 Pa⋅s. A steady laminar flow model was used to simplify 
3 
the problem and to reduce computation time. The no-slip boundary 
condition was applied at the aortic wall. A uniform velocity profile 
at the inlet of UInlet = 0.5 m∕s was imposed in accordance with 
previous research [8]. A pressure-based solver was applied, and the 
SIMPLE algorithm was used for pressure-velocity coupling. For spa-
tial discretization, the Least Squares Cell-based method was set for 
gradient calculations, the second-order method for pressure, and the 
second-order upwind method for momentum. The residuals were set to 
10−5.

The initial hybrid numerical mesh consisted of tetrahedral cells 
(with a typical cell size of 1 mm) in the interior and prismatic cells 
near the aortic wall (with a typical first layer thickness of 0.12 mm 
to properly capture velocity gradients). This mesh was converted to a 
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polyhedral numerical mesh to enhance numerical stability and conver-
gence using Ansys Fluent 2021 R2 (Ansys, Canonsburg, Pennsylvania). 
A detailed numerical mesh dependency study is presented in Appendix 
C.

To improve computational efficiency for the 1000 CFD simulations, 
we performed parallel execution of 10 tasks with 100 cases per task 
on a DelftBlue supercomputer using 16 CPUs (Intel XEON E5-6248R, 
3.0 GHz). The simulation runs for around 10 min for each case.

The resulting 3D fields of velocity, pressure, and wall shear stress 
were then interpolated onto the corresponding SSM meshes using Par-
aView. After interpolation, care was taken to eliminate potential non-
zero velocity values along the aortic wall using an in-house code.

2.4. Neural networks

The Neural Networks (NNs) in this study are based on the structure 
proposed by Pajaziti et al. [24], which is a variant of Multilayer 
Perceptron (MLP). Initially, two separate neural networks are built and 
trained to predict velocity magnitude and direction. This is followed 
by additional NNs for pressure and wall shear stress, respectively. 
The training set consists of 900 cases, with the remaining 100 cases 
reserved for testing, which are unseen by the NNs. The input layer of 
the neural network is the deformation vector (also called the shape 
vector), with a dimension of 19, as illustrated in Fig.  3. The hidden 
layers are fully connected layers with Rectified linear units (ReLU) as 
the activation function. The width of the output layer is determined by 
the number of PCA modes required to capture 99% of the variance in 
pressure, velocity and WSS, as shown in the second column of Table  1. 
In the neural network, an inverse PCA operation is also incorporated 
to convert the obtained vector into real velocity, pressure, and WSS 
fields. The hidden layers’ width (number of units), depth (number of 
layers), and learning rate are carefully tuned using the hyperparameter 
optimization framework Optuna [29]. The final hyperparameters are 
presented in Table  D.3. For loss functions, we employ the mean abso-
lute error (MAE) (Eq. (3)) for velocity magnitude, pressure, and WSS, 
while the cosine similarity (Eq. (4)) is used for velocity direction. These 
loss functions are calculated as follows: 

MAE = 1
𝑁

𝑁
∑

𝑖=1

|

|

𝑌 (𝑖) − 𝑌 (𝑖)|
|

(3)

where 𝑌 (𝑖) represents the ground truth magnitude at node (𝑖) obtained 
from CFD, 𝑌 (𝑖) is the predicted magnitude from the neural network, 
and 𝑁 is the number of nodes in the volume mesh or surface mesh. 
The physical value of 𝑌  could be the velocity magnitude, pressure, or 
WSS magnitude. The cosine similarity is calculated as: 

cosinesimilarity ≡ 𝑐𝑜𝑠 (𝜃) = −
𝑉𝑡𝑟𝑢𝑒 ⋅ 𝑉𝑝𝑟𝑒𝑑
|

|

|

𝑉𝑡𝑟𝑢𝑒
|

|

|

|

|

|

𝑉𝑝𝑟𝑒𝑑
|

|

|

(4)

where 𝑉𝑡𝑟𝑢𝑒 is the velocity-direction vector from the ground-truth (CFD), 
and 𝑉𝑝𝑟𝑒𝑑 is the velocity-direction vector predicted by the neural net-
work. In the present study, we have 𝑁 = 34 473 for velocity magnitude 
and pressure, while 𝑁 = 5365 is for WSS magnitude.

Notably, the neural networks sometimes fail to predict zero velocity 
values at the aortic wall. To address this, a no-slip condition layer was 
added to the neural networks, forcing the velocity on the wall (aorta 
surface) to be zero. The structure of the velocity neural networks (for 
both magnitude and direction) is shown in Fig.  3 as an example, where 
layer ‘e’ represents the no-slip condition layer.

To evaluate the accuracy of the neural networks outputs, two per-
formance metrics proposed by Liang et al. [22] are adopted: (i) mean 
absolute error (MAE) (Eq. (3)) and, (ii) normalized mean absolute error 
(NMAE) (Eq. (5)). MAE directly reflects the absolute error between 
ground truth and prediction for individual cases. Since the ranges of 
4 
Fig. 4. Distribution of centerline lengths for 40 real shapes (left) and 1000 virtual 
shapes (right). Length range: 150–280 mm.

ground truth vary from case to case, NMAE is also necessary to quantify 
the relative errors. 
NMAE = MAE

𝑚𝑎𝑥(𝑌 ) − 𝑚𝑖𝑛(𝑌 )
× 100% (5)

where 𝑚𝑎𝑥(𝑌 ) is the maximum magnitude, 𝑚𝑖𝑛(𝑌 ) is the minimum mag-
nitude of the ground-truth, and 𝑌  could represent velocity magnitude, 
pressure, or WSS.

2.5. Post-processing

In post-processing, we mainly focus on deriving WSS from the 
predicted velocity field. A new in-house code has been developed to 
calculate WSS through the following steps: (1) generate the gradient 
tensor of velocity vector ∇𝑉 , (2) extract the surface 𝑆 of the domain, 
(3) generate the normal vector 𝑁⃗𝑆 of the surface, and lastly, (4) 
calculate the WSS 𝜏𝑤 using the following equation: 
𝜏𝑤 = 𝜇∇𝑉 𝑁⃗𝑆 (6)

where 𝜏𝑤 is the wall shear stress, 𝜇 is the viscosity of blood, 𝑉  is the 
velocity field from neural networks, and 𝑁⃗𝑆 is the normal vector of the 
aortic wall surface.

3. Results

3.1. Statistical shape model of the aorta

In this study, in contrast to Pajaziti et al. [24], we did not clip 
geometries to maintain the same length, which makes the present 
scenario more realistic. The original geometry [25,26] was applied to 
obtain an anatomical structure. Due to the repeatability study on ten 
subjects, it is necessary to analyze the length characteristics of the real-
shape dataset and virtual-shape dataset, which is related to the error 
and performance of neural networks. The centerline length distribution 
of the forty real geometries is given in Fig.  4. It can be seen that 
most of the geometries have a centerline length ranging from 200 to 
275 mm, with only 7% of the shapes having a centerline length below 
200 mm. The centerline length of the virtual shapes exhibits a Gaussian 
distribution ranging from 150 to 275 mm. Note that the centerline 
length of the real geometries does not show this Gaussian distribution 
due to the applied MRI-based scan/rescan method on a relatively small 
sample of ten subjects within a similar age group (26.5± 2.6), resulting 
in smaller geometrical variations.

Principal component analysis (PCA) was used to reduce the defor-
mation matrix. The first 19 PCA modes capture 99% of the variance 
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Fig. 5. Deformation of the mean aortic geometry when the first three modes change 
within ±2 standard deviations (SD).

in the original deformation matrix. The first, second, and third PCA 
modes capture 39%, 24%, and 15% of the variance, respectively (Fig. 
B.15). The resulting deformations of the mean aortic geometry when 
the leading three modes are changed within ±2 of standard deviation 
(SD) are shown in Fig.  5. Note that different PCA modes tend to 
describe different geometric features of aortas [24]. For example, when 
the initial geometrical set of the aortas is not clipped to the same 
length, their length is then controlled by series of PCA modes. When the 
first mode changes within ±2 standard deviation, both the length and 
diameter of the generated shape near the inlet and outlet change signif-
icantly. To quantify correlations between the PCA modes and virtually 
generated aortic shapes, we extracted the most salient geometrical 
features (i.e. diameter, length, tortuosity, torsion, and curvature) from 
1000 virtual and compared them with the first three shape modes, Fig. 
6. A correlation coefficient of 0.85 is obtained between the aortic length 
and the first PCA mode. This strong correlation is also evident in Fig. 
5, where an increase of two standard deviations (2SD) in the first mode 
corresponds to an increase in aortic length. Significant correlations 
(|R| > 0.7) are also observed between the mean diameter and the 
second PCA mode, as well as between the aortic curvature and the first 
mode.

3.2. Neural networks predictions of 3D velocity and pressure

The scatter plot of predicted (NNs) versus the ground truth (CFD) 
velocity magnitude is shown in Fig.  7a. A good agreement is obtained 
(within ±10% for all cases). Note that the 100 cases shown here were 
not previously used in the training of NNs. The cosine similarity of 
velocity direction is −0.98 ± 0.01, as illustrated in Fig.  7b, confirming 
good accuracy. The Bland–Altman plot for velocity magnitude of the 
considered cases is presented in Fig.  8a. The Mean Absolute Error 
(MAE) of velocity-magnitude is 0.04 ± 0.01 m/s. The maximum and 
minimum MAE for velocity magnitude were found to be 0.08 m/s and 
0.02 m/s, respectively. Based on the MAE of velocity-magnitude, the 
streamlines of best and worst cases are shown in Figs.  9(a) and 9(b), 
respectively. The Normalized Mean Absolute Error (NMAE) of velocity 
5 
magnitude is 3.11 ± 1.15%, with maximum and minimum values of 
7.41% and 1.30%, respectively. The NMAE of velocity magnitude in 
this study agrees well with the reported value of 3.99 ± 0.93% in [24].

The case-wise Bland–Altman plot for pressure is shown in Fig.  8b. 
The MAE of predicted pressure is 47.88±43.23 Pa, with maximum and 
minimum values of 284.17 Pa and 11.66 Pa, respectively. Based on 
the MAE of pressure, the best case and worst case are shown in Figs. 
9(c) and 9(d), respectively. The NMAE of pressure is 4.48±2.50%, with 
maximum and minimum values of 14.35% and 1.07%, respectively. The 
reported NMAE of pressure [24] is 6.01 ± 3.12%.

3.3. Derived and predicted wall shear stress

The first approach we tested in extracting WSS is based on a physics-
informed method. In this approach, the derived WSS was calculated 
from the velocity field predicted by a neural network and compared 
with the WSS calculated from the ground truth CFD/SSM velocity field. 
Since the velocity gradient with boundary layer is difficult to capture 
during interpolation, the impact of interpolation will be discussed in 
Section 4.1. The MAE of derived WSS is 0.51 ± 0.21 Pa. The maximum 
and minimum MAE for derived WSS were found to be 1.50 Pa and 
0.27 Pa, respectively. The NMAE of derived WSS is 4.8 ± 1.5%, with 
maximum and minimum values of 9.3% and 1.9%, respectively. The 
case-wise Bland–Altman plot for derived WSS is shown in Fig.  8c. Based 
on the MAE, the best and worst cases for derived WSS are shown in Figs. 
10(a) and 10(b), respectively.

In the second approach, the WSS is obtained directly from the 
neural network (NN) for each shape. The MAE of predicted WSS is 
1.04 ± 0.57 Pa, with maximum and minimum values of 4.51 Pa and 
0.35 Pa, respectively. The case-wise Bland–Altman plot for predicted 
WSS is shown in Fig.  8d. Based on the MAE of predicted WSS, the best 
and worst cases are shown in Figs.  10(c) and 10(d), respectively. The 
NMAE of predicted WSS is 4.7 ± 2.0%, with maximum and minimum 
values of 10.8% and 0.9%, respectively.

3.4. Point and line analysis for best and worst cases

To comprehensively analyze the results of the best and worst cases, 
shown in Figs.  9 and 10, both point and line analyses were conducted. 
For the point analysis, 2000 nodes were randomly sampled from all the 
nodes of SSM meshes. The resulting node-wise Bland–Altman plots for 
pressure, velocity, derived WSS, and predicted WSS are presented in 
Fig.  11.

For the line analysis, cross-section averaged values along the cen-
terlines were calculated for both the best case and worst cases. As 
shown in Fig.  12, for the best cases, the prediction values demonstrate 
excellent agreement with the ground-truth values. For the worst cases: 
(i) the prediction of velocity shows a significant deviation from the 
ground truth when 𝐿∕𝐿0 > 0.3, (ii) the predictions of pressure, derived 
WSS, and predicted WSS show substantial deviations from the ground 
truth when 𝐿∕𝐿0 > 0.8.

4. Discussion

4.1. Impact of interpolation and SSM mesh size

To assess the impact of interpolation and SSM mesh, we performed 
a CFD simulation of the mean aorta shape (see Fig.  5). We then 
interpolated the velocity and pressure fields onto three different SSM 
meshes: (i) a 2.0 mm size mesh, similar to the resolution of 4D Flow 
MRI [8], (ii) a mesh with 2.0 mm tetrahedral elements in the central 
part of the lumen and a 0.5 mm boundary layer prismatic mesh, and, 
(iii) a mesh with 2.0 mm tetrahedral elements in the central part of 
the lumen and a 0.4 mm boundary layer prismatic mesh. Our goal in 
refining the SSM mesh was to improve predictions of both the domain 
velocity field and the velocity gradient within relatively thin boundary 
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Fig. 6. Correlation between geometrical parameters and three PCA modes. Each row shows the relationship between geometrical features of aortas (length, tortuosity, diameter, 
curvature and torsion) and PCA modes.
Fig. 7. (a) Predicted versus ground truth velocity magnitude. The dashed red lines show the boundaries with ±10% deviation. (b) The box plot of case-wise cosine similarity 
(targeted value = −1). All test case results (n = 100) are plotted.
layers. Fig.  13 illustrates the results of this analysis. The CFD mesh 
resulted in a maximum WSS value of approximately 15 Pa, which 
agrees well with ranges reported by Perinajová et al. [8].

After interpolating the velocity field onto the SSM meshes, the 
maximum values were: (i) approximately 4 Pa for the first mesh, (ii) 
7.8 Pa for the second mesh, (iii) 9.2 Pa for the third mesh. These 
differences in maximum values are primarily due to mesh resolution. 
6 
Moreover, the first and second meshes failed to accurately capture local 
WSS characteristics at the distal descending aorta, appearing blurred 
compared to CFD results. A key challenge in this process was managing 
small deviations (0.1 mm) between the CFD and SSM mesh surfaces at 
certain nodes. These deviations could lead to non-zero velocities on the 
wall after interpolation, necessitating manual correction to zero. This 
issue underscored the importance of using a finer boundary layer in 
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Fig. 8. Case-wise Bland–Altman plots for (a) velocity, (b) (relative) pressure, (c) WSS derived, (d) WSS predicted. True and predicted values are averaged for each case. Upper 

limit (UL) and lower limit (LL) represent the average difference ±1.96 standard deviations. All test cases (n = 100) are plotted.
Fig. 9. Neural network (NN) predictions for extreme cases (based on Mean Absolute Error (MAE)): streamlines colored by velocity magnitude (m/s): (a) best case, (b) worst case; 
(relative) pressure contours (Pa): (c) best case, (d) worst case. Note that P_error is the pressure difference between the predicted value and the true value.

the SSM mesh to prevent interpolation failures near the wall. Based 
on these findings, we selected the SSM mesh with 0.4 mm boundary 
layer for our study. This choice ensures consistent mesh correspondence 
across the neural networks dataset and provides a robust foundation for 
our subsequent analyses.

4.2. The performance of neural networks

The shape-driven neural networks applied in this study effectively 
predicted pressure, velocity, and WSS. The NMAE for these neural net-
works consistently ranged between 3% and 4%, aligning well with the 
7 
values reported by Pajaziti et al. [24]. We believe this range represents 
the current performance limit of this neural network structure. Other 
deep neural network architectures, such as auto-encoders [22], can 
achieve lower NMAE values of 1.5% to 1.9%. However, these networks 
typically require significantly wider and deeper structures.

Our neural networks demonstrate compatibility with a wide range 
of GPUs, including older models. We successfully trained the networks 
without encountering memory issues on both the NVIDIA K4000 8 GB 
(2013) and A4500 20 GB (2021). Considering the trade-off between 
prediction accuracy and memory usage, our neural network achieves a 
good balance with acceptable error rates.
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Fig. 10. The wall shear stress (WSS (Pa)) distribution for extreme cases based on Mean Absolute Error (MAE): derived WSS: (a) best case, (b) worst case, derived WSSerror equals 
derived (WSSpred −WSStrue); predicted WSS: (c) best case, (d) worst case, predicted WSSerror equals predicted (WSSpred −WSStrue).
Table 1
The MAE and NMAE caused by PCA for pressure, velocity and WSS.
 PCA mode MAE NMAE 
 Pressure 23 8.57 Pa 0.89% 
 Velocity 50 0.021 m/s 1.6%  
 WSS 35 0.51 Pa 2.2%  

A key factor contributing to prediction errors in this study is the 
PCA layer within the neural networks, which reduces the dimension-
ality of the output fields. To quantify this effect, we performed a 
simple calculation using the following steps: (1) we applied PCA to 
the velocity magnitude matrix 𝑀 , (2) we then used inverse PCA to 
reconstruct the velocity magnitude matrix 𝑀̄ , (3) we calculated the 
MAE and NMAE between 𝑀 and 𝑀̄ . This analysis revealed that PCA 
introduces systematic errors with a mean MAE of 0.021 m/s and NMAE 
of 1.6%. These errors are inherent to the neural network structure and 
cannot be eliminated through training. Table  1 presents the systematic 
errors caused by PCA for analyzed quantities (i.e. pressure, velocity 
magnitude, and WSS).

4.3. Impact of geometry parameters

In this study, we correlated geometric parameters, rather than shape 
modes, with the MAE of pressure, velocity magnitude, and wall shear 
stress (WSS). These correlations are presented in Fig.  E.17. The length 
and diameter of the aorta show significant correlations with the MAE 
of velocity magnitude, with diameter exhibiting the highest correlation 
(𝑅 = −0.41). As illustrated in Fig.  9(b), the MAE of velocity magnitude 
increases as the aorta’s diameter decreases. Significant MAE of velocity 
magnitude typically occurs in aortas with smaller diameters. This is 
because velocity increases more sharply in narrow lumen compared 
8 
to other zones, and the neural network struggles to accurately predict 
these large velocity magnitudes.

A similar relationship between geometry and MAE is observed for 
WSS prediction. Fig.  E.17 shows that the MAE of WSS is statistically 
correlated with four geometric parameters: diameter, curvature, length, 
and tortuosity. Again, diameter demonstrates the highest correlation 
(𝑅 = −0.34). In Fig.  10(d), we observe higher MAE of WSS prediction 
in regions of the aorta with smaller diameters.

We also examined the relationship between geometry and the 
NMAE, as shown in Fig.  E.18. Our analysis revealed varying influences 
of geometric parameters on NMAE: (1) for velocity magnitude NMAE: 
tortuosity shows the strongest correlation (𝑅 = −0.34), diameter also 
exhibits a significant correlation (𝑅 = 0.29), (2) for WSS NMAE: length, 
curvature, tortuosity, and torsion all exhibit significant correlations 
(|𝑅| > 0.2), diameter does not show a significant correlation. Interest-
ingly, while diameter significantly influences the MAE on both velocity 
magnitude and WSS (as discussed earlier), its impact on NMAE varies 
between these two parameters.

Our analysis reveals that geometric parameters which induce signif-
icant variations in the flow field characteristics are more likely to result 
in higher prediction errors by the neural networks. Specifically, features 
such as narrow diameters, high tortuosity, and extreme curvatures tend 
to create complex flow patterns that challenge the predictive accuracy 
of our models.

4.4. Comparison of derived WSS and predicted WSS

When choosing between physics-informed and neural network
(NN)-based methods for Wall Shear Stress (WSS) prediction, both 
training cost and accuracy must be considered. The physics-informed 
method for WSS calculation involves a more complex workflow: (1) 
interpolating the velocity field onto an SSM mesh with a boundary 
layer to capture near-wall velocity gradients, (2) training two neural 



D. Lin and S. Kenjereš Computers in Biology and Medicine 191 (2025) 110137 
Fig. 11. Node-wise Bland–Altman plots for best and worst cases: velocity (a–b), (relative) pressure (c–d), derived WSS (e–f), predicted WSS (g–h). True and predicted values based 
on all nodes (N): pressure and velocity N = 34,473, and WSS N = 5365. Upper limit (UL) and lower limit (LL) represent the average difference ± 1.96 standard deviations, which 
are calculated using all nodes. For clarity, 2000 randomly sampled nodes are plotted.
networks to predict velocity fields, (3) applying a series of post-
processing steps to derive WSS. This approach is significantly more 
time-consuming than the direct NN-based method. In terms of per-
formance, both methods can predict the distribution characteristics 
of WSS. However, the physics-informed approach struggles to capture 
absolute WSS values accurately. Despite adding a prism layer to the 
SSM meshes, some loss of velocity gradient information occurs. This 
loss is compounded when neural networks predict velocity fields, intro-
ducing errors at multiple stages and causing the final WSS predictions 
to deviate from CFD results.

The choice between these two methods depends on the specific 
research objectives: (1) if the primary goal is WSS prediction, the 
NN-based method is more accurate and efficient in capturing both 
absolute values and distribution characteristics of WSS, (2) if the focus 
is on predicting patient-specific velocity fields, the physics-informed 
method can adequately predict velocity fields while generating WSS 
as a byproduct with acceptable accuracy. In conclusion, researchers 
should carefully consider their primary objectives and available com-
putational resources when selecting between these two approaches for 
WSS prediction.
9 
4.5. Limitation of present work

Several limitations of the current work should be addressed. Ad-
dressing these limitations in future work will be crucial for improving 
the model’s accuracy and applicability to a wider range of clinical 
scenarios.

4.5.1. Limited dataset
Due to the lack of a large patient-specific MRI dataset, we utilized a 

small dataset of 40 real shapes, which only included healthy aortas. In 
contrast to other studies [24], future work should incorporate Thoracic 
Aortic Aneurysm (TAA) and Coarctation of the Aorta (COA) cases. 
Moreover, the 40 real shapes were derived from scans and rescans of 
only 10 volunteers, resulting in geometric similarities among the sam-
ples. Future efforts will focus on collecting a more diverse, high-quality 
medical image dataset.

4.5.2. Simplified CFD modeling
To expedite simulations, several simplifying assumptions were made 

in the CFD modeling: (1) only laminar flow was considered, neglecting 
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Fig. 12. Cross-section averaged values along centerlines for best (-left) and worst cases (-right): velocity, (relative) pressure, derived WSS, predicted WSS, respectively. L/L0 
represents the normalized distance along the centerline.
Fig. 13. Impact of mesh interpolation on wall shear stress (WSS (Pa)) calculation for the mean aortic shape: (a) original CFD solution velocity field, (b) velocity interpolated into 
2 mm tetrahedral mesh, (c) velocity interpolated onto 2 mm tetrahedral mesh with 0.4 mm prism layer. Note: WSS (Pa) calculated from each velocity field to assess interpolation 
impact.
potential turbulence, (2) geometries were simplified to include only one 
inlet and one outlet, (3) movement of the aortic wall was neglected, 
10 
(4) a fixed velocity was defined at the inlet, rather than treating it as a 
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dependent parameter in the neural networks. These simplifications may 
limit the model’s applicability to more complex, real-world scenarios.

4.5.3. Data processing limitations
The CFD dataset was not directly fed into the neural networks. In-

stead, the process involved: (1) interpolating the CFD dataset (velocity, 
pressure, and wall shear stress) onto an SSM mesh, (2) compressing 
the interpolated data into a vector using Principal Component Analysis 
(PCA). This approach introduces potential errors during both the data 
interpolation and compression stages, which may affect the overall 
accuracy of the neural network predictions.

5. Conclusions

We developed shape-driven neural networks to predict 3D pressure, 
velocity field, and wall shear stress in aortic flow. We found that the 
trained neural networks can simultaneously predict flow fields (veloc-
ity, pressure, and WSS) within seconds. This is significantly faster than 
traditional CFD methods that typically require 10 or more minutes. The 
mean absolute error (MAE) of velocity predictions is 0.04 ± 0.01 m∕s, 
with a normalized MAE of 3.11 ± 1.15%, agreeing well with previously 
reported values in the literature. For wall shear stress, the MAE is 1.04±
0.57 Pa, with a normalized MAE of 4.7 ± 2.0%. The accurate prediction 
of wall shear stress is due to the prism layer in the statistical shape 
model (SSM) meshes and the no-slip boundary layer implemented in the 
neural networks. This approach allows wall shear stress to be derived 
from the predicted velocity field as a byproduct with acceptable accu-
racy. Errors in prediction are primarily due to interpolation between 
CFD and SSM meshes. In contrast, for neural network predicted wall 
shear stress, the workflow is significantly simpler, and the predicted 
values are in close agreement with the derived WSS approach. For 
projects specifically focused on wall shear stress estimations, our neural 
network-based method is recommended for its ease of use and accuracy.
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Table C.2
The Grid Convergence Index (GCI) estimation for the aorta of mean shape. f1, f2, f3 
refer to the pressure or velocity for the coarse, medium and fine mesh, respectively. 
r is the grid refinement ratio. p is the order of convergence, fh=0 is the Richardson 
extrapolation estimate, GCI1,2 is the GCI for the coarse and medium mesh, and GCI2,3
is the GCI for the medium and fine mesh.
 Pressure Velocity  
 f1 −153.67 Pa 0.592 m/s 
 f2 −166.35 Pa 0.580 m/s 
 f3 −168.52 Pa 0.573 m/s 
 r 1.23 1.23  
 p 8.68 3.05  
 fh=0 −168.97 Pa 0.565 m/s 
 GCI1,2 1.9 × 10−2 3.1 × 10−2  
 GCI2,3 3.3 × 10−3 1.7 × 10−2  
 Asymptotic 1.01 0.99  

Appendix A. Aorta geometries

The real aorta geometries used in the present work, shown in Fig. 
A.14, are based on our previous studies [8,25].

Appendix B. PCA modes and variance

To reduce the size of the deformation matrix [40, 450], Principle 
Component Analysis (PCA) was applied. The first three modes capture 
39%, 24%, and 15% of the variance (total 78%), respectively. The first 
19 modes are capturing 99.1% of the variance, as shown in Fig.  B.15.

Appendix C. Mesh dependency

The mesh dependence analysis was performed to assess the accuracy 
of the simulations. Three different meshes were generated for the 
computational domain of the mean shape: (1) coarse: 1.57 million cells; 
(2) medium: 2.59 million cells; (3) fine: 4.76 million cells. The pressure 
and velocity along the centerline were compared for the three meshes. 
As shown in Fig.  C.16, the medium mesh with 2.59 million cells is fine 
enough to capture mesh-independent flow features. Table  C.2 shows 
the grid convergence index (GCI) estimation for the three meshes.

Appendix D. Hyperparameters in neural networks

The neural networks in this study are based on the Multilayer 
Perceptron (MLP). The basic structure of neural networks is shown in 
Fig.  3, in which ‘a’ is the input layer of MLP, ‘b’ is the hidden layer 
of MLP, ‘c’ is the output layer of MLP, ‘d’ is the inverse Principal 
Component Analysis (PCA) layer, and ‘e’ is the no-slip condition layer. 
The hyperparameters used in the final neural networks are shown in 
Table  D.3.

Appendix E. The correlation between geometry parameters and 
errors

In order to explore the relationship between geometry and errors, 
five geometrical parameters (diameter, length, tortuosity, torsion, and 
curvature) are correlated with MAE (Fig.  E.17) and NMAE (Fig.  E.18). 
The Pearson correlation coefficients are shown at the top of each figure. 
The first rows of Figs.  E.17 and E.18 show the correlation between 
pressure errors and the five geometrical parameters. The correlations 
for velocity and WSS are shown in the second rows and third rows, 
respectively. A comprehensive discussion of these results is presented 
in Section 4.3.

https://www.tudelft.nl/dhpc
https://www.tudelft.nl/dhpc
https://www.tudelft.nl/dhpc
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Fig. A.14. Overview of forty aortic geometries obtained from 4D Flow MRI: ten subjects, each with four different segmentation approaches, as addressed in [8,25].

Fig. B.15. Cumulative variance (in %) captured by the PCA modes.

Fig. C.16. Mesh dependence analysis along the centerline of the mean aortic shape: (a) (relative) pressure profile, (b) velocity magnitude profile. Note that 𝐿∕𝐿0 represents the 
normalized distance along the aortic centerline (from inlet to outlet).
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Table D.3
The hyperparameters in generated neural networks for pressure, velocity magnitude, velocity direction, and wall shear stress, respectively. The 
size of the layer refers to the number of neurons in each layer, and the number of layers indicates how many layers are in the neural networks. 
Layer ‘d’ and layer ‘c’ are lambda functions without neurons, so for these two layers, only the output shapes are mentioned in the table. 
 Neural network Pressure Velocity-magnitude Velocity-direction WSS  
 Size of layer ‘a’ 19 19 19 19  
 Size of layer ‘b’ 550 400 200 500  
 Number of layer ‘b’ 5 4 4 5  
 Size of layer ‘c’ 23 50 50 35  
 Output shape of layer ‘d’ 34 473 34473 (34473, 3) 5365  
 Output shape of layer ‘e’ None 34473 (34473, 3) None  
 Learning rate 1.2 × 10−5 3.0 × 10−4 2.9 × 10−3 2.3 × 10−3 
 Batch size 30 30 30 30  
 Loss function MAE MAE Cosine similarity MAE  
 Optimizer ADAM ADAM ADAM ADAM  
Fig. E.17. Correlation between geometrical parameters and Mean Absolute Error (MAE) for pressure, velocity, and WSS. Pearson correlation coefficients are displayed above each 
plot.
Fig. E.18. Correlation between geometrical parameters and Normalized Mean Absolute Error (NMAE) for pressure, velocity, and WSS. Pearson correlation coefficients are displayed 
above each plot.
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