

Delft University of Technology

Perceived relevance of automatic code inspection in end-user development
A study on VBA
Roy, Sohon; Van Deursen, Arie; Hermans, Felienne

DOI
10.1145/3319008.3319028
Publication date
2019
Document Version
Accepted author manuscript
Published in
Proceedings of EASE 2019 - Evaluation and Assessment in Software Engineering

Citation (APA)
Roy, S., Van Deursen, A., & Hermans, F. (2019). Perceived relevance of automatic code inspection in end-
user development: A study on VBA. In Proceedings of EASE 2019 - Evaluation and Assessment in Software
Engineering (pp. 167-176). (ACM International Conference Proceeding Series). Association for Computing
Machinery (ACM). https://doi.org/10.1145/3319008.3319028
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3319008.3319028
https://doi.org/10.1145/3319008.3319028

Perceived Relevance of Automatic Code Inspection in End-User
Development: A Study on VBA

Sohon Roy

Delft University of Technology

Delft, The Netherlands

S.Roy-1@tudelft.nl

Arie van Deursen

Delft University of Technology

Delft, The Netherlands

Arie.vanDeursen@tudelft.nl

Felienne Hermans

Leiden University

Leiden, The Netherlands

f.f.j.hermans@liacs.leidenuniv.nl

ABSTRACT
Microsoft VBA (Visual Basic for Applications) is a programming

language widely used by end-user programmers, often alongside

the popular spreadsheet software Excel. Together they form the

popular Excel-VBA application ecosystem. Despite being popular,

spreadsheets are known to be fault-prone, and to minimize risk of

faults in the overall Excel-VBA ecosystem, it is important to support

end-user programmers in improving the code quality of their VBA

programs also, in addition to improving spreadsheet technology

and practices. In traditional software development, automatic code

inspection using static analysis tools has been found effective in

improving code quality, but the practical relevance of this technique

in an end-user development context remains unexplored. With the

aim of popularizing it in the end-user community, in this paper

we examine the relevance of automatic code inspection in terms

of how inspection rules are perceived by VBA programmers. We

conduct a qualitative study consisting of interviews with 14 VBA

programmers, who share their perceptions about 20 inspection

rules that most frequently detected code quality issues in an in-

dustrial dataset of 25 VBA applications, obtained from a financial

services company. Results show that the 20 studied inspection rules

can be grouped into three categories of user perceptions based on

the type of issues they warn about: i) 11 rules that warn about

serious problems which need fixing, ii) 7 rules that warn about

bad practices which do not mandate fixing, and iii) 2 rules that

warn about purposeful code elements rather than issues. Based on

these perceptions, we conclude that automatic code inspection is

considerably relevant in an end-user development context such as

VBA. The perceptions also indicate which inspection rules deserve

the most attention from interested researchers and tool developers.

Lastly, our results also reveal 3 additional issue types that are not

covered by the existing inspection rules, and are therefore impetus

for creating new rules.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

EASE ’19, April 15–17, 2019, Copenhagen, Denmark
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7145-2/19/04. . . $15.00

https://doi.org/10.1145/3319008.3319028

KEYWORDS
static analysis, end-user development, VBA, developer perceptions,

code quality

ACM Reference Format:
Sohon Roy, Arie van Deursen, and Felienne Hermans. 2019. Perceived

Relevance of Automatic Code Inspection in End-User Development: A Study

on VBA. In Evaluation and Assessment in Software Engineering (EASE ’19),
April 15–17, 2019, Copenhagen, Denmark.ACM, NewYork, NY, USA, 10 pages.

https://doi.org/10.1145/3319008.3319028

1 INTRODUCTION
Next to the practice of professional software development, there

exists a software development paradigm referred to as End-User
Development (EUD) [17]. In EUD, programming is performed by

end-user programmers—individuals who usually do not have back-

ground or formal training in software engineering disciplines [17].

In recent times, due to increased dependence on computers in every

sphere of life, the practice of EUD has grown considerably. The

increasing popularity of several scripting languages has contributed

generously towards this growth. According to estimates, end-user

programmers largely outnumber professional programmers [25].

Among end-user development languages, Microsoft VBA (Visual
Basic for Applications) enjoys a particularly high popularity, and

is most commonly used with another popular end-user tool, the

spreadsheet software Microsoft Excel [9]. Excel spreadsheets, and

VBA programs, together form thewidely popular Excel-VBA ecosys-

tem.

Despite their popularity, however, spreadsheets are known to

be fault-prone [20–22], and they lack reliable testing practices [23].

Furthermore, spreadsheets in the industry have average lifespans

of five years [10] and are used by up to dozen users within organiza-

tions [10]; these spreadsheets evolve, growing in size and function-

ality [12]. Consequently, the maintenance of both the spreadsheets,

and the corresponding VBA programs, is not trivial. Yet, results

obtained from spreadsheets are commonly used even in critical

business contexts, occasionally resulting in serious incidents due to

spreadsheet faults [7]. Therefore we believe, to minimize the risk

of faults, and to support maintainability in the overall Excel-VBA

ecosystem, it is important to support end-users in improving the

code quality of their VBA programs also, in addition to the ongoing

efforts in improving spreadsheet technology and practices [9, 11].

For traditional software, automatic code inspection by static anal-

ysis tools has been found effective in improving code quality [28].

Automatic code inspection helps by warning developers about is-

sues related to best practices and coding styles. The types of issues

that are warned about, are governed by the inspection rules config-
ured within the static analysis tools. As such, the inspection rules

https://doi.org/10.1145/3319008.3319028
https://doi.org/10.1145/3319008.3319028

EASE ’19, April 15–17, 2019, Copenhagen, Denmark Sohon Roy, Arie van Deursen, and Felienne Hermans

constitute the essence of automatic code inspection, determining

which code quality issues are detected and reported to developers.

Due to its benefits, automatic code inspection is being increas-

ingly applied in traditional software development [3, 24, 29]. Hence,

adoption of such tools in the VBA community may also help ensure

better code quality of VBA programs. However, the VBA end-user

paradigm is substantially different from traditional software de-

velopment, and VBA programmers are also different compared to

traditional developers, mostly in terms of background and train-

ing. Hence empirical evidence supporting the applicability and

relevance of automatic code inspection in the VBA context, helps

the cause of adoption of the technique. Therefore, with the aim of

popularizing automatic code inspection in the VBA context, our

goal in this paper is to assess the relevance of automatic code
inspection according to VBA programmers.

To address our goal, we conducted an exploratory qualitative [5]

study comprising of interviews with 14 VBA developers. Since

inspection rules constitute the essence of automatic code inspection,

we were specifically interested in learning how VBA programmers

perceive automatic code inspection rules; do they view thewarnings

generated by them as relevant issues, or they do not, and why? To

answer such questions, we conducted the interviews, focusing on

1) perceptions of automatic code inspection rules, and 2) discovery

of code quality issue types that may not yet be covered by existing

rules, creating the need for new rules.

During the interviews we used a set of 20 VBA-specific automatic

code inspection rules to discuss with the participants. We arrived

at this set of rules by applying automatic code inspection on an

industrial dataset of 25 operational VBA applications, obtained from

a prominent Dutch financial services company. From this analysis

we were able to identify these top 20 inspection rules that most

frequently detected code quality issues in a dataset of real-world

VBA applications.

Our results reveal:

• The 20 studied inspection rules can be grouped into three

categories of user perceptions based on the type of issues

they warn about: i) 11 rules that warn about serious problems

which need fixing, ii) 7 rules that warn about bad practices

which do not mandate fixing, and iii) 2 rules that warn about

purposeful code elements rather than issues.

• 3 additional issue types are not covered by currently existing

rules, but could be captured by creating new rules for them.

Based on our results, we conclude that developers perceive auto-

matic code inspection to be relevant in an end-user development

context such as VBA. 18 of the 20 inspection rules studied are capa-

ble of revealing code quality issues that VBA programmers consider

as problems, and only 2 detect issues that they consider irrelevant.

As such VBA programmers can adopt automatic code inspection to

ensure better code quality of their VBA programs. Moreover, VBA

programmers who are inexperienced, or uninitiated to the concept

of code quality, can now be warned and instructed to fix the serious

issues detected by the most relevant 11 rules, irrespective of their

understanding of the issues, or their potential dangers. Researchers

and developers of static analysis tools can focus their efforts in

refining the most relevant 11 inspection rules. They should also

consider creation of new inspection rules, to detect the additional

3 issue types revealed in our study.

2 BACKGROUND AND MOTIVATION
Code inspection is defined as a “static analysis technique that relies
on visual examination of development products to detect errors, viola-
tions of development standards, and other problems” [1]. With the

emergence of Automatic Static Analysis, (ASA) and Automatic Static
Analysis Tools (ASATs) [3, 28], automatic code inspection has been

a regular feature of ASATs, and their variants such as linters [6, 27].

Automatic code inspection warns developers about issues re-

lated to best practices and coding styles. In some popular ASATs

such as IntelliJ IDEA [14, 31] and ReSharper [15], ‘warnings’ gen-

erated by automatic code inspection are referred to as inspections.
For example, the warning “Method ‘Foobar()’ is too long. Consider
breaking up into smaller methods” is an inspection. The types of

issues that are warned about, are governed by the inspection rules,
which in this case is the ‘Long Method’ rule. Typically, the tools

offer configurable lists of such inspection rules, in which developers

can choose which rules they want enabled. The tools only generate

warnings pertaining to the enabled inspection rules.

Warnings generated by automatic code inspection in ASATs help

developers find issues and refactoring opportunities early on in the

development process, when it requires less effort, and is less expen-

sive to apply fixes [13]. They also help detect problems that affect

maintainability of code [2, 3, 30, 31]. Hence, we hypothesize that

automatic code inspection can be helpful to address code quality

and maintainability related challenges in the VBA programming

context.

However, automatic inspection by ASATs traditionally suffer

from the problem of false positives [3, 16, 31]. Moreover in the con-

text of ASATs, a false positive can be interpreted in two different

ways: 1) a wrongly generated warning about an issue that does not

exist, or 2) a correct warning about an issue that is not perceived

by developers as a problem, or a potential improvement to the soft-

ware being analyzed [2]. The second interpretation has particularly

motivated researchers to study developers’ perception of ASATs

and their warnings [16, 28].

Nevertheless, these studies focus on traditional software devel-

opment. VBA developers are different compared to traditional soft-

ware developers, in at least two aspects. One, they usually lack

formal training in software disciplines, and two, they work within

the boundaries of a significantly different development paradigm,

with relatively limited development aids. The default IDE for VBA

development does not even provide a feature as basic as automatic

indentation of code. As such, we cannot concludewithout an investi-

gation, whether VBA developers perceive the benefits of automatic

code inspection the same way as traditional software developers

do. Therefore in this paper we conduct our qualitative study on

how VBA developers perceive automatic code inspection.

3 STUDY DESIGN
3.1 Objective and Research Questions
Our goal is to assess the relevance of automatic VBA code inspection

according to the perceptions of VBA programmers. Specifically, in

this paper, our objective is to learn how VBA programmers perceive

Relevance of Automatic Code Inspection in EUD: A Study on VBA EASE ’19, April 15–17, 2019, Copenhagen, Denmark

automatic code inspection rules that currently feature in static

analysis tools for VBA. As such we seek answers to the following

research questions:

RQ1: How do VBA developers (who are end-users compared

to traditional software developers) perceive automatic

code inspection rules in terms of the issues they detect?

RQ2: Do VBA developers also encounter issue types that are

not covered by existing automatic code inspection rules?

3.2 Method
To answer our research questions, we have conducted an exploratory

qualitative study [5] comprising of semi-structured interviews with

14 VBA developers, focusing on their perceptions of automatic code

inspection rules.

3.3 Setup
3.3.1 Study Objects. As objects of our study, we used a set of 20

VBA-specific automatic code inspection rules that we could fea-

sibly discuss within the time-frame of a single interview session.

To arrive at this selection of 20 rules, we applied automatic code

inspection to an industrial dataset of 25 operational VBA applica-

tions, obtained from a prominent Dutch financial services company

specializing in international asset management. Due to reasons of

confidentiality, the identity of this organization cannot be disclosed

in this paper. The VBA applications along with the spreadsheets

they are embedded in, are also confidential. They can not be made

publicly available either, but being directly sourced from an in-

dustrial organization, they are operational real-world applications.

Further characteristics of the VBA applications are provided in

Table 1.

To conduct automatic code inspection of the 25 VBA applications,

we used a VBA code analysis toolkit developed by our industrial

collaborators from the commercial spreadsheet analysis services

company Infotron.
1
This VBA analysis toolkit, developed as part

of a larger spreadsheet analysis application called PerfectXL, is an

implementation of the static analysis engine of the Rubberduck
2

open-source COM add-in for the default VBA editor.

The Rubberduck add-in potentially supports VBA developers

with features of modern IDEs like code inspections, refactoring, and

unit testing, all of which are unavailable in the default VBA editor

provided with Excel. Rubberduck is a modern open-source project

with an active developer community and it is also unofficially sup-

ported by JetBrains,
3
the developer of IntelliJ and ReSharper. For

all practical purposes, we presume the list of 67 inspection rules

featured in Rubberduck as the current industry standard of VBA-

specific automatic code inspection rules.

In the PerfectXL implementation of Rubberduck engine that we

used for our study, the number of inspection rules is reduced to

44, featuring those which are adjudged as more relevant in the

VBA context, according to expert opinion of Infotron’s team of

consultants.

From the automatic code inspection of the 25 VBA applications,

we were able to identify a set of top 20 inspection rules that most

1
https://infotron.nl/en/home-2/

2
http://rubberduckvba.com/

3
https://www.jetbrains.com/

Table 1: VBA workbook characteristics and number of in-
spections found in them

ID LOC Modules Subs and
Functions Inspections

V01 4066 24 35 487

V02 6370 23 48 344

V03 7077 28 66 413

V04 6417 21 73 539

V05 1735 13 36 196

V06 573 12 13 110

V07 16377 26 162 1174

V08 4627 37 40 492

V09 4409 23 69 630

V10 226 5 1 3

V11 2285 11 23 112

V12 209 5 5 10

V13 181 5 5 53

V14 3187 17 36 403

V15 464 9 13 87

V16 292 1 12 15

V17 4197 22 53 476

V18 4422 26 69 630

V19 4831 25 81 791

V20 3141 18 42 434

V21 5615 20 88 423

V22 2325 22 16 299

V23 3401 13 47 410

V24 268 4 11 35

V25 406 3 5 238

Total 87101 413 1049 8804

Mean 3484 16 41 352

Median 3187 18 36 403

frequently detected code quality issues. We have considered these

20 rules as suitable candidates for discussing in the interviews,

as depicted later with results of this study in Table 4. Detailed

descriptions and explanations of the rules are provided with the

discussion of results in Section 4.

It is important to note that the goal of this study is not finding

which issues occur most frequently in VBA applications at large.

Our goal, in this paper, is to obtain a qualitative understanding of

how developers perceive VBA code inspection rules, and for that

we needed to start with a set of rules which we could discuss with

our interviewees. The set of 20 inspection rules used in our study

are not guaranteed to be the ones capturing the most prevalent

issue types occurring in VBA code in general; partly because 25

VBA applications do not represent a sufficiently large population

for generalization purposes, and partly because the PerfectXL VBA

analysis toolkit uses a reduced set of 44 inspection rules out of

the 67 listed by Rubberduck. Nevertheless, instead of being cho-

sen arbitrarily, these 20 rules represent a set of rules methodically

obtained from the analysis of real-world applications, and as such

they provide us with a rational starting point for a first study of its

kind.

EASE ’19, April 15–17, 2019, Copenhagen, Denmark Sohon Roy, Arie van Deursen, and Felienne Hermans

Table 2: Participant Demography

Gender Male Female
86% 14%

Location Europe, UK US
78% 22%

Age Range Mean Median
32 - 62 47.5 48

VBA
Experience

Years Range Mean Median
3 - 21 15.35 16.5

Expertise High Mid Low
43% 43% 14%

Education
Level

Postgraduate Graduate Undergraduate
43% 43% 14%

3.3.2 Participants. In this paper, we were interested more on the

qualitative aspects of different perspectives and opinions rather

than generalization of conclusions. Hence, similar to past such

studies [28], our participant selection strategy was to find VBA

developers who could be expected to understand the consequences

of code quality issues, and therefore be in a position to judge the

usefulness of detecting issues through code inspections. Six of the

participants are employees of the financial company owning the 25

VBA applications that we analyzed. We were introduced to them

during our collaboration for analyzing their VBA spreadsheets,

as described in Section 3.3.1. The remaining nine we contacted

through our network of Excel and VBA professionals in LinkedIn.

The participants’ demographic information is shown in Table 2,

and their roles, industries, lengths of VBA experience, and levels of

expertise are shown in Table 3.

Our participants develop VBA applications in regular basis dur-

ing the course of their primary professional activity. Three of them

have background of formal training in computer science with P3

studying it as a major subject, and P2, P14 as minor. The rest all

of them have non-IT formal education in diverse subjects, and of

varying levels starting from high school diploma to PhD. All of

them are self-taught with respect to their VBA knowledge, through

books, online resources, or on-the-job learning.

In terms of level of expertise, 2 (P7, P8) are in the lowest level,

using VBA programming only as a supplement to their primary

functional responsibilities, and with relatively lower experience (3

- 6 years). 6 are in the middle level, either involved in VBA devel-

opment as part of their main professional responsibilities, or with

relatively longer experience. Remaining 6 are in the highest level,

and are community acknowledged VBA/Excel experts and trainers.

3 of these 6 are also MS Excel MVP (Most Valued Professional).

3.3.3 Interviews. To understand how developers perceive the 20

inspection rules, and to leverage the chance of discovering new

inspection rules, we conducted interviews with 14 developers over

Skype. The interviews lasted 40 minutes in average, and were based

on a guideline consisting of three parts as follows:

(1) Background - In the first part, we asked about years of

experience, formal education, VBA programming experience,

other programming languages used, and current professional

role.

(2) Code Quality Issue Types - In the second part, first we

explained the concept of code quality issue types that are

typically detected by automatic code inspection rules with

an example, and then asked if the participants could think of

other such issue types, independently without any prompt-

ing. The aim of this section was to discover issue types that

are not covered by existing inspection rules, and could be

captured by creating new rules (answer to RQ2). By not

revealing at this stage the list of 20 inspection rules being

studied, we expected the participants to independently cite

problems they face, which might or might not be covered by

the currently existing inspection rules.

(3) Perceptions - In the last part, we discussed with the par-

ticipants their perceptions about the relevance of the 20

inspection rules being studied (Section 3.3.1). While the dis-

cussions during this part of the interviews were steered to

focus on the 20 inspection rules, there was no strict order of

discussion across all the interviews; participants often spoke

about different but related inspection rules together, result-

ing in switching back and forth between the items in the list.

We allowed this free floating motion during the interviews,

as we believed it helped the participants express their opin-

ions best with minimum interference or interruption of their

chain of thoughts. Least interference in expression of opin-

ions was important to us, as our goal was to obtain the best

understanding of the participants’ perceptions. Furthermore,

due to their level of expertise or usage, certain participants

did not recognize or understand certain inspection rules. In

such cases, the corresponding inspection rules were omitted

from being discussed, and recorded as “no comments or not
familiar with”.

3.4 Data Analysis
We analyzed responses pertaining to theCodeQuality Issue Types

parts of the interviews to obtain a list of issue types that are not

covered by existing inspection rules.

We conducted the qualitative analysis of the Perceptions parts

of the interviews through the process of coding: association of

coherent keywords and excerpts with a code representing their key

characteristics [5, 26]. Our aim was to assess the perceptions of the

participants. Hence we grouped together related codes giving rise

to categories of perceptions as described further in Section 4.

We next distributed the 20 inspection rules into the categories of

perceptions, based on the popular participant response for each rule.

The three categories of perceptions along with the distribution of

the inspection rules into respective perception categories, represent

the main outcomes of our study.

Relevance of Automatic Code Inspection in EUD: A Study on VBA EASE ’19, April 15–17, 2019, Copenhagen, Denmark

Table 3: Participants

VBA Experience
ID Role Industry Years Expertise Educational Background
P1 Portfolio Manager Financial services 18 Mid Business Economics

P2 Portfolio Manager Financial services 20 Mid Computational Finance, AI

P3 Technical Project Lead Financial services 15 Mid Computer Science

P4 VBA Developer Financial services 15 Mid Business Administration

P5 Excel Consultant Technical consultancy 15 High Chemical Engineering

P6 Portfolio Manager Financial services 5 Mid Financial Economics

P7 Portfolio Manager Financial services 3 Low Finance

P8 Project Manager Administration 6 Low Mechanical Engineering

P9 Senior Management Transportation 20 High Architecture

P10 Excel Consultant Technical consultancy 15 High Secondary School Education

P11 Consultant Technical consultancy 21 Mid Finance, Business

P12 Excel Consultant Technical consultancy 21 High Metallurgy

P13 Excel Consultant Technical consultancy 21 High Psychology

P14 Excel Consultant Technical consultancy 20 High Electrical Engineering, CS

4 RESULTS
Our study resulted in three main outcomes: 1) Three broad cate-

gories of perceptions that VBA programmers hold about automatic

inspection rules. 2) The grouping of the studied 20 inspection rules

into the three categories of perceptions, revealing which are per-

ceived to be most relevant. 3) Three additional issue types that are

not covered by existing inspection rules.

4.1 Categories of Perceptions
We conducted 14 semi-structured interviews with VBA developers

to understand their perceptions about the 20 automatic inspection

rules we studied (Section 3.3.1). The coding of the semi-structured

interviews, as explained in Section 3.4, led to three categories of

perceptions that the participants hold about the 20 inspection rules

based on the issue types they detect. The categories are as follows:

• A: Serious problems that need fixing - Perceptions that indi-

cate a participant views the issue type detected as a serious

problem or vulnerability and strongly recommends fixing or

avoidance.

• B: Bad practices but fixing is optional - Perceptions that

indicate a participant views the issue type detected as not

serious, and is more related to aesthetics or coding styles;

views refactoring or fixing as optional.

• C: Purposeful code elements rather than issues - Perceptions

that indicate a participant views the issue type detected as a

code element serving a purpose, rather than treating it as an

issue.

In the following subsection we discuss the grouping of the 20 in-

spection rules into the above three perception categories based on

the participant responses.

4.2 Perceptions of the Inspection Rules
Table 4 shows how the participants perceived the different inspec-

tion rules, in terms of the three perception categories:

• A = Serious problems that need fixing

• B = Bad practices but fixing is optional

• C = Purposeful code elements rather than issues

A “-” indicates cases where a participant did not have anything to

say, or was not familiar with the programming concept or feature

being examined by an inspection rule. For example, P13 is not

familiar with the concept of write-only property, and as such did

not have any opinion about it; hence she had no perception to share

about the inspection ruleWrite Only Property.
Taking into account the most popular responses from Table 4,

we have distributed the 20 inspection rules examined in our study,

into the three perception categories as shown in Table 5. We discuss

them in detail as follows.

4.2.1 A - Serious problems that need fixing. As seen from Table 5,

the participants perceive 11 of the 20 inspection rules as highly

relevant in detecting issues they consider as problems.

Variable Declarations (4 rules): Undeclared Variable, Variable
Type Not Declared, and Option Explicit are considered problems

because VBA is a weakly typed language. If a variable is not de-

clared, VBA creates a variable on the fly of type “Variant”, unless

the Option Explicit declarative is added at the beginning of the

code module. If a variable is declared but its type is not specified,

then VBA assigns the type “Variant” to it as well, which can lead

to a performance overhead in rare cases, but mostly can lead to

confusion regarding what type of data the variable is holding in-

side at. As P12 points out “...there is no way to tell if a number
contained inside a Variant is a number or a string, like part of an
address. Hence it is always better to explicitly declare the type.” On
the other hand with an Option Explicit declarative at the beginning

of a module, undeclared variables throw a compilation error, and

thus all participants except P7 and P10 strictly use it. However, P7

stated that they prefer not to use Option Explicit, and did not like

the concept of declaring variables because “Its annoying having to
waste time thinking whether a variable is long or integer, or double...
especially since I have never ran into problems ever, why would I
bother to turn it (Option Explicit) on? I don’t even get why people
want it to be on..” Such opinion is interesting to note the difference

between VBA developers and conventional software developers. P7

EASE ’19, April 15–17, 2019, Copenhagen, Denmark Sohon Roy, Arie van Deursen, and Felienne Hermans

Table 4: Participant Perception of Inspection Rules in Terms of Perception Categories

Inspection Rules P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 Popular
Response

Variable Not Assigned A B A B B A B B A B A B A A A (7/14)

Undeclared Variable A B A A A A C A A B A A A A A (11/14)

Variable Not Used B B A B B B A B B B B B B B B (12/14)

Parameter Can Be “ByVal” B A - A B - - - A - B B B B B (6/14)

Unassigned Variable Usage A B A B B A B B A B A B A A A (7/14)

Variable Type Not Declared A A A A A A C A A B A A A A A (12/14)

Constant Not Used A C A B B B - B B B B B B B B (10/14)

Function Return Value Not Used A C A A B A A - B - A B A B A (7/14)

Procedure Not Used A C A B B C C - C B A B A A A (5/14)

Long Sub Or Function B B A A A B A A A B B B B B B (8/14)

Implicit Public Members A A A B A B - - A - - A - A A (7/14)

Parameter Not Used B B A B B B - - B B B B B A B (10/14)

Procedure Can Be Written

As Function

B B B A B - - - B B B B B B B (10/14)

Obsolete Call Statement C C C C B C C - B - C B A B C (7/14)

Option Explicit A A A A A A C A A B A A A A A (12/14)

Autorun Macro A C A C C B B C C C A C C C C (9/14)

Multiple Declarations A A - - A B B A A A A A A A A (10/14)

Write Only Property - A - - A A - - B - B - - A A (4/14)

Obsolete Global A B - - B B - B A - - B A B B (6/14)

Recorded Macro A A A A B B A B A B A A A A A (10/14)

A = Serious problems that need fixing, B = Bad practices but fixing is optional,

C = Purposeful code elements rather than issues, “-” = No comments or not familiar with

Table 5: Inspection Rules Grouped According to Perception
Categories

A - Serious problems that need fixing
Variable Not Assigned

Undeclared Variable

Unassigned Variable Usage

Variable Type Not Declared

Function Return Value Not Used

Procedure Not Used

Implicit Public Members

Option Explicit

Multiple Declarations

Write Only Property

Recorded Macro

B - Bad practices but fixing is optional
Variable Not Used

Parameter Can Be “ByVal”

Constant Not Used

Long Sub Or Function

Parameter Not Used

Procedure Can Be Written As Function

Obsolete Global

C - Purposeful code elements rather than issues
Obsolete Call Statement

Autorun Macro

does clarify though that their views regarding Option Explicit is

personal, and their organizational policy dictates usage of Option

Explicit. Lastly, Multiple Declarations is a problem because in VBA,

unlike in most other programming languages, ‘Dim a,b,c, as integer’

achieves the purpose of only declaring c as an integer, whereas a

and b are typed as Variants. Due to this reason the participants

favor avoiding multiple declarations in one line.

Variable Assignment (2 rules): Participants consider Variable
Not Assigned, and Unassigned Variable Usage as problems, since

VBA allocates default values to specific types of variables, and

using such variables without initialization or assignment introduces

unpredictability into the programs. As P9 states, “I always initialize
my variables... in a clear block of code, I declare and initialize my
variables.” Notably, for each of these rules an equal number of

participants expressed their perceptions belonging to category ‘B =

Bad practices but fixing is optional’, as that of category ‘A = Serious

problems that need fixing’ (Table 4). Nevertheless, we chose to

place these rules within group A, driven by the belief that in issues

related to code quality, it is better to assume on the side of caution.

Unused Entities (2 rules): Participants view Function Return

Value Not Used and Procedure Not Used as problems. In VBA, the

difference between a sub-module or procedure (‘Sub’) and a function

(‘Function’), is the existence of a return value. Not using the return

value defeats the purpose of a function, as it could then be simply

written as a sub-module. Therefore, when a return value is not

being used it could mean a bug due to a developer forgetting to use

Relevance of Automatic Code Inspection in EUD: A Study on VBA EASE ’19, April 15–17, 2019, Copenhagen, Denmark

it. Entire sub-module or procedure not in use is viewed as “sloppy”,

although some participants like P2, P6, P7, and P9 treat them as

historical record, documentation, or candidates for reuse, lacking

a better version control mechanism or library utilities in VBA. P9

uses a separate library module with several utility procedures that

they include in every project, and uses only the procedures they

need. Nevertheless, the popular opinion about unused procedures is

unfavorable, and it is recommended not to have them in operational

code.

Encapsulation (2 rules): Implicit PublicMembers are viewed as

issues since members are public by default, and without an explicit

access modifier, ambiguity is generated. Treated as a problem is

also Write Only Property, which is a property with only mutator

and no accessor. It is considered as a design smell, giving rise to

confusion, and while not many are familiar with this relatively

advanced concept in the VBA context, most of the participants who

are, do agree on this point. However, P9 cautions against such a

generic view citing that there can be actually a need to use such

properties with only mutators—“No... Some properties are only to be
set, and that’s kind of when you definitely want to use a set property
(a property with only setter) instead of a variable,” and provides an

example where they want to set color of a user form, and passes

the color as an object property, having only mutator.

Recorded Macro (1 rule): Using recorded macros in code is

regarded as a problem, since they usually have unnecessary super-

fluous lines of code, and are generally considered “messy” or “ugly”.

According to participants, they are only suitable for demonstrating

programming elements which developers cannot remember, like

colors and formatting of Excel worksheets, or user forms. Typically,

the participants recommend to copy the required lines of code from

a recorded macro and then delete the macro.

4.2.2 B - Bad practices but fixing is optional. The participants per-
ceive 7 of the 20 inspection rules as relevant in detecting issues

they consider as bad practices, which are not critical and do not

necessarily need fixing.

Unused Entities (3 rules): While unused entities like entire

procedures or function return values are considered as serious

problems, three other types of entities are considered okay to be

left unused within code. Variable Not Used, Constant Not Used, and

Parameter Not Used are thus considered rules that detect issues

which most participants like P4 and P5 consider as mere “laziness”

or “bad housekeeping” on developers’ part. They do not believe

extra variables lying around in code can be harmful from a serious

point of view. P2 actually sees usefulness of leaving unused con-

stants, for example constants that hold values representing different

colors; only few of them are to be used at a time, but the rest are

still useful to remain for future use. Once more, the lack of efficient

library system in VBA forces users to take such crude measures

ignoring the risks involved.

Bad Design (2 rules): Procedure Can Be Written As Function,

and Parameter Can Be “ByVal” are two rules that are able to spot

bad design on part of VBA developers, but according to participants,

such design problems are not critical, and pose no immediate threat

to the functioning of a VBA application.

Lengthy Sub-module (1 rule): Long sub-modules are consid-

ered by the participants as result of bad coding practice but not

seriously harmful. P2, and P14 go further to state that occasionally,

a sub-module can grow over time to become large, and this is not

necessarily a problem as long as the sub-module is well-written

with proper indentation, and comments.

Obsolete Statement (1 rule): Obsolete Global relates to the

issue that the ‘Global’ keyword is now obsolete and ‘Public’ should

be used in place of it [19]. Our participants did not see the use of

Global instead of Public as an issue that is obligatory to fix.

4.2.3 C - Purposeful code elements rather than issues. Lastly, the
participants insisted that 2 out of the 20 inspection rules detected

issues that they do not perceive as issues. On the contrary, irre-

spective of potential or theoretical dangers, they viewed these issue

types as necessary features or means to serve purposes.

Obsolete Call Statement - This issue relates to the persistent

usage of obsolete keyword ‘Call’ [18]. P1-P4, P6, P7, and P11 insist

that using the Call keyword in a statement improves code readabil-

ity for them, as it explicitly communicates to a human reader that

a sub-module or function is being invoked in a statement.

AutorunMacro - Autorun macros are sub-modules of code that

are executed based on events, rather than through user interaction.

They are theoretically considered dangerous due to their unpre-

dictability, as occasionally they may not be triggered, and if a user is

relying on an operation to be automatically executed, then they can

have problems unless clear feedback is provided to them of the fail-

ure of the macro. They are usually executed based on events such

as ‘WorkbookOpen’ i.e. on opening of an Excel workbook. Our par-

ticipants opine that irrespective of the potential dangers, autorun

macros are necessary to perform various operations commonly re-

quired in the VBA domain. As such, not all autorun macros should

be flagged as issues by default during automatic code inspection.

4.3 Additional Issue Types
The following three issue types emerged during the interviews,

which are not covered by existing inspection rules:

(1) Use Of Reserved Keywords as Identifiers - This pertains to

naming of variables using keywords that resemble objects in

Excel, like P5 explains “user uses something like Dim cell as
Range.” ‘Cell’ is an Excel object name, and using it to name

variables in VBA can give rise to confusion, and errors.

(2) Hard Coded Cell References - This occurs when VBA code is

referring to an Excel workbook cell on the front-end directly

through its location or address. The issue with this is the fact

that the VBA code remains unchanged even if the structure of

the Excel worksheet on the front-end changes, e.g. addition

of columns or rows. Such a change results in the original

cell to be shifted to a new address, but that update does not

occur automatically in the VBA code in the back-end. P5,

P9, P12, and P14 point out this issue and recommend usage

of named ranges, or structured table references in the Excel

front-end, and referring through those names in the VBA

back-end.

(3) Code In Excel Object Modules - Any VBA project associ-

ated with Excel workbook has the Excel object modules

by default such as Sheet-1, Sheet-2, Sheet-3 for each of its

worksheets, and other such elements. Apart from that, the

project structure contains a separate project module. It is not

EASE ’19, April 15–17, 2019, Copenhagen, Denmark Sohon Roy, Arie van Deursen, and Felienne Hermans

good practice to add code in the Excel object modules, ex-

cept event-handlers. All other code should be in the project

module hierarchy. The reason is that occasionally Excel be-

haves in an unpredictable way and undesired outcomes are

observed due to wrong execution of VBA program. For ex-

ample, if a breakpoint is added, and is removed afterwards,

Excel might still behave as if there is a breakpoint. In such

cases the only way to resolve the problem is by deleting the

whole module, and restarting the application. This can be

easily done for any of the project modules, but not with the

Excel object modules, since that would potentially break the

Excel workbook structure.

5 REVISITING THE RESEARCH QUESTIONS
In this section, we revisit our research questions in the light of

results obtained.

RQ1 How do VBA developers (who are end-users compared
to traditional software developers) perceive automatic code in-
spection rules in terms of the issues they detect?

From Sections 4.1 and 4.2, we see that VBA programmers per-

ceive automatic inspection rules as relevant in terms of detecting

issues that they consider as problems. 11 of the 20 rules studied are

considered capable of detecting serious code quality issues. Particu-

larly, in case of the 7 rules under Group B - Bad practices but fixing
is optional (Section 4.2), where VBA programmers deem the issues

detected as not critical, it is interesting to note how the relevance

of the rules is affected by the lack of basic assumptions such as

reliable library mechanism and robust automatic version control,

which are valid in case of traditional software development.

RQ2 Do VBA developers also encounter issue types that are
not covered by existing automatic code inspection rules?

In Section 4.3 we describe three issue types that are not covered

by existing inspection rules. In this case, it is not just the 20 rules we

studied that do not capture them, but also the larger set of 67 rules

featured in Rubberduck, which does not address them. Therefore,

we consider this as an important finding which should be used to

extend the set of rules available in static analysis tools for VBA

code.

6 THREATS TO VALIDITY
We treat threats to validity of our results from the perspective of

qualitative research [8] as follows.

6.1 Credibility
Various factors are liable to affect credibility of our results, such

as the background knowledge and experience of the participants,

and external factors affecting their perceptions. To mitigate this

we have selected participants having diverse backgrounds such

as Finance, Economics, Engineering, Architecture, Computer Sci-

ence, etc. as shown in Table 3. Another such factor could be, for

example, organizational policies or culture that introduce a bias

in participants’ perceptions of relative importance of issues, and

consequently the relevance of corresponding inspection rules that

detect them. To mitigate this, we have not limited ourselves only

to participants from the single financial company from where we

obtained the VBA applications, but have reached out to people from

various organizations, including independents. Also during the in-

terviews we put stress on the fact that we wanted the participants’

own opinions, as independently as possible.

6.2 Transferability
Threat to transferability of our results arise from the fact that our

sample population of participants is not large. However, in a qual-

itative study of exploratory nature like ours, we chose to focus

more on descriptive details rich in contextual aspects rather than

generalizability of our results. As part of future work we plan to

study extensibility of our results by treating larger populations and

different methods such as survey.

Another threat to transferability arises from the fact that we

conducted our study on VBA. Other end-user programming lan-

guages exists, which could be interesting to study. However, as a

starting step we decided to choose VBA due to its popularity, and

close associations with popular end-user tool Excel.

6.3 Confirmability
Threat to confirmability of our results can stem from investigator

bias, as all the interviews were conducted by the first author for

consistency. This threat was mitigated as much as possible during

the interviews by letting the participants speak as freely as pos-

sible without prompting, and repeated insistence to speak their

mind freely. The same threat arises related to the analysis of the

interviews, since the process of coding the interviews, and the cat-

egorization of perceptions is subject to our own interpretations,

and the analysis was also carried out by the first author. Neverthe-

less, we tried to attain as much commonality as possible through

repeated discussion and brainstorming between the authors.

7 RELATEDWORK
Tómasdóttir et al. [27], conducted a similar study on JavaScript

linter ESLint by conducting 15 interviews. They investigated how

developers use ESLint. Their results describe the benefits that devel-

opers obtain when using ESLint, the different ways to configure the

tool and prioritize its rules, and the existing challenges in applying

linters in the real world.

Johnson et al. [16] investigated why some developers do not use

ASATs to find bugs despite of their benefits proven in research.

They also interviewed 20 developers to find that false positives

and the manner in which warnings are presented, are the main

barriers to usage. Since apart from a wrongly generated warning

about an issue that does not exist, ‘false positive’ is also the case

when a true warning is not perceived by a developer as an issue [2],

Johnson’s results inspire us further to investigate VBA developers’

perceptions about the warnings generated by the inspection rules.

Christakis and Bird [4] also investigated developers’ perceptions

of ASATs and specifically which barriers they face in the adop-

tion of these tools. By surveying 375 developers at Microsoft they

found that the largest obstacle in adopting ASATs was the fact that

some unwanted rules are turned on by default in the tools’ config-

urations. They proposed having only a subset of rules enabled by

default instead. We hypothesize similar situation can arise related

to adoption of ASATs and automatic inspection in the VBA context,

and therefore it makes our results further important in terms of

Relevance of Automatic Code Inspection in EUD: A Study on VBA EASE ’19, April 15–17, 2019, Copenhagen, Denmark

prioritizing the rules that should be enabled by default in the VBA

context.

Related also is study by Vassallo et al. [28] who surveyed 42 devel-
opers and 11 industry experts to examine the role of development

context in developers’ perception of ASATs. They found different

development context does affect how developers pay attention to

different warning categories, and majority of their participants rely

on specific factors such as, team policies and composition, when

prioritizing which warnings to fix.

No related work has treated the context of end-user development

and VBA. Particularly due to the findings above, related to developer

perceptions, our insights into perceptions of VBA developers about

automatic codes inspection, offers the possibility of reducing false

positives, and developing VBA-specific prioritization strategies for

inspection rules.

8 CONCLUDING REMARKS
In this paper, we have studied the relevance of automatic code

inspection, a feature of automatic static analysis tools, in the context

of end-user development in VBA. Specifically we have examined the

relevance of existing automatic inspection rules according to how

VBA developers perceive them based on the relative importance of

issues they detect. Our results show that, automatic code inspection

is relevant in an end-user development context such as VBA. 18 of 20

inspection rules studied, are capable of revealing code quality issues

that VBA programmers consider as problems, and only two detect

issues that they consider irrelevant. Among the 18 relevant rules,

11 have been considered as detecting serious problems that needs

fixing, and the rest 7 have been considered detecting issues that bad

practices, that do not mandate fixing. As such VBA programmers

can adopt automatic code inspection tools to better maintain their

VBA code. Moreover, VBA programmers who are inexperienced, or

uninitiated to the concept of code quality, can now be warned and

instructed to fix serious issues detected by themost relevant 11 rules,

irrespective of their understanding of the issues or the potential

dangers. Researchers and developers of code inspection tools can

focus their efforts in refining the most relevant 11 inspection rules.

Our results could also help them formulate prioritizing strategies

for the rules.

In addition, our study also demonstrates the need for new in-

spection rules that are specific to usage of VBA within the Excel

context, which relate to references to Excel objects such as cells

and worksheets.

As future work, there are possibilities to expand upon our results

by analyzing larger populations for corroborating our findings

using quantitative methods like surveys. Also it will be interesting

to analyze how effective automatic code inspection is in terms of

preventing actual faults or bugs. Through pursuing such research

directions, our aim is to help end-users like VBA programmers, in

using static analysis tools and automatic code inspection to ensure

better code quality and maintainability of their applications.

REFERENCES
[1] 1990. IEEE Standard Glossary of Software Engineering Terminology. IEEE Std

610.12-1990 (Dec 1990), 1–84. https://doi.org/10.1109/IEEESTD.1990.101064

[2] Nathaniel Ayewah, William Pugh, J David Morgenthaler, John Penix, and YuQian

Zhou. 2007. Evaluating static analysis defect warnings on production software.

In Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering. ACM, 1–8.

[3] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. 2016.

Analyzing the state of static analysis: A large-scale evaluation in open source soft-

ware. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER). IEEE, 470–481.

[4] Maria Christakis and Christian Bird. 2016. What developers want and need from

program analysis: an empirical study. In Automated Software Engineering (ASE),
2016 31st IEEE/ACM International Conference on. IEEE, 332–343.

[5] John W Creswell. 2013. Research design: Qualitative, quantitative, and mixed
methods approaches. Sage publications.

[6] Ian F Darwin. 1988. Checking C Programs with lint. " O’Reilly Media, Inc.".

[7] EuSpRIG. [n. d.]. EuSpRIG Horror Stories. http://www.eusprig.org/

horror-stories.htm

[8] Egon G. Guba. 1981. Criteria for assessing the trustworthiness of naturalistic

inquiries. ECTJ 29, 2 (01 Jun 1981), 75. https://doi.org/10.1007/BF02766777

[9] Felienne Hermans, Bas Jansen, Sohon Roy, Efthimia Aivaloglou, Alaaeddin

Swidan, and David Hoepelman. 2016. Spreadsheets are Code: An Overview

of Software Engineering Approaches Applied to Spreadsheets. In 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), Vol. 5. 56–65. https://doi.org/10.1109/SANER.2016.86

[10] Felienne Hermans, Martin Pinzger, and Arie Van Deursen. 2011. Supporting pro-

fessional spreadsheet users by generating leveled dataflow diagrams. In Proceed-
ings of the 33rd International Conference on Software Engineering. ACM, 451–460.

[11] Dietmar Jannach, Thomas Schmitz, Birgit Hofer, and Franz Wotawa. 2014. Avoid-

ing, finding and fixing spreadsheet errors–a survey of automated approaches for

spreadsheet QA. Journal of Systems and Software 94 (2014), 129–150.
[12] Bas Jansen, Felienne Hermans, and Edwin Tazelaar. 2018. Detecting and Predicting

Evolution in Spreadsheets: A Case Study in an Energy Network Company.
[13] Ciera Jaspan, I Chen, Anoop Sharma, et al. 2007. Understanding the value of

program analysis tools. In Companion to the 22nd ACM SIGPLAN conference on
Object-oriented programming systems and applications companion. ACM, 963–970.

[14] Jetbrains. [n. d.]. IntelliJ IDEA. https://www.jetbrains.com/idea/

[15] Jetbrains. [n. d.]. ReSharper. https://www.jetbrains.com/resharper/

[16] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.

2013. Why don’t software developers use static analysis tools to find bugs?. In

Proceedings of the 2013 International Conference on Software Engineering. IEEE
Press, 672–681.

[17] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker Wulf. 2006. End-user

development: An emerging paradigm. In End user development. Springer, 1–8.
[18] Microsoft. 2018. Call statement. https://docs.microsoft.com/en-us/office/vba/

language/reference/user-interface-help/call-statement

[19] Stack Overflow user ThunderFrame. 2016. Global state-

ment. https://stackoverflow.com/questions/39639488/

make-a-global-variable-in-visual-basic-for-applications

[20] Raymond R Panko. 2000. Two corpuses of spreadsheet errors. In System Sciences,
2000. Proceedings of the 33rd Annual Hawaii International Conference on. IEEE,
8–pp.

[21] Raymond R Panko and Salvatore Aurigemma. 2010. Revising the Panko–

Halverson taxonomy of spreadsheet errors. Decision Support Systems 49, 2 (2010),
235–244.

[22] Raymond R Panko and RP Halverson. 1996. Spreadsheets on trial: A survey

of research on spreadsheet risks. In System Sciences, 1996., Proceedings of the
Twenty-Ninth Hawaii International Conference on,, Vol. 2. IEEE, 326–335.

[23] Sohon Roy, Felienne Hermans, and Arie van Deursen. 2017. Spreadsheet testing

in practice. In Software Analysis, Evolution and Reengineering (SANER), 2017 IEEE
24th International Conference on. IEEE, 338–348.

[24] Caitlin Sadowski, Jeffrey Van Gogh, Ciera Jaspan, Emma Söderberg, and Collin

Winter. 2015. Tricorder: Building a program analysis ecosystem. In Proceedings
of the 37th International Conference on Software Engineering-Volume 1. IEEE Press,

598–608.

[25] Christopher Scaffidi, Mary Shaw, and Brad Myers. 2005. Estimating the numbers

of end users and end user programmers. In Visual Languages and Human-Centric
Computing, 2005 IEEE Symposium on. IEEE, 207–214.

[26] Anselm Strauss and Juliet Corbin. 1998. Basics of qualitative research: Techniques
and procedures for developing grounded theory . Sage Publications, Inc.

[27] Kristín Fjóla Tómasdóttir, Mauricio Aniche, and Arie Van Deursen. 2018. The

Adoption of JavaScript Linters in Practice: A Case Study on ESLint. IEEE Trans-
actions on Software Engineering (2018).

[28] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Andy

Zaidman, and Harald C Gall. 2018. Context is king: The developer perspective

on the usage of static analysis tools. In 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE, 38–49.

[29] Carmine Vassallo, Fiorella Zampetti, Daniele Romano, Moritz Beller, Annibale

Panichella, Massimiliano Di Penta, and Andy Zaidman. 2016. Continuous delivery

practices in a large financial organization. In Software Maintenance and Evolution
(ICSME), 2016 IEEE International Conference on. IEEE, 519–528.

https://doi.org/10.1109/IEEESTD.1990.101064
http://www.eusprig.org/horror-stories.htm
http://www.eusprig.org/horror-stories.htm
https://doi.org/10.1007/BF02766777
https://doi.org/10.1109/SANER.2016.86
https://www.jetbrains.com/idea/
https://www.jetbrains.com/resharper/
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/call-statement
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/call-statement
https://stackoverflow.com/questions/39639488/make-a-global-variable-in-visual-basic-for-applications
https://stackoverflow.com/questions/39639488/make-a-global-variable-in-visual-basic-for-applications

EASE ’19, April 15–17, 2019, Copenhagen, Denmark Sohon Roy, Arie van Deursen, and Felienne Hermans

[30] Stefan Wagner, Florian Deissenboeck, Michael Aichner, Johann Wimmer, and

Markus Schwalb. 2008. An evaluation of two bug pattern tools for java. In 2008
International Conference on Software Testing, Verification, and Validation. IEEE,
248–257.

[31] Fadi Wedyan, Dalal Alrmuny, and James M Bieman. 2009. The effectiveness of

automated static analysis tools for fault detection and refactoring prediction. In

Software Testing Verification and Validation, 2009. ICST’09. International Conference
on. IEEE, 141–150.

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Study Design
	3.1 Objective and Research Questions
	3.2 Method
	3.3 Setup
	3.4 Data Analysis

	4 Results
	4.1 Categories of Perceptions
	4.2 Perceptions of the Inspection Rules
	4.3 Additional Issue Types

	5 Revisiting the Research Questions
	6 Threats to Validity
	6.1 Credibility
	6.2 Transferability
	6.3 Confirmability

	7 Related Work
	8 Concluding Remarks
	References

