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Abstract

Matrix multiplication with the standard algorithm has an algebraic complexity of O(n®) for n x n matrices,
but in 1969 Strassen [26] found another algorithm for multiplying 2 x 2 matrices with which he showed that
matrix multiplication can be done with a complexity of O(n?®!) by applying his algorithm recursively for
large matrices. We present a historical overview of the best known bounds on the matrix multiplication ex-
ponent, with the current best known bound of 2.371866 [10] and methods, used to find new algorithms for
other matrix multiplications, such as alternating least squares (ALS) and SAT solving. After this we present a
novel method with which we found a rank 23 decomposition of the (3,3, 3) matrix multiplication tensor that
may be inequivalent to known decompositions. We also found decompositions for (2,2,2), (2,2,3), (2,2,4),
(2,3,3) and (2,2,5) that provide the same bounds as earlier found decompositions. Our method found many
decompositions for the smaller tensors but only one for the larger due to time limits. The method is based on
the alternating least squares method (ALS) with the modification that we 'push’ the coefficients towards in-
teger (or rational) numbers. After a number of iterations and rounding the result this sometimes yields exact
decompositions so that we can bound the matrix multiplication exponent.
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Introduction

In mathematics one often finds oneself formulating a problem as a set of linear equations or representing data
in an array of values. This can all be represented with matrices and solved by performing operations on these
matrices. This all falls under the study of linear algebra which is fundamental in all sorts of mathematical and
other technical engineering. These problems often deal with matrices of enormous sizes and the processing
of these can take a while. One of these processes is matrix multiplication which is used for other processes as
well such as inversion or solving systems of equations. The standard method for multiplying n x n matrices
requires O(n®) algebraic operations but in 1969 Strassen [26] found another algorithm to multiply two 2 x 2
matrices that uses only 7 multiplications but requires 18 additions which leads to a complexity of O(n?%),
when applied recursively for large matrices, that will be proven in Chapter 2.

First as a reminder the standard way to multiply two 2 x 2 matrices is

[An Alz]_[Bn 312] Cn CIZ]
Az1 Az2| |Bai Bz Car Ca

A11-BiitA2-Bar Aj1-Biz+ Az B
Az1-Bi1+ Ag2-Ba1 Azi-Bia+ Az B

= = (1.1)

which has an algebraic complexity of 8 + 4 = 12 for the 8 multiplications and 4 additions.

But Strassen found that by defining the following M, ..., M7 he could write the elements in C as below.

M = (A11 + Az2) - (B11 + B22)
M, = (A21 + Az) - Bn
M3 = A1+ (B12 — B22)
My = Azz - (B21 — Bn)
Ms = (A11 + A12) - B
Mg = (A21 — A1) - (Bi1 + B12)
M7 = (A12 — A22) - (B21 + B22)

(1.2)

Cy1 =My + My — Ms + My
Ci2 = M3+ Ms
Co1 =M+ M,y
Coo = M) — Mz + M3 + Ms

Note that when the multiplications and additions are simplified these C;; are the same as defined in
equation (1.1) and therefore this is a valid 2 x 2 matrix multiplication algorithm as well.

This algorithm has an algebraic complexity of 7 + 18 = 25 for the 7 multiplications and 18 additions. This
is not better than the 12 of the standard algorithm, but the magic happens when applying this method recur-
sively for block matrices that have sizes of powers of two. In fact it is precisely this recursion and the fact that
we only need 7 multiplications that leads to the complexity O (n'°8?) = 9(n?81).
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To see this consider multiplying two 8 x 8 matrices A- B = C. First divide them in four 2 x 2 block matrices
where the blocks are 4 x 4 in size. Then apply Strassen’s algorithm to these 2 x 2 block matrices. For the
multiplications of the blocks divide these again, now into four 2x2 blocks and apply Strassen’s algorithm again
to those block matrices. This division is demonstrated below for matrix A. For larger matrix multiplications
repeat this all the way down. By doing this it turns out that for large enough matrices, by recursively applying
Strassen’s algorithm, fewer algebraic operations are required than when using the standard algorithm. This
will be proven in the Proposition 2.2.1.

An A | A Au | A A Ayn A |
Az1 Az | Az A2s | Ays Axg Asr  Aog
Az Az Aszz Az Ass  Ase As7  Asg
Ay Ap Az Ay Ags Agg Agr Agg

As1 Asy Asz  Asg Ass  Asg  As7z  Asg
A1 As2z Asz  Asa Ass  Aes  Asz  Ass
A7l A Az An A7s A6 A7z Azg
Ag1 Agz Ags Asg Ags Ags Agr  Asg |

One may start to wonder if maybe there is an even better algorithm that brings the exponent of matrix
multiplication even lower. Before investigating this it is important to formalise and generalise some things
which will be done in Chapter 2.

1.1. Thesis structure

In Chapter 2 we will start with some preliminaries, definitions and theorems where we define exactly what this
exponent is, what a tensor is, how it can relate to matrix multiplication and how its decomposition improves
the bound on the exponent. With this knowledge we will present a historical overview of all the improvements
over time from Strassen’s simple method in 1969 to more convoluted and almost incomprehensible methods
later on to gain marginal improvements. We also present a list of some of the methods used to find decom-
positions for specific tensors to lower the bound on their rank from ALS to SAT solving. Then we present the
methods we attempted to implement in Chapter 4 and construct a novel method we created based on a mod-
ification on ALS where we want the coefficients to be integer or half-integer. With this method we are able
to rediscover known bounds for many small matrix multiplication tensors from (2,2,2) to (3,3,3), (2,2,4),
(2,2,5) and (2, 3,4). We were however not able to improve any of the known bounds on these.



Preliminaries

This chapter is based on the tutorial handout by Le Gall [17] with additions of proofs and examples.

We start by proving that Strassen’s algorithm does indeed improve the algebraic complexity of matrix mul-
tiplication. This means that when one wants to multiply large matrices (say 1024 x 1024) it is faster to use
Strassen’s algorithm than the standard one, assuming no overhead computation. After this we generalise this
method to bilinear algorithms and further to tensor decomposition. This will be the basis for any further
research.

2.1. Algebraic complexity

Definition 2.1.1. The algebraic complexity of an algorithm is the number of algebraic operations it requires,
i.e. the number of additions/subtractions and multiplications/divisions.

Consider again the multiplication of two 2 x 2 matrices A and B resulting in the 2 x 2 matrix C: A-B=C
where
Bii Bz

2.1
Bz1 B2 (&-1)

Ay Az

We can write this as

[An Alz]'

_ [Cn Clz] _ [A11'311+A12'321 A11-Bi2+ A2 B2
Coa1 Cx Ap1-Bi1+Ax-Br1 Azi-Bia+ Az By’

M, = An-Bn
M; = A2+ Bay
M3 = Ay -Br2
My = A1z B2
Ms = Az - Bn
Mg = Azz- Ba)
M7 = A1 - Brz
Mg = A2z By
Ch=M; +M,
Cy1 =M+ M,
Cy1 = M5+ Mg
Ci1 =M+ Mg

The reason for which will become clear in section 2.3.

It is clear that this has 8 multiplications and 4 additions and so an algebraic complexity of 8+4 = 12. In
general to multiply two n x n matrices the standard algorithm has an algebraic complexity of n% + (n — 1)n?
which is of the order O (n?).
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Definition 2.1.2. Let C(n) be the smallest algebraic complexity for multiplying two n x n matrices for some
positive integer n.

Definition 2.1.3. We define w by
o =inf{a : C(n) is O(n%)}.

That is, w is the lowest exponent such that we can multiply some large n x n matrices with O(n®*€) oper-
ations for all € > 0. It is clear that 2 < w < 3 and by the result of Strassen even that w <log, (7) < 2.81.

2.2. Strassen’s algorithm

[Au AIZ] ) [311 312] _ [Cll ClZ] 2.2)
Az1 Ax| |Ba1 B Co1 Co ’

My = (A11 + Az2) - (B11 + B22)

M = (A21 + Ag2) - B1x

M3z = Aq1 - (B12 — B2o)

My = Ay - (Bo1 — B11)

Ms = (A11 + A12) - B2

Mg = (A21 — A11) - (B11 + Bi2) 2.3)

M7 = (A12 — A22) - (B21 + B22)

Cy1 =M+ My—Ms+ M,
Cy2 = M3+ M5
Co1 =M+ M,
Co2 = My — My + M3 + Mg

Proposition 2.2.1. Strassen’s algorithm for multiplying 7 x n matrices has an algebraic complexity of O (11°%:7) =
0] ( n2.81 ).

Proof. First consider the case where n = 2% for some k. Let f(k) be the algebraic complexity for multiplying
two 2% x 2% matrices using Strassen’s algorithm. Because there are 7 multiplications of blocks that have sizes
2k=1 x 2k=1 and 18 additions of these blocks we obtain the recursive formula

F)=7f(k-1)+18 (2’“‘1)2.

We claim that this is solved by
flk)=7-7"-6-4* 2.4)

which we prove by induction. As shown in Chapter 1 we have
f(1)=25=49-24=7-7"—6-4!
satisfying (2.4) as a base case. Now suppose
f(H=7-7-6-4/
for some j = 1. Then
FU+D=7f()+ 18(2j)2
:7(7-7j—6-4j)+18(2j)2 o5
=7.7% a2 (21')2 + 18(2j)2

=7.7/"1 _6.4/%L,
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This proves the claim. Now we note that equation (2.4) is O(7%) and as n = 2*

7k — 7logy(n) _ (210g2(7))10g2(n) = (21082("))105'2(7) = plo&:®

it follows that
f(k) = 075 = 0(n'°8D) = O (n28Y).

Now in the case that n is not a power of 2 the result follows from the fact that we can bound 7n from below and
from above by powers of 2. Denote g(n) the algebraic complexity of multiplying two n x n matrices. As the
number of computations is strictly increasing, because multiplying larger matrices requires more algebraic
operations, we know that for some integer k

gn) < flk+1) = On'°&?)
So g(n) = O(n'°8:7) as well. ]

Note that this can also be used for non-square matrices by zero-padding them to a size 2¥*1 x 25*1 for
some k.

2.3. Bilinear algorithms

Definition 2.3.1. We define bilinear algorithms as those that first create ¢ products of linear combinations of
A and linear combinations of B and then creates the elements of C as linear combinations of those products.
The bilinear complexity is the number of products t.

M, = (linear combination of a;;’s) - (linear combination of b;;’s)

M; = (linear combination of a;;’s) - (linear combination of b;;’s)

And each ¢;; is then a linear combination of these My, ..., M;

It is easily validated that the standard algorithm and Strassen’s are bilinear algorithms with bilinear com-
plexities 8 and 7 respectively.

With this definition we can state a proposition that gives a way to improve the bound on w by finding
bilinear algorithms for multiplying n x n matrices with bilinear complexity t for some »n and ¢. The proof for
the following proposition is similar to that of proposition 2.2.1 as this proposition is a more general statement
of it.

Proposition 2.3.2. Let m be a positive integer. Suppose that there exists a bilinear algorithm that computes
the product of two m x m matrices with bilinear complexity ¢. Then

w <log,, (1)

Proof. We consider the multiplication of two n x n matrices for arbitrary n. First consider the case where
n = mF for some k. Let f(k) be the algebraic complexity for multiplying two m* x m* matrices using this
algorithm. Because there are t multiplications of blocks that have sizes m*~! x m*~! and C additions of
these blocks, where C is bounded above by 3/m*~! that represents the case when all coefficients for the linear
combinations of the elements of the blocks are nonzero, we obtain the recursive formula

fll) = t-f(k—1)+c(mk‘1)2.

We claim that this is solved by

C
t—m?

C
= (14 s )i ) 26)
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which we prove by induction.
By the assumptions we have that

f)=t+C
_t-m*(+0)
B r—m?
B t?—tm? + Ct— Cm?
- r—m?
_.. G Cm?
Ct-m? t-m?
C 1 C 1
=1+ - m
t—mz) t—mz( )
satisfying (2.6) as a base case. Now suppose
C ; C i
={1+ /- m?)’
Fi ( t—mz) t—mz( )

for some j = 1. Then

A2
f(j+1):t~f(j)+C(mf)
=t-f(j)+C(m?)’
c\. cC ; :
— Jj_ 2\J 2\J
(e e G Rl

. t-C 2)J C o0 J .
L .
t-m? t — m? t—m?2
—(1+L)tj+1+—I'C(mz)j+t-C(mz)j_C(mZ)fmz
- t—m? PR

C : C i+1
=1+ t]+1—— 2\J
( t—mz) t—m? (m°)

This proves the claim. Now we note that equation 2.6 is O(t) and as n = m*

1 1 3
ik = flogu(m _ (mlogm(ﬂ) 08, (1) _ (mlOgm(”)) 08y, (1) — 108, (D)

it follows that
f(k) - O(tk) — O(nlogm(t)).

Now in the case that n is not a power of m the result follows from the fact that we can bound » from below and
from above by powers of m. Denote g(n) the algebraic complexity of multiplying two n x n matrices. As the
number of computations is strictly increasing, because multiplying larger matrices requires more algebraic
operations, we know that for some integer k

gn) < flk+1) = O(n'°8n®)

So g(n) = O(n'°8n ) as well. O

This can even be generalised to finding bilinear algorithms for non-square matrix multiplications, but
first we will generalise the problem even further before stating one of the fundamental theorems for improv-
ing the bound on w that also holds for non-square matrix multiplication.
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Figure 2.1: Matrix multiplication tensor <2,2,2>

2.4. Tensors

Definition 2.4.1. Given three finite-dimensional vector spaces U, V and W over the field F. Take bases
{x1,..., xaimw b 1. Yaimwvy} and {z1,..., zaimw)} of U,V and W respectively. A tensor over (U,V,W) is
an element of U® V ® W, or a formal sum

dim(U) dim(V) dim(W)
T= Z AuywXu ® Yy ® 2w
u=1 v=1 w=1

with coefficients d,;,,, € F for each (u, v, w) € {1,...,dim(U)} x {1,...,dim(V)} x {1,...,dim(W)}.

Definition 2.4.2. We define the following tensor as (m, n, p) and call it the matrix multiplication tensor.

m p n
(m,n,py=3 > Y ay®bgj®cij
i=1j=1k=1

where a;r, by j and c;; are base vectors of vector spaces with dimensions mn, np and mp respectively.

We call this the matrix multiplication tensor because T; i € {0, 1} indicates whether A; - By; contributes
to Cjj.

Definition 2.4.3. Arank 1 tensor is one that can be written as the tensor product of elements of U,V and W.
That is, there exists (a, b, ¢) € (U, V, W) such that

T=a®bw®c.

Definition 2.4.4. Let T be a tensor over (U, V,W). The tensor rank of T, denoted R(T), is defined as the
minimal integer ¢ such that T can be written as

dim(U) dim(V) dim(W)
Z AysXy | ® Z Busyv|® Z YwsZw
v=1 w=1

u=1

r=y

s=1




8 2. Preliminaries

Figure 2.2: Standard matrix multiplication tensor decomposition

for some constants a s, Bys,Yws € F and where x,,, y,, z,, are base vectors for U, V, W. Note this is the sum of
t rank 1 tensors.

A tensor can also be written in terms of coefficient matrices. When considering a decomposition of an
nx mx p tensor T over (U, V, W) with rank ¢, one can define the coefficient matrices A, B and C of sizes
nmx t, mp x t and np x t respectively with columns a(s), b(s) and c(s) in U, V and W respectively, such that

t
T=) a(s)®b(s)®c(s).
s=1

The tensor representing the 2 x 2 matrix multiplication is given in Figure 2.1. In Figures 2.2 and 2.3 the
tensor decompositions from the standard algorithm and that of Strassen are shown. Note how the sum of
these rank 1 tensors add up to the < 2,2,2 > tensor.

Note now that from a tensor rank decomposition one can make a bilinear algorithm with bilinear com-
plexity precisely ¢. which means that in order to find a better bound on omega or find a faster multiplication
algorithm one can find a lower rank tensor decomposition.

The coefficient matrices for Strassen’s algorithm are as follows

1 01 01 -1 O 11 0 -1 01 O 1 0 01 -1 01

A= 0 0001 O 1 B= 0 0 1 0 0 1 0 C= 0O 0 1 0 1 0 O
1010 00 0 -1 10 0 0 1 0 0 1 10 1 01 0 0O
1101 0 0 -1 1 0 -1 0 1 0 1 1 -1 10 0 1 0

Note how the tensor products of corresponding columns correspond to a rank 1 tensor in the decompo-
sition in figure 2.3.

Theorem 2.4.5. Let m, n, p, t be positive integers. If R({(m, n, p)) < t, then
(mnp)°B <t

This theorem presented by Le Gall [17] is a generalisation of proposition 2.3.2 and shows that a decom-
position for any matrix multiplication tensor (even non-square) with a lower rank may improve the upper
bound on w as

w< 3logmnp(t).

Using this theorem Strassen’s result follows as well with m=n=p=2and t =7.
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Historical overview

In this chapter we present an overview of some of the methods/ techniques used to improve the bound on
o as well as techniques used to improve the bounds of some small tensors. As the focus of this paper is on
bounding the ranks of small tensors we will not go into much detail with the presented results. We refer to
the respective papers for further explanation on these complex and convoluted methods.

3.1. w bound improvements
As stated in chapter 2 it all started in 1969 with Volker Strassen [26] when he showed that

w <log,(7) =2.81.

10 years later Pan [20] constructed a new technique of trilinear operations of aggregating, uniting and can-
celling with which he found a new bound on w of

w <log,;(143640) < 2.795.

Avyear later in 1979 Bini et al. [2] found an approximate 2 x 2 matrix multiplication where one of the elements
is 0 with 5 multiplications. They then used this in some clever way to construct a proper 12 x 12 matrix
multiplication algorithm with 1000 multiplications and thus showed that

w < log,,(1000) < 2.780.

Then in the same year using Schénhage’s asumptotic sum inequality [23], Pan [21] came back and showed
that

w < 3108,34(196) < 2.61.

Schénhage [23] used his theorem to show
w = 3log;,,(52) =2.522.
Using the same construction as Schonhage but further optimised, Romani [22] found a slightly better bound
w=<252.

After this, in 1982, Coppersmith and Winograd [5] showed that there always exists a better algorithm for
matrix multiplication that has a better asymptotic complexity. This means that w is a limit point and im-
provements on the bound must always be possible. They then presented a new construction that creates new
algorithms from old ones and showed

w < 2.496.

However, they stated that it seemed that this iterating process improves only marginally and therefore cannot
be used indefinitely.

11



12 3. Historical overview

After this Strassen [25] came back in the picture and constructed a trilinear form which is not a matrix multi-
plication at all. however, as there are matrix multiplications in this form, by taking tensor powers and operat-
ing on the result he creates several disjoint matrix products and use a theorem by Schonhage to show

w =< 2.4785.
This method will be called the laser method. Coppersmith and Winograd [6] built on this idea and find that
w =< 2.376.

In 2011 Stothers [8] further builds on the results by the aforementioned authors and gives the next lower
upper bound on w
w < 2.37369.

The next to improve the bound is Williams [27] who developed an automated approach to design matrix
multiplication algorithms based on constructions similar to Coppersmith and Winograd.

w <2.37294.

In 2014 Le Gall [18] used a method based on convex optimisation and applied it to powers of the Winograd-
Coppersmith construction to obtain the bound

w =< 2.3729.
In 2021 Alman and Williams [1] refined Strassen’s laser method to obtain a small improvement of
w =< 2.37286.

This method however has some limitations as they showed that when applied to the Coppersmith-Winograd
construction this cannot ever give a better bound than w < 3725.

Then this limit was obliterated by Duan et al. who used asymmetric hashing to prove
w =< 2.371866.

In figure 3.1 we plotted a graph of all these improvements over time. It can be seen that the latest im-
provements are all very marginal, indicating how difficult it is to make any real improvements to lowering the
upper bound om w.
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Figure 3.1: Upper bound on w through the years

3.2. Bounding small tensors’ rank

In this section we present an overview of some of the known bounds and results on small matrix multiplica-
tion tensors, where by small we mean matrix multiplication tensors like (2,2,2) and (3,3, 3).

After Strassen found his rank 7 decomposition for (2,2,2), it was Hopcraft [13] who showed that this is
minimal, meaning that rank((2,2,2)) = 7. They also showed that for any integer n the tensor (2,2, n) has min-
imal rank is [ 2] as well as that the rank of (2,3,3) is 15.

For (3, 3,3) the exact rank is still unknown. It was shown in 2003 by Bléser [3] that
19 < rank((3,3,3)).
In 1976 Laderman [16] already showed that
rank({3,3,3)) <23
after finding an explicit decomposition by merging solutions of smaller systems of equations.

After this Johnson and McLoughlin [14] found two whole families of algorithms that are pairwise inequiv-
alent to each other and Laderman’s. They did this using the alternating least squares method (ALS). To find
exact coefficients they used transformations of the coefficients to fix some of the coefficients and continue
until all are rational and thus an exact solution is obtained.

In 2011 Courtois et al [7] converted the problem to a SAT problem and found a new unique algorithm
within a day on a single CPU.

Then in 2013 Oh et al [19] devised a rounding method to enhance the rationality of solutions. The basis
for this method is the ALS method as well. After some iterations they round some coeficients to rationals and
continue from there. They also proposed a naming convention to easily distinguish solutions by looking at
the distribution of rank 1, 2 or 3 matrices in the coefficients. They found up to 31 algorithms and showed
inequivalence.

This converting to a SAT problem proved promising as in 2021 Heule et al [12] found 17,000 new algo-
rithms with coefficients in {—1, 0, 1} which means that these solutions work over any field.
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Another approach by Kauers [15] was to use flip graphs with which he also found a new solution of rank 23
for (3,3,3). They also improved the bound on (5,5, 5) from 98 found by[24] to 97.

The most recent innovation was made by Fawzi et al [11] when they converted the problem to a single-
player game, TensorGame, and used machine learning to teach an Al to play this game. With this approach
they were able to rediscover many algorithms and bounds and even lower the bound on (3,4, 5).



Methods

In this chapter we will explore the different methods we have tried to use to find new decompositions. As
most methods presented in section 3.2 and our methods are based on ALS we will describe this algorithm
in detalil first. After that we consider the problem as an ILP problem and as a combination of these (AILP).
Then we present our method with which we were able to rediscover many of the known best bounds for small
tensors.

4.1. Alternating least squares

4.1.1. Algorithm description
The problem one attempts to solve is the following objective function: For a given tensor T one tries to find
coefficient matrices A, B and C with columns a(s), b(s) and c(s) to minimise the error

t
Y(A,B,0) =T~ a(s)®b(s)®c(s)[3.

s=1

Before stating the ALS method we first need some definitions.

Definition 4.1.1. The unfolded tensor Tx.; of an I x J x K tensor is given by
T:a

TKIX] =
Tk

Which is a stack of the kI x J slices of T. Similarly for T;;«x and Trx«7.

Definition 4.1.2. Let two matrices A and H be given be of sizes I x J and K x L respectively. Then the
Kronecker product is defined as the IK x JL matrix:

anH algH
Ao H=|aa1H axp H

Definition 4.1.3. Let two matrices A and B be given be of sizes I x J and K x J respectively. Then the
Khatri-Rao product is defined as the IK x J matrix:

A®B=(6ﬁ®b1 a; ® by )

Which is also referred to as the column-wise Kronecker product.

15
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With these we can see how the ALS method works.
First we need to redefine the objective function. We do this with respect to A, B and C. These are all
equivalent.
Y(A,B,C) = ITjkx1 — (Bo QA

=||Txrx;— (Co ABT|3 4.1)
=||Tyxx — (Ao B)CT|I3

We define the functions that find the coefficients that minimize this objective by

AT =(Bo ) Tjkx1 = fa(B,C)
BT =(Co A Txixy = f5(C, A) 4.2)
CT = (A0 B T1jk = fc(A B).

A description of the pseudocode for ALS is given below in Algorithm 1.

Algorithm 1 Alternating least squares

1: while True do

2 Initialise A, B,C
3 while True do
4 A«— fA(B,C)
5: B — f3(C, A)
6: C — fc(AB)
7: if Conergence then
8 Break
9: end if
10: end while
11:  if Close enough then
12: return A, B,C
13: end if

14: end while

Now what ALS does is iteratively fix B and C and solves the least squares problem 4.1 for A using f4 and
then similarly for B and then C. By doing so, hoping to converge to a good approximation for the tensor T.

More details for this method can be found in [4]
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4.2. Integer linear programming

4.2.1. Method description

First we will state the non-linear minimisation problem before incorporating techniques to linearise the
problem.

N2 ¢
Minimize ) |Tijk— ) AirBjrCrr
i,j,k=1 s=1

subject to

Air,Bjr,Cir €{-1,0,1}.

That is, we want to find coefficient matrices A, B, C such that the tensor created from these is as close to a
given tensor as possible. When this objective is exactly 0 we have found a decomposition of T with rank z.

To linearise this problem we introduce a few auxiliary variables and use linear constraints to model the
non-linear problem.

We define new variables and write

Aiy=A} (242 1)

i

Al

ir’

2
A% €{-0,1}
and similar for B and C. With this we can rewrite the product A;; B, Cy;, introduce new variables and write

AirBj;Cir = A, (247, = 1B}, (2B5, - 1)C;, (2C;, 1)
= (al,B},ct,) (@43, -DEB?, - DEcE, - 1)
= Xijkr2Yijrr—1)

= Lijkr-

This results in the following ILP

n2
Minimize Ejj
i,j,k=1
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subject to
t
Ejjr= (Z Zijlcr) = Tijk
s=1

Eijx = Tijk—(ZtiZijkr)
fo=

Zijkr < = Xijkr +2Yijkr
Zijikr < Xijkr
Zijkr = Xijkr +2Yjjir —2
Zijkr Z = Xijkr
Yijir < A7, + B3, +Ci,
Yijkr < — A7, =B, +C{ +2
Yijkr < A7, - B3, —Cj, +2
Yijkr s—A§,+B]2.r—Ci,+2
Ve = A~ B~ 2,
Yijkr z—A§,+B]2.,—Ci,
Yijkr = — A%, —BJZ.,+C§,
Yijkr 2A§,+Bfr+c,§r—2
Xijer < Aj,
Xijkr sB},
Xijkr < Cy,
Xijkr 2 Aj, +Bj, +Cp, =2

Al efo,1}

A2 e{0,1}

Bj, €1{0,1}

Bj, €{0,1}

Cy, €10,1}

Ci, €01
Xijkr €10,1}
Yijkr €40,1}
Zijkr €1-1,0,1}
Eijkre{-t—-1,0,t+1}

Where all inequalities are constructed such that all variables behave exactly as defined above.

4.2.2. Results

This problem was implemented in python and solved with the Gurobi solver.

This program could solve the (2,2,2) tensor decomposition with rank 7 within approximately 10 min-
utes. This is equivalent to Strassen’s algorithm as this was proven to be essentially unique by de Groote [9].
Searching for larger tensors took over 8 hours after which the program was stopped.

While this method does find exact solutions, it does so with exponentially increasing time with respect
to the size of the tensor. Further optimisations for the number of variables and constraints, using a better
solver or a faster computer could improve the capabilities of this approach. However, even with these im-
provements it is unlikely that significant progress can be made using this approach.
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After this two other similar methods were attempted to combine ALS with ILP by means of an alternating
ILP (AILP) and a quadratic AILP (QAILP). With AILP it works the same as ALS but instead of finding the least
squares solution for the A system we solve an ILP where B and C have been kept fixed similar to ALS. Then the
solution to this updates A and repeats for B and C alternating until convergence. This method did not have
good convergence likely due to the fact that coefficients where jumping around too much as the problem is
not continuous and thus we tried QAILP. This method linearised the problem for A and B and kept C constant
and alternated with this. This gave more control to the optimisation and had better convergence, but took
too long on larger tensors. Therefore we concluded that these methods did not seem very promising and we
will not go in further detail with these.
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4.3. Integer alternating least squares
4.3.1. Method description

This method has certain characteristics of the ALS method and gradient descent and produces integer solu-
tions. It is similar to the procedures of Oh et al [19] and Johnson and McLoughlin[14] but is aimed to be a
smoother approach than simply rounding and fixing values in order to find integer solutions near real ones.

The algorithm starts by initialising the coefficient matrices randomly. After that it fixes B and C and finds
the A that brings the produced tensor closest to the desired tensor. It then takes a small step from A to this
new A. Before updating A it pushes the values slightly towards integers and clamps the coefficients to the
range [—1,1]. Then it repeats the same procedure for B and C and repeats until a stopping criterion is met.
The pseudocode is shown in algorithm 2.

Algorithm 2 Integer alternating least squares (IALS)

1: while True do

2 Initialise A, B,C

3 while True do

4 U= g(step count)

5: Anew — Least squares(B, C)
6: A—=1Q-w-A+p- f(Anew)
7: Bphew — Least squares (C, A)
8 B—(1—-p)-B+p- f(Bnew)
9: Chew — Least squares (A, B)
10: C—A-w-A+pu- f(Chew)

11 if Stop criterion then
12: Break
13: end if

14: end while

15: if Found then

16: return A, B,C
17: end if

18: end while

4.3.2. Implementation
By experimentation we found the following parameters to give the fastest and best results.

We say we found a solution if after rounding A, B, C to the nearest half we find that these perfectly decom-
pose the desired tensor. Note that we don’t round to integers because with the function f that we chose, there
is an equilibrium at £0.5 and sometimes coefficients converge here.

The stop criterion is met when the following is true
AA,AB,AC < threshold
and
i < max steps
where with the L, norm we define
[An—Ap-alls
1An-1l |§
1By = Bn-1ll3
~ IBuil
NICn = Cual3

2
ICnr 2
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() =x* (=40 -p)x* +51 - p)x* +7y).
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Figure 4.1: Function to push values towards integers displayed for y = 0.8.
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Figure 4.2: Step size over iterations gy 0g,0.7

and i is the number of steps from initialisation.
To push values towards integers we used the following function that is applied elementwise on the new
coefficient matrices after clipping them to the range [-1, 1].

[0 =x# (41 -Px* +5(1 - p)x® +7).
This effect can be seen when compared to the graph of y = x in figure 4.1.

For the step-size u we found that increasing it over time yields better results than keeping it fixed. For this
we choose the function ,
ga,ﬁ(i) =1- ﬁe—m

which is evaluated at the i’th step. The graph is plotted in 4.2






With the functions defined above we ran the program with the following parameters

foo(x)
£0.08,0.7(1)

threshold = 0.0035

max steps = 100

Results

These parameters were found experimentally by looking for 100 rank 7 decompositions, starting from dif-
ferent seeds, of the (2,2,2) tensor and seeing if increasing or decreasing a value changes the average runtime.
These values seemed to be at least a local minimum.

With this we were able to find decompositions for all the tensors (2,2,2), (2,2,3), (2,2,4), (2,3,3), (2,2,5),
(3,3,3) within a time frame ranging from tenths of seconds to 2 hours. In tables 5.2, 5.3, 5.4, 5.5, 5.7 we present
some of our findings. In table 5.1 we present an overview of some of the best bounds discovered. With this
method we did not find any better bounds for these tensors or any bound for larger tensors.

The coefficients are arranged in matrix forms. Specifically for the (3,3,3) tensor the coefficients are ar-
ranged in 3 x 3 grids so that we can find the rank of these matrices. Our algorithm has 52 rank 1, 17 rank 2 and
0 rank 3 matrices. With this classification we can compare our algorithm with others based on the observa-
tion by [19] that different classifications are unique decompositions. They have also found an algorithm with
the same distribution as ours. This does not mean they are equivalent, however we will not investigate this.

Table 5.1: Best known bounds

Tensor | Best known bound Method Our bound
2,2,2) 7 Strassen [26] 7
2,2,3) 11 (2,2,2) +(2,2,1) 11
2,2,4) 14 (2,2,2) +42,2,2) 14
(2,3,3) 15 Hopcraft and Kerr [13] 15
2,2,5) 18 €2,2,3)+(2,2,2) 18
(2,3,4) 20 Hopcraft and Kerr [13] 20
{3,3,3) 23 Laderman [16] 23

23
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Table 5.2: Rank 11 decomposition of (2,2,3 ).

Cs

By

As

Cs

B;

As

-1
0

0 0
0 0

-1
-1

0 0 -1
0 0

-1
-1

0

0

0

0

0 0 -1

0

0 0

0

Table 5.3: Rank 14 decomposition of (2,2,4 ).

Cs
0 00 O
-1 11

B;

Cs As

B;

As

-1
-1

-1
-1

-1 0
-1 0

10
10

0
0

-1

00 0 O

0011

0
0

000 O

-1 0

10

0011

-1 -1 001 -1

00

0001

0 00O
0011

-1 0 -1 -1
-1

0
1

0000

-1

-1 -1

1

0 0 0-1

011 -1

0
0

0 00O -1 11 -1

-1 0 00

1
0

010 O

01 -1

1

0

0 00 O

1

000 O 00 -1
001

1
0

00 0 O

-1

0

12

-1
-1

011

011

0
0

-1

-1 0

0

-1 100
-1 100

1
0

0001

1011

0
-1

0001

0 00O

0000

1111

0
0

0100

0011

-1
14

011

0 00O

1100 000 O

-1
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Table 5.4: Rank 15 decomposition of (2,3, 3).

As

As

S o~

o o O

o o O

o o~

o O O

o O O



5. Results

26

Table 5.5: Rank 18 decomposition of (2,2, 5).

Cs
0 -1111
0 0 000

Bs
10100
10100

As

Cs
0-1111
0 0 000

Bs
10100
10100

As

10
00

10

10
00

-10000
-10100

-1000 O

-1

1
0

-1 0000
-10100

-1000 O

-1

1

0 010 -1

1

0 010 -1

0

0
10-1-10

0

-10000
0 00O0O

-1
1

0 1
12

0

0

0
10-1-10

0

-10000
0 000O0

-1
1

-1

1 -1-10-1
1 -1 -10 -1

00000
01000

0 0
13 0 -1

1 -1-10 -1
1 -1-10-1

00000O0
01000

0 0
0 -1

4

0000 -1
0000 O

00-101
00-101

-10
0 0

14

0000 -1
0000 O

00 -101
00 -101

0
0

-1
0

00 -10 -1
00 -10 -1

0000 O
0100 -1

00
01

15

00 -10 -1
00 -10 -1

0000 O
0100 -1

00
01

0-1010
00 00O

-10-110
-10-110

10
00

16

0-1010
0 0 00O

-10-110
-10-110

10
00

0 00

0
0-1-11-1

0

1-110 -1
0 0 00 O

00
10

17

0 0O

0
0-1-11-1

1-110-1 0

0 0 00O

00
10

-11101
0 0000O

-10000
-10000

1
-1

0
0

18

-11101
0 0000O

-10000
-10000

-1
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Table 5.6: Rank 20 decomposition of (2,3,4).

Cs

B;

Cs

B;

0 00O
-1111

1
1

000
01
000 -1

1

o o
[=a
o o

11

0 000
-1111

000 1
0
000 -1

000 O

000 O

0001

0001

000 O

000 O

0000

0000

010 -1

010 -1

0 00O
-1001

0 0 0 O
-10-10
00 0O

oS O
(=

13

0 00O
-1001

00 0 O
-10-10
00 0O

-10-10

-10-10
0 0 0 O
1 0

0010

0010

0 00 O
1 010

0010

0010

0

1

0-101

0-101

0-100
0-100

0-100
0-100

15 0 00O

0 00O

01 0 -1

01 0 -1

0 00O
-1000

100 -1
000 O

000 O

0 000

0 00O

-1 -1
-1 -1

1
1

0
-1

1 -1 -1

0

0010

0010

17

0000

0000

-1 0

0 1 0 -1
11 -1 -1 0 0160
-1 0 1

-10

1

0-100

0

-1 0 O

0 010
18

0
-1 -1

0-100

0-101

0-101

0110

0110
0000

1 -101
01 0 -1

1 -101

0000

01 0 -1

-1010
-1010

-1000
0 000
1 000

-1010
-1010

-1000
0 000
1 000
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Table 5.7: A [52,17,0]-algorithm for (3,3, 3)

Cs

B;

As

Cs

By

As

0

0

0
0

14

0 0

-1

0

0

0

0
0

0
0

0
0

16

-1 0 0 -1
-1 0 0 -1

17

-1

-1

0

0

0

0

0

0
0

0

0

0 0

-1

20

0
0

0

-1

-1

10

0

-1

0 0

11

12

0



Conclusion

As we have seen in chapter 3 researchers were able to find thousands of algorithms using SAT solvers. Others
found a handful of algorithms by rounding extensions of ALS. We tried to devise a new method that extended
ALS by pushing values slowly towards integers or rational numbers. Our method found decompositions for
small tensors from (2,2,2) to (3,3,3), (2,2,5) and (2,3,4) that give the same bounds as earlier found results.
We were not able to find any new bounds.

Although our method did not result in a new decompositions, it was able to find one for (3,3, 3), this may
be equivalent to another decomposition found by [19].

We found that the speed of finding results relies heavily on the parameters for the functions f and g and
the functions themselves. The values used here were found by trial and error. The functions themselves as
well. As the speed seemed heavily dependent on these, further research could be done to find better func-
tions that make convergence faster and push towards integers faster. This might yield faster, better and more
results. However we suspect this may still not be better to outperform the SAT solving methods. Again due to
the complexity we chose not to go in much detail with these SAT solving methods, however these seem to be
very promising.

Another method we think might be interesting is another rounding scheme. This start from a real solution
and tries to round the solution in such a way that it may find an integer or rational solution. This would start
by rounding the coefficient that is the closest to an integer. This in turn messes up the solution and so to find
the next coefficient to round it looks for the coefficient that is closest to an integer but also restores a bit of the
error made by the first rounding. Something like this continues until all coefficients are rounded and then
this may result in a valid solution. Because of the complicated nature of this algorithm we did not attempt
this as we wanted to find a simple algorithm.

For the (3,3, 3) tensor it is our suspicion that there may not exist a rank 22 decomposition. Therefore we

would recommend research to focus more on finding a tighter lower bound to prove that it indeed might not
exist.

29






import numpy as np
from scipy import linalg
import sys

import Tensors

def f_A(B, C, T):
B_khatri_rao_C = linalg.khatri_rao(B, C)
T_JKxI = np.vstack([T[:, j, :].transpose() for j in range(T.shape[1])])
B_khatri_rao_C_pseudo_inverse = np.linalg.pinv(B_khatri_rao_C)
res = np.matmul (B_khatri_rao_C_pseudo_inverse, T_JKxI).transpose()
return res

def f_B(C, A, T):
C_khatri_rao_A = linalg.khatri_rao(C, A)
T_KIxJ = np.vstack([T[:, :, k] for k in range(T.shape[2]1)])
C_khatri_rao_A_pseudo_inverse = np.linalg.pinv(C_khatri_rao_A)
res = np.matmul (C_khatri_rao_A_pseudo_inverse, T_KIxJ).transpose()
return res

def £_C(A, B, T):
A_khatri_rao_B = linalg.khatri_rao(A, B)
T_IJxK = np.vstack([T[i, :, :] for i in range(T.shape[0]1)])
A_khatri_rao_B_pseudo_inverse = np.linalg.pinv(A_khatri_rao_B)

res = np.matmul (A_khatri_rao_B_pseudo_inverse, T_IJxK).transpose()

return res

def ALS(tensor, A, B, C, update_rule, step, max_iterations, stop_criterion):

As = []
Bs = []
Cs = [1

for i in range(max_iterations):
mu = step(i)

new_A = f_A(B, C, tensor)
A = update_rule(A, new_A, mu)

new_B = f_B(C, A, tensor)
B = update_rule(B, new_B, mu)

31
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32 A.TALS.py

new_C = f_C(A, B, temsor)
C = update_rule(C, new_C, mu)

As .append (A)
Bs.append(B)
Cs.append(C)

if stop_criterion(As, Bs, Cs):
break

return As, Bs, Cs
def find_decomp(T, initialise, update_rule, step, max_iterations, stop_criterion, found_criterion):

best = np.Infinity
best_int = np.Infinity

all_As = []
all_Bs = []
all_Cs = []
i=0

while True:
A, B, C = initialise()

As, Bs, Cs = ALS(T, A, B, C, update_rule, step, max_iterations, stop_criterion)
A, B, C = As[-1], Bs[-1], Cs[-1]
tensor_round = Tensors.tensor(A, B, C)

diff = tensor_round - T
norm = np.linalg.norm(diff)

A_round = np.round(A * 2) / 2
B_round = np.round(B * 2) / 2
C_round = np.round(C * 2) / 2

tensor_round = Tensors.tensor(A_round, B_round, C_round)

diff = tensor_round - T
norm_round = np.sum(np.abs(diff))

if norm < best:
best = norm

if norm_round < best_int:
best_int = norm_round

all_As.append(As)

all_Bs.append (Bs)

all_Cs.append(Cs)

if found_criterion(As, Bs, Cs):
sys.stdout.write(f"\rIteration {i}, best {best}, best {best_intl}")
return all_As, all_Bs, all_Cs

sys.stdout.write(f"\rIteration {i}, best {best}, best {best_intl}")

i+=1
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