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ADAPTIVE GDSW COARSE SPACES OF REDUCED DIMENSION
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OLIVER RHEINBACH\P , AND OLOF B. WIDLUND\| 

Abstract. A new reduced-dimension adaptive generalized Dryja--Smith--Widlund (GDSW) over-
lapping Schwarz method for linear second-order elliptic problems in three dimensions is introduced.
It is robust with respect to large contrasts of the coefficients of the partial differential equations. The
condition number bound of the new method is shown to be independent of the coefficient contrast and
only dependent on a user-prescribed tolerance. The interface of the nonoverlapping domain decom-
position is partitioned into nonoverlapping patches. The new coarse space is obtained by selecting
a few eigenvectors of certain local eigenproblems which are defined on these patches. These eigen-
modes are energy-minimally extended to the interior of the nonoverlapping subdomains and added
to the coarse space. By using a new interface decomposition, the reduced-dimension adaptive GDSW
overlapping Schwarz method usually has a smaller coarse space than existing GDSW and adaptive
GDSW domain decomposition methods. A robust condition number estimate is proven for the new
reduced-dimension adaptive GDSW method which is also valid for existing adaptive GDSW meth-
ods. Numerical results for the equations of isotropic linear elasticity in three dimensions confirming
the theoretical findings are presented.
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1. Introduction. Successful domain decomposition preconditioners for solving
elliptic problems in general require at least one global, coarse-level component in
order to perform satisfactorily if the number of subdomains into which the given
domain has been decomposed is relatively large. The design and analysis of these
coarse components is central in most studies in this field given that they require
global communication if the algorithms are implemented on distributed or parallel
computing systems. In order to avoid creating a bottleneck, it is very important to
keep the dimension of the related coarse space small.

In recent years, substantial progress has been possible by the development of algo-
rithms which adaptively design the coarse space at a cost of solving local generalized
eigenvalue problems. In this paper, we will focus on a particular family of domain
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decomposition algorithms, the two-level overlapping Schwarz methods, which use one
coarse-level component in addition to local components each of which is defined on a
subdomain which is part of an overlapping decomposition. We note that the use of
adaptively designed coarse spaces has been very successful even with problems with
very irregular coefficients; this is clearly demonstrated by examples in section 14 of
this paper.

The robustness of many coarse spaces for arbitrary coefficient functions is obtained
by using local generalized eigenvalue problems to adaptively enrich the coarse spaces
with suitable basis functions; see, e.g., [15, 45, 10, 47, 16, 22, 14]. These approaches
differ, e.g., in the sizes of the eigenvalue problems, the coarse space dimensions, the
class of problems considered, and their parallel efficiency. We also mention success
with adaptive coarse spaces for nonoverlapping domain decomposition methods; see,
e.g., [2, 39, 40, 48, 42, 33, 35, 43, 32, 34, 41].

Two-level overlapping Schwarz algorithms were first developed with coarse spa-
ces based on a coarse triangulation of the domain and with subdomains obtained
by adding one or a few layers of fine elements to each coarse mesh element; see [49,
Chapter 3]. In contrast, the iterative substructuring algorithms, developed for decom-
positions of the domain into nonoverlapping subdomains, were immediately available
for quite irregular subdomains such as those obtained by a mesh partitioner such as
METIS [31]; see [49, Chapters 4--6]. The iterative substructuring algorithms have
been very successful, but they cannot be used unless submatrices associated with the
subdomains are available instead of just a fully assembled stiffness matrix. This was
a main reason why a new family of overlapping Schwarz algorithms was developed,
known as the generalized Dryja--Smith--Widlund (GDSW) methods, which borrow
their coarse components from [49, Algorithm 5.16]. These ideas were first developed
in [5, 6]. The elements of these coarse spaces are defined by their values on the inter-
face between the subdomains with values in the interiors defined by energy-minimizing
extensions. These algorithms were further developed for almost incompressible elas-
ticity in two papers [7, 8]; in the second paper, the dimension of the coarse spaces was
considerably decreased; see also [25, 18, 26, 27, 19, 24, 28] for further developments.

In this paper, we present an approach of constructing adaptive coarse spaces
for the two-level overlapping Schwarz method [46, 49] based on the adaptive GDSW
(AGDSW) coarse space of [23]. In particular, our focus is on one new coarse space---
the reduced-dimension adaptive GDSW (RAGDSW) coarse space---and the reduc-
tion of the coarse space dimension. We remark that, in contrast to GDSW, adaptive
GDSW-type coarse spaces do require subdomain matrices resulting from subdomain
problems with Neumann boundary conditions. A proof of a condition number es-
timate, which is independent of heterogeneities of the coefficient functions, is given
in sections 10 and 11. We note that this proof is based on a more general decom-
position of the interface than the one in [23]; this proof works for both the original
AGDSW and the new RAGDSW coarse space. Supporting numerical results are
presented in section 14.

In our adaptive algorithms, a user-prescribed tolerance directly controls the con-
dition number of the preconditioned operator, and if this tolerance is chosen as zero,
adaptive GDSW is identical to GDSW and reduced-dimension adaptive GDSW iden-
tical to reduced-dimension GDSW, the latter being a variant of GDSW defined on a
specific interface partition of the domain decomposition; cf. section 8.

We note that our reduced-dimension GDSW coarse space differs from the reduced-
dimension GDSW coarse spaces in [9]. However, they share the same core idea:
GDSW and AGDSW use basis functions associated with coarse nodes, edges, and
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faces, while the coarse spaces in [9], reduced-dimension GDSW, and reduced-dimension
adaptive GDSW use basis functions associated only with subdomain vertices. Gen-
erally, this leads to a reduction in the coarse space dimension. See also [8, 4, 29, 20]
for reduced-dimension GDSW coarse spaces.

We note that many other approaches to constructing coarse spaces exist. Some
borrow the idea from the multiscale finite element method (MsFEM) [30, 13] and use
basis functions of that type in or for the construction of the coarse space; cf. [1, 17,
12, 3, 16, 22, 14]. However, the coarse spaces in this paper are not based on MsFEM
functions.

The outline of the paper is as follows. In section 2, we introduce our model prob-
lem followed by the definition of the two-level additive overlapping Schwarz methods
in section 3. In the following five sections, we introduce four families of GDSW al-
gorithms. In section 9, we give a quite general description of adaptive GDSW coarse
spaces which covers both adaptive GDSW and reduced-dimension adaptive GDSW;
see also section 12 for a variant which is computationally cheaper, easier to implement,
and more efficient in a parallel implementation. In sections 10 and 11, we derive a
condition number estimate for our new reduced-dimension adaptive GDSW precondi-
tioner. In section 13, we address questions that may arise about the implementation
due to encountering singular matrices for certain extension operators described in sec-
tion 9. Finally, in section 14, we present numerical results for a selection of coefficient
functions.

For the reader's convenience, an overview of some definitions is given in Table 1.

Table 1
Reference table for some definitions used in this paper (in order of their appearance).

Description of coarse spaces (sections 4 -- 8)

xh finite element node section 4

\scrP nonoverlapping partition of the interface section 4

\Omega \xi union of the closure of the subdomains adjacent to a \xi \in \scrP section 5

\{ \xi i\} 
n\xi 

i=1 partitioning of a \xi \in \scrP into nodal equivalence classes

structured mesh, structured domain decomposition eq. (7.1)

unstructured mesh, unstructured domain decomposition section 8

n(xh) index set of subdomains which contain xh eq. (8.1)

Theory (sections 9 -- 11)

n\xi index set of subdomains adjacent to a \xi \in \scrP eq. (9.1)

z\xi G(\cdot ) extension by zero from \xi to G eq. (9.2)

Xh(\xi ) finite element space associated with a set of nodes \xi section 9

\scrH \xi \Omega \xi 
(\cdot ) energy-minimizing extension from \xi to \Omega \xi eq. (9.3)

c\xi (u, v) c\xi (u, v) :=
\sum n\xi 

i=1 c\xi i (u, v) eq. (9.4)

c\xi i (u, v) c\xi i (u, v) := a\Omega \xi i
(z\xi i \Omega \xi i

(u), z\xi i \Omega \xi i
(v)) eq. (9.5)

\| u\| 2c\xi \| u\| 2c\xi := c\xi (u, u) eq. (9.6)

\Pi \xi w \Pi \xi :=
\sum 

\lambda k,\xi \leq tol\xi 
c\xi (w, vk,\xi )vk,\xi eq. (10.1)

\Pi \scrP w \Pi \scrP w :=
\sum 

\xi \in \scrP \Pi \xi w eq. (10.1)

| u| d\xi | u| d\xi :=
\sqrt{} 

d\xi (u, u), d\xi (\cdot , \cdot ) := a\Omega \xi 
(\scrH \xi \Omega \xi 

(\cdot ),\scrH \xi \Omega \xi 
(\cdot )) eq. (10.2)

| u| a(B) | u| a(B) :=
\sqrt{} 

aB(u, u) eq. (10.3)

C\tau max. number of vertices of a finite element Lemma 11.2

\scrP (\Omega i) \xi \in \scrP adjacent to subdomain i eq. (11.1)

N\xi max. number of \xi \in \scrP adjacent to a subdomain eq. (11.1)

tol\scrP tol\scrP := min\xi \in \scrP tol\xi Lemma 11.2

\scrN ec,\scrP \scrN ec,\scrP :=
\bigcup 

\xi \in \scrP \{ \xi i, i = 1, . . . , n\xi \} eq. (11.3)

\scrC measure for the \scrP -connectivity of the domain decomposition eq. (11.5)
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2. Linear elasticity. We will consider a variational formulation of the equations

of compressible linear elasticity: Find u \in 
\bigl( 
H1

0 (\Omega )
\bigr) 3

such that

(2.1) a\Omega (u, v) = L(v) \forall v \in 
\bigl( 
H1

0 (\Omega )
\bigr) 3
,

where \Omega \subset \BbbR 3 is a polyhedral domain and

a\Omega (u, v) :=

\int 
\Omega 

2\mu (x)
\Bigl( 
\varepsilon (u(x)) : \varepsilon (v(x))

\Bigr) 
dx+

\int 
\Omega 

\lambda (x)
\Bigl( 
div(u(x)) div(v(x))

\Bigr) 
dx,

L(v) :=

\int 
\Omega 

f(x)v(x) dx.

The Lam\'e parameters 0 < \lambda (x), \mu (x) : \BbbR 3 \rightarrow \BbbR are scalar coefficient functions, f \in \bigl( 
L2(\Omega )

\bigr) 3
,

\varepsilon (u) := 1
2

\Bigl( 
\nabla u+

\bigl( 
\nabla u
\bigr) T\Bigr) 

and

A : B := tr(ATB) =

3\sum 
i,j=1

AijBij ,

for any matrices A,B \in \BbbR 3\times 3.
We will consider problems with a highly heterogeneous Young modulus E : \Omega \rightarrow \BbbR ,

0 < Emin \leq E(x) \leq Emax, and a positive Poisson ratio \nu , bounded away, from above,
by 1/2, and we define the Lam\'e parameters by

\lambda (x) :=
E(x)\nu 

(1 + \nu )(1 - 2\nu )
, \mu (x) :=

E(x)

2(1 + \nu )
.

The algorithms described in this paper can also be applied to other linear, second-
order elliptic problems including those in two dimensions.

Let \tau h := \tau h(\Omega ) be a finite element discretization of \Omega . We will use a conform-
ing space V h(\Omega ) of piecewise linear or trilinear finite elements on this mesh and for
simplicity assume that the Lam\'e parameters are constant on each element T \in \tau h.

We will use the conjugate gradient method preconditioned by two-level overlap-
ping Schwarz methods to solve the resulting linear system Ku = b. Here K is the
stiffness matrix obtained from the bilinear form a\Omega (\cdot , \cdot ) and the finite element space
\r V h(\Omega ) := V h(\Omega ) \cap 

\bigl( 
H1

0 (\Omega )
\bigr) 3
.

For completeness, we note that the Dirichlet boundary condition has been incor-
porated into the global stiffness matrix by setting those rows and columns of K to
unit vectors that correspond to Dirichlet boundary nodes.

3. Two-level overlapping Schwarz methods. We will now introduce the two-
level Schwarz algorithms, mostly following [49, Chapter 2.2]. The different variants
considered in this paper will differ in the coarse space chosen; the design of the coarse
space is the main issue in this study and many other studies of algorithms of this
kind. In the next five sections, we will introduce four different variants. In section 12,
we also explore alternatives that decrease the costs of using the two algorithms that
use adaptive choices of their coarse spaces.

We partition the domain \Omega into N nonoverlapping subdomains \Omega i with a max-
imum diameter H, each a union of finite elements, and denote the corresponding
interface by \Gamma :=

\bigcup 
i \not =j (\partial \Omega i \cap \partial \Omega j)\setminus \partial \Omega . We extend each subdomain \Omega i by k layers of
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finite elements to obtain an overlapping domain decomposition \{ \Omega \prime 
i\} Ni=1 and introduce

local spaces Vi, i \in \{ 1, 2, . . . , N\} as the subspaces of elements of V h(\Omega \prime 
i), which vanish

on \partial \Omega \prime 
i, that is, Vi := \r V h(\Omega \prime 

i) := V h(\Omega \prime 
i) \cap 

\bigl( 
H1

0 (\Omega 
\prime 
i)
\bigr) 3
.

Associated with each such subdomain is a restriction operator Ri : \r V
h(\Omega ) \rightarrow Vi

and an extension operator RT
i : Vi \rightarrow \r V h(\Omega ). Furthermore, for any global coarse

space V0 \subset \r V h(\Omega ), we define a linear interpolation operator R0 : \r V h(\Omega ) \rightarrow V0, where
each of the columns of the matrix RT

0 represents a coarse basis function defined on
the fine mesh \tau h.

We will use exact solvers for all the subspaces defined in terms of bilinear forms
on Vi, i \in \{ 0, 1, . . . , N\} , given by

\~ai (ui, vi) = a\Omega 
\bigl( 
RT

i ui, R
T
i vi
\bigr) 

\forall ui, vi \in Vi;

cf. [49, Chapter 2.2]. The associated matrices are given by Ki = RiKRT
i , i = 0, 1,

. . . , N . The additive one-level Schwarz preconditioned operator is given by POS-1 =\sum N
i=1 R

T
i K

 - 1
i RiK and that of the additive two-level Schwarz operator by

POS-2 = RT
0 K

 - 1
0 R0K + POS-1.

4. The GDSW preconditioner. In what follows, xh will denote a finite ele-
ment node. Those on the interface form the set \Gamma h := \{ xh \in \Gamma \} . A key ingredient
of each of our coarse spaces is a partition \scrP of \Gamma h into disjoint interface components
\xi h \subset \Gamma h such that

\Gamma h =
\bigcup 

\xi h\in \scrP 

\xi h.

To simplify, we will omit the superscript h and write \xi instead of \xi h.
The GDSW [5, 6], AGDSW [21, 23], RGDSW [9, 29] (see also section 6), and

RAGDSW (see section 7) preconditioners are two-level overlapping Schwarz methods,
and their preconditioners can be written in matrix form as

M - 1 = \Phi 
\bigl( 
\Phi TK\Phi 

\bigr)  - 1
\Phi T +

N\sum 
i=1

RT
i K

 - 1
i Ri.

The basis functions of all our coarse spaces, i.e., the columns of \Phi = RT
0 , are de-

fined by an energy-minimizing extension of the values \Phi \Gamma on the interface \Gamma h to the
subdomains, i.e., by

(4.1) \Phi =

\biggl[ 
\Phi I

\Phi \Gamma 

\biggr] 
= H\Gamma \Phi \Gamma , H\Gamma :=

\biggl[ 
 - K - 1

II KI\Gamma 

I\Gamma 

\biggr] 
.

Here I\Gamma is the identity matrix on \Gamma h and H\Gamma is constructed from submatrices of the
global stiffness matrix

K :=

\biggl[ 
KII KI\Gamma 

K\Gamma I K\Gamma \Gamma 

\biggr] 
,

where I refers to the set of variables not associated with the interface. We note that
I also contains boundary nodes of \Omega . From the definition follows that \Phi is zero on
the domain boundary (cf. Remark 8.1). We note that KII is block-diagonal and that
K\Gamma I = KT

I\Gamma also can be written in block form as

KII =

\left[    
K

(1)
II

. . .

K
(N)
II

\right]    ,K\Gamma I =
\Bigl[ 
K

(1)
\Gamma I . . . K

(N)
\Gamma I

\Bigr] 
.
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The superscripts of these matrices mark contributions from the subdomains \Omega i to the
stiffness matrix K.

Given the sparsity of the stiffness matrix, reflecting the local coupling of the
variables, all these matrix blocks are sparse, and the coarse space basis functions
are each associated only with a few subdomains. In the original GDSW method
for the scalar two-dimensional case, the columns of \Phi \Gamma are given by the character-
istic functions of vertices and subdomain edges; i.e., the interface is partitioned as
follows: \Gamma h =

\bigl( \bigcup 
v\in \scrV v

\bigr) 
\cup 
\bigl( \bigcup 

e\in \scrE e
\bigr) 
, where \scrV and \scrE are the sets of nodes of the

subdomain vertices and subdomain edges, respectively; cf. Figure 1 (top left) for the
interface partition and (top right) for two corresponding coarse functions. For the
three-dimensional case, the basis functions are defined analogously, using character-
istic functions for interface vertices, edges, and faces.

In more general cases, the boundary values on \Gamma span the restriction of the null
space of KN to \Gamma , where KN is the stiffness matrix given by a\Omega (\cdot , \cdot ) with a Neumann
boundary condition on \partial \Omega . Thus, for example, in the case of linear elasticity in three
dimensions and any subdomain edge which is not straight, we obtain 6 functions:
3 translations and 3 linearized rotations. We note that the restriction of the rigid
body modes to a straight edge are linearly dependent; see [7].

(A)GDSW partitioning GDSW vertex function GDSW edge function

R(A)GDSW partitioning RGDSW basis function

Fig. 1. Left: Decomposition of the interface \Gamma h. Top Left: Decomposition of \Gamma h into 16 com-
ponents: 4 vertices and 12 edges (with 4 nodes each) as used in the GDSW and adaptive GDSW
method. Bottom Left: Decomposition of \Gamma h into 4 components as used in the reduced-dimension
GDSW and reduced-dimension adaptive GDSW methods. Right: Corresponding coarse functions for
a two-dimensional diffusion problem are shown on the right for GDSW (top) and RGDSW (bottom).
Homogeneous Dirichlet boundary conditions are assumed on \partial \Omega . The GDSW vertex function (top
center) corresponds to the blue vertex. The GDSW edge function (top right) corresponds to the edge
between the blue and magenta vertices. The RGDSW coarse function (bottom right) corresponds to
the green component.
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The matrix of the GDSW coarse operator can be computed either by forming the
triple matrix product \Phi TK\Phi or by exploiting the fact that

\Phi TK\Phi =

\biggl[ 
 - K - 1

II KI\Gamma \Phi \Gamma 

\Phi \Gamma 

\biggr] T \biggl[ 
KII KI\Gamma 

K\Gamma I K\Gamma \Gamma 

\biggr] \biggl[ 
 - K - 1

II KI\Gamma \Phi \Gamma 

\Phi \Gamma 

\biggr] 
= \Phi T

\Gamma S\Gamma \Gamma \Phi \Gamma ,

where S\Gamma \Gamma = K\Gamma \Gamma  - K\Gamma IK
 - 1
II KI\Gamma is the Schur complement obtained by eliminating

the interior variables of all subdomains and those on the boundary of \Omega .
Energy-minimizing extensions play a fundamental role for domain decomposition

methods. Note that in case of a bilinear form defined by the Laplace operator, an
energy-minimizing extension reduces to a harmonic extension. We refer the reader
to [49, section 4.4] for a discussion of discrete harmonic extensions.

It is well known that, in general, to obtain a scalable method, the coarse space
must be able to represent the null space [46, 49]. By restricting the null space to a
partition of the interface and then extending it energy-minimally, we fulfill the above
criterion.

5. Standard adaptive GDSW coarse space. The standard adaptive GDSW
method, the AGDSW method, uses the same interface partitioning \scrP , based on sub-
domain vertices, edges, and faces, as the GDSW method. The coarse functions for the
vertices are the same as for the GDSW variant, but the columns of \Phi corresponding
to the edges and faces are not. Instead, we use a few of the eigenfunctions of local
generalized eigenvalue problems of the form

(5.1) S\xi \xi \tau \ast ,\xi = \lambda \ast ,\xi K
\Omega \xi 

\xi \xi \tau \ast ,\xi ,

where \xi corresponds to an edge or a face.
The particular problem (5.1) was introduced in [23]; it is the main goal of this work

to modify the right-hand side of (5.1) to allow more general interface decompositions;
see sections 6 and 7.

To define the Schur complement S\xi \xi and the matrix K
\Omega \xi 

\xi \xi , for any edge and face \xi ,

we will use the local stiffness matrix K\Omega \xi on \Omega \xi with Neumann boundary conditions.
Here \Omega \xi is the closure of the union of all subdomains which are adjacent to \xi and
\Omega \xi := \Omega \xi \setminus \partial \Omega \xi its interior. The stiffness matrix K\Omega \xi is defined by a\Omega \xi 

(\cdot , \cdot ) and can
be assembled from the subdomain stiffness matrices of the subdomains adjacent to
the edge or face.

We note that, for this type of eigenvalue problem, the Neumann boundary con-
dition is essential to construct a robust preconditioner. For the proof of Lemma 10.2,
this condition is required to be able to use an energy-minimizing property; see be-
low and (10.4). Therein, a spectral estimate allows us to bound (contrast indepen-
dently) a high-energy term using a low-energy term, which is reflected by the fact

that \tau TS\xi \xi \tau \leq \tau TK
\Omega \xi 

\xi \xi \tau ; cf. sections 9 and 10. If, on the other hand, a zero Dirichlet
boundary condition were used (i.e., introducing a forced slope to zero), the coarse
space would not be robust for high-coefficient components that intersect multiple
interface components.

We partition the degrees of freedom of \Omega \xi into the set associated with \xi and the
rest which forms a set R and write the stiffness matrix as

K\Omega \xi =

\Biggl( 
K

\Omega \xi 

RR K
\Omega \xi 

R\xi 

K
\Omega \xi 

\xi R K
\Omega \xi 

\xi \xi 

\Biggr) D
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and can then define the Schur complement by

S\xi \xi := K
\Omega \xi 

\xi \xi  - K
\Omega \xi 

\xi R

\bigl( 
K

\Omega \xi 

RR

\bigr) +
K

\Omega \xi 

R\xi ,

where
\bigl( 
K

\Omega \xi 

RR

\bigr) +
is a pseudoinverse of K

\Omega \xi 

RR; see Remark 9.1 and section 13 for more
details. The Schur complement originates from the application of K\Omega \xi and an energy-
minimizing extension from \xi to \Omega \xi ; cf. (9.3) and (9.7). For our elasticity problems,
K\Omega \xi as well as S\xi \xi will be singular.

We sort the eigenvalues of (5.1) in nondescending order, i.e., 0 = \lambda 1,\xi \leq \lambda 2,\xi \leq 
... \leq \lambda m,\xi , where m is the number of unknowns of (5.1). We select all eigenvectors
\tau \ast ,\xi with eigenvalues smaller than or equal to a certain threshold, i.e., \lambda \ast ,\xi \leq tol\xi ,
and then define \tau \ast ,\Gamma as the extension by zero of \tau \ast ,\xi from \xi to \Gamma h. The coarse basis
functions corresponding to \xi are then the extensions

v\ast ,\xi := H\Gamma \tau \ast ,\Gamma ,

and the columns of \Phi are now given by the v\ast ,\xi , selected, and the GDSW vertex
functions.

Remark 5.1. If tol\xi = 0 for all \xi \in \scrP , the AGDSW coarse space contains only
the coarse functions associated with the null space of the Schur complement S\xi \xi . The
latter is identical to the null space of K\Omega \xi restricted to \xi . Thus, in this case, AGDSW
reduces to GDSW, and we have

VGDSW = V 0
AGDSW \subset V

tol(\scrP )
AGDSW.

V
tol(\scrP )
AGDSW is the AGDSW coarse space allowing individual tolerances tol\xi , \xi \in \scrP .

Accordingly, for V 0
AGDSW, we have tol\xi = 0 for all \xi \in \scrP . See also Remark 7.1.

Let tol\scrE and tol\scrF be the smallest tolerance used for the subdomain edges and faces,
respectively. For positive tolerances, the following condition number estimate for the
preconditioned operator has been derived previously for scalar diffusion problems; see
[23, Corollary 6.6].

Theorem 5.2. The condition number of the AGDSW two-level Schwarz operator
in three dimensions is bounded by

\kappa (M - 1
AGDSWK) \leq 

\biggl( 
20 +

34(N\scrE )2n\scrE 
max

tol\scrE 
+

68(N\scrF )2

tol\scrF 

\biggr) \Bigl( 
\^Nc + 1

\Bigr) 
.

The constant \^Nc is an upper bound of the number of overlapping subdomains that any
point xh \in \Omega can belong to. N\scrE and N\scrF are the maximum number of subdomain
edges and faces, respectively, of any subdomain. n\scrE 

max is the maximum number of
subdomains that share a subdomain edge. All constants are independent of H, h, and
the contrast of the coefficient function.

This kind of result also holds for linear elasticity; see Theorem 11.5 and section 11.

6. A reduced-dimension GDSW coarse space. We will first give a simple
description of an interface partition for a structured mesh and domain decomposition.
This partition can also be used for the reduced-dimension adaptive GDSW coarse
spaces.

Our goal is to reduce the number of interface components, as this leads to a
smaller coarse space dimension. Note that for the adaptive variants, in case of a
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highly heterogeneous coefficient function, the coarse space dimension may not always
be smaller. To this end, each vertex of the coarse mesh will be associated with
an interface component \xi formed by parts of the edges and faces adjacent to the
vertex. A disjoint partition is obtained by distributing parts of these faces and edges
equally or almost equally between nearby vertices; see Figure 1 (bottom left) for
a two-dimensional representation in which the number of interface components is
reduced from 16 (GDSW) to 4 (RGDSW). Note that for GDSW-type coarse spaces,
the dimension of the coarse space is lower than or equal to the number of interface
components multiplied with the dimension of the null space of KN ; cf. section 4.

The reduced-dimension GDSW coarse space is then defined completely analo-
gously to the GDSW coarse space. Thus, the restriction of the null space elements to
the interface components is first extended by zero to the rest of the interface nodes
and then extended with minimal energy to the subdomain interiors to obtain the
coarse functions; see Figure 1 (bottom right) for one of the coarse functions for a
two-dimensional diffusion problem.

We note that our RGDSW coarse space differs from those of [9] but can be
regarded as a variant of the coarse spaces introduced in that paper.

7. The reduced-dimension adaptive GDSW coarse space. For the re-
duced adaptive GDSW coarse space, we need to partition each interface component
\xi , as those of the previous section, into subcomponents. For a structured mesh and
domain decomposition, as in that section, we partition each \xi into subsets related
to the sets of nodes of the subdomain vertices, edges, and faces. With \scrV , \scrE , and \scrF 
the sets of nodes of the subdomain vertices, edges, and faces, respectively, we define
subcomponents \xi i of \xi such that

(7.1) \{ \xi i\} 
n\xi 

i=1 = \{ \xi \cap c : c \in \scrV \cup \scrE \cup \scrF \wedge c \cap \xi \not = \emptyset \} ,

where n\xi is the number of subcomponents of \xi ; cf. (8.2) for the analogue in case of an
unstructured mesh. See Figure 2 (left) for an example in two dimensions. We next

partition K
\Omega \xi 

\xi \xi with respect to the subsets \{ \xi i\} 
n\xi 

i=1 into

K
\Omega \xi 

\xi \xi =
\Bigl( 
K

\Omega \xi 

\xi i\xi j

\Bigr) n\xi 

i,j=1
,

Ω1 Ω2 Ω3

Fig. 2. Left: Partitioning of the RGDSW interface components into the respective parts of
vertices and edges as required for the right-hand side of the generalized eigenvalue problem (7.3) in
the RAGDSW method. Each component is partitioned into 5 subcomponents ( 4 edges, 1 vertex).
Right: The image shows a case in which a NEC can consist of two disjoint connected components.
The interface of the domain \Omega = \cup 3

i=1\Omega i is indicated by thick black lines.
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and, as before, we define the Schur complement by

S\xi \xi := K
\Omega \xi 

\xi \xi  - K
\Omega \xi 

\xi R

\bigl( 
K

\Omega \xi 

RR

\bigr) +
K

\Omega \xi 

R\xi ,

where
\bigl( 
K

\Omega \xi 

RR

\bigr) +
is a pseudoinverse of K

\Omega \xi 

RR; see Remark 9.1 and section 13. Further-

more, by removing the off-diagonal blocks from K
\Omega \xi 

\xi \xi , we obtain

(7.2) \widetilde K\xi \xi := blockdiag
i=1,...,n\xi 

(K
\Omega \xi 

\xi i\xi i
).

This decoupling w.r.t. the subcomponents \xi i is essential both for the proof of
Lemma 11.3 in section 11 and to obtain a robust method. Specifically, the choice
of subcomponents is motivated by (11.4) in Lemma 11.3. Therein, the function \Psi is
constant on \xi i and, thus, can be moved outside of the corresponding seminorm. This
would not be possible with \xi , as, in general, \Psi is not constant on \xi ; as a result, the
corresponding estimate would not be independent of the coefficient contrast. In fact,
without the block-structure of the matrix, one can construct a mesh and coefficient
function for which the algorithm fails to obtain a small condition number; see [38] for
details.

We introduce a generalized eigenvalue problem, given in matrix form by

(7.3) S\xi \xi \tau \ast ,\xi = \lambda \ast ,\xi \widetilde K\xi \xi \tau \ast ,\xi .

As in section 5, the eigenvalues are sorted in a nondecreasing order, and eigen-
vectors \tau \ast ,\xi corresponding to \lambda \ast ,\xi \leq tol\xi are selected and then extended by zero to \Gamma h

as \tau \ast ,\Gamma . The coarse basis functions, i.e., the columns of \Phi , corresponding to \xi are the
extensions v\ast ,\xi := H\Gamma \tau \ast ,\Gamma .

Remark 7.1. If tol\xi = 0 for all \xi \in \scrP , the RAGDSW coarse space contains only
the coarse functions associated with the null space of the Schur complement S\xi \xi .
The latter is identical to the null space of K\Omega \xi restricted to \xi . Thus, in this case,
RAGDSW reduces to RGDSW, and we have

VRGDSW = V 0
RAGDSW \subset V

tol(\scrP )
RAGDSW.

See also Remark 5.1.

8. Interface partitioning for RAGDSW on unstructured meshes. For
unstructured cases, we will define the partitioning \scrP using nodal equivalence classes
and begin with definitions of connected components of finite element nodes and of
nodal equivalence classes. The nodal equivalence classes are generalizations of subdo-
main vertices, edges, and faces and are defined using the set of adjacent subdomains.
For example, the nodes of a subdomain face are shared by the same two subdomains.

The number of adjacent subdomains is an important criterion for setting up com-
munication patterns between subdomains. The more adjacent subdomains an inter-
face component has, the higher the communication cost of setting up the associated
generalized eigenvalue problem and the computation of an energy-minimizing exten-
sion. We note that equivalence classes have previously been used, for example, in
[37, 36, 9] for similar purposes.

Two finite element nodes xh
1 , x

h
2 \in \Gamma h are said to be adjacent if there exists a

finite element edge or face z \subset \Gamma such that xh
1 , x

h
2 \in z, the closure of z. A set of nodes

\gamma \subset \Gamma h is said to form a connected component if, for any two nodes xh
0 , x

h
s \in \gamma , there

exists a path (xh
0 , . . . , x

h
s ), x

h
i \in \gamma , of adjacent nodes.
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For any node xh \in \Omega , let

(8.1) n(xh) := \{ i \in \{ 1, 2, . . . , N\} : xh \in \Omega i\} 

be the set of indices of the subdomains which have xh in common. To partition
a set of nodes \gamma \subset \Gamma h, we define nodal equivalence classes (NECs) by the relation
xh
1 \sim xh

2 \leftrightarrow n(xh
1 ) = n(xh

2 ) for nodes x
h
1 , x

h
2 \in \gamma . We further partition each NEC into

its connected components based on the adjacency of nodes; cf. Figure 2 (right).
By \scrN (xh), we denote the NEC of a node xh \in \gamma , i.e., xh \in \scrN (xh). If n(xh

2 ) \subsetneq 
n(xh

1 ), then \scrN (xh
1 ) is said to be an ancestor of \scrN (xh

2 ), which in turn is a descendant
of \scrN (xh

1 ). If a NEC does not have an ancestor, we call it a root.
We note that for \gamma = \Gamma h, a root is a vertex in the case of cuboid subdomains;

in general, we call a root a coarse node if it consists of only a single node. However,
often for unstructured domain decompositions obtained, e.g., by METIS [31], a root
can be a coarse edge or coarse face. An example is provided by a beam built from a
union of cubes where the faces which form the interfaces between the cubes become
roots; see also [9].

We now give a general description of the interface partition for RAGDSW for
an unstructured mesh and domain decomposition. We will define components \xi such
that each \xi contains only one root and parts of its descendants. Furthermore, we will
ensure that the resulting interface partition \scrP is nonoverlapping to obtain a partition
\scrP of connected disjoint components \xi \in \scrP such that

\Gamma h =
\bigcup 
\xi \in \scrP 

\xi .

Several specific constructions are possible. Relevant aspects are, e.g., obtaining
components of similar size, nondegenerate components, and parallel efficiency of the
construction.

For the results in this paper, we have constructed the interface partition in the
following way: We initialize each component \xi \in \scrP with the nodes of a root and add
the remaining nodes in an iterative process.

Starting with the roots, we grow sets which will result in all the subsets \xi \in \scrP . In
each step of an iteration, we add all nodes which are adjacent to elements of each of
the current sets, which have not been previously assigned and which are descendants
of the root of the set. We repeat this process until all interface nodes have been
assigned to a \xi \in \scrP . Figure 3 depicts sample partitions for two and three dimensions.

By following this routine, we make sure that the components \xi share the same set
of adjacent subdomains as the associated root, which increases parallelism. Further-
more, connected components are constructed, which usually leads to smaller coarse
space dimensions. We also obtain interface components of comparable size---which
increases parallelism---while still keeping the cost of construction low by adding layers
of nodes in each iteration instead of single nodes. For a structured mesh with a struc-
tured domain decomposition, one could use the node coordinates instead to directly
construct the interface components from section 6.

We note that for the unstructured meshes in section 14, the maximum number of
degrees of freedom per eigenvalue problem is at most roughly doubled, compared to
the face eigenvalue problems used in standard AGDSW. The average is increased by
roughly 50\%--70\%, except for the problem in Figure 7: Due to the small number of
subdomains, the average size of interface components is more sensitive to a change of
the interface decomposition, and we obtain an increase of 155\%.
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Fig. 3. Sample partitions in two dimensions (left) and three dimensions (right) for unstructured
domain decompositions. For the two-dimensional case, the interface is given by thick black lines,
and the interface components \xi \in \scrP are given by different markers. For the three-dimensional case,
coarse nodes are indicated by white spheres; interface components are shown in different colors. For
a clearer visualization, only those finite element faces are shown whose nodes are all contained in
the respective interface component. Thus, gaps indicate finite element faces whose nodes are part of
several interface components.

As before, we partition each interface component into its subcomponents. Let
\scrN \Gamma h be the set of NECs of \Gamma h, and for \xi \in \scrP , let

(8.2) \scrN \xi := \{ \xi \cap c : c \in \scrN \Gamma h \wedge \xi \cap c \not = \emptyset \} .

Let n\xi := | \scrN \xi | be the number of NECs of \xi , and let \xi i, i = 1, . . . , n\xi , be the resulting
decomposition of \xi into \{ \xi i\} 

n\xi 

i=1 = \scrN \xi . We then have \xi i\cap \xi j = \emptyset (i \not = j) and \xi =
\bigcup n\xi 

i=1 \xi i.

Remark 8.1. If our problem (2.1) satisfies a Neumann boundary condition on
\partial \Omega N \subset \partial \Omega , in addition to a large enough set \partial \Omega D = \partial \Omega \setminus \partial \Omega N with a Dirich-
let boundary condition to ensure unique solvability, then the construction of the
RAGDSW coarse space and the proof of the condition number estimate in sections 10
and 11 will essentially be the same. Similar to standard finite element theory, the
finite element nodes that lie on the Neumann boundary but not on the interface
\Gamma =

\bigcup 
i \not =j (\partial \Omega i \cap \partial \Omega j) \setminus \partial \Omega D are treated as interior nodes since these nodes belong

to only one subdomain and can be eliminated locally---just as interior nodes. For the
setup of coarse functions, the same type of boundary conditions are used on the global
domain boundary as for the original problem (2.1); i.e., the energy-minimizing exten-
sion (4.1) is defined such that a coarse function satisfies a homogeneous Neumann
boundary condition on the nodes that lie on \partial \Omega N \setminus \Gamma . This is necessary to obtain a
robust method and for the proof; see (11.2) at the top of the proof of Lemma 11.2.

In the next section, we will first describe the adaptive GDSW coarse spaces in
variational form. Thereafter, we will derive a condition number estimate for the pre-
conditioned two-level additive Schwarz operator based on the coarse space introduced
above. We note that the proof remains valid for quite general interface partitions \scrP 
and is not restricted to the one of RAGDSW.

9. Variational description of adaptive GDSW-type coarse spaces. For
\xi \in \scrP , the index set n\xi is the set of indices of all adjacent subdomains, i.e., the union
of the index sets of all nodes xh \in \xi ,

(9.1) n\xi =
\bigcup 

xh\in \xi 

n(xh).
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As in section 5, \Omega \xi is the closure of the union of the adjacent subdomains, i.e.,
\Omega \xi =

\bigcup 
i\in n\xi \Omega i.

Let G be any set of finite element nodes that includes \xi . We associate finite
element spaces Xh(\xi ) and Xh(G) with these sets. Thus, let \^G be the interior of the

union of the supports of all basis functions associated with G, define \^\xi similarly, and
let Xh(G) := V h( \^G) and Xh(\xi ) := V h(\^\xi ). We can now define an extension-by-zero
operator from \xi to G:

(9.2)

z\xi G : Xh(\xi ) \rightarrow Xh(G)

v \mapsto \rightarrow z\xi G(v) :=

\biggl\{ 
v(xh) \forall xh \in \xi ,
0 \forall xh \in G \setminus \xi .

By \scrH \xi \Omega \xi 
(\cdot ), we denote a possibly nonunique (cf. Remark 9.1) energy-minimizing

extension w.r.t. a\Omega \xi 
(\cdot , \cdot ) from \xi to \Omega \xi : Let V h

0,\xi (\Omega \xi ) := \{ w \in V h(\Omega \xi ) : w(xh) =

0 \forall xh \in \xi \} . Then for \tau \xi \in Xh(\xi ), an extension v\xi := \scrH \xi \Omega \xi 
(\tau \xi ) \in V h(\Omega \xi ) is given by

a solution of

(9.3)
a\Omega \xi 

(v\xi , v) = 0 \forall v \in V h
0,\xi (\Omega \xi ),

v\xi (x
h) = \tau \xi (x

h) \forall xh \in \xi ;

cf. Figure 4. The domain of this extension operator can be extended to all u \in V h(\Omega )
by working with u| \^\xi . We note that the extension is computed with a homogeneous
Neumann boundary condition on \partial \Omega \xi .

As in section 8, let \{ \xi i\} 
n\xi 

i=1 be the set of all NECs of a \xi \in \scrP . Then \xi i \cap \xi j = \emptyset 
(i \not = j), and \xi =

\bigcup n\xi 

i=1 \xi i holds. We define the symmetric, positive definite bilinear
form

(9.4) c\xi (u, v) :=

n\xi \sum 
i=1

c\xi i(u, v) \forall u, v \in Xh(\xi ),

with

(9.5) c\xi i(u, v) := a\Omega \xi i

\Bigl( 
z\xi i \Omega \xi i

(u), z\xi i \Omega \xi i
(v)
\Bigr) 

\forall u, v \in Xh(\xi i).

node of \xi 
node of \Omega \xi \setminus \xi 

Fig. 4. Graphical representation in two dimensions of the energy-minimizing extension (9.3)
from \xi \in \scrP to \Omega \xi (left) and sample energy-minimizing extension for the diffusion equation (right) in
which the RAGDSW interface component \xi is highlighted in red and the remaining interface nodes
in light gray.
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We extend c\xi i(u, v) to all of V h(\Omega ) \times V h(\Omega ) by working with u| \^\xi i and v| \^\xi i . The
corresponding norm is defined by

(9.6) \| u\| 2c\xi := c\xi (u, u) \forall u \in Xh(\xi ).

We define the following generalized eigenvalue problem on \xi \in \scrP , which corresponds
to the variational formulation of (7.3): Find \tau \ast ,\xi \in Xh(\xi ) such that

a\Omega \xi 

\bigl( 
\scrH \xi \Omega \xi 

(\tau \ast ,\xi ),\scrH \xi \Omega \xi 
(\theta )
\bigr) 
= \lambda \ast ,\xi c\xi (\tau \ast ,\xi , \theta ) \forall \theta \in Xh(\xi ).(9.7)

The eigenvalues are again sorted in nondescending order, i.e., 0 = \lambda 1,\xi \leq \lambda 2,\xi \leq ... \leq 
\lambda m,\xi , and the eigenmodes accordingly, where m = dim

\bigl( 
Xh(\xi )

\bigr) 
. Furthermore, let the

eigenmodes \tau \ast ,\xi satisfy c\xi (\tau k,\xi , \tau j,\xi ) = \delta kj , where \delta kj is the Kronecker delta symbol.
We select all eigenmodes \tau \ast ,\xi where the eigenvalues are below a certain threshold, i.e.,
\lambda \ast ,\xi \leq tol\xi . Then the coarse basis functions corresponding to \xi are the extensions

(9.8) v\ast ,\xi := \scrH \Gamma \Omega (\tau \ast ,\Gamma ) \in \r V h(\Omega ), \tau \ast ,\Gamma := z\xi \Gamma (\tau \ast ,\xi )

of the selected \tau \ast ,\xi , where v\ast ,\xi = \scrH \Gamma \Omega (\tau \ast ,\Gamma ) is given by the solution v\ast ,\xi \in \r V h(\Omega )
that satisfies

(9.9)
a\Omega l

(v\ast ,\xi , w) = 0 \forall w \in V h(\Omega l) \cap 
\bigl( 
H1

0 (\Omega l)
\bigr) 3
, l = 1, ..., N,

v\ast ,\xi (x
h) = \tau \ast ,\Gamma (x

h) \forall xh \in \Gamma h.

We note that, contrary to (9.7), v\ast ,\xi vanishes on \partial \Omega \xi since \tau \ast ,\Gamma = z\xi \Gamma (\tau \ast ,\xi ) and since

v\ast ,\xi = \scrH \Gamma \Omega (\tau \ast ,\Gamma ) \in \r V h(\Omega ). Therefore, (9.9) has a unique solution.
For a general interface partition \scrP , we define the adaptive GDSW coarse space

as

(9.10) V\scrP :=
\bigoplus 
\xi \in \scrP 

span \{ vk,\xi : \lambda k,\xi \leq tol\xi \} .

We note that the standard AGDSW coarse space (see [23]) is based on the partition

\scrP := \scrF \cup \scrE \cup \scrV .

Since the sets of nodes for the vertices, edges, and faces are NECs, we then have

c\xi (u, v) = a\Omega \xi 

\bigl( 
z\xi \Omega \xi 

(u), z\xi \Omega \xi 
(v)
\bigr) 

if \xi is associated with a vertex, an edge, or a face.

Remark 9.1. For the diffusion case, the energy-minimizing extension fulfilling
(9.3) has a unique solution. If an interface component \xi is a straight edge or a
vertex, then 1 or 3 linearized rotations, respectively, are in the null space of (9.3) for
linear elasticity. However, as all solutions of (9.3) have the same energy, the choice
of the particular solution does not influence the solution of the generalized eigenvalue
problem (9.7): Let v\ast ,\xi = \scrH \xi \Omega \xi 

(\tau \ast ,\xi ) be a solution of (9.3). Then all solutions of
(9.3) are given by v\ast ,\xi + r, where r is a solution of (9.3) given that r| \xi = 0; for linear
elasticity, r is a rigid body mode. Since r \in V h

0,\xi (\Omega \xi ), we have a\Omega \xi 

\bigl( 
r,\scrH \xi \Omega \xi 

(\theta )
\bigr) 
= 0

by the definition of \scrH \xi \Omega \xi 
(\theta ). Therefore, we obtain the equality

a\Omega \xi 

\bigl( 
v\ast ,\xi + r,\scrH \xi \Omega \xi 

(\theta )
\bigr) 
= a\Omega \xi 

\bigl( 
v\ast ,\xi ,\scrH \xi \Omega \xi 

(\theta )
\bigr) 

\forall \theta \in Xh(\xi ).

As a consequence, any operator defined by (9.3) yields the same generalized eigenvalue
problem (9.7). In section 13, we will indicate how to find the solution of (9.3) if it is
not unique.
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Remark 9.2. We note that the left-hand side of eigenvalue problem (9.7) is sin-
gular and that its kernel contains the constant functions for the scalar diffusion case
and the rigid body modes for linear elasticity. Therefore, the null space has a dimen-
sion of 1 for the scalar diffusion problem and at least 3 for linear elasticity. For a
vertex (i.e., \xi = v \in \scrV ), the problem has only one (scalar diffusion) and three (linear
elasticity) degrees of freedom. Thus, in the latter case, the solution is given by the
vertex basis functions of the GDSW coarse space, i.e., the three translations in case
of linear elasticity; cf. [23] and [7].

10. Spectral projections. We will now consider the projections

\Pi \scrP w :=
\sum 
\xi \in \scrP 

\Pi \xi w, \Pi \xi w :=
\sum 

\lambda k,\xi \leq tol\xi 

c\xi (w, vk,\xi )vk,\xi (10.1)

onto the space V\scrP . Here, vk,\xi are the energy-minimizing extensions of the eigenfunc-
tions determined by (9.8) and \lambda k,\xi the corresponding eigenvalues from (9.7). For
\xi \in \scrP , let d\xi : X

h(\xi ) \times Xh(\xi ) \rightarrow \BbbR be the symmetric, positive semidefinite bilinear
form

d\xi (\cdot , \cdot ) := a\Omega \xi 

\bigl( 
\scrH \xi \Omega \xi 

(\cdot ),\scrH \xi \Omega \xi 
(\cdot )
\bigr) 
,(10.2)

which is used on the left-hand side of the generalized eigenvalue problem (9.7). d\xi (\cdot , \cdot )
can also be extended to V h(\Omega ) \times V h(\Omega ) given that we have extended the domain of
\scrH \xi \Omega \xi 

.

For any union B \subset \Omega of finite elements T \in \tau h, let

| v| 2a(B) := aB(v, v) \forall v \in V h(\Omega ).(10.3)

We find that

(10.4) | v| 2d\xi 
:= d\xi (v, v) = | \scrH \xi \Omega \xi 

(v)| 2a(\Omega \xi )
\leq | v| 2a(\Omega \xi )

\forall v \in V h(\Omega )

due to the energy-minimizing property of the extension operator.
Using standard arguments of spectral theory, we obtain two important properties

of the projection \Pi \xi , required for the proof of the condition number estimate in
section 11; cf., e.g., [12, section 2], [47, Lemma 2.11], [22, Lemma 4.1], and [23,
Lemma 5.3].

Lemma 10.1. Let the eigenpairs \{ (\tau k,\xi , \lambda k,\xi )\} 
dim(Xh(\xi ))
k=1 from (9.7) be chosen such

that c\xi (\tau k,\xi , \tau j,\xi ) = \delta kj and such that the eigenpairs are sorted in nondescending order
w.r.t. the eigenvalues. Then the operator \Pi \xi defines a projection which is orthogonal
with respect to the bilinear form d\xi (\cdot , \cdot ), and therefore

| u| 2d\xi 
= | \Pi \xi u| 2d\xi 

+ | u - \Pi \xi u| 2d\xi 
\forall u \in Xh(\xi ).

In addition, we have, from spectral theory,

\| u - \Pi \xi u\| 2c\xi \leq 1

tol\xi 
| u - \Pi \xi u| 2d\xi 

.

The following lemma follows directly from Lemma 10.1; cf. [23, Lemma 5.4].

Lemma 10.2. For \xi \in \scrP and u \in V h(\Omega ), it holds that

\| u - \Pi \xi u\| 2c\xi \leq 1

tol\xi 

\sum 
k\in n\xi 

| u| 2a(\Omega k)
.

D
ow

nl
oa

de
d 

06
/1

3/
22

 to
 1

31
.1

80
.2

31
.5

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



© 2022 Alexander Heinlein, Axel Klawonn, Jascha Knepper, Oliver Rheinbach, Olof B. Widlund

ADAPTIVE GDSW COARSE SPACES OF REDUCED DIMENSION A1191

Proof. We have

\| u - \Pi \xi u\| 2c\xi 
Lemma 10.1

\leq 1

tol\xi 
| u - \Pi \xi u| 2d\xi 

\leq 1

tol\xi 
| u| 2d\xi 

(10.4)

\leq 1

tol\xi 
| u| 2a(\Omega \xi )

=
1

tol\xi 

\sum 
k\in n\xi 

| u| 2a(\Omega k)
.

11. Convergence analysis. To prove a condition number estimate, we will
prove the existence of a stable decomposition; cf. [49, Chapter 2]. We therefore define
the coarse interpolation I0 := \Pi \scrP as the projection onto the coarse space V0 := V\scrP ;
cf. (9.10) and (10.1). Thus, the coarse component of the stable decomposition is
defined as

u0 := I0u := \Pi \scrP u.

Lemma 11.1. For \xi \in \scrP and u \in V h(\Omega ), we have (cf. [23, Lemma 6.2])

\| u - u0\| 2c\xi = c\xi (u - u0, u - u0) \leq 
1

tol\xi 

\sum 
k\in n\xi 

| u| 2a(\Omega k)
.

Proof. We have

\| u - u0\| 2c\xi =

n\xi \sum 
i=1

| z\xi i \Omega \xi i
(u - \Pi \scrP u)| 2a(\Omega \xi i

)

=

n\xi \sum 
i=1

| z\xi i \Omega \xi i
(u - \Pi \xi u)| 2a(\Omega \xi i

)

= \| u - \Pi \xi u\| 2c\xi 
Lemma 10.2

\leq 1

tol\xi 

\sum 
k\in n\xi 

| u| 2a(\Omega k)
.

Next, we derive an estimate for the energy of the coarse component; cf. [23,
Lemma 6.3].

Lemma 11.2. It holds that

| u0| 2a(\Omega ) \leq 2| u| 2a(\Omega ) +
2C\tau 

tol\scrP 

\sum 
\xi \in \scrP 

\sum 
k\in n\xi 

| u| 2a(\Omega k)
\leq 2

\biggl( 
1 +

C\tau N
\xi 

tol\scrP 

\biggr) 
| u| 2a(\Omega ),

where C\tau is the maximum number of vertices of any element T \in \tau h(\Omega ), and

(11.1) N\xi := max
1\leq i\leq N

| \scrP (\Omega i)| , \scrP (\Omega i) := \{ \xi \in \scrP : \xi \cap \Omega i \not = \emptyset \} 

is the maximum number of interface components \xi \in \scrP of any subdomain, and tol\scrP :=
min\xi \in \scrP tol\xi .

Proof. We can use the fact that u0 is energy-minimizing w.r.t. | \cdot | a(\Omega i) for each
subdomain \Omega i, i.e., u0 = \scrH \Gamma \Omega (u0), and obtain (cf. [16, Lemma 4.1])

| u0| 2a(\Omega ) \leq 2| \scrH \Gamma \Omega (u)| 2a(\Omega ) + 2| \scrH \Gamma \Omega (u - u0)| 2a(\Omega )

\leq 2| u| 2a(\Omega ) + 2| z\Gamma \Omega (u - u0)| 2a(\Omega ).(11.2)
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Let

(11.3) \scrN ec,\scrP :=
\bigcup 
\xi \in \scrP 

\{ \xi i, i = 1, . . . , n\xi \} 

be the set of interface components \xi i of \xi \in \scrP partitioned according to their nodal
equivalence classes \xi i, i = 1, . . . , n\xi . Then \xi i \cap \xi j = \emptyset for i \not = j,

\bigcup 
\xi i\in \scrN ec,\scrP 

\xi i = \Gamma h,
and

| z\Gamma \Omega (u - u0)| 2a(\Omega ) =
\bigm| \bigm| \bigm| \sum 
\xi i\in \scrN ec,\scrP 

z\xi i \Omega (u - u0)
\bigm| \bigm| \bigm| 2
a(\Omega )

=
\sum 

T\in \tau h(\Omega )

\bigm| \bigm| \bigm| \sum 
\xi i\in \scrN ec,\scrP 

z\xi i \Omega (u - u0)
\bigm| \bigm| \bigm| 2
a(T )

.

There can be at most C\tau NECs \xi i that are nonzero in any element T . Thus, we have,
using the Cauchy--Schwarz inequality,\sum 

T\in \tau h(\Omega )

\bigm| \bigm| \bigm| \sum 
\xi i\in \scrN ec,\scrP 

z\xi i \Omega (u - u0)
\bigm| \bigm| \bigm| 2
a(T )

\leq 
\sum 

T\in \tau h(\Omega )

C\tau 

\sum 
\xi i\in \scrN ec,\scrP 

| z\xi i \Omega (u - u0)| 2a(T )

= C\tau 

\sum 
\xi i\in \scrN ec,\scrP 

| z\xi i \Omega (u - u0)| 2a(\Omega \xi i
)

= C\tau 

\sum 
\xi \in \scrP 

\| u - u0\| 2c\xi 

\leq C\tau 

tol\scrP 

\sum 
\xi \in \scrP 

\sum 
k\in n\xi 

| u| 2a(\Omega k)
,

where in the last step we have used Lemma 11.1. Thus,

| u0| 2a(\Omega ) \leq 2| u| 2a(\Omega ) + 2
C\tau 

tol\scrP 

\sum 
\xi \in \scrP 

\sum 
k\in n\xi 

| u| 2a(\Omega k)
\leq 2

\biggl( 
1 +

C\tau N
\xi 

tol\scrP 

\biggr) 
| u| 2a(\Omega ).

In Lemma 11.4, we will derive estimates based on the product of u  - u0 and
a partition of unity function \theta i associated with each subdomain. We employ an
overlapping decomposition \{ \~\Omega i\} Ni=1 with overlap h by extending the nonoverlapping
decomposition \{ \Omega i\} Ni=1 by one layer of finite elements. The estimates are carried out
separately on \~\Omega i \setminus \Omega i and \Omega i: the former locally and the latter globally. The following
Lemma 11.3 covers both cases; cf. [23, Lemma 6.4].

The condition number estimate in Theorem 11.5 does not reflect the fact that the
rate of convergence of the algorithm often improves if the overlap is increased. The
reason that the estimate does not depend on the size of the overlap is that---instead
of the overlapping decomposition \{ \Omega \prime 

i\} Ni=1 in which an overlap with one or more layers
of finite elements is used for the first level of the preconditioner---the decomposition
\{ \~\Omega i\} Ni=1 with overlap h is used in the proof for technical reasons. However, this does
not restrict the use of a larger overlap in the algorithmic formulation of the first level
of the preconditioner.

In Table 2, a few numerical results for different sizes of the overlap are shown.
As expected, we can observe an initial decrease of the number of iterations but an
increase if the overlap is too large. Let us note that the condition number bound
proved in Theorem 11.5 contains the constant \^NC , which is an upper bound for the
number of overlapping subdomains any finite element point can belong to. Thus, the
condition number may also grow if the overlap is increased.
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Table 2
Results for RAGDSW--S (see section 12), two different tolerances for the selection of eigen-

functions, the coefficient function E from Figure 7 (see also Table 4), and resulting iteration counts
and condition numbers for different sizes of the overlap \delta ; here, \delta = kh means k layers of finite
elements. For more details, see the caption of Table 4.

\delta = 1h \delta = 2h \delta = 3h \delta = 4h \delta = 5h

tol = 0.01
it. 125 100 94 94 96
\kappa 152.1 87.6 76.4 73.5 72.9

tol = 0.0001
it. 349 308 292 292 320
\kappa 4 263.3 4 436.6 4 646.9 5 248.6 5 842.7

Lemma 11.3. Let l \in \{ 0, 1, . . . , N\} and B = \~\Omega l \setminus \Omega l if l > 0 and B = \Omega 0 := \Omega 
for l = 0. Furthermore, let \Psi : B \rightarrow \BbbR be a scalar-valued finite element function such
that \Psi | \xi i is constant on \xi i \in \scrN ec,\scrP , \xi i \subset B, i.e., \Psi (xh) = Ci for all xh \in \xi i, and
assume that 0 \leq \Psi \leq 1 and \Psi (xh) = 0 for xh /\in \Gamma h \cap B. Then

| Ih(\Psi \cdot (u - u0))| 2a(B) \leq 
C\tau 

tol\scrP 

\sum 
\xi \in \scrP (\Omega l)

\sum 
k\in n\xi 

| u| 2a(\Omega k)
,

where Ih(\cdot ) is the pointwise interpolation operator of the finite element space V h(\Omega ).

Proof. We define the set \scrN ec,\scrP (\Omega l) := \{ \xi j \in \scrN ec,\scrP : \xi j \cap \Omega l \not = \emptyset \} of NECs that
are part of or touch \Omega l. Given that \scrP (\Omega 0) = \scrP , we have \scrN ec,\scrP (\Omega 0) = \scrN ec,\scrP . Since
z\xi i B(\cdot ) acts as an identity operator on \xi i, we have with w := u - u0

| Ih(\Psi \cdot w)| 2a(B) =
\bigm| \bigm| \bigm| \sum 
\xi i\in \scrN ec,\scrP (\Omega l)

z\xi i B(I
h(\Psi \cdot w))

\bigm| \bigm| \bigm| 2
a(B)

=
\sum 

T\in \tau h(B)

\bigm| \bigm| \bigm| \sum 
\xi i\in \scrN ec,\scrP (\Omega l)

z\xi i B(I
h(\Psi \cdot w))

\bigm| \bigm| \bigm| 2
a(T )

.

There can be at most C\tau NECs \xi i that are nonzero in any element T . Thus, we have,
using the Cauchy--Schwarz inequality,\bigm| \bigm| \bigm| \sum 

\xi i\in \scrN ec,\scrP (\Omega l)

z\xi i B(I
h(\Psi \cdot w))

\bigm| \bigm| \bigm| 2
a(T )

\leq C\tau 

\sum 
\xi i\in \scrN ec,\scrP (\Omega l)

\bigm| \bigm| \bigm| z\xi i B(I
h(\Psi \cdot w))

\bigm| \bigm| \bigm| 2
a(T )

and consequently

| Ih(\Psi \cdot w)| 2a(B) \leq C\tau 

\sum 
\xi i\in \scrN ec,\scrP (\Omega l)

\bigm| \bigm| \bigm| z\xi i \Omega \xi i
(Ih(\Psi \cdot w))

\bigm| \bigm| \bigm| 2
a(\Omega \xi i

)
.

Since 0 \leq \Psi \leq 1 is constant on a NEC \xi i \in \scrN ec,\scrP (\Omega l), we have\sum 
\xi i\in \scrN ec,\scrP (\Omega l)

\bigm| \bigm| \bigm| z\xi i \Omega \xi i
(Ih(\Psi \cdot w))

\bigm| \bigm| \bigm| 2
a(\Omega \xi i

)
=

\sum 
\xi i\in \scrN ec,\scrP (\Omega l)

\bigl( 
\Psi | \xi i

\bigr) 2\bigm| \bigm| \bigm| z\xi i \Omega \xi i
(w)
\bigm| \bigm| \bigm| 2
a(\Omega \xi i

)
(11.4)

\leq 
\sum 

\xi i\in \scrN ec,\scrP (\Omega l)

\bigm| \bigm| \bigm| z\xi i \Omega \xi i
(w)
\bigm| \bigm| \bigm| 2
a(\Omega \xi i

)

\leq 
\sum 

\xi \in \scrP (\Omega l)

n\xi \sum 
i=1

\bigm| \bigm| \bigm| z\xi i \Omega \xi i
(w)
\bigm| \bigm| \bigm| 2
a(\Omega \xi i

)

=
\sum 

\xi \in \scrP (\Omega l)

c\xi (w,w).
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Using Lemma 11.1, we obtain

C\tau 

\sum 
\xi \in \scrP (\Omega l)

c\xi (u - u0, u - u0) \leq 
C\tau 

tol\scrP 

\sum 
\xi \in \scrP (\Omega l)

\sum 
k\in n\xi 

| u| 2a(\Omega k)
.

Thus, in total, we have

| Ih(\Psi \cdot (u - u0))| 2a(B) \leq 
C\tau 

tol\scrP 

\sum 
\xi \in \scrP (\Omega l)

\sum 
k\in n\xi 

| u| 2a(\Omega k)
.

Now we are able to prove the existence of a stable decomposition.

Lemma 11.4 (stable decomposition). For each u \in \r V h(\Omega ), there exists a decom-

position u =
\sum N

i=0 R
T
i ui, ui \in Vi = \r V h(\Omega \prime 

i), where \Omega \prime 
0 := \Omega such that

N\sum 
i=0

| ui| 2a(\Omega \prime 
i)
\leq C2

0 | u| 2a(\Omega ),

where C2
0 =

\Bigl( 
14 + (12N\xi + \scrC ) C\tau 

tol\scrP 

\Bigr) 
and

(11.5) \scrC := \scrC 
\bigl( 
\{ \Omega i\} Ni=1,\scrP 

\bigr) 
:= max

1\leq i\leq N

N\sum 
j=1

| \{ \xi \in \scrP : i, j \in n\xi \} | .

\scrC is a measure for the \scrP -connectivity of the domain decomposition: Two subdomains
i, j are connected if they touch the same interface component \xi \in \scrP , i.e., if i, j \in n\xi .

Proof. On the overlapping decomposition \{ \~\Omega i\} Ni=1 of width h, we consider the

local components ui := Ih (\theta i \cdot (u - u0)) with the partition of unity \{ \theta i\} Ni=1, \theta i : \Omega \rightarrow 
\BbbR , which are scalar-valued finite element functions and where

\theta i(x
h) :=

\Biggl\{ 
1

| n(xh)| if xh \in \Omega i,

0 elsewhere,

where xh is a finite element node and | n(xh)| is the number of subdomains the node
xh is contained in.

We note that \{ \~\Omega i\} Ni=1 can differ from the decomposition \{ \Omega \prime 
i\} Ni=1 used in the

first level of the preconditioner, in which an overlap with one or more layers of finite
elements is used. The decomposition \{ \~\Omega i\} Ni=1 is only used in the proof, and since
\~\Omega i \subset \Omega \prime 

i, we have ui \in Vi.
We define the cutoff function \theta : \Omega \rightarrow [0, 1], which is a scalar-valued finite element

function such that

\theta (xh) := 1 - 1

| n(xh)| 
for any node xh \in \Omega .

Then we have

| ui| 2a(\Omega \prime 
i)
= | ui| 2a(\~\Omega i)

= | Ih(\theta i(u - u0))| 2a(\~\Omega i)

= | Ih(\theta i(u - u0))| 2a(\Omega i)
+ | Ih(\theta i(u - u0))| 2a(\~\Omega i\setminus \Omega i)

\leq 2| Ih((1 - \theta i)(u - u0))| 2a(\Omega i)
+ 2| u - u0| 2a(\Omega i)

+ | Ih(\theta i(u - u0))| 2a(\~\Omega i\setminus \Omega i)

\leq 2| Ih(\theta (u - u0))| 2a(\Omega i)
+ 4| u| 2a(\Omega i)

+ 4| u0| 2a(\Omega i)
+ | Ih(\theta i(u - u0))| 2a(\~\Omega i\setminus \Omega i)

.
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As \theta satisfies the assumptions of Lemma 11.3, it follows that

N\sum 
i=1

2| Ih(\theta (u - u0))| 2a(\Omega i)
= 2| Ih(\theta (u - u0))| 2a(\Omega )

\leq 2
C\tau 

tol\scrP 

\sum 
\xi \in \scrP 

\sum 
k\in n\xi 

| u| 2a(\Omega k)

\leq 2
C\tau N

\xi 

tol\scrP 
| u| 2a(\Omega ).(11.6)

Similarly, we have

(11.7)

N\sum 
i=1

| Ih(\theta i(u - u0))| 2a(\~\Omega i\setminus \Omega i)
\leq C\tau 

tol\scrP 

N\sum 
i=1

\sum 
\xi \in \scrP (\Omega i)

\sum 
k\in n\xi 

| u| 2a(\Omega k)
\leq \scrC C\tau 

tol\scrP 
| u| 2a(\Omega ).

Thus, using (11.6), (11.7), and Lemma 11.2, we obtain

N\sum 
i=0

| ui| 2a(\Omega \prime 
i)
= | u0| 2a(\Omega ) +

N\sum 
i=1

| ui| 2a(\~\Omega i)

\leq 5| u0| 2a(\Omega ) + 4| u| 2a(\Omega ) + 2
C\tau N

\xi 

tol\scrP 
| u| 2a(\Omega ) +

C\tau \scrC 
tol\scrP 

| u| 2a(\Omega )

\leq 5 \cdot 2
\biggl( 
1 +

C\tau N
\xi 

tol\scrP 

\biggr) 
| u| 2a(\Omega ) +

\biggl( 
4 + (2N\xi + \scrC ) C\tau 

tol\scrP 

\biggr) 
| u| 2a(\Omega )

=

\biggl( 
14 + (12N\xi + \scrC ) C\tau 

tol\scrP 

\biggr) 
| u| 2a(\Omega ).

From Lemma 11.4, we directly obtain a condition number estimate for the pre-
conditioned system.

Theorem 11.5. The condition number of the RAGDSW two-level Schwarz oper-
ator in three dimensions is bounded by

\kappa 
\bigl( 
M - 1

RAGDSWK
\bigr) 
\leq 
\biggl( 
14 + (12N\xi + \scrC ) C\tau 

tol\scrP 

\biggr) \Bigl( 
\^Nc + 1

\Bigr) 
,

where \^Nc is an upper bound for the number of overlapping subdomains \{ \Omega \prime 
i\} Ni=1 any

point xh \in \Omega can belong to. All constants are independent of H, h, and the contrast
of Young's modulus E.

Proof. Since we use exact local solvers, we directly obtain

\kappa 
\bigl( 
M - 1

RAGDSWK
\bigr) 
\leq C2

0

\Bigl( 
\^Nc + 1

\Bigr) 
,

where C2
0 is the constant of the stable decomposition; cf. [49, Lemma 3.11] and the

follow-up discussion and the proof of [11, Theorem 4.1]. We obtain the final estimate
using Lemma 11.4.

12. A variant using local Neumann problems. We will now describe a
technique that can significantly speed up the algorithm in a parallel setting and greatly
facilitate its implementation; cf. [23, section 7.2] and see also [38] for more details.

We first consider the case of an interface component which is a coarse face f . The
energy-minimizing extension used in the generalized eigenvalue problem (9.7) is only
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weakly coupled between the two subdomains via the nodes adjacent to the face; i.e.,\bigl( 
\Gamma h \cap \Omega i \cap \Omega j

\bigr) 
\setminus f contains relatively few nodes on certain coarse edges and at certain

coarse nodes. Instead of computing this coupled extension \scrH f \Omega f
(\cdot ) from the face f

to the two adjacent subdomains as in (9.3), we can compute the extensions to each
subdomain \Omega i,\Omega j separately. We expect that little information will be lost. We find
that

a\Omega \xi 

\bigl( 
\scrH \xi \Omega \xi 

(\theta ),\scrH \xi \Omega \xi 
(\theta )
\bigr) 
\geq 
\sum 
k\in n\xi 

a\Omega k
(\scrH \xi \Omega k

(\theta ),\scrH \xi \Omega k
(\theta ))

for \theta \in Xh(\xi ). Since the subdomains are only weakly coupled via these adjacent
nodes of the face, we expect only a small change if we replace the left-hand side of
(9.7) using this alternative extension and that the dimension of the coarse space will
increase only slightly.

The same technique can be applied to arbitrary interface components \xi \in \scrP .
We might expect that the coupling will be stronger between subdomains for smaller
interface components, but our numerical results in section 14 suggest that the increase
in the coarse space dimension is moderate in all cases considered.

We indicate that this technique is employed by adding a trailing S to the coarse
space name: VAGDSW - S and VRAGDSW - S; cf. Figure 5. Using this modification yields
the same condition number bound as in Theorem 11.5 since dS\xi , the modification of
d\xi , satisfies the same inequality as in (10.4):

| v| 2dS
\xi 
:= dS\xi (v, v) :=

\sum 
k\in n\xi 

| \scrH \xi \Omega k
(v)| 2a(\Omega k)

\leq 
\sum 
k\in n\xi 

| v| 2a(\Omega k)
= | v| 2a(\Omega \xi )

\forall v \in V h(\Omega ).

Let the local (nonoverlapping) stiffness matrices with a Neumann boundary for
the corresponding bilinear forms a\Omega k

(\cdot , \cdot ) be given by K\Omega k . For each \xi \in \scrP , we
partition the degrees of freedom of \Omega k into those in \xi \cap \Omega k and the remaining ones,
R. We have

K\Omega k =

\Biggl( 
K\Omega k

RR K\Omega k

R\xi 

K\Omega k

\xi R K\Omega k

\xi \xi 

\Biggr) 
.

node of \xi 
node of \Omega \xi \setminus \xi 

Fig. 5. Analogue of Figure 4 for RAGDSW--S. Graphical representation in two dimensions of
the energy-minimizing extensions (9.3) from \xi \cap \Omega k to \Omega k, where \xi \in \scrP and \Omega k is a subdomain
adjacent to \xi (left); nodes on the interface with identical coordinates that have been torn apart to
visualize multiple extension values are connected with a light gray box. Sample extension (energy-
minimizing in each subdomain) for the diffusion equation (right) in which the RAGDSW interface
component \xi is highlighted in red and the remaining interface nodes in light gray.
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Let RT
\xi ,\Omega k

map the degrees of freedom of \xi \cap \Omega k to \xi . We define

SS
\xi \xi :=

\sum 
k\in n\xi 

RT
\xi ,\Omega k

Sk
\xi \xi ,

with the Schur complements

Sk
\xi \xi := K\Omega k

\xi \xi  - K\Omega k

\xi R

\bigl( 
K\Omega k

RR

\bigr) +
K\Omega k

R\xi , k \in n\xi ,

where
\bigl( 
K\Omega k

RR

\bigr) +
is a pseudoinverse of K\Omega k

RR; cf. Remark 9.1 and section 13. Using the

definition of \widetilde K\xi \xi from (7.2), we obtain the modified generalized eigenvalue problem
given in matrix form by

SS
\xi \xi \tau \ast ,\xi = \lambda \ast ,\xi \widetilde K\xi \xi \tau \ast ,\xi .

13. Remarks on the computation of the energy-minimizing extension.
For an interface component \xi \in \scrP , the energy-minimizing extension (9.3) satisfies a
homogeneous Neumann boundary condition on \partial \Omega \xi \setminus \xi . Therefore, for linear elasticity,
if \xi consists only of a single node or if it is given by a straight edge, then all three
linearized rotations or the linearized rotation around the edge are in the null space of
the problem. Thus, in such cases, the operator \scrH \xi \Omega \xi 

(\cdot ) defined by (9.3) is not unique;

cf. Remark 9.1. Furthermore, K
\Omega \xi 

RR is symmetric and only positive semidefinite.

We also note that if the variant described in section 12 is used, the matrices K\Omega k

RR

are even more likely to be singular since the extension is based on the sets \xi \cap \Omega k,
k \in n\xi , which are usually smaller than \xi .

In an implementation, we have several options to compute an energy-minimizing

extension, i.e., to solve a system KRRx = y, where KRR := K
\Omega \xi 

RR or, in case of

the variant from section 12, KRR := K\Omega k

RR. Theoretically, we could compute a full
pseudoinverse of KRR; however, this is very expensive in terms of processor time and
memory. As a more efficient and algebraic alternative, a pivoted factorization can
be computed such that the diagonal is rank revealing. Alternatively, we can add a
small regularization term \varepsilon \scrR to obtain a symmetric, positive definite problem, e.g.,
\varepsilon \scrR = 10 - 13Kdiag, where Kdiag is the diagonal of KRR.

We have also considered two further, geometric approaches. One approach is
to remove the null space by a projection. For this, we need to determine a basis
of the null space, i.e., compute the linearized rotations, which requires geometric
information. This approach has another downside if we want to use a direct solver
on the resulting system since transforming the system is quite expensive and the
transformed system generally more dense.

A second geometric approach is less algebraic and eliminates a subset of the
degrees of freedom of the matrix KRR at the expense of solving a small Schur com-
plement system using a pseudoinverse. At best, this amounts to prescribing a zero
Dirichlet boundary condition on some additional degrees of freedom.

In general, we pick at least as many degrees of freedom \~D \subset R as the dimension
of the null space of KRR. Let the remaining degrees of freedom be denoted by \~R \subset R.
The matrix KRR is partitioned by \~R and \~D such that

KRR =

\biggl( 
K \~R, \~R K \~R, \~D

K \~D, \~R K \~D, \~D

\biggr) 
.

The variables \~R are then eliminated to obtain a Schur complement system\biggl( 
K \~R, \~R K \~R, \~D

0 S \~D, \~D

\biggr) 
, S \~D, \~D = K \~D, \~D  - K \~D, \~RK

 - 1
\~R, \~R

K \~R, \~D.
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If \~D was chosen properly, the submatrix K \~R, \~R is invertible. For example, if \xi is a

straight edge and \~D corresponds to a node which does not lie on the same straight
line as the edge (note that three degrees of freedom are associated with each node),
then K \~R, \~R is invertible. In that case, the Schur complement is well defined and has
a null space of the same dimension as KRR. Thus, we can solve the corresponding
system using a pseudoinverse. This is much cheaper than using a pseudoinverse of
KRR since S \~D, \~D is of a much smaller dimension.

If we select the degrees of freedom in \~D carefully, the Schur complement will be
identically zero; i.e., computing the energy-minimizing extension is no more expensive
than solving a linear system with K \~R, \~R, and the cost will be comparable to that of a
case with an invertible KRR.

14. Numerical results. In this section, we present numerical results to com-
pare the nonadaptive coarse spaces GDSW and RGDSW, the adaptive coarse spaces
AGDSW (section 5) and RAGDSW (section 8), and their S-variants AGDSW--S and
RAGDSW--S; cf. section 12. In order to compute the Schur complement and avoid
the use of a pseudoinverse, we have added a regularization term with \varepsilon = 10 - 13 to the
respective singular matrix; cf. section 13. We remark that in [23] a short comparison
of the AGDSW and the GenEO coarse space ([47]) was carried out.

We show numerical results for a discretization of problem (2.1) with a Poisson
ratio \nu = 0.4, the right-hand side f \equiv (1, 1, 1)T , and several coefficient functions given
by different choices of the Young modulus function E(\cdot ). The smallest Young modulus
Emin := minx\in \Omega E(x) is always set to 1, and the maximum Emax := maxx\in \Omega E(x)
is specified in the respective figure and table caption. A Dirichlet condition on the
boundary of the domain \Omega can reduce the number of bad eigenmodes if patches
associated with large coefficients touch the Dirichlet boundary of \Omega . Thus, in order
to obtain a harder problem, we have constructed the coefficient functions in Figures
6--8 such that patches associated with large coefficients do not touch the Dirichlet
boundary of \Omega . Except for the test case of Figure 7 and Table 4, the domain \Omega is the
unit cube with a zero Dirichlet condition prescribed on all its boundary.

We use piecewise linear basis functions on tetrahedra and solve the resulting linear
system with the preconditioned conjugate gradient (PCG) method and a relative

Fig. 6. Cross section (left) of a domain decomposition of a cube and a discontinuous coefficient
function E with beams of large coefficients (light blue) crossing the domain. The beams of large
coefficients do not touch the domain boundary. The light blue color corresponds to a coefficient
of Emax = 106, and the remainder is set to Emin = 1.0. Number of subdomains: 125; number of
nodes: 132 651 (degrees of freedom: 397 953); average degrees of freedom per overlapping subdomain:
6 198; overlap: two layers of finite elements. Structured tetrahedral mesh; unstructured domain
decomposition (METIS). For the corresponding results, see Table 3. Taken from [23, Figure 8].
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Fig. 7. Left: Discontinuous coefficient function E with coefficient layers of E = 106 in light
gray and an inclusion at the top right with E = 109 in dark gray. The remainder of the coeffi-
cient in white is set to Emin = 1.0. Center: Boundary partition for Dirichlet (blue) and Neumann
(orange) boundary. Right: Domain decomposition of 50 subdomains. Number of nodes: 56 053 (de-
grees of freedom: 168 159); average degrees of freedom per overlapping subdomain: 5 632.2; overlap:
two layers of finite elements. Unstructured tetrahedral mesh; unstructured domain decomposition
(METIS). For the corresponding results, see Table 4. Taken from [23, Figure 9].

Fig. 8. Partial visualization of an unstructured tetrahedral mesh consisting of several discon-
nected components of foamlike structures. On the corresponding mesh of a cube, foam corresponds
to a large coefficient of Emax = 106 with Emin = 1.0 elsewhere. The large coefficient does not touch
the domain boundary. Number of subdomains: 100; number of nodes: 588 958 (degrees of freedom:
1 766 874); average degrees of freedom per overlapping subdomain: 26 756.1; overlap: two layers of
finite elements. Unstructured tetrahedral mesh; unstructured domain decomposition (METIS). For
the corresponding results, see Table 5. Taken from [23, Figure 10].

stopping criterion of \| r(k)\| 2/\| r(0)\| 2 < 10 - 8, where r(0) and r(k) are the initial and
the kth unpreconditioned residuals, respectively. The reported condition numbers
are the estimates obtained after the last iteration of the PCG method using the
Lanczos method [44, Chapter 6.7.3]. We partition the domain into subdomains using
METIS [31]. In all experiments, we use an overlap of two layers of finite elements; see
section 3 for the definition of the overlap.

The coefficient function of the first test problem is depicted in Figure 6; the
corresponding results are given in Table 3. Experiments with both nonadaptive coarse
spaces GDSW and RGDSW failed to converge in 2 000 iterations, clearly showing that
adaptivity is required to obtain a robust preconditioner. By using the adaptive coarse
spaces, we obtain acceptable condition numbers and iteration counts. The results
show a significant reduction in the coarse space dimension for the RAGDSW variant
compared to AGDSW. For example, (tol = 0.05), the dimension of VAGDSW - S is
reduced by 43.6\% by using VRAGDSW - S. And even while GDSW does not converge
in 2 000 iterations, its coarse space is 26.5\% larger than that of RAGDSW--S (tol =
0.05).

D
ow

nl
oa

de
d 

06
/1

3/
22

 to
 1

31
.1

80
.2

31
.5

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



© 2022 Alexander Heinlein, Axel Klawonn, Jascha Knepper, Oliver Rheinbach, Olof B. Widlund

A1200 HEINLEIN, KLAWONN, KNEPPER, RHEINBACH, AND WIDLUND

Table 3
Results for the coefficient function in Figure 6: iteration counts, condition numbers, and re-

sulting coarse space dimension for different coarse spaces. Number of subdomains: 125; degrees of
freedom: 397 953; overlap: two layers of finite elements; maximum coefficient Emax = 106; rela-
tive stopping criterion \| r(k)\| 2/\| r(0)\| 2 < 10 - 8. Structured tetrahedral mesh; unstructured domain
decomposition (METIS).

Coefficient function E from Figure 6
V0 tol it. \kappa dimV0 (\scrV /\scrP , \scrE , \scrF ) dimV0/dof

VGDSW  - >2 000 3.1\cdot 105 9 996 (1 707, 4 618, 3 671) 2.51\%
VRGDSW  - >2 000 3.9\cdot 105 3 358 (3 358, 0, 0) 0.84\%

VAGDSW 0.100 71 41.1 14 439 (1 707, 4 943, 7 789) 3.63\%
VAGDSW 0.050 90 59.5 13 945 (1 707, 4 915, 7 323) 3.50\%
VAGDSW 0.010 132 161.1 13 763 (1 707, 4 912, 7 144) 3.46\%
VAGDSW 0.001 327 971.8 13 721 (1 707, 4 907, 7 107) 3.45\%

VAGDSW - S 0.100 63 28.7 14 597 (1 707, 5 020, 7 870) 3.67\%

VAGDSW - S 0.050 89 57.5 14 004 (1 707, 4 949, 7 348) 3.52\%

VAGDSW - S 0.010 134 166.0 13 767 (1 707, 4 914, 7 146) 3.46\%

VAGDSW - S 0.001 305 973.1 13 729 (1 707, 4 911, 7 111) 3.45\%

VRAGDSW 0.100 67 34.6 8 249 (8 249, 0, 0) 2.07\%
VRAGDSW 0.050 88 61.3 7 683 (7 683, 0, 0) 1.93\%
VRAGDSW 0.010 114 117.4 7 501 (7 501, 0, 0) 1.88\%
VRAGDSW 0.001 383 1.4\cdot 103 7 401 (7 401, 0, 0) 1.86\%

VRAGDSW - S 0.100 62 32.7 8 799 (8 799, 0, 0) 2.21\%

VRAGDSW - S 0.050 79 51.4 7 903 (7 903, 0, 0) 1.99\%

VRAGDSW - S 0.010 109 104.5 7 563 (7 563, 0, 0) 1.90\%

VRAGDSW - S 0.001 268 902.7 7 525 (7 525, 0, 0) 1.89\%

For the next example, we consider a problem for which we impose a Neumann
boundary condition on most of the domain boundary; see Figure 7. The results in Ta-
ble 4 show an even larger reduction in the coarse space dimension from AGDSW to
RAGDSW compared to the previous case. We obtain a reduction of 69.4\% (tol =
0.05). The reason for this is the larger number of interface components: Since
the AGDSW space contains the GDSW space and the RAGDSW space contains
the RGDSW space, a significant part of the coarse space reduction can be attrib-
uted to the smaller dimension of RGDSW compared to GDSW. This highlights
the core idea behind the reduced-dimension GDSW spaces in [9]; the explanation
is supported by the fact that the dimension of VRAGDSW is fairly close to that of
VRGDSW. Therefore, since the coefficient function contains only relatively few con-
nected large-coefficient components, only a few additional coarse basis functions are
required.

We consider another realistic geometry in Figure 8 with a foamlike structure. We
note that the foam is not a single connected structure but consists of several smaller
disconnected foamlike structures. The results in Table 5 are similar to the previous
ones. By using RAGDSW--S, we obtain a coarse space reduction of 49.9\% compared
to AGDSW--S (tol = 0.05). However, here, the dimension of VRAGDSW - S is more
than double that of VRGDSW, indicating that VRAGDSW - S is adaptively enriched with
quite a few additional basis functions compared to VRGDSW.

We conclude with averaged results for 100 random coefficient functions showing
the robustness of the methods; cf. Table 6. Despite comparable number of iterations
and condition numbers, the coarse space dimensions of RAGDSW(--S) are smaller by
a factor of 1.6 compared to those of AGDSW(--S) (at an equal tolerance).
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Table 4
Results for the coefficient function in Figure 7: iteration counts, condition numbers, and re-

sulting coarse space dimension for different coarse spaces. Number of subdomains: 50; degrees of
freedom: 168 159; overlap: two layers of finite elements; maximum coefficient Emax = 109; relative
stopping criterion \| r(k)\| 2/\| r(0)\| 2 < 10 - 8. Unstructured tetrahedral mesh; unstructured domain
decomposition (METIS). See also Table 2 for some results regarding different sizes of the overlap.

Coefficient function E from Figure 7
V0 tol it. \kappa dimV0 (\scrV /\scrP , \scrE , \scrF ) dimV0/dof

VGDSW  - 1 329 1.5\cdot 107 2 319 ( 291, 1 000, 1 028) 1.38\%
VRGDSW  - 1 549 1.0\cdot 107 572 ( 572, 0, 0) 0.34\%

VAGDSW 0.100 60 20.2 2 732 ( 291, 1 058, 1 383) 1.62\%
VAGDSW 0.050 69 28.1 2 631 ( 291, 1 058, 1 282) 1.56\%
VAGDSW 0.010 71 28.2 2 626 ( 291, 1 058, 1 277) 1.56\%
VAGDSW 0.001 152 1 162.2 2 613 ( 291, 1 052, 1 270) 1.55\%

VAGDSW - S 0.100 58 18.9 2 741 ( 291, 1 059, 1 391) 1.63\%

VAGDSW - S 0.050 69 28.1 2 631 ( 291, 1 058, 1 282) 1.56\%

VAGDSW - S 0.010 72 28.2 2 626 ( 291, 1 058, 1 277) 1.56\%

VAGDSW - S 0.001 142 733.7 2 614 ( 291, 1 053, 1 270) 1.55\%

VRAGDSW 0.100 68 27.1 988 ( 988, 0, 0) 0.59\%
VRAGDSW 0.050 85 43.8 804 ( 804, 0, 0) 0.48\%
VRAGDSW 0.010 100 88.5 781 ( 781, 0, 0) 0.46\%
VRAGDSW 0.001 183 769.1 774 ( 774, 0, 0) 0.46\%

VRAGDSW - S 0.100 60 20.7 1 152 (1 152, 0, 0) 0.69\%

VRAGDSW - S 0.050 78 35.2 868 ( 868, 0, 0) 0.52\%

VRAGDSW - S 0.010 100 87.6 790 ( 790, 0, 0) 0.47\%

VRAGDSW - S 0.001 115 141.1 786 ( 786, 0, 0) 0.47\%

Table 5
Results for the coefficient function in Figure 8: iteration counts, condition numbers, and re-

sulting coarse space dimension for different coarse spaces. Number of subdomains: 100; degrees
of freedom: 1 766 874; overlap: two layers of finite elements; maximum coefficient Emax = 106;
relative stopping criterion \| r(k)\| 2/\| r(0)\| 2 < 10 - 8. Unstructured tetrahedral mesh; unstructured
domain decomposition (METIS).

Coefficient function E from Figure 8
V0 tol it. \kappa dimV0 (\scrV /\scrP , \scrE , \scrF ) dimV0/dof

VGDSW  - 1 865 1.1\cdot 106 8 311 (1 167, 4 108, 3 036) 0.47\%
VRGDSW  - 1 613 9.3\cdot 105 2 313 (2 313, 0, 0) 0.13\%

VAGDSW 0.10 52 21.4 12 367 (1 167, 4 358, 6 842) 0.70\%
VAGDSW 0.05 68 43.8 10 940 (1 167, 4 351, 5 422) 0.62\%
VAGDSW 0.01 167 333.4 10 304 (1 167, 4 324, 4 813) 0.58\%

VAGDSW - S 0.10 50 18.7 12 539 (1 167, 4 389, 6 983) 0.71\%

VAGDSW - S 0.05 63 32.2 11 005 (1 167, 4 362, 5 476) 0.62\%

VAGDSW - S 0.01 147 158.1 10 320 (1 167, 4 338, 4 815) 0.58\%

VRAGDSW 0.10 54 22.0 6 641 (6 641, 0, 0) 0.38\%
VRAGDSW 0.05 80 45.2 4 868 (4 868, 0, 0) 0.28\%
VRAGDSW 0.01 189 280.2 4 019 (4 019, 0, 0) 0.23\%

VRAGDSW - S 0.10 50 18.4 7 833 (7 833, 0, 0) 0.44\%

VRAGDSW - S 0.05 69 46.1 5 519 (5 519, 0, 0) 0.31\%

VRAGDSW - S 0.01 151 202.6 4 152 (4 152, 0, 0) 0.23\%
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Table 6
Averaged results for 100 random coefficient functions (average large-coefficient density:

11.08\%): tolerance for the selection of the eigenfunctions, iteration counts, condition numbers,
and resulting coarse space dimension for different coarse spaces; maximum in brackets. Number
of subdomains: 512; number of nodes: 452 522 (degrees of freedom: 1 357 566); average degrees of
freedom per overlapping subdomain: 5 906.4; overlap: two layers of finite elements; maximum co-
efficient Emax = 106; relative stopping criterion \| r(k)\| 2/\| r(0)\| 2 < 10 - 8. Unstructured tetrahedral
mesh; unstructured domain decomposition (METIS). VGDSW and VRGDSW never converged in 2 000
iterations.

Random coefficient function E
V0 tol it. \kappa dimV0 dimV0/dof

VGDSW  - >2 000 (  - ) 2.1\cdot 105 (3.2\cdot 105) 49 862.0 (49 862) 3.7\% (3.7\%)
VRGDSW  - >2 000 (  - ) 2.4\cdot 105 (3.7\cdot 105) 17 778.0 (17 778) 1.3\% (1.3\%)

VAGDSW 0.10 84.8 ( 93) 56.2 ( 80.7) 69 006.7 (69 892) 5.1\% (5.1\%)
VAGDSW 0.05 106.3 (118) 92.1 ( 145.2) 66 482.5 (67 273) 4.9\% (5.0\%)
VAGDSW 0.01 180.8 (228) 293.3 ( 662.9) 64 508.1 (65 235) 4.8\% (4.8\%)

VAGDSW - S 0.10 76.4 ( 84) 44.1 ( 54.2) 70 570.8 (71 632) 5.2\% (5.3\%)

VAGDSW - S 0.05 99.3 (112) 77.9 ( 110.7) 67 445.3 (68 360) 5.0\% (5.0\%)

VAGDSW - S 0.01 168.1 (195) 247.5 ( 448.4) 65 212.8 (66 046) 4.8\% (4.9\%)

VRAGDSW 0.10 89.5 (100) 60.9 ( 82.2) 39 081.8 (39 780) 2.9\% (2.9\%)
VRAGDSW 0.05 115.1 (129) 104.8 ( 152.5) 35 961.4 (36 649) 2.6\% (2.7\%)
VRAGDSW 0.01 200.3 (232) 342.8 ( 523.6) 33 370.8 (34 058) 2.5\% (2.5\%)

VRAGDSW - S 0.10 74.9 ( 88) 42.8 ( 59.6) 44 045.9 (44 677) 3.2\% (3.3\%)

VRAGDSW - S 0.05 97.1 (112) 72.9 ( 103.5) 39 076.9 (39 730) 2.9\% (2.9\%)

VRAGDSW - S 0.01 167.8 (199) 244.7 ( 469.9) 35 399.8 (36 137) 2.6\% (2.7\%)
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