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In this work, we propose and analyze an extension of the approximate component mode synthesis (ACMS)
method to the two-dimensional heterogeneous Helmholtz equation. The ACMS method has originally
been introduced by Hetmaniuk and Lehoucq as a multiscale method to solve elliptic partial differential
equations. The ACMS method uses a domain decomposition to separate the numerical approximation
by splitting the variational problem into two independent parts: local Helmholtz problems and a global
interface problem. While the former are naturally local and decoupled such that they can be easily solved
in parallel, the latter requires the construction of suitable local basis functions relying on local eigenmodes
and suitable extensions. We carry out a full error analysis of this approach focusing on the case where the
domain decomposition is kept fixed, but the number of eigenfunctions is increased. The theoretical results
in this work are supported by numerical experiments verifying algebraic convergence for the method. In
certain, practically relevant cases, even super-algebraic convergence for the local Helmholtz problems can
be achieved without oversampling.

Keywords: multiscale method; approximate component mode synthesis (ACMS); Helmholtz equation;
heterogeneous media; high-frequency.

1. Introduction

In this paper, we propose and analyze a multiscale method for the heterogeneous Helmholtz equation

−div(a∇u) − κ2u = f in Ω , (1.1)

a∂nu − iωβu = g on ΓR, (1.2)

u = 0 on ΓD, (1.3)
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2 E. GIAMMATTEO ET AL.

in a plane region Ω ⊂ R
2. The boundary of Ω is decomposed into sets ΓD and ΓR modeling, respectively,

Dirichlet boundary conditions and impedance boundary conditions described by the function g. The real-
valued function β is related to transmission and reflection of the wave described by u. Material properties
of the background medium occupying Ω are described by the coefficient functions a and c. Denoting
the positive angular frequency as ω, the wavenumber is given by κ = ω/c and any interior sources
are modeled by the function f . Heterogeneous Helmholtz equations have many applications, such as
modeling the propagation of light in photonic crystals, where u is related to either the transverse-electric
or the transverse-magnetic field Joannopoulos et al. (2008), or seismic imaging Bourgeous et al. (1991);
Wang et al. (2011).

1.1 Literature overview

Numerical simulations of the Helmholtz equation are challenging due to the highly oscillatory behavior
of the solution, in particular, in the case of a high wavenumber κ . The differential operator in the equation
is indefinite, which may lead to stability issues for standard discretization approaches such as the classical
finite element method (FEM). In order to resolve the oscillatory behavior of the solution, a wavenumber-
dependent mesh size of O(1/κ) is required. Moreover, the FEM solution suffers from the pollution error
in general, i.e., the ratio of the errors of the Galerkin solution and the best approximation grows with the
wavenumber κ (Babuška et al., 1995, Theorem 2.6), Babuška & Sauter (1997). To obtain accurate FEM
solutions, a much smaller mesh size h satisfying κ3h2 = O(1) has to be employed Deraemaeker et al.
(1999); see also (Graham & Sauter, 2019, Theorem 4.5) where a similar condition is derived.

In order to overcome the pollution effect, higher-order methods can be employed: in particular, for
the hp-FEM, quasi-optimality has been proved in Melenk & Sauter (2010, 2011) under the conditions
that the polynomial degree p is at least O(log κ) and that κh/p is sufficiently small. In Chaumont-Frelet
& Nicaise (2020) and Lafontaine et al. (2022), similar results have been achieved for the heterogeneous
Helmholtz equation with piecewise smooth coefficients; however, to the authors’ knowledge, no theory
for rough coefficients is available yet.

Multiscale discretization approaches can be very efficient for problems with heterogeneous or
non-smooth coefficients, especially if the variations are on a much smaller scale than the size of the
computational domain. While for classical higher-order FEMs, fine-scale coefficient variations have to
be resolved by mesh elements, multiscale methods are typically defined on a coarser grid, and fine-scale
variations are handled via adapted basis functions; those basis functions are typically computed locally
using a fine-scale mesh. Hence, systems resulting from multiscale methods are often smaller by orders
of magnitude.

In recent years, many multiscale discretization methods have been developed and applied to
the heterogeneous Helmholtz equation; for a review on numerical homogenization techniques, also
addressing their application to Helmholtz problems, see Altmann et al. (2021). The localized orthogonal
decomposition (LOD) method, introduced in Henning & Målqvist (2014) and Målqvist & Peterseim
(2014), has successfully been applied to heterogeneous Helmholtz problems with high wavenumbers
Brown et al. (2017); Peterseim (2017); Peterseim & Verfürth (2020). The LOD relies on a partition of the
domain with coarse elements of size H, and basis functions that are computed using local oversampling
domains of size �H. The approximation error is then bounded by O(H + γ �) for some 0 < γ < 1
assuming the resolution condition Hκ � 1 and log(κ)/� bounded (Peterseim, 2017, Theorem 5.5).
More recently, even super-exponential convergence of the localization error could be shown for a variant
of the LOD method in Freese et al. (2021).
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ACMS FOR THE HELMHOLTZ EQUATION 3

The heterogeneous multiscale method Abdulle et al. (2003); Abdulle & Vanden-Eijnden (2012),
which relies on local periodicity of the media, has been extended to Helmholtz problems in Ohlberger
& Verfurth (2018). The authors show quasi-optimality in terms of a wave-number dependent quasi-
optimality constant.

Other multiscale discretization approaches are multiscale FEM (MsFEM) Babuška & Osborn (1983);
Babuška et al. (1994); Hou & Wu (1997); see also, e.g., Efendiev & Hou (2009) for an overview on
MsFEM. Nearly exponential error decay for the Helmholtz equation has been achieved in Ma et al.
(2023), using similar ideas as in the multiscale generalized finite element method, first described in
Efendiev et al. (2013). In a recent work, Chen, Hou and Wang Chen et al. (2023) extended ideas from
elliptic equations Hetmaniuk & Lehoucq (2010); Hetmaniuk & Klawonn (2014); Chen et al. (2021)
to the heterogeneous Helmholtz equation. The method in Chen et al. (2023) decomposes the solution
into a microscale part and a macroscale part. The errors of the two parts are bounded by O(H) and
O(H exp(−I1/(d+1)−ε

e )), respectively, where ε > 0, d is the space dimension and Ie denotes the number
of local basis functions associated to the edges of a coarse partition with mesh size H. These local basis
functions are computed by local oversampling.

In domain decomposition methods, multiscale discretizations are also used as coarse spaces to
construct preconditioners which are robust with respect to heterogeneous coefficients; see, e.g., Aarnes
& Hou (2002); Gander et al. (2015); Heinlein et al. (2019); Heinlein & Smetana (2022) for applications
to scalar elliptic problems, or Buck et al. (2013) for linear elasticity problems. For the application
to heterogeneous Helmholtz problems, see, for instance, Conen et al. (2014), Gong et al. (2020) and
Bootland et al. (2022).

Let us also refer to Wang et al. (2011) for an optimized parallel implementation of a direct solver
based on local Schur complements on a hierarchy of domain decompositions reducing the number of
low-rank compression operations compared with other structured direct solvers; see Liu et al. (2022)
for a recent work in the context of elliptic equations. Finally, multigrid methods for the heterogeneous
Helmholtz problem have been analyzed; see, e.g., Erlangga et al. (2006).

In this work, we consider an extension of the approximate component mode synthesis (ACMS)
method to Helmholtz problems. The ACMS method has been introduced by Hetmaniuk and Lehoucq
in Hetmaniuk & Lehoucq (2010) as a multiscale discretization for scalar elliptic problems with
heterogeneous coefficient functions. It is based on the early component mode synthesis (CMS) method
Hurty (1960); Craig & Bampton (1968), which uses a decomposition of the global approximation space
into independent local subspaces and an interface space. The basis functions are defined as eigenmodes
of corresponding generalized eigenvalue problems. The global support of the interface basis functions
leads to high computational cost for their construction as well as a dense matrix structure of the
interface problem. Hence, the practicability and potential for parallelization of CMS method are rather
limited. Therefore, the ACMS method was introduced in order to improve the CMS approach: instead
of global interface modes, functions with local support are employed. The basis functions incorporate
heterogeneities of the model problem; notably, besides edge modes, this framework uses vertex basis
functions of MsFEM Hou & Wu (1997); Efendiev & Hou (2009); Buck et al. (2013) type. Since
the ACMS discretization uses problem-specific shape functions with local support, it can therefore
be considered a special finite element method (SFEM) Babuška et al. (1994), and it also fits into the
framework of the generalized finite element method Babuška et al. (2004). In contrast to other multiscale
approaches, such as those previously mentioned Freese et al. (2021); Chen et al. (2023); Ma et al.
(2023), the ACMS method of Hetmaniuk & Lehoucq (2010) is based on a non-overlapping domain
decomposition and does not use local oversampling. Furthermore, we note that, although the current
method as well as the one of Chen et al. (2023) rely on a similar decomposition of the solution in a
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4 E. GIAMMATTEO ET AL.

Helmholtz-harmonic and bubble part, we can compute these two contributions in parallel, while they are
computed sequentially in Chen et al. (2023). This is due to the fact that the basis functions defined in
Chen et al. (2023) and the ones defined here enjoy different orthogonality properties with respect to the
sesquilinear form of the Helmholtz problem; see (Chen et al., 2023, Remark 3.3) and Section 3 below.

The ACMS method has been further investigated in Hetmaniuk & Klawonn (2014), where a priori
error bounds and an a posteriori error indicator for the method have been derived, and in Heinlein et al.
(2015), where a parallel implementation in PETSc based on the finite element tearing and interconnecting
dual primal domain decomposition method as the parallel solver is presented. More recently, a robust
spectral coarse space for Schwarz domain decomposition methods based on the ACMS discretization has
been introduced in Heinlein et al. (2018); further related works on CMS and ACMS methods include
Bourquin (1990, 1992) and Madureira & Sarkis (2018). Moreover, to the authors’ best knowledge,
preliminary, but unpublished work on the extension of the ACMS method to wave problems, has been
carried out by Hetmaniuk and Johnson in the early 2010s.

As a multiscale discretization, the ACMS method seems to be well suited for approximating
heterogeneous Helmholtz problems. As we will discuss in this work, since the eigenmodes of the
Helmholtz and the Laplacian operator are the same if the wavenumber is constant, similar ACMS basis
functions as in the Laplace case are suitable for the Helmholtz equation as well.

1.2 Our contribution and outline

In this paper, we extend the ACMS method to heterogeneous Helmholtz problems. In doing so, we
slightly modify the construction of the edge modes and the extension operator. These modifications are
required because the weak formulation of the considered Helmholtz problem does not lead to a symmetric
positive definite formulation, contrary to the elliptic case, for which the ACMS method has been
developed originally. In the elliptic case Hetmaniuk & Lehoucq (2010); Hetmaniuk & Klawonn (2014),
the orthogonality of the basis functions with respect to the bilinear form follows in a straightforward
way from the definition, which is also exploited in the error analysis. For the Helmholtz case, on
the contrary, it is necessary to adjust the definition of the extension operator in order to keep the
orthogonality property with respect to the problem’s indefinite sesquilinear form and in order to be
consistent with the error analysis. At the same time, we adapt the method to Robin boundary conditions
equation (1.2). Moreover, we fully localize the construction of the edge basis functions by solving only
a one-dimensional eigenvalue problem on each edge, while the corresponding eigenvalue problems in
Hetmaniuk & Lehoucq (2010), Hetmaniuk & Klawonn (2014) and Heinlein et al. (2015) couple edges
to adjacent subdomains; see Remark 1.

This allows us to perform a full error analysis focusing on fixing the domain decomposition and
increasing the number of eigenmodes for tackling the local heterogeneities. This approach is motivated
by applications from wave propagation in (quasi)-periodic media Joannopoulos et al. (2008), where
our construction yields an accurate local model for the propagation of light within one unit cell, i.e.,
one subdomain in the domain decomposition. While the error analysis for the local sub-problems, for
which we obtain similar a posteriori error bounds as in Hetmaniuk & Klawonn (2014) is rather simple,
the error analysis for the interface problem is slightly more sophisticated. The analysis is based on the
abstract framework of Graham & Sauter (2019), and relies in particular on the smallness of the so-called
adjoint approximability constant; see Section 4 and, in particular, equation (4.10) below. In contrast to
Graham & Sauter (2019), where H2(Ω)-regularity of the solution of the adjoint problem is required,
we require H2-regularity of the solution of the adjoint problem only in the vicinity of the interface of
the domain decomposition. We show that, upon using sufficiently many (edge) eigenmodes, the adjoint
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ACMS FOR THE HELMHOLTZ EQUATION 5

approximability constant can be made arbitrarily small, and we provide an explicit scaling relation for
the required number of edge modes in terms of frequency ω. Moreover, we obtain cubic (O(I−3

e )) and
quadratic (O(I−2

e )) convergence in the L2- and H1-norms, respectively, in terms of edge modes.
Finally, we present a detailed numerical study of the method using a flexible implementation

that, unlike in the numerical results for the ACMS method shown in previous works, also allows for
unstructured meshes and domain decompositions.

The paper is organized as follows: we introduce the necessary preliminaries for defining and
analyzing the ACMS method for Helmholtz problems in Section 2. In particular, we show the variational
formulation of the Helmholtz equation, recall the well-posedness results of Graham & Sauter (2019), and
illustrate the underlying domain decomposition and function spaces of the ACMS discretization. Then,
in Section 3, we present our new variant of the ACMS method for Helmholtz problems along with some
theoretical properties. The error analysis of the ACMS method is carried out in Section 4. Finally, we
describe our numerical results in Section 5 and conclude with some final remarks.

2. Preliminaries

In the following, we introduce the functional analytic setting and recall well-posedness results for the
heterogeneous Helmholtz equation. Furthermore, we introduce the domain decomposition used in the
ACMS method.

2.1 Variational formulation of the Helmholtz equation

We denote by L2(Ω) the Lebesgue space of square-integrable functions v : Ω → C with inner product

(u, v)Ω =
∫

Ω

u v dx,

and by H1(Ω) the usual Sobolev space of functions in L2(Ω) with square-integrable weak derivatives.
We denote the associated norm as ‖ · ‖L2(Ω). Corresponding notation is used for other measurable sets
besides Ω . Furthermore, we indicate by H1

D(Ω) ⊂ H1(Ω) functions with vanishing trace on ΓD ⊂ ∂Ω .
Let us introduce the sesquilinear forms A, C : H1

D(Ω) × H1
D(Ω) → C defined by

A(u, v) =
∫

Ω

a∇u · ∇v dx, (2.1)

C(u, v) = A(u, v) − (κ2u, v)Ω − i(ωβu, v)ΓR
. (2.2)

Then the weak form of the Helmholtz problem (1.1), (1.2), (1.3) and its adjoint are

Find u ∈ H1
D(Ω) : C(u, v) = F(v), for all v ∈ H1

D(Ω), (2.3)

Find z ∈ H1
D(Ω) : C(v, z) = G(v), for all v ∈ H1

D(Ω). (2.4)
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6 E. GIAMMATTEO ET AL.

Here, F : H1
D(Ω) → C and G : H1

D(Ω) → C, defined by

F(v) = (f , v)Ω + (g, v)ΓR
, (2.5)

G(v) = (v, f )Ω + (v, g)ΓR
, (2.6)

are antilinear and linear functionals on H1
D(Ω), respectively.

2.2 Well-posedness of the Helmholtz equation

We recall the well-posedness theory for the Helmholtz equation presented in Graham & Sauter (2019).
Thus, we deem the following assumptions valid throughout the paper without explicitly mentioning it:

ASSUMPTION 2.1. (i) Ω ⊂ R
2 is a connected polygonal domain with piecewise C2 boundary with strictly

convex angles. Its boundary can be decomposed as ∂Ω = ΓR ∪ ΓD into relatively open disjoint subsets
ΓR, ΓD ⊂ ∂Ω . The angle between a segment in ΓD and ΓR is smaller than π/2. (ii) The source terms
satisfy f ∈ L2(Ω) and g ∈ H1/2(ΓR). (iii) The coefficient functions a, c ∈ L∞(Ω) are uniformly positive,
i.e., amin ≤ a(x) ≤ amax and cmin ≤ c(x) ≤ cmax for a.e. x ∈ Ω , where amin, cmin, amax, cmax are positive
constants. Recall that the coefficient function c is such that κ = ω/c, where ω is the angular frequency.
(iv) β ∈ L∞(ΓR) with meas(supp(β)) > 0 and either β > 0 or β < 0.

The analysis employs the norm ‖u‖2
B = B(u, u) induced by the sesquilinear form

B(u, v) = A(u, v) + (κ2u, v)Ω , (2.7)

defined for u, v ∈ H1
D(Ω); see Graham & Sauter (2019); Chen et al. (2023); Ma et al. (2023). In (Graham

& Sauter, 2019, Thm. 2.4), the following result is proved. We recall parts of the proof to show robustness
of the constant CC for high-frequencies ω → ∞.

THEOREM 2.2. (i) For all u, v ∈ H1
D(Ω), it holds that

|C(u, v)| ≤ CC‖u‖B‖v‖B, (2.8)

with constant CC = 1 + CΩβmax max
{
a−1

min, 1+ω
ω

cmax

}
and constant CΩ depending only on Ω .

(ii) There exist unique solutions of equation (2.3), (2.4).
(iii) If g = 0 in equation (2.3) and 2.4, then there exists a constant Cstab = Cstab(a, c, ω, Ω) such that

the corresponding solutions u and z satisfy:

‖u‖B ≤ Cstab‖f ‖L2(Ω), ‖z‖B ≤ Cstab‖f ‖L2(Ω). (2.9)

Proof. We only derive the constant CC, for the other statements, see (Graham & Sauter, 2019, Thm.
2.4). An application of the Cauchy–Schwarz inequality to equation (2.2) yields that

|C(u, v)| ≤ ‖u‖B‖v‖B + (ω|β|u, u)
1/2
ΓR

(ω|β|v, v)1/2
ΓR

.
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ACMS FOR THE HELMHOLTZ EQUATION 7

The trace inequality yields a constant CΩ > 0, depending on Ω such that (Grisvard, 2011, p. 41)

(ω|β|u, u)ΓR
≤ CΩβmax

(
ω‖u‖L2(Ω)‖∇u‖L2(Ω) + ω‖u‖2

L2(Ω)

)

≤ CΩβmax

(
cmax√
amin

‖ω

c
u‖L2(Ω)‖

√
a∇u‖L2(Ω) + c2

max

ω
‖ω

c
u‖2

L2(Ω)

)

≤ CΩβmax max

{
1

amin
,

1 + ω

ω
c2

max

}
‖u‖2

B,

from which (2.8) follows. �
Given Assumption 2.1, it follows that the solution u of equation (2.3) satisfies ∇u ∈ Lp(Ω) for some

p > 2; cf. Gröger (1989). By invoking the Sobolev embedding theorem (Adams, 1975, p. 97), we thus
have that u is Hölder continuous in Ω̄ with exponent 1 − 2/p. Condition (i) in Assumption 2.1 is used
in Section 4.4 below to verify higher regularity of the solution of the dual problem; see Shamir (1968)
for a counterexample if (i) is not satisfied.

2.3 Decomposition of the computational domain

Let {Ωj}J
j=1 denote a conforming decomposition of Ω into J non-overlapping domains Ωj with piecewise

smooth boundaries. Furthermore, let

Γ =
J⋃

j=1

∂Ωj \ ΓD

denote the domain decomposition interface and E the set of all edges of the domain decomposition, where
each edge e is a relatively open set with either e = ∂Ωi ∩ ∂Ωj for some i �= j or e ⊂ ΓR ∩ ∂Ωi for some
i. Furthermore, let V = {p ∈ Γ } = Γ \ ∪e∈Ee be the set of points connecting adjacent edges, which we
also refer to as the vertices of the domain decomposition.

2.4 Function spaces

The Lions–Magenes space H
1/2

00 (e) is defined as an interpolation space between L2(e) and H1
0(e) (Lions &

Magenes, 1972, Ch. 1, Thm. 11.7). Therefore, it holds that H1
0(e) ⊂ H

1/2

00 (e) densely (Lions & Magenes,
1972, p. 10). We have the following interpolation inequality

‖η‖
H

1/2
00 (e)

≤ C‖η‖1/2

L2(e)
‖η‖1/2

H1
0(e)

(2.10)

for all η ∈ H1
0(e) (Lions & Magenes, 1972, Proposition 23, p. 19). The space H1/2(e) is defined as the

interpolation space between H1(e) and L2(e); see (Lions & Magenes, 1972, Ch. 1, Thm. 9.6). In view of
(Lions & Magenes, 1972, Ch. 1, Thm. 11.7), if e ⊂ ∂Ωj for some 1 ≤ j ≤ J, functions in H

1/2

00 (e) can be

extended continuously by zero to functions in H1/2(∂Ωj). Here, H1/2(∂Ωj) denotes the space of traces of

functions in H1(Ωj); cf. (Lions & Magenes, 1972, Ch. 1, Thm. 8.3). Lastly, by H
1/2

D (Γ ) we denote the

space of traces on Γ , i.e., v ∈ H
1/2

D (Γ ) if there exist u ∈ H1
D(Ω) such that u|Γ = v.
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8 E. GIAMMATTEO ET AL.

3. ACMS method

The ACMS method introduced in Hetmaniuk & Lehoucq (2010) relies on an orthogonal splitting of
H1(Ω) into interface functions H

1/2

D (Γ ) and local functions H1
0(Ωj), j = 1, . . . , J, and on the availability

of basis functions with local support; while functions in H1
0(Ωj) generally have local support, interface

basis functions with local support are constructed based on the edges and vertices that form Γ . In
Hetmaniuk & Lehoucq (2010), orthogonality is characterized by the bilinear form associated to the
elliptic problem. The basic idea of our extension of the ACMS method to Helmholtz problems is similar,
but ‘orthogonality’ is measured with respect to the sequilinear form C defined in equation (2.2), which
is not an inner product in general. Below we will construct spaces

VS := VB,SB
⊕ VΓ ,SΓ

(3.1)

that are either associated to the subdomains Ωj or to the interface Γ . In particular, the corresponding basis
functions have local support and can be built locally. We now discuss the construction of the bubble space
VB,SB

and the interface space VΓ ,SΓ
in detail.

3.1 Bubble space

Let us define the local sesquilinear form Aj : H1(Ωj) × H1(Ωj) → C as in equation (2.1), but with
domain of integration Ωj instead of Ω . Since Aj is Hermitian, we can consider the eigenproblems: for

j = 1, ..., J and i ∈ N, find (bj
i, λ

j
i) ∈ H1

0(Ωj) × R such that

Aj(b
j
i, v) = λ

j
i(κ

2bj
i, v)Ωj

for all v ∈ H1
0(Ωj). (3.2)

Standard theory ensures that the eigenfunctions {bi
j}i form an orthogonal basis for H1

0(Ωj) with respect

to Aj and can be normalized to an orthonormal basis for L2(Ωj) with weighted inner product (κ2u, v)Ωj
,

and that λ
j
i > 0. Furthermore, we may assume that the eigenvalues λ

j
i are ordered non-decreasingly,

i.e., λ
j
i ≤ λ

j
l for i ≤ l. By definition κ(x) = ω/c(x), and, hence, the numbers λ

j
iω

2 are eigenvalues of

a corresponding eigenproblem that is independent of ω. As such, λ
j
iω

2 is independent of ω. If c(x) is
constant, the bubble functions are defined as in the elliptic case in Hetmaniuk & Lehoucq (2010). In
slight abuse of notation, we may denote by bj

i ∈ H1
0(Ω) also the extension of bj

i ∈ H1
0(Ωj) by zero

outside of Ωj and we call these bubble functions. Associated to the partition {Ωj}j of Ω , let us introduce
the infinite-dimensional bubble space

VB =
J⊕

j=1

Vj, with Vj = span{ bj
i : i ∈ N}. (3.3)

Let SB = (I1, . . . , IJ) ∈ N
J be a multi-index. Then, the finite-dimensional bubble space employed in the

ACMS method is defined by

VB,SB
=

J⊕
j=1

Vj
Ij

, with Vj
Ij

= span{ bj
i : 1 ≤ i ≤ Ij}. (3.4)
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ACMS FOR THE HELMHOLTZ EQUATION 9

3.2 Solvability of local Helmholtz problems

The interface space VΓ ,SΓ
introduced below relies on the proper extension of functions defined on the

interface Γ . The extension relies on the solvability of local Helmholtz problems with homogeneous
Dirichlet boundary conditions. Therefore, in the rest of the manuscript, we additionally assume the
following:

ASSUMPTION 3.1. For all j = 1, . . . , J and for all i ∈ N, let λ
j
i �= 1.

Assumption 3.1 might be justified by suitably adapting the partition {Ωj}j such that the spectrum of

the corresponding differential operator in equation (3.2) does not include the value 1: the eigenvalues λ
j
i

depend on the size of Ωj, and they grow if Ωj is suitably made smaller, cf. (3.10) for the corresponding
scaling behavior of eigenvalues for one-dimensional eigenvalue problems. As noted in Section 3.1,
the numbers λ

j
iω

2 are independent of ω. Hence, the suitable adjustment of {Ωj} that guarantees that
Assumption 3.1 holds, depends on the frequency ω. Similar assumptions have been used, e.g., in (Freese
et al., 2021, Assumption 4.2) or (Chen et al., 2023, Assumption 1), to guarantee coercivity of the local
Helmholtz problems. Next, we establish well-posedness of the local Helmholtz problems under the
conditions of Assumption 3.1.

LEMMA 3.2. For β j = infi∈N{|λj
i−1|/(λ

j
i+1)} > 0, the following estimates hold:

inf
u∈H1

0(Ωj)

sup
v∈H1

0(Ωj)

Aj(u, v) − (κ2u, v)Ωj

‖u‖B‖v‖B

≥ β j,

inf
v∈H1

0(Ωj)

sup
u∈H1

0(Ωj)

Aj(u, v) − (κ2u, v)Ωj

‖u‖B‖v‖B

≥ β j.

Proof. Assumption 3.1 implies that β j > 0. Let u ∈ H1
0(Ωj) be given. Since {bj

i}i is a basis of H1
0(Ωj),

we have that u = ∑∞
i=1 uib

j
i with ui = (κ2u, bj

i)Ωj
. Let v = ∑∞

i=1 sgn(λ
j
i − 1)uib

j
i. We note that

‖u‖2
B =

∞∑
i=1

(λ
j
i + 1)|ui|2,

and ‖v‖B = ‖u‖B. Then we have that

Aj(u, v) − (κ2u, v)Ωj
=

∞∑
i=1

|λj
i − 1||ui|2 ≥ inf

i∈N
|λj

i − 1|
λ

j
i + 1

‖u‖2
B.

Hence, the first inequality follows. The second inequality follows similarly. �

3.3 A harmonic extension operator

In order to define the interface space, we need an extension from Γ to Ω , which is obtained by combining
the extensions of functions from ∂Ωj to Ωj.
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10 E. GIAMMATTEO ET AL.

For a given τ ∈ H1/2(∂Ωj), let τ̃ ∈ H1(Ωj) be any function satisfying τ̃|∂Ωj
= τ . Then we indicate

by τ̃0 ∈ H1
0(Ωj) the solution to

Aj(τ̃0, v) − (κ2τ̃0, v)Ωj
= −

(
Aj(τ̃ , v) − (κ2τ̃ , v)Ωj

)
for all v ∈ H1

0(Ωj), (3.5)

which is uniquely defined by Lemma 3.2. We introduce the local Helmholtz-harmonic extension Ej :
H1/2(∂Ωj) → H1(Ωj) by setting Ejτ = τ̃ + τ̃0.

LEMMA 3.3. The extension operator Ej : H1/2(∂Ωj) → H1(Ωj) is bounded, that is,

‖Ejτ‖B ≤ (1 + 1/β j)‖τ̃‖B, (3.6)

where τ̃ ∈ H1(Ωj) is any extension of τ ∈ H1/2(∂Ωj).

Proof. We estimate the right-hand side in equation (3.5) by ‖τ̃‖B‖v‖B. Then, Lemma 3.2 yields that
‖τ̃0‖B ≤ ‖τ̃‖B/β j, and the assertion follows. �

We note the following orthogonality relation, which is a crucial property for the construction of the
ACMS spaces: for τ ∈ H1/2(∂Ωj) and for all bubble functions bj

i ∈ H1
0(Ωj), we have

Aj(E
jτ , bj

i) − (κ2Ejτ , bj
i)Ωj

= 0. (3.7)

Next, we construct extensions from the local edges and the interface. We assume that e = ∂Ωj ∩∂Ωi ∈ E

is a common edge of Ωi and Ωj. Let τ ∈ H
1/2

D (Γ ), which, by restriction, implies τ ∈ H1/2(∂Ωj) and

τ ∈ H1/2(∂Ωi). Since (Ejτ)|e = τ|e = (Eiτ)|e, we can introduce the extension operator EΓ : H
1/2

D (Γ ) →
H1

D(Ω) by (EΓ τ)|Ωj
= Ejτ|∂Ωj

, for all j = 1, . . . , J. Moreover, we define Ee : H
1/2

00 (e) → H1
D(Ω) via

Eeτ = EΓ Ee
0τ , where Ee

0 : H
1/2

00 (e) → H
1/2

D (Γ ) denotes the extension by zero to the interface Γ .

3.4 Vertex based approximation space

For any p ∈ V, let ϕp : Γ → R denote a piecewise harmonic function, that is, Δeϕp|e = 0 for all e ∈ E,
with Δe indicating the Laplace operator along the edge e ∈ E, and ϕp(q) = δp,q for all p, q ∈ V. Note

that the support of ϕp consists of all edges which share the vertex p and is, therefore, local. In turn, EΓ ϕp
is supported on all subdomains Ωj that share the vertex p. If all edges e ∈ E are straight line segments,
then ϕp is a piecewise linear function on Γ , similar to Hetmaniuk & Lehoucq (2010). The choice of Δe
here is motivated by the error analysis in Section 4.3. The vertex based space is then defined by linear
combinations of corresponding extensions,

VV = span{ EΓ ϕp : p ∈ V}.

For our error analysis, we will employ the nodal interpolant

IVv =
∑
p∈V

v(p)ϕp, (3.8)
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ACMS FOR THE HELMHOLTZ EQUATION 11

which is well-defined for functions v : Ω → C that are continuous in all p ∈ V. Note that IV can
be applied to the solution u ∈ H1

D(Ω) ∩ W1,p(Ω) to equation (2.3); see the comments at the end of
Section 2.2.

3.5 Interface space

Let us consider e ∈ E and denote by ∂e the tangential derivative, i.e., differentiation along e. We define
the edge modes as solutions to the following weak formulation of the edge-Laplace eigenvalue problems:
for each e ∈ E, find (τ e

i , λe
i ) ∈ H1

0(e) × R, i ∈ N, such that

(∂eτ
e
i , ∂eη)e = λe

i (τ
e
i , η)e for all η ∈ H1

0(e). (3.9)

Standard theory ensures that the eigenfunctions {τ e
i }i form an orthogonal basis for H1

0(e) and can be
normalized to an orthonormal basis for L2(e). We may again assume that the eigenvalues λe

j > 0 are
ordered increasingly. Moreover, we note that the asymptotic behavior of the eigenvalues is (Courant &
Hilbert, 1953, p. 415)

λe
i ∼

( iπ

|e|
)2

. (3.10)

REMARK 1. Let us mention that the definition of the edge modes here requires the solution of local
eigenvalue problems only on the edges and differs from the definition in the classical ACMS method
of Hetmaniuk & Lehoucq (2010); Hetmaniuk & Klawonn (2014), where the authors solve eigenvalue
problems involving the extension operator, resulting in problems on two neighboring subdomains; see,
e.g., (Hetmaniuk & Lehoucq, 2010, Equation (3.4)).

The corresponding infinite-dimensional interface space is

VΓ = VV +
∑
e∈E

EeVe, Ve = span{τ e
i : i ∈ N}. (3.11)

Note that each function in EeVe has local support inside the two subdomains adjacent to e. Choosing
Ie ∈ N, e ∈ E, we introduce the L2(e)-projection Pe

Ie
: L2(e) → Ve defined by

Pe
Ie

v =
Ie∑

j=1

(v, τ e
j )eτ

e
j , (3.12)

and denote the range of Pe
Ie

by Ve
Ie

. Collecting the indices Ie in a multi-index SΓ , we define the finite-
dimensional interface space by

VΓ ,SΓ
= VV +

∑
e∈E

EeVe
Ie

, (3.13)
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12 E. GIAMMATTEO ET AL.

which, together with equation (3.4), completes the construction of the ACMS approximation space
in equation (3.1). We now give some well-known interpolation error estimates; see, e.g., (Larsson &
Thomée, 2003, p. 83). We recall the proofs for convenience of the reader.

LEMMA 3.4. For any e ∈ E and all w ∈ H1
0(e), it holds that

‖w − Pe
Ie

w‖L2(e) ≤ 1√
λe

Ie+1

‖w − Pe
Ie

w‖H1(e). (3.14)

If, additionally, w ∈ H1
0(e) ∩ H2(e), then there exists a constant C > 0 such that

‖w − Pe
Ie

w‖H1(e) ≤ C√
λe

Ie+1

‖Δew − Pe
Ie
Δew‖L2(e). (3.15)

Proof. Since {τ e
j }j form an orthonormal basis of L2(e), we have that

‖w − Pe
Ie

w‖2
L2(e) =

∑
j≥Ie+1

|(w, τ e
j )e|2 ≤ 1

λe
Ie+1

‖w − Pe
Ie

w‖2
H1(e),

which proves (3.14). By equation (3.9) and the Poincaré inequality, we similarly have that

‖w − Pe
Ie

w‖2
H1(e) ≤ CP

∑
j≥Ie+1

λe
j |(w, τ e

j )e|2.

Using the definition of τ e
j in equation (3.9) again and performing integration by parts, we obtain

(w, τ e
j )e = 1

λe
j
(∂ew, ∂eτ

e
j )e = − 1

λe
j
(Δew, τ e

j )e,

where we used that w, τ e
j ∈ H1

0(e). This concludes the proof of (3.15). �

LEMMA 3.5. Let e ∈ E. Then, there exists a constant C > 0 such that

inf
ve∈Ve

Ie

‖w − IVw − ve‖
H

1/2
00 (e)

≤ C√
λe

Ie+1

‖w‖H3/2(e) (3.16)

for all w ∈ H3/2(e), with nodal interpolant IVw defined in equation (3.8).

Proof. By continuity of the embedding H1(e) ↪→ C0(e), we have that the nodal interpolation operator
IV is bounded, i.e., ‖IVw‖H1(e) ≤ C‖w‖H1(e) for all w ∈ H1(e). By choosing ve = 0, we thus have the
stability estimate

inf
ve∈Ve

Ie

‖w − IVw − ve‖H1(e) ≤ C‖w‖H1(e) for all w ∈ H1(e). (3.17)
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ACMS FOR THE HELMHOLTZ EQUATION 13

Employing Lemma 3.4 and using that w − IVw ∈ H1
0(e), we also have that

inf
ve∈Ve

Ie

‖w − IVw − ve‖H1(e) ≤ C√
λe

Ie+1

‖w‖H2(e) for all w ∈ H2(e).

Therefore, we get by interpolation (Lions & Magenes, 1972, Thm. 5.1, Thm. 9.6) that

inf
ve∈Ve

Ie

‖w − IVw − ve‖H1(e) ≤ C

(λe
Ie+1)

1/4
‖w‖H3/2(e) for all w ∈ H3/2(e). (3.18)

Employing equation (3.18) and Lemma 3.4 and recalling that the best-approximation is realized via the
projection Pe

Ie
(w − IVw), we also have that

inf
ve∈Ve

Ie

‖w − IVw − ve‖L2(e) ≤ 1

(λe
Ie+1)

3/4
‖w‖H3/2(e) for all w ∈ H3/2(e). (3.19)

Therefore, by the interpolation inequality (2.10), the relations (3.18), (3.19) yield (3.16), which concludes
the proof. �

The next result shows that H1
D(Ω)-functions can be approximated by bubble and interface functions.

The proof of this statement is also the recipe to obtain quantitative error estimates in Section 4.3.

LEMMA 3.6. Let VB and VΓ be as in equation (3.3) and equation (3.11), respectively. Then it holds that
H1

D(Ω) = VB ⊕ VΓ .

Proof. Using a density argument, it is sufficient to show that any function v ∈ H1
D(Ω)∩C∞

0 (Ω∪ΓR) can
be approximated by functions in VB ⊕ VΓ . First note that (v − EΓ v|Γ )|Ωj

∈ H1
0(Ωj) for each j = 1, ..., J.

Therefore, v − EΓ v|Γ ∈ VB. It remains to show that EΓ v|Γ can be approximated by functions in the
interface space VΓ . By continuity of EΓ , it is sufficient to approximate v|∂Ωj

in H1/2(∂Ωj). First, we

subtract the nodal interpolant, and observe that (v − IVv)|e ∈ H1
0(e) ⊂ H1/2

00 (e) for any e ∈ E such
that e ⊂ ∂Ωj. Then, ‖v − IVv‖H1/2(∂Ωj)

can be localized to single edges e ⊂ ∂Ωj as follows: define

we ∈ H1/2(∂Ωj) via we = (v − IVv)|e and we = 0 on ∂Ωj \ e. We observe that v − IVv = ∑
e⊂∂Ωj

we

on ∂Ωj. From (Grisvard, 2011, Lemma 1.3.2.6), we have that ‖we‖H1/2(∂Ωj)
is equivalent to ‖we‖

H1/2
00 (e)

.

Since it holds ‖v − IVv‖H1/2(∂Ωj)
≤ ∑

e⊂∂Ωj
‖we‖H1/2(∂Ωj)

≤ C
∑

e⊂∂Ωj
‖we‖

H1/2
00 (e)

, the result follows

from noting that we|e ∈ Ve. �

4. Galerkin approximation

We start by observing that

C(vB, vΓ ) = A(vB, vΓ ) − (κ2vB, vΓ ) − i(ωβvB, vΓ )ΓR
= 0, (4.1)
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14 E. GIAMMATTEO ET AL.

for all vB ∈ VB and vΓ ∈ VΓ , where we used equation (3.7) and that vB = 0 on ΓR. Similarly, C(vΓ , vB) =
0. Since u = uB + uΓ ∈ VB ⊕ VΓ with uB = u − EΓ u|Γ and uΓ = EΓ u|Γ , we thus obtain that

C(uB, vB) = F(vB) for all vB ∈ VB and (4.2)

C(uΓ , vΓ ) = F(vΓ ) for all vΓ ∈ VΓ . (4.3)

Recalling that VS = VB,SB
⊕VΓ ,SΓ

has been defined in equation (3.1), with VB,SB
⊂ VB and VΓ ,SΓ

⊂ VΓ

defined in equation (3.4) and equation (3.13), respectively, the Galerkin approximations of (4.2)–(4.3)
are split into two independent problems, namely a bubble approximation: find uB,S ∈ VB,SB

such that

C(uB,S, vB,S) = F(vB,S) for all vB,S ∈ VB,SB
; (4.4)

and an interface approximation: find uΓ ,S ∈ VΓ ,SΓ
such that

C(uS,Γ , vS,Γ ) = F(vS,Γ ) for all vS,Γ ∈ VΓ ,SΓ
. (4.5)

The Galerkin problem (4.4) is well-posed under Assumption 3.1, while adjoint approximability is
required to analyze the Galerkin problem (4.5); cf. Graham & Sauter (2019). In Theorem 4.6 below,
we prove estimates for the adjoint approximability constant, ensuring that also (4.5) is well-posed as
long as the number of edge modes is sufficiently large. In the following subsections, we present an error
analysis for the two independent approximation problems (4.4), (4.5).

4.1 Error estimates for the bubble approximation

For the statement of the approximation result, let us introduce the L2-projection Pj
Ij

: L2(Ω) → Vj
Ij

,
given by

Pj
Ij

f =
Ij∑

i=1

(κ2f , bj
i)Ωj

bj
i. (4.6)

The error analysis is then straight-forward, and the proof is given for convenience of the reader.

THEOREM 4.1. Assume f ∈ L2(Ω) and set fκ := f /κ2. For uB ∈ VB and uB,S ∈ VB,SB
, defined in (4.2)

and (4.4), respectively, we have the estimates:

‖κ(uB − uB,S)‖2
L2(Ω)

≤
J∑

j=1

1

|λj∗ − 1|2
‖κ(fκ − Pj

Ij
fκ)‖2

L2(Ωj)
, (4.7)

‖√a∇(uB − uB,S)‖2
L2(Ω)

≤
J∑

j=1

λ
j
#

|λj
# − 1|2

‖κ(fκ − Pj
Ij

fκ)‖2
L2(Ωj)

, (4.8)

where λ
j∗ = argmin{|λj

i − 1|, i ≥ Ij + 1}, and λ
j
# = argmax

{
λ

j
i

|λj
i−1|2 , i ≥ Ij + 1

}
.
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ACMS FOR THE HELMHOLTZ EQUATION 15

Proof. Since {bj
i}i form an orthonormal basis for L2(Ωj) with the weighted inner product (κ2u, v)Ωj

, we
may assume the expansion

uB =
J∑

j=1

∞∑
i=1

uj
B,ib

j
i, with uj

B,i = (κ2uB, bj
i)Ωj

.

By testing equation (4.2) with vB = bj
i, for i ∈ N, and observing that C(uB, bj

i) = Aj(uB, bj
i) −

(κ2uB, bj
i)Ωj

, we infer from equation (3.2) that uj
B,i = F(bj

i)/(λ
j
i − 1). Consequently, we obtain that

uB,S =
J∑

j=1

Ij∑
i=1

uj
B,S,ib

j
i, with uj

B,S,i = F(bj
i)

λ
j
i − 1

.

Therefore, uj
B,S,i = uj

B,i for 1 ≤ i ≤ Ij and 1 ≤ j ≤ J. Since bj
i = 0 on ∂Ω , we further have that

F(bj
i) = (f , bj

i)Ω . Hence, we conclude that

‖κ(uB − uB,S)‖2
L2(Ω)

=
J∑

j=1

∞∑
i=Ij+1

1

|λj
i − 1|2

|(f , bj
i)Ωj

|2,

which, by equation (4.6) and the definition of λ
j∗, implies (4.7). Estimate (4.8) follows similarly from

Aj(b
j
i, bj

i) = λ
j
i and

‖√a∇(uB − uB,S)‖2
L2(Ω)

=
J∑

j=1

∞∑
i=Ij+1

λ
j
i

|λj
i − 1|2

|(f , bj
i)Ωj

|2.

�
REMARK 2. We note that, if f|Ωj

= 0, then uB|Ωj
= 0, and the approximation error vanishes on Ωj.

Therefore, no bubble basis functions have to be computed on the corresponding domain Ωj. If, on the
other hand, f does not vanish on Ωj, the projection error in the estimates in Theorem 4.1 might be used
to adaptively choose the number of required bubble functions that guarantee a certain error bound; cf.
the discussion before (Hetmaniuk & Klawonn, 2014, Prop. 3.6) for the elliptic case.

REMARK 3. From the proof of Theorem 4.1, we see that, per subdomain, the bubble approximation is a
projection of the bubble part of the solution to Helmholtz equation with respect to the norms in (4.7) and
(4.8). Since a projection constitutes the best-approximation and Assumption 3.1 can be interpreted as a
resolution condition, the bubble approximation does not suffer from the pollution effect in the sense of
Babuška & Sauter (1997).

4.2 Well-posedness of the interface Galerkin problem

Well-posedness of the Galerkin problem and quasi-best approximation results under an adjoint approx-
imability condition follow as in (Graham & Sauter, 2019, Section 4), which has also been used in
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16 E. GIAMMATTEO ET AL.

(Chen et al., 2023, Section 4.2) or (Ma et al., 2023, Section 3.2) in a multiscale context. To state the
result let us introduce T∗χ = z, mapping χ ∈ L2(Ω) to the solution z ∈ H1

D(Ω) of the dual problem

C(v, z) = (v, χ) for all v ∈ H1
D(Ω), (4.9)

which is well-defined due to Theorem 2.2. Moreover, we denote with T∗
Γ χ = EΓ (z|Γ ) ∈ VΓ the interface

component of T∗χ . Using equation (4.1), we observe that T∗
Γ χ is a solution to equation (4.9) for test

functions v ∈ VΓ . The approximation properties of the interface space VΓ ,SΓ
are measured by the adjoint

approximability constant

σ ∗ = sup
ϕ∈L2(Ω)\{0}

infvΓ ,S∈VΓ ,SΓ
‖T∗

Γ (κ2ϕ) − vΓ ,S‖B

‖κϕ‖L2(Ω)

. (4.10)

With these preparations, we can state the abstract result (Graham & Sauter, 2019, Thm. 4.2) in our setting.

LEMMA 4.2. Suppose that CCσ ∗ ≤ 1/2, where CC is defined in equation (2.8) and σ ∗ is the adjoint
approximability constant. Then, the Galerkin problem (4.5) has a unique solution, and the following
estimates hold:

‖uΓ − uΓ ,S‖B ≤ 2CC inf
vΓ ,S∈VΓ ,SΓ

‖uΓ − vΓ ,S‖B, (4.11)

‖κ(uΓ − uΓ ,S)‖L2(Ω) ≤ 2C2
Cσ ∗ inf

vΓ ,S∈VΓ ,SΓ

‖uΓ − vΓ ,S‖B. (4.12)

Note that the quasi-optimality constant 2CC in (4.11) is independent of ω for large ω; see Theo-
rem 2.2. However, the result applies only if σ ∗ is sufficiently small, which requires sufficiently many
edge modes; see Section 4.4.

Proof. The proof follows closely Graham & Sauter (2019) and is included for convenience of the reader.
Denote eΓ = uΓ − uΓ ,S, and let ψ = T∗

Γ (κ2eΓ ). Then, for ψΓ ,S ∈ VΓ ,SΓ
being the best-approximation

of ψ in the B-norm, Galerkin orthogonality yields

‖κeΓ ‖2
L2(Ω)

= C(eΓ , ψ) = C(eΓ , ψ − ψΓ ,S) ≤ CCσ ∗‖eΓ ‖B‖κeΓ ‖L2(Ω),

where we used (4.10) as follows:

‖ψ − ψΓ ,S‖B = inf
vΓ ,S∈VΓ ,SΓ

‖T∗
Γ (κ2eΓ ) − vΓ ,S‖B ≤ σ ∗‖κeΓ ‖L2(Ω).

Using Galerkin orthogonality once again, we obtain for arbitrary vΓ ,S ∈ VΓ ,SΓ
that

‖eΓ ‖2
B = �{C(eΓ , eΓ )} + 2‖κeΓ ‖2

L2(Ω)
= �{C(eΓ , uΓ − vΓ ,S)} + 2‖κeΓ ‖2

L2(Ω)

≤ CC‖eΓ ‖B‖uΓ − vΓ ,S‖B + 2(CCσ ∗)2‖eΓ ‖2
B.
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ACMS FOR THE HELMHOLTZ EQUATION 17

The abstract error estimates (4.11) and (4.12) then follow using the assumption σ ∗ ≤ 1/(2CC). Similarly,
we can prove the existence of the Galerkin projection. Assume

C(uΓ ,S, vΓ ,S) = 0 for all vΓ ,S ∈ VΓ ,SΓ
.

We have to show that uΓ ,S = 0. As before, but using the previous identity and choosing vΓ ,S as the
best-approximation in the B-norm of T∗

Γ (κ2uΓ ,S), we obtain

‖κuΓ ,S‖2
L2(Ω)

= C(uΓ ,S, T∗
Γ (κ2uΓ ,S) − vΓ ,S) ≤ CCσ ∗‖uΓ ,S‖B‖κuΓ ,S‖L2(Ω).

Therefore, we have that

‖uΓ ,S‖2
B = �{C(uΓ ,S, uΓ ,S)} + 2‖κuΓ ,S‖2

L2(Ω)
= 2‖κuΓ ,S‖2

L2(Ω)
≤ 2(CCσ ∗)2‖uΓ ,S‖2

B,

which, by assumption CCσ ∗ ≤ 1/2, yields that uΓ ,S = 0. �

4.3 Estimates of the best-approximation error in VΓ ,SΓ

Quantitative estimates for the interface approximation error follow from localizing the error to single
edges and applying the estimates proven in Lemma 3.4.

THEOREM 4.3. Suppose that CCσ ∗ ≤ 1/2, where CC is defined in (2.8) and σ ∗ is the adjoint approxima-
bility constant. Moreover, assume that the solution u to equation (2.3) satisfies u ∈ H2(e) for all e ∈ E,
and denote by uΓ ,S the solution to equation (4.5). Then,

‖uΓ − uΓ ,S‖B ≤
∑
e∈E

C

(λe
Ie+1)

3/4
‖Δeu − Pe

Ie
Δeu‖L2(e)

for a constant C > 0, bounded by O(‖κ‖∞), independent of u and uΓ ,S.

Proof. According to Lemma 4.2, it suffices to estimate the best-approximation error infvΓ ,S
‖uΓ −

vΓ ,S‖B. By continuity of u, the nodal interpolant IVu of u is well-defined and, by construction, we obtain
that (u − IVu)|e ∈ H1

0(e). These observations motivate the choice

vΓ ,S = EΓ IVu +
∑
e∈E

EePe
Ie
(u − IVu), (4.13)

with Pe
Ie

introduced in equation (3.12). We then have that uΓ (p) − vΓ ,S(p) = 0 for all p ∈ V. Moreover,

in view of Section 2.4, (uΓ − vΓ ,S)|e ∈ H1
0(e) ⊂ H

1/2

00 (e). Therefore, the error can be localized to single
edges as follows:

uΓ |Ωj
− vΓ ,S|Ωj

= Ej(u|∂Ωj
− vΓ ,S|∂Ωj

) =
∑

e∈E,e⊂∂Ωj

(
Ee(u|e − vΓ ,S|e)

)
|Ωj

. (4.14)
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18 E. GIAMMATTEO ET AL.

From the latter identity and from the definition (2.7), we obtain the following estimate:

‖uΓ − vΓ ,S‖2
B ≤ C

∑
j

∑
e∈E,e⊂∂Ωj

‖Ee(u|e − vΓ ,S|e)|Ωj
‖2

B

≤ (amax + ‖κ‖2∞)C max
j

(1 + 1/β j)2
∑
e∈E

‖u − vΓ ,S‖2

H
1/2
00 (e)

, (4.15)

where C depends on the number of edges of a subdomain Ωj and where we used (3.6) and equivalence

of the B-norm to the H1(Ωj)-norm. The interpolation estimate (2.10) and Lemma 3.4 then yield the
assertion. �

If the solution has more regularity, the convergence improves, as long as the derivatives of the edge
modes do not grow too quickly, which is true, e.g., if e is a line segment.

LEMMA 4.4. In addition to the assumptions of Theorem 4.3, suppose that u ∈ H3(e) for all e ∈ E.
Moreover, suppose that there is a constant C > 0 such that |∂eτ

e
i (p)| ≤ C

√
λe

i for all i ∈ N and p ∈ ∂e.
Then there is a constant C > 0 such that

‖uΓ − uΓ ,S‖B ≤ C
∑
e∈E

1

λe
Ie+1

‖u‖H3(e).

REMARK 4. According to the relation λe
i ∼ i2 stated in (3.10), Lemma 4.4 implies that the error will

be dominated by (λe
Ie+1)

−1 ∼ I−2
e . Hence, the error in the B-norm will decrease quadratically in the

number of edge mode functions.

Proof. In view of Theorem 4.3, it suffices to bound

‖Δeu − Pe
Ie
Δeu‖L2(e) =

⎛
⎝∑

i>Ie

|(Δeu, τ e
i )e|2

⎞
⎠

1/2

.

Since −Δeτ
e
i = λe

i τ
e
i on e by elliptic regularity, integration by parts yields that

(
Δeu, τ e

i

)
e = − 1

λe
i

(
Δeu, Δeτ

e
i

)
e = 1

λe
i

(
(∂3

e u, ∂eτ
e
i )e + [

Δeu∂eτ
e
i

]p
q

)
,

where p, q denote the endpoints of e. Therefore, using the Cauchy–Schwarz inequality, the continuity of
the embedding H1(e) ↪→ C0(e) (Adams, 1975, p. 97), we have that

|(Δeu, τ e
i )e| ≤ C√

λe
i

‖u‖H3(e).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/drae076/7841860 by guest on 12 M
ay 2025



ACMS FOR THE HELMHOLTZ EQUATION 19

FIG. 1. A sketch of a polygonal domain Ω partitioned into 5 subdomains Ωj, j = 1, . . . , 5. The portion ΓR is depicted in bold. The
dashed lines and the edges in ΓR indicate the set of edges in E. The light grey area corresponds to ΩΓ defined in equation (4.16).
The domain Ω̃e with boundary portion γe is used in Case 2 of the proof of Theorem 4.6.

Then, by using (3.10), we have that

∑
i>Ie

|(Δeu, τ e
i )e|2 ≤ C‖u‖2

H3(e)

∑
i>Ie

1

λe
i

≤ C
‖u‖2

H3(e)√
λe

Ie+1

,

which proves the claim. �

REMARK 5. The error estimates in Theorem 4.3 and Lemma 4.4 assume regularity of the solution to the
Helmholtz equation along the edges of the domain decomposition. By the trace theorem Grisvard (2011),
this smoothness follows from regularity of the solution in a neighborhood of the edges, which can be
established under suitable assumptions on the coefficients; see, e.g., (Gilbarg & Trudinger, 2001, Chapter
8), (Grisvard, 2011, Chapter 4) or (McLean, 2000, Chapter 4) and also Section 4.4. If the solution u enjoys
less regularity than required in the above statements, corresponding error estimates can still be proven.
For instance, under the regularity u ∈ W1,p(Ω), for p > 2, established above, the corresponding estimate
to Theorem 4.3 will have the exponent (p − 2)/(4p) > 0 instead of 3/4. To derive the latter statement,
we use that H1−1/p

0 (e) is an interpolation space between L2(e) and H1
0(e) (Lions & Magenes, 1972, Ch.

1, Thm. 11.6), H1/2
00 (e) is an interpolation space between L2(e) and H1−1/p

0 (e) (Lions & Magenes, 1972,

Ch. 1, Thm. 11.7), and that (u − IVu)|e ∈ W1−1/p,p
0 (e) ⊂ H1−1/p

0 (e) ⊂ H1/2
00 (e) can be approximated

in Ve.

4.4 Estimates for adjoint approximability constant

The well-posedness and the error estimates for the interface problem in Section 4.2 relied on the
smallness of the adjoint approximability constant σ ∗ defined in equation (4.10). In order to estimate σ ∗
in our setting, we follow the ideas of Graham & Sauter (2019), where they work with piecewise linear
finite elements, requiring H2(Ω)-regularity of the adjoint problem (4.9). Since we need to consider the
interface problem only, we can require a weaker H2-regularity in the vicinity of the interface Γ . Let, for
some fixed δ > 0,

ΩΓ = {x ∈ Ω : dist(x, Γ ) < δ} (4.16)

denote an open neighborhood of Γ , see Fig. 1. We start with a result similar to Theorem 4.3, but with
slightly weaker regularity assumptions.
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20 E. GIAMMATTEO ET AL.

LEMMA 4.5. Let λΓ = mine λe
Ie

. Then, there exists a constant C > 0 with C = O(‖κ‖∞), such that, for

all z ∈ H2(ΩΓ ), it holds that

inf
vΓ ,S∈VΓ ,SΓ

‖EΓ (z|Γ ) − vΓ ,S‖B ≤ C√
λΓ

‖z‖H2(ΩΓ ). (4.17)

Proof. In view of (4.15), which also introduces the κ dependency of the constants, it suffices to estimate

inf
ve∈Ve

Ie

‖z − IVz − ve‖
H

1/2
00 (e)

in terms of ‖z‖H2(ΩΓ ). By embedding, z ∈ H2(ΩΓ ) implies that z ∈ H3/2(e) for all e ∈ E, and applying
Lemma 3.5 yields that

inf
vΓ ,S∈VΓ ,SΓ

‖z − vΓ ,S‖H
1/2
00 (e)

≤ C√
λe

Ie+1

‖z‖H3/2(e).

Hence, the definition of λΓ yields the assertion. �
Assuming regularity of the coefficients of the Helmholtz problem locally around the interface Γ , we

can next estimate the adjoint approximability constant.

THEOREM 4.6. If a ∈ C0,1(ΩΓ ) and β ∈ C0,1(ΓR) are Lipschitz continuous functions, then there exists a
constant C > 0 such that C = O(‖κ‖2∞Cstab), with Cstab from (2.9), and

σ ∗ ≤ C/
√

λΓ . (4.18)

Proof. In view of equation (4.10), the key for estimating σ ∗ is to obtain an estimate for

inf
vΓ ,S∈VΓ ,SΓ

‖T∗
Γ (κ2ϕ) − vΓ ,S‖B

in terms of ‖κϕ‖L2(Ω) for arbitrary ϕ ∈ L2(Ω), where T∗
Γ (κ2ϕ) ∈ VΓ is the interface component of the

solution to the adjoint problem (4.9). Using (4.17), we have the bound

inf
vΓ ,S∈VΓ ,SΓ

‖T∗
Γ (κ2ϕ) − vΓ ,S‖B ≤ C√

λΓ
‖T∗(κ2ϕ)‖H2(ΩΓ ),

with C = O(‖κ‖∞), provided T∗(κ2ϕ) ∈ H2(ΩΓ ). Next, we show that there exists a constant C∗ > 0
such that C∗ = O(‖κ‖∞Cstab), with Cstab from (2.9), and

‖T∗(κ2ϕ)‖H2(ΩΓ ) ≤ C∗‖κϕ‖L2(Ω), (4.19)

which will conclude the proof.
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ACMS FOR THE HELMHOLTZ EQUATION 21

We use the decomposition ΩΓ = ∪e∈EΩe, with Ωe = {x ∈ Ω : dist(x, e) < δ} for e ∈ E, and show
an H2-estimate for each Ωe. We observe that z ∈ H1

D(Ω) is a weak solution to

−div(a∇z) + z = κ2ϕ + (κ2 + 1)z =: f̃ in Ωe, (4.20)

a∂nz = −iβωz =: g̃ on ∂Ωe ∩ ΓR, (4.21)

z = 0 on ∂Ωe ∩ ΓD, (4.22)

with f̃ ∈ L2(Ω). We distinguish two cases; see also Fig. 1.
Case 1: suppose ∂Ωe does not contain a vertex of ∂Ω . In this case, either Ωe � Ω or one of the

boundary portions ∂Ωe ∩ ΓD, ∂Ωe ∩ ΓR is not empty and of class C1,1. Elliptic regularity, see, e.g.,
(McLean, 2000, Theorem 4.16, Theorem 4.18), ensures the existence of a constant C > 0, independent
of κ , such that

‖z‖H2(Ωe)
≤ C

(
‖z‖H1(Ω) + ‖f̃‖L2(Ω) + ‖g̃‖H1/2(∂Ωe∩ΓR)

)
≤ C(1 + ‖κ‖∞)(‖z‖B + ‖κϕ‖L2(Ω)),

(4.23)

where we used the trace theorem to bound ‖g̃‖H1/2(∂Ωe∩ΓR) in terms of ω‖z‖H1(Ωe)
.

Case 2: if ∂Ωe contains a vertex s of ∂Ω , we denote Bε the open ball with radius ε around s. H2-
regularity of z on Ωe \ Bδ/2 with an estimate corresponding to (4.23) then follows as in Case 1. Next,
join the two segments contained in B3δ/4 ∩ ∂Ω by a smooth arc γe ⊂ Bδ such that the angles are smaller

than π/2 and s /∈ γe. Denote the domain enclosed by γe and B3δ/4 ∩ ∂Ω by Ω̃e. Thus, z is also the

unique weak solution to (4.20), (4.21), (4.22) with Ωe replaced by Ω̃e, once we require the boundary
condition a∂nz = g̃2 on γe, with g̃2 := a∂nz. Combining (Banasiak & Roach, 1989, Theorem 3.2.4) with
the bounded inverse theorem and using the required conditions on the angles at the vertices of Ω̃e, we
obtain that z ∈ H2(Ω̃e) and

‖z‖H2(Ω̃e)
≤ C

(
‖f̃ ‖L2(Ω̃e)

+ ‖g̃‖
H1/2

pw (∂Ω̃e∩ΓR)
+ ‖g̃2‖H1/2(γe)

)
,

where ‖g̃‖
H1/2

pw (∂Ω̃e∩ΓR)
denotes the sum of H1/2-norms over the corresponding segments of ∂Ω̃e ∩ ΓR.

Combining the above estimates with (2.9) and the trace theorem to bound g̃ and g̃2, we infer that

‖z‖H2(ΩΓ ) ≤ C(1 + ‖κ‖∞)Cstab‖κϕ‖L2(Ω),

with a constant C independent of ω. Hence, (4.19) holds with C∗ = C(1 + ‖κ‖∞)Cstab. �
Since the method and its analysis presented here employ a fixed domain decomposition, the regularity

assumption on the coefficients required in Theorem 4.6 might be verified in certain applications; see,
e.g., the periodic structure in Section 5.4 below. A consequence of the previous result is that, by using
sufficiently many edge modes, the assumptions of Lemma 4.2 can be verified. More precisely, if Cstab
is independent of ω, which holds in certain cases (Graham & Sauter, 2019, Theorem 4.5), we can use
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22 E. GIAMMATTEO ET AL.

TABLE 1 Different errors in the L2- (left) and H1-norms (right) discussed in Section 5 row by row:
absolute approximation errors of the ACMS solution uS with respect to the exact solution u, absolute
approximation errors of the ACMS solution uS with respect to the finite element solution uFEM, relative
approximation errors of the ACMS solution uS with respect to the finite element solution uFEM,
approximation errors of the finite element solution uFEM with respect to the exact solution u and
interpolation error of the nodal interpolant Ih(u) with respect to the exact solution u

L2-errors H1-errors

e0 ‖u − uS‖L2(Ω) e1 ‖u − uS‖H1(Ω)

e0,h ‖uFEM − uS‖L2(Ω) e1,h ‖uFEM − uS‖H1(Ω)

er
0,h

e0,h/‖uFEM‖L2(Ω)
er

1,h
e1,h/‖uFEM‖H1(Ω)

e0,FEM ‖u − uFEM‖L2(Ω) e1,FEM ‖u − uFEM‖H1(Ω)

e0,int ‖u − Ih(u)‖L2(Ω) e1,int ‖u − Ih(u)‖H1(Ω)

(3.10) and σ ∗ = O(Cstab‖κ‖2∞ maxe |e|/ mine Ie) to infer that the number of modes should scale like
Ie ≥ C‖κ‖2∞|e| for stability. We obtain the following statement:

THEOREM 4.7. In addition to the assumptions of Theorem 4.3, 4.6 suppose that u ∈ H2+α(e) for all e ∈ E,
for α = 0, 1. Then, for some C > 0, and λΓ sufficiently large, it holds

‖κ(uΓ − uΓ ,S)‖L2(Ω) ≤ C

(λΓ )5/4+α/4

∑
e∈E

‖u‖H2+α(e).

Proof. Inserting the estimate (4.18) for σ ∗ and the error bounds stated in Theorem 4.3 (if α = 0) or
Lemma 4.4 (if α = 1) into (4.12) yields the assertion. �
REMARK 6. Similarly to Remark 4, (3.10) implies that (λe

Ie+1)
−3/2 ∼ I−3

e . Hence, for α = 1, the estimate

in Theorem 4.7 implies that the error in the L2-norm will decrease cubically in the number of edge mode
functions.

5. Numerical results

We provide numerical experiments to support our theoretical results and show the effectiveness of our
approach. Since, in general, we cannot compute the ACMS basis functions in equation (3.4), (3.13)
analytically, we compute them approximately using an underlying finite element discretization that
adopts piecewise linear and continuous functions. To do so, we employ a quasi-uniform triangulation
of the computational domain Ω into (non-curved) triangles, such that each subdomain Ωj is the union
of elements of that triangulation; see, for instance, Fig. 2. We denote the corresponding finite element
solution of the Helmholtz problem by uFEM. Moreover, the resulting errors are quantified according to
Table 1.

5.1 Classical Helmholtz example

Let Ω = B1(0) be the unit disc and ΓR = ∂Ω . We first consider the boundary value problem given
by equation (1.1), (1.2) with a(x) = 1, β(x) = 1. The source terms f and g are defined such that
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ACMS FOR THE HELMHOLTZ EQUATION 23

FIG. 2. Left: Ω is the unit disc, decomposed into eight subdomains. Right: The corresponding finite element mesh.

the problem has the plane wave solution u(x) = exp(−ik · x), with wave vector k = κ(0.6, 0.8) and
variable wavenumber κ = ω, i.e., c(x) = 1. In particular, f (x) = 0, therefore the solution satisfies
uB = 0, and u can be approximated by solving the interface problem (4.5) only; see Theorem 4.1 and also
Remark 2.

We employ a decomposition of Ω as depicted in Fig. 2 (left) with an initial coarse triangulation as
shown in Fig. 2 (right), which corresponds to a domain decomposition into J = 8 subdomains. In this
domain decomposition, the number of edges in E is 12 and the number of vertices in V equals 5. The
ACMS solution uS and the finite element solution uFEM are computed using uniform refinements of the
coarse triangulation; see Fig. 2 (right).

5.1.1 Low wavenumber. Let us first consider the case of a low wavenumber κ = 1. In this setting, we
obtain ‖u‖H1(Ω) ≈ 2.5 and ‖u‖L2(Ω) ≈ 1.8 for the plane wave solution u. We compare the plane wave
solution u with the approximation uS given by the ACMS method for different underlying finite element
discretizations and multi-indices SΓ , which define the order of the interface approximation space VΓ ,SΓ

introduced in equation (3.13). Moreover, we use the same value of Ie ∈ {2, 4, 8, . . . , 64} for each of the
12 edges in E.

Table 2 shows the approximation error of the ACMS method and the corresponding errors for the
nodal interpolant Ih(u) for each mesh resolution. We observe that the H1-error decreases quadratically,
more precisely, by a factor between 3.5 and 4.0, until it approaches the accuracy of the nodal interpolant
Ihu of the underlying finite element mesh; see also Fig. 3. Similarly, the L2-error decays cubically for
sufficiently fine finite element meshes. The L2-convergence is in good agreement with Theorem 4.7;
see Remark 6; while the H1-convergence is in good agreement with Lemma 4.4 and Remark 4 in this
example. We may conclude that, already with a low number of edge modes Ie ≤ 32, i.e., |SΓ | ≤ 384, the
ACMS solution achieves the accuracy of the nodal interpolant in the H1-norm, which employs around
8·106 vertices for h ≈ 3.4·10−4. In fact, as shown in Table 3 and Fig. 4, the ACMS solution converges to
the (standard) finite element solution uFEM quadratically in the H1-norm and cubically in the L2-norm,
respectively.
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24 E. GIAMMATTEO ET AL.

TABLE 2 Classical Helmholtz example with κ = 1: errors e0 (top) and e1 (bottom) as defined in Table 1
for different number of edge modes |SΓ | ∈ {24, 48, . . . , 768}, computed on different finite element meshes
with mesh size h, and the corresponding interpolation error for the nodal interpolant

|SΓ |
h e0,int 24 48 96 192 384 768

1.3·10−3 7.6·10−7 4.2·10−3 7.8·10−4 1.2·10−4 1.6·10−5 2.6·10−6 1.5·10−6

6.9·10−4 1.9·10−7 4.2·10−3 7.8·10−4 1.2·10−4 1.6·10−5 2.2·10−6 4.8·10−7

3.4·10−4 4.7·10−8 4.2·10−3 7.8·10−4 1.2·10−4 1.6·10−5 2.1·10−6 2.9·10−7

h e1,int 24 48 96 192 384 768

1.3·10−3 1.0·10−3 5.8·10−2 1.6·10−2 4.6·10−3 1.5·10−3 1.1·10−3 1.0·10−3

6.9·10−4 5.4·10−4 5.8·10−2 1.6·10−2 4.5·10−3 1.2·10−3 6.1·10−4 5.4·10−4

3.4·10−4 2.7·10−4 5.8·10−2 1.6·10−2 4.4·10−3 1.1·10−3 4.0·10−4 2.8·10−4

FIG. 3. Classical Helmholtz example with κ = 1: errors e0 (solid) and e1 (dashed) as presented in Table 2 on refined meshes of
size h for different number of edge modes |SΓ | ∈ {24, 48, . . . , 768}.

TABLE 3 Classical Helmholtz example with κ = 1: errors e0,h and e1,h as defined in Table 1 for different
number of edge modes |SΓ | ∈ {24, 48, . . . , 1536}, computed on a finite element mesh with h ≈ 3.4·10−4

and 8 327 169 vertices

|SΓ |
24 48 96 192 384 768 1536

e0,h 4.2·10−3 7.8·10−4 1.2·10−4 1.6·10−5 2.1·10−6 2.7·10−7 3.5·10−8

e1,h 5.8·10−2 1.6·10−2 4.4·10−3 1.1·10−3 2.9·10−4 7.4·10−5 1.8·10−5
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FIG. 4. Classical Helmholtz example with κ = 1: errors e0,h (solid) and e1,h (dashed) as shown in Table 3 for increasing number
of edge modes |SΓ | ∈ {24, 48, . . . , 1536} computed on a finite element mesh with h ≈ 3.4 · 10−4.

5.1.2 Higher wavenumbers. We now repeat the previous numerical experiments focusing on the
effect of an increasing wavenumber; namely, we test our method for κ = 2, 4, 8, 16, 32, 64, 128. Let
us mention that Assumption 3.1 is satisfied for all chosen wavenumbers and that the plane wave solution
u changes with κ .

In Table 4 and Fig. 5, we show the convergence of the ACMS method to the plane wave solution and,
for comparison, we display the error between the nodal interpolant and the finite element solution. For
lower wavenumber κ = 2, we observe a similar behavior as in the previous section, i.e., close to cubic
convergence of e0 and close to quadratic convergence of e1 until it occurs a saturation due to the limited
resolution of the underlying FEM mesh.

For wavenumbers κ ≤ 64, we observe that e1,int and e1,FEM behave very similarly when κ is
increased. However, if κ = 128, e1,FEM is more than one order of magnitude larger than e1,int, which
may indicate that the FEM mesh is too coarse for this wavenumber. For |SΓ | ≥ 768, i.e., at least 64
modes per edge, the ACMS error e1 is close to the FEM error e1,FEM for all κ . We also observe that, for
κ ≥ 32, |SΓ | has to be sufficiently large to have monotonic decay in e1. Notably, up to a certain number
of edge modes, we may even see an increase in e1. Ultimately, after reaching a certain threshold in the
number of edge modes, which increases with κ , we observe a significant drop in the error e1, bringing it
to a comparable level as e1,FEM.

The convergence of the ACMS solution to the FEM solution is also verified in Table 5 and
Fig. 6, where the corresponding errors are shown for different wavenumbers. We observe a similar
convergence behavior as for e1 and e0, respectively, without a saturation effect. If one is satisfied with
the approximation errors achieved by uFEM, we may again conclude that the ACMS method can yield
good approximations already with a moderate number of degrees of freedom. We note that, by using
higher order elements or further mesh refinements, the accuracy of uFEM may be increased; see, e.g.,
Melenk & Sauter (2010, 2011). Then, we would expect that the corresponding solution of the ACMS
method would also show better accuracy in approximating the exact solution. We will investigate this in
futurework.

5.2 Localized interior source

In certain applications, such as in geophysics in Wang et al. (2011), the source terms of the wave
propagation are localized. Therefore, let us study the behavior of the ACMS method for this type of
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TABLE 4 Classical Helmholtz example with higher wavenumbers: errors e0 (top) and e1 (bottom) as
defined in Table 1 for different number of edge modes |SΓ | ∈ {48, 96, . . . , 1536} and wavenumbers κ ,
computed on a finite element mesh with h ≈ 3.4·10−4 and 8 327 169 vertices. For comparison, we display
the interpolation error for the nodal interpolant as well as the FEM approximation error uFEM − u in
the H1- and L2-norm, respectively

|SΓ |
κ e0,int e0,FEM 48 96 192 384 768 1536

2 1.9·10−7 4.4·10−7 2.2·10−3 3.6·10−4 5.1·10−5 6.8·10−6 9.9·10−7 4.5·10−7

4 7.6·10−7 3.5·10−6 1.3·10−2 1.6·10−3 2.1·10−4 2.7·10−5 4.9·10−6 4.5·10−6

8 3.0·10−6 4.2·10−5 1.5·10−1 7.8·10−3 8.6·10−4 1.1·10−4 4.5·10−5 4.2·10−5

16 1.2·10−5 4.2·10−4 1.2·100 1.6·10−1 6.0·10−3 7.3·10−4 4.3·10−4 4.2·10−4

32 4.8·10−5 4.5·10−3 4.9·100 2.2·100 3.5·10−1 1.0·10−2 4.7·10−3 4.5·10−3

64 1.9·10−4 1.7·10−2 2.4·100 2.0·100 2.7·100 8.7·10−2 1.8·10−2 1.7·10−2

128 7.7·10−4 4.3·10−1 3.4·100 2.0·100 4.4·100 9.9·100 4.8·10−1 4.3·10−1

κ e1,int e1,FEM 48 96 192 384 768 1536

2 1.0·10−3 1.0·10−3 4.8·10−2 1.3·10−2 3.7·10−3 1.4·10−3 1.1·10−3 1.0·10−3

4 4.3·10−3 4.3·10−3 2.2·10−1 5.6·10−2 1.4·10−2 5.6·10−3 4.4·10−3 4.3·10−3

8 1.7·10−2 1.7·10−2 1.8·100 2.3·10−1 5.8·10−2 2.2·10−2 1.7·10−2 1.7·10−2

16 6.9·10−2 6.9·10−2 1.9·101 3.1·100 2.5·10−1 8.9·10−2 7.1·10−2 6.9·10−2

32 2.7·10−1 3.1·10−1 1.5·102 7.2·101 1.1·101 4.9·10−1 3.2·10−1 3.1·10−1

64 1.1·100 1.5·100 1.5·102 1.3·102 1.7·102 6.1·100 1.6·100 1.5·100

128 4.4·100 5.5·101 4.3·102 2.5·102 5.7·102 1.2·103 6.2·101 5.5·101

FIG. 5. Classical Helmholtz example with higher wavenumbers: errors e0 (solid) and e1 (dashed) as shown in Table 4 for increasing
number of edge modes |SΓ | ∈ {24, 48, . . . , 1536} for h ≈ 3.4·10−4.

setup. Let us consider Ω = B1(0) with ΓR = ∂Ω , the coefficients a(x) = 1 and β(x) = 1, the non-zero
source function f (x) = exp(−200|x−xc|2), with xc = (1/3, 1/3), κ = ω = 1, and g ≡ 0. For this example,
no analytical expression of the solution u is available. Thus, we only investigate the convergence of the
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TABLE 5 Classical Helmholtz example with higher wavenumbers: errors e0,h (top) and e1,h (bottom) as
defined in Table 1 for different number of edge modes |SΓ | ∈ {48, 96, . . . , 1536} and wavenumbers κ ,
computed on a finite element mesh with h ≈ 3.4·10−4 and 8 327 169 vertices. For comparison, we display
the interpolation error for the nodal interpolant as well as the FEM approximation error uFEM − u in
the H1- and L2-norm, respectively

|SΓ |
κ e0,int e0,FEM 48 96 192 384 768 1536

2 1.9·10−7 4.4·10−7 2.2·10−3 3.5·10−4 4.9·10−5 6.6·10−6 8.5·10−7 1.0·10−7

4 7.6·10−7 3.5·10−6 1.3·10−2 1.6·10−3 2.1·10−4 2.6·10−5 3.3·10−6 4.2·10−7

8 3.0·10−6 4.2·10−5 1.5·10−1 7.8·10−3 8.5·10−4 1.0·10−4 1.3·10−5 1.6·10−6

16 1.2·10−5 4.2·10−4 1.2·100 1.6·10−1 5.8·10−3 5.0·10−4 5.4·10−5 6.6·10−6

32 4.8·10−5 4.5·10−3 4.9·100 2.2·100 3.4·10−1 7.2·10−3 4.3·10−4 3.4·10−5

64 1.9·10−4 1.7·10−2 2.4·100 2.0·100 2.7·100 8.0·10−2 2.2·10−3 1.5·10−4

128 7.7·10−4 4.3·10−1 3.4·100 2.0·100 4.5·100 9.9·100 2.4·10−1 4.1·10−3

κ e1,int e1,FEM 48 96 192 384 768 1536

2 1.0·10−3 1.0·10−3 4.9·10−2 1.3·10−2 3.6·10−3 9.4·10−4 2.4·10−4 6.0·10−5

4 4.3·10−3 4.3·10−3 2.2·10−1 5.6·10−2 1.4·10−2 3.6·10−3 9.0·10−4 2.2·10−4

8 1.7·10−2 1.7·10−2 1.8·100 2.3·10−1 5.6·10−2 1.4·10−2 3.5·10−3 8.9·10−4

16 6.9·10−2 6.9·10−2 1.9·101 3.0·100 2.4·10−1 5.6·10−2 1.4·10−2 3.5·10−3

32 2.7·10−1 3.1·10−1 1.5·102 7.2·101 1.1·101 3.4·10−1 5.9·10−2 1.4·10−2

64 1.1·100 1.5·100 1.5·102 1.3·102 1.7·102 5.6·100 2.8·10−1 5.8·10−2

128 4.4·100 5.5·101 4.4·102 2.6·102 5.7·102 1.2·103 3.1·101 5.9·10−1

FIG. 6. Classical Helmholtz example with higher wavenumbers: errors e0,h (solid) and e1,h (dashed) as shown in Table 5 for
increasing number of edge modes |SΓ | ∈ {24, 48, . . . , 1536} for h ≈ 3.4·10−4.

ACMS method towards the solution of the underlying FEM, which is justified by the discussion in the
previous sections.

Table 6, Fig. 7, and Fig. 8 show the results for varying numbers of bubble functions and edge modes.
In view of Theorem 4.1, we note that uB ≈ 0 outside the subdomain Ωj with xc ∈ Ωj. Hence, for
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TABLE 6 Example from Section 5.2 with a localized interior source. Relative errors er
0,h (top) and er

1,h
(bottom) as defined in Table 1 for different number of edge modes |SΓ | ∈ {24, 48, . . . , 1536} (in columns)
and bubble functions |SB| (in rows) for h = 2.8·10−3

|SΓ |
|SB| 24 48 96 192 384 768 1536

2 5.4·10−2 4.8·10−2 4.7·10−2 4.7·10−2 4.7·10−2 4.7·10−2 4.7·10−2

4 2.9·10−2 2.6·10−2 2.6·10−2 2.6·10−2 2.6·10−2 2.6·10−2 2.6·10−2

8 2.5·10−2 1.7·10−2 1.7·10−2 1.7·10−2 1.7·10−2 1.7·10−2 1.7·10−2

16 2.1·10−2 9.9·10−3 9.5·10−3 9.5·10−3 9.5·10−3 9.5·10−3 9.5·10−3

32 1.9·10−2 4.4·10−3 3.2·10−3 3.2·10−3 3.2·10−3 3.2·10−3 3.2·10−3

64 1.9·10−2 2.8·10−3 6.2·10−4 6.1·10−4 6.1·10−4 6.1·10−4 6.1·10−4

128 1.9·10−2 2.8·10−3 1.5·10−4 4.3·10−5 4.2·10−5 4.2·10−5 4.2·10−5

256 1.9·10−2 2.8·10−3 1.4·10−4 1.0·10−5 1.4·10−6 3.6·10−7 3.1·10−7

512 1.9·10−2 2.8·10−3 1.4·10−4 1.0·10−5 1.4·10−6 1.8·10−7 4.1·10−8

1024 1.9·10−2 2.8·10−3 1.4·10−4 1.0·10−5 1.4·10−6 1.8·10−7 3.1·10−8

|SB| 24 48 96 192 384 768 1536

2 3.6·10−1 3.4·10−1 3.4·10−1 3.4·10−1 3.4·10−1 3.4·10−1 3.4·10−1

4 2.6·10−1 2.4·10−1 2.4·10−1 2.4·10−1 2.4·10−1 2.4·10−1 2.4·10−1

8 2.1·10−1 1.9·10−1 1.8·10−1 1.8·10−1 1.8·10−1 1.8·10−1 1.8·10−1

16 1.6·10−1 1.2·10−1 1.2·10−1 1.2·10−1 1.2·10−1 1.2·10−1 1.2·10−1

32 1.1·10−1 5.9·10−2 5.4·10−2 5.4·10−2 5.4·10−2 5.4·10−2 5.4·10−2

64 1.0·10−1 2.7·10−2 1.3·10−2 1.3·10−2 1.3·10−2 1.3·10−2 1.3·10−2

128 1.0·10−1 2.3·10−2 2.5·10−3 1.2·10−3 1.2·10−3 1.2·10−3 1.2·10−3

256 1.0·10−1 2.3·10−2 2.1·10−3 3.5·10−4 9.2·10−5 2.7·10−5 1.5·10−5

512 1.0·10−1 2.3·10−2 2.1·10−3 3.5·10−4 9.1·10−5 2.4·10−5 8.0·10−6

1024 1.0·10−1 2.3·10−2 2.1·10−3 3.5·10−4 9.1·10−5 2.4·10−5 7.8·10−6

an accurate approximation, we only need bubble functions in that subdomain Ωj. Moreover, the linear
system for the bubble component is diagonal and decoupled from the interface part. Consequently, the
solution coefficient corresponding to a specific bubble basis function can be computed independently
from any other ACMS basis function; cf. equations (4.4) and (4.5).

For this highly localized source, in Fig. 8, we observe very fast convergence to the finite element
solution when Ij ≥ 32, i.e., when increasing the number of bubble functions, given a sufficiently high
number of edge modes. This can be explained by inspecting the proof of Theorem 4.1: using repeatedly
equation (3.2), integration-by-parts and that f and all its derivative are negligible on ∂Ωj, we can estimate

(f , bj
i)Ωj

by arbitrary powers of λ
j
i; see also Lemma 4.4 for similar steps. For a high number of bubble

functions, a saturation effect occurs. This can be due to the limited quantity of edge modes or to the fact
that the values of higher-order derivatives of f are not negligible anymore. In Fig. 7, we see that when
increasing the number of selected edge modes while keeping the number of bubble functions fixed, the
convergence approaches the predicted quadratic and cubic rates for the H1- and the L2-error, respectively.
Since the Galerkin problems for the bubble part and the interface are decoupled (see (4.4) and (4.5)), the
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FIG. 7. Example from Section 5.2 with a localized interior source. Relative errors er
0,h (solid) and er

1,h (dashed) as shown in Table 6

for varying number of edge modes |SΓ | ∈ {24, 48, . . . , 1536}, fixed number of bubble modes |SB| = 1024 and h = 2.8·10−3.

FIG. 8. Example from Section 5.2 with a localized interior source. Relative errors er
0,h (solid) and er

1,h (dashed) as shown in Table 6

for varying number of bubble functions |SB| = {2, ..., 1024}, fixed number of edge modes |SΓ | = 1536 and h = 2.8 · 10−3. For
comparison, we show the exponential curve 0.06 exp(−0.28x0.67).

size of the systems to be solved remains comparably small. Therefore, we conclude that, for a moderate
number of degrees of freedom, we obtain very good approximations of the finite element solution.

5.3 Localized boundary source

Let us modify the classical Helmholtz example from Section 5.1 such that κ = ω = 16, f = 0 and
g(x) = exp(−200|x−xc|2), with xc = (−1/

√
2, 1/

√
2). In Fig. 9, we display the real and imaginary part of

the finite element solution computed on a quasi-uniform mesh with 521 217 vertices, i.e., h ≈ 1.3 ·10−3.
Although the source is very localized around xc, the whole domain is excited, indicating the wave-type
behavior of the solution.

Since f = 0 here, we do not need any bubble functions to obtain convergence according to Remark 2.
As we do not have an analytic solution, we investigate the error between uFEM and uS for varying
number of edge modes. The results are shown in Table 7 and Fig. 10, where we consider the relative

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/drae076/7841860 by guest on 12 M
ay 2025



30 E. GIAMMATTEO ET AL.

FIG. 9. Finite element solution of the model problem with a localized boundary source from Section 5.3: real part (left) and
imaginary part (right).

TABLE 7 Example from Section 5.4 with a localized boundary source: relative errors er
0,h and er

1,h as
defined in Table 1 for different number of edge modes |SΓ | ∈ {24, 48, . . . , 3072}, computed on a grid
with h = 1.3·10−3

|SΓ |
24 48 96 192 384 768 1536 3072

er
0,h 1.6·100 1.0·100 1.7·10−1 7.3·10−3 4.1·10−4 3.3·10−5 3.5·10−6 4.3·10−7

er
1,h 1.6·100 1.0·100 1.8·10−1 1.4·10−2 1.9·10−3 4.6·10−4 1.1·10−4 2.8·10−5

errors since the solution values are rather small. As predicted by Theorem 4.3, we observe second order
convergence for the H1-error, while the decay is initially slightly faster. The L2-error shows a similar
behavior with a convergence rate approaching third order; cf. Theorem 4.7. We again may conclude that
we can approximate the highly resolved standard finite element solution using a moderate number of
edge modes in the ACMS method.

5.4 Periodic structure

Let us conclude our numerical experiments with a heterogeneous Helmholtz problem on the unit square
Ω = [0, 1]2 with a domain decomposition as in Fig. 11 (left) and with a heterogeneous diffusion
coefficient a depicted in Fig. 11 (right). This configuration is similar to the modeling of two-dimensional
photonic crystals in Joannopoulos et al. (2008). We choose β(x) = 1, interior source f = 0, and the
localized boundary source on ΓR = ∂Ω , g(x) = exp(−ik · x) exp(−100|x − xc|2), with xc = (0, 1/2),
wave vector k = κ(1, 0) and wavenumber κ = ω = 100. The corresponding finite element solution,
which has been computed on a quasi-uniform triangulation with 5 330 337 vertices, is shown in Fig. 12.

Since, again, f = 0, we only need to study the behavior for varying numbers of edge modes, while
the bubble part of the solution uB is zero. Note that we can choose ΩΓ defined in equation (4.16) inside
the region with a = 1; cf. Fig. 11. The relative H1- and L2-errors between the finite element solution
and the ACMS solution are listed in Table 8 and shown in Fig. 13. For |SΓ | = 2880, which corresponds
to the case of 16 modes per edge, the ACMS discretization already yields a good approximation to the
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FIG. 10. Example 5.4: Localized boundary source: relative errors er
0,h (solid) and er

1,h (dashed) as shown in Table 7 for increasing

number of edge modes |SΓ | ∈ {24, 48, . . . , 3072}, with h = 1.3·10−3.

FIG. 11. Left: unit square divided in 81 subdomains for domain decomposition. The number of edges in E is 180 and the number
of vertices in V is 100. Right: heterogeneous diffusion coefficient with a = 1 in the black regions and a = 12 in the white regions
of the unit square.

TABLE 8 Example from Section 5.4: periodic structure. Relative errors er
0,h and er

1,h as defined in Table 1
for different number of edge modes |SΓ | computed on a grid with 5 330 337 vertices.

|SΓ |
360 720 1 440 2 880 5 760 11 520

er
0,h 1.1·100 1.3·100 1.6·10−1 1.0·10−2 7.5·10−4 5.0·10−5

er
1,h 1.1·100 1.3·100 1.7·10−1 1.1·10−2 1.3·10−3 2.9·10−4
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FIG. 12. Finite element solution of the model problem with a localized boundary source from Section 5.4: real part (left) and
imaginary part (right); the underlying structure of the coefficient a is shown as well

FIG. 13. Example 5.4: Periodic structure. Relative errors er
0,h (solid) and er

1,h (dashed) as shown in Table 8 for different number
of edge modes |SΓ | computed on a grid with 5 330 337 vertices.

highly resolved finite element solution. Moreover, the convergence of the error is initially even better
than predicted by our theoretical results for |SΓ | ≥ 720.

6. Conclusions

We extended the ACMS method, which has originally been developed for elliptic problems, to the
heterogeneous Helmholtz equation. This framework is based on a decomposition into local Helmholtz
problems and an interface problem, that can be solved separately. The numerical approximation of those
problems is achieved by using basis functions with local support and which can be constructed locally
as well. We note that the method presented here can also be applied to elliptic problems. Since the
asymptotic behavior of the edge-eigenvalues (3.10) is available, we obtain explicit error bounds in terms
of the number of edge modes.
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The error analysis developed for the investigated method is based on the abstract framework
introduced in Graham & Sauter (2019). We proved error estimates in the H1- and the L2-norm, and
we obtained algebraic decay in the number of basis functions (modes) being used.

Asymptotically, these rates are worse than the O(H exp(−I1/(d+1)−ε
e )) presented in Chen et al.

(2023). For moderate number of modes Ie, however, the cubic and quadratic curves are below the
exponential curve (assuming similar constants). A proper comparison of the two methods, including
a quantification of the hidden constants in the error estimates, in applications relevant scenarios, is left
for future work.

In order to be able to apply the framework of Graham & Sauter (2019), we presented estimates for the
adjoint approximability constants, showing that the number of edgemodes should scale essentially like
Cstab(ω)‖κ‖2∞|e|/Ie. Thus, if Cstab(ω) depends only weakly on ω, the required number of edgemodes
is moderate. If, however, Cstab(ω) grows quickly, it might be necessary to resort to other methods, such
as Peterseim (2017), Chen et al. (2023) and Ma et al. (2023). Moreover, we showed applicability of the
method also if the diffusion coefficient is not smooth, as long as smoothness in a neighborhood of the
interface is guaranteed.

Finally, we exemplified the theoretical error bounds by numerical experiments, which show the
accuracy of the inspected ACMS method for moderate wavenumbers. We constructed the ACMS basis
functions using an FEM, and we observed that the resulting discrete ACMS method approximates well
the corresponding finite element solution. Thus, we may conclude that the accuracy of the discrete ACMS
method depends on the accuracy of the underlying FEM, and smaller errors might be achieved by using
high-order finite elements.
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