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Abstract: Soft polymeric gels are susceptible to buckling-induced instabilities due to their great
compliance to surface deformations. The instability patterns at soft interfaces have great potential
in engineering functional materials with unique surface properties. In this work, we systematically
investigated how swelling-induced instability patterns effectively improved the adhesive properties
of soft polydimethylsiloxane (PDMS) gels. We directly imaged the formations of the surface instability
features during the relaxation process of a swollen gel substrate. The features were found to greatly
increase the adhesion energy of soft gels across multiple length scales, and the adhesion enhancement
was associated with the variations of contact lines both inside the contact region and along the contact
periphery. We expect that these studies of instability patterns due to swelling will further benefit the
design of functional interfaces in various engineering applications.

Keywords: instabilities; adhesion; soft gels; swelling

1. Introduction

Adhesive contacts of soft materials are appealing to scientists due to their essential
roles in many engineering applications, such as 3D-printing architectures [1,2], flexible
electronics [3,4], compliant robotics [5], microfluidic systems [6,7], bio-medical materials [8,9],
etc. The low elastic moduli of these soft interfaces allow large surface deformations to sus-
tain mechanical contacts. Depending on the contact geometries and local strain gradients,
soft materials are susceptible to buckling-induced surface instabilities under compres-
sions [10–12]. To quantitatively control the contact mechanics of soft polymeric gels, the un-
derstanding of how surface instability patterns affect soft adhesion is of crucial importance.

Considerable works have studied the rich mechanics of different instability pat-
terns at soft interfaces, including buckling [13–15], wrinkles [15–17], creases [15,18], and
folds [15,19,20]. A soft substrate covered with a stiff skin can easily generate wrinkles
under uniaxial compressions. The characteristic wavelength of the patterns is determined
by the difference in elastic moduli between the two layers and scales linearly with the skin
thickness [21]. Wrinkles have been widely used to design functional soft interfaces [22–25].
For instance, soft polydimethylsiloxane (PDMS) gels treated with oxygen plasma can easily
generate wrinkles under compressions, and their adhesion energy can be quantitatively ad-
justed by mechanical strains [26,27]. In addition, wrinkles were used to control the surface
tribology of soft materials [28,29] and to design superhydrophobic structures [30,31].

Swelling of a soft polymer gel under confinement is another effective approach to
generate surface instabilities [32–34]. Unlike the wrinkles in soft multilayer systems, the
instability patterns induced by swelling are often referred to as creases [10,35,36]. While
both wrinkles and creases result from free-energy minimization in buckling transitions, the
growth mechanisms of the two instabilities are different [37,38]. Compared to wrinkles,
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crease formations involve substantial compressive strains, such that the patterns are often
mechanically irreversible. Previous studies on creasing instabilities have focused on hydro-
gels. For instance, as a crosslinked hydrogel attached to a stiff substrate was fully immersed
in an ionized water solution, restricted swelling along the vertical direction resulted in
various crease-like patterns on gel surfaces [34]. Further investigations showed that creas-
ing instabilities can be driven by external stimuli, such as temperature [39], light [40], and
electric fields [41]. Due to the similar compositions between hydrogels and many biological
materials, creases in hydrogels have been considered as model systems to understand
the morphology of living tissues growing under constraints [42]. However, the role of
creasing instabilities in contact mechanics has not been explored systematically due to their
highly nonlinear features. In soft hydrogels, for example, the swelling ratios are significant
such that the crease formations are difficult to control in experiments [43]. On the other
hand, since PDMS elastomers comprise crosslinked networks swollen by a small amount of
highly viscous solvents, the diffusion motion of long polymer chains in PDMS elastomers
is often insignificant [44]. Therefore, creasing instabilities are not commonly considered for
PDMS elastomers.

To explore the role of crease-like instabilities in soft contacts, we herein studied
how swelling-induced surface patterns affect the adhesion energy of ultra-soft PDMS
gels. The PDMS gels with elastic moduli of a few kPa can generate creasing instabilities
across multiple length scales in a controlled fashion. We showed that the adhesion energy
was greatly increased by the patterns even as the free chains in the gels were reduced
significantly. Due to the broad use of PDMS in various engineering materials, our results
will help the design of soft interfaces with enhanced adhesive properties.

2. Materials and Methods
2.1. Preparation of the Gel Substrates with the Instability Patterns

The soft PDMS gels were synthesized by pre-mixing the crosslinkers and polymer
chains purchased from the Dow Corning CY52-276 (Dow Corning, Toray, Japan). The
well-mixed solutions were filled in a Petri dish and then degassed for a few minutes until
the trapped air bubbles were fully removed. The millimeter-thick samples were prepared
in a Petri dish, whereas the micrometer-thick samples were spin-coated on a coverslip
(Deckglaser, Marienfeld, Germany) at a speed of 800–3200 rpm. All the samples were left to
cure at 40 ◦C for 24 h to obtain the crosslinked gel substrates for further characterizations.
The resulting shear modulus (G) of the gels was around 1 kPa. We can estimate the
average spacing between crosslinkers (a) by considering thermodynamic free energy of
the polymer networks, which gives G ∼ kBT/a3 [44]. For a given shear modulus of the
soft gels, G ≈ 1 kPa, a is approximately in the order of 10 nm. To measure the precise
thickness of the samples, the top and bottom interfaces of the gels were both coated with
a layer of fluorescent beads. We located the focal planes of the two surfaces by using a
fluorescent microscope equipped with a piezo-controlled sample stage (Olympus IX-73
Inverted Microscope, Tokyo, Japan), and the vertical displacement of the stage gave the
sample thickness (see details in Appendix A). To generate the instability patterns, the
cured substrates were mostly immersed in an excessive solution containing 100% toluene
(99.9%, HPLC grade; Scharlau) for two days, and the solution was refreshed once every
24 h. During the swelling process, the samples were completely sealed to avoid any possible
evaporation. After the swelling process was finished, the samples were further kept in a
chemical hood for another 24 h to dry out the remaining toluene completely.

2.2. Optical Imaging of the Surface Profiles

To visualize the instability patterns distributed on the gel surfaces, we used an Olym-
pus IX73 fluorescent microscope (Tokyo, Japan). The microscope can also work as an
interferometer with a monochromatic filter (532/25 nm VIS Band Pass Filter) (Optolong
Optics CO., Ltd., Kunming, China). To analyze the 3D morphology of the instabilities, we
further carried out white-light interferometric measurements by using a surface profiler
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(Bruker NPFLEX, Billerica, MA, USA). The instrument could precisely reconstruct the 3D
surface profiles and measure the average roughness and maximum vertical deformations
of the substrates.

2.3. Adhesion Characterizations

The adhesion tests were performed on a texture analyzer (Mecmesin MultiTest 2.5,
Mecmesin Ltd., West Sussex, UK) which was equipped with different shapes of indenters.
To quantify the adhesion energy of each sample, we measured the force-displacement
curves during quasistatic loading–unloading tests. In a typical experiment, the indenter
approached the sample surfaces at a constant speed, 0.15 mm/min, and indented the
substrates by roughly 10% of their thickness. The probe then slowly retracted to its initial
height at the same speed after it was held at the maximum indentation for 1 min. Our
indentation processes were quasistatic so that the viscoelastic dissipations from gels could
be ignored in our measurements. The force was measured precisely by a force sensor
(Mecmesin Ltd., West Sussex, UK) with a resolution of 0.4 mN. The experimental force-
displacement results were compared with the classical Johnson-Kendall-Roberts theory. A
Complementary Metal Oxide Semiconductor (CMOS) camera purchased from Thorlabs
(Newton, NJ, USA) was also used to image the contact area during the indentations.

3. Results and Discussions
3.1. The Morphology of Surface Instabilities

Toluene solution greatly swelled the ultra-soft silicone gels that were prepared in
the experiments. The swelling ratio in free space was found to be as large as 2.5. For gel
samples fixed onto a glass substrate, the expansion restricted along the vertical direction
inversely generated significant compressive strain along gel interfaces. After the toluene
solution was removed, we observed clear instability patterns. It is worth noting that the
large swelling ratio induced by toluene is essential for generating the surface patterns. For
soft silicone gels immersed in ethanol or acetone solution, the substrates were swelled
slightly, and no crease-like instabilities were observed as a result.

Figure 1a shows a representative microscope image of the surface of a 19-micrometer-
thick gel substrate. The spatial distribution of patterns was largely uniform. Each individual
feature comprised three arms with approximately equal lengths. When two individual
features connected, they formed the joint patterns with four or five branches. A typical
3D profile of a feature with three branches measured by the surface profiler is shown in
Figure 1b. The vertical height of the feature is slightly above 2 µm, and each arm is around
60 µm long. There are clear cuts at the center of the ridges, and the opening angle α between
the two arms is close to 120◦.
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Figure 1. Representative microscope images of the gel substrates with surface instabilities.
(a) A brightfield image (scale bar: 100 µm). (b) A 3D surface profile of an instability feature measured
with a white-light interferometer (scale bar: 20 µm).
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Figure 2a–c shows the representative images of instability features as the sample
thickness was varied from 1 mm to 7.5 µm. To observe the patterns across multiple
length scales (as indicated by different scale bars in the panels (a) to (c)), the imaging
measurements were performed by the objectives with different magnifications. The feature
morphology remained universal across the scales, while their average dimensions decreased
in accordance with the sample thickness (h). We systematically measured the feature sizes
at the different sample thicknesses, and the results are summarized in Figure 2d. The
characteristic arm length, λ, was defined as the average distance between the joint and
the open ends of the branches (see Figure 2c). As the substrate thickness (h) increased
from 7.5 µm to 7 mm, the resulting λ rose from 21.2 ± 4.1 µm to 9.7 ± 0.4 mm. By
applying a power-law fit to the results in Figure 2d, we obtained an approximate scaling,
λ ∼ h0.8, suggesting that the instability feature size was mainly determined by the sample
thickness [32,45].

Materials 2022, 15, 852 4 of 12 
 

 

 

Figure 1. Representative microscope images of the gel substrates with surface instabilities. (a) A 

brightfield image (scale bar: 100 µm). (b) A 3D surface profile of an instability feature measured 

with a white-light interferometer (scale bar: 20 µm). 

Figure 2a–c shows the representative images of instability features as the sample 

thickness was varied from 1 mm to 7.5 µm. To observe the patterns across multiple length 

scales (as indicated by different scale bars in the panels (a) to (c)), the imaging 

measurements were performed by the objectives with different magnifications. The 

feature morphology remained universal across the scales, while their average dimensions 

decreased in accordance with the sample thickness (ℎ). We systematically measured the 

feature sizes at the different sample thicknesses, and the results are summarized in Figure 

2d. The characteristic arm length, 𝜆, was defined as the average distance between the joint 

and the open ends of the branches (see Figure 2c). As the substrate thickness (ℎ) increased 

from 7.5 μm to 7 mm, the resulting 𝜆 rose from 21.2 ± 4.1 μm to 9.7 ± 0.4 mm. By applying 

a power-law fit to the results in Figure 2d, we obtained an approximate scaling, 𝜆~ℎ0.8, 

suggesting that the instability feature size was mainly determined by the sample thickness 

[32,45]. 

 

Figure 2. Instability features on samples with different thicknesses. Brightfield microscope images 

of the instability patterns generated on samples with the thicknesses of 1 mm (a), 24 µm (b), and 7.5 

µm (c), respectively. The scale bars are 1 mm in (a) and 50 µm in (b,c). (d) Characteristic feature 

length (𝜆) is plotted against the sample thickness (ℎ). The red dashed line indicates the best power-

law fit to the experimental results, 𝜆 =  5.4 ℎ0.8. 

Figure 2. Instability features on samples with different thicknesses. Brightfield microscope images of
the instability patterns generated on samples with the thicknesses of 1 mm (a), 24 µm (b), and 7.5 µm
(c), respectively. The scale bars are 1 mm in (a) and 50 µm in (b,c). (d) Characteristic feature length
(λ) is plotted against the sample thickness (h). The red dashed line indicates the best power-law fit to
the experimental results, λ = 5.4 h0.8.

Notice that the surface profile shown in Figure 1b is not consistent with a typical
creasing instability [18,42]. Creases normally appeared below the initial sample planes,
while the features observed in our experiments comprised the ridges grown above the gel
surfaces. To understand the underlying mechanism of these pattern formations, we imaged
their growth and relaxation dynamics in situ under an optical microscope in Figure 3.
A newly cured gel substrate was initially immersed in the toluene solution when we
observed the creasing-like patterns as indicated by the cuts in the panel (a). At t = 0
(Figure 3b), we quickly removed the toluene solution with a pipette so that the gel surface
was exposed to air as the remaining toluene was evaporating. Figure 3c–i show how the
surface morphology evolved during the drying process at t > 0. At t = 20 s, we began to
observe islands of dark areas appearing between the creases, which were induced by the
relaxation of the swollen surfaces. From the image series shown in the panels (c) to (i), the
dark regions expanded their areas with time, and only the proximity of creases remained
unmoved. As the drying of toluene continued, the surface profiles around the creases finally
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evolved into the ridges as seen in Figure 3i. The spatial positions and orientations of the
resulting features aligned perfectly with the original creases. The finding also explains the
cuts at the center of each instability branch in Figure 1b. As we re-immersed the substrate
with the toluene solution at t = 273 s (Figure 3j) again, the collapsed surfaces immediately
re-expanded to their original states in less than a second (Figure 3k,l). The whole growth
and relaxation processes shown in Figure 3 can be viewed in the Supplementary Video S1.
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Figure 3. The growth and relaxation dynamics of the instability patterns on a 19-micrometer-thick
substrate. (a) The sample was initially immersed in toluene. (b) At t = 0, the toluene was removed
with a pipette. (c–i) The relaxation of the gel surface during the drying process. (j) The moment when
toluene was added again to the gel surface. (k,l) The gel surface swelled again in toluene, and the
creasing instability reappeared. Scale bar in (a): 100 µm.

3.2. Adhesion Tests

We next explored the role of the instabilities in adhesive contacts. To quantify the
changes of adhesion energy (W) due to the surface patterns, we prepared the soft gels
through two different swelling protocols. First, the gel substrates were swollen in free
space as illustrated by the schematics in Figure 4a. The swelling ratio was found to be
approximately D1/D0 ≈ 2.5. After removing the toluene solution, the gels gradually
retracted to their original sizes (∼ D0). The sample surfaces remained smooth through
this treatment in free space. By contrast, during the second preparation protocol, the
swelling and drying processes were confined in a Petri-dish, and the resulting instability
patterns appeared on the gel surfaces (see Figure 4b). We performed indentation tests on
both samples and compared their results with the untreated gels. All the samples have a
similar thickness of around 3 mm. To preserve the reproducibility of our results, all the
measurements followed the standard loading–unloading approach discussed in Section 2.3.
The force (F)—displacement (d) curves measured on the three soft interfaces were plotted
with different colors in Figure 4c.
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Figure 4. Adhesion tests on the gel substrates. (a) Schematics of the swelling process in free space.
(b) Schematics of the swelling process in a confined Petri-dish. (c) The force–displacement curves in
the indentation measurements for the untreated samples (red), the free swollen samples (orange), and
the samples with instabilities (blue). The indenter used in the measurements was a steel spherical
probe with a 16 mm diameter. The dashed black lines are the best fits of the JKR model to the
experimental results.

The force responses were measured by a spherical probe with a 16 mm diameter. We
defined a pull-off force, Fp, by the force value recorded at the lowest point of the force–
displacement curves in Figure 4c. The magnitude of Fp determines the largest extension
the gel surfaces can bear without detachment and indicates how sticky the substrates are.
Here, we found that the samples with surface instabilities (blue line) bore a significantly
larger pull-off force compared with the smooth samples (red and orange curves). We
expected that the swelling of soft gels in both free and confined spaces would extract
substantial free chains from the gels. According to previous studies [46,47], the absence
of free polymer chains would potentially decrease the adhesion energy of an elastomer.
Our experiments found that the substrates swollen in free space (orange) indeed exhibited
a slight decrease (~30%) in the pull-off force compared with the untreated samples. By
contrast, the instability patterns on the gel surfaces are the dominating factors of the
adhesive responses as they increased the pull-off force, Fp, by a factor of greater than two.
The details of the force measurements using the 6 mm diameter spherical probe and using
the 16 mm diameter gel-coated probe (GC) are given in Appendix B.

We further quantitatively fitted the unloading force-displacement curves in Figure 4c
to the Johnson-Kendall-Roberts (JKR) theory in contact mechanics [48]. In the JKR model,
when a rigid spherical probe with a radius R is brought into contact with a soft substrate,
the contact radius a induced by an external force F can be expressed as

a3 = (9R/16E)[F + 3πWR +

√
6πRFW + (3πWR)2 ] (1)

The adhesion energy (W) in Equation (1) represents the interfacial energy cost per
unit area to separate two material surfaces. To evaluate the theoretical predictions of the
force–displacement curves numerically, we considered a set of dimensionless parameters,
F̂ = F/πWR, d̂ = β2d/R and â = βa/R, where β = (4ER/3W)1/3. As a result, the
normalized force F̂ and indentation depth d̂ can be both expressed as functions of the
normalized contact radius â,

F̂ = (4â3/3π)− (4â
3
2 /
√

2π) (2)

d̂ = â2 −
√

2πâ (3)

By fitting Equations (2) and (3) numerically to the experimental results in Figure 4c,
we could determine the adhesion energy (W) of each substrate. The dashed lines in
Figure 4c indicate the best numerical fits to the experimental results. For the samples
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with the instabilities, the adhesion energy between the steel probe and substrates was
found to be W = (2.2 ± 0.3) J/m2, which was more than twice the adhesion energy of the
untreated samples, for which W = (1.0± 0.1) J/m2. By contrast, the adhesion energy of
the free swollen substrates was slightly reduced to W = (0.8 ± 0.1) J/m2. These results
quantitatively confirm that the presence of the instability patterns plays a critical role in the
adhesion enhancement.

We also obtained the effective Young’s modulus (E) of each sample from the fittings
to the Hertz contact for the loading periods. However, it is important to mention that
the standard contact models assume that the substrates are semi-infinitely thick. For a
substrate with a finite thickness, the effective Young’s modulus (E) was overestimated due
to a finite-size effect [49,50]. The true Young’s modulus of the substrates (E0) needs to be
corrected by E0 = E ψ where ψ is a geometric constant determined by the sample thickness
and probe radius. In our experiments, we calculated that ψ = 0.44 from the results of the
finite element method [51]. Table 1 shows the pull-off force (Fp), adhesion energy (W), and
the true Young’s modulus (E0) for each sample in detail. Notice that the stiffness of free
swollen samples was difficult to determine precisely since the swelling process deformed
the network plastically. Here, we estimated that E0 ≈ 6 kPa for the free swollen samples,
which was about twice that of the untreated samples. This stiffening effect was caused by
the collapse of the networks after removing the free chains.

Table 1. JKR analysis of the adhesion tests. The pull-off force (Fp), adhesion energy (W), and elastic
modulus (E0) for each soft substrate obtained from the indentation measurements in Figure 4c. The
uncertainties were calculated from the standard deviations by repeating the measurements at least
three times.

Samples Pull-Off Force
Fp (mN)

Adhesion Energy
W (J/m2)

Young’s Modulus
E0 (kPa)

Untreated 38.6 ± 2.9 1.0 ± 0.1 2.6 ± 0.6
Instabilities 84.6 ± 12.3 2.2 ± 0.3 2.9 ± 0.4

Free space swollen samples 27.7 ± 10.2 0.8 ± 0.1 ≈6.0

3.3. Effects on the Contact Lines

The instability-induced adhesion enhancement was associated with the variations of
contact periphery in adhesion tests. To better visualize the contact lines between the gel
and the probing surfaces, we attached a coverslip to a cylindrical probe. When the coverslip
was in contact with different sample surfaces, we imaged the contact area from below while
the probe was measuring the force response simultaneously. Figure 5a shows the compar-
ison between the force curves of the samples with (blue) and without (black) instability
patterns. As expected, the increase in adhesion energy was found again for gel surfaces
with the instability patterns. Meanwhile, the contact lines between the coverslip and gel
surfaces with instabilities (Figure 5b) became unstable compared with the untreated sur-
faces (Figure 5c). This difference can be clearly visualized in the Supplementary Video S2.
Since the detachment at the contact interfaces involved significant surface deformations,
increasing the contact perimeter could increase the energy cost to separate the interfaces
between the probe and gels and therefore increase the effective adhesion energy [52]. To
confirm the generality of this observation, we also imaged the contact area between the gels
and spherical probes during the same indentation tests. For the samples with instabilities,
we observed that the width of contact lines thickened (see the Supplementary Video S3).
Combining these findings together, we conclude that the modifications of contact lines by
the surface instabilities are essential for the adhesion enhancement. Further, the details of
the similar tests conducted under different surface conditions are given in Appendix B.
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Figure 5. Contact line variations during the indentation tests. (a) Force-displacement curves for
a glass coverslip indenting the samples with and without instabilities. (b) Fingering pattern for
instabilities sample and (c) normal smooth contact line for untreated sample. Scale bar = 0.5 cm.

We also evaluated the role of surface instabilities in soft contacts microscopically. To
visualize the local details at the micrometer scale, we used an interference imaging setup by
mounting a monochromatic filter cube (532/25 nm) to an optical microscope. We prepared
microscale instability patterns on a 19 µm -thick substrate. A glass coverslip was then
placed on the top and gradually pressed into the substrate. Due to the small refraction
index mismatch between silicone gels and glasses, reflective light at the interfaces of the
two materials was negligible. Therefore, the dark domains in Figure 6a represent the
direct contacts between the gel and coverslip. From the geometric shapes of these contact
domains, we conclude that they were the deformed instability features. The connected
bright areas between these features were the trapped-air cavities. If we zoomed into these
regimes, interface fringes from the air films were resolved by the interference microscope
(see Figure 6b). By contrast, we also imaged the contact area between a glass coverslip
and an untreated surface. As shown in Figure 6c, we did not observe any internal contact
structures or interference fringes for the untreated surfaces, suggesting that there was
no trapped air. Like the variations observed on contact periphery, we expect that these
internal structures (Figure 6a,b) also greatly increased the total perimeter of contact lines
and therefore enhanced the apparent adhesion energy.
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Figure 6. Microscope images of the contact areas. (a) A microscope image of the contact area when a
glass coverslip was indenting a 19-micrometer-thick substrate with instability patterns. (b) Zoomed-in
view of the contacts in (a) with an interference microscope. The interference fringes were induced by
the trapped-air cavities. (c) A microscope image of contact area when a glass coverslip was indenting
a 19-micrometer-thick substrate without the instability patterns. The scale bars in (a,c) are 100 µm.
The scale bar in (b) is 50 µm.

4. Conclusions

In this work, we systematically studied how the swelling-induced instabilities on
soft gels affect their adhesive properties. We demonstrated that permanent interfacial
features could be generated on ultra-soft surfaces through creasing instabilities. The
morphology of the features remained universal, and their sizes scaled almost linearly
with the sample thickness over three orders of magnitude. We quantitatively showed
that the instability patterns effectively increased the adhesion energy of the substrates
under different measuring conditions. The adhesion enhancement could be related to
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the variations of contact lines both around and inside the contact area. We believe that
these surface features are promising candidates for many engineering applications due
to high compliance and adaptability. The results from the work will be helpful in the
design of ultra-soft functional surfaces through other techniques, such as 3D printing or
soft lithography. Compared with wrinkles, these patterns that emerge from the swelling
of soft gels are better systems for modeling the formations of surface textures of various
living tissues.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ma15030852/s1. Video S1: Growth and relaxation of surface instabilities,
Video S2: Contact dynamics during adhesion detachment (with coverslips) for the samples with and
without instabilities, Video S3: Variations in contact lines during adhesion detachment (with the
16 mm steel spherical probe) for the samples with and without instabilities.
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Appendix A

Table A1 shows the characteristic feature size (λ) for the different samples thicknesses
(h) we have prepared varying from micrometer to millimeter scale.

Table A1. The characteristic feature size (λ) for different samples thicknesses (h).

Sample Thickness
h (mm)

Feature Length
λ (mm)

Sample Thickness
h (µm)

Feature Length
λ (µm)

2 1.9 ± 0.2 24 77.5 ± 13.2
3 3.5 ± 0.3 19 59.1 ± 10.9
4 4.8 ± 0.9 15 60.9 ± 10.5
5 5.0 ± 1.1 14 47.9 ± 6.5
7 9.7 ± 0.4 13 47.5 ± 8.2

12 45.0 ± 8.8
10.5 42.8 ± 7.3
9.5 29.8 ± 5.8
9 26.2 ± 4.6

8.5 24.3 ± 4.2
8 22.6 ± 3.8

7.5 21.2 ± 4.1

Appendix B

To confirm the generality of the conclusions that we drew in this work, we further
quantified the role of surface instabilities in soft adhesion under different measuring condi-
tions. For example, Figure A1 shows the force-displacement curves measured with a small
steel spherical probe (diameter = 6 mm) on various interfaces. The overall trend was similar

https://www.mdpi.com/article/10.3390/ma15030852/s1
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to the results obtained with the 16 mm spherical probe (Figure 4c). Additionally, besides the
adhesive properties between gel surfaces and different testing materials, we investigated
the contacts between the same materials. First, we coated the 16 mm spherical probe with
a thin layer of soft silicone gels. When the probe was indenting the soft substrates, both
surfaces were made of silicone gels. Figure A2a shows the force-displacement curves
measured with this gel-coated probe (GC) on different sample surfaces. Second, we also
used coverslips coated with soft silicone gels to indent another gel substrate. Figure A2b
shows force-displacement curves measured under different surface conditions. In all these
tests, we consistently found that instability patterns on gel surfaces substantially increased
the adhesion energy.
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Figure A1. Adhesion tests performed with a 6 mm steel spherical probe. The red, orange, and blue
curves represent the force-displacement curves measured for the untreated samples, the free swollen
samples, and the samples with instabilities, respectively.
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Figure A2. Adhesion tests between two silicone gel surfaces. (a) Force-displacement curves of the
gel-coated spherical probe (16 mm) indenting gel substrates with (blue) and without instabilities
(red). (b) Force-displacement curves of gel-coated coverslips indenting thick gel substrates. The
experiments were performed under four different surface conditions. Inset table: Y indicates that the
surface has instability patterns, and N indicates no instability.
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