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Abstract

We investigate the laminar-to-turbulent transition of highly non-ideal supercritical fluids. The controlled H-type
breakdown in a three-dimensional flat-plate boundary layer is chosen. Direct numerical simulations are performed
at low Mach numbers, for isothermal and heated walls. We consider a fluid following the Van der Waals (VdW)
equation of state (EoS) at a supercritical reduced pressure of p, = 1.10. A newly developed GPU-accelerated
code is first successfully validated against linear two-dimensional simulations using the VdW EoS, and transitional
simulations using ideal gas. Subsequently, H-type breakdown of two subcritical (liquid-like only) and one strongly-
stratified transcritical (pseudo-boiling) profiles are considered. As the wall temperature approaches the Widom
line, the formation of staggered A-vortices, with hairpin-shaped vortices at their tips, is delayed. When the wall
temperature is higher than the pseudo-boiling temperature, the transition scenario differs from the classical H-
type breakdown. Patterns of A-structures are alternated by high-low-velocity and -density streaks before hairpin-
shaped vortices form. Finally, the skin friction coefficient and Stanton number are analysed, shedding light on the
thermodynamic-regime dependence of the transitional overshoot.

1 Introduction
In recent years, supercritical fluids have gained interest in industrial applications to increase their efficiency;

for example, in supercritical CO, (hereafter, sSCO2) power cycles (Liu et al. (2019)). Here, the complex, non-ideal
thermodynamic mechanisms above the critical pressure and the strong property variations across the Widom line
(i.e. max(Cp), see ﬁgure play a key role in the flow instability and transition mechanisms.
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Figure 1: (a) Pressure-temperature (p—1") diagram of CO2 along with the triple point (magenta), critical point (green), satu-
ration line (blue), Widom line (red line) and supercritical fluid region (sCO2) in yellow. At a reduced pressure of
pr = 1.10 as a function of reduced temperature 7’-: (b) reduced density p, and dimensional specific heat C},, (c)

reduced viscosity j, and reduced thermal conductivity &,.. The Widom line (- - -) is at T}, or T} . = 1.024.

In fact, the prediction of the transition location is a key aspect in order to understand how heat transfer and
wall friction evolve. Yet, knowledge of how a supercritical flow transitions to turbulence is unknown; only the
stability of non-ideal gases in boundary layers has been recently studied by linear stability analyses on sCO5. A
review can be found in Robinet & Gloerfelt (2019). For instance, Ren et al. (2019b) found that, in transcritical
boundary layers, the flow is highly destabilised by a new inviscid mode (Mode II), which is not related to Mack’s
second mode. Following Ren’s work but ruling out any acoustic effect (low-Mach-number approximation), Bugeat
et al. (2022) carried out an inviscid stability analysis of Mode II. Its presence was confirmed, and it is associated
with a general inflection point in the base flow, which in turn is generated by an extremum of the kinematic vis-
cosity. While these studies focused on linear instabilities, the subsequent non-linear interactions towards transition
to turbulence remain unexplored for supercritical fluids. On the contrary, in ideal gases, “controlled” experiments
on the H-type breakdown mechanism were firstly performed by Kachanov et al. (1977). The subharmonic break-
down was later theoretically formulated by Herbert (1988). Fasel et al. (1990) confirmed these experimental and



theoretical observations by performing Direct Numerical Simulations (DNS). A more recent study was undertaken
by Sayadi et al. (2013). The goal of the present study is to gain insight into the H-type breakdown in supercritical
fluids which has, to our best knowledge, not been studied yet.

2 Methodology

Flow conservation equations and equation of state
We consider a single-phase flow of a generalised supercritical fluid governed by the dimensionless fully compress-
ible Navier-Stokes equations in a Cartesian coordinate system (x, y, z):

O (pu) + V- (pu@u) + Vp — (Re;) 'V -7 =0, (1)
OH(pE) +V - ((pE+p)u) = V- (u-T) + (ResProcEcee) "'V - q = 0,

where u is the velocity vector and E = e + u?/2 is the total energy. The viscous stress 7 and heat flux q are
defined as

2
T:,u(Vu+VuT)+)\(V~u)I, )\:,ub—g,u; q=—rVT, 2)

where i, is set to 0 according to Ren et al. (2019a) and I is the identity matrix. The above flow conservation
equations have been non-dimensionalised by the following reference values: ¢t = t*U% /L*, x; = z}/L*, u; =
WUk p = %[5 p = 07 /(P2 T = T T, B = E* U2, j1 = i 5 = K K%, where () and
()%, denote dimensional and free-stream quantities, respectively. Consequently, the following non-dimensional
numbers are obtained: Reynolds number Res = pli u’ 0*/uk,, Mach number Mo, = u}_/a’ , Prandtl number
Prog = Cp ./ K, and an Eckert number Eco, = ui2/(C}; . T ). The length scale L* is the local boundary-

p,00" 00
layer thickness 6* = (u*_z* /p* /u* )/2. The system of equations is closed by a cubic equation of state (EoS),
y HooToo/ Poo/ oo y q y q

namely the Van der Waals (VdW) EoS in reduced form. The VAW EoS is given as

s 3
S 3u. -1 w2’

Pr 3)
with the reduced pressure p, = p*/p%, reduced temperature 7,, = T /T, and reduced specific volume v, =
1/pr = pk/p*. Subscript ()% denotes values at the thermodynamic critical point. With this generalised formula-
tion, only the ratio C /R* (i.e., the molecular degrees of freedom) needs to be specified. In addition, the analytical
models of Jossi et al. (1962) and Stiel and Thodos (1964) are used for the transport properties (e.g., i = f(pr, I1))-

The computational domain is illustrated in figure 2] The inflow is located at z and the outflow at x.. The do-
main height is given by y,.. In the spanwise direction (z = [0, 2.]), periodicity is imposed. All dimensions are
scaled by the boundary-layer thickness at the domain inlet §y. Controlled disturbances are introduced at the wall
by a blowing and suction strip located between x; and x2, with ;¢ = 0.5(x1 + x2), as

v(z,y =0,2,t) = f(x) [Azp sin(wapt) + As.p sin(ws.pt) cos(£5z)], )

where A, p and Ajp are the disturbance amplitudes of the primary and oblique waves, and w; p and w3 p are the
frequencies of the primary and oblique waves, respectively. The wave function f(z) is chosen in agreement with
Sayadi et al. (2013), whereas the spanwise wavenumber 3 is calculated as 8 = 27/ z,.
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Figure 2: Computational domain in blue. In red, the velocity profile u(y) and the evolution of the boundary-layer thickness
090 (). In light blue, the perturbation strip at the wall. In grey, damping zones at the boundaries.

DNS solver

In the context of DNS, the Navier-Stokes equations (equation |1)) are numerically integrated with a newly de-
veloped in-house finite-difference solver, SCRINS (SuperCRItical Navier-Stokes). It is written in Modern Fortran,
using MPI for parallelisation and OpenACC for GPU offloading, making it capable of running on many-GPU sys-
tems. Time integration is based on an explicit third-order Runge-Kutta scheme, whereas the spatial derivatives are



discretised using a sixth-order central finite-difference method. In order to achieve stable and non-dissipative sim-
ulations, a cubic-split form of the momentum convective terms, which was first introduced by Kennedy and Gruber
(2008), is employed (see Kuya et al. (2018)). This split convective form can preserve both kinetic energy and en-
tropy (KEEP), while minimising aliasing errors. In addition, the newly KEEPpg scheme of Shima et al. (2021) is
included to guarantee pressure equilibrium at the discrete level.

Boundary conditions (BC) based on the local one-dimensional inviscid set of equations are chosen; for a non-
ideal gas, they follow the derivation of Okong’o and Bellan (2001). Non-reflecting BCs are imposed at the inflow
(p = poo), free-stream (p = poo), and outflow (p = p.o) planes. At the wall, the no-slip and no-penetration con-
ditions are used, and it is isothermal (I' = T,). The initial condition inside the domain is given by the laminar
compressible boundary-layer equations (see Ren et al. (2019b)). Additionally, damping sponge layers are applied
at the boundaries in order to minimise disturbance reflections in the full viscous flow (see Franko & Lele (2013)).

Linear stability solver

Linear stability theory (LST) is used for: (1) validation of the DNS for the development of two-dimensional
(2-D) waves induced by the perturbation strip (section 3), (2) preliminary analysis of the modal instabilities in the
cases here studied (section 4). In agreement with Ren et al. (2019), the linearised stability equations are numerically
solved by adopting the spatial framework: the spatial growth is obtained from the imaginary part of the streamwise
wavenumber . When «; < 0, spatial amplification occurs.

3 Validation

The aforementioned Navier-Stokes solver SCRINS has been extensively validated for various 2-D LST and
three-dimensional (3-D) DNS cases with both ideal and non-ideal gas properties. Two validation cases are pre-
sented in this paper. In the first case, a DNS in the transcritical regime is compared to LST results for the linear
stage using the VAW EoS. Secondly, with respect to the here considered H-type breakdown, one full transition to
turbulence is performed and compared to the ideal-gas results of Herbert (1988) and Sayadi et al. (2013).

Linear stage of transition

When the DNS has reached a periodic solution, the linear infinitesimal-amplitude (A, p = 10~7) disturbance
evolution is extracted. Then, the results are Fourier transformed in time with the fundamental circular frequency
Q = wyp/2 (w3.p = 0); 50 samples are taken within two forcing periods. The growth rate —c;(x) of the funda-
mental mode is consequently calculated (see Ren et al. (2019b)) and displayed in figure [3(a). The flow parameters
are: Mo, = 0.39, Ecoo = 0.05, T} oo = 0.92, p, = 1.10, and Pr., = 3.15. This setup corresponds to sCO3 at
T, = 280K (liquid-like free stream), while the wall temperature is instead 7;. ,, = 1.03 (gas-like). This flow case
belongs to the transcritical regime at supercritical pressure. At these conditions, the only modal instability present
in the flow is caused by Mode II. Here, a dimensionless frequency of F>.p = wy.p/Res = 50 x 1079 is selected.

Non-linear stage of transition

A “classical” subharmonic breakdown is simulated and compared to the theoretical results of Herbert (1987)
and the numerical results of Sayadi et al. (2013) for ideal gas. The Mach number is set to M., = 0.2, the free-
stream temperature to 775 = 300 K, and the wall is assumed to be adiabatic. The dimensions of the computational
domain are 1 < x/dp < 400 in the streamwise direction, 0 < y/dy < 20 in the wall-normal direction and
0 < z/0p < 9.63 in the periodic spanwise direction. The inlet boundary-layer thickness is based on the inlet
Reynolds number of Reso = v/105. The disturbance strip begins at x1 /09 = 41.8 and ends at x1/dp = 51.8. It
induces a Tollmien-Schlichting (TS) wave (A, p = 1.75 x 1073) at a reduced frequency of F>.p = 124 x 1076
and a pair of oblique waves (A3p = 2.5 x 10~° with 3 = 40.65) with F3.p = 62 x 1075, Grid resolutions are
Az /5y = 0.09 and Az/§y = 0.08; at Res = 700, they are equal in viscous units to Azt = 5.7 and Az* = 5.1
with yt. = 0.63.
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Figure 3: (a) comparison between DNS and LST: growth rate for DNS (—) and LST (o). (b) downstream development of the
|u|-disturbance amplitude at constant y/do = 0.26: mode (1,0), — ; (1/2,1), — ; o , Herbert (1988); — , Sayadi et
al. (2013). The location of the disturbance strip is reported with a dash-dotted line (- - -).

Figure [3(a) displays the evolution of the growth rate as a function of the local Reynolds number Re; for the



DNS simulation and LST. Overall, the DNS shows good qualitative agreement with LST. Yet, a small quantitative
shift is observed due to non-parallel effects. Figure[3{b) shows the spatial development of the Fourier transformed
streamwise velocity disturbance |u/| in the range Res = [350, 700]. Here, (h, k) indicates a wave with frequency
h - F and spanwise wavenumber k - 3. Good quantitative agreement between the current DNS results, theory, and
literature is observed both for the primary and secondary modes.

4 Results

All simulations are conducted at the same supercritical pressure of p, = 1.10, free-stream temperature of
T, s = 0.90 (liquid-like region), and a finite Mach number of M, = 0.2. Three different reduced wall tempera-
tures are used (two in the liquid-like region and one in the gas-like region); see table [T}

EoS pr Trpe Trooo Tro Mo FEcew Proo C¥/R* Trw To/Tk Case Regime
0.90 1.0 Tw090 Subcritical
vVdw  1.10 1.024 0.90 0924 0.2 0.016 1.0 9/2 0.95 1.056 Tw095 Subcritical

1.10 1.222 Tw110  Transcritical

Table 1: Base-flow properties of the cases under consideration. 77, stands for the reduced wall temperature. For the transcrit-
ical case (Tw110), the temperature profile crosses the Widom line (i.e., T« > 17 pc). The reduced total temperature
T’0 is calculated according to Nederstigt & Pecnik (2023).

In figure {] laminar boundary-layer profiles are displayed for the three cases listed in table [T} The strongest
density variation (figure Ekc)) can be found in the transcritical case.
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Figure 4: Self-similar base-flow profiles: (a) reduced temperature, (b) non-dimensional streamwise velocity, and (c) reduced
density. T ., = 0.90 (—), T’r,.v = 0.95 (—), and T’ ,, = 1.10 (—). In (a), the Widom line (WL) is marked with a
dash-dotted line (- - -). In (c), the y-location of the WL is displayed by a horizontal dash-dotted line (- - -).

Using these profiles, a linear stability analysis is performed. Their stability diagrams are compared in figure 5]
in which the growth rate (—¢;) is plotted in the Reynolds number Res — dimensionless frequency F' space. Here,
neutral stability for a corresponding ideal-gas case is indicated with a dotted blue line. Wall heating is found to
stabilise the TS wave in the subcritical regime. In the transcritical regime, two modal instabilities appear (Mode I
and II), consistent with Ren et al. (2019). Here, Mode I (TS-wave like), non-monotonic across the Widom line, is
moderately unstable, whereas inviscid Mode II is highly unstable.
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Figure 5: LST of the subcritical and transcritical VAW cases: stability diagrams for the three different wall temperatures. Neutral

stability curve for ideal gas (- --) and for VAW at M., = 0 (= = =). The extent of the DNS domain (- - =), and the
location of the disturbance strip (2-D wave B, 3-D waves ) and associated frequencies are indicated.

Mimicking the the ideal-gas case of Sayadi et al. (2013), the DNS cases have been selected such that a modal
instability is triggered at the same primary frequency F>.p. Therefore, in a disturbance strip at Res miq = 415,
the two-dimensional wave (1,0) with F>p = 124 x 1075, A, p = 1.75 x 10~ and oblique subharmonic waves
(1,£1) with F3.p = 0.5F>.p, Asp = 2.5 x 107? are introduced. From ﬁgure it can be noticed that in the trans-



critical regime the primary instability is mainly caused by Mode II, and not by a TS-wave like instability. Further
computational details are given in table 2]

Case  Lg/d60 Ly/do L./do N, Ny, N. Azt Ayt Azt Regian

Tw090 400 20 9.63 6550 400 150 4.5 0.53 4.7 564
Tw095 400 20 9.63 6550 400 150 4.9 0.58 5.1 556
Twl10 668 40 9.63 10240 700 160 5.4 0.46 4.9 586

Table 2: Numerical parameters of the H-type simulations. Viscous units ()+ are calculated at Reg maqx-

Snapshots of the streamwise velocity inside the boundary layer (zz-plane) at a constant wall-normal height of
y/do = 0.35 are presented in ﬁgure@ The staggered alignment of A-vortices is noticeable in ﬁgureEka)—(b) for the
subcritical cases. Farther downstream, the A-structures elongate in the tip region, where they develop into a hairpin-
like structure, while lifting up. An increase of wall temperature towards the Widom line (figure [f[b)) is found to
delay transition, confirming the prediction given by LST in figure [5] Additionally, in case Tw095, A-vortices
are more elongated than in case Tw090. In figure [f[c), the breakdown scenario of case Tw110 shows significant
differences with the subcritical cases. A clear staggered pattern of the A-structures is not present. Instead, the first
appearance of two elongated legs of opposite signed streamwise vorticity w, is only found at Re, ~ 5.35 x 10°
(position A). Here, the induced high-velocity regions are associated with high-density regions, which is different
from the subcritical regime. Downstream at Re, ~ 5.55 x 10 (B), streamwise-elongated structures can be seen
(high-low-speed zones with high (liquid-like)-low (gas-like) density). Even farther downstream (C), streaks evolve
into A-structures before a hairpin-shaped eddy is similarly generated, as in cases Tw09 and Tw(095. Overall, the
H-type breakdown in the transcritical regime takes place over a much shorter distance.
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Figure 6: Contours of instantaneous streamwise velocity (zz-plane at y/Jo = 0.35): () Tw090, (b) Tw095 and (c) Tw110. Span-
wise domain is copied once for better visualisation. Note the different z-axis range between (a-b) and (c).

To analyse the transition mechanism, the Fourier transformed streamwise velocity disturbance is extracted from
the flow field and presented as a function of the streamwise Reynolds number Re, in figure[7] Only selected modes
that take part in the early non-linear stage of the subharmonic breakdown are presented here.

) 0,2) «(1/2,1) —(1,0)

Re,/10° Re,/10°

Figure 7: Streamwise development of the u’ velocity extracted at y/5o = 0.35: (a) Tw095, (b) Tw110. The disturbance strip is
located at Re, = 1.72 x 10°

The subcritical case Tw095 in figure[7(a) shows significant resemblance to the ideal-gas case in figure[3(b). The
primary 2-D mode (1,0) follows the modal growth predicted by LST in figure b), whereas oblique waves
(1/2,+1) are initially stable. Once the secondary instability occurs, mode (1/2,1) grows rapidly to finite am-
plitude and overtakes mode (1,0) at Re, ~ 4.2 x 10°. This leads to the formation of the staggered A-structures



in figure [6(b). The non-linear generation of modes (0, 2), (1,2), and (2, 2) takes place thereafter. A different be-
haviour of the subharmonic breakdown can be noticed for the transcritical case Tw110 in figure b). Mode (1,0)
is initially damped at the disturbance strip in figure c). Note that the second higher harmonic (2, 0) is unstable,
and influences the other modes by non-linear interaction. The subharmonic mode (1/2, 1) experiences alternating
growing and damping up to Re, ~ 4.6 x 10° before rising abruptly. Here, other modes are also strongly, non-
linearly amplified. In particular, the large growth of a steady longitudinal mode (0, 2) has the highest amplitude
at Re,, ~ 5.5 x 10°, which is the same location of the streaky structures observed in ﬁgure@ In contrast, modes
(1/2,1) and (3/2, 1), typical of the A-vortices, reach their highest amplitude only after Re, ~ 5.8 x 10°, which
is also consistent with the observations made earlier for figure [6]

In order to define the transition location, the streamwise evolutions of the time- and spanwise-averaged skin
friction coefficient C'y and Stanton number St are calculated. They are defined in non-dimensional form as

2Tw Gu
Cy=——, St= , 5
! Res RegProoEcooMgoagm(hnaw — hrw) )
where a, o = a’ /(piv}) is the reduced speed of sound in the free stream, and h, 4, = R, /(piv}) is the

reduced the adiabatic wall enthalpy, which is equal to the total enthalpy h, ¢ for Pr = 1 (see flow parameters in

table [T)):
_ C’u,rTr,O 3

hr,aw = hr,O = 7 e +pr,0vr,0- (6)
c Ur,0

s

The critical compressibility factor Z. for the VAW EoS is 3/8. In ﬁgure C'r and St are presented for case Tw095
(figure [8[a)) and Tw110 (figure [8b)). By comparing their development with «’ in figure [7] the following conclu-
sions on the wall-shear and heat-flux development can be drawn. Once the secondary instability arises, both curves
very slightly deviate from their respective laminar solution. Before mode (1/2, 1) reaches its maximum for case
TwO095 (Re, =~ 4 x 10°) and mode (0, 2) reaches its maximum for case Tw110 (Re, =~ 4.8 x 10°), the transition
onset is found (i.e. min(Cy), min(St)), respectively. It is followed by a steep rise as other higher modes experi-
ence strong non-linear amplification. This rise happens later for case Tw110 as the secondary instability develops
farther downstream than for case Tw(095. A distinct overshoot is later seen for case Tw095, representative of the
H-type transition. For case Tw110, the overshoot is significantly reduced by the concurrent presence of streamwise
streaks, typical of bypass transition. The Stanton number shows an analogous behaviour to the development of the
skin friction coefficient for both subcritical and transcritical cases.
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Figure 8: Time- and spanwise-averaged skin friction coefficient C'y (=) and Stanton number St (=): (a) Tw095, (b) Tw110. Solid
lines are DNS results, while symbols represent the numerical integration of the self-similar laminar profile.

The boundary layer becomes turbulent at Re, ~ 5.6 x 105 for case Tw095. Overall, the transcritical case
reveals a lower skin friction coefficient than case Tw095. In fact, despite the larger wall shear (Ou/9y) in the tran-
scritical regime (see figure[d)), the viscosity at the wall for the subcritical regime is a factor 4109 /T w110 ~ 2.5
larger. Similarly, the temperature gradient (07 /Jy) is larger in the transcritical case, while the thermal conductivity
at the wall is smaller (k%110 /xTw09 ~ (.75).

Finally, instantaneous flow structures are displayed in figure 0] by isocontours of the Q-criterion. In the sub-
critical regime (figure [Ofa)), the sequence of staggered A-structures and hairpin-shaped vortices can be clearly
noticed (location A). Figure [9(b) displays the H-type transition for the transcritical case Tw110. The combination
of A-vortices (A) and streamwise streaks (B) is noticeable. In the later transition stage, lifting of the hairpin-shaped
loops is visible. From preliminary investigations of the turbulent flow statistics, it has been found that an interplay
of the large vorticity structures with the influence of the Widom line enhances the fluctuations’ amplitude. For
instance, density fluctuations /p’p’/p and viscosity fluctuations \/p/p’ /i can reach up to 30% in the near-wall
region, while they are negligible in the subcritical regime (i.e., &~ 2%). Furthermore, due to the sharp gradient

of Cj, in the proximity of the Widom line (see figure , local maximal C)-fluctuations /C;C}/ C, up to 80%

are found. These results confirm the investigations of Kawai (2019), in which strong property fluctuations are
observed. Hence, they significantly modify the near-wall turbulence and the turbulent statistics.



Figure 9: Visualisation of the instantaneous flow structures using isosurfaces of the Q-criterion (Q = 0.025), coloured by the
streamwise velocity: (a) Tw095, (b) Tw110.

5 Conclusions

Direct numerical simulations were performed for the first time to study the transition to turbulence of a flat-
plate boundary layer with supercritical fluids. The H-type breakdown case of Sayadi et al. (2013) at a Mach number
of 0.2 was chosen as a reference scenario. After the validation of the newly developed high-order multi-GPU ac-
celerated solver, three different flow cases were considered with respect to the pseudo-boiling temperature: two
in the subcritical regime and one highly non-ideal in the transcritical regime. All share the same reduced super-
critical pressure of p, = 1.10 and the same free-stream conditions (e.g., T, . = 0.90), while each having a
different wall temperature. The investigations highlighted that the formation of staggered A-vortices, followed by
hairpin vortices, was delayed by a wall-temperature increase towards the Widom line. In the transcritical regime,
the subharmonic instability was significantly delayed before being abruptly amplified together with other higher
modes. Consequently, a combination of strong vortical structures, resembling A-vortices, and high-low-speed
streaks with high-low-density fluid was found. In contrast to the subcritical regime with regards to the skin-friction
and Stanton-number evolution, no distinct overshoot was observed. Additionally, thermophysical-property fluctu-
ations are found to be two orders of magnitude larger than in ideal-gas simulations at the same Mach number.
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