
Detecting Empty Wireframe Objects on
Micro-Air Vehicles

Applied for Gate Detection in Autonomous Drone Racing

by

P. Duernay

in partial fulfillment of the requirements for the degree of

Master of Science

in Embedded Systems

at the Delft University of Technology,

to be defended publicly on Tuesday December 18, 2018 at 2:00 PM.

Supervisor: Dr. D. M. J Tax

Thesis committee: Prof. Dr. Ir. M. J. T. Reinders, TU Delft

Dr. G. C. de Croon, TU Delft

This thesis is confidential and cannot be made public until December 18, 2018.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Acknowledgements

I would first like to thank my thesis supervisors Dr. David M.J. Tax and Dr. Guido C. de Croon for the guid-

ance throughout the project. The meetings helped me steering the thesis in the right direction while leaving

enough freedom for my own choices. Any questions I could always ask.

Furthermore, I would like to thank fellow colleagues that were involved in the implementation on the Micro-

Air Vehicle (MAV) and the Autonomous Drone Race. First and foremost Shuo Li for helping me with the

experiments and for all the pizza we shared together. Also, Jihaio Lin, Christoph de Wagter, Simon Spronk

and all the technical staff of the MAVLab.

Finally, I must express my very profound gratitude to my parents and friends for providing me with unfailing

support and continuous encouragement throughout my years of study and through the process of research-

ing and writing this thesis. This accomplishment would not have been possible without them. Thank you.

Author

Dürnay, Philipp

iii





Contents

Acknowledgements iii

Summary 1

1 Introduction 5
1.1 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 11
2.1 Detecting Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Baseline Algorithm: SnakeGate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 On the inference time of CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Generating Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Generative Adversarial Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 The target system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Methodology 21
3.1 Data Generation Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.2 Post Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 You only look once V3 (YoloV3) - Object Detector . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.3 Training Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.4 Training Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Real-World Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 Sets created in simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Experiments 31
4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Threats to Validity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Empty Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.3 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

v



vi Contents

4.5 Providing Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5.3 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6 Transferring the detector to an MAV race . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6.3 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7 Optimizing the Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.7.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.7.3 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.8 Transferring the detector to the real world . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.8.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.8.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.8.3 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.9 Deploying the detector on an MAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.10 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.10.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.10.2 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Conclusion & Future Work 53

Bibliography 57



Summary

Autonomous MAVs are an emerging technology that supports a wide range of applications such as medical

delivery or finding survivors in disaster scenarios. As flying in such missions is difficult the robust estimation

of an MAV’s state within its environment is crucial to ensure safe operation.

In indoor scenarios, cameras are one of the predominant choices for state estimation sensors. This requires

Computer Vision algorithms to interpret the obtained high dimensional signal. An application that allows the

competitive evaluation of control and state estimation algorithms is MAV Racing such as the International

Conference of Intelligent Robots (IROS) 2018 Autonomous Drone Race. Thereby a race court consisting of

several race gates has to be followed. For a fast flight during such a race court the detection of the racing gates

with a camera can be used in a high level control loop. As these objects consist only of small structures that

are spread across large parts of the image, this gives rise to a challenging Object Detection problem.

In recent years CNNs showed promising results on various vision tasks. However, due to their computational

complexity the deployment on mobile devices remains a challenge. Furthermore, CNNs typically require a

vast amount of training data. Finally, the objects typically studied in Object Detection consist of solid and

complex features which is not the case for racing gates. Therefore, this work defines the class of Empty Wire

Frame Objectss (EWFOs) and studies their detection on MAVs with You only look once (Yolo)V3. Thereby, the

training data is created with a graphical engine. We are interested in how to detect EWFOs with a CNN on a

MAV, using synthetic data.

We conduct several simple experiments about EWFOs in simulation and compare their detection to more

filled objects. Subsequently experiments in a more challenging environment such as an MAV race are con-

ducted.

The experiments show how EWFOs are harder to detect than filled objects as the detector can be confused to

patterns present in the empty part. Particularly for larger objects the detection performance decreases. We

give several recommendations on how to generate data for the detection of EWFOs on MAVs. These include

how to add variations in background as well as the camera placement. Finally, we study the incorporation

of image augmentation techniques to transfer the detector to the real world. We can report that especially

modelling lens distortion improves the performance on the real data. Nevertheless, a reality gap remains that

can not fully be explained.

Furthermore, different architectures are studied for the detection of EWFOs. It can be seen how a relatively

shallow network of 9 layers can be used for the detection of EWFOs on MAVs. A further reduction in weights

leads to a gradual decrease in performance. Based on the gained insights the deployment of a detector on the

example system JeVois is studied. A detection performance/speed trade-off is evaluated. The final detector

achieves 32% ap60 at a frame rate of 12 Hz on a real world test set created during this work.

The gained insights can be used to deploy the detector in a control loop for MAVs. This ensures the safe flight

through a racing court of an autonmous drone race. The gained insights about the detection of EWFOs can

be transferred to objects with similar properties.
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Chapter 1

Introduction

Micro-Air Vehicles (MAVs) such as a Quadrotor-MAV displayed in Figure 1.1 are an emerging technology that

supports society in a wide range of consumer, industrial and safety applications. For example MAVs are used

to deliver medicine [52], fight fires [31] or even find survivors in disaster situations [28].

Especially in emergency scenarios the fast and safe flight of MAVs is crucial to deliver help quickly and save

human lives. However, due to the complexity of such missions as well as the difficulty to control an MAV in

disaster scenarios, often multiple human operators are required in order to ensure safe operation [43]. With

humans in the loop a constant connection between the MAV and the operators is required which not only

uses energy and requires infrastructure but also significantly increases the reaction time. Enabling MAVs to

fly more autonomously could allow human operators to control more MAVs and thus to improve the support

in emergency situations.

A major challenge on the way to the full autonomous flight of MAVs is the accurate estimation of the MAV’s

state within its environment. The system is highly dynamic so position and orientation can change rapidly.

At the same time noise introduced by motor vibrations makes the position estimation with only on-board

Inertial Measurement Units (IMUs) too inaccurate [42]. Light Detection And Ranging (LIDAR)-sensors can

capture long and wide range 3D information but the sensors are typically heavy and require a significant

amount of energy. Infrared (IR) sensors can cover distance information but are often limited in their Field of

View (FoV) as well as in their range. External infrastructure like Global Positioning System (GPS) and optical

tracking systems can provide accurate measurements but there is no guarantee that such systems are present

in real world applications. Cameras on the other hand are cheap, lightweight and can measure long range

distance information. This makes them a suitable choice as a sensor for on-board state estimation on light

Figure 1.1: An example of a Quadrotor-MAV-Platform that is used in this thesis.

5



6 1. Introduction

MAVs [10].

However, the signal delivered by the camera is high dimensional and can not directly be interpreted as po-

sition or orientation measurements. Computer Vision algorithms are required to interpret the image and

extract relevant information. This can be done by designing an algorithm manually or learning the image

processing from annotated examples. In particular Deep Learning based methods aim to combine whole

Computer Vision pipelines into one mapping that transforms the raw input image into a task dependent out-

put. Experiments have shown how Deep Learning based methods outperform traditional Machine Learning

approaches and manually crafted algorithms [47]. This made them the predominant choice for almost any

vision task.

The hereby used Convolutional Neural Networks (CNNs) are designed in a hierarchical way, using multi-

ple layers that are evaluated sequentially. An example architecture is displayed in Figure 1.2. The network

transforms an image of size 224x224 from its input (left) to a task dependent output (right). In this case a

classification network predicting 1000 class probabilities is displayed. Each layer applies a non-linear trans-

formation for which the parameters are learned during training. By stacking more layers on top of each other

(deepening) and increasing the number of nodes D per layer (widening), highly non-linear functions can be

modelled.

Experiments have shown the superior performance of particularly deep/wide models [18, 20, 54, 64]. How-

ever, this model flexibility assumed to be the reason for their superior performance also leads to immense

requirements in computational resources. For example a state-of-the-art Computer Vision model [20] con-

tains 60.2 million parameters and one inference requires 11.3 billion floating point operations [58].

Figure 1.2: VGGNet [? ] Example Architecture of a CNN.

Robotic platforms like MAVs have limited resources in terms of processing power and battery life. Hence,

the use of CNNs on such devices is still an open challenge. Research has addressed to reduce the number of

computations in Deep Learning models on multiple levels[14, 24, 35, 51, 64, 65]. However, the investigation

of relatively shallow models with less than ten layers received only little attention by the research community.

This work investigates the deployment of a Deep Learning based Computer Vision pipeline on a MAV. The

method is applied in the challenging scenario of Autonomous Drone Racing at the International Conference

of Intelligent Robots (IROS) 2018. Within the race court several metal gates are placed and need to be passed

one after another. Detecting the gates allows to estimate the MAV’s relative position and to calculate the flying

trajectory. An overview of the race court and the racing gates at the IROS 2016 Autonomous Drone Race can

be seen in Figure 1.3.

The thesis builds on previous work by Li et al. [38] which uses a manually crafted image processing method

to detect the racing gates. Although fast to execute the method is very sensitive to illumination changes.
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Figure 1.3: Example Images of the IROS 2016 Autonomous Drone Race

Moreover, the algorithm fails when the objects are too far away or the frame is very thin. In order to develop

a more robust method, this thesis investigates a learning based approach to the detection of racing gates.

Object Detection is one of the most intensively studied topics in Computer Vision. However, the objects

investigated are usually solid and contain complex shapes. For example a pedestrian consist of body parts

and a face. A box that surrounds the object mostly contains parts with distinctive shape an/or texture. A

Computer Vision model can use these features for detection. The racing gates in contrast are of different

nature. As can be seen in Figure 1.3 a box that surrounds the object would largely contain background. Hence,

this part can not be used as a hint whether an object is present. Instead it can contain other objects even other

gates that might distract a detector. Additionally, the object parts themselves are of very thin structure and

can be hardly visible. Thus, a detector needs to make use of fine-grain structures, while ignoring the majority

of the image. This introduces a particular vision task that even humans have a hard time at solving 1 and that

affects the training and design of a Computer Vision pipeline that aims to detect these kind of objects.

This thesis defines a class of objects as Empty Wire Frame Objects (EWFO) studies methods for their detec-

tion. The definition is given as follows:

Definition - Empty Wireframe Objects

1. Empty. The object parts are sparse. The bounding box around the object is largely occupied by back-

ground.

2. Wireframe The object does not consist of complex but only basic geometric shapes like corners, lines

and edges. The object parts can be spread over large parts of the image.

The detection of EWFO is studied in the examples of the drone race gates. These can be seen can be seen

in Chapter 1. Thereby the orange square on the top of the pole is considered to be the object of interest. To

the best of the authors knowledge EWFO have not been particularly addressed in Computer Vision. In [12]

and [36] the authors also detect racing gates, however the used objects contain more structure than the ones

investigated in this thesis. Jung et al. present a framework to detect similar objects in [29] and [30] but do

not study the particular effects of the object shape. This work particularly addresses the implications of the

object shape in using a Deep Learning based detection system for EWFO.

A drawback of Deep Learning based vision systems is their need for vast amounts of annotated examples,

which is not always available. Racing gates for example are not an object that appears often in everyday life

and therefore not many example images exist. To this end no publicly available dataset can be used to train

1The unconvinced reader can try to count the number of gates visible in the right image of Figure 1.3
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Figure 1.4: Example Image of the Empty Wire Frame Object investigated in this thesis.

a Computer Vision system for EWFO. Since a large part of the object consists of background, it is particularly

crucial that the training set covers a large variety of backgrounds. Otherwise, it is likely that a model uses the

background for prediction and only works in a particular domain (Overfitting).

Figure 1.5: Example of the Cyberzoo dataset. On the left an image while the MAV is hovering, on the right an image during a turn

manoevre.

In Chapter 1 example images of the target domain of this work are displayed. The images are taken during

a test flight at a test environment. The left image shows an example when the MAV is hovering and thus is

in a very stable position. The object in this case is clearly visible as a single orange square. In contrast the

right image shows a close up example during a turn manoeuvre. Here it can be seen how the used wide angle

lens causes distortion and thus the lines appear as circular shape. Furthermore, large parts of the image

including the horizontal bars of the object in the back appear blurred due to the circular velocity of the MAV.

In addition, the light conditions of the environment significantly influence the object appearance.

While it is possible to remove lens and sensor effects in post-processing, this can lead to information loss and

requires on-board resources. Instead it is computationally more efficient to perform the detection on the raw

image data. However, sensor effects have been shown to significantly influence the performance of neural

networks [2, 9]. Furthermore, they can lead to varying object appearance on different MAVs. This further

complicates the collection of annotated examples.

Another option is the artificial generation of data. By synthetically generating samples with corresponding

labels, the theoretical amount of training data is infinite. Moreover, the generation allows to incorporate

domain specific properties such as motion blur or image distortion. Hence, data generation is particularly

useful for the detection of MAVs on EWFOs where a large variety of backgrounds is required while samples
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are difficult to obtain. Finally, as MAV are brittle vehicles and mistakes in development can lead to damage on

hardware, engineers and researchers often use simulators to evaluate their systems before transferring them

to the real work. Thus the basic infrastructure required to generate data is often already available.

Yet introduces the generation of data its own challenges. First and foremost because the generation process

in itself is based on model assumptions. If these do not sufficiently capture the real world, a model trained

in such an environment might be heavily biased and perform poorly in the real world. Secondly, because

the generation of visual data is computationally intense. Despite advances in Computer Graphics can virtual

environments not yet fully capture the real world. Hence, this work investigates the use of data generation in

order to detect EWFOs on MAVs.

Without an accurate detection of the racing gate, the MAV is not able to determine its current position and

thus to calculate its flying trajectory. On the other hand, with an algorithm that requires less computational

resources a lighter MAV can be built. This allows faster and more aggressive trajectories as well as longer

battery life. Moreover, the vision system is part of a greater state estimation and control system which also

includes further sensor measurements. Depending on the remaining part of the system, faster and less accu-

rate detections can be more useful than slow but accurate detections. Hence, the trade-off between accuracy

and inference speed is of particular interest for this application and is addressed in this work.

1.1 Research Question

This section summarizes the research question addressed in this thesis. Furthermore it describes how the

question is split in multiple subquestions that are addressed in the individual chapters.

How can we learn a CNNs to detect EWFO on MAVs using synthetic data?

RQ1 How can data be generated to train an object detector for EWFO detection on a MAVs?

RQ2 How can EWFOs be detected using a CNN on a MAVs?

1.2 Outline

The thesis is structured as follows. Chapter 2 gives an introduction to Object Detection and Synthesizing

Data. Also, the target system of this work is illustrated. Chapter 3 introduces the methodology including

the tool used to generate data, the object detection network as well as the test sets. Chapter 4 describes the

experiments conducted in order to answer the research questions. Chapter 5 discusses the overall results,

formulates a conclusion and describes possible future work.





Chapter 2

Background

This chapter describes background knowledge required to understand the remaining parts of the thesis. It

introduces the target system for this work as well as datasets and metrics used for evaluation. Furthermore,

it discusses related work in Object Detection and Data Generation.

2.1 Detecting Objects

On a high level Object Detection can be described by two individual goals: the description of what kind of

object is seen (Classification), as well as where it is seen (Localization). Hence, an Object Detection pipeline

transforms the raw image to a set of one or more areas and corresponding class labels. Images are high

dimensional signals that can contain redundant and task irrelevant information. Performing detection in this

space is difficult, also because the performance of machine learning models decreases when the feature space

becomes too large (curse of dimensionality), Computer Vision pipelines usually apply a feature extraction

stage, before the actual prediction is done. An overview is displayed in Figure 2.1.

Figure 2.1: Object Detection Pipeline. An initial step extracts task relevant features of the input signal and derives an internal representa-

tion. Consecutively, classification determines what kind of object is present in the image, while localization determines where the object

is located. The output consists of area(s) with class annotation.

1. The feature extraction stage extracts task relevant information from the image and infers an internal,

more abstract representation of lower dimension.

2. The classification/localization stage produces the final output based on this representation.

An efficient feature extraction stage is thereby crucial for the success of an Object Detection pipeline. If the

inferred representation is clearly separable, a simple classification stage can distinguish an object from the

background. In contrast, even a flexible classifier cannot separate a highly overlapping feature space.

11
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2.1.1 Baseline Algorithm: SnakeGate

The above pipeline can be illustrated in the example of the baseline algorithm of this work: SnakeGate. A high

level description is given in the following. The interested reader can find more details in [38].

Initially, the image gets filtered by a higher and lower color threshold. This way ideally the largest part of

pixels in the image is removed. This can be seen as the feature extraction stage.

In the resulting binary image the follow up stage searches for object parts. SnakeGate detects square objects

and hence looks for vertical and horizontal bars that are respectively perpendicular to each other. Once this

combination is found in a particular area of the image, it is counted as a valid detection. In the final step the

corners of the bounding box are refined to get more accurate coordinates.

This simple method shows how crucial the feature extraction stage is. With a suitable color threshold, object

parts can easily be found and the detection is accurate. However, this requires an evenly distributed colour

across the object. As soon as back light or shadows fall on the object, a clear separation is difficult. Therefore,

SnakeGate is sensitive to light changes.

Another issue of SnakeGate is that the object is defined as 4 bars in quadrangle shape. If one of the bars is not

clearly visible the algorithm can not detect detect the object. Also, it does not exploit object context such as

the object pole.

2.1.2 Related Work

The problems of SnakeGate are very typical for Object Detection. Since the beginning researchers investi-

gated different methods of feature selection and the definition of object models. While initial work manually

defined such features, later work replaced many of these stages with learning based methods. Today, whole

state-of-the-art pipelines can be trained directly on raw images. This section investigates available literature

and discusses the major milestones relevant for this work.

Traditional Methods

The early attempts to Object Detection define objects in terms of basic volumetric shapes such as cubes and

cylinders. During inference these features are extracted and compared to a database. However, in practice

even recognizing these basic shapes proves to be difficult [3].

Later approaches focus more on appearance based features such as wavelets [44] which also applied in [61]

for human face detection. Thereby the image is processed by a cascade of classifiers using a sliding window

in multiple scales. The processing of an image patch is stopped when a patch is classified as background.

The features can be computed with simple operations and thus the detector can be executed extremely fast.

Yet, the used Haar-wavelets cannot efficiently encode complex textures making the approach less suitable for

many real world objects [3].

In contrast, Histogram of Oriented Gradients (HOG) [8] and Scale Invariant Feature Transform (SIFT) [40] use

the image gradient to cover shape information. In a sliding window local histograms based on the gradient

orientation are calculated. Dalal and Triggs [8] use the feature for pedestrian detection.

A general challenge in Computer Vision is the combination of local image features such as corners and edges

to a more global detection of an object. Especially, when parts of the object can be occluded or deformed

and thus undergo variations in appearance. In order to cope with these issues Felzenszwalb et al. [13] model

pedestrians in individual parts and combine them in their proposed Deformable Part Model (DPM).
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Traditional methods have in common that the individual steps of the detection pipeline are optimized sepa-

rately. Furthermore, often the feature extractors and object models are designed manually. Hence, designing

such a detector can result in cumbersome application dependent work. EWFO have sparse features and cam-

eras on MAV can have a strong influence on the object appearance. Modelling this appearances manually is

difficult. Also, the methods seem to have reached a limit in performance in the years of 2005-2012 where

almost no improvement in performance was achieved.

CNNs-based Feature Extraction

A breakthrough in detection performance came with CNNs which emerged from Deep Learning research

and subsequently became a popular feature extractor. CNNs can be seen as small neural networks that are

applied locally on image patches in sliding window fashion. The outputs of the initial local operations (first

layer) are further processed by higher layers until the desired output size is reached. The model parameters

(weights) are trained using a loss function and the back-propagation algorithm.

The modular structure of CNNs allows to create highly non-linear models that can represent any function.

However, this flexibility also introduces the challenge of choosing a suitable architecture. On a fundamental

level design parameters can be summarized in depth, width and kernel size.

Section 2.1.2 displays these parameters and introduces additional terminology necessary for the remaining

parts of this chapter. The kernel size k determines the spatial size of a kernel and therefore how big the patch

is, the convolution is applied on. A layer usually contains multiple filters that are applied on its input. The

amount of filters is also referred to as width w . The filters are applied in sliding window fashion which intro-

duces the step size ( strides s) as an additional parameter. The output of each convolution is concatenated

and processed by the next layer. The amount of layers is also referred to as depth. In the image also the recep-

tive field of a filter is visualized. This describes the image patch that is related to a certain feature response.

The filter of the first layer (green) has a receptive field corresponding to its kernel size. The filter of the second

layer (blue) combines the responses of the filters of the first layer at multiple spatial locations an thus has an

increased receptive field.

Figure 2.2: Notation in CNNs. The input image is convolved with a layer. One layer contains multiple kernels that are convolved in sliding

window fashion with certain step size. The responses of the convolutions are collected and processed by the next layer. The receptive

field is determined by which parts of the input image are part of the kernel response at layer x. The total amount of layers is also referred

to as depth.

Among these parameters depth is considered one of the preliminary parameters to improve performance

[18]. Simonyan and Zisserman [53] achieve first places in the 2014 ImageNet Classification challenge using a

network that only contained filters of size 3-by-3 but up to 19 layers. Szegedy et al. [54] achieve similar perfor-

mance using a network with 22 layers. The proposed network included an Inception-module, an architectural

element that allows deeper networks at a constant computational budget.
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Residual Connections. An issue that prevented training even deeper networks is the vanishing gradient

problem. As the gradient distributes across nodes its magnitude gets smaller with increasing amount of

nodes. Hence, the training becomes slow and the risk of converging in a local minima increases. This was

addressed by He et al. [20] who propose the use of residual connections. Instead of propagating the gradient

from the last to the first layer these connections allow the gradient to flow directly into all layers. This circum-

vents the vanishing gradient problem. The use of residual connections allowed to train a network 101 layers

and improved on state of the art at that time.

Wide-Residual Networks. However, later work by Zagoruyko and Komodakis [64] shows how residual net-

works do not behave like a single deep model but more like an ensemble of more shallow networks. Moreover,

the study shows that similar performance can be achieved by particularly wide networks and residual con-

nections. Being of similar performance the proposed Wide Residual Networks (WRNs) are computationally

more efficient to execute.

While wide residual networks can achieve similar performance to deep residual networks with reduced in-

ference time the computational requirements are still large. This work addresses the detection of EWFO with

very limited resources. Hence, a network in which the vanishing gradient problem would appear is likely to

be already too computationally expensive to be applied on a MAV.

Fully Convolution Networks. Instead the work focuses on much smaller networks that are fast to execute.

Execution time is also the motivation for Fully Convolutional Networks (FCNs). Instead of using a fully con-

nected layer in the last stage, these networks only apply local operations. This saves many computations in

the last layer and enables the application of models on various input sizes.

Dilated Convolutions. However, FCN in combination with a small amount of layers introduce a limited

receptive field. If the network is too shallow the last layer cannot take into account the whole input image.

A way to increase the receptive field without increasing the number of computations is the use of sparse

kernels, also called Atrous/Dilated convolutions.

Depthwise Separable Convolutions. Another line of research to reduce the number of computations in

CNNs address the convolution operation. MobileNet [24] and QuickNet [14] make extensive use of Depthwise

Separable Convolutions (DSCs). DSCs replace the original 3D-convolution by several 2D-convolutions fol-

lowed by a pointwise convolution. This reduces the total number of operations from N = kw ·kh ·wn ·wn+1 to

N = (kw ·kh+wn)+wn ·wn+1. MobileNetV2 [51] further includes linear bottlenecks to reduce the total number

of operations. These are convolutions with a 1by1 kernel and linear activation.

Channel Shuffling. In DSC pointwise convolutions are the bottleneck. The computation time can be re-

duced by performing groupwise convolutions. Thereby the channel is separated in subsets and the convo-

lutions are applied on smaller volumes. This reduces computational cost by the number of groups but also

stops the information flow between the groups. Therefore ShuffleNet[65] proposes a layer that shuffles the

channels after the group convolution. This allows the information flow between groups while exploiting the

reduced computational cost of group convolutions.

Despite a large amount of research conducted in finding suitable architectures there has not yet been a single

way that always achieves a goal. It has been shown how models with a large amount of parameters combined

with vast amounts of training data perform well on various vision tasks and objects. However, there is no

guarantee that the found representation is also the most suitable/efficient one. The research resulted in a
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collection of rules an best practices that need to be considered with the task at hand. This work investigates

the design of a CNN for the detection of EWFO.

CNN-based Object Detection

After showing promising results for Classification, CNNs where also applied for Object Detection. CNNs-

based Object Detectors can broadly be grouped in two categories. The categories are introduced and finally

compared in relevance to this work.

Two-Stage Detectors. Girshick et al. [15] use Selective Search [59] to extract object candidates from an im-

age and classify each region with a CNN. However, this requires to run the whole network at various scales

and overlapping locations. Hence, the approach is computationally intense while many of the performed

operations are redundant.

Follow up work aims to share computations for faster inference. Spatial Pyramid Pooling [19] allows to crop

any region to a predefined size. Thus a CNN does not have to be run at overlapping regions anymore but

the extracted features can be reused and need to be only computed once. This leads to a vast reduction in

computations and leaves the region proposal algorithm as a computational bottleneck.

With the Region Proposal Network (RPN)[49] region proposals and feature extraction is combined in a single

stage. The whole stage is framed as a regression problem by predicting object probability for a predefined set

of bounding boxes so called anchor/prior or default boxes. Predefining the total amount of possible locations

and bounding box dimensions would lead to an intractable amount of parameters and computations. Hence,

the most common object appearances are defined and the network not only predicts an object probability for

each box but also how to adapt location and dimensions to better fit the predicted object. Combining feature

extraction and region proposals in a single network led to 213x speed up at that time.

Being currently the method with the best performance in terms of Mean Average Precision (mAP) two stage

approaches would be a valid choice for the detection of EWFO. However, their two stage character makes the

inference time relatively slow, which is not suitable for the application on a MAV. Also, this work investigates

the detection of a single object. For this application the RPN can be used directly.

One-Stage Detectors. One stage detectors aim to further combine multiple stages of the Object Detection

task into a single network. Therefore the whole pipeline is framed as a regression task. This leads to the

question how to discretize the input image.

The first one stage detector You only look once (Yolo)[55] divides the input image in a fixed grid and predicts

class probabilities for each grid cell. As this limits the amount of bounding box coordinates significantly the

network also predicts global bounding box coordinates and a object probability for each box. As a last step

a postprocessing algorithm fuses the output to the final prediction. Being a breakthrough as the first one

stage detector the approach is limited to predict a single class for each grid cell. Furthermore, the approach

of predicting bounding box coordinates globally proved hard for the network to learn and resulted in high

localization errors.

Better results could be achieved by predicting offsets to predefined regions as in the concept of the aforemen-

tioned anchor boxes. Single Shot Multibox Detector (SSD) [39] extends the anchor box approach to perform

the whole Object Detection task. Therefore the network not only predicts bounding box coordinate offsets

and object probability but also a class probability for each anchor box.

An issue that arises with discretization of the object detection task is that objects can appear at different

scales. For small objects it is required to have a high resolution of bounding box locations to have a sufficient
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representation of the input image. For example many small objects can appear next to each other. A too

coarse resolution could not capture the fact that there are multiple objects present. Furthermore, it is required

to take into account fine grain features to predict such an object. In contrast, for large objects small changes

in location do not make a difference. In contrary, a too fine resolution can cause the detector focus on noise

and thus lead to bad predictions or unstable training. Therefore, SSD introduces the prediction of objects at

multiple output grids at different layers of the network. Thus, the output grid can be defined depending on

the object size and the network can extract features based on the object scale. Follow up work in [48, 55] also

included the concept of anchor boxes and prediction layers at multiple scales, making SSD and Yolo converge

to a very similar solution.

In [25] one and two stage detectors are compared in terms of accuracy as well as resource requirements. While

two stage detectors with very deep networks tend to achieve the best performance, one stage detectors are

generally faster. The experiments also show how the inference time of two stage detectors can be reduced

without loosing too much accuracy when the amount of bounding box proposals is limited. However, single

shot detectors are still the fastest method with the lowest memory profile. Furthermore, for the single class

case the region proposal stage of a two stage detector can be used directly. Hence, in this work we investigate

the the detection of a EWFO with a one stage detector. The TinyYoloV3 architecture is 9-layer network with a

suitable size to be applied on a MAV. This work uses this approach as the baseline model.

The anchor box concept allows to incorporate prior knowledge about possible objects but also introduces

additional hyperparameters that need to be tuned for an application. Therefore the alternative approach of

CornerNet[34] avoids the anchor box concept by defining objects as paired key points. Each bounding box

is defined as two corners. The network predicts a heatmap with potential corner locations as well as which

corners belong together. This would be an interesting approach for the detection of EWFO. However, as the

publication was quite recent the approach could not be taken into account.

Attention Models

A research direction which is fundamentally different to the approaches seen so far are models based on

visual attention. Instead of processing the whole input image at once, the aim is to process only relevant

image patches. Typically a model processes an image crop and decides which location to evaluate next until

enough information is gathered for the final prediction. Examples for the approach can be found in [1, 4, 26].

Attention models are promising as their computational complexity can be controlled independently from

the number of pixels in the input image. However, to this end successes have mostly been demonstrated on

digit recognition like the MNIST dataset. Scaling the approach to real world problems proves to be difficult.

Furthermore, the features of an EWFOs are sparse, while most part of the image does not provide hints where

to look for an object. Therefore, we assume the approach less applicable for the detection of EWFOs.

2.2 On the inference time of CNNs

For the deployment on a MAV resource consumption is an important parameter. Next to the architecture

elements such as DSC and Channel Shuffling other ways are investigated to reduce the inference time of a

CNN.

Weight Quantization Weights are quantized such that the calculations can be performed as integer oper-

ations. As Central Processing UniTs (CPUs) typically do not have hardware supported floating point units,

integer operations can be executed much faster. By mimicking the quantization effects during training, the

network learns to deal with these kind of artefacts.
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Knowledge Distillation Knowledge Distillation [22] is way to create a smaller model based on a trained big-

ger model or an ensemble of models. Thereby the smaller student-network is trained to mimic the output of

the final and intermediate activations of the teacher-network. FitNet extends the approach to create a thin-

ner/deeper network based on a trained network thereby reducing parameters without loosing performance.

In [37] the approach is applied to the task of Object Detection. In [62] knowledge distillation is combined

with weight quantization in order to obtain a faster and more efficient model.

Both methods would be interesting to explore for the deployment of CNN on the target system. However, they

require an efficient low level implementation. A full implementation of a CNNs on the target system would be

beyond the scope of this work. Therefore the Darknethttps://pjreddie.com/darknet/yolo/ framework is used.

It supports the hardware available on the target system. Unfortunately, it does not contain the possibility to

apply weight quantization or knowledge distillation. Therefore we do not further consider this option and

address the inference time on a more architectural basis.

2.3 Generating Data

Related methods vary from changing low level properties of the image over using CAD models in combination

with real background up to rendering full 3D-environments. Often various combinations of synthesized and

real data are applied.

Low-Level Image Augmentation

A common part of current Computer Vision pipelines is to augment a given data set by transforming low level

properties of the image. By artificially increasing variations in the input signal, a model that is more invariant

to the augmented properties shall be obtained.

Krizhevsky et al. [33] use Principal Component Analysis (PCA) to incorporate colour variations. Howard

[23] shows how several image transformations can improve the performance of a CNN-based Classification

model. The proposed pipeline includes variations in the crop of the input image as well as variations in

brightness, color and contrast. In CNN-based Object Detection Szegedy et al. [55] uses random scaling and

translation of the input image, as well as random variations in saturation and exposure. Liu et al. [39] addi-

tionally crop and flip each image with a certain probability.

Since most methods use image augmentation and Krizhevsky et al. [33] mentions it to be the particularly

reason for superior performance at ILSVRC2012 competition it can be assumed to be beneficial for Computer

Vision models. Unfortunately, none of the publications measures the improvements gained by the different

operations.

While the aforementioned approaches add artificial variation to the input data, Carlson et al.[5] augment

the image based on a physical camera model. The proposed pipeline is applied for Object Detection and

incorporates models for sensor and lens effects like chromatic aberration, blur, exposure and noise. While

being of minor effect for the augmentation of real data (0.1% - 1.62% mAP70) the reported results show an

improvement when training on fully synthesized datasets. Here the reported gains vary between 1.26 and 6.5

% mAP70.

Low-level image augmentation is a comparatively cheap method to increase the variance in a dataset. How-

ever, it cannot create totally new samples or view points. Furthermore, it cannot change the scene in which

an object is placed. Therefore it needs a sufficiently large base dataset that is augmented. This work addresses

the case when no real training data is available. Hence, low-level image augmentation is incorporated in the

training process but can not be the only method applied.
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Augmenting Existing Images with CAD - Models

In order to create new view points Computer Aided Design (CAD)-models can be used. These models de-

scribe 3D-shape of an object and can be placed on existing images to augment or increase a dataset.

Peng et al.[46] study the use of CAD-models in the context of CNN-based Object Detection. The authors

particularly address how image cues like texture, colour and background affects the detection performance.

The experiments show how the used CNNs are relatively insensitive towards context but use shape as primary,

texture and colour as secondary most important features. This enables competitive performance even when

the object of interest is placed only on uniformly covered backgrounds. However, the study only covers solid

objects such as birds, bicycles and airplanes. EWFO are substantially different and we hypothesize that other

image cues must be relevant.

Madaan et al.[41] study the segmentation of wires based on synthetic training. As wires similarly to EWFO

only consist of thin edges, the application is quite close to this work. However, the experiments focus on

a single domain, namely sky images and thus the variations in background are comparatively small. We

hypothesize that EWFO are particularly sensitive to such variations and address the application in multiple

domains.

Hinterstoisser et al. [21] propose to use a base network that has been trained on real images and to continue

training on images with CAD-models. During training the base network is frozen and only the last layers are

updated. The method does not use real data but requires a suitable base network. As most available feature

extractors are of a size that is computationally prohibitive for MAV the method is not really applicable for this

work.

The use of CAD-models in combination with real backgrounds allows to generate totally new view points

for the object of interest. Furthermore, the image background consists of real data and thus the synthetic

textures only concern the rendered object. However, the geometric properties like perspective as well as

the physical properties like object placement are violated and therefore create an artificial scene. Despite

this fact, literature shows that such images can benefit model performance in various cases. Yet, most of

the approaches still use real data and/or focus on solid objects with rich textures and complex shape. We

hypothesize that since EWFO do not provide these kind of structures the results do not apply in the same way.

Hence, we incorporate the method to generate data and investigate how it can be applied for the detection of

EWFO.

Fully Synthesizing Environments

A more realistic placement of objects can be achieved when fully synthesizing environments. The object

of interest can be placed according to physical laws, shadows fall correctly and geometric properties of an

image are followed. However, if the graphical models do not fully capture the details of real world objects, the

generated data might look too artificial.

Johnson-Roberson et al. [27] use a powerful graphical engine and a highly detailed environment to train an

Object Detection model entirely in simulation. The results show an improvement towards data annotated by

humans especially when using vast amounts of simulated data.

In order to create realistic environments intense manual work is required for the design. In contrast [50, 56,

57] use a relatively simple environment but a high degree of randomization to address the reality gap. The

aim is to learn an abstract representation by strongly varying textures, light conditions and object locations.

Tobin et al. introduced this technique as Domain Randomization (DR). The drawback of the approach is that

a too high degree of randomization may omit pattern in the target domain that could otherwise be exploited

by the model.
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This work addresses the generation of data for the detection of EWFO on MAVs in GPS denied scenarios. Such

scenarios cover a wide range of possible environmental conditions and the images taken from MAV cameras

are peculiar. Hence the creation of a full environment is investigated in this work.

2.3.1 Transfer Learning

The field of transfer learning particularly addresses domain shifts in the modelling process. Hence, a common

application is the learning from synthetic data.

A common approach in CNN-based models is the incorporation of a domain classifier in the model. By

augmenting the data with domain labels, the classifier learns to distinguish the two domains. Subsequently

a gradient reverse layer is applied and thus the weights are updated in such a way that a domain agnostic

representation is learned. Examples of the approach can be found in [6, 63].

While the aforementioned approaches require labelled samples from the target domain, Peng et al. [45] pro-

pose to include task-irrelevant samples and a source classifier. As a result no samples of the target domain

are required.

While transfer learning provides the theoretical framework as well as methods to deal with domain shifts,

it does not allow to generate data. Furthermore, it often requires samples of the target domain. This work

addresses the case when no real data is used for training. The field is interesting to be incorporated in the

data generation pipeline investigated in this thesis but it can not be used as a start off point. Hence, the use

of transfer learning in the modelling process is denoted as future work.

2.3.2 Generative Adversarial Networks

Generative Adversial Networks (GANs) [17] are a learning technique to generate new samples. The method

uses two models a generator and a discriminator. While the generator generates samples the discriminator

aims to distinguish the generated samples from a real dataset. Thereby the training goal of the generator is to

maximize the error of the discriminator. Both models are updated with back propagation. The method shows

promising results for image transformation or image synthesises but also for audio signals [7]. Yet to the

authors knowledge GANs have not yet been applied to generate samples for Object Detection. Furthermore,

the discriminator needs a training set for initialization. As for this work only a small amount of training

samples are available, we do not investigate this approach for generating samples to detect EWFOs.

2.4 The target system

A MAV consist of multiple components of Software that are responsible for higher and lower level tasks. Fig-

ure 2.3 illustrates these components in the example of the target platform of this thesis. On the lowest level

drivers read out sensors such as the camera and an IMU or communicate with a ground station. A low level

control loop is responsible for controlling the local state of the MAV such as altitude and attitude. A higher

level control loop controls the global state of the MAV which is the position and the flying trajectory.

The high level control loop of this work is described in further detail. A first step detects the racing gate and

yields the corner coordinates. These are used to estimate the relative position of the MAV towards the gate. In

the second step the visual measurements are fused with measurements of other sensors. In this case IMU and

a sonar deliver attitude and altitude data. This step yields a global position estimate of the MAV. Combined

with prior knowledge about the race court, the desired attitude and altitude required to fly the trajectory is

calculated. The results are send as set points to the low level controller.
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Figure 2.3: Control Loop

The hardware platform used to run the high level control loop is the JeVois smart camera. It contains a 1.3

MP camera with 65 degree field of view. The processing units are a quad core ARM Cortex A7 processor with

1.35 GHz and a dual core MALI-400 GPU with 233 Mhz. In order to extend the field of view a 120 degree wide

angle lens is mounted. In Figure 2.4 the camera is shown.

Figure 2.4: JeVois Camera



Chapter 3

Methodology

This chapter introduces notations as well as the mathematical models and software tools used in this thesis.

It starts with describing the data generation pipeline that is used to generate synthetic data. Subsequently,

the Object-Detection network is explained. Finally, two datasets used for evaluation are introduced.

3.1 Data Generation Pipeline

Figure 3.1: Notation and data generation process. In the first step a scene is created which defines the environment and background.

The second step places the camera in the environment and creates a 2D view of the scene. The third step applies further image transfor-

mations. The coordinate system in 3D is North-East-Down (NED) originating at the initial position of the camera. In 2D, positions are

defined in Cartesian coordinates originating at the bottom left. With a rotation of 0° the object appears as an empty square, with 90° as a

straight line.

21
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An overview of the data generation pipeline can be seen in Figure 3.1. In the first step a scene is created in

which the objects of interest as well as the camera are placed. In 3D space position and orientation (pose) of

each object are determined by its translation t = [x, y, z] and rotation r =φ,θ,ψ. The used coordinate system

is NED while the center of origin is placed at the initial position of the camera.

A view projection yields an image through the lens of the camera. The coordinates of each point in 3D space

are projected on the 2D image plane. The position of each point in the image space is defined by p = [px , py ].

The origin is on the bottom left of the image.

These steps are implemented using Epic’s UnrealEngine1 and its AirSim-Plug-In2 by Microsoft. This allows

the creation of environments using CAD models, as well as the automatic placement of the camera in C++.

The tool is extended to store the location of a bounding box that surrounds an object in the environment.

Hence, for any position of the camera the bounding box for all objects in view can be stored. This allows the

automatic generation of ground truth labels while the camera is placed.

The UnrealEngine is a graphical engine that contains a profound amount of photorealistic image effects.

However, their use with the data generation tool would require a deep understanding of graphical program-

ming as well as the UnrealEditor and a substantial amount of work. Hence, the final post processing step is

implemented using the image processing library OpenCV in Python. This also allows to study the incorpora-

tion of particular sensor effects or image augmentation while training the network. All source code is made

publicly available at https://github.com/phildue/datagen.git.

3.1.1 Environments

Images can appear substantially different depending on the particular environment in which they are taken.

The light conditions in an indoor scene with artificial light are substantially different from the ones outdoor

in sunlight. The environment also influences the appearance of an object and therefore its detection.

In order to train and evaluate the detection of EWFOs in different conditions, three environments are created.

A black environment serves as base to replace the background with existing images. Then, three indoor base

environments are produced that fully simulate illumination and background. An overview can be seen in

Figure 3.2. Within the environment light conditions, background textures, object locations can be changed

manually. The environments are described in the following:

1. Dark: The environment is a room without windows, only containing artificial light sources.

2. Daylight: The environment is a room with windows along all walls that allow daylight to illuminate the

room. The windows can lead to strong variations in the contrast between different parts of the object.

3. IROS: The environment resembles the room of the IROS Autonomous Drone Race 2018. The light

sources stem from a window front at one side of the room, as well as artificial light sources at the ceiling.

Depending on the view point, the object might appear against bright or dark background.

Figure 3.2: The environments from left to right Dark, Daylight, IROS2018

1https://www.unrealengine.com/en-US/what-is-unreal-engine-4
2https://github.com/Microsoft/AirSim

https://github.com/phildue/datagen.git
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://github.com/Microsoft/AirSim
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3.1.2 Post Processing

Another parameter that influences the image and object appearance are camera and lens conditions. An

object detector should be able to cope with these effects. Hence, this work studies the influence of some

effects when modeled in the training set.

Lens distortion and motion blur are chosen due to their presence in the real world data set. Furthermore,

Chromatic Aberration is studied because it led to vast improvements in [5]. Variations in Hue, Saturation,

Value (HSV) space are selected as it is a common image augmentation technique in current Object Detection

pipelines. A visual overview can be seen in Figure 3.3. This section describes the mathematical models behind

the applied effects.

(a) Original Image. (b) Vertical Motion Blur.

(c) Chromatic Aberration. (d) Lens Distortion.

Figure 3.3: Overview of the visual effects appearing due to camera and lens conditions

Lens Distortion Lens distortion is a form of optical aberration which causes light to not fall in a single point

but a region of space. For MAVs commonly used wide-angle lenses, this leads to barrel distortion and thus to

straight lines appearing as curves in the image.

The effect is applied using the model for wide-angle lenses from [60]. It models the removal of lens distortion

as combination of radial and non-radial part, that is approximated with a second order Taylor expansion:

(
pu

x

pu
y

)
= f (px , py ) =

(
px (1+κ1p2

x +κ1(1+λx )p2
y +κ2(p2

x +p2
y )2)

py (1+κ1p2
x +κ1(1+λy )p2

y +κ2(p2
x +p2

y )2)

)
(3.1)

Where:

• px and py are the original coordinates.

• pu
x and pu

y are the undistorted coordinates.

• κ1 κ2 control the radial distortion

• λx and λy control the tangential distortion
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Applying the lens distortion to an image is done by inverting Equation (3.1). Since there is no closed form

solution the Newton-approximation is used.

Chromatic Aberration. Chromatic Aberration is caused when different wavelengths of light do not end up

in the same locations of the visual sensor. This leads to a shift in the colour channels of the image.

In [5] including chromatic aberration significantly improves the performance of models that are trained on

fully synthesized data. Hence, we hypothesize this will also help for our work.

Similarly to [5], chromatic aberration is applied by scaling the locations of the green channel by sG , as well as

applying translations on all channels by t R ,tG ,t B . Mathematically this is:
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y + t c

y

)
(3.2)

Where c is a colour channel.

Blur Fast movement and sensor noise can lead to blurry images. This is particularly present in the domain of

MAV/Autonomous Drone Racing. Hence, we hypothesize that including this effect will improve the detection

in the real world.

The effect is modelled using a Gaussian-filter. The image is convolved with a 2D-kernel build from:

k(x, y) = 1
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y

)
(3.3)

Where σx and σy are the variance in direction x and y, used to model directional (motion) blur and µx , µy are

the coordinates of the kernel center.

Variations in HSV The 3D-models and textures used in the simulator are limited and creating a large vari-

ation in environments or objects requires manual effort. An alternative method to increase the variation in

colour and illumination is directly varying the colour. The HSV colour space groups colours that are visually

close to each other. Hence, for augmentation the image can be varied in this space. Therefore we draw a ∆H ,

∆S and ∆V uniform distributions and it to the respective pixel intensities in HSV space.

3.2 You only look once V3 (YoloV3) - Object Detector

This work investigates the detection of EWFOs with YoloV3 a typical one stage detector with anchor boxes.

The fundamental concept of one-stage detectors with anchor boxes is explained in Section 2.1. This sec-

tion describes the detailed implementation of YoloV3 and its training goal. It further introduces the baseline

network architectures of this work.

3.2.1 Concept

On a high level basis YoloV3 maps the input image to a predefined set of anchor boxes. For each box the

network predicts an object probability ô that classifies the class as object (1) or background (0). The original

version of YoloV3 further distinguishes between object classes, however this work considers the single class

case. There we remove this output node from the prediction.
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The anchor boxes have a predefined width pw , height ph as well as a center location cx ,cy and are arranged

in G 2D-Grids with individual spatial resolution Sn (Sh ×Sw ), with Sh ,Sw respectively the height and width

resolution of the grid. This allows to define different output resolutions depending on the object size. Smaller

objects need a more fine grain resolution as more of them can appear close to each other. The same fine

grain resolution can be too high for larger objects and thus lead to confusion of the detector during training.

The bounding box dimensions pw and ph can be chosen manually or determined by k-means clustering on

label width and height of the training set. In our experiments a k-means clustering is performed before each

training such that the pw and ph are tuned to the training set.

The predefined anchors only cover a subset of possible areas that can contain an object. Hence, YoloV3 also

predicts how to adapt the anchor box to better fit the predicted object. These are the bounding box center

bx ,by as well as its width bw and height bh .

In total this leads to 5 predicted parameters for each bounding box (ô,bx ,by ,bw ,bh) and to a mapping from

the input image of IH × IW × ID to 5B nodes that encode B =∑G
i=0 Sh

i ×Sw
i ×ai boxes, where ai is the number

of anchor boxes in grid i , and IH , IW , ID respectively the image height, width and depth. In a last step boxes

that contain the same class prediction and have high overlap are filtered such that only the boxes with the

highest confidence remain.

3.2.2 Architectures

The above-mentioned mapping is implemented with a CNN. Thereby the dimension of the network output

corresponds to Sw∗ ×Sh∗×5ai , where ∗ depends on the output grid i .

With YoloV3 the TinyYoloV3 network was released, it is a 9 layer CNNs and thus a suitable baseline for this

work. However, due to the small amount of layers, the receptive field of the network is only 223 pixels. Hence,

the final layer does not see the all pixels of the image. This is crucial for EWFOs where the features are spread

over large parts of th image and the centre is empty. Furthermore, the spatial resolution of 13x13 is still coarse

for objects that almost cover the whole image. Therefore the architecture is extended by an additional pooling

and output layer. This results in a final layer with Sw = Sh = 7 that sees the whole image and is responsible to

detect large scale objects.

The network architecture is referred to as SmallYoloV3 and displayed in Figure 3.4 and explained in detail

in the following. The input image with a resolution of 416x416x3 is processed by 5 layers that stepwise de-

crease the spatial resolution (max pooling) while increasing the width, leading to a intermediate volume of

26x26x512. This part can be seen as a common part that extracts features for objects at all scales. The archi-

tecture is a typical example of current CNNs. In the early layers the receptive field of the filters is small. Hence,

the patterns that can be represented are not very complex and only a small amount of filters is used. As the

network gets deeper more complex patterns can be present and more weights are required to encode these

features. Hence, the width is increased. Research has shown that fixing kernels to a size of 3x3 and stacking

them in deep layers is particularly efficient[? ]. This can also be seen in the SmallYoloV3 architecture.

Convolving the wide volume of deeper layers such as the 26x26x512 output of layer 5 with a 3x3 kernel requires

many computations. Therefore a common technique is to first compress the volume by applying a 1x1 kernel

intermediately. Such bottleneck layers can be seen in layer 6-1 and 7-2.

From layer 5 the network splits to two branches responsible for smaller and larger objects. The lower branch

extracts features for larger objects leading to a final grid of 13x13. The higher branch extracts features for

smaller objects leading to a grid of 26x26.

The created network serves as a baseline since it is relatively shallow and suits to the computational require-

ment of an MAV. In order to study the influence of network complexity on the detection of EWFOs a second
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much deeper architecture is created. Therefore the baseline architecture in Figure 1.2 is used. In order to use

the network for object detection the last three layers are replaced by a similar structure as the last three layers

in SmallYoloV3.

Figure 3.4: SmallYoloV3. In the common part the spatial resolution decreases each layer down to 26x26, while the width increases from

16 to 512. From layer 5 three branches focus on objects corresponding to different scales.

3.2.3 Training Goal

In order to train a CNN to predict the desired properties a ground truth has to be defined for each output

node. Subsequently the loss is formulated as a derivable function and the CNN can be trained with back-

propagation.

Thereby it is desirable that a network output of zero corresponds to no filter activation and henceforth to keep

all predicted bounding boxes in the default shape. Therefore, YoloV3 encodes the ground true coordinates as

follows:

bx =σ(x̂i , j ,k )+ g x
i , j by =σ(ŷi , j ,k )+ g y

i , j bw = e ŵi , j ,k ·pw
i , j ,k bh = e ĥi , j ,k ·ph

i , j ,k (3.4)

where x̂,ŷ ,ŵi , j ,k and ĥi , j ,k correspond to output nodes of anchor box at grid i , cell j , anchor k; g x
i , j ,k , g y

i , j is the

top left coordinate of the respective grid cell; σ is the sigmoid-function; pw and ph are the pre set parameters

of the anchor box.

The question remains to which grid cell and anchor box a label is assigned to. During training the loss is

only propagated through the nodes that correspond to the "responsible" anchor box. This responsibility is

determined by the center location of the ground truth box and its width and height. A label is assigned to

the grid in which its center falls into and within that cell to the anchor that has the highest Intersection over

Union (IoU). This can be a very strict assignment when an object has a high overlap with multiple anchor

boxes. While other one stage detectors allow multiple anchors to be responsible to predict a box, YoloV3 only

assigns one anchor, but ignores the predictions of an output node that has an IoU of more than 0.5.

With true and predicted labels the training goal can be formulated. The loss needs to capture the localiza-

tion and the classification goals. In a typical ground truth image only a small subset of anchors is assigned

responsible to predict an object. All the other anchors see only background. Hence, there is a class imbalance

between the "object" class and the "background" class. Treating both losses equally would lead the model to

simply assign "background" for all anchors. The weight terms λob j and λnoob j compensate for this class im-

balance. Furthermore, λl oc trades-off the localization goal and the classification goal. The abstract training

loss is summarized in:
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L =λl ocLloc +λob j Lob j +λnoob j Lnoob j +λcl assLcl ass (3.5)

where Ll oc is the loss for bounding box dimensions, Lob j the loss where a object is present, Lnoob j the loss

where there is no object. The weights are kept to the default value of λloc = 5,λob j = 5 and λnoob j = 0.5.

The object loss quantifies a binary classification loss. Hence, it is the difference between a predicted probabil-

ity ô and an actual class label c, where o ∈ {0,1} and ô ∈ (0,1). In order to learn such a goal it is desirable that

the weights of the network get updated significantly when the difference between truth and prediction are

high. However, when prediction and truth are already close to each other, the updates to the weights should

be smaller otherwise the training might miss the optimal solution. A loss function that contains the desired

properties and that is used by YoloV3 is the logarithmic loss which can be formulated as follows:

Ll og =−(oi j log(ôi j k )+ (1−oi j ) log(1− ôi j k )) (3.6)

where ôi j is an output node with sigmoid activation assigned to anchor box i , j ,k and oi j the ground truth

label assigned to that box. The logarithmic loss is calculated for each output grid Gi , for each grid cell S j and

each anchor box Bk . However, only the loss of the responsible anchor boxes are summed in the total loss

calculation:

Lob j =
G∑

i=0

S2
i∑

j=0

Bi∑
k=0

1
ob j
i j k (−(ci j k log(ĉi j k )+ (1− ci j k ) log(1− ĉi j k ))) (3.7)

Thereby the binary variable 1
ob j
i j k is 1 if an the anchor box at i , j ,k is assigned responsible to predict the re-

spective object. Lob j is defined vice versa but controlled by the 1
noob j
i j k binary variable.

For the localization loss, similar properties are desirable, although the loss should be invariant to direction.

A loss that contains these properties is the squared distance between each bounding box parameter. The

localization loss is summarized in:

Ll oc =
G∑

i=0

S2
i∑

j=0

Bi∑
k=0

1
ob j
i j k [(xi j k − x̂i j k )2 + (yi j k − ŷi j k )2 + (wi j k − ŵi j k )2 + (hi j k − ĥi j k )2] (3.8)

where xi j k ,yi j k are the ground truth center coordinates of anchor box i , j ,k and wi j k ,hi j k the corresponding

width and height. x̂i j k ,ŷi j k , ŵi j k ,ĥi j k are the predicted bounding box coordinates.

3.2.4 Training Procedure

With a quantified loss the training can be formalized as minimization problem:

min
w

L ( f (I , w), y) (3.9)

where I is an input image, w are the network weights and y is the true label.

The optimization can be performed using gradient descent. However, with large amounts of data and high

amount of parameters this algorithm has a slow update rate. Hence, Adam[32], a version of stochastic gradi-

ent descent is used. Thereby the gradient is estimated based on a subsample of the training set. While this

leads to faster convergence, estimation errors can cause updates in the wrong direction. Adam compensates

for this by not only taking the mean gradient into account but also its first and second statistical moment.
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Figure 3.5: Examples of the three test domains. From left to right: Basement, Cyberzoo and Hallway

The three moments are weighted withα,β1 and β2, whereα is also referred to as learning rate. This work uses

the parameters recommended in the initial public publication of Adam[32]:

α= 0.001 β1 = 0.9 β2 = 0.999

An optimization process such as the training of a CNNs depends on the initialization of its parameters. Glorot

and Bengio [16] propose to initialize weights based on a uniform distribution centered around zero, where

the borders depend on the input size of the layer. This scheme is a standard in Deep Learning frameworks

and also used in this work.

YoloV3 and its training is implemented using keras3 with tensorflow4 backend.

3.3 Datasets

For the objects investigated in this work no public dataset is available. Hence, two datasets are created in

order to compare the performance of different detectors/architectures.

3.3.1 Real-World Dataset

A dataset has been recorded to serve as a benchmark for the developed methods. The dataset consists of 300

images recorded with the JeVois camera during flight and while remaining on the ground. The samples stem

from three different rooms with varying light conditions. The rooms are referred to as Basement, Cyberzoo

and Hallway. Example images for each room can be seen in Figure 3.5.

All environments are indoor scenes which are a typical examples for GPS-denied areas, where vision based

state estimation is required. The scenes contain two gates that are arranged in varying order. Hence up to two

objects are visible and can overlap which means the gate farther away can be seen through the closer gate.

Each of the rooms has different environmental conditions:

1. Basement is a bright environment illuminated by artificial light sources. The corridor in which the

objects of interest are placed are narrow while also objects and persons are visible on the samples. The

dataset contains 163 samples with 312 objects in total.

2. Cyberzoo is taken from a test environment for MAV flights. It is surrounded by black curtains such

that an even illumination and dark background is created. Only in a small subset of images distractors

like other objects or persons are visible. In total 88 samples stem from this room while 71 objects are

present.

3https://keras.io/
4https://www.tensorflow.org/

https://keras.io/
https://www.tensorflow.org/
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3. Hallway is a bright environment illuminated by a combination of artificial light sources as well as day-

light that shines through the windows. The samples are taken with the windows as background. This

leads to a very bright background such that the thin structure of the objects are hardly visible. The

dataset contains 49 samples with a total of 86 objects.

3.3.2 Sets created in simulation

The data that can be created with the data generation tool is limited by the graphical engine, the used textures

and the created environments. It is possible that this reality gap limits the performance of the detection on

real data. Hence, only measuring the performance on the real world dataset would limit the insights gained

from the experiments. That is why synthetic test sets are created. This also allows to evaluate the performance

of the detection network on race courts with more than two gates and at view angles that are not present in

the real world dataset. The different test sets are described in the following. Furthermore, the training sets

used in various experiments are introduced here. An overview is given in Table 3.1 a detailed explanation is

given in the experiments section.
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Table 3.1: An overview of the datasets created in simulation

Name Environment View Angles Object Class Nb. Images

Testing

Simulated MAV Race IROS Generated by Simulated

Flight

Gate 550

Test Simple Basement Gate Basement Frontal View Gate 200

Test Simple Basement Sign Basement Frontal View Sign 200

Test Simple Basement Cat Basement Frontal View Cat 200

Test Simple IROS Gate IROS Frontal View Gate 200

Test Simple IROS Sign IROS Frontal View Sign 200

Test Simple IROS Cat IROS Frontal View Cat 200

Test Simple Basement Gate Basement Frontal View Gate 200

Test Simple Basement Sign Basement Frontal View Sign 200

Test Simple Basement Cat Basement Frontal View Cat 200

Test Simple IROS Gate IROS Frontal View Gate 200

Test Simple IROS Sign IROS Frontal View Sign 200

Test Simple IROS Cat IROS Frontal View Cat 200

Training

Train Simple Basement Gate Basement Frontal View Gate 200

Train Simple Basement Sign Basement Frontal View Sign 200

Train Simple Basement Cat Basement Frontal View Cat 200

Train Simple IROS Gate IROS Frontal View Gate 200

Train Simple IROS Sign IROS Frontal View Sign 200

Train Simple IROS Cat IROS Frontal View Cat 200

VOC Background Backgrounds

from Pascal

VOC Dataset

Frontal View Gate 20000

Simulated Frontal Basement,

Daylight

Frontal View Gate 20000

Race Courts IROS, Dark,

Daylight

Generated by Simulated

Flight

Gate 20000

Random Placement IROS, Dark,

Daylight

Generated by Random

Placement

Gate 20000



Chapter 4

Experiments

This chapter introduces the line of experiments taken out in this work and their intermediate conclusions.

Initially, experiments about the detection of EWFOs are conducted on basic simulated environments. In

further steps the acquired insights are applied when transferring to the more challenging environment of

autonomous drone races. Finally, a detector for EWFOs is deployed on an example MAV.

4.1 Experimental Setup

This section gives an overview of the hardware used for training the detector as well as details on this training

process. Furthermore a description of particular plots used for evaluation is given.

As training a neural network is a computationally intense process, the common practice is to use Graphical

Processing Units (GPUs) for faster execution. In this work all trainings are carried out on a Nvidia Pascal GTX

1080 Ti GPU with 3584 cores and 11GB RAM.

The training is stopped when the performance on unseen examples does not further improve, that is when

the validation error converges. Specifically, the training is stopped when the error does not decrease for more

than 1e−08 in 3 epochs. 0.1 % of the training samples are used as validation set for this step.

The detector is tested by applying the network on a given test set and calculating the metrics described in ??.

While this gives a good estimation about the overall performance of a network, it can be required to inves-

tigate the results in greater details, to know how the detector deals with certain view points for example. In

order to perform this evaluation, predictions and true labels are assigned to bins based on certain conditions

e.g. the bounding box size. Subsequently the performance is evaluated for each bin individually.

In special cases it can happen that a bin border falls right between a true and a predicted label. For example

a true label has a bounding box of size 10, a predicted label has size 12 and the border is at size 11. Even if the

detection is correct, this separation would lead to counting a missing detection as well as a false positive in

each of the bins. Hence, the performance for the individual bins is typically a bit lower than when calculating

a metric for the whole dataset.

The algorithm training as well as the network initialization are random processes. Hence, the network weights

after training, as well as its performance are not deterministic. This condition has to be taken into account

when interpreting the results. Ideally, each training is performed repeatedly and mean and standard deviation

are used for evaluation. However, the training of CNNs takes a considerable amount of time which is why not

all experiments can be taken out with many repetitions. Instead, trainings are performed at least two times

31
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and only further repeated if the two results have a high deviation. In plots an error bar displays the standard

deviation between the different repetitions.

4.2 Evaluation Metrics

The detection performance is evaluated in terms of precision and recall. These metrics are defined as:

Precision

p = nb. of true positives

nb. of true positives+nb. of false positives

Recall

r = nb. of true positives

nb. of true positives+nb. of false negatives

Where true positives are objects that are detected, false positives are detections although there is no object

and false negatives are objects which have not been detected.

Hence, recall expresses how many of all objects are detected and therefore how complete the result is. Preci-

sion measures how many of the predicted objects are actually correct detections.

A correct detection is determined based on its overlap with a ground truth box. This is measured by the

relation of IoU. In experiments we determine 0.6 as sufficient overlap for a detection as it allows an accurate

estimation of the relative pose on the MAV.

YoloV3 predicts an object probability for each bounding box. By accepting detections with lower probability

the number of potential true positives increases. Therefore the recall gets higher. However, it also increases

the amount of potential false positives and thus lowers precision. In order to evaluate this trade-off, precision

and recall can be compared at different confidence thresholds.

A metric that combines precision and recall in a single metric is average precision ap introduced by the

Pascal Visual Object Challenge (Pascal VOC)[11]. It takes the average interpolated precision pi nter p across

evenly spaced recall levels:

ap = 1

11

∑
r∈0,0.1,...,1.0

pi nter p (r )

The interpolation reduces the amount of zig-zags in precision-recall plots and simplifies the comparison

between outputs of different detectors. It is defined as:

pinterp(r ) = max
r ′≥r

p(r ′)

We denote precision, recall and average precision at a certain IoU threshold such as 60% as p60,r60 and ap60.

4.3 Threats to Validity

The experiments are conducted within a certain environment which can have influence on the validity of the

results. This section summarizes these threats to validity.
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All experiments are conducted with the frameworks described in Chapter 3. Potential software faults in these

frameworks can have an influence on the obtained results.

The experiments are conducted in the example of a single object and a recorded test set. An other object that

falls in the category of EWFOs might produce different results.

The test set contain a limited range of backgrounds and environments. In other environments other results

can be obtained.

For these experiments a standard metric for Object Detection is chosen: ap60. An alternative way of assessing

detection performance could lead to different results.

4.4 Empty Objects

In this first sections basis experiments in simulation are conducted. The detection of EWFOs is compared to

other objects.

CNNs combine simple local features to more complex patterns layer by layer. Thereby pooling removes task

irrelevant information and reduces the spatial dimension. In the deeper layers features of larger areas in the

image are combined and encoded in an increasing amount of filters. In the final layer each location in the

volume encodes the patterns that are present in the respective field of the preceding filters and an object

prediction is performed.

The power of deep CNNs arises from their capability to learn very complex patterns. However, these are not

present in EWFOs. Instead most of the object area consists of background and should be ignored by the

detector. We hypothesize that this emptiness makes the detection more difficult than the detection of other

objects as the detector can not exploit complex patterns. Instead any object can be present within the frame

and thus distract the detector.

The combination of emptiness and simple features can have further implications on the training of an Object

Detector for EWFOs. If not sufficient variations in background is provided in the training set, a detector is

likely to overfit to the background of the training set. This condition can be amplified for more complex

architectures with more parameters.

To summarize our hypotheses are:

1. Compared to a simple filled object, the detection of EWFOs is harder, as the object does not provide

complex patterns and a detector can be confused by patterns that are present in the empty part.

2. Compared to a complex filled object, the detection of EWFOs can not be improved by using a deeper

network.

3. Compared to other objects, a detector trained to detect EWFOs is more likely to overfit to background.

If the environment in the training set is different to the test set, the performance drop for EWFOs is

higher than for other objects.

In order to evaluate these hypotheses the detection of an EWFO is compared to a comparable object where

the empty part is filled with a certain pattern. The created objects Cats and Sign are visualized in Figure 4.1.

Thereby a simple object is chosen such as the stop sign which is clearly distinguishable from the background

(hypothesis 1). This is compared to a more complex object such as the cat image (hypothesis 2).

The created objects allow to study how a detector that is trained on a filled object performs. Also, it allows to

study how the detector for EWFOs reacts when another pattern is present in the empty part during testing.
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Figure 4.1: Examples of the three objects that are compared. The EWFOs object (Gate) left is compared to a simple solid object (Sign) in

the center and a complex solid object on the right (Cats).

For each object a dataset with 20 000 samples is created within the Dark environment. As this experiment

focuses on the influence of the empty part of the object, the view points are limited to frontally facing the

object in various distances. These are the datasets Train Dark Gate, Train Dark Cats, Train Dark IROS as

shown in Section 3.3.2.

On these training sets the two architectures illustrated in Section 3.2 SmallYoloV3 and VGGYoloV3 are trained.

As 20 000 samples is a comparatively small amount of samples for a network such as the VGGYoloV3, the

network is initialized with the weights of the VGG-19 pretrained on ImageNet.

For each object a test set of 200 samples is created within the Dark-Environment, as well as the IROS-Environment

(testing of hypothesis 3). Hence, in total there are 6 test sets with 200 samples each. Similar to the training set

the view points are limited to frontally facing the object at various distances. These are the datasets Test Dark

Gate, Test Dark Cats, Test Dark IROS as shown in Section 3.3.2.

4.4.1 Results

Trained/Tested Gate [ap60] Sign [ap60] Cats [ap60]

Gate 0.55 ± 0.04 0.01 ± 0.00 0.37 ± 0.06

Sign 0.02 ± 0.01 0.74 ± 0.06 0.05 ± 0.04

Cats 0.06 ± 0.03 0.03 ± 0.00 0.78 ± 0.01

Gate Deep 0.54 ± 0.00 0.00 ± 0.00 0.53 ± 0.00

Sign Deep 0.00 ± 0.00 0.70 ± 0.00 0.08 ± 0.00

Cats Deep 0.01 ± 0.00 0.13 ± 0.00 0.76 ± 0.00

Table 4.1: Performance of two architectures when the test environment is similar to the training environment (datasets Test Dark Gate,

Test Dark Sign, Test Dark Cats). Each trained network (row) is evaluated on each test set (column). It can be seen how the detectors

exploit the structure that is placed in the object. In contrary, the detector of EWFOs only gets confused when the structure inside the

object is very different from the training set.

Table 4.1 shows the results in the Dark-environment. It can be seen how the best results are obtained for the

Cats-object. Yet when the structure is removed the performance drops to 0.13% - 0.02 %. A similar observation

can be made for the Sign-object. In both cases the performance does not improve when using a deeper

network.

For detecting the Gate-object, the lowest performance of 0.55% is achieved. When the same detector is ap-

plied on an object where the empty part is filled, the performance drops. This happens particularly for the
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Sign-structure. For the Cat-structure the performance drop is lower. In fact for the deep network there is not

really a performance drop measurable.

Trained/Tested Gate Sign Cats

Gate -0.31 ± 0.10 0.01 ± 0.02 -0.14 ± 0.01

Sign -0.02 ± 0.01 -0.30 ± 0.05 -0.03 ± 0.02

Cats -0.00 ± 0.03 -0.02 ± 0.01 -0.74 ± 0.02

Gate Deep -0.31 ± 0.00 0.01 ± 0.00 -0.26 ± 0.00

Sign Deep -0.00 ± 0.00 -0.32 ± 0.00 -0.08 ± 0.00

Cats Deep -0.01 ± 0.00 -0.13 ± 0.00 -0.73 ± 0.00

Table 4.2: Change in performance when the detectors are tested in another environment than their training environment (datasets Test

IROS Gate, Test IROS Sign, Test IROS Cats). The most severe drop can be seen at the Cats-object. The drop for Gate is comparable to the

Sign-object

Table 4.2 shows the change in performance when the trained detectors are evaluated in a different environ-

ment. All detectors are subject to a significant drop, however the strongest effect can be seen for the Cats-

object. While the Sign-object can still be detected best, its relative performance drop is comparable to the

Gate-object. The network size does not have a significant effect when changing the test environment.

4.4.2 Discussion

From the previous observations, it can be seen how the detector exploits the added structure in the filled

objects, for which the performance is much better than for the Gate object. Also, when the detectors trained

with added structure are applied on the empty object the performance drops. Thereby the network size is of

minor effect. No performance boost is achieved even for the more complex Cats object.

When the test environment changes, the most complex object can almost not be detected anymore. It seems

that the detector particularly overfitted to lightning conditions and background. This is surprising as the

background in the IROS-environment is lighter and thus the object is better visible than in the Dark-environment.

The simple but solid object is subject to a smaller performance drop when the environment changes. In the

new environment it can still be detected best. This is likely because the surface mainly consists of a white and

red area which gives distinctive shape and colour.

The detector for the Gate-object is less subjective to changes in the empty part as expected. When applying

the detector on objects with the Cats structure some performance can still be reached. The deep architec-

ture does not suffer any performance drop in this case. This is likely because the Cat structure is of similar

shape and colour as the background. When adding a very different structure such as the Sign object, the

performance drops almost to zero.

The background dependency is also lower as expected. When moving to a new environment the performance

drop is not higher than for the other objects. Potentially, all detector overfitted to the environmental condi-

tions of the training room.

4.4.3 Conclusion

In this section we compared the EWFO investigated in this work to objects of similar shape that contain a

structure inside the empty part. We hypothesized that a EWFO is harder to detect as it provides less features

that the detector can use. This hypothesis can be confirmed as when adding structure inside the empty part

the performance get significantly better.
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c

Figure 4.2: Examples of samples with more background. On the left a sample augmented with an image from the Pascal VOC 2012

dataset. On the right a sample generated in the Daylight Environment. Although on the left the background contains realistic data the

scene does not align with the objects. Also the shadows do not fall correctly. With the simulated environment the general scene looks

more realistic although the background is synthetic.

Furthermore, we hypothesized that due to the empty part a detector for EWFOs is more dependent on the

training environment than for other objects. However, this hypothesis could not be confirmed. The perfor-

mance drop for other objects is at least equally high. Its possible that all networks overfitted to the envi-

ronmental conditions in the training set. However, this hypothesis would need to be confirmed in further

experiments.

Also, we hypothesized that in contrast to a more complex object the detection of EWFOs can not be improved

by using a deeper network. While this could be confirmed for the EWFO, in the experiments there is neither

an improvement for the other objects. Yet it can be seen how the deeper network is less confused when adding

the Cat structure.

4.5 Providing Background

In the previous experiments it could be seen how the performance of a detector drops significantly when

applying it in an environment that is different to the training environment. In this section it is investigated

how to make the the detector less dependent on such domain shifts.

A simple method is to create more data by directly placing the object in front of backgrounds of different

images (Figure 4.2 left). This way the detector can learn to be background invariant. However, with this

placement the object is not aligned with its context anymore. The light conditions do not fit to the remaining

image and also perspective properties are violated that otherwise could be exploited by the detector. Another

method is to create new environments in simulation and change light conditions and background there (Fig-

ure 4.2 right). This requires more manual work but leads to geometrically aligned images. Yet, the images

consist only of synthetic elements.

We hypothesize that the creation of samples with a simulator leads to better results than when simply replac-

ing the background. Therefore a detector is trained with both methods and evaluated on the test sets created

in the previous section.

With both methods a dataset with 20 000 samples is created. The view points are limited to frontal views.

For the dataset with random backgrounds, 2000 view points are created in a black environment. Subsequently

the black image part is replaced with a randomly selected image from the Pascal VOC dataset [11].

The simulated dataset is created using Daylight and Dark environment which have different lightning con-

ditions. Additionally, the backgrounds in both environments are varied such that a higher variance in back-
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ground textures is achieved. Thereby the background texture that is present in the IROS environment is not

used.

4.5.1 Results

Trained/Tested gate [ap60] sign [ap60] cats [ap60]

Single Background 0.26±0.06 0.03±0.02 0.36±0.03

Simulated Background 0.75±0.03 0.50±0.21 0.69±0.06

VOC Background 0.35±0.07 0.47±0.16 0.36±0.17

Table 4.3: Performance of SmallYoloV3 in the IROS environment when adding more variance in the background and in the random-

background environment. It can be seen how including more backgrounds improves the results especially when the environment is

fully simulated. Furthermore, the detector has learned to be more invariant structures that are present inside the image.

Table 4.3 shows the results. Selecting the backgrounds randomly only led to a minor improvement. In con-

trast, simulating more environments and backgrounds improved the performance by 50%.

For both methods the detectors became less subjective to patterns present in the empty part. The detector

trained on simulated images achieves equal performance when there is a Cat structure present. Also, the

performance drop for the Sign structure is less severe. Interestingly, the detector trained with random back-

grounds even detects more gates when there is a Sign structure present in the empty part.

Another observation is the higher variance in the results. Especially, when trained with random backgrounds

the standard deviation is quite high.

4.5.2 Discussion

Providing more samples from different environments was crucial for better performance. The results are

even better than the ones achieved when the detector was trained and tested in the Dark environment (Ta-

ble 4.1). By supplying more backgrounds the detector could learn an overall better representation. However,

it seems similarly crucial to provide realistic environments. The detector trained on random backgrounds

only achieved minor improvement.

Providing more variation in background also helped the detector to ignore the background. The performance

drop when placing patterns inside the object is smaller.

4.5.3 Conclusion

In this section we investigated how to make the detector more invariant against changes in background and

the environment. By increasing the training set with samples in front of different backgrounds this was

achieved. This method even improved the results beyond its previous highest score. Thereby it seems im-

portant to provide a realistic alignment of object and scene. When simply pasting the object on random

images only minor improvements could be achieved.

4.6 Transferring the detector to an MAV race

Until now the conducted experiments were limited to relatively simple environments. In a real world appli-

cation such as an MAVs race, much more objects are in sight. These can not only appear frontally but also
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in more difficult view angle. Furthermore, the objects can appear behind each other, such that in the empty

part, another object is visible. This section studies whether the results obtained so far also apply in a more

challenging environment. Therefore different architectures and training methods are evaluated on the data

set Simulated MAV Race (Section 3.3.2).

Due to the challenges in this dataset we hypothesize that the detectors trained so far will perform poorly. In

order to handle overlapping objects in difficult angles, such situations should be included in the training set.

Yet, the amount of possible views/overlaps is large and manually constructing such examples is cumbersome

especially considering the amount of samples required to train a CNNs. A simpler way is creating a scene with

several objects and placing the camera randomly (within some margin) in order to cover a large variation of

views on the scene. With this Random Placement the detector can learn a general object representation and

detect unseen objects from different view points. However, CNNs cannot inherently handle object rotations

and variations in scale. Including too many view angles in the training set could also confuse the detector.

For example from a 90° angle the investigated object appears as a straight line and is hardly detectable even

for a human. If too many view angles confuse the detector, the samples should be created by only using a

limited set of view points.

The question remains how to choose those view points. In the application of this work the MAV follows a

predefined trajectory which is based on the a priori known race court. It needs the detections to correct its

positions but the rough object position is known in advance. Hence, the MAV can point the camera in such a

way that the object is roughly faced frontally. Subsequently, it adapts its position to fly through the gate. This

behaviour can be mimicked when creating the samples. Although such a Simulated Flight requires to create

a race court and a corresponding trajectory, the obtained samples should better resemble what the detector

can expect in the real world.

We investigate the creation of samples with the two methods Random Placement and Simulated Flight. For

Random Placement 600 samples are created by choosing the following distributions based on the expected

flight behaviour of an MAV:

x =U (−30,30), y =U (−20,20), z =N (−4.5,0.5)), φ=U (0,0.1π), θ =U (0,0.1π), ψ=U (−π,π)

(4.1)

Where U (a,b) is a uniform distribution with borders a and b; N (µ,σ) a Gaussian distribution with mean µ

and variance σ.

For Simulated Flight the dynamic model of a quadcopter is used. Several race courts are created and the

camera follows a predefined trajectory through these race courts.

Figure 4.3 shows the label distribution when created with the two methods. Thereby each pixel value corre-

sponds to the number of labels that cover this particular pixel. It can be seen how, when following the race

track, most of the objects are centred and distributed across the horizon, as camera focuses the next object

frontally most of the time. In contrast,Random Placement leads to more evenly distributed object locations.

Figure 4.4 shows bh and bw of 600 samples created with the two methods. Although the actual view angle can

not be inferred from these dimensions, the plot gives an idea on how the labels look like. When the object

is faced frontally the aspect ratio is 1.1/1. It can be seen Random Placement covers a broader range of view

angles but does not create many samples with large objects. The reason is that the field of view gets smaller

as objects get closer. Hence, the camera ending up exactly in front of the object is relatively low. On the other

hand Simulated Flight does not cover many view points where bh >> bw . In the created race courts, these

view angles do not seem to be present.

We investigate to what extent the detector can generalize across view points. We hypothesize that a detector

trained with Simulated Flight performs better in a simulated MAV race than a detector trained with Random
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Figure 4.3: Object appearances in 2D when generating 600 samples with Random Placement and Simulated Flight. Each pixel value cor-

responds to the number of labels that cover this particular pixel. In the simulated flight objects appear mostly centred on the horizontal

line.

Figure 4.4: bh and bw of 600 samples created with Random Placement and Simulated Flight. When the object is faced frontally the aspect

ratio is 1.1/1. It can be seen how with Simulated Flight much more close up samples are created. On the other hand Random Placement

covers a broader range of view angles.
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Placement.

Training sets with 20 000 samples each are created using Random Placement and Simulated Flight. The scenes

are created with the environments introduced in Section 3.1.1. Additionally, the background textures are var-

ied during data generation. For Random Placement the gates are placed throughout the room, subsequently

the camera is placed according to Equation (4.1). This results in the dataset RandomPlacement described in

Section 3.3.2. For Simulated Flight 3 race courts with corresponding trajectories are created. This results in

the dataset Racing Courts described in Section 3.3.2. It should be noted that the race court present in the test

set is not part in either of the training sets.

During data generation it can happen that the camera ends up at a view point where the object is only visible

as a dot or a straight line. Including such samples in the training confused the detector in initial experiments.

Therefore, we set a limit to aspect ratio and bounding box size and remove the corresponding labels during

training. The aspect ratio is limited to a minimum of 1
3 and a maximum of 3.0. For the object size a minimum

of 1 % of the image size is chosen.

4.6.1 Results

The results are presented in Figure 4.5. Predicted and true labels are assigned to bins based on their covered

area AO = bw ∗bh . Subsequently ap60 is evaluated for each bin.

Figure 4.5: Results of different methods to include more samples in the training set. The results are clustered based on the size of the

true/predicted bounding box. It can be seen how the network that contained only frontal views performs poorly when applied in the

simulated MAV race track. The network trained with images obtained with Simulated Flight outperforms the network trained on samples

obtained with Random Placement for larger object sizes.

Frontal Views is the network trained in the previous section. Its training set contained only frontal views and

no overlap. It can be seen how it performs poorly when simulating a whole MAV race. Random Placement

achieves competitive performance for smaller object sizes until 25% of the input image. However, the perfor-

mance drops below 20% for larger objects. Simulated Flight achieves competitive performance on all bins.

Only for objects of a size between 6.2% - 12.5% of the input image the random placement performs slightly

better. In most bins combining both methods led to worse results than each of the methods individually.

Overall a significant drop in performance can be seen compared to the test sets of the previous sections. Only

on the bin for objects of a size between 6.2% - 12.5% of the input image the networks achieve a comparable

performance of 69 %. This bin seems to be the optimal distance for all networks. Especially for larger objects

the performance decreases.

Figure 4.6 shows precision and recall at a confidence of 0.5 for the different bins and networks. Precision

is the lighter coloured bar. It can be seen how Frontal Views achieves little recall in most bins. For larger
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Figure 4.6: Precision and Recall at a confidence level of 0.5 of different methods to generate data. The results are clustered based on the

size of the true/predicted bounding box. For each method and each bin precision and recall are shown. Precision is the lighter coloured

bar. It can be seen how for Simulated Flight only the recall drops for larger objects. With Random Placement included, the precision

drops similarly.

object size precision and recall drop to 0. The networks trained with RandomPlacement achieve a higher

recall and precision but similarly the performance drops for larger objects. In contrast the network trained

with Simulated flights, looses only recall for the bins with larger objects.

4.6.2 Discussion

In the results it can be seen how the detectors struggle in the more challenging environment of a MAV race.

Compared to the results on the simple dataset of the previous section, a drop in performance can be seen

for all detectors. Including more view points in the training set helped counteracting against this drop. The

networks trained with more view points perform significantly better than the network which was only trained

on frontal views.

Yet including too many view points seems to confuse the detector. The network trained with Random Place-

ment performs poor for larger objects. Combining Random Placement and Simulated Flight leads overall

to a deterioration in performance. In contrast, the network trained with Simulated Flight only achieves a

higher performance. This is mainly achieved because the precision stays high. The detectors with Random

Placement produce more false positives compared to the network trained with Simulated Flight.

Random Placement and Simulated Flight are limited in a way that they do not give control of which exact

view points are present in the training set. A more sophisticated method could be the controlled creation of

particular view points. This way a certain distribution of scales and angles could be created. On the other

hand this creates other questions such as in what way to include overlap, etc. Furthermore, enough variation

in background would be required for each view point. Controlling each of these parameters manually would

require a lot of engineering work or a further extension of the created data generation tool. Nevertheless, it

would be worth investigating and could be addressed in future work.

Overall a performance drop for larger objects can be seen. This is somewhat surprising as the object should

be better visible when it is larger. However, the closer the camera gets, the less context is visible and the more

likely it is that a part of the object is out view. This could be the reason for the drop in performance for larger

objects. An experiment that would show whether this is true could be done by training the network without

the pole and testing the model again.
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4.6.3 Conclusion

In this section we evaluated how the detector performs when applied in a simulated MAV race. We hypothe-

sized that the performance will decrease as more view points and overlapping angles are visible. The results

confirm this hypothesis.

Furthermore, we investigated whether the detector can learn to detect the object from many view points.

Although this seems possible, it comes at cost of precision for larger object sizes. We can conclude that re-

stricting the network to a subset of view points is crucial to keep a better performance for larger objects.

Finally, the experiments show the limitations of the detection network. For larger object sizes the perfor-

mance drops. This has to be taken into account when using the detector in a control loop.

4.7 Optimizing the Architecture

The baseline network architecture is optimized to detect solid feature -rich objects of multiple classes. In

order to sufficiently represent and distinguish such complex objects many weights are required. This leads to

a high computational complexity and longer inference time. Also, more weights require typically more data

to train on and are more prune to overfit to a training set. The features of EWFOs are relatively simple hence

less weights should be required. This section investigates whether equal performance can be reached when

using a more shallow/thinner architecture.

The width in a CNNs determines how many features can be extracted in one layer. Wider networks can extract

and retain more information than thinner layers. As the information in EWFOs is limited to basic geomet-

ric shapes and colour, we hypothesize a thinner network should be able to learn the detection task equally

well. Only when reducing the width too strong, the performance should drop significantly as a minimum of

weights is required. We examine this by training networks with thinner architectures. Therefore the num-

ber of filters in each layer of the SmallYoloV3 network is reduced to 1
2 , 1

4 , 1
8 and 1

16 of its original number.

The network is trained on Race Courts. All architectures are tested on the simulated MAV race introduced in

Section 3.3.

The depth of a network has multiple effects. Deeper networks contain more non-linear elements and can

thus represent more complex functions/features. EWFOs have simple features and thus only a few layers

should be required. In fact the features that are relevant to detect an EWFOs are typically lines on the border

of its location. Hence, a detector would only need to detect those edges in order to determine whether an

object is present. This should be possible with a few amount of layers. On the other hand, in an MAVs race

the objects appear overlapping and in difficult angles. In such cases the above is not valid anymore. For

overlapping objects a detector would need to distinguish which line/edge belongs to which object. Such

complex relations can be better represented with a deeper network. We investigate these hypotheses in an

experiment. Therefore the baseline SmallYoloV3 architecture is changed. The convolutional and pooling

layers 5 to 3 are removed in stepwise experiments. An overview can be seen in Figure 4.7.

These networks and VGGYoloV3 is trained on the Race Courts. All architectures are tested on the Simulated

MAV Flight.

It should be noted that throughout the thesis many more architectures have been evaluated. For example

using larger kernels, dilated convolutions, varying pooling operations at different layers. However, in the end

none of these architectures led consistently to a higher performing network. While under certain conditions

improvements could be observed, these usually disappeared when applying the detector on a different test

set. Overall reduction in weights led to a similar decrease in performance as can be seen in the results of this

experiment. Therefore, we keep the basic structure of the baseline architecture as it follows a pattern that is
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Figure 4.7: Overview over the changes in architecture to remove layers. From the baseline architecture of Figure 3.4 layers are removed

step wise. In order to keep the receptive field constant and the output resolution the same, the pooling is increased.

intuitive to understand. We show how the results change when varying the parameters of the architecture on

a high level basis (depth/width).

4.7.1 Results

Table 4.4 shows the results of networks with varying depth. The best network on simulated MAV race has 9

layers. Further increasing depth does not lead to an improvement in performance. In contrast reducing the

number of layers decreases the performance gradually.

Layers Simulated MAV Race ap60

15 0.47±0.00

9 0.51±0.04

8 0.46±0.01

7 0.43±0.01

6 0.35±0.02

Table 4.4: Performance of networks with varying depth on the simulated MAV race. It can be seen how on the more complex test set

depth only improves the performance until 9 layers.

Table 4.5 shows the results of networks with varying width. The best architecture is the baseline with 51%.

Reducing the width leads to a decrease in performance, particularly when only half the amount of filters is

used. A further reduction in weights leads to a more gradual decrease in performance in steps of 1-2%. The

lowest result is obtained when using a width of 1
16 .
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Width Simulated MAV Race [ap60] Weights Reduction in Weights [%]

1 0.51±0.04 12133646 100.0
1
2 0.43±0.03 3039638 25.1
1
4 0.41±0.05 763034 6.3
1
8 0.40±0.02 192332 1.6
1

16 0.38±0.00 48881 0.4

Table 4.5: Performance of networks with varying depth on the simulated MAV race.

4.7.2 Discussion

Similarly to the results in Section 4.4, the very deep network does not improve the detection performance.

Hence, depth does not seem to help when detecting objects with more overlap and in difficult view angles.

However, a certain amount of layers seems to be crucial. When decreasing the number of layers further than 9

the performance gradually decreases. A possible reason is that with less layers the pooling has to be increased

in order to keep the receptive field large enough. Yet aggressive pooling removes spatial information quickly.

Potentially this causes the performance to deteriorate.

For lower width, we hypothesized that the performance will only be affected for a very small amount of filters.

However, the results show how the performance decreases already with half the amount of filters by 8%.

Further reduction leads to smaller decreases until a performance of 38% is reached. That is despite using

only 0.4% of the weights of the original architecture the performance drops only by 13%. This is a useful

insight for the deployment of the detector on a MAV.

4.7.3 Conclusion

We investigated how depth affects the detection performance. Our hypothesis was that a deeper network

could perform better at detecting objects in difficult angles or higher overlap. However, we could not confirm

this hypothesis. Yet decreasing the depth to less than 9 layers also hurts the performance.

We investigated how width affects the performance for the detection of EWFOs. We hypothesized that due

to the low variance in the investigated object and the simple features, less filters are required than in the

baseline architecture. We can not really confirm or reject this hypothesis. Although a performance drop can

be observed it is relatively low compared to the amount of weights that are removed. Nevertheless, this is a

useful insight for the deployement of a detector on a MAV.

4.8 Transferring the detector to the real world

With the insights gained in simulation, experiments on real data can be performed. This section investigates

the reality gap and several methods to reduce it.

As a test set the real world datasets introduced in Section 3.3 are used. The examples in Figure 3.5 show

several properties that are different to the samples created in simulation. The objects used in this dataset

consist of square bars and a black pole. In contrast, the CAD models used for synthesizing data consist of

round bars and are uniformly coloured. Also, the aspect ratio between both objects is different. In contrast

to the synthetic objects, the objects in the real world set are more wide than high. Finally, the colour is not

exactly the same. A network only trained on the available CAD models is likely to overfit to the colour and
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object shape. In order to evaluate this hypothesis a new 3D Model is created and samples are included in the

training set. The new model can be seen in Figure 4.8.

Figure 4.8: In order to increase the variance in object appearance a new 3D-Model is created using AirSim. It contains a black pole and

square bars.

Furthermore, it can be seen how motion blur and lens distortion change object appearance. We hypothesize

that including such effects in the training data can improve the performance on the real data. The experi-

ments in [5] show how the incorporation of sensor effects particularly improves the performance of models

learned on fully synthesized data. We study this incorporation by applying image augmentation with the

models introduced in Section 3.1.2.

We train the detector on Race Courts and add 3000 samples of the new 3D model. During training one or

several image augmentation methods are used. The parameters are chosen visually and as the following:

• Distortion: k1 = k2 = 0.7.

• Blur: σ is drawn from a uniform distribution: U (0.1,1.5).

• Chromatic: t R
x ,t R

y ,sG ,t B
x ,t B

y are drawn from U R (−2,2), U G (0.99,1.01),U B (−2,2).

• ∆H ,∆S,∆V are drawn from U H (.9,1.1), U S (0.8,1.2), U V (0.8,1.2)

Initial experiments show relatively poor results on the Hallway dataset. In this data set the objects are placed

in front of a window which causes the objects to appear quite dark. Also the background is light and contains

many details. We hypothesize that the lack of colour and the background confuse the detector. In order to

examine these hypotheses, two additional networks are trained:

• Grey is trained by transforming 50% of the images to grayscale images during training. This should

force the network to learn more colour invariant features and thus improve the results on the Hallway

dataset.

• VOC Background is trained by including the images created with backgrounds chosen from the VOC

dataset (Section 4.5). We hypothesize that by providing more variance in the background, the network

will be more robust against details in the background. This should improve the results on the Hallway

dataset.

Next to evaluate the network on real data a comparison to the baseline is given. SnakeGate is evaluated on

each of the test sets. The colour filter is tuned for each environment. As the initial sampling of SnakeGate is

stochastic, mean and standard deviation of 5 repeated runs are presented.



46 4. Experiments

Figure 4.9: An overview of performance over all applied augmentation methods. The results are presented as the mean ap60 over the

three data sets. The results of 4 runs are reported. It can be seen how blur and distortion as well as grey lead to an improvement in

performance compared to not using augmentation.

4.8.1 Results

Figure 4.9 shows the mean performance of networks trained with different augmentation methods. Variations

in HSV, chromatic aberration as well as including backgrounds from the Pascal VOC datasets lead to a deteri-

oration in performance compared to not using any augmentation. In contrast, including blur, distortion and

gray images leads to an improvement. The overall best results can be achieved by including distortion and

gray images in the training.

Figure 4.10: The results of Figure 4.9 in more details for the different data sets. It can be seen how grey improves the performance mainly

on Cyberzoo and Hallway while the performance on Basement gets worse. In contrast distortion leads to a more overall improvement.

Particularly for Cyberzoo and Hallway the variance in the results is high.

Figure 4.10 shows the results for the best augmentation methods in more detail. It can be seen how grey

improves the performance mainly on Cyberzoo and Hallway. In contrast, on Basement the performance drops

compared to not using any augmentation. Distortion leads to a more even improvement for all data sets.

Particularly for Cyberzoo and Hallway the variance in the results is high. This is less the case for the Basement

dataset.

Figures 4.11 to 4.13 show example predictions of the network trained with distortion on the various data sets.

On Cyberzoo and Basement several very accurate predictions can be seen, even under heavy occlusion, while

on Hallway this is rather an exception. Yet on all data sets, several images where the object is clearly visible

are wrongly or not at all detected.
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Figure 4.11: Predictions in the Cyberzoo environment of the network trained with distortion. Several gates are detected with good local-

ization, even when occluded by another gate (3.). Yet the gate which is in front is not detected. Also, the perfect visible gate (4.) is not

well detected. Instead many false positives are predicted.

Figure 4.12: Predictions in the Basement environment of the network trained with distortion. The network produces very nice detections

in cases of heavy occlusion (1 and 2). However, in other cases where the gate is visible at least equally well (3 and 4) the gate is not detected

or with bad localization.

Figure 4.13: Predictions in the Hallway environment of the network trained with distortion. In some images (1 and 2) the network

predicts a half way correct bounding box. Yet in the majority of images such as 3 and 4 the gate is not detected, although clearly visible.
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4.8.2 Discussion

In this experiment the detector is evaluated on real data. Only on Cyberzoo results comparable to simula-

tion can be achieved. On the more difficult data sets Hallway and Basement the performance drop is quite

significant. On Hallway almost no detection can be achieved. Hence, there seems to still be a big reality gap.

Where exactly the gap lays in is difficult to identify. Among image augmentation that addresses the colour

feature such as HSV and Grey, only Grey leads to an improvement. Thereby the main improvement is obtained

on the Cyberzoo dataset where illumination/colour is of smaller influence.

Lens distortion and blurring lead to an overall improvement on the datasets. However, the improvement

cannot be particularly appointed to certain samples that suffer from heavy distortion or motion blur. Also,

a high variance in the results can be observed which makes it difficult to conclude something. This holds

especially for Basement and Hallway which are comparable small data sets. Potentially a larger real world

test sets could give better insights.

For Hallway the results are particularly low. We hypothesized that the reason is the noise in the background

and that including backgrounds from the Pascal VOC dataset can lead to an improvement on this dataset.

However, including these samples seem to further confuse the detector. The results deteriorate. On Hallway

the images are also taken against light background which makes the gate appear dark. We hypothesized that

including grey images in the training improves the results on this dataset. We can observe an improvement

from 8% to 16% by applying this technique. Hence, it seems that the technique helped a bit however it is not

the predominant problem on this dataset.

Compared to SnakeGate the network achieves better results. Especially, when including distortion the results

improve by 16%. Hence, the learning based detector seems to have learned a more robust detection of the

racing gates.

In several examples in Figures 4.11 to 4.13, it can be seen how clearly visible objects are not detected. In

simulation this is less of a problem. Hence, it seems that there is still a gap between the simulated data and

the one present in the real world.

4.8.3 Conclusion

We investigated how the detector performs in the real world and if image augmentation can bridge the reality

gap. We can conclude that image augmentation can improve the results on the real world data. In particular

the modelling of lens distortion and the incorporation of grey images improve the results. Nevertheless, these

results are preliminary as the variance in the results does not allow a final conclusion. Potentially, a more

sophisticated test set could give more insights.

In more difficult environments the performance drops significantly. Also, several clearly visible objects can

not be detected. As this typically not happens in simulation, we can conclude that there is still a large reality

gap.

What exactly the reality gap is, is difficult to identify. The most apparent differences such as colour and defor-

mation by distortion or general noise are addressed. It is possible that the data generated with the simulator

is limited by the graphical engine. Even though the UnrealEngine creates high quality images, it cannot fully

capture the complexity of real world data. Potentially, the results can be improved when including real world

data in the training set. Such experiments should be conducted in future work.

Overall an improvement of the learning based detector compared to the baseline can be reported. The results

in simulation show potential further improvement with better training data.
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4.9 Deploying the detector on an MAV

In the application of the detection of EWFOs on a MAVs, detection accuracy is only one of the important met-

rics. Equally relevant are inference speed and energy requirements. The example control loop in which the

detector of this work is integrated contains a filtering stage which fuses measurements of different sensors

over time to infer a global state. This stage can deal with outliers and henceforth it can be more important

to have more bad detections in high frequency than only slow but good ones. This section studies the de-

ployment of a detector for EWFOs on a MAV in the example of the target system of this work. Therefore the

speed-accuracy trade-off is studied and an experiment in a real world flight is conducted.

As explained in Chapter 2, the execution time strongly depends on the used hardware as well as its low level

implementation. Therefore the inference time of several layers is measured on the JeVois using the Darknet

framework. The results are displayed in Figure 4.14. Each sample corresponds to the number of computa-

tions and their computational time in one layer. Dashed lines connect samples at the same resolution. It is

apparent how the same amount of computations at a spatial resolution of 20x15 is more than 4 times faster

than at a resolution of 160x120. We assume this is because parallelism is better exploited at the lower scale.

Figure 4.14: Inference Time of different layers on the JeVois. Each sample corresponds to the inference in a single layer. Dashed lines

connect samples at the same resolution. It can be seen how an operation at a higher spatial resolution is significantly slower.

This means most speed can be gained when reducing the number of computations in the early layers where

the spatial resolution is high. Section 4.7 it could be seen that already a small amount of filters in the early

layers is enough to detect EWFOs. However, even evaluating 4 kernels at a resolution of 320x240 already takes

55 ms (Figure 4.14 red triangle). A total network of that size would require more than 100 ms and is thus too

slow to be deployed in the control loop.

Current research mostly aims at reducing the computations when the convolved volumes are deep or the

operations are performed on CPUs that do not support floating point operations. However, the bottleneck on

the JeVois happens at shallow volumes and the hardware can perform floating point operations. Furthermore,

EWFOs consist of thin elements that are spread over large parts of the image. Hence, we hypothesize that

simply reducing the image resolution will lead to large drops in performance. An alternative is to increase the

stride parameter in the early layers of the network. This reduces the number of locations at which the kernel

is evaluated. EWFOs are sparse and spread over large parts of the image, while most of the image does not

contain useful information. Hence, we hypothesize that increasing the stride parameter in the early layers

will perform better than reducing the image resolution.

In order to evaluate our hypotheses, the network is trained with different configurations. Based on the results

in Section 4.7 the architecture with 1
4 of the original width is chosen. Stepwise the first pooling layers are
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removed and instead the convolutions are applied with larger strides. Subsequently, performance on the real

data and inference time on the JeVois are measured. Therefore the detectors are evaluated for 1 minute and

the mean inference time is reported.

The JeVois supports aspect ratios of 4:3 and resolutions of 160x120, 320x240 and 640x480. Although, the detec-

tor does not depend on the image size, the object appearance can change at lower image resolution. Hence,

during training the images are scaled to 160x160 or 320x320 respectively. The anchor boxes are scaled in simi-

lar fashion. Finally, as the input image resolution decreases, the output grid size decreases by the same factor.

This is not desirable as the output resolution should stay the same. Hence, when decreasing the input image

pooling layers are removed such that the output grid stays at 20,20 or 10,10 respectively.

4.10 Results

Figure 4.15 shows the results of the conducted experiments. Next to the different architectures, time and

performance of SnakeGate are given. SnakeGate has high variance in time as its execution time depends on

the colour filter stage. If no object is visible and everything is filtered by the colour filter, SnakeGate has an

execution time of less than 1ms. For detection however some minimum execution time is required.

The plot shows how the different networks are generally slower than SnakeGate. Only the network applied

at 160x120 gets with 55 ms/frame near the maximum execution time of SnakeGate. In terms of average pre-

cision, the networks show a better performance. The best results of 32% can be obtained by the network

with one stride layer. Replacing more pooling layers with larger strides leads to a drop in performance but an

increase of inference speed.

Figure 4.15: Inference Time of different layers on the JeVois. Each sample corresponds to a single layer. On the x-axis the total number of

multiplications in that layer is displayed. It can be seen how an operation at a higher spatial resolution is significantly slower.

4.10.1 Discussion

As expected the performance is better when keeping a higher resolution but increasing the stride parameter.

At a resolution of 160×120, the performance of the detector drops almost to the level of SnakeGate. In contrast

the network with one stride layer achieves the best results.

Replacing the first pooling layers with larger strides gives a speed up of 17 ms/frame without loosing any per-

formance. Further replacing the pooling layers leads to a stepwise decrease in performance. Hence, replacing

the pooling layers with larger strides can be used to trade-off between performance and inference speed.
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4.10.2 Conclusion

In this experiment we evaluated the trade-off in terms of speed and accuracy on the JeVois and compared

it to the baseline. It could be seen how replacing pooling layers with larger strides can be used to trade-off

inference speed and detection performance.

Overall the same inference speed as SnakeGate can not be achieved by the network. Hence, we can conclude

that the learning based detector improves detection performance at cost of inference speed.





Chapter 5

Conclusion & Future Work

This work investigated the detection of EWFOs on MAV using a CNN. In this section a final discussion is given

and a conclusion is derived. Furthermore, the research questions are answered and possible future work is

discussed.

The research was motivated by the promising results of Deep Learning based Object Detectors and several

drawbacks of manually crafted algorithms for the detection of racing gates in MAV races. As the manually

tuned features prove to be sensitive to light changes as well as to object occlusion, the aim was to investigate

a more robust method.

As no real training data were available, images and corresponding object labels were created with a simulator

in order to train the CNNs based Object Detector YoloV3. We hypothesized that due to the simple shape of

EWFOs a small network should be able to learn the detection task. This led to the two research questions of

this work which are now answered based on the conducted experiments.

RQ1 How can data be generated to train an object detector for EWFO detection on a MAVs?

It could be seen how the detector is sensitive to overfit to environmental conditions present in the

training set. When testing a detector in a different simulated environment than the training set, the

performance deteriorates between 30% and 70%. It was further investigated how to make the detector

more invariant against such environmental changes. The results show how the variance in background

is less important than the creation of realistic light conditions in the training set.

When a wide range of view angles is introduced in training and test sets, the performance drops partic-

ularly for larger objects. It seems the detector has difficulties learning the detection from many angles.

Better performance can be achieved by reducing the number of view angles in the training set. As this

raised the question of how to create realistic view points, we proposed to simulate a flight through a

race court. This way the created samples resemble the real world better. Even on unseen race courts,

the detector achieves a precision of 70% compared to the 20% achieved by the network trained without

simulating a flight.

Simulating flights as well as randomly placing the camera lack of control about the actual samples

present in the training set. It is hard to think about all the view points that are required to train the

network for a MAVs race. However, more control about the view points could give more insights about

how the detector performs with different view angles in training and test set. Hence, future work could

extend the data generation tool with more control about the view points and to conduct further exper-

iments in that respect.

In order to transfer the detector to the real world, it was found that image augmentation is crucial.

53
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Particularly modelling distortion improved the results on the real data. Yet there remains a gap between

the results obtained in simulation and on real data. It cannot fully be resolved whether this is because of

the complexity of the real data, or whether there are certain properties missing in the data generation

process. Future work could address this issue by including real data in the training process. If this

improves the results significantly, the problem is likely because of a reality gap. Otherwise, there might

be a more fundamental problem in the chosen detector/complexity of the test set.

In summary, we propose to fully synthesize environments when creating training data for the detection

of EWFOs on MAVs. Furthermore, the precision can be improved by training the detector based on view

angles it will see in the real world, possibly by simulating the flight behaviour. In order to transfer the

detector to the real world, we recommend to use image augmentation. Particularly augmenting the

images by modelling lens distortion improves the performance on the investigated dataset.

RQ2 How can EWFOs be detected using a CNN on a MAVs?

The YoloV3 can be adapted to the detection of EWFOs. The experiments showed how the detector

can be confused by structures that are present within the empty part of the object. This was resolved

by providing samples from different backgrounds and light conditions. We hypothesized that many

backgrounds are required to achieve background invariance. However, the experiments showed that a

small number of different environments is already enough to make the detector more robust against

such confusion.

A general drop of recall was observed for closer objects. It can be assumed that this is because it is

more likely that object parts are out of view when the object comes closer. For the detection of racing

gates on MAVs this result can be taken into account in later stages of the control loop. For example by

using a dedicated detector for closer gates and combining the information. For the general detection

of EWFOs, this result is interesting. Despite being clearly visible for a human, the detector struggles in

some examples. Further experiments could include investigating how the performance changes when

the detector is trained without any context such as the object pole.

As EWFOs consist of relatively simple features, we hypothesized that a small network should be able

to learn the task. The results showed that a shallow network of 9 layers performs equally well than a

network with 15 layers. However, further reducing depth gradually reduces performance from 51% to

35%. When reducing the width of a network with 9 layers it can be seen how the performance slowly

deteriorates from 51% at its original size to 38% to a fraction 1
16 of its original size. Hence, we conclude

that a minimum of 9 layers is required if detection performance is the most important metric.

For the detection of EWFOs on MAVs computational resources are more important. Our results show

that a network with only one filter in the first layer can still achieve 38% average precision. Hence,

by reducing the network size to 0.4% of its original size the performance drops only by 13% average

precision.

The reduction of network size was taken out by retraining the network with a thinner architecture.

An alternative way of reducing the network size is to apply Knowledge Distillation (Chapter 2). This

method showed promising results on deeper network. In future work it could similarly be applied for

the detection of EWFOs.

The trained detector was deployed on an example MAV. The results show how by reducing the resolu-

tion the inference time can be increased by 45 ms/frame. However, the costs in terms of average pre-

cision are large as only 18$ average precision can be achieved. Instead we propose to remove pooling

layers and to use convolutions with larger strides. This parameter allows to trade-off between average

precision and inference speed. An overview of the trade-off is given in Figure 4.15.

An alternative way to increase the network speed is weight quantization (Chapter 2). As the target sys-
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tem of this work supports floating point multiplications, we did not further consider it. However, with

an adequate low level implementation this could still lead to further speed up and should be investi-

gated in future work.

In a nutshell, it could be seen that a small network is able to learn the task. The inference time of the

detector can be further increased without loosing too much performance. Finally, replacing pooling

layers by convolutions with larger strides allows to trade-off between detection performance and infer-

ence speed.

Based on the experiments we can give recommendations about the generation of data for the detection of

EWFOs. Furthermore, we have insights of the limitations of the detector for example a drop of recall for larger

object sizes. These insights can be taken into account when using the detector in a control loop. Finally, a

detector could be developed and compared against the baseline. The experiments showed an improvement

of performance compared to SnakeGate of up to 16% average precision, leading to a total of 32 % ap60. This

improvement is mainly obtained in cases of difficult light conditions or occlusion. Hence, it can be concluded

that indeed the CNNs can work better in such situations.

A network of similar complexity achieves 41% ap60 on a simulated data set which contains more objects

and more difficult view angles. Therefore it can be seen that the potential of the learning based detector is

much higher. Yet transferring the detector to the real world proves to be difficult, despite the relatively simple

features of EWFOs. In some cases the object is clearly visible but not detected by the CNNs. These results

show the general drawback of Deep Learning based approaches. It is not transparent why the objects are not

detected and what exactly was learned by the network.

A frequent argument for Deep Learning is that it does not require cumbersome Feature Engineering. In this

work, this step was technically replaced by Data Engineering and yet the remaining reality gap is high and

some results are hard to understand. We have to ask ourselves if the lack of transparency, the amount of

required data as well as the computational requirements are really worth the results gained in detection per-

formance.

Nevertheless, this work serves as a baseline for future work. The initial experiments show how a small amount

of environments is already enough to make the detector relatively invariant against background. These results

should apply similarly to the real world. Hence, it is not too much work to create a real world training set, and

the data could be augmented with the data created in this work.

Furthermore, the experiments show trade-offs in speed and detection performance. The results can be used

to design a detector for EWFOs based on available hardware and project requirements.
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