Efficient remeshing and analysis views
for integration of design and analysis

Efficient remeshing and analysis views
for integration of design and analysis

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus prof. ir. K. C. A.M. Luyben,
voorzitter van het College voor Promoties,
in het openbaar te verdedigen op donderdag 17 februari 2011 om 15.00 uur

door
Matthijs SYPKENS SMIT

doctorandus in de wiskunde
geboren te Utrecht.

Dit proefschrift is goedgekeurd door de promotor:
Prof. dr.ir. F. W. Jansen

Copromotor:
Dr. W.F. Bronsvoort

Samenstelling promotiecommissie:

Rector Magnificus voorzitter

Prof. dr.ir. E. W. Jansen Technische Universiteit Delft, promotor
Dr. W.F. Bronsvoort Technische Universiteit Delft, copromotor
Prof. dr.ir. C. Vuik Technische Universiteit Delft

Prof.dr. R.C. Veltkamp Universiteit Utrecht

Prof. dr. L. Kobbelt RWTH Aachen University

Prof. dr. G.M. Turkiyyah =~ American University of Beirut

Dr. J.S.M. Vergeest Technische Universiteit Delft

Netherlands Organisation for Scientific Research

This research was financially supported by the Netherlands Organisation
for Scientific Research (NWO).

.
"N
\ﬁﬁ#"\&"l
TR
Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 225.

ISBN 978-90-5335-368-4
© 2011, Matthijs Sypkens Smit

in memory of
my grandfather, |. H. Sypkens Smit
and my father, M. |. Sypkens Smit

Alcanzar alguno a ser eminente en letras le cuesta tiempo,
vigilias, hambre, desnudez, vaguidos de cabeza,
indigestiones de estémago, y otras cosas a éstas adherentes.
(For a man to attain to an eminent degree in learning costs him
time, watching, hunger, nakedness, dizziness in the head, weakness
in the stomach, and other inconveniences.)

Don Quijote de la Mancha
MiGUEL DE CERVANTES SAAVEDRA

Contents

Preface

1

Introduction

1.1
1.2
1.3
1.4
1.5

Modern design
Analysis in design
Research objectives
Structure of this thesis
Contributions

Design and analysis models

2.1
2.2
2.3
24

Historical perspective
Design models
Analysis models

Model integration in the product development cycle

Analysis and meshing

3.1
3.2
3.3

Meshes for finite element analysis
Meshing methods
The prospect of remeshing

Variational tetrahedral meshing of mechanical models

4.1
4.2
43
44
4.5
4.6
4.7

Variational tetrahedral meshing

Enhancing VTM for meshing mechanical models
Constructing the boundary

Enhanced mesh extraction

Practical considerations

Examples

Conclusions

The feature difference

5.1
52

Background
The feature model

vii

27
27
31
40

45
46
53
56
62
64
66
69

71
72
74

viii Contents

5.3 The difference between two feature models 78
5.4 Representing and constructing the difference model 85
5.5 Conclusions 89
6 Efficient tetrahedral remeshing 91
6.1 Remeshing based on the difference model 92
6.2 The combined model 94
6.3 The remeshing procedure 97
6.4 Copying mesh nodes 98
6.5 Adding new nodes, and the free/fixed distinction 101
6.6 Efficiently constructing a quality mesh 103
6.7 Results and discussion 105
6.8 Conclusions 109
7 Integration of design and analysis models 117
7.1 Approaches to integration of design and analysis 119
7.2 Multiple-view feature modelling 127
7.3 Analysis views 129
7.4 Conclusions 133
8 Relating an analysis view to a design view 135
8.1 A prototype for an analysis view 137
8.2 Procedure for automated abstraction 142
8.3 Linking the design and analysis views 147
8.4 Open issues 151
8.5 Conclusions 154
9 Conclusions and future research 157
9.1 Conclusions 158
9.2 Future research 160
Bibliography 163
Summary 171
Samenvatting 175

Curriculum Vitae 179

Preface

During the summer of 2005 I finished my study in Computational Science
at the University of Utrecht, which had focussed on solving large scale
numerical problems and scientific modelling. It was part of the mathematics
curriculum, but many of the required courses were given by the physics and
computer science departments. The diversity in subjects appealed to me.
Therefore, I felt compelled to continue along the path of scientific study, but
something with less focus on mathematics.

I interviewed for a Ph.D. position at Delft University of Technology,
concerning an NWO-sponsored project on the integration of design and
analysis models. At the time I believed that the proposal was primarily
concerned with meshing of analysis models, a field that I was reasonably
familiar with. Only after being hired, and having worked on the project
for some months, it became apparent to me that the design and modelling
aspects played a much larger role than I had initially understood. It was a
pleasant surprise that broadened my perspective on the subject of research.

Looking back, I suppose my misconception is highly demonstrative of
the schismatic relation between design on the one hand, and analysis on the
other hand. Coming from a background of mathematical modelling, I only
saw the analysis side in the research proposal. I did not properly understand
what concepts such as semantic feature modelling really meant. I have been
fortunate to study both design and analysis, and their integration in this
project, in an academic context. To achieve proper integration between these
two disciplines, mutual understanding is undoubtedly a prerequisite. I
hope this thesis to be a step in that direction.

This thesis could not have existed without the contribution and support
of many. I am thankful to all of them, with the following people deserving
to be mentioned explicitly.

Wim Bronsvoort, my advisor and copromotor, to whom I am very grateful
for giving excellent guidance throughout my Ph.D. study by frequently
exchanging ideas, steering me in the right direction when necessary, and
correcting almost all my texts and presentations. I very much enjoyed our

ix

X Preface

regular conversations on bureaucracy, politics, culture, sports, and current
events. Erik Jansen, my promotor, for reading my thesis and having me as
a Ph.D. student in his group. Rick van der Meiden, for writing software
that I used in my research, answering questions on Spirr, general exchange
of ideas, and sharing a room with me for the larger part of my stay at the
university. Rafael Bidarra, for exchanging ideas, his stimulating views on
Dutch society and language, and being close to a mentor. Paulos Nyirenda,
for always stimulating my ideas, his boundless and contagious enthusiasm,
and answering so many of my questions concerning feature modelling.

Ruud de Jong and Bart Vastenhouw, for administering all the systems,
and always being there to help, whatever you need. Toos Brussee, Bianca
Abrahamsz, and Helen de Roo, for their excellent support and care in quickly
handling a wide range of administrative tasks. The colleagues with whom I
shared a room and many conversations: Rudolf ter Haar, Peter Kok, Thomas
Kroes, Tim Tutenel, Ruben Smelik, Ricardo Lopes, and Stef Busking. And all
other colleagues whose company and knowledge I enjoyed during lunches,
coffee breaks, cake gatherings, colloquia, and other group activities: Jorik
Blaas, Charl Botha, Eric Griffith, Gerwin de Haan, Peter Krekel, Francois
Malan, Peter van Nieuwenhuizen, Frits Post and Lingxiao Zhao.

I thank Magali de Walick for her critical remarks on my designs of the
thesis cover.

I'am very grateful to my closest friends, who regularly inquired about the
progress of my thesis, stimulate my thoughts on diverse topics outside my
work, and make life truly pleasant just by knowing them: Karin Brakkee, Eric
Broersma, Arnoud Breunese, Stella Evers, Jes Jorgensen, Suzanne Jorgensen-
Bisschop, Jorge de Pedro del Pozo, Wouter Prummel, Cecilia Schouten, Fiona
Schouten, Famke de Vries-Wildeman, Jitze Jan de Vries, Joost Wery, and
Thessa Wery-van Zoeren.

Special thanks to my paranymphs Josien Braas and Thijs Kinkhorst for
standing by me on the day of the defence, and the many memories I share
with them.

My family for their love and trust in me. I am thankful to Matthé, my
father, for all that he has given me as a parent, which includes his love for art
and architecture. I thank my mother Margriet and my brother Michiel for
their love and strength, their support, and their great company at countless
times. And lastly Saskia, the love of my life: you mean the world to me.

Chapter 1

Introduction

The result of product design is everywhere around us; cars, air conditioners,
coffee cups, flower pots, telephones, desk chairs, waste bins, and door hinges,
are just a tiny sample of all the objects around us that have passed through
the process of design. Every man-made object is, to some degree, the result
of a design process.

Design in the broadest sense is therefore nothing new. Our earliest
ancestors who hunted with spears were already designing their weapons.
A spear must have a shape and weight that are favourable for throwing it,
its head must be sharp and strong, and as a whole it should be durable.
Through trial and error they discovered how to build their spears, with
the materials that they disposed of, such that the utility of the weapon was
optimised.

Modern design still shares conceptual similarity with prehistoric design,
as it continues to revolve around optimising utility, and progresses through
a cycle of design stages that bears resemblance to the practice of trial and
error. The main difference is the use of scientific knowledge and tools to
support the design process. Although trial and error still exists, the choices
we make in designing our products are driven largely by scientific principles,
mostly from the domain of physics. Also, over the second half of the 20"
century, the use of computers has become integral to the design process.

1.1 Modern design

Many of the products in our lives are complex, constructed by advanced
technological processes, and they need to satisfy many demands and con-
straints in addition to just fulfilling their primary purpose. Besides serving
their purpose, products must also be better than those of the competitor,

1

2 1. Introduction

and they must be cheaper and quicker to produce. Meeting all those require-
ments, can only be achieved through a continuous process of adapting and
improving designs.

Computers have played a key role in the immense advances that the
design process has experienced since the second half of the 20t century.
Computer-aided design (CAD) [Lee, 1999] clearly offers advantages over
design with ruler, pencil, and paper. It enables the specification of complete
three-dimensional (3D) models, which can be viewed from arbitrary angles.
Mistakes are easier to correct in a digital environment, and errors of consis-
tency between several drawings with different viewpoints is far less an issue
than it used to be. Highly complex shapes can be created with precision
and a high degree of automation. Geometric calculations are quick and
easy to perform. Multiple designs can be combined into a design of a more
complex product, called an assembly. The models can be given colour and
texture, and thus be rendered realistically. This allows to get a proper visual
impression of the product, before it has been actually built. The model can
be inspected and shown in ways that are impossible even with a physical
prototype of the product.

Obviously, the usefulness of flexibility in changing a digital design goes
beyond correcting mistakes. Models are parametrised with the intent of
varying several aspects of the design. Nowadays, we have the ability to
quickly manufacture products in large quantities within a short time of
completing the design. This has pushed specialised and even on-demand
designs, where a product is built according to the specific wishes and require-
ments of the customer. To enable this efficient construction and adaptation
of models, modelling software has evolved significantly. Feature modelling
is the current norm, which consists of building models by combining high
level constructs with a generalised shape, which can often be associated
with some aspect of functionality [Bronsvoort et al., 2006]. Such semantics
of models is to some degree being incorporated in design methodologies,
as the software can be used to specify semantics, as well as automatically
check that the semantics is not violated.

Product design involves more than just specifying the shape, materials
and semantics. Large-scale manufacturing should not start until there is
sufficient reason to believe that the product lives up to expectations, thus
after the specification of the product, a phase follows wherein this is checked.
Both individual parts, and the product as a whole, have to fulfil a range of
requirements. These requirements often concern the physical behaviour of
the product under certain circumstances. They are either called for by law,
or by the fact that violating the requirements would imply malfunctioning
of the product. The most obvious way to test the product and its parts is by

1.2. Analysis in design 3

manufacturing a test version of the product and investigating its behaviour.
This, however, is expensive and takes a lot of time. Manufacturing a single
copy of a product is clearly more expensive than having it manufactured in
a mass production process. And making a product for the first time takes
longer because the manufacturing process has less automation than in mass
production, or parts of the process even have to be developed.

Product testing can largely be replaced by analysis, also commonly re-
ferred to as computer-aided engineering (CAE). This is the simulation of the
physical behaviour through numerical approximation of physical models,
or virtual product testing. In the past, at various stages in the design process
a test model needed to be built. For example, in the design of a seemingly
simple product such as an air cooling system for a car, it could require the
production of more than ten test models, until the design satisfied all de-
mands. Analysis does not absolve us from the necessity to build test models,
but it can strongly reduce the number of real-world models that has to be
built during the product design cycle. For example, for the design of the air
cooling system in an actual industrial setting, the number of test models that
was built, could be reduced to just two. Performing analysis has therefore
become an integral aspect of modern design.

Product design is not a linear process, but rather we speak of the product
development cycle. Models are iteratively adapted, and new insights, gained
during some phase of the development, can lead us back to an earlier phase.
After each adaptation of the design, many tasks that concern the testing of a
product before it goes into manufacturing have to be repeated. In case of
analysis, it needs to be verified that the changes have resulted in the desired
improvement, or conversely, that the changes have not resulted in violation
of the requirements. Some of the tasks that have to be repeated at each
iteration can be performed relatively quickly, as they require only limited
attention after adaptation of the model. Analysis, however, rarely falls in
this category.

1.2 Analysis in design

The role of analysis is to assess the product before it is actually built. Analysis
can in principle be applied for investigating any aspect of the (physical) be-
haviour for which a mathematical model exists. Some examples of questions
that are looked into are: can the product withstand low or high tempera-
tures, how does it behave in a crash/overload scenario, how is air circulation
around the object, where do weak spots develop during the production
process, etc. The kind of properties that are verified and the rigour that is
required in this phase highly depend on the kind of product. Nonetheless,

4 1. Introduction

Figure 1.1: Tetrahedral mesh covering the volume of a nut model

virtually all products, ranging from complete cars to mobile phone casings,
need to have some aspects analysed before they can go into production.

Analysis is a broad concept; any numerical simulation of some aspect
of the product could be deemed a type of analysis. The most commonly
applied method is that of finite element analysis (FEA) [Brenner and Scott,
2007]. With this approach, the geometry of the product is decomposed into
simple geometric shapes such as triangles, quadrilaterals, tetrahedrons, or
hexahedrons. This process is called meshing and the decomposition of the
model is the (finite element) mesh [Owen, 1998; Shimada, 2006]. Figure 1.1
shows an example of a mesh and two slices through its volume. The el-
ementary shapes are the support over which polynomial basis functions,
commonly piecewise linear functions, are blended together to represent
a continuous solution over the whole domain composed by the elements.
The solution is found by discretising the model of the aspect that is being
studied, i.e. a set of equations, such that it becomes a formulation in terms of
the nodal values by which the basis functions are supported. This leads to a
large system of equations, which can be solved by applying an appropriate
numerical algorithm.

Analysis has significantly lowered the time between conception and mass
production of a product by largely eliminating the lengthy and expensive
process of creating test models. It has increased the reliability and perfor-
mance of products as the barrier to performing numerical analysis is lower
than to carrying out experiments with test models. Also, it has allowed
for increased creativity in designs, as it is easier to experiment with imagi-
native designs that test the limits of our engineering capabilities. Bridges
and skyscrapers, for example, are rarely built as a test model, but through
numerical analysis a range of more challenging designs becomes accessible.

Despite the clear advantages that analysis has to offer to the design
process, it is by no means quick and simple to perform. The calculation itself
can take more than a week in extreme cases, but it requires little human

1.2. Analysis in design 5

Figure 1.2: Design model and its abstract analysis model

intervention. The preparation stage of the analysis model, on the other hand,
mainly consists of interactive tasks that are performed by engineers. The
analysis model should not be confused with the analysis mesh, but rather
represents a suitable geometry to derive a mesh from. It also contains all
the information to drive an analysis regardless of a specific mesh, such as
boundary conditions, boundary values, and mesh element size requirements.
The engineers either have to create the analysis models from scratch, or they
have to fix and adapt an imported geometric model. A suitable model for
analysis is normally an abstraction of the design model. Small details, unless
they are deemed important to the outcome of the analysis, are left out to
improve the speed and accuracy of the calculation. One step further is
dimensional abstraction, where the object of analysis is (partly) represented
by a two-dimensional (2D) or one-dimensional (1D) geometry. An example
of this is shown in Figure 1.2. Commonly, the decision on what the shape
of an analysis model should be is mostly a task for experienced humans,
in which the role of automation is minor. Once a geometric model has
been obtained that is suitable for analysis, boundary conditions have to be
assigned, and often the meshing process has to be guided to some extent.
Preparation for analysis can easily take multiple weeks, and surpassing even
a month is not uncommon.

Many of the tasks performed during preparation of the analysis models
involve copying information that was already captured in the design model,
e.g. recreating part of the geometric shape. Unfortunately, this information
is often not captured explicitly, i.e. it is not specified which parts of the
geometry are part of a particular analysis model. This is due to the high
degree of expert knowledge and experience-based intuition that is commonly
involved in describing the analysis geometry. Without automated methods,
it is only natural to delay the description of the analysis geometry until the
basic design has been finished, and rarely is this description given in relation
to the design model. Also, during design the need to later perform analysis

6 1. Introduction

is not optimally taken into account, or at least the design software creates
models that are not ideally suited as a take off point for analysis. The design
software can, for instance, produce models that are not watertight, i.e. the
individual geometric entities do not accurately connect as the topology
indicates, or models that have unnecessary geometric elements in their
description. This can frustrate the meshing process.

In particular, after the completion of an analysis step and subsequent
changes to the design, the work of creating the analysis model is repeated
again, sometimes completely from scratch. Of course the engineers have
gained experience with the model and can get the work done more quickly.
Most likely they will only need to adapt previous models, but it still takes
valuable human time. If there are multiple analysis models, then the engi-
neer has to propagate the changes to all these models. If the geometry has
been changed for some models, then these need to be meshed again.

We observe that preparing analysis models is currently a labour intensive
process, but at the same time an engineer performing the tasks might not
feel that he is really doing challenging or interesting work. The principal
cause for this is lack of automation in the process, which in turn is mainly
caused by a lack of integration between the (geometric) design phase and the
analysis phase.

1.3 Research objectives

Both geometric design and analysis are highly evolved and technologically
advanced processes, but they evolved in their own separate context. Over
the decades they have matured and have brought large gains in efficiency
and versatility. In particular the enormous advancements in computing
performance per unit cost have driven innovation.

For design this means that more and more complex calculations could be
performed interactively, allowing the designer to work more intuitively. In-
stead of thinking out the effect of certain operations in advance, the designer
can directly see the effect of an operation, and fine-tune it with the aid of
interactive visual feedback. Also, the software has become ‘smarter’, taking
over simple tasks that were once in the hand of the designer. With many
diverse applications of design, each application has different tasks that are
suitable for automation, which naturally leads to specialised environments
for solving particular design problems. Currently, specialisation seems to
be the primary way of adding more knowledge in an automated fashion to
the design process.

The innovations in analysis are very diverse, but virtually all of them
serve to increase the dimensionality, complexity, and accuracy of the compu-

1.3. Research objectives 7

tations. A large part of the innovations in analysis is of mathematical nature,
consisting of new algorithms that optimise some aspect of the calculation.
Handling ever larger data sets, increasingly through parallel computations,
is another aspect that has been central to the advances in analysis. Lastly,
with analysis models getting more and more complex, interactive control
over the analysis process, including preparation of the geometry, meshing,
and setting up all the relevant details for the computational process, has
become very important.

This preparation step is necessary since the models on which analysis
is performed have become more and more complex. In the early days of
analysis, the responsibility for creating the models laid with the engineers
performing the analysis. Commonly, their task was to describe the perimeter
of the 2D domain/model, either with spline curves or an approximation by
means of straight line segments. The analysis was much less an integral part
of the product development cycle as it is today. Of course, knowledge gained
from the analysis would certainly be used to improve a product, but it stood
more on its own, as an independent tool for research to improve engineering
knowledge, develop accurate models, and reliable analysis techniques. With
the rising complexity of models, it became common to link the analysis
model more closely to the design model, and with this progression, analysis
became a genuine part of the development cycle.

This practice of actively incorporating analysis into the design process,
has made it increasingly apparent that there is lack of integration between
design and analysis, as the preparation of the analysis model and, in gen-
eral, going back and forth between the design model, the analysis model,
and the mesh, is fraught with many tedious and partially redundant tasks.
Recognising that there is a need to improve the efficiency of product devel-
opment here, we concern ourselves in this thesis with the improvement of
the integration of design and analysis.

Improving this integration, in our opinion, requires making transitions
between the design model, the analysis model, and the mesh more efficient.
This should be accomplished by remedying the lack of reuse of information
captured in different phases of the process, and will lead to cheaper, more
reliable, and more efficient product development.

We do not strive for a complete and universal solution. That would be
impossible, considering the very broad range of techniques and specialised
software that is used in both design and analysis. Instead, we focus on two
aspects within the design-analysis loop, and describe how improvements
can be made here. The first aspect concerns efficient meshing of analysis
models, whereas the second aspect concerns the integration of design and
analysis models. These two aspects are phrased into the following research

8 1. Introduction

questions:

1. How can we reduce the time spent on meshing an analysis model after
a change in the design?

2. How can we relate analysis models of various levels of abstraction
with the design model?

The first aspect is the efficiency related to the meshing of geometric
designs for finite element analysis. Before analysis can be performed, one
needs to create a mesh, i.e. a discrete break-up of the geometry of the product
into simple elements, such as tetrahedrons or hexahedrons for a 3D model.
This process of creating a finite element mesh from a suitable geometry has
been largely automated, but because of the complexity of the problem it
can still take a considerable amount of computation time, depending on
the specific characteristics that are desired from the mesh, and the meshing
method. In many cases, the mesh is completely recreated in each iteration
of the design process. In particular when the modifications are small, it
might be more efficient to reuse parts of the mesh from the previous model.
We propose a new method for efficiently remeshing an analysis model
based on an earlier mesh, and show the gains that can be achieved. The
advantage of this method is that it can produce high quality meshes in less
time. At the basis of this remeshing approach stands our novel method for
meshing mechanical models, which in turn is based on an existing meshing
method, namely variational tetrahedral meshing (VTM) [Alliez et al., 2005].
We propose extensions which make VTM suitable for meshing mechanical
models. The resulting method works in a highly flexible manner with the
mesh, and is therefore appropriate to base our remeshing approach on.

The second aspect we consider is the integration of abstract analysis
models and the design model. Analysis is rarely performed on the exact
product geometry. Details can be left out, or properties can be computed
more efficiently on lower-dimensional models. Working with a range of such
abstracted models and the design model, causes a lot of work on reanalysis
when the design model has been modified. Changes in the design should
preferably be propagated automatically to the abstract analysis models. We
can even imagine a need for modifying an abstract model itself after an
analysis, and propagating changes back to the original geometry and other
abstract models. This would be useful when the outcome of the analysis
prompts for changes in the design, which in particular happens when the
analysis concerns shape optimisation. We discuss and demonstrate a way
to achieve such an integration of models by means of analysis views on a
product, in addition to a design view and possibly other views, in the context
of multiple-view feature modelling, which allows for propagation of changes

1.4. Structure of this thesis 9

Chapter 1:Introduction

Chapter 2: Design and analysis models

Efficient remeshing Analysis views

‘ Chapter 3: Analysis and meshing ‘ Chapter 7: Integration of design
and analysis models

Chapter 4: Variational tetrahedral - —
meshing of mechanical models Chapter 8: Relating an analysis view
to a design view

‘ Chapter 5: The feature difference ‘

Chapter 6: Efficient tetrahedral
remeshing

Chapter 9: Conclusions and future research

Figure 1.3: Outline of the thesis

between all these views. The views basically are different feature models of
the same product, and together they form the product model.

A more detailed description of the context wherein we approach each
of the aspects, will be given in the next chapter. But first, we give a brief
overview of the contents of this thesis.

1.4 Structure of this thesis

The outline of this thesis is presented in Figure 1.3. It can be used as a guide
in understanding the logical structure of the thesis.

We start by discussing the context of the problem in more detail in
Chapter 2. Here we describe the essential characteristics of both design and
analysis, the characteristics of their respective models, how people wish to
combine the two, and the problems this poses.

With a clear idea of the context, we lift out two aspects of the integration
of these two disciplines:

1. efficiently remeshing analysis models (Chapter 3-6),

2. maintenance of abstract analysis models in conjunction with the design
model (Chapter 7-8).

10 1. Introduction

Focussing on these two aspects, we propose and discuss methods to improve
the efficiency of the design and analysis process.

The first improvement is essentially the efficient reuse of earlier generated
high quality analysis meshes, after a model has been modified and analysis
has to be repeated. In Chapter 3 we give some background on meshing
for (finite element) analysis, in particular with tetrahedral elements. In
Chapter 4 we introduce our novel meshing method for this research, which
is based on a method for generating high quality meshes of non-mechanical
models. We discuss the techniques that we have employed to make the
method suitable for meshing mechanical models. In order to reuse parts of
the mesh between models that share similarities, we have to identify what
exactly the differences and similarities between these two models are; we
present the model that we have developed to capture this information in
Chapter 5. In Chapter 6 this all comes together, where we present a method
to efficiently remesh analysis models, and the gains that we have observed.

The second improvement results in better maintenance of abstract models.
We propose to integrate the design and analysis models more closely in a
fundamental manner in a multiple-view feature modelling approach. We
call these analysis models that are linked to a design model analysis views,
and the basic idea is presented in Chapter 7, after a discussion of some other
approaches to the integration of design and analysis models. In Chapter 8
we discuss a method that we have developed to implement some of the ideas
that were put forward in the previous chapter.

We end with conclusions on what has been achieved in Chapter 9, and
reflect critically upon issues that remain. We also look ahead which further
improvements we might expect in the future with respect to the integration
of design and analysis.

1.5 Contributions

This thesis includes several contributions that have been published as peer-
reviewed articles. The contents of Chapters 4, 5, 6 and 7 correspond, re-
spectively, to the work described in [Sypkens Smit and Bronsvoort, 2008],
[Sypkens Smit and Bronsvoort, 2007], [Sypkens Smit and Bronsvoort, 2009a],
and [Sypkens Smit and Bronsvoort, 2009b]. The content of Chapter 8 consists
of recent work, and has not yet been published.

Chapter 2

Design and analysis models

This chapter serves to provide some background on the subjects that are
central to this thesis. We start, in Section 2.1, by placing computer-aided
design (CAD) and computer-aided engineering (CAE) in a historical context.
Next, in Section 2.2, we characterise design models and their common rep-
resentations in more detail, and give a brief overview of feature modelling.
In Section 2.3 we look at the characteristics of analysis models, and explain
the essence of finite element analysis (FEA). We conclude with a discussion
of how design and analysis are commonly used side-by-side in the product
development cycle, and what the resulting bottlenecks are, in Section 2.4.

2.1 Historical perspective

Computer-aided design and computer-aided engineering started out as
two separate fields of both practice and research [Hughes et al., 2005]. The
first was to replace the practice of drawing designs by hand. The computer
could offer higher precision in drawing, assist the designer with simple
calculations for dimensioning, make it easier to experiment with variations
of a design, and quickly undo mistakes. It offered a more efficient and
versatile drawing tool. The Sketchpad project developed by Ivan Sutherland
in the early 1960s [Sutherland, 1963] is widely regarded as the first instance
of interactive CAD [Bozdoc, 2010].

From that point, major companies such as General Motors, Lockheed
and McDonnell Douglas started directing a lot of research into CAD and
related technologies. The trend of internal development was set from early
on. The high commercial value of CAD technology made that a large part of
the advancements were made outside of academic institutions. From within
the large companies that had so much to gain from digital design techniques,

11

12 2. Design and analysis models

emerged the CAD industry. The software that they initially developed for
themselves, quickly turned out to be a profitable asset that could sell, and
thus it was generalised into tools and libraries that were marketable.

Promising technologies would quickly leave the academic realm to be
exploited commercially. Academic institutions did deliver major contribu-
tions to the CAD industry, but it seems to have been a somewhat one-sided
affair. Still today, there is a tension between companies developing CAD
software and academia trying to research this matter. The companies are
generally unwilling to talk in detail about their technologies, or about the
problems that they or their clients are facing. Also, it is nearly impossible for
independent scientists to access the advanced models that large companies
are working with. This attitude of secrecy results from the fear that giving
any information to the competition, might make them lose part of their edge
over that competition. Although perfectly understandable, it probably does
hamper scientific research into CAD.

Another consequence of this closed attitude is poor interoperability.
For example, closed file formats, different internal tolerances, and lack of
standardisation can make it difficult to work with a heterogeneous set of
modelling programs, both for normal users and researchers. Fortunately,
it seems that this is slowly changing. The call for open standards, interop-
erability and free control over users’” data, which has gained traction over
the last decade, seems to have some effect. Companies developing CAD
software are getting more permissive with their source codes, and open
source offerings such as Open CASCADE [Open CASCADE S.A.S., 2010]
are trying to get a foothold in the market, creating a stimulus to compete
less on the basis of lock-in, and more on merit.

The earliest instances of CAE occurred more than a decade before the
start of CAD. They basically came down to the numerical approximation of
physical problems that were difficult or impossible to solve by hand. Since
computers were relatively slow and numerical algorithms not as refined
as they are today, the geometry of the problems that could be practically
investigated was simple. Comparatively little time was spent describing
the geometry of the domain, and usually it would be implicitly part of
the numerical code. Decoupling the geometry of the domain from the
numerical routines to solve the physical problem requires more complex
code, which only became feasible when computers arrived that were easier
programmable than those of the late 1940s and 1950s. The finite element
method, developed in the late 50s and early 60s, was one of the first methods
that was able to handle arbitrary domains.

For almost any technology and application it holds that it could make
tremendous advancements because of the quick progress in computer hard-

2.1. Historical perspective 13

ware. For CAE the converse statement holds, as it could arguably be called
the most important driver of the development of the computer. The need
to perform complex calculations concerning, amongst others, ballistics, nu-
clear physics, and fluid dynamics, in a sense prompted the invention of the
computer [SIAM, 2010]. The commercialisation of software for numerical
analysis seems to have happened slower than for CAD software, and cer-
tainly resulted in much less division between the academic institutions and
industry. This can be explained by the more extensive breadth and variation
in analysis research. The development of CAD software was about creating
a single, complex approach that enables modelling wherein all types of
shapes and operations on these shapes can be combined, whereas the imple-
mentation of numerical analysis for a specific problem is relatively simple
to do. The problems in numerical analysis, however, are very diverse, and
the same holds for the solution methods. It is much harder to generalise all
these in a single system, especially in such a way that the system can be used
by someone who is not experienced with the technical details. The degree
of expert knowledge that is required to perform analysis is high; meshing,
choice of Krylov subspace method, parallelism, error analysis, application
of multigrid, modelling of the physical problem, and time discretisation,
are all elements that people need to be knowledgeable of when performing
analysis. Analysis is to some extent an inherently academic exercise, at least
more so than CAD.

The two fields of CAD and CAE matured separately over the decades and
are now quintessential to product development. As both grew more com-
plex, their underlying data structures evolved naturally. At the same time,
however, the demand to perform analysis with CAD-developed geometries
grew. Most products in development today are at some stage subjected to
analysis. At that point, a geometric input suitable for the analysis is usually
derived, largely by hand, from the CAD geometry. This is a laborious task
that regularly has to be (partially) repeated. Although the design and analy-
sis models in essence describe the same object, the models are different, and
going back and forth between them is a clear bottleneck within the product
development cycle. Trying to remove this bottleneck is, in effect, an effort to
improve the integration of CAD and CAE.

To better understand the issues concerning the integration of design and
analysis, we continue by individually characterising each of their models
and commonly used representations.

14 2. Design and analysis models
2.2 Design models

A design model is used in building a precise description of a product, most
importantly its shape [Lee, 1999]. Most likely the designer will already
have an idea of the shape when he starts to input the design model, but
it is within the process of working with the design model that he makes
the shape and all the dimensions exact. We further characterise design
models by discussing the following two topics: 1) underlying geometry and
topology, and 2) high-level elements for construction and interaction.

Design models need to be able to reflect arbitrary shapes and allow
precise control over the shape, e.g. having a curve or surface pass through
particular points, or the specification of derivatives of curves at certain points.
The most common way to achieve this is by having curves and surfaces in the
underlying representation that can be manipulated on an individual basis.
To this end, the curves and surfaces are represented by means of simple
splines or NURBS. The curves and surfaces are all stored in a network of
vertices, edges and faces that records how the geometric elements relate
topologically to each other. Commonly the only geometric elements stored
in the design model are those of the boundary representation (BRep), mainly
faces, edges, and vertices, but some models store more elements in order to
enable a more advanced modelling approach. If only a BRep is stored, then
the topology is often required to be manifold, which basically means that it
can only represent a solid, three-dimensional shape. More complex models
enable the construction of non-manifold topology [Weiler, 1988]. The topol-
ogy describes where geometric elements meet each other, which generally
involves a certain tfolerance, e.g. the bounding curve segments of two adjacent
surfaces might not be strictly identical. This is because exact geometrical
computations are not feasible with computers. Since the boundary of an
object can be divided into a set of surfaces in many ways, the underlying
topology of the design model says as much about the choices that were
made in modelling the object, as about the object itself: identical objects can
have different underlying topologies.

The low-level geometry and topology are not the only elements to consti-
tute the design model, but they are present in almost all design applications.
The designer, however, does not normally work with the geometry on this
level, but has higher-level entities at his disposal, such as features [Shah and
Mantyld, 1995]. Features represent parametrised shapes that are ultimately
described by low-level geometric elements. The design model is thus ma-
nipulated through the addition and reparametrisation of features, and as
such they are the primary constituents of the model, whereas the lower-level
geometry that comprises the BRep is derived from the feature model by

2.2. Design models 15

Figure 2.1: A feature model with a variety of different features

boundary evaluation [Requicha and Voelcker, 1985]. Also, the designer can
relate the parameters, such as size and relative position, of different features
to each other by means of constraints [Hoffmann and Joan-Arinyo, 1997].
These are also part of the design model. Lastly, there can be a broad set of
properties that do no directly relate to shape, such as material and colour,
associated with (parts of) the model. These are usually implemented by
means of attributes that are linked either to the features or directly to the
low-level geometric elements. They are also part of the design model, as they
have to be properly maintained when modifying the model. All together,
these are the basic components that make up a design model.

Feature modelling

We already mentioned the use of features to efficiently construct models
consisting of low-level geometric primitives. A feature is a high-level build-
ing block for modelling with a shape that is usually common to more than
one model. See Figure 2.1 for an example of a feature model. The concept of
feature modelling, however, goes further than offering prefab combinations of
low-level geometric primitives [Bronsvoort et al., 2006]. Feature modelling
as an approach to model construction, is not so much about quickly defining
the geometry of a single, specific model, as it is about the commonalities to
all models that we are constructing.

Thinking about commonalities inevitably leads to include meaning in the
reasoning. Models have common shape characteristics because the shape has
a certain meaning [Shah and Mantyld, 1995]. Not all similar shapes have the

16 2. Design and analysis models

exact same meaning, and different shapes can represent a similar meaning,
but no shape goes completely without meaning, even if it is principally
aesthetic. The more scientifically common term for meaning is semantics.
If the semantics of features is explicitly taken into account by the design
system, we speak of semantic feature modelling [Bidarra and Bronsvoort, 2000].
Storing semantics in addition to the geometry requires a more advanced
representation than just a BRep. For example, a cellular model [Bidarra et al.,
1998] has been used for this purpose.

If the modelling system knows of the semantics of features, then it will
be able to better assist the designer. To this end, a feature modelling system
must thus not offer common shapes, since these can have different semantics,
but common semantics. For instance, a cylindrical shape could be used to
represent the geometry of both a pin and a hole in a model. In a feature
modelling environment, the difference between these two would be made
explicit. But feature semantics goes beyond the distinction of a boolean
union and subtraction. The cylindrical hole shape, for example, can be
used for a feature that pierces through the model, i.e. a through hole, or
it could result in a single opening, representing a blind hole. Also, not
all holes, whether they are through holes or blind holes, are equal. Some
holes should stay completely void of material, whereas for other holes this
is not important. The hole might call for a certain clearance, not only at
the entrance of the hole, but also in a larger area in front of the hole. It
might seem a silly idea that a designer would accidentally fill up a hole with
another feature, but when the set of features contained in the model gets
larger, it does become harder to keep track of it all. There might be multiple
designers working on the model, each focussing on different parts of the
model, making it harder to keep track of all the semantics when combining
the parts. With knowledge of the semantics, the modelling system can assist
the designer through validity maintenance [Bidarra and Bronsvoort, 2000].
When the semantics of a feature is threatened to be violated, the program
can inform the designer of the violation. One step further is to use the
semantics to restrict the freedom of the designer in interactive operations
on the model, e.g. for positioning, orienting, or dimensioning a feature in
the model.

Common design features are protrusions, slots, holes, ridges, and pockets.
Although there have been several attempts at creating a complete feature
taxonomy, this has proven difficult. Since both the need for certain shapes
and their associated semantics are not universal, the ability to create new
classes of features is an essential element of feature modelling. Commercial
systems are already equipped with large libraries of features. Although
they offer excellent tools for modelling, and are therefore used throughout

2.3. Analysis models 17

industries, they still have some way to go when it comes to semantics and
creating an environment that has a higher-level understanding of a model
than just in terms of its geometry.

In particular challenging is the incorporation of freeform features [van den
Berg et al., 2002; Pernot et al., 2008]. With the ability to manufacture smooth,
curving, and elegant shapes, the demand for products with such shapes has
been continuously increasing. Efficiency in designing such products, how-
ever, is comparatively poor, as their models are generally not constructed by
means of features, but with more elementary, geometry-oriented operations.
Generalising freeform shapes and the geometric interactions between them,
such that they can be represented as features, is still a topic deserving further
research in feature modelling [van den Berg and Bronsvoort, 2010].

The use of features extends beyond its application in part design, as
they can also be used, though with possibly different semantics, for other
product development phases, such as analysis, manufacturing planning, and
assembly modelling and planning. Each phase can have its own view on a
product with different features, related to the intuitive decomposition of the
product from the point of view of that phase [Bronsvoort and Noort, 2004].
In an analysis view, for example, there could be features to indicate boundary
values and conditions, mesh density requirements, and specifications of the
maximum heat, stress, etc. that is admissible. The concept of multiple-view
feature modelling is discussed in some more detail in Chapter 7.

2.3 Analysis models

An analysis model, in our treatment, is a geometry description on which
an analysis is based. This is generally not the analysis mesh, as the mesh is
generated from the analysis model. Instead, it represents a suitable geometry
to be meshed and contains all the information to drive an analysis regardless
of a specific mesh. The analysis mesh, often a finite element (FE) mesh,
is a decomposition of the analysis model into simple geometric elements
such as triangles and quadrilaterals in 2D, or tetrahedrons and hexahedrons
in 3D, that are instrumental in the numerical analysis [Reddy, 2005]. The
vertices that bound these elements, such as the four vertices at the corner
of a tetrahedron, are called the (mesh) nodes. Depending on the particular
solution method, it is possible that additional nodes are placed regularly in
each element, e.g. at the midpoints of the edges, or the centre of the element.
A wide range of meshing software exists to perform the construction of a mesh
based on a given geometry, offering quite a lot of control over the desired
characteristics of the mesh.

Figure 2.2 shows an example of a design model, together with a cor-

18 2. Design and analysis models

Figure 2.2: Design model (left), analysis model (middle), and tetrahedral mesh
(right)

responding analysis model and a corresponding mesh. The distinction,
however, between the analysis model and the mesh is not always clear in
practice. In some cases, there is only a mesh and no true analysis model. In
addition to providing the geometry, an analysis model can also provide in-
formation to steer the mesh generation, and all other inputs for the analysis,
such as initial values and boundary conditions [Chand et al., 2008].

The geometry of the analysis model is almost always an abstraction of the
design geometry, better suited for analysis, though the difference between
the two can be small. Usually, not all detail of the design is needed for the
simulation of the physical behaviour of the real product. Too much detail
might even reduce the global accuracy of the result, in particular when the
result needs to be obtained in a limited amount of computing time. With
too many geometric details, computational resources are devoted to sections
that are irrelevant for the central question that the analysis is supposed to
answer, with an increased likelihood that the fidelity of the result is worse.
Analysis models thus tend to have a notably simpler geometry. It is even
common for the geometry of the analysis model to be of a lower dimension
than the design model, or, in case of symmetries, to only represent a subset
of the model. For example, thin plates can be modelled by shell elements that
have 2D geometry (embedded in 3D space), and incorporate the thickness of
the plate as a numerical parameter that affects the behaviour of the elements.
This reduces the complexity of the calculation compared to full-dimensional
analysis, without necessarily spoiling the fidelity.

The representation of the analysis model varies. In some cases it is a
BRep composed of splines, similar to the common representation of the
design model, but rarely can the geometry of the design model be used
directly as the analysis model. Even if there is no need to reduce detail,
then the meshing software might still be unable to deal with the geometry
of the design model. The common alternative is a finely faceted (usually

2.3. Analysis models 19

triangulated) model that has been generated from the design model. This
faceted data structure is straightforward, so that it can easily be transferred
and manipulated, and has no issues with tolerance in joining the individual
elements, as only the topology is explicit. Algorithms that operate on this
kind of representation are relatively easy to implement. A faceted BRep
of a design model, however, is by itself not yet a usable analysis model.
The geometry most likely needs to be adapted to make it more suitable
for meshing, and be prepared for the assignment of boundary values and
conditions. More about this in Section 2.4.

The analysis model needs a topology that divides the surface into more
or less smooth patches, i.e. regions of the surface where the first derivative
in all directions is approximately continuous everywhere except on the
boundary of the region. This is required by the meshing software for the
creation of a good mesh, as most meshing algorithms treat edges in a special
manner, e.g. by starting and forcing node allocation there. For example,
edges that do not separate surfaces at an angle with each other, can cause
unnecessary mesh nodes to be put into the mesh, unjustifiably forced at
specific positions, which could needlessly lead to a lower quality result. In
addition to a breakdown in sufficiently smooth regions, this topological
description also contains the faces, edges and vertices on which boundary
values or boundary conditions are specified. Also part of the analysis model
is information for steering the generation of the analysis mesh, in particular
the mesh size. This is most often stored in a regular 3D grid or a 3D mesh,
possibly the mesh of a previous analysis, but no real standards seem to exist
as these data structures often have close ties with the particular meshing
method.

Finite element analysis

The most widely used technique for performing analysis on a design is finite
element analysis. The method was developed with an initial focus on engi-
neering problems, in particular structural engineering. With a history going
back to the late 50s and early 60s, it has a very well developed mathematical
background [Brenner and Scott, 2007]. The theory is concerned with solving
systems of partial differential equations (PDEs) or integral equations, which
are the mathematical formulations for almost all physical phenomena, in-
cluding engineering related ones. It does not constitute a single algorithm
that can be used to solve arbitrary PDEs, but rather is a formalism for de-
riving such an algorithm, given a specific class of equations. Each problem
class thus needs its own algorithm, and generally this derivation requires
mathematical skill that warrants human involvement.

20 2. Design and analysis models

The popularity of finite element analysis is undoubtedly grounded in the
huge versatility of its applications. The set of problems that can be subjected
to FEA is very large, as is the number of choices that can be made in the
solution process at different independent levels. A choice for finite element
analysis does not imply a single specific algorithm, and what constitutes a
good approach depends on many factors, such as the particular nature of
the physical problem (domain deformation, extreme/near-singular inputs,
crack propagation, etc.), the mathematical characteristics of the problem
(order of the PDEs, non-linearity, elliptic/hyperbolic/parabolic nature), the
discretisation of the domain, the required accuracy, and the available com-
puter hardware (CPU and memory). It is normally not known beforehand
what the best approach would be, though one can make an educated guess
based on previous experiences. Of course, within a particular analysis envi-
ronment, the number of choices is likely to be limited, as only a subset of the
known approaches and combinations thereof will have been implemented.
Therefore it is quite common that researchers of FEA, at least when it comes
to the more fundamental aspects, rarely rely on commercial programs, but
write their own code. With a history of over 50 years, it is still a highly
researched topic.

Due to the broad range of mathematical intricacies that are part of the
theory of FEA, we avoid a mathematical treatment here, but instead present
only the basic ideas [Reddy, 2005]. A principal step in FEA is to convert the
system of PDEs (or integral equations) into its variational or weak formulation.
This formulation consists of integrals that, under the right assumptions, de-
fine an inner product on a infinite dimensional function space. The specific
characteristics of the equation, foremost differentiability, require that this is
a Sobolev space. In this weak formulation appear both the unknown function
u that satisfies our original equation, and a function v that, apart from a
small constraint, is arbitrary. This formulation can be discretised in space,
such that there effectively is an individual equation for each segment of the
domain. In case of a 3D mesh, there would be an equation that relates u
and v over each individual element. Since the formulation should hold for
arbitrary functions v, we can choose functions that are 0 everywhere except
over a particular element. For each element there exists such a function,
and these are called the basis functions. Simple polynomials are chosen
as basis functions. This way, all the basis functions together span the en-
tire discretised domain, but their influence is local. Together they form a
space of piecewise polynomial functions. The solution u has now become
approximated by u; and will necessarily lie in this same polynomial space.
Because of the derivatives of u that appear in the variational formulation,
the equations over the elements all refer to their neighbouring elements,

2.3. Analysis models 21

except on the boundary, and thus we cannot solve the equations individually,
but they have to be assembled into one big linear matrix equation with the
values of uy, at particular nodes of the elements as the unknowns.

The solution of the matrix equation depends on the nature of the problem.
If it is a steady state problem, then there is a single piecewise polynomial
solution, and the matrix equation can be solved either by a direct solver or
by a Krylov subspace method, which is the only feasible approach when the
system of equations is large. If the problem is time-dependent, say the shape
evolution of a metal object that under pressure deforms over time, then the
matrix equation is itself again a system of ordinary differential equations
(ODEs). This system can be solved by numerical integration, wherein the
time t is discretised. This happens separately from the discretisation of
space and is not specific to the finite element method. In that case, for each
time step a complete system of equations, similar to the one for steady state
problems, is solved. All these solutions together represent the approximation
of the evolution of u over time.

The easiest choice for the polynomial functions that leads to a continuous
solution is linear polynomials. However, if the PDE is of higher than second
order, i.e. it contains a third derivative or higher, then higher degree poly-
nomials such as quadratic ones are required. But regardless of the order of
the PDE, higher degree polynomials can always be used. They can increase
the accuracy of the solution, in particular a good accuracy can be obtained
with a comparatively low number of elements. However, higher degree
polynomials do not assuredly lead to higher accuracy, but rather there is a
more complex relation that involves, amongst other aspects, the nature of
the problem.

The other major choice of importance is the discretisation into elements,
or the mesh. Generally, there is a relation that smaller elements lead to
higher accuracy, but again, depending on the characteristics of the specific
problem at hand, there are some cases where this does not apply. There has
been a lot of research into meshes and the relation to the accuracy of the
solution. The elements can be varied in size throughout the mesh, using
larger elements where the domain does not have intricate geometric detail,
or where no outcome of interest is expected, and using smaller elements
in selected regions where the solution varies strongly, or the geometry of
the domain has small details. In time-dependent problems, the mesh can
even be adapted after each time step, resulting in a dynamically changing
mesh. This can be done by moving the nodes of the existing mesh, or by
introducing new elements into the mesh and removing old ones. More
information on mesh generation follows in Chapter 3.

Another important aspect to finite element analysis is error estimation

22 2. Design and analysis models

[Ainsworth and Oden, 1997]. The solution to the system that is being solved
is already an approximation to the real solution of the equations we started
out with. The real solution is most likely not a piecewise polynomial, but in
most cases the latter should offer a reasonably close approximation. On top
of that comes the inaccuracy through the discretisation of the derivatives,
and the inaccuracies that result from solving the linear system, and possibly
integrating this in time. The easiest method to estimate the accuracy is to
perform the analysis with various mesh sizes and time steps, and look at
the convergence behaviour. Usually the calculations for comparison are
performed with coarser meshes and time-stepping, but it takes time to
perform the calculations nonetheless, and then the differences have to be
turned into an estimate of the accuracy. There are other methods for error
estimation based on theoretical arguments, but these often only apply to
academic problems, or the bounds on the accuracy are too large to have
practical value.

In this thesis we do not deal with the details of actual analysis, i.e. the
heavy-duty calculations, but focus on the steps leading up to this. The aspect
of FEA that is most important to us, is mesh quality of tetrahedral meshes.
More on this in Chapter 3.

2.4 Model integration in the product development cycle

Originally, the design and analysis models stood more or less on their
own, each within its own domain of application, but over time, with the
turnaround of the product development cycle getting progressively shorter,
this has changed. With a growing need to perform analysis on specific
instances of a design, consequently grew the need for closer and increased
interaction between the two models.

Design and analysis models are both part of the product development
cycle, which encompasses all the tasks that are commonly performed from
the first conception, up to the actual manufacturing and marketing of the
product. When sequentially listing all the tasks, this gives the impression of
a mostly linear process. But in fact it is more of a cycle, since most products
are, at least partially, based or inspired upon a previous product; incre-
mental improvements are the norm in product development. But a similar
pattern appears when we zoom in to the development steps for an individ-
ual product. There is a certain interaction between all the steps, because
the geometric design, the physical behaviour/performance, manufacturing,
assembly, packaging, marketing, etc. of the product are all interrelated.

Obviously, the interaction between geometric design and analysis is
of particular interest to us. Analysis is principally used to verify that the

2.4. Model integration in the product development cycle 23

manufactured product behaves to specification. If this turns out not to be the
case, then the design has to be adapted, and afterwards the analysis repeated.
In particular since we try to minimise material use, for both economic and
ecological reasons, and want to build products cost-effectively, thus using
the cheapest material that can do the job, the margin between the (limit)
specifications and the actual behaviour is likely to be small. In other words,
the circumstances under which a product fails, tend to lie relatively close
to the specified conditions under which it should never fail. Also, analysis
is explicitly used to optimise shape, so that the outcome of the analysis
directly determines (a part of) the shape of the design model. During shape
optimisation, commonly a whole range of calculations is performed, each
for a slightly different model. All this calls for frequent and close interaction
between design and analysis, and thus their models.

So how can we characterise this interaction of design and analysis, in
particular between their models, within the product development cycle?
Because the diversity in types of design and types of analysis is so large,
there are several kinds of specialised environments that all operate (at least)
slightly different [Beall et al., 2004]. There is thus no single, complete char-
acterisation of the combined workflow of design and analysis. We can only
describe those aspects that are common and of importance to the integration
issue. Furthermore, the combined workflow in current practice concerns
mostly the derivation of analysis models from design models, which is es-
sentially a one-way model conversion executed with a wide range of tools
and techniques.

We are not aware of any survey research on the combined workflow of
design and analysis in relation to the size and complexity of the models,
the type or level of abstraction of the analysis models, and the type of
simulations, as used in practice. We can only go by what scholars are
indirectly suggesting about current practice by means of their research
efforts, and our personal experiences. We recall that design and analysis
models normally have a different geometry, as the analysis model represents
an abstraction that is (better) suited for analysis. The abstraction covers a
wide range, from slightly tweaking the design model, to being a dimensional
abstraction that at first sight has little resemblance to the design model.
Starting with a design model, there are several ways to get to an analysis
model:

¢ Build the analysis model from scratch.

* Adapt the design model into an analysis model, sticking to the rep-
resentation of the design model [Lee et al., 2005; Foucault et al., 2008;
Thakur et al., 2009].

24 2. Design and analysis models

¢ Create the analysis model starting from a faceted BRep of the design
model [Chong et al., 2007].

The first option is attractive if the geometry of the analysis model to be
constructed is simple, at least compared to the design model. In this case
recreating the few elements that are similar in both models is manageable.
Creating a model from scratch by hand does, however, carry the risk of
introducing errors. The engineer can, for example, make a mistake with
the dimensions. Since there is no link between the two models, whenever
the original model changes, the analysis model has to be updated by hand.
Either the analysis model is updated each time a change is made to the
original model, which is tedious, or after a range of modifications, which is
difficult and error-prone.

The second option for creating an analysis model is to adapt (a copy
of) the design model in its existing representation. This is attractive if the
changes between the geometry of the analysis model and the design model
are relatively small, e.g. if just a few design features need to be removed.
When this is done by hand on a separate copy, there is no link between
the two models. To maintain the relation, a specialised environment for
performing the abstraction would have to be used, which is not very common
at present. Also, there is more to be dealt with in preparing the analysis
model than abstraction by removing a subset of the features. The analysis
model has to be suitable for mesh creation, which means that a topology has
to be specified and, more importantly, that the model should not exhibit any
geometric characteristics that are detrimental for the generation of a quality
mesh, such as very sharp angles or very thin faces. This possibly requires
a specialised modelling environment, as the design software that causes
such nuisances is often not well suited for removing them. Exporting and
importing the model, might then lead to tolerance issues with the definition
of the geometry, e.g. resulting in a model that is not watertight.

The third option for constructing an analysis model is through manipu-
lation of a faceted model generated from the design model, which is then
adapted in steps to become a suitable analysis model. The model is made
watertight, the surface is remeshed, feature size analysis is performed, and
in a (partly) automated fashion the model is simplified. Although there is
no real link between the design and analysis model with this approach, the
advantage is that many steps can be automated. It is often noted though, in
particular with respect to dimensional reduction, that the automated steps
can give you a quick start, but frequently this will not give a result exactly
as desired. Some manual tweaking seems unavoidable.

The distinction between these three approaches to obtaining an analysis
model is not very sharp. There are approaches in use that are a mix of these,

2.4. Model integration in the product development cycle 25

where, for example, first the design model is somewhat simplified, and then
exported as a faceted model for further automated processing.

It is obvious that the workflows just characterised, have deficiencies with
respect to efficiency and maintaining consistency. In Chapter 7 and 8 we
focus on the aspect of keeping design and analysis models consistent. But
first, in Chapters 3 to 6, we focus on meshing of analysis models, which has
to be performed each time before the actual calculation can start, and on
how efficiency can be improved here.

Chapter 3

Analysis and meshing

For finite element analysis, a mesh is required of the geometry of the analysis
model. This mesh is a decomposition of the geometry into small, simple
elements. The procedure for generating such a decomposition is known as
meshing.

Meshing is not limited to the field of analysis, but it is also performed
in, for example, computer graphics. There it commonly applies to just the
surface of 3D objects, instead of the volume, and the elements are almost
always triangles. In the context of surface meshes, the process of meshing is
also called fessellation, and this field comes with a rich range of algorithms
and techniques [Botsch et al., 2010]. Meshing for analysis, however, predates
meshing for display of 3D graphical models by more than a decade, with
the latter starting in the mid 70s, and the former in the late 50s.

Although there is some overlap between the meshes and meshing tech-
niques from these two disciplines, their purpose is essentially different.
Therefore they each have their own perspective on what determines the
quality of a mesh and which are its favourable characteristics. We are mainly
interested in analysis, and start this chapter, in Section 3.1, by looking at
meshes for this purpose. Next, in Section 3.2, there is some background
on mesh generation techniques. Finally, in Section 3.3, we argue that the
efficiency of mesh generation in the context of the product development
cycle, can be improved.

3.1 Meshes for finite element analysis
The most common type of elements in meshes for finite element analysis, are
triangles and quadrilaterals for 2D geometries, and tetrahedrons and hexahe-

drons for 3D geometries. Figure 3.1 shows some examples of elements and a

27

28 3. Analysis and meshing

(@) Linear (top) and quadratic (bottom) triangular, quadrilat- (b) Triangle mesh of a circle
eral, tetrahedral and hexahedral elements

Figure 3.1: Examples of mesh elements and a mesh

simple triangle mesh. The choice for a particular type of element depends on
the geometry of the analysis model, and the capabilities of both the meshing
and the analysis software. Hexahedral elements are generally perceived as
superior due to better numerical stability and more efficient convergence
[Tautges, 2001; Baker, 2005]. Meshing with hexahedral elements is, however,
very difficult, and automated methods are scarce, with the performance
depending strongly on the geometry of the model. Models with complex
boundaries, and a topology that cannot be broken down easily into block-like
shapes, can therefore lead to a choice for tetrahedral elements, even though
hexahedrals would be numerically favourable. However, depending on the
nature of the particular problem, and the quality of the tetrahedral mesh,
the numerical stability does not have to be an issue [Cifuentes and Kalbag,
1992; Benzley et al., 1995]. In this thesis, we focus on tetrahedral meshes,
because they can more easily be generated by autonomous procedures. This
is the type of mesh that should be assumed in the sequel when it is not
specified explicitly. Another way in which we denote either triangular or
tetrahedral meshes is by the term (2D or 3D) triangulation.

The role of mesh elements is to serve each as a domain on which basis
functions are supported. The basis functions represent a continuously vary-
ing (solution) value over the element by interpolating values at the nodes. In
a linear element, the nodes commonly lie at the vertices. For higher degree
interpolation, additional nodes are placed on the boundary and in the inte-
rior of the element. This enables smoother variation of the solution, with
higher degrees of continuity between the elements as well. Mesh generation
is typically just concerned with generating the bare geometry of the elements,
as the additional nodes are trivial to generate. Elements on the boundary,
however, deserve special attention if higher degree elements are used, as it is

3.1. Meshes for finite element analysis 29

necessary that their geometry represents the model boundary as accurately
as possible with the polynomial approximation, following the smoothly
varying shape of the analysis model, which is derived from the geometry of
the design model (see Section 2.3). For this purpose, some methods require
access to the original spline surfaces, instead of a fine approximation with
triangles.

In general there is a distinction between boundary conforming and non-
boundary conforming meshes. The latter type does not represent the bound-
ary, or at best makes a crude attempt. Generally these meshes are grids that
overlap with the analysis model, with the cells that fall inside the model,
according to some measure or heuristic, being used to represent the object
of analysis. Non-boundary conforming meshes are easier to generate, in
particular when quadrilateral or hexahedral elements are used, and because
of this, they were more popular in the earlier days of analysis.

A conforming boundary does explicitly represent the boundary of the
analysis model, by having all nodes on the mesh boundary at coordinates
that lie on the actual surface. Additionally, the element faces that form the
mesh boundary must accurately follow the actual surface [George et al.,
1991]. Clearly, it requires some kind of measure to determine what this
means. To this end, the Hausdorff distance and the maximal variation of
the surface normal over the element, are commonly applied. It depends on
the problem and the desired accuracy, whether a non-boundary conforming
mesh can be used. This is more likely the case if the need for accuracy is
limited and the physical behaviour on or near the boundary, or the effect
of variations in shape, are of relatively minor importance. Our interest is
directed towards boundary conforming meshes, because they are more com-
monly used nowadays, even though they are more challenging to generate.

When generating the mesh, the curvature over the surface of the analysis
model can serve as a guideline for the number of elements that needs to be
placed. In areas of higher curvature, more elements are needed to accurately
capture the boundary. Consequently, the mesh elements will vary in size,
with smaller elements near areas of the boundary with small details or high
curvature. Variation in element size is also useful in relation to the physical
problem. At places where the derivatives are high, i.e. the solution varies
strongly from point to point, more elements will most likely improve the ac-
curacy. For example, this could be around areas where a high concentration
of stress, or high turbulence is expected. The desired size of the elements
is given by the mesh sizing function [Quadros et al., 2004]. This function
can specify either an absolute or a relative size for the elements. Since the
elements are generally not perfectly regular, their size is defined by some
measure such as the average edge length, or the radius of the circumcircle

30 3. Analysis and meshing

or circumsphere.

Generally, an absolute size requirement px, where x denotes position, is
considered to be satisfied if it holds for the actual size of element T, denoted
by lT(x), that %\ﬁyx < lT(X) < ﬁyx for all x contained in the element. This
means a considerable margin for deviation from the requested size, but
without such a margin it would be virtually impossible to make every single
element adhere to its sizing requirement.

However, smaller elements, and thus more elements, are not the only
factor in the accuracy that is accounted for by the mesh. The shape of the
elements is also important. Elements with small or large angles, or short
edges in comparison to the average edge length of their element, are bad
for the accuracy of the analysis. Small in this context means about 5 ° or
smaller, and large means 175° to 180 °. There is no single threshold that
separates good and bad, but as an angle approaches the limit, the potential
for causing problems rises very quickly. For the 2D problem, i.e. filling a
planar shape with triangles, it is known that the angle and relative edge
length can be systematically bounded in the mesh generation, such that
quality triangles will always result. The only exception is if the boundary
of the model contains sharp angles, as small angles are then unavoidable.
Filling 3D domains with tetrahedrons is, however, harder. Procedures with
guaranteed bounds on the angles exist, but the bounds are so low that it has
little practical value over other approaches without such guarantees.

But even if all the angles and the edge lengths are good, there can still
be bad elements in 3D meshes, in the form of slivers. A sliver is a flattened
tetrahedron with its four vertices nearly in a single plane, positioned such
that their projection to the plane forms a convex quadrilateral with no short
edge. Such a tetrahedron has virtually no volume. See Figure 3.2 for an
example of a sliver. Many measures for element quality, such as the radius-
edge ratio, which is defined as the ratio between the circumradius of the
tetrahedron and its shortest edge, do not account for the bad quality of
slivers. Several measures have been introduced that do account for the bad
quality of slivers as well, mostly by introducing some term relating to the
volume. An example is the volume-length ratio, which is defined as V /I3,
with V the volume of the tetrahedron and /s the root mean square of
the edge lengths [Parthasarathy et al., 1994; Klingner and Shewchuk, 2007].
These measures generally reach optimality for the regular tetrahedron, i.e. a
tetrahedron with six edges of equal length.

We can also consider optimality from the point of view of the analysis.
Small and large angles can give trouble due to the interpolation of the
basis functions and their derivatives. Shewchuk [2002b] has expressed
the quality of linear elements in terms of interpolation error of a function

3.2. Meshing methods 31

Figure 3.2: Example of a sliver

and its first derivative. These formulas could be used to optimise a mesh,
resulting in the minimization of these interpolation errors, but explicitly
optimising for these quantities does not seem common. However, it can
be seen from the formulas that the regular tetrahedron is optimal in the
scale-invariant measure, i.e. without looking at the influence of element size
on the interpolation error. So striving for near-regularity in all elements,
which basically all measures do, seems a sensible approach.

We must be careful though to distinguish individual element quality and
overall mesh quality. A mesh with many very high quality elements, and a
few really bad ones, could perform worse than a mesh that consists entirely
of mediocre elements, but without a single element that is really bad. A
single bad element can badly interfere with the outcome of a calculation
[Shewchuk, 2002b]. Therefore, it is not only important to have high quality
elements at average, but to avoid bad quality elements all together.

For some problems, however, very thin elements with very small an-
gles, but positioned along a particular direction, can be desirable [Apel
and Dobrowolski, 1992]. The solutions of these problems contain so-called
anisotropic features, and the associated meshes are called anisotropic meshes,
as opposed to the regular meshes that are known as isotropic. Anisotropic
meshing is essentially an extension of varying element size over a mesh,
but with a mesh sizing function that is a metric tensor, i.e. the required size
varies depending on the direction. Figure 3.3 shows an isotropic and an
anisotropic mesh side by side. In this thesis, we limit ourselves to isotropic
meshes.

In the next section, we present an overview of the techniques and algo-
rithms that are used in generating triangle and tetrahedral meshes.

3.2 Meshing methods

The collection of all meshing methods is far too large to describe here in
full. For an extensive overview we refer to the literature. A lengthy mesh-

32 3. Analysis and meshing

(@) Isotropic mesh (b) Anisotropic mesh

Figure 3.3: Isotropic and anisotropic meshes for a similar geometry and number
of nodes

ing bibliography has been compiled in [Mackerle, 2001]. Two well-known
meshing resources with broad content on the web are [Owen, 2006] and
[Schneiders, 2006]. Comprehensive surveys include [Owen, 1998], [Teng
and Wong, 2000], and [Shimada, 2006]. Eppstein [2001] has given a tutorial
on the global optimisation of mesh quality. Du and Wang [2006] discuss
recent developments in robust and quality Delaunay meshing. Frey and
George [2000] cover many aspects of mesh generation in their book, which
can be considered a standard work on the topic. We give a short overview
of the basic techniques, with a focus on tetrahedral meshing. Many topics,
such as surface meshing, variation in element size, theoretical guarantees,
and anisotropic meshing techniques, are not discussed here.

Meshing algorithms can be compared on the basis of their characteristics.
Some of these characteristics have been touched upon in the previous sec-
tion, such as the type of mesh elements the algorithm produces, whether a
boundary conforming mesh is constructed, the quality of elements, variation
in element size, and how well the boundary is represented. Other charac-
teristics are robustness, required input, speed, ease of implementation, and
whether the approach is structured or not.

The robustness of the algorithm indicates the likelihood that the process
fails in some sense, e.g. because of numerical instabilities or unexpected or
unfortunate cases, such as degeneracy. Can it mesh arbitrary geometries, or
is it likely to fail on some inputs? The required input specifies the kind of
data sets the algorithm expects as input. For tetrahedral meshing algorithms
this is commonly a piecewise linear complex or a boundary representation con-
sisting of connected vertices, (non-linear) edges, and (non-planar) faces.
Meshing a piecewise linear complex is less complex, since the curved faces
and edges have already been discretised, but this might mean a concession
to quality, over having the original faces and edges available to the algo-

3.2. Meshing methods 33

(@) Structured mesh (b) Unstructured mesh

Figure 3.4: Structured and unstructured meshes for a similar geometry and num-
ber of nodes

rithm. The speed of the algorithm is important too. Generally, there is a
relation that slower algorithms result in higher quality meshes, but this
certainly does not hold for all cases. Longer running algorithms often follow
some iterative procedure to optimise the quality of the elements, but as the
running time increases, the improvements in mesh quality asymptotically
approach the optimum, i.e. the longer the algorithm runs, the smaller the
further increases in quality. Ease of implementation is not really a concern
for the user, once the algorithm has been implemented and is available for
use, but it is a characteristic that matters to developers. Some algorithms, in
particular those that come with theoretical guarantees, can be very complex
to implement, which makes their application impracticable.

There are two classes of meshing methods: structured and unstructured.
The structured approach gives rise to very regular meshes, as it maps reg-
ular mesh patterns with a fixed connectivity to (parts of) the geometry of
the analysis model. Unstructured methods do not work with a fixed mesh
connectivity between the nodes, but rather place each node or element indi-
vidually, or at least determine connectivity based on the node placements,
e.g. through the Delaunay criterion, which will be discussed shortly. Fig-
ure 3.4 shows an example of both types. Since it is relatively easy to fill a
geometry with triangles or tetrahedrons, unstructured methods are popular
and dominant for these element types. Quadrilaterals and hexahedrals, on
the other hand, are mostly used in structured meshing approaches, though
there has been quite a bit of research into unstructured methods for these
element types as well.

For tetrahedral mesh generation there are basically two major classes of
algorithms: advancing front and Delaunay based methods.

Advancing front methods create a mesh by working from the boundary
towards the interior. Because of this, the mesh quality near the boundary is

34 3. Analysis and meshing

(@) Placing a new node (b) Connecting the new () Adapting the front
node to the front

Figure 3.5: Mesh construction with the advancing front technique

at average very high, whereas the quality in the interior is lower, since the
fronts of elements that move inwards meet there. Filling the last remaining
voids with quality elements is more difficult, as the space might not fit the
element shapes that are desired.

The first step in a typical advancing front method is to discretise the
boundary into edge segments for a 2D model, or triangles for a 3D model.
All these edges or triangles together constitute the front, or multiple fronts
in case of holes (2D) or voids (3D) in the geometry. Starting with the el-
ements from the front, which have dimension one lower than the mesh
to be constructed, a new node is placed in the interior, such that it forms
one or more new elements by combining it with the front, and the front is
adapted. Adding a new node continues until the whole model has been
triangulated. The technique is illustrated in Figure 3.5. This is the core idea,
but many variations on this theme exist, mainly consisting of additional
rules for node placement, for deciding where to advance the front, and for
adding connectivity for multiple adjacent elements at once. These rules aim
to improve the quality of the individual elements and the overall mesh, and
help to fulfil additional requirements such as variation in element size.

The second class of meshing techniques consists of Delaunay based meth-
ods. This class is not completely disjunct from the advancing front methods,
as the Delaunay principle is used in combination with that approach as well.
The range of publications on this topic is very broad, as the subject has been
widely researched. The majority of triangular and tetrahedral meshes for
analysis is likely generated by an algorithm from this class.

At the core of all these techniques lies the Delaunay criterion, which states
that the circumcircle of a triangle, or the circumsphere in case of a tetra-
hedron, must not contain any nodes other than the nodes of the element
itself [Delaunay, 1934]. An element that satisfies this criterion is said to

3.2. Meshing methods 35

(a) Delaunay mesh (b) Two examples of violation of the Delaunay criterion

Figure 3.6: The Delaunay criterion: the circumcircle of each triangle may not
contain other nodes than those of the triangle itself.

have the Delaunay property, or simply to be Delaunay. See Figure 3.6 for an
illustration of the Delaunay criterion.

It is known that any set of nodes with distinct coordinates has at least one
triangulation for which all the elements are Delaunay [Delaunay, 1934]. This
is called a Delaunay triangulation of the nodes. This triangulation is unique,
except when there is degeneracy, which means that four nodes (five in case of
a circumsphere) or more lie exactly on the same circle that is empty of other
nodes. This obviously leads to multiple triangulations that are Delaunay.
The simplest example of this is the triangulation of the four corners of a
square, which can be done in two ways, and they are both Delaunay.

An interesting property of the Delaunay triangulation in a 2D plane is
that it maximizes the minimum angle, i.e. of all possible complete triangula-
tions of a particular node set, there is no triangulation where the smallest
angle is larger than the smallest angle contained in the Delaunay triangu-
lation [Lawson, 1977]. This seems attractive, considering that we associate
very small angles with bad quality elements. In general, the Delaunay tri-
angulation results in fairly regular meshes, in particular when the nodes
are spaced regularly. Unfortunately, this minimisation property does not
extend to triangulations in higher dimensions [Rajan, 1994], but the method
results in fairly balanced meshes nonetheless. Because of this, and the ease
of having a fixed principle defining the connectivity, the Delaunay criterion
has become so popular.

Almost all methods for constructing a Delaunay triangulation work by
building it incrementally. We explain a simple approach for a triangulation
in the 2D plane: one starts out with a single triangle, which is large enough to
contain all the nodes that are to be triangulated. Then a single node is added.

36 3. Analysis and meshing

This new node falls inside the triangle, and here three new triangles are
created by connecting the new node with the corner nodes of the containing
triangle. This process is executed iteratively with all the nodes. However,
after the first node, we need to take care that the Delaunay property is
maintained for all triangles. This is done by finding all triangles of which
the circumcircle contains the new node. These are the triangles that violate
the Delaunay criterion, and therefore they are removed. The remaining
cavity is triangulated by connecting the newly added node with all the
nodes bordering the cavity. There are many variations on this approach,
which, for example, introduce smart data structures to quickly locate the
triangles/ circumcircles that a node is contained in, or sort the nodes spatially
and base the insertion order on this. Also, robustness is an import issue
in these algorithms. For instance, it is necessary to determine with high
precision whether a node falls inside or outside a given circle, which requires
appropriate calculation techniques [Shewchuk, 1996]. Triangulation in 3D
is more complex, but the ideas are similar.

We have just discussed the triangulation of a given node set. Another
problem is the triangulation of a given geometry. In that case, the triangula-
tion algorithm itself can generate the location of the nodes. Of course, with
analysis in mind, building a mesh with high quality elements is the principle
aim. A wide range of techniques has been published on this topic, many of
which fall in the category of Delaunay refinement. This means that a coarse
initial mesh is used as a starting point, which is then iteratively improved by
inserting nodes. Many techniques are variations on the work of Chew [1989]
to insert circumcentres, i.e. the centre of the circumcircle, of bad quality
triangles. In particular when the triangles are very thin, the circumcentre is
likely to fall outside the triangle itself, but because the new node is lying
inside the circumcircle it violates the Delaunay criterion for the bad quality
element and that element is thus removed from the triangulation. Another
technique is the terminal-edge Delaunay algorithm, which inserts nodes on
certain long edges of the triangulation [Rivara et al., 2001].

Delaunay triangulations always cover the convex hull of a node set. This
means that for concave models, part of the triangulation has to be discarded
as it lies outside the model, and, more importantly, that the boundary will
not necessarily be represented by the Delaunay triangulation of the nodes.
In other words, it might not be possible to only discard the elements that
lie completely outside the model, as some elements are partly on the inside
and partly on the outside. A simple example of this is shown in Figure 3.7,
where two edges of the input geometry are missing in the triangulation of
the input nodes. There are two solutions to this.

The first is adding nodes, or Steiner points, such that a Delaunay mesh

3.2. Meshing methods 37

° ° o °
.
¢ ®
° °
(@) Input geometry (b) Delaunay triangulation

of input nodes

Figure 3.7: Boundary of input geometry not represented by Delaunay triangula-
tion

develops that does contain the complete boundary. Intuitively it is easy
to see that this can work as we imagine increasing the node density on
the boundary. This makes it more likely that the edges between all nodes
adjacent on the boundary (or triangles in case of a 3D model) are contained in
the Delaunay triangulation. However, this can lead to very bad meshes, and
some sophistication is needed to make sure that the algorithm finishes. A
Delaunay triangulation that completely represents the boundary of an input
model is called a conforming Delaunay triangulation. A practical algorithm
to construct such a triangulation is described by Cohen-Steiner et al. [2002].

The principal alternative to a conforming Delaunay triangulation, is a
constrained Delaunay triangulation. A constrained Delaunay triangulation
basically uses a modified version of the Delaunay criterion. Edges and faces
that lie on the boundary of the model, including edges and faces on internal
boundaries that have to be explicitly represented in the triangulation, play a
special role, as opposed to the standard Delaunay criterion that only deals
with nodes. These edges and faces can affect the ‘visibility” of nodes that
might violate the Delaunay property of an element. Effectively, a node is
invisible for a particular element if no straight path exists between that node
and any point in the element’s interior such that the path does not cross
any boundary edge or face. If a node is invisible for a particular element,
this means that it does not violate the Delaunay criterion for that element.
Because of this, some triangles (tetrahedrons) that could normally not exist
in a Delaunay mesh, due to a node that is contained in their circumcircle
(circumsphere), now are allowed in the triangulation since they are con-
strained Delaunay. Quite some work has been carried out on this topic,
amongst others, by Shewchuk [2002a] who has presented an algorithm that
provably results in a constrained Delaunay triangulation. In particular in

38 3. Analysis and meshing

3D this problem is harder than it might seem, as some polyhedrons cannot
be triangulated at all without the addition of Steiner points [Schonhardt,
1928; Bagemihl, 1948].

The algorithmic step that modifies a (Delaunay) triangulation such that
afterwards the complete boundary is contained in the mesh, is called bound-
ary recovery. Algorithms for creating conforming and constrained Delaunay
triangulations usually start from a Delaunay mesh, in which case we say that
the algorithms perform boundary recovery. After the boundary recovery
the model boundary is completely represented by elements in the mesh, but
for convex shapes there are still elements in the mesh that fall outside the
model. These elements need to be removed in a process that is called mesh
extraction.

With the ability to perform boundary recovery, the next point of attention
is mesh optimisation. As we have already mentioned, creating a quality mesh
with tetrahedrons is notably harder than with triangles. Once we have
obtained some mesh that is valid, it is only natural to work from there and
try to further improve it. Mesh optimisation is therefore a widely explored
topic. There are basically two ways to approach the optimisation: maintain
the (constrained) Delaunay property, or drop it. And then in either case
we can differentiate between methods that only change the connectivity,
that change the node positions, and that add new nodes to the mesh. The
last option of adding nodes, is normally only used in conjunction with the
Delaunay criterion to update the connectivity. In general, adding large
numbers of nodes is not desirable since it has a big impact on the running
time of the analysis and the memory requirements. Adding a few nodes
should not be a problem, as long as explicitly given characteristics of the
mesh, such as mesh sizing, are not affected.

One of the earlier research efforts into mesh optimisation, has been car-
ried out by Joe [1995]. The idea here is to use local transformations of the mesh,
which only change the connectivity in the region surrounding a bad quality
tetrahedron. One of the bad quality elements that is specifically targeted, is
the sliver tetrahedron. Various techniques have been explored to remove this
type of element, of which the approach of sliver exudation stands out [Cheng
et al., 2000; Edelsbrunner and Guoy, 2002]. The basis of this approach is
to use a so-called weighted Delaunay triangulation, which has assigned to all
the nodes weights that affect the connectivity of the triangulation. With
all weights equal, the triangulation is the normal Delaunay triangulation,
but by changing the weights, the connectivity can locally change, effectively
giving nodes a wider range of influence, enabling them to violate the empty
circumsphere condition of some elements, without actually having their
coordinates inside. Sliver exudation aims to make a mesh free of slivers by

3.2. Meshing methods 39

changing the weights of the nodes.

Another method of mesh optimisation is mesh smoothing, which is essen-
tially changing the node positions such that they are spaced more regularly,
which results in higher quality elements. Mesh smoothing by itself does
not avoid slivers, but it does lead to meshes that are more regular. The
earliest and one of the most used smoothing schemes is Laplacian smoothing
[Field, 1988]. In this approach, all node positions are in turn updated by the
arithmetic mean of the incident nodes, i.e. the nodes that share an edge with
the node that is being updated. The range of variations and improvements
of this approach is extensive, but one direction deserves to be mentioned in
particular, namely Voronoi-based optimisation.

The Voronoi diagram is the dual of the Delaunay triangulation, which
means that fundamentally the structures are identical, but they provide a
different perspective [Voronoi, 1907]. The Voronoi diagram divides space
surrounding a node set into regions, such that each region consists of all
the points that are closest to a particular node. The centres of the Voronoi
regions correspond to the nodes of the Delaunay triangulation, and the
circumcentres of the Delaunay triangles correspond to the points where three
Voronoi regions meet. Every pair of adjacent Voronoi regions corresponds
to an edge in the Delaunay triangulation. See Figure 3.8 for an illustration
of a Delaunay triangulation and its corresponding Voronoi diagram side by
side. The latter perspective leads to a particular smoothing scheme, namely
one that creates a centroidal Voronoi tesselation (CVT) [Du et al., 1999]. This
is a Voronoi diagram in which the nodes lie (as close as possible) on the
geometric centres of their corresponding Voronoi regions. It turns out that
this approach of adapting the node locations results in very smooth meshes
[Du and Wang, 2003]. A further improvement on this is mesh smoothing
based on the optimal Delaunay triangulation (ODT) [Chen, 2004]. The ODT
is closely related to the CVT, as the optimised quantities are very similar.
The principal difference is that the ODT optimises a quality of the Delaunay
triangulation, whereas the CVT optimises a quality of the Voronoi diagram.
For 2D is has been proven that these schemes are asymptotically each other’s
dual, but for 3D and higher dimensions this is still a conjecture. More theory
on the ODT can be found in [Chen and Xu, 2004].

Although the common approach is to perform mesh smoothing and
general optimisation after an initial meshing stage, there are methods that
explicitly incorporate the optimisation as part of the meshing method itself.
An example of this is variational tetrahedral meshing (VIM) [Alliez et al., 2005].
This method produces essentially a conforming Delaunay triangulation that
is iteratively optimised to approximate an ODT. It takes a comparatively
long runtime, but results in high quality elements. However, the method

40 3. Analysis and meshing

(@) Delaunay triangulation (b) Voronoi diagram

Figure 3.8: A Delaunay triangulation and its corresponding Voronoi diagram

is not really suitable for mechanical models, which is why we developed
extensions, to be discussed in Chapter 4, such that we can use the method
for meshing such models.

Another recent approach that combines many techniques for optimisa-
tion and achieves very good quality meshes, but at the cost of a long runtime,
is aggressive tetrahedral mesh improvement [Klingner and Shewchuk, 2007].
Yet other examples that illustrate that the highest mesh quality comes at
a computational price, are the work of Dittmer et al. [2006], Acikgoz and
Bottasso [2007], and Branets and Carey [2005].

3.3 The prospect of remeshing

The purpose of a mesh is to perform analysis with it, commonly finite
element analysis. This is performed from early on in the design cycle to keep
a check on global compliance. Later on the analysis becomes more detailed,
as the design gains detail. The results help to steer the design process.
Not only must the product effectively fulfil its purpose, but also the cost
of material and production must be kept low. Analysis, and therefore the
meshes that are used, are thus an integral part of the product development
cycle.

An engineer that is offered a choice of meshes for his analysis, with
everything else being equal, would certainly choose the highest quality mesh.
What constitutes quality will depend on the particular context, but it will
be the mesh that gives the highest expected accuracy within the hardware
and time constraints. In practice, however, ceteris paribus rarely holds, as
each meshing method bears its particular costs. Meshing algorithms that
strive to optimise some quality measure on the mesh are often of variational
nature, minimising an energy functional related to the quality measure, just
like the smoothing for an ODT does. This makes high quality meshes costly

3.3. The prospect of remeshing 41

to produce in terms of runtime.

Two principal measures in analysis are computation time and accuracy. A
certain minimal accuracy is required for most applications. The accuracy of
an analysis is generally not known, but can be estimated, with a posteriori
error estimates being more precise than a priori error estimates. The engineer
chooses the parameters of the analysis such that he can be reasonable sure
that the required accuracy is attained. With the analysis parameters set for a
certain accuracy, computational time is effectively fixed. The primary ways
to reduce it are better algorithms and more computing power.

In general, for a fixed number of nodes, the use of high quality meshes
decreases the time spent on analysis. Therefore, a more expensive meshing
method can still decrease the total time of analysis if it provides a higher
quality mesh. The application of FEA can thus benefit from using high
quality meshes, even though they come at a higher computational cost.
Any approach that could bring down this time spent on meshing, however,
would be a welcome improvement.

In this light, we look at the possibility of cutting the time spent on high
quality meshing, within the context of the product development cycle. Since
during the design process, analysis is performed routinely on models with
more or less similar geometry, our idea is to base the construction of a new
mesh on a previous mesh, which has been used in the previous design
iteration. Iterative improvements to a model, in particular during the latter
design stages, often have a local scope, i.e. change the geometry in a relatively
limited way. For a computationally expensive meshing procedure, we expect
to save time by adapting the previous mesh, instead of meshing the modified
model from scratch. Figure 3.9 gives an example of the evolution of a design
model. For this example, it seems intuitively clear that parts of the mesh
from one model could be used for the other mesh as well.

Figure 3.10 shows how this approach fits into the product design cycle in
comparison with the common design cycle. It shows an abstract depiction of
the design cycle that focusses on the relation of the three steps of modelling,
meshing, and analysis. The diagrams are very similar, except that with the
incorporation of remeshing, a new relation arises that links the meshing
step of an earlier to that of a later stage. No longer is the mesh created from
scratch each time, but instead it is based on the mesh from the previous
iteration.

In addition to the efficiency gains, there is another benefit of remeshing
over meshing from scratch, namely that points and connectivity in certain
areas can remain identical. This can aid in the comparison between analysis
results. If nodes and elements can be mapped as locally corresponding
entities between two meshes, then their values can be compared without

42 3. Analysis and meshing

VDS

(@) Original model (b) Modified model: cylindrical bar relo-
cated, and stiffener added

Figure 3.9: Model modification

remeshing

(@) Common product design (b) Product design cycle with
cycle remeshing

Figure 3.10: Incorporation of remeshing into the product design cycle with anal-
ysis

3.3. The prospect of remeshing 43

interpolation.

We thus propose to improve the process and speed of automated qual-
ity mesh generation, by reusing the mesh from the previous iteration in
the development cycle. Little has been published on the topic of efficient
remeshing after model modification. One way to avoid remeshing at each
step of shape optimisation is to use mesh morphing/deformation, which in
principle maintains mesh connectivity by only changing the node positions.
Two recent expositions of this approach can be found in [Liu and Yang, 2007]
and [Date and Onosato, 2008]. Both, however, work with surface meshes,
though the latter intends to extend the method to volumetric meshes for the
purpose of analysis. This approach is most effective when the changes in
the model are subtle. In fact, the range of shapes that can be dealt with by
this approach is limited. In particular changes in topology pose a problem.

Remeshing of 2D and 3D triangular meshes has also been discussed by
Francois et al. [1999] and Francgois and Cuilliére [2000]. Herein two strate-
gies are proposed of which the first is akin to mesh morphing. Changes in
topology cannot be handled this way. The other strategy removes tetrahe-
drons around modified features, and locally reconstructs the mesh for those
features. With the first strategy, the quality of the elements decreases with
the impact of the modification. The second strategy can handle changes
in topology but is only effective for changes with a local geometric scope.
A somewhat broader view that includes hexahedral meshes is presented
by Sheffer and Ungor [2001]. This work offers no single, generic approach,
but discusses a range of techniques that can be applied in several different
situations. The focus is specifically on parametric model modification. For
tetrahedral meshes, the principal ideas are mesh morphing combined with
selective quality improvement of bad elements that have appeared. Topo-
logical changes are not dealt with here either. Lastly, some techniques for
interactive modification of finite element meshes are offered by Bidmon et al.
[2004].

We propose an approach to remeshing that can handle changes in topol-
ogy, and ensures a high quality mesh, in contrast to many of the methods
based on mesh morphing. We base our remeshing approach on the VIM
method, as it is flexible in nature and delivers high quality meshes. Since
this method is not really suitable for meshing mechanical models, we first
propose some extensions for this to the method. These are discussed in
Chapter 4. In order to identify which parts of a previous mesh can be suitably
reused in the creation of a new mesh, we need to describe the correspon-
dences and differences between the geometry of two feature models. The
model we have developed to describe this, is presented in Chapter 5. In
Chapter 6, we present our novel approach to remeshing, based on the mod-

44 3. Analysis and meshing

els and techniques from the two preceding chapters. So in the next chapter,
we continue with a discussion of our extensions to the VIM method on
which we base our approach to remeshing.

Chapter 4

Variational tetrahedral meshing of
mechanical models

We are looking for ways to improve the product development cycle, in partic-
ular the interaction between design and analysis. A vital step in this process
is meshing the analysis model. There are many meshing methods avail-
able; see Chapter 3 for an overview. We have developed a new method for
meshing mechanical models, based on the existing, more general Variational
Tetrahedral Meshing (VTM) method [Alliez et al., 2005]. This new method
can produce high quality tetrahedral meshes for mechanical models, and is
very suitable to implement the remeshing approach presented in subsequent
chapters of this thesis.

As we have discussed in Chapter 3, the quality of the mesh is very im-
portant when meshing for FEA, as even a single bad element in a mesh can
degrade the quality of the analysis. Quality is foremost determined by the
size and the angles of the elements. More specifically, in tetrahedral meshes,
such as in Figure 4.1(a), large dihedral angles (close to 180 °) cause problems
with the interpolation, whereas small dihedral angles (close to 0 °) cause
bad conditioning of the stiffness matrix. From this perspective, the elements
in a quality tetrahedral mesh should all have a shape similar to a regular
tetrahedron. Figure 4.1(b) shows a histogram of the volume-length ratio for
the elements of the mesh in Figure 4.1(a). This ratio (defined in Section 3.1),
is 1 for a perfectly regular tetrahedron, and very close to O for a sliver. The
histogram shows that the majority of the elements has a shape similar to the
regular tetrahedron, and that there are virtually no bad elements. This is
the histogram of a high quality mesh.

The sizes of the elements are also of influence on the quality of the mesh.
Smaller elements lower the discretisation error, but large differences in size

45

46 4. Variational tetrahedral meshing of mechanical models

between the smallest and the largest element are again bad for matrix condi-
tioning [Shewchuk, 2002b]. A quality mesh thus balances the variation in
element size with the need for mesh sizing and the quality of the individual
elements.

VTM achieves to construct a quality mesh, and does so with a fixed
number of nodes. This is a useful characteristic for analysis, since based
on the number of nodes the memory requirements and run time of the
analysis can be estimated. The demonstrated results of VIM for smooth
models are impressive, but little has been remarked on its applicability to
meshing of mechanical models for FEA. Meshes for analysis, in particular,
need to represent the boundary accurately, including all geometric traits
such as (sharp) edges and corners. While acknowledging that their method
approximates the boundary, Alliez et al. [2005] do mention the possibility
of meshing models with sharp geometric traits and show images of two
examples, but a real discussion is lacking.

We have investigated the application of VIM to mechanical models
for FEA. In particular, we have looked at the representation of the model
boundary by the mesh. We have developed enhancements geared towards
obtaining an accurate representation of the boundary, and demonstrated
that with these adaptations this approach is feasible for generating high
quality meshes of mechanical models that are suitable for analysis. We also
offer some practical considerations for applying the method.

We start with a review of the original variational tetrahedral meshing
algorithm in Section 4.1, followed by a discussion of the aspects where the
method is lacking with respect to the meshing of mechanical models in
Section 4.2. In Section 4.3 and Section 4.4 we propose enhancements to
the algorithm, followed by some practical considerations for applying the
method in Section 4.5. Finally, we show several meshes generated by this
approach in Section 4.6, and conclude the chapter in Section 4.7.

The larger part of this chapter has already been published in [Sypkens
Smit and Bronsvoort, 2008].

4.1 Variational tetrahedral meshing

The quality of systematically constructed meshes in 3D is generally far from
optimal. Since long, people have tried to improve the mesh quality after
the initial construction (see Section 3.2). Laplacian smoothing has been a
popular method since the early days, moving nodes to relax the mesh for the
given connectivity. However, this simple procedure can improve tetrahedral
meshes only to a certain degree, leaving many elements of bad quality in
existence. A significant step forward for the optimisation of tetrahedral

4.1. Variational tetrahedral meshing 47

-

=
e ravasAYiYy
A WAL

(@) Tetrahedral mesh of a nut model

2000

1500 Fl

tetrahedrons
5
8
S

w

i<}

k=
1

8.0 0.2 0.8 1.0

0.4 0.6 .
volume-length ratio

(b) Distribution of volume-length ratio of elements in
the mesh in (a)

Figure 4.1: Mesh and quality of a nut model

meshes has been the focus on centroidal Voronoi triangulations (CVTs) [Du
and Wang, 2003], where nodes are moved in order to approach the centroid
of their Voronoi cell. Later Chen and Xu in [Chen, 2004] and [Chen and
Xu, 2004] introduced the optimal Delaunay triangulation (ODT), further
improving the quality of the primary mesh elements.

From these ideas, variational tetrahedral meshing (VTM) was conceived,
a method that does not optimise mesh quality as an after-thought, but inte-
grates the optimisation in the mesh construction procedure. The pivotal idea
of VIM is to optimise the quality of the elements and to work on boundary
conformance in a single iterative process. This is a clear deviation from
the common practice of first meshing the boundary, and subsequently the
interior, such that it conforms to the boundary mesh. With each iteration
of VTM, the quality of both the interior and the boundary elements is im-

48 4. Variational tetrahedral meshing of mechanical models

(@) after initialisation

V‘VV
SN AW»“\
A" 'VAiV

(b) after 1 optimisation loop

(c) after 10 optimisation loops

Figure 4.2: Evolution of the mesh during VTM of a nut model

proved. Figure 4.2 illustrates the evolution of a mesh during VIM. The
connectivity of the mesh is governed by the Delaunay criterion and thus,
unless the model is convex, the final mesh has to be extracted from the
Delaunay mesh of the nodes. Also standing out, is the use of an indicative
number of nodes to construct the mesh. When performing an analysis, the
number of elements or nodes that can be handled is often roughly known.
In those cases, a method that can generate a quality mesh with the specified
maximum number of nodes, can offer an advantage.

We summarise the working of the algorithm. For a more detailed treat-
ment, we refer to the original presentation of the algorithm [Alliez et al.,
2005]. In the description of the algorithm appear a couple of terms that

4.1. Variational tetrahedral meshing 49

are important to distinguish. The nodes are points connected to form the
elements that compose the resulting mesh. All nodes that lie on the bound-
ary of the mesh are called boundary nodes, and all others belong to the set
of internal nodes. For a balanced positioning of the boundary nodes, we
use boundary samples, also known as quadrature samples, which result from a
dense sampling of the boundary. For each boundary node, there have to be
about 10 boundary samples, or possibly more. To decide whether a point
lies inside the model, we use a control mesh, which is a mesh that accurately
represents the boundary. Lastly, there can be a mesh sizing function y ap-
plied, which indicates the (relative) desired density of the nodes both on
the boundary and in the interior. Next, we continue by describing the four
steps that the algorithm roughly consists of:

1. Initialise data structures, and construct the mesh sizing function.
2. Distribute the nodes.
3. Iteratively optimise the nodes.

4. Extract the mesh.

Initialise data structures, sizing function

At the start of the algorithm, supporting data structures are built and ini-
tialised. An efficient point location test is needed, both for the distribution
of nodes and for the extraction of the final mesh from the resulting Delaunay
mesh that covers the convex hull of the nodes. For the latter, we need to
decide for tetrahedrons whether they fall inside or outside the model bound-
ary. The control mesh is used for this, which is a constrained or conforming
Delaunay mesh of the input model, and it is constructed upfront. Also
during initialisation, the boundary samples are created and categorised into
sets corresponding to the edges or the faces they belong to. They can be
created as the nodes of a fine-sampled surface mesh.

Also, for the generation of a mesh with varying element size, alternatively
known as a graded mesh, a mesh sizing function y needs to be constructed.
For this we use an approximation of the local feature size (Ifs) constructed
with a procedure based on the work of Amenta and Bern [1999]. The lfs
captures the shortest distance of a point to the nearest geometric trait of the
model that the point itself is not a part of. Effectively, this means that the
desired element size depends on the local level of geometric detail. Other
measures, mostly similar in spirit, could also be used, such as [Quadros et al.,
2004] or [Persson, 2006]. VIM uses the mesh sizing function as a relative
measure, since it works with a fixed number of nodes. For the generation of
a uniform mesh, y would have to be set to 1 everywhere.

50 4. Variational tetrahedral meshing of mechanical models

Distribute nodes

The requested number of nodes is spread out in accordance with the sizing
function. This is done by iterating the cells of a grid that covers the bounding
box of the model. In a first iteration, for each cell that has its centre inside the
control mesh, a number determined by the sizing requirements is added to
a running total for all cells. Based on the resulting total, in a second iteration,
a fair proportion of the nodes are placed randomly inside the grid cells that
have their centre inside the model. The cells are traversed in serpentine
order, spilling over any non-integer number of nodes that are called for into
the next cell. For example, if 0.2 nodes are called for in a particular cell, then
no node is placed there, but the 0.2 is added to the number of nodes that,
in accordance with the sizing function, are called for in the next cell. After
this process, we end up with a cloud of nodes that covers approximately the
volume of the original model, with the node density varying relative to the
sizing function. Figure 4.2(a) shows an example of what the mesh is like at
this stage.

Iteratively optimise nodes

During the optimisation process, the nodes fall in two categories: boundary
nodes and interior nodes. Every node starts as an interior node, but can be-
come a boundary node when it is selected as such during the determination
and repositioning of the boundary nodes. Each iteration of the optimisation
loop starts with the identification and positioning of the boundary nodes.
After that, the rest of the nodes, deemed part of the interior set, is optimised.

So at the start of each iteration it is determined which nodes are part of the
boundary. These boundary nodes are then (re)positioned in accordance with
the sizing function, aiming for balanced node spacing on the boundary. This
is achieved by employing the boundary samples, generated at initialisation
time, by associating a quadrature value to each of them. These values
depend on the local value of the mesh sizing function. The samples will
have a connectivity defined between them, as they are generated as the
nodes of a fine-sampled surface mesh.

For each boundary sample, at position x, we locate its nearest node and
have the sample exert a virtual pull on that node proportional to the area
that the sample covers (ds) and consistent with the sizing function: ds/u*(x).
This value represents the weight of the pull, or quadrature value, of the
sample. The nodes that have at least one sample pulling on them, are now
considered part of the boundary set. They are moved to the average location
of the pulling samples, weighted by the quadrature values. The rest of the
nodes belongs to the interior.

4.1. Variational tetrahedral meshing 51

To ensure that nodes end up at the edges where a clear angular separation
between faces exists and at the corners, we treat their samples differently
from the surface samples. The quadrature value for samples on edges
is computed as dl/u3(x), with dl the length that the sample covers, and
to corner samples an infinite quadrature value is assigned, to ensure the
assignment of nodes there. The procedure starts with the regular surface
samples pulling in and repositioning nodes, then the edges, and finally the
corners are taken care of.

After dealing with the boundary, the Delaunay mesh is reconstructed as
nodes have moved. Then each interior node, i.e. each node x; that was not
selected as a boundary node, is moved according to the formula:

T:
1 #c]‘, with s; = Z lTkl .
Si TiQ) H (gj) Teq; P (8x)

new __
i =

(4.1)

Here (); denotes the one-ring of tetrahedrons that share node x;, |T;| denotes
the volume of tetrahedron T, c; is the circumcentre of tetrahedron T;, and
g; is the centroid of tetrahedron T;. The effect of this relocation is similar in
idea to the relocation of a node towards the centre of its Voronoi cell. Instead
of optimising the compactness of the Voronoi cell, this operation aims at
improving the compactness of the tetrahedrons in the one-ring around the
node. For a more detailed motivation we refer to [Alliez et al., 2005]. If the
new location would invalidate the Delaunay property of the mesh, then the
connectivity is changed to keep it a Delaunay mesh.

The optimisation loop alternates between these two phases of 1) de-
termining and repositioning the boundary nodes, and 2) optimising the
location of the interior nodes. Either a fixed number of iterations is per-
formed, or a condition on the evolution of the quality improvement is used.
Figures 4.2(b) and (c) show how the mesh of the nut model looks after 1 and
10 iterations, respectively.

Extract mesh

After the optimisation ends, the mesh representing the model has to be ex-
tracted from the resulting Delaunay triangulation, which covers the convex
hull of the nodes. As the model is usually not convex, it needs to be decided
which tetrahedrons contribute to the model, i.e. are inside, and which tetra-
hedrons fall outside the model. This process is called peeling, as it can be
envisioned as the one by one removal from the mesh of those tetrahedrons
that fall outside the real model boundary. It is worthwhile to ask why this
is possible in the first place. Normally, the Delaunay triangulation of a node
set of a model does not contain the complete boundary; some faces and

52 4. Variational tetrahedral meshing of mechanical models

edge
o edge sample
o sample near circumcenter
—
esescsscscsosses@ecosecose o) boundarynode
e encroaching node
—<—>» distance

seeeoeo o}

e<a

Figure 4.3: Encroaching of part of edge

edges have to be recovered. Why can we expect the model boundary to be
present in the triangulation after the optimisation procedure in VIM?

There are no theoretical guarantees that the boundary will be present,
but for denser sets of boundary samples, the chance of success increases;
see Figure 4.3. If a node encroaches upon the minimal circumsphere of
two nodes that currently represent part of a boundary edge, the node is
likely to be drawn to the boundary, since a sample near the centre of the
edge between the two nodes will most likely have the encroaching node
as its nearest node. Similarly for the surface area of the boundary, a node
that encroaches upon the minimal circumsphere of a triangle that needs to
represent part of the boundary;, is likely to be drawn to the boundary. This
effectively results in a mesh for which all boundary elements have empty
minimal circumspheres. With a higher number of boundary samples, the
likelihood that this ad hoc protection procedure works, increases. An edge
or face with its minimal circumsphere empty of other nodes is called Gabriel
and is guaranteed to be present in the Delaunay mesh [Matula and Sokal,
1980]. We expect that all edges from the model boundary can be (almost)
completely covered by Gabriel segments, and thus that the edges are found
in the Delaunay mesh. Segments that are not Gabriel, are not guaranteed to
be in the mesh, but it is still highly likely that they are. The reasoning holds
similarly for the presence of triangles that represent the faces of the model
boundary. The procedure might, however, fail near small angles. We will
come back to this in Sections 4.4 and 4.5.

With the expectation that an accurate representation of the boundary is
present, the final mesh can easily be extracted from the Delaunay mesh. The
procedure for mesh extraction that is followed in [Alliez et al., 2005] is quite
simple: a tetrahedron T; is definitely part of the model if its circumcentre
falls inside the control mesh. If the circumcentre falls outside the control
mesh, tetrahedron T; is still considered to represent part of the model if

d(C,‘ ’ aQ)

—= < 04. (4.2)
Ti

4.2. Enhancing VTM for meshing mechanical models 53

Here r; denotes the circumradius of tetrahedron T;, and d(c;, 9Q)) the dis-
tance of the centre of the circumsphere to the boundary. This causes tetra-
hedrons that have their circumcentre only just outside the control mesh,
relative to the size of the circumradius, to be considered as part of the model
as well.

4.2 Enhancing VTM for meshing mechanical models

The VIM algorithm has deficiencies when meshing for FEA. In particular,
the representation of the boundary and the extraction of the right mesh are
issues. The algorithm only aims at approximating the boundary, but for
mechanical models it is essential that the boundary is accurately represented
by the mesh. This means that all essential features, such as edges and corners,
should be present with the right position, shape and size. VIM often fails
in this respect.

Even assuming that the model boundary is accurately represented in the
mesh, the procedure for mesh extraction proposed in [Alliez et al., 2005]
does not consistently determine the correct boundary. Elements that should
be considered outside are classified to be inside and vice versa. This is
in particular clear near edges, where a failure to extract the right mesh
causes (part of) an edge to be missing or hidden behind excess elements.
See Figure 4.4(a), which shows excess elements near concave edges. These
elements can actually be removed (they do not lie partly inside the model),
but they are considered part of the model nonetheless. Figure 4.4(b) shows
an example where the same procedure has removed elements that are neces-
sary to accurately represent the model boundary. An acceptable boundary
was present in that case. Figure 4.4(c) shows the model corresponding to
this mesh from the side. The dark face on the right is the face in view in
Figure 4.4(b).

Also, there can be sliver-like elements left flat on the boundary. These are
not true slivers in the sense that not all of them have six similar edge lengths,
but they are extremely flat, so on this basis we call them slivers as well.
This happens in particular in concave areas, as can be seen in Figure 4.5(a)
and its zoom-in in Figure 4.5(b). The blue sphere is the circumsphere of
the selected tetrahedron. All four corner nodes are in view. The only edge
that is not visible runs at the back between the bottom and top node. In
addition, when working with a robust Delaunay implementation, slivers can
easily arise in flat faces if not all vertices lie exactly in the same plane. This
is rarely a problem when following the procedure we described earlier to
extract the mesh; however, when using alternative criteria in the procedure
for mesh extraction, such as the ones we propose further on, results such as

54 4. Variational tetrahedral meshing of mechanical models

(@) Excess elements along edges in con-
cave areas

(b) Missing elements near small dihedral (c) Object in (b)
angle from the side

Figure 4.4: Failing mesh extraction

4.2. Enhancing VTM for meshing mechanical models 55

(a) Sliver in concave area (b) Zoom-in of (a)

(c) Slivers on top of a nearly flat face

Figure 4.5: Slivers on the boundary

in Figure 4.5(c) can arise. Here a handful of very flat tetrahedrons lie on top
of each other and on top of quality tetrahedrons. We should be careful to
avoid including these tetrahedrons in the extracted mesh.

Another problem is that an acceptable representation of the boundary
of the model is not always present in the Delaunay mesh that results from
the optimisation step. One can end up with elements that cross the bound-
ary, such as illustrated in Figure 4.6. Figure 4.6(a) shows the boundary of
the extracted mesh; in Figure 4.6(b) some adjacent tetrahedrons have been
removed from the view. The selected tetrahedron has one vertex in the
interior of the mesh and three on the boundary, but not all on the same
boundary face. One of its faces is outside the boundary, one is inside, and the

56 4. Variational tetrahedral meshing of mechanical models

s .
S
<R

=

15
Mﬂ)« A&.

(@) Selected element crossing the boundary (b) Selected element free from surrounding
elements

Figure 4.6: Elements crossing the boundary

remaining two cross the boundary. This was not a problem for the original
VTM algorithm, since is was primarily intended for meshing models for
which an approximate boundary is acceptable. However, a better boundary
representation is required for the analysis of mechanical models.

The problems mentioned can, to a large extent, be eliminated. We will
first discuss, in Section 4.3, the presence of an accurate representation of the
boundary in the mesh and describe some enhancements to the algorithm
that aim to enforce such a representation. Thereafter, in Section 4.4, we will
discuss an alternative approach to mesh extraction that performs better at
extracting the intended mesh.

4.3 Constructing the boundary

As indicated in the previous section, we should take precautions to prevent
ending up after the optimisation step with a Delaunay triangulation from
which the boundary cannot be recovered. This problem can mostly be
avoided by making a good choice upfront for the number of boundary
samples and the number of nodes. During the optimisation step, we pay
close attention to signs that indicate a potential problem. In such a case, we
can apply node splitting. Finally, after the optimisation loop, we make sure
that the mesh is suitably prepared for the extraction procedure. We discuss
each of these four aspects individually.

4.3. Constructing the boundary 57

Figure 4.7: Quadrature samples on the boundary of the region shown in Fig-
ure 4.6

Number of boundary samples

We discussed in Section 4.1 the procedure that aims to protect the boundary
by pulling a node towards the boundary if it encroaches upon the minimal
circumsphere of a boundary element. With sufficient boundary samples,
practically every boundary edge and face will consist of elements with an
empty minimal circumsphere. The problem in Figure 4.6 is indeed caused
by a lack of boundary samples. Figure 4.7 shows a mesh of the boundary
samples for the model; the outline of the boundary face that should have
been present to avoid the problem is included in yellow. For the selected
tetrahedron in Figure 4.6(a), the corner node in the interior of the mesh is
inside the minimal circumsphere of the missing face. If there would have
been a boundary sample close enough to the centroid of the missing face,
then the interior node would have been pulled to the boundary, effectively
emptying the minimal circumsphere of the missing triangle, and increasing
the density of the nodes on the boundary relative to those in the interior.
An accurate representation of the boundary through a triangulation of the
boundary nodes, has smaller minimal circumspheres, which are less likely
to be encroached by interior nodes.

In our experience, applying this protection procedure with roughly 10
boundary samples locally available around each node on the boundary,
makes the occurrence of an element crossing the boundary extremely rare.
We remind the reader that an empty minimal circumsphere of a boundary
face is a stronger restriction than necessary for it to appear in the Delaunay
triangulation. Thus even if an encroaching node fails to be pulled to the
boundary to guarantee protection, the boundary can still be present in the
Delaunay triangulation. This is even likely if the number of samples is high.

58 4. Variational tetrahedral meshing of mechanical models

However, some models are inherently difficult to mesh with a conforming
Delaunay triangulation, mostly due to small dihedral angles. The risk of
boundary encroachment near such an angle cannot be completely eliminated
by our heuristics. Failure to correctly represent the boundary should be
detected during or after the mesh extraction.

Number of nodes

The boundary protection procedure works by locally making the density of
the nodes on the boundary slightly higher than in the interior. This proce-
dure can only work if there are enough nodes in the area. The other factor of
importance for an accurate representation of the boundary is thus the num-
ber of nodes relative to the complexity of the geometry. A certain number
of nodes is necessary to be able to capture the boundary. Even constrained
Delaunay triangulations can need extra nodes (Steiner nodes) just to be able
to construct a triangulation in the first place, without any consideration
of quality (see Section 3.2). The number of nodes obviously depends on
the complexity of the boundary, with a more complex boundary calling for
more nodes. The number of nodes used in a constrained triangulation, such
as produced by TetGen [Si, 2006], is of course the bare minimum. As we
build a conforming, instead of a constrained, triangulation and we strive for
quality elements, we need many more nodes. The required number depends
on the local feature size. The average edge length in the triangulation cannot
be longer than the Ifs in a successful capture of the boundary. Since we
need some flexibility, the number of nodes should be such that the average
edge length is smaller than the Ifs by at least a factor two. As we want all
corners to be represented by the mesh, we add all corner samples explicitly
to the mesh as nodes, and we effectively ignore them during the boundary
procedure.

Node splitting

Since we are working with heuristics, the use of a reasonable number of
nodes at the start is still no guarantee that locally always the right number
of nodes is available for capturing the boundary accurately. We can, how-
ever, during the boundary phase of the optimisation loop detect symptoms
of failure to represent the boundary. As we have detailed already, each
boundary node is normally pulled upon by multiple boundary samples.
This helps to balance their spatial distribution on the edges and the faces of
the model. However, nodes should only be balanced within a single face
or edge. Whenever a node is pulled on by boundary samples belonging to
multiple edges or multiple faces, the node will end up hanging between

4.3. Constructing the boundary 59

ecccccso@oesesyocooonecsseecccce [IXXTRRRYY TERYR (XXX RY TR NS

cocee@esseenococcbecee@esscccsce cecee@ecccce eecoc@escccscce

@ (b)

boundary edge
ecccccso@Pocosecse@occocscocccce

» boundary edge sample
o sample near 'hanging' node
boundary node

eccee@esctoco@occtece@eccccccce

® new node due to split

(c)

Figure 4.8: Split example

the two, and thus contribute nothing to the representation of the boundary.
Categorising all the boundary samples into sets that belong to the same
edge or face, we can count the number of sets that are pulling on a specific
node. If more than one set is pulling on the node, this indicates that there
are locally too few nodes to represent the boundary such that we can be
reasonably sure that it can be recovered from a Delaunay triangulation.

If this is the case, we can add a second node right next to that node,
effectively splitting it, leaving one node for one edge or face, and one for the
other. This process is illustrated in Figure 4.8. We see in Figure 4.8(a) a node
that is pulled on by samples of two different edges, in (b) the node split; the
new node is placed randomly at a small distance from the original node,
and in (c) the final situation wherein each node is only pulled on by samples
from a single set of edge samples and thus balanced within that edge. In
order to carry out this procedure, we must have categorised all samples
according to their edge or face of origin. It takes a couple of iterations to
reposition the nodes in the vicinity of the split. That is why we split nodes
only at certain iterations of the optimisation loop, and always continue after
this with a couple of iterations in which no splits are performed.

The effectiveness of the approach is illustrated by Figure 4.9. Figure 4.9(a)
shows the model that was used as input, and Figure 4.9(b) shows the result-

60 4. Variational tetrahedral meshing of mechanical models

(@ Input model

(b) Mesh with 703 nodes without node (c) Mesh started from 54 corner nodes
splitting and 1 regular node in the interior with
node splitting

Figure 4.9: Node splitting for model based on the ANC101 model

ing mesh when no node splitting is employed. This mesh has 703 nodes.
The mesh in Figure 4.9(c) also has 703 nodes, but it was started with just
55 nodes (54 corner nodes and 1 regular node in the interior). Through
subsequent node splits, due to the pulling of edge samples from multiple
sets, the number of nodes was increased to 703. After reaching this number
of nodes, no more splits were called for. These nodes all lie on the boundary.
The mesh consists of 1858 tetrahedrons. Comparing Figure 4.9(b) and Fig-
ure 4.9(c) it is clear that the node splitting considerably improves the quality
of the representation of the boundary.

This example stresses the effectiveness of the splitting procedure, but
we do not recommend the construction of meshes with the use of rela-
tively many splits. A small number of splits is acceptable and can further
strenghten the likelihood of a successful recovery of the boundary, but a

4.3. Constructing the boundary 61

Figure 4.10: Boundary node not on boundary

large number of splits should be interpreted as an indication that we might
have distributed too few nodes, or that the geometry poses difficulties in
the creation of a conforming Delaunay triangulation. We therefore only
split nodes hanging between edge samples from different sets, as splitting
nodes on their proximity to different surfaces rarely leads to just a few splits.
It turns out that a small fraction of the nodes can be closest to boundary
samples from two different surfaces, without leading to any problems.

Preparation for mesh extraction

Before starting with the actual mesh extraction, which will be described in
the next section, we want to be sure that all boundary nodes actually lie on
the boundary of the control mesh. The boundary nodes are those nodes
that were identified as such during the last iteration of the optimisation
loop, which means that they were the closest node to at least one of the
boundary samples. Given that we split a node if samples from multiple
edges are pulling on it, and that edge samples are handled after the surface
samples, all nodes that are attracted by an edge actually end up on that edge.
Since we do not split nodes pulled on by samples from multiple surfaces, it
might occasionally happen that a node is caught between two surfaces. An
example of such a node is illustrated in Figure 4.10. The node in the centre
of the ‘dent’ is a boundary node. Two relatively flat tetrahedrons cover it,
but they have been removed for the illustration. This node is being pulled
on by a boundary sample from both the horizontal and the vertical face. The
edge samples all had other nodes closer. If the covering tetrahedrons are
not removed, this particular example does not yield a wrong mesh, but it
does affect our reasoning about the mesh extraction, where we expect all
boundary nodes to actually lie on the boundary of the control mesh.
Therefore we project all boundary nodes onto the boundary of the control

62 4. Variational tetrahedral meshing of mechanical models

mesh, before starting the mesh extraction. For all nodes lying in flat faces,
the projection distance will be zero or negligible. Boundary nodes caught
between faces, as in Figure 4.10, will have a larger projection distance. In
our experiments, we noticed no problems related to this kind of projection.
In particular if the number of such nodes is large, we could alternatively
decide to project only if the projection distance is small; if a node is not close
enough to the boundary, we change its status from a boundary node to an
interior node.

This projection of boundary nodes to the boundary of the control mesh,
also affects another set of nodes, namely those in curved faces. Since each
node is placed where it is being pulled to at average, it will not always
be placed exactly on the boundary of the control mesh. In concave areas,
the node will be located slightly outside the boundary of the control mesh,
whereas in convex areas the node will be located slightly to the inside of
the boundary of the control mesh. The deviation, and thus the projection
distance, depends on the local number of nodes that is used, relative to the
local curvature.

If necessary, after projection the mesh connectivity will be updated to
maintain the Delaunay property.

4.4 Enhanced mesh extraction

In the previous section we have discussed how to increase the likelihood that
a correct boundary is present in the Delaunay mesh. Now we will discuss
the enhanced mesh extraction procedure.

As we have seen in Section 4.2, the original mesh extraction procedure
does not always yield correct results. Leaning on the knowledge that all
boundary nodes actually lie on the boundary, our adapted version of the
decision procedure is as follows:

1. All tetrahedrons are assumed to be inside at the start. On inspection
we can decide to remove one.

2. All tetrahedrons that have at least one interior node as one of its four
nodes are inside, and therefore will never be removed. We thus only
consider removing those tetrahedrons that have four boundary nodes.

3. If the centroid of a tetrahedron that has four boundary nodes falls
outside the control mesh, then the tetrahedron is directly considered
outside.

4. The only tetrahedrons we are left with, are those that have four bound-
ary nodes and the centroid inside the control mesh. Assuming that a

4.4. Enhanced mesh extraction 63

correct boundary is present, we must conclude that these tetrahedrons
are inside; a tetrahedron that has its centroid inside the mesh is either
completely inside or it intersects the boundary. Only if a tetrahedron
has a volume-length ratio smaller than 10~1, we add it to a list to be
considered for a clean-up peeling.

5. In the clean-up peeling, we want to remove very flat tetrahedrons that
might lie on the boundary and can be removed without negatively
affecting the quality of the boundary representation. We try to re-
move the tetrahedrons iteratively, by inspecting for removal only those
tetrahedrons that are currently considered on the boundary. If such
a tetrahedron has two or more faces on the current boundary, it is
removed. If it has only one face on the current boundary, it is only
removed if its volume-length ratio is smaller than 10~%. This process
is continued until no more tetrahedrons can be removed.

The thresholds of 10~! and 10~ for the volume-length ratio are chosen
based on our experience. They might not be optimal to clean-up the flat
tetrahedrons of every mesh. Lower values of these parameters indicate a
more conservative approach. This procedure is justified as follows.

We know that all boundary nodes actually lie on the boundary of the
control mesh and the remaining nodes in the interior. All tetrahedrons that
have at least one interior node must obviously be inside.

For the remaining tetrahedrons, with four boundary nodes, the decision
is firstly based on the location of the centroid of the tetrahedron. We con-
sider two cases: a convex area and a concave area. In a convex area, if the
centroid of such a tetrahedron is inside, the tetrahedron must be inside. In
a concave area, if the centroid is outside, the tetrahedron must be outside.
See Figure 4.11 for an illustration in 2D near a convex part of the boundary.
The grey triangle elements are considered inside, because their centroid
is inside the control mesh (marked in red). The concave case is identical,
except for the reversed orientation of the boundary. In that case, the grey
triangle elements are considered outside, because their centroid is outside
the control mesh. This reasoning holds as long as the number of nodes is
not larger than the number of samples from the control mesh, a requirement
that is of course met.

In strictly flat areas there should be no elements formed between four
boundary nodes. However, because of finite precision arithmetic, such
elements sometimes do appear, such as depicted in Figure 4.5(c). This is
the kind of element that we aim to remove during the clean-up peeling,
together with very flat tetrahedrons in convex areas. The elements inside a
convex area that have only boundary nodes tend to be flat. If they are very

64 4. Variational tetrahedral meshing of mechanical models

— boundary of control mesh
e boundary sample
5 e boundary node

o] £\ triangle element with centroid

Figure 4.11: Triangles and their centroids near a convex part of the boundary

flat, it is better to remove them. In case the flat element does not lie on the
boundary, we could attempt to remove it by inserting the circumcentre of
the tetrahedron as an interior node of the mesh.

Figure 4.12 shows the meshes of the models that were not recovered well
with the original extraction procedure, as they are extracted by the procedure
just described. Figure 4.12(a) and (b) correspond to Figure 4.4(a) and (b), re-
spectively. Figure 4.12(c) shows the mesh of the model of Figure 4.4(c) from
the curved backside. Exactly the same triangulations were used for compar-
ing the effectiveness of the recovery. The described procedure handles the
extraction of these meshes correctly.

Despite the methods described in Section 4.3 to achieve this, there is
still no guarantee that the correct boundary is present in a mesh. We can
try to detect this after the extraction procedure. A simple way to do this
is to traverse all the boundary faces of the mesh after the extraction, and
compare the normal at the centroid of each face with the normal of the
control mesh for the projection of the centroid to the boundary of the control
mesh. If the deviation between the normals supersedes a certain threshold,
depending on the problem at hand, a problem with the boundary is likely.
A relatively large distance between the centroid of a face on the boundary
and its projection to the boundary of the control mesh is also an indication
of a potential problem. We have not investigated the robustness of using
these two measures to detect problems with the boundary recovery, but
given that the correct representation of boundaries is currently much less of
an issue than in the past, we feel that this is a surmountable problem. Most
of these cases can be solved by the insertion of a single extra node.

4.5 Practical considerations

Various aspects influence the effectiveness of the enhanced VIM method
and the quality of the resulting elements. We discuss the most prominent
considerations for applying the method.

As explained in Section 4.2, having more boundary samples, relative
to the number of nodes, increases the likelihood that the boundary is well

4.5. Practical considerations 65

(@) Near edges in concave areas

(b) Near small dihedral angle; front (c) Near small dihedral angle; curved
backside

Figure 4.12: Successful boundary recovery

represented by the mesh. With 10 samples locally around each node, prob-
lems with the boundary are rare in our experience. In case of a uniform
sizing function, this amounts to 10 times as many samples as the number
of nodes that end up on the boundary. If mesh sizing is employed, either
the density of the samples needs to follow the sizing function, or the ratio
between the number of samples and number of boundary nodes needs to
be higher. For models with a simple geometry, less boundary samples can
suffice. Concave regions usually require a higher number of samples with
respect to the number of nodes than convex regions.

Since the final mesh is a Delaunay triangulation that approximately
conforms to the boundary of the control mesh, it is a requirement that

66 4. Variational tetrahedral meshing of mechanical models

the model admits a conforming Delaunay triangulation with a reasonable
number of nodes. Models that require many nodes for their conforming
Delaunay triangulation, will be hard to mesh with VIM, or require at least
as many nodes, possibly more than is acceptable for the analysis. Sharp
dihedral angles and thin slits are the most common causes of a failure to
represent the boundary or of a prohibitive number of nodes.

Most realistic and useful mechanical models do not exhibit geometric
features that prevent the successful construction of a good quality conform-
ing Delaunay mesh. All these models can be meshed with excellent quality
elements by application of the presented approach. The optimisation of ele-
ment quality is for a substantial part effectuated by the relocation of interior
nodes. Therefore the method is most suitable for creating meshes that have
a substantial number of nodes in the interior or, more generally, many nodes
relative to the complexity of the geometry.

The method optimises the elements for quality. However, we have made
no attempt to specifically optimise the quality of the worst elements. The
elements with the worst quality make up only a small percentage of all
tetrahedrons, and most of them have more than one node on the boundary.
By means of simple flipping operations, which transform a set of tetrahe-
drons into a different set by rearranging the internal faces of the initial set,
we can increase the volume-length ratio of the worst elements in the mesh
substantially. In our experiments, we always succeeded to get it above 0.1,
but higher values, depending on the complexity of the geometry, are not
uncommon. If desired, the quality can be further improved by applying
aggressive tetrahedral mesh improvement [Klingner and Shewchuk, 2007].
Since the number of poor quality tetrahedrons is low, we expect that large
improvements to the lower bound of the quality can be achieved in a short
time.

4.6 Examples

To test the validity of our enhancements to the VITM algorithm, we have
meshed many models. We show some results here. Figure 4.13 shows the
mesh of a gear model and Figure 4.14 its mesh quality. The mesh has 20179
nodes and 77027 tetrahedrons, and a sizing function was used for its con-
struction. Figure 4.14(a) shows the distribution of the volume-length ratio
for all tetrahedrons, and Figure 4.14(b) the distribution of the minimum and
the maximum dihedral angle for all tetrahedrons. The regular tetrahedron
has a dihedral angle of approximately 70.53 © between all faces. Both small
(close to 0 °) and large (close to 180 °) angles are detrimental to the quality of
the analysis. From both graphs we gather that the majority of the elements

4.6. Examples 67

Figure 4.13: Gear example. Left: exterior mesh, right: slice exposing interior
mesh.

3000 T — T —— T T
4500 I ; min. dihedral angle =
el Il max. dihedral angle

4000 | 2500

w
1

r 2000

w
S
il

N
"

1500

N
1=}

il
tetrahedra

1 1000

tetrahedrons

1500

1000| 1 500 .
il ’
ceerr T i 0 = = [’
[— 0. 0. 0. 1.0 0 20 40 60 8 100 120 140 160 180
volume-length ratio dihedral angle
(@) Volume-length ratio (b) Minimum and maximum dihedral angle

Figure 4.14: Quality of gear mesh

has a shape close to that of a regular tetrahedron. The model boundary is
correctly represented.

Figures 4.15 and 4.16 show two more examples, both created with a
uniform sizing function. Both models have a boundary with several curved
areas. The mesh of the construction piece in Figure 4.15 has a relatively
large volume with many interior nodes, whereas the mesh of the tube in
Figure 4.16 has virtually no interior nodes. The quality distribution of both
these meshes is similar to that of the gear, with the one of the tube being
slightly worse as it has few interior nodes. The large majority of the elements,
however, is excellent and the boundary is correctly represented.

68

4. Variational tetrahedral meshing of mechanical models

Figure 4.15: Mesh of a construction piece

AT,

LT
PN
R
J"ggﬁqg

(@) Side view (b) Bottom view

Figure 4.16: Mesh of a tube

4.7. Conclusions 69

4.7 Conclusions

Our findings are supported by an implementation of the described algo-
rithm in C++. The program takes a finely triangulated model boundary as
input, supports mesh sizing, and is controlled by several parameters such
as the approximate number of nodes and the number of iterations in the
optimisation loop.

With variational tetrahedral meshing, high quality meshes can be gen-
erated. This is achieved through an optimisation procedure that makes
changes to both the boundary and the interior nodes, alternating between
the two. The method as proposed originally has deficiencies that make
it unsuitable for the generation of meshes of mechanical models for finite
element analysis. This is mainly due to the boundary being represented
incorrectly by the mesh. We have presented several enhancements to over-
come the deficiencies. With these enhancements, variational tetrahedral
meshing becomes an attractive method to create good quality tetrahedral
meshes of mechanical models.

Some models, however, remain difficult to handle with this method.
Since the resulting mesh is an approximate conforming Delaunay mesh of
the control mesh, many elements can be needed to correctly represent areas
where different parts of the boundary are close together. A constrained
Delaunay mesh would use less elements in such cases. If a dihedral angle is
too small, in particular in a concave region of the model, then we get either a
cascade of node splits, or the boundary is likely to be incorrectly represented
somewhere near the edge of the dihedral angle.

The enhancements to VIM come at some computational cost, but the
running time of the new algorithm is still of the same order as that of the
original algorithm; both are dominated by the cost of continuously updating
the Delaunay triangulation, which scales very well. The exact running time
depends on many factors. The most important ones are the numbers of
nodes, boundary samples and iterations of optimisation. Using a sizing
function can increase the setup-time substantially. During the first couple
of iterations, the overall quality of the mesh increases quickly, and then
the improvements become smaller. Whether extra iterations are worth
the time is thus a highly subjective matter. Most of the models we tested,
with 20 iterations and at least 5000 nodes, could be meshed in a matter
of minutes, with none taking more than an hour. In our view, the higher
computational cost will not be prohibitive for most models in practice, since
better meshes will often lower the time spent on analysis. The method has
element quality as its principal objective, and this comes at the cost of a
higher running time. We are not aware of any meshing method that achieves

70 4. Variational tetrahedral meshing of mechanical models

the quality distribution that VIM offers, certainly not with significantly less
computational effort.

The importance of high quality meshes for analysis is evidenced by
the attention that this topic has been receiving in the meshing community
for many years now, but is also supported by theory [Shewchuk, 2002b].
We have not verified the claimed benefits through performance of actual
analyses. Such a verification would be a substantial and complicated task,
as there are many factors involved, such as the geometry of the domain, the
particular physical problem, and the choice of parameters controlling mesh
generation. Moreover, it would be necessary to compare meshes generated
by different meshing methods, which inevitably is subjective as it highly
depends on the choice of methods to compare against. Also, the control over
the mesh generation process can differ strongly between methods, e.g. some
methods have virtually no control over the number of elements. Lastly, the
relative likelihood of a breakdown of the analysis due to the mesh is of clear
importance, but is difficult to establish. Performing such a rigid comparison
would certainly be useful, but falls outside the scope of our work.

We now continue in the next chapter with a discussion of the difference
between two feature models, and present a method for giving a precise
description of this difference. Based on this description, we aim to adapt
and further extend the meshing procedure that we have just described, such
that it can partially reuse the mesh from the previous design iteration, for
the creation of a new mesh.

Acknowledgements

For the implementation, CGAL [CGAL Editorial Board, 2006] and TetGen [Si,
2006] have been used. CGAL was mainly used for its robust geometric pred-
icates and Delaunay triangulation. TetGen was used to create the control
mesh. The meshes of the gear (Figure 4.13), the construction piece (Fig-
ure 4.15 and the tube (Figure 4.16) were based on example models included
with HOOPS [Tech Soft 3D, 2006].

Chapter 5

The feature difference

We humans are fairly good at identifying patterns, certainly in comparison
with computer algorithms. When given two related models, a human can
quickly identify similar parts within the two models, in spite of differences
in size, position, or even shape characteristics of these parts. See, for ex-
ample, the two related models in Figure 5.1; we automatically assume a
correspondence between each of the four cylindrical pockets and the holes
in their interior, even though the dimensions and positions are different.
Although humans do have a talent for this kind of identification, they
easily make errors, and they have difficulty with keeping track of everything
for larger and more complex models. With our aim of remeshing analysis
models in mind, we need to find similarities and differences between mod-
els. However, given the mentioned shortcomings of humans, and our goal
of improving the efficiency of the product development cycle, requiring
additional human input for this task of relating the geometry between two
models, seems out of the question. We thus require an automated approach

(a) (b)

Figure 5.1: Two related models

71

72 5. The feature difference

for finding the similarities and differences between two analysis models. In
this chapter, we describe such an automated method, which additionally is
geometrically precise. We call the resulting output the difference model.

We begin the chapter, in Section 5.1, with some background and moti-
vation on which the ideas of the difference model are founded. After that,
in Section 5.2, follows a discussion of the properties of the feature model
assumed in this work. Then, in Section 5.3, we explain what we mean by
the geometric difference in terms of features. In Section 5.4 we discuss the
representation of the difference and the outline of a method to construct
such a representation. We end with conclusions in Section 5.5.

The larger part of this chapter has already been published in [Sypkens
Smit and Bronsvoort, 2007], and some other parts in [Sypkens Smit and
Bronsvoort, 2009a].

5.1 Background

Feature modelling, as we have discussed in Chapter 2, is nowadays the
prevalent approach to product modelling. Any system that, through shapes
that compose the geometry, adds more information than geometry to the
model, can be considered a feature modeller. Some examples of data com-
monly attached to the model through features are design intent, properties
of the material, and machining data. Our effort to describe or quantify the
differences between two models, will assume that they are feature models,
and that we have access to the underlying data structures.

A straightforward way to find the difference between two geometric
shapes is with a boolean (symmetric) difference operation. This operation
only takes the BReps of the models into account. Features, however, can
describe more than just the geometry of the boundary. They can also overlap
and interact in regions internal to the volume bounded by a BRep. Therefore
the boolean difference is not powerful enough to handle feature models
in a more general way than just in terms of the geometry of their BRep.
Furthermore, when considering the geometric difference of two models with
a single boolean difference, the result does not properly capture differences
and similarities as we intuitively perceive it: we can regard an individual,
translated feature as identical in two models, as illustrated by Figure 5.1,
whereas the global boolean difference will result in both the disappearance
and creation of new geometry.

Recently there has been a lot of interest to identify geometric similarity
between models for 3D shape retrieval [Regli and Spagnuolo, 2006; Tangelder
and Veltkamp, 2008]. Methods for this roughly aim to identify geometric
characteristics and their relations, and compare the resulting shape signatures

5.1. Background 73

(@) Original model (b) Modified model: four holes added

Figure 5.2: Model modification

of the models to assess similarity. They often succeed in yielding a result
that connects more closely to our intuition of similarity. However, typically
the result of a similarity analysis does not result in a map that relates specific
parts of the geometry directly between the models. The methods that are
based on an explicit break-down of the geometry, such as the ones presented
in [Biasotti et al., 2006] and [Bespalov et al., 2006], do help to relate specific
parts or regions between models, but in general the relation does not allow
for a one-to-one mapping between geometric elements. Moreover, their
conception of a feature is purely geometric, with little correspondence to
the broader feature concept that attaches meaning or knowledge to parts of
the model.

To better understand why these solutions do not satisfy our requirements
for our purpose of remeshing, we take a look at these requirements by
means of a concrete example. For the remesh procedure, a description is
needed of the difference between two models, such as those in Figure 5.2.
The model that was made first is being referred to as the original model.
When the original model has been adapted, the resulting model is being
referred to as the modified model. Our goal is to determine for each part of
the geometry of the modified model, both of BRep elements and the volume,
whether it relates to some part of the geometry of the previous model or
not. Those parts that can be related might carry the same mesh, whereas
for the remaining geometry new mesh elements have to be constructed. Of
course, if we reuse a mesh subset for a part of the geometry of the model,
it must be connected to other subsets of the mesh, either also reused or
newly constructed. We must take specific care that the mesh quality in those
regions is on par with the overall quality.

The analysis mesh conforms to the geometry of the model, which in turn

74 5. The feature difference

depends on the features. Changes in the geometry result from manipula-
tion of features. The mesh thus depends indirectly on the geometry of the
features.

If, after a model modification, the geometry of a feature that adds ma-
terial, including its interactions with other features, has not changed, then
the mesh corresponding to that feature does not need to change either, and
can thus be reused in the mesh for the modified model. See, for example,
Figure 5.3, which shows the meshes of two variants of a model with a base
block feature and a rib feature, including two cylindrical protrusions, on
top: the mesh section of the rib feature on top could be identical in both
meshes, as the geometry of this feature is identical in both models. The
geometry of the base block, on the other hand, is subtly different between
the two models, as its top surface connects in different locations to the rib
feature on top (see Figures 5.3 and 5.4). Therefore the mesh corresponding
to the base block feature cannot be identical for both models. However, as
the difference is subtle, the meshes could for the larger part still be the same.
For this we need a description of how the geometry of the base blocks differs
between the two models.

If we know for each feature whether its geometry has remained the
same, or, alternatively, how it is different from its original geometry, we have
enough information to reuse subsets of the original mesh in the mesh for
the modified model. All details of the remeshing procedure are discussed
in Chapter 6. We proceed here with the description of how the geometry of
a feature relates between two models. This description can be constructed
for any feature of the two models, and is called its feature difference.

We describe the feature difference in a general fashion. Although the
ideas were conceived based on our motivation of remeshing, we present it as
a general concept that holds for all feature models in which the features have
a clearly defined geometry. Also, the meaning of the features, or any other
attached concept, can be taken into account for the resulting difference. This
description is geometrically precise, and enables the mapping of similar
feature geometry between two models. It might also be of use to other
applications than remeshing that need to map data that is attached or related
to features between models.

5.2 The feature model

We have already given an introduction to feature modelling in Section 2.2.
There we discussed how a feature model connects closely with how the user
intuitively sees an object as a combination of shape aspects. We now discuss
it from a more technical point of view, and specify properties of the feature

5.2. The feature model

@ Original model: (b) Mesh of original model
base block with a rib
feature on top

() Modified model: (d) Mesh of modified
base block with rib model
feature translated

Figure 5.3: Original and modified model and their meshes

(@ Geometry of base (b) Geometry of base
block in original model block in modified
model

Figure 5.4: Subtle difference in geometry of base block

75

76 5. The feature difference

model assumed here.

In feature modelling in general, the geometry of a feature is parametrised.
The parameter values can be given explicitly by the designer or be derived
from constraints on the model. For a specific model instantiation, all the val-
ues of feature parameters have to be known, together with a set of relations
that uniquely defines the relative positioning of the features. Additionally,
we discern whether a feature is additive or subtractive, indicating respectively
that it adds material to the model, or that material is absent. This, however,
is not enough for a complete description of the model. There also needs to be
some information, either implicit or explicit, on how to resolve overlapping
features. In the case of features that define the model geometry: if two
features of additive and subtractive nature overlap, it needs to be resolved
what the result in the overlapping areas is. A common solution is that the
most recently added or modified feature determines the interpretation of
the interaction domain. A variation, applied in semantic feature modelling,
is the use of a feature dependency graph, whereby dependent features de-
termine the interpretation when interacting with the features on which they
depend [Bidarra and Bronsvoort, 2000]. Neither of these solutions works for
all possible cases [van der Meiden and Bronsvoort, 2007]. For our work, it
is not relevant how exactly the interactions are resolved, so we just assume
that there is a method that takes care of this.

The problem of interpreting interacting features extends beyond the
case of additive and subtractive nature, to interacting feature aspects in
general. An artificial example would be a feature with a ‘colour attribute’,
which gives both the boundary and the volume a colour value. This is not a
simple boolean value, like in the case of nature. In areas where features of
different colour overlap, it must be resolved which colour, possibly a ‘mix’,
is assigned. The need for interaction resolution is common to all entities,
including edges and vertices. In some cases, such as distilling the BRep from
a set of interacting features, the contribution of lower dimensional entities
depends trivially on the volumetric contributions, i.e. only entities that
are adjacent to volumetric contributions of different nature, are part of the
BRep. It cannot be assumed though that a trivial solution for resolving the
interpretation for entities of lower dimensions applies to feature interaction
in general.

Various types of representation are used for feature models. The BRep is
a straightforward choice, but it has deficiencies in the context of advanced
feature models that need to store information on the overlap of features
or, more in general, that need to maintain feature semantics [Bidarra and
Bronsvoort, 2000]. The cellular model seems to be a more suitable repre-
sentation in this context [Bidarra et al., 1998]. We therefore use the cellular

5.2. The feature model 77

slot 1, slot 2

Figure 5.5: Example of a cellular model

model for the representation of the feature models.

The cellular model captures all interactions of features, including inter-
actions that do not affect the geometry of the boundary of the model. It is a
non-manifold geometric representation of a feature model. For a model that
consists of a single volume, its cellular model is a connected set of quasi-
disjoint cells such that the geometry of each feature is represented by a set
of cells. The subdivision into cells is determined by the property that no
two cells can overlap volumetrically. Whenever two features overlap, their
geometry is split into cells such that each cell either completely describes
an overlapping region or the volume covered by the cell is exclusive to a
single feature. A feature that covers a cell, is said to own that cell. Each cell is
owned by at least one feature; where features overlap, the cell has multiple
owners. The cells that contribute material to the model are said to have
additive nature, whereas the other cells have subtractive nature. Figure 5.5
shows a simple cellular model. In this figure, there are three features: a base
block, and two slots. For each cell with subtractive nature, it is indicated
which feature(s) own(s) it.

Each face in the cellular model delimits either two adjacent cells, or a
cell and the outside of the model. For each face we can thus discern two
sides or cell faces. Each cell can be described in terms of its set of cell faces.
This is the basic cellular model. The model can be extended such that its
edges and vertices can also be accessed as entities belonging to a particular
cell. In that case, however, we obviously cannot use the concept of ‘sides’,
since the number of cells that can share an edge or vertex is not fixed.

For each cell, cell face, and optionally cell edge and cell vertex, it is
recorded in an ownerlist which features own that entity, i.e. to which features
it belongs. This is essential for manipulation of and reasoning with the
features. The meaning or interpretation of each entity is also stored. In

78 5. The feature difference

the simplest case, considered here, this is the nature of the entity, which
effectively indicates for 3D cells whether the volume lies inside or outside the
model. The concept of nature can be extended to lower dimensional entities,
where it indicates whether the entities are part of the model boundary. We
refer to such entities that are part of the model boundary as entities with
boundary nature, and to those entities that are not part of the model boundary,
as having non-boundary nature. The cellular model can be built and modified
by the addition and removal of individual features, and supports a range of
methods for querying the ownership and interpretation of entities and their
relation to other entities in the model. To keep track of the cell geometry,
and ownership, we partly rely on the cellular topology component of ACIS
[Spatial Corporation, 2006]. A thorough description and discussion of the
cellular model can be found in [Bidarra et al., 1998].

In the sequel of the chapter, we thus assume that the feature models under
consideration are represented by a cellular model. Our representation of
the difference between two feature models relies on a structure resembling
a cellular model.

For our work it is additionally important that the models are complete
feature models. This means that a model is completely determined by the
aggregation of features, and that each feature has its individual geometry ex-
plictly defined, instead of implicitly defined based on possibly non-persistent
BRep entities pertaining to other features. Blends in current commercial
systems, for instance, are not implemented as features with a geometric
definition of their own, but rather are BRep modifying features [Nyirenda
etal., 2007]. We, however, need to track the geometry of each feature and how
it evolves between models. If a feature that has a blend attached, is moved
together with the blend to a different location in the model, we should be
able to relate the geometry of the blend at its new location, to the geometry
on its previous location.

Lastly, we assume that the differences between two feature models that
we describe are relatively small, in particular, that the models are varia-
tions in the evolution of a single design. It should be possible to relate
corresponding features between the two models.

5.3 The difference between two feature models

An important aspect in the feature difference is that a feature, placed into a
model, is affected by its interaction with other features. One of the clearest
examples hereof is the interaction of features having different nature (adding
material or removing material): when a slot feature is added to a block, then
the geometry of the block changes, as does the volume the block occupies.

5.3. The difference between two feature models 79

(@ Cellular model of block fea- (b) Block feature with a slot fea-
ture (single cell)

ture
(c) Cellular model of block feature resulting from interaction with slot feature
(two cells)

Figure 5.6: Block feature interacting with a slot feature

This is illustrated in Figure 5.6. More subtle is the change when an additive
feature is attached to another additive feature. Figure 5.4 illustrates this,
showing the imprint that the rib feature causes on the geometry of the base
block by its attachment. When looking at the geometry of a feature in a
particular model, we also take this additional geometry, resulting from its
interaction with other features, into account.

We now explain in some detail what the feature difference is. For a
particular feature, it is the comparison of the feature as it was in the original
model, with the feature as it is in the modified model. This comparison
includes the whole of the geometry of the feature, as it is stored in the
two corresponding cellular models, which is more than what appears in a
BRep. In a BRep only those elements appear that are part of the boundary
of the model, whereas in the cellular model the complete boundary of each
individual feature is stored. We refer to those elements that are part of the
cellular model, but do not appear in the BRep, as non-boundary geometry.
The feature difference is defined for each feature, and consists of both BRep
and non-boundary geometry of the feature as part of the original model,
combined with the corresponding geometric information of the feature as
part of the modified model. Additionally, the structure consists of cells that

80 5. The feature difference

represent regions of volume. The feature difference thus relates the complete
geometric information of a single feature, including geometry emerged from
interaction with other features, between the two models. We recall that the
collection of all feature differences for two models is called the difference
model. Since features overlap —if not with their volumes, then with their
faces—, some geometric elements are part of the feature difference for more
than one feature. Depending on the feature for which the feature difference
was constructed, it can vary how that element is interpreted (as unchanged
geometry, new or old). We call this interpretation of the difference by a
particular feature, its perspective on the difference. We will now illustrate the
feature difference, including this aspect of multiple perspectives, by looking
at a couple of examples.

To illustrate our ideas, we primarily use simple, 2D examples. However,
the principal application in mind is 3D modelling, to which the concepts
readily extend. In Figure 5.7(a) there are two models. On the left is the origi-
nal model and on the right is the modified model. Both models consist of the
same two features F; and F,, but their relative positioning is different, as the
location of feature F, has been modified. In Figure 5.7(b) we see the feature
difference for each of the features. We discern four classifications of geom-
etry in the feature difference: 1) persistent-identical, 2) persistent-different, 3)
new, and 4) old. Persistent-identical geometry is, from the perspective of a
particular feature, identical in every aspect in both models. The complete
geometry of feature F; is an example of this, as both its shape and its inter-
actions with other features are the same in the original and the modified
model. The feature difference for F; carries two examples of persistent-
different geometry: the separation between feature F; and feature F; as it
was in the original model (pink), and the corresponding separation in the
modified model (light blue). Note that the light blue edge already existed
as part of the BRep in the original model. In the modified model, however,
it is not part of the BRep, but it does exist in the cellular model, since it is
part of the geometry of the two individual features. We classify this in the
feature difference as persistent-different geometry, which thus indicates
that the element was part of the BRep in one of the two models, but not
in the other. More specifically, we call the example of the light blue edge
persistent-different: modified to non-boundary, since it was part of the BRep
in the original model, but not in the modified model. The reverse holds for
the pink edge, which we classify as persistent-different: modified to boundary.
The red vertices at the ends of the light blue edge are new to feature Fy, as
they were not present in the original model. The blue vertices at the ends
of the pink edge are old to feature Fj, as they were present in the original
model, but not in the modified model.

5.3. The difference between two feature models 81

F2 — FQ
T

(@) Original model (left) and modified model (right)

SRR BB LI
e Te e te e tare e tee!
RIS

I

(b) Difference model, consisting of the feature difference for both
features

Figure 5.7: Difference model: relocation of a feature

Table 5.1: Classification of the feature difference for cells; ‘+’ = additive nature,

‘= subtractive nature, * ’ = not in model.
original | modified | classification
+ + %% persistent-identical: additive nature
- - % persistent-identical: subtractive nature
- + persistent-different: modified to add. nature
+ - persistent-different: modified to sub. nature
+ % new: additive nature
- % new: subtractive nature
+ % old: additive nature
- % old: subtractive nature

Table 5.1 lists all possible classifications of geometry that can be encoun-
tered in the feature difference for cells, whereas Table 5.2 does this for faces,
edges and vertices. Except for the terminology, the two classification schemes
are very similar, as the ‘boundary/non-boundary’ and ‘additive/subtractive
nature’ classifications fulfil analogous roles. The distinction in the names
helps to reason more intuitively with the concepts. In our 2D examples,
there are no faces, and the interior regions of the features constitute the cells,
which we classify by nature. The tables also serve as a legend for the colours
in our illustrations. Note that some of the classifications are indicated by
the same colour, but it should be clear from the context which is indicated.

The first example, in Figure 5.7, showed a case of change in relative posi-
tioning of features. This is the first of the three types of model modification

82 5. The feature difference

Table 5.2: Classification of the feature difference for faces, edges and vertices; b

= boundary geometry, n = non-boundary geometry, ‘' = not in model.
original | modified | classification

b b persistent-identical: boundary

n n persistent-identical: non-boundary

n b persistent-diff.: modified to boundary

b n persistent-diff.: modified to non-boundary
b === new: boundary
n == new: non-boundary

b m=m= 0ld: boundary

n === 0ld: non-boundary

that we discern for our examples:
* change in relative positioning of features
¢ addition or removal of features
* change in feature shapes.

A combination of these operations can cover any modification that can be
made to a feature model. We now look at examples of the other two types
of modification.

Figure 5.8(a) contains an example of feature addition. This example is
quite similar to the previous example in Figure 5.7, only here feature F,
stays in its place and a new feature F; is added to the model. The original
model thus consists of two features and the modified model of three. In
Figure 5.8(b) we see the feature difference for each of the features. The
complete geometry of feature F; is once again persistent-identical, as from
its perspective everything stays the same. The geometry of feature F; is
completely new, since none of it existed in the original model. In the feature
difference for feature F;, the separation between feature F; and feature F3 is
classified as persistent-different: modified to non-boundary, as indicated by
the light blue edge. The reasoning is similar to the previous example: the
edge was part of the boundary geometry in the original model, whereas it
exists as non-boundary geometry in the modified model.

Removal of a feature is essentially the same as addition, only with the
order of the two models reversed. If we reverse the roles of original and
modified model for the example in Figure 5.8(a), then the difference result
would be identical to the one presented in Figure 5.8(b), except that the red
entities of F3 and the red vertices of F; would be blue, and the light blue edge
of F; would be pink. In general, the feature difference is symmetric, meaning

5.3. The difference between two feature models 83

Fy Fy F3

Fy Fy

R o
IR
SRR LN ALEN

Fi

(b) Difference model, consisting of the feature difference for all three features

Figure 5.8: Difference model: addition of a feature

that it effectively makes no difference which model is the original model
and which one the modified model. Only the interpretation of new/old
and the direction of modification will be switched. There is no preference
for either of the models when describing their difference. Each feature that
exists in either of the compared models will thus have to be represented in
the difference model.

In the previous two examples, none of the individual features change
shape. In Figure 5.9, we have an example where a feature does change shape.
We could handle such a case as a feature removal and addition, but this
precludes the feature’s geometry from being mapped. Instead, we let the
two different versions of the feature interact with each other and combine
their geometries. In this case, part of the geometry of the feature will not
be persistent, since the shape, i.e. geometry, of the feature differs between
the two models. This is illustrated by feature F, in the difference model of
Figure 5.9. The feature difference for feature F, may seem surprising: in
overlaying the geometries, the feature centre has been used as the point of
reference to align on, but other alignments might have been chosen too.

In general, there is no unique way to compute the interaction of two
versions of a single feature. The result depends on how the two geometries
are overlaid. Typically we would use some internal coordinate system of the
feature to align both geometries, but the choice of this coordinate system
is arbitrary. In many cases there will be a natural preference for a certain
system, but in particular for features with symmetries the choice can be
argued.

Figure 5.10 illustrates how a variation of the point of reference for the

84 5. The feature difference

Rttt
KR
bttt et

(b) Difference model, consisting of the feature difference for both fea-
tures

Figure 5.9: Difference model: reshaping a feature

e |

|
I | —
Lo__ ! oteteteled

R

%
%

]

(b) Alternative difference through self-
interaction of feature in (a)

Figure 5.10: Variation in point of reference in self-interaction between features

self-interaction of two different verions of the same feature affects how we
classify the entities for the feature difference. In Figure 5.10(a) the volume
and edge-segments that overlap, together with the single lower left vertex,
are considered persistent. All entities that do not overlap with geometry of
the same dimension are marked as new or old. If instead of a corner vertex,
the centre of the feature in Figure 5.10(a) is used as the point of reference,
then the resulting difference will be as in Figure 5.10(b).

In some situations, the way in which the designer modified the feature
might indicate a preference for how the different versions ought to self-
interact. For instance, he might drag a face along one of the feature axes to

5.4. Representing and constructing the difference model 85

elongate the feature, which is a hint that the designer sees the opposite face
as a fixed reference. However, this does not apply in general. The shape of a
feature might be modified in multiple steps, the feature might be translated,
or it might be modified as a consequence of dependency relations. We
cannot deduce a single, natural point of reference for all these cases.

We will now look at a more involved example that shows how reshaping
a feature is handled in the context of a model with multiple features and a
change in relative positioning of these features. Figure 5.11(a) shows two
models built from the same three features. Feature F, has been translated
and reshaped in the evolution from the left to the right model. Features F;
and F, have additive nature, whereas F; has subtractive nature, which is also
the resulting nature in areas of interaction with F; and F,. In Figure 5.11(b)
the difference model for these two models is shown. The feature differences
for F, and F; have been enlarged for clarity. All blue and red coloured
entities are again old and new, respectively, when regarding the left model
as the original model, and the right one as the modified model. This is,
as always, caused by a change in interaction with other features or with
itself through position or shape change. Pink and light blue again represent
the persistent-different entities, with pink standing for geometry that was
modified to boundary geometry, and light blue modified to non-boundary
geometry. Note that the difference for F, contains two such areas caused by
a change in the interaction with F3, partially enclosed by, respectively, a red
and a blue arc coming from part of the geometry of F;.

Figure 5.12 shows a 3D example of the feature difference for two related
models that consist of a base block, a through hole, and a rib on top of the
base block. In the absence of a visualisation tool for the feature difference,
we have coloured this example by hand for the faces, edges and vertices.
Due to the constraints on the visualisation, the classification of the volume
of the cells has not been indicated in the illustration, but it is an essential
part of the complete feature difference.

5.4 Representing and constructing the difference model

For application of the feature difference, we need to represent the geometry
and its classifications, and be able to systematically derive these representa-
tions.

The difference between two feature models is represented in the dif-
ference model. This model is conceptually close to the schemes used to
illustrate the ideas. It is composed of the feature differences for all indi-
vidual features. Since each feature difference is actually an aggregate of
a feature’s interactions with two different models, it has little meaning to

86 5. The feature difference

R

5555 5%
Soseletetes Reter

R

LSS
e et

il dodd

o
575,

(b) Difference model, consisting of the feature difference for all three features

Figure 5.11: Difference model: relocation and reshaping of a feature

(@) Original model (b) Modified model

T
FAARLBN
5250

(c) Feature differences for base block, through hole, and rib

Figure 5.12: Feature differences for a simple 3D model

5.4. Representing and constructing the difference model 87

geometrically combine all feature differences into a single model. As it turns
out in Chapter 6, the geometric combination of differences can be useful
within a specific context, but this combination is not instrumental to the
representation of the differences and similarities.

The data structure of the cellular model can be used to represent the
feature difference for a single feature, i.e. each feature difference is repre-
sented by a separate cellular model. Its cells arise from interactions of the
feature in both models with other features, and possibly between different
versions of the feature itself. Attached to each entity is its classification of the
difference: persistent, new or old. If the geometric entity is persistent, then
additionally it is stored whether it is persistent-identical, i.e. its interpre-
tation has remained identical, or persistent-different, i.e. its interpretation
differs between the two models. In the latter case it is indicated as well how
the interpretation has changed. For the new and old entities, it is clear to
which of the two models it belongs. For each entity, the interpretation in
the models to which the entity can be mapped, can be accessed. Each entity
also has an ownerlist with the features the entity belongs to.

From the difference model of a feature, the contribution of that feature to
both feature models can be derived. For efficient use of the model, additional
data structures may be used, e.g. to support methods to access all entities
of a particular difference classification, per feature or globally. The require-
ments of the data structures will vary per application. In particular we note
that, in common applications, it is not necessary to explicitly construct the
difference model for features that have an identical shape and interaction
with surrounding features in both models. In those cases we just record that,
from the perspective of these features, every entity is persistent-identical.

One way to construct the difference model is based on the two cellular
representations of the feature models under comparison. The feature differ-
ence for a particular feature is the result of a non-regular union operation
between the two cellular models that cover the shape extent of the feature
in, respectively, the original and the modified model. Each shape extent is
a subset of the cellular model that represents a complete model, but is by
itself again a cellular model. In a non-regular union, all geometry of the
combining objects is kept, e.g. faces that are part of another face are not
combined into a single face, but remain explicitly available in the description
as separate faces. The operation is supported by ACIS [Spatial Corpora-
tion, 2006]. Through application of the non-regular union, the difference
attributes are also determined.

The process is illustrated in Figure 5.13 for feature F, from Figure 5.11(a).
The geometry of the first shape extent is indicated in blue and the geometry
of the second shape extent in red, i.e. only the edges are coloured. When the

88 5. The feature difference

N] D AYal

Figure 5.13: Merging two cellular models in the construction of the feature dif-
ference

classification: p-identical classification: p-different:
owner: Fi modified to non-boundary
modell: [ref] owner: Fu, Fo
model2: [ref] modell: [ref]

model2: [ref]

classification: old classification: new

owner: Fy, F>) ‘, owner: Fy, F»
modell: [ref] "’ ‘f modell: null
3¢ 9 | model2: [ref]

model2: null

Figure 5.14: Description of entities in data structure

geometries are combined, all vertices, edges, faces and cells are collected in
a single geometric description. By default all entities will be marked old or
new, depending on the model they originate from. During the combination,
the attributes of merging entities of the same dimension are compared and
from this follows the difference attribute. All these merging entities, since
they overlap with an entity of the same dimension, will be marked persistent.
Additionally, the interpretation is compared for the overlapping entities, and
on that basis it is decided whether the classification is persistent-identical
or persistent-different, which, for the latter case, includes a specification of
how it is different. The other entities, which are either new or old, will not
take part in a merge and thus keep the default classification, which will give
the correct result.

Figure 5.14 illustrates part of the resulting data structure for four entities
in the feature difference for feature F; from the models in Figure 5.11(a).
The references modell and /or model2 point to the entity in its originating
cellular model(s). If an entity is not persistent, then the reference to the
entity in one of the two models being compared, will not exist.

The actual implementation is not as simple as the concept of the operation.

5.5. Conclusions 89

In particular the tracking and merging of cells is a reasonably complex
problem. The cellular topology component of the ACIS geometric kernel
[Spatial Corporation, 2006] provides basic support to work with cellular
models, but propagation and merging of entities, in particular of 3D cells
and their attributes, requires substantial effort to make it work correctly and
efficiently.

5.5 Conclusions

The feature difference between two models categorises, through geometric
entities, the complete geometry of both models as similar, thus mappable,
or exclusive to either of the models. In addition to the differences in feature
geometry, it records the differences in interpretation. We have shown how
this works out for the case where the interpretation is simply a question of
whether the entity contributes to the boundary or, in the case of cells, to the
enclosed volume. However, the difference concept extends to a broad class
of features where the interpretation might not be mappable to a boolean
value. The only requirements are that the features have a clearly defined
geometry, and that the interpretation resulting from feature interaction is
determinate.

Computation and representation of the feature difference have been
implemented for volume and surface elements as part of the remeshing
approach described in Chapter 6.

It is probably only possible to consider an exact feature difference be-
tween two models if the features between the models can be mapped. This
limits the application to models that are descendants from the same model or
a modification of each other. For feature models wherein the features have,
for example, been identified by a feature recognition algorithm, creating
this mapping is likely to be a problem.

The information contained in the feature difference model is virtually
unobtainable from a basic BRep structure. In general, any modelling activity
that deals with volumetric interactions of shapes needs a data structure sim-
ilar to the cellular model. Without such a data structure, everything would
need to be calculated on the fly, which for large and complex models will be
more costly than maintaining the more complex cellular data structure, and
thus needlessly hampering interactive performance.

With the feature difference we can identify, in particular, the differences
and similarities between two analysis models, such that parts of the previous
analysis mesh can be reused in the construction of a new mesh. How this
procedure works, and the role therein of the feature difference, is discussed
in the next chapter.

90 5. The feature difference

Since the feature difference is geometrically exact and close to our intu-
itive idea of how two models differ, because it is in terms of the features that
compose the models, we suppose that there are more applications than just
remeshing. Any application that has complex data attached to its features,
or represented by specific features, and needs to map this to a similar model,
might benefit from using the approach introduced here.

Chapter 6

Efficient tetrahedral remeshing

Finite element analysis (FEA) is nowadays widely used by industry to per-
form product tests. These tests reduce the number of real world test models
that have to be built. This is beneficial as building prototypes is costly in
terms of both time and money. In Section 2.3, some background information
on FEA has been given.

Although FEA saves time and money in comparison to traditional prod-
uct testing, it is nonetheless a time-consuming operation by itself. For com-
plex models, the analysis process can take multiple months from start to
finish, with the actual numerical analysis taking far less time than the work
in preparation of the analysis. This is partly due to lack of automation and
tool integration, poor data conversion, and (manual) repetition of tasks. One
of the pivotal steps that precedes the simulation is mesh generation, the
decomposition of the virtual product model into a mesh of simple geometric
elements. In Chapter 3, some background information on meshes and mesh
generation has been given.

The computation time and accuracy of the analysis depend, amongst
many factors, on the mesh and the quality of its elements. In general, the
use of higher quality meshes, decreases the time spent on analysis. Higher
quality meshes, however, take longer to generate. As we have argued in
Section 3.3, the efficiency of the product design cycle might well be improved
by means of remeshing. This should enable faster generation of meshes,
without making concessions to the high quality of the meshes. In this chapter,
we present an approach for efficient remeshing of tetrahedral meshes.

We start, in Section 6.1, with some background and a conceptual dis-
cussion of our remeshing approach and its relation to the difference model.
This is followed, in Section 6.2, with the description of a data structure that
extends the difference model, and plays a central role in the remeshing algo-

91

92 6. Efficient tetrahedral remeshing

rithm. Then, in Section 6.3, we present the basic idea of the actual algorithm.
In Section 6.4 we describe how, based on the feature difference, node subsets
of an earlier generated mesh are copied, in Section 6.5 how we fill the areas
of the model that have remained void of nodes with new nodes, and in
Section 6.6 how to complete the new mesh by combining the copied nodes
and the new nodes, and efficiently constructing a quality mesh from all
these nodes. This is followed by Section 6.7 with a presentation of some
results that demonstrate the gain in efficiency and the quality of the meshes.
Finally, we conclude the chapter in Section 6.8.

The larger part of this chapter has already been published in [Sypkens
Smit and Bronsvoort, 2009a].

6.1 Remeshing based on the difference model

With more sophisticated algorithms for quality mesh generation coming
at our disposal, more CPU time is being spent on meshing. Meshing al-
gorithms that strive to optimise some quality measure on the mesh are
often of variational nature, minimising an energy functional related to the
quality measure. An example of this is the variational tetrahedral meshing
algorithm (VIM) for mechanical models, which has been introduced in
Section 3.2 and elaborated in Chapter 4. We use VIM in the sequel of this
chapter to refer to the extended method we have described in Chapter 4.

In Section 3.3, we have explained how this focus on quality meshes has
motivated us to make meshing more efficient by basing the construction of
a new mesh on a previous mesh, which has been used in an earlier design
iteration. We base our remeshing approach on VIM, because it produces
high quality tetrahedral meshes. We prefer tetrahedral meshes since they are
easier to deal with in completely automated methods than the alternative of
hexahedral meshes. The concept of our approach to remeshing is, however,
not strictly bound to our particular meshing method, nor to the type of mesh
element.

In our work, the analysis model is assumed to be a feature model. In
current practice, the design model and the analysis model are usually not the
same. In Chapters 7 and 8, methods are discussed that aim to improve the
integration of the analysis model with the design model. We assume here
that the design model is the analysis model, or that changes to the design
model can be automatically propagated to the analysis model, analogous
to change propagation in the multiple-view feature modelling paradigm,
which will be described in Chapters 7 and 8.

We look at model modification either in the context of a humanly con-
trolled design cycle or an automatic shape optimisation process. In particular

6.1. Remeshing based on the difference model 93

in the latter case, many meshes can be created. In either case, we expect the
iterative model improvements, in particular during the later stages when
analysis becomes more important, to have a local scope, i.e. to change the
geometry in a relatively limited way.

Looking at these changes between models in the context of efficient
remeshing of a feature model, it seems natural to regard the geometry of
the model and the changes therein from the point of view of the features.
Instead of relating parts of two models in a global sense, such as by way
of the boolean difference of the two models as a whole, we relate the two
models on a feature basis. This is the most natural approach, since the
models themselves are composed and modified by means of features. When,
for example, a feature is relocated, we can still identify it as the same feature,
and as such we can relate the geometry pertaining to this feature between
the two models. This principle of relating models based on their individual
features lies at the heart of the difference model, as discussed in Chapter 5.
This is a significant difference with the conventional approaches to model
comparison, referenced in Section 5.1, where there is only a single perspec-
tive for the comparison, namely the complete model. In our approach, a
geometric element can be related to the other model from the perspective
of one feature, whereas from the perspective of another feature there is no
relation. Multiple perspectives only occur in the feature difference where
features overlap each other (see Chapter 5).

Building upon the ideas that underlie the difference model, we have
conceived a new, efficient remeshing approach that copies parts of the mesh,
exploiting the relations of the features between the two models. This allows
for a mesh correspondence that is intuitive. The concept of associating mesh
elements with individual features has been suggested in the past [Unruh and
Anderson, 1992], but this was in the context of complete mesh generation.
Another reason that makes the difference model more attractive than other
methods for model comparison, is that these deal exclusively with the BRep,
whereas the feature difference explicitly maps parts of volume between
the original model and the modified model as well. We need this for the
purpose of copying mesh elements between corresponding parts of volume.

The novelty of our method is that we can handle more complex shape
modifications than the approaches referenced in Section 3.3, including
changes in topology caused by parameter modifications and feature ad-
dition/removal. It also tends to conserve larger portions of the mesh, and
the mesh correspondences match well with the intuitive correspondences
we see. Subtractive features and overlapping features are not an obstacle to
our approach. Maintaining the quality of the existing elements and deliver-
ing a complete quality mesh as a result are our objectives. To this end we

94 6. Efficient tetrahedral remeshing

determine exactly how the geometry differs between the two models.

For the remesh procedure, thus a description is used of the difference
between two models, such as the models in Figure 5.2 on page 73. In line
with the terminology used in Chapter 5, the model that was made first is
being referred to as the original model, whereas the model resulting from
adaptation is being referred to as the modified model. The description of the
difference should help us to find those parts of the geometry that appear
identically in both models, as for these parts we might reuse mesh elements
from the original model for the new mesh of the modified model. For those
parts of the geometry that have no relation to the other model, we need to
construct new mesh elements. Identifying all those parts of the geometry is
an essential aspect of the remeshing procedure.

In the next section, we describe a data structure that extends the differ-
ence model, and plays a central role in the remeshing algorithm in carrying
out the aforementioned tasks.

6.2 The combined model

We use cellular models to store and query the original and the modified
feature model. The feature differences are cellular models as well, as they are
constructed by copying and combining subsets of the original and modified
models.

The feature difference for a particular feature contains the combined
geometrical description of the feature for the two models that are being
compared. All the geometric entities carry a feature difference classification
(see Tables 5.1 and 5.2 on page 81), and a list of the features that own the
entity. Together with the classification, it is also stored to which model
an entity belongs. This is actually enough information to reconstruct the
geometry of a feature in either the original or the modified model from the
feature difference. To recover the geometry of a particular feature in the
original model, we can basically remove all geometric entities classified as
new; the geometry of the feature in the modified model can be obtained by
removing all old entities.

Each feature in a model is associated with a transformation, which is
tied to a global point of reference by which the positions of all features are
related. We regard the transformation as part of the feature parametrisation.
When the feature parametrisation is known for all features in a model, then
its cellular model can be (re)constructed.

It follows from the previous two paragraphs that from the feature dif-
ferences, both the original and the modified model might be obtained. Of
course we do not actually do this, as we already have those models, but

6.2. The combined model 95

2o

(@) Original model (b) Modified model

B,e)

(c) Geometry of feature differences for base block, through hole,
and rib

Figure 6.1: Feature differences for a simple 3D model

in a similar vein we can also combine the feature differences by using the
feature transformations of either the original model or the modified model.
Figure 6.1 reproduces the example of model modification from Figure 5.12
(page 86), except that the features differences are represented in Figure 6.1(c)
with their bare geometry without classification. The model consists of three
features: a base block, a through hole and a rib, with each a corresponding
feature difference. Figure 6.2 shows how the three feature differences can
be combined into two different structures: (a) the combined original model
(following the positioning of the features in the original model), and (b)
the combined modified model (following the positioning of the features in the
modified model). Notice how the two structures differ. For the combined
original model, the feature difference for the through hole and the rib are po-
sitioned w.r.t. the base block such that the original feature geometry lines up.
For the combined modified model, on the other hand, the feature differences
are positioned such that the modified feature geometry lines up.

A combined model captures the interaction of feature differences, and
by this means enables us to relate the original geometry and the modified
geometry to each other. For our remeshing algorithm, we are only interested
in the combined modified model. We will briefly explain how this particular
structure is useful to our remeshing algorithm.

96 6. Efficient tetrahedral remeshing

(b) combined modified model

Figure 6.2: Combining feature differences following the feature configuration of
either the original or the modified model

By selecting the right subset of cells from the model in Figure 6.2(b), we
can construct the model of Figure 6.1(b). The complete geometry of the
model we need to mesh, without use of transformations because the cells
are already connected in the right way, is thus represented by a subset of
the combined modified model. To each of its cells, at least one difference
classification is associated, but multiple classifications per cell are possible.
This is because the feature differences in the combined model can overlap,
e.g. the feature differences for the through hole and the base block overlap
in both examples of Figure 6.2. From the difference classifications, we know
whether the geometry, from the perspective of some feature(s), is persistent
(or not) and thus can be related to geometry of the original model (or not).
This is why the combined modified model is essential to our goal of remesh-
ing, as through these relations we find the subsets to copy from the mesh
of the original model, the parts of the geometry where new mesh elements
need to be constructed, and all other parts of the geometry where attention
to the mesh is required, e.g. the places where mesh subsets of different origin
meet.

The geometry of a combined modified model can get fairly complex, as
the feature differences, which already contain the geometry of two different

6.3. The remeshing procedure 97

modified 1 combined

original + model = modified
model model

- - —-
start 2@ 3%4

Figure 6.3: Schematic representation of the four steps of the remeshing procedure

Y d

versions of a feature, can intersect once more amongst each other. Inspection
of this structure, however, is essential for our remeshing procedure.

However, before delving into the details of using the information in the
combined modified model, we take a step back, and discuss the overall
remeshing procedure.

6.3 The remeshing procedure

The remeshing procedure is conceptually simple. We wish to generate a
mesh for a model that is a modified version of an earlier design model (the
modified and the original model, respectively). Part of this mesh is going to
be supplied by the mesh of the original model. The procedure for this is:

1. Analyse the difference between the two models.
2. Initialise the new mesh with all mesh sections that can be copied.
3. Construct new mesh elements in remaining void areas.

4. Perform VIM with an appropriate subset of the nodes and boundary
samples.

This procedure is schematically represented in Figure 6.3.

The first step consists of the construction of the feature difference and
the combined modified model, which have been discussed in Chapter 5 and
the previous section, respectively.

In the second step, we map subsets of the previous mesh to the modified
model. The idea is that we determine from the combined modified model
which (parts of) features from the original model can serve as a mesh source,
and from this we decide which mesh elements to copy to the new mesh.
Here we aim to copy large and continuous mesh subsets, such that extra
work to improve connections between separately copied mesh subsets is

98 6. Efficient tetrahedral remeshing

minimised. Any part of the geometry of the new model that is not assigned
a mesh by copying, remains without mesh.

In the third step, we fill up these voids. We now have the basis for the
new mesh.

In the fourth step, the VIM algorithm is executed, with the result of the
previous two steps as initialisation of the mesh. Since copied subsets of
the mesh do not need optimisation, we adapt the VIM algorithm to work
only with a subset of the nodes and the boundary samples. The attention
is focussed on the new mesh subsets and the other places where the mesh
needs improvement, such as between adjacent mesh subsets where a good
connection is lacking.

Until now, we have consistently talked about copying “subsets of the
mesh”. Since the VIM algorithm generates a Delaunay mesh, we can suffice
with copying just the mesh nodes, as the connectivity is handled in the VIM
algorithm by the Delaunay criterion. This makes the procedure considerably
easier to implement. The input for the VIM algorithm, here applied in the
context of remeshing, will be the set of initial nodes to start with, accompa-
nied by a flag that indicates which nodes are free and thus are in need of
optimisation. The new nodes and the nodes in areas of transition between
copied mesh subsets, are the free nodes. The other nodes are fixed; their
relative positioning can remain untouched. We now continue to discuss the
procedure for copying nodes.

6.4 Copying mesh nodes

The idea behind the copying procedure is that the modified model can
receive nodes through the relation of persistent feature volume with the
original model. Each feature whose feature difference contains some persis-
tent volume of additive nature, can copy nodes that belong to that volume
in the original model, to the modified model.

Since features can overlap, we cannot simply copy the nodes for each cell
of persistent volume in each feature. Where features overlap in volume, too
many nodes would be assigned. Also, we want to copy mesh subsets in one
go from large and continuous regions, such that the need for optimisation
between copied mesh subsets is minimised. To this end, we sort the features
by the size of their persistent-identical volume of additive nature, and start
with copying nodes from the feature for which this volume is largest. Next
comes the feature with the second largest persistent volume, etc.

The complete procedure is as follows:

[1. Assign nodes to features in the original model.]

6.4. Copying mesh nodes 99

2. Find cells with persistent volume of additive nature (copycells) and
cells with new volume (newcells) in the combined modified model.

3. Determine which features correspond to which copycells and calculate
for each feature the volume of copycells that it covers.

4. Copy nodes of features to empty copycells, starting with the feature
with the largest volume to copy.

The last step is finished when all copycells have nodes copied to them.
Due to overlap of features, it is not required that all features have contributed
nodes to the new mesh at the end of this step.

Assign nodes to features in the original model

This step is independent of the modified model, and as such it is not strictly
part of the remeshing procedure. It can be performed in advance.

The original model is stored as a cellular model. All nodes of the corre-
sponding mesh are assigned to cells of the cellular model. To speed up the
operation, the nodes are first tested for inclusion with the bounding boxes
of the cells. Then, for each node on or inside a bounding box, an accurate
inclusion test (an internal function of ACIS [Spatial Corporation, 2006]) with
the corresponding cell is performed. A few nodes might not be assigned to
any cells at all, due to tiny differences between the coordinates of the mesh
and the geometry of the model. In such a case, the projection distance of
the node to all cells is calculated and the node is assigned to the closest cell,
assuring that every node is assigned to at least one cell.

For each cell it is known to which features it corresponds. After the
assignment of the nodes to the cells, we can thus retrieve all nodes inside or
on the boundary of each feature.

Determine copycells and newcells

In the combined modified model (cf. Figure 6.2(b)), all cells have classi-
fications attached, indicating for each feature that (co)owns the cell how
its geometry relates to the original model (persistent-identical, persistent-
different, new or old). This classification can differ between the owning
features. We limit our attention to the cells of additive nature that contribute
to the representation of the modified model, since these are the cells that
need to be covered by mesh elements. Of those cells, we mark each cell
that is persistent-identical with additive nature, according to at least one
classification, as a copycell. The volume of such a cell can be related, in at
least one way, to the original model, as the persistent classification indicates

100 6. Efficient tetrahedral remeshing

that a similar counterpart exists in the original model. All remaining cells of
additive nature belong to the set of newcells. These also need to be covered
by mesh elements, but they cannot be provided by the mesh of the original
model.

Create map from features to copycells

At this point, we know which cells in the combined modified model are
copycells, and which nodes are contained in each cell of the original model.
Unfortunately, there is no one-to-one map between the cells in the modified
combined model and those in the original model. A cell from the original
model can relate to multiple cells in the modified combined model. It should
be possible to identify those relations, but instead we have opted for another
approach.

Since we want to copy sets of cells that are as much as possible adjacent,
to avoid having to perform mesh improvements between nodes copied from
different origins, we instead copy the nodes on a feature by feature basis.
All nodes copied from a single feature, obviously have the same origin. An
additional benefit of this approach is that we avoid the need to explicitly
establish relations between the copycells and the cells of the original model.

We want to start copying nodes from the feature that occupies the largest
volume of copycells. We thus need to calculate the total copy volume for
each feature. This calculation is combined with the creation of a map that
relates the features to their copycells.

Copy nodes from features to copycells

Starting with the feature that has the largest volume of copycells, nodes are
copied to the corresponding copycells. For efficient copying, the copycells
are joined into a single body (which can consist of multiple lumps). Then for
each node in the feature, an inclusion test is performed against the copycell
body. The nodes that belong to the body are included in the mesh of the new
model. Before performing the inclusion test, the coordinates of the nodes
have to be transformed from their location in the original model to their
location in the modified model. This transformation is the compound of the
inverse transformation of the feature’s position in the original model and
the transformation that gives the position in the modified model. We avoid
copying multiple times to the same copycell, by keeping a list of copycells
that have been taken care of.

Once nodes have been copied to each copycell, the model still lacks nodes
in those regions of the model that could not be mapped to the original model,
i.e. the newcells. See for an example Figure 6.5(a), where the copied nodes

6.5. Adding new nodes, and the free/fixed distinction 101

(b) Modified model, including top view: four holes translated

Figure 6.4: Two variations of a model

are shown for remeshing the model of Figure 6.4(b) based on the mesh of
Figure 6.4(a). At the original location of the four hole features there were
no nodes to be copied to the mesh of the modified model. These regions
are covered by newcells, and these need to be filled by nodes as well (see
Figure 6.5(b)). This is elaborated in the next section.

6.5 Adding new nodes, and the free/fixed distinction

The previous section dealt with filling the set of copycells, coming from the
combined model, with nodes from the mesh that corresponds to the original
model. The newcells set comprises those cells that have additive nature,
but cannot receive nodes from the original model. This is either due to a
newly added feature with additive nature, an enlarged feature with additive
nature, or the removal/translation of a feature with subtractive nature.
The procedure for filling the set of newcells with nodes is basically the
same as the node initialisation procedure of VIM described in Section 4.1.
Before the nodes are spread out, the average node density in the earlier
mesh is measured. Then the cells of a grid that covers the newcells’ volume

102 6. Efficient tetrahedral remeshing

)

(@) Copied nodes (b) New nodes

Figure 6.5: Top view of copied and new nodes for the original and modified
model of Figure 6.4

are traversed, to calculate the average number of nodes that each grid cell
should receive. Only grid cells of which the centre lies inside the newcells’
volume are counted. Finally the nodes are spread out by traversing the grid
cells once more. Figure 6.5(b) shows an example of a set a new nodes, with
in the background the copied nodes.

We now have all the nodes that are to be used for the initialisation of the
new mesh. However, to efficiently process these nodes, the nodes need to be
divided into a fixed and a free set. The free nodes will be actively involved in
the optimisation process, whereas the fixed nodes will be left untouched. It
is clear that all new nodes belong to the free set. The majority of the copied
nodes should belong to the fixed set —otherwise there would be little gain
in remeshing—, but not all of them.

There are two cases in which attention to copied nodes is required:

1. adjacent cells that have nodes copied to them from different origins
2. persistent-different faces on copycells.

Both cases are illustrated by the example of Figures 5.3 and 5.4 (page 75):
1) in the mesh of the modified model, the nodes of the base block do not
match with the nodes of the rib feature on top, as the node sets connect at
a place different from before; 2) the nodes of the base block near the place
where the rib feature was previously connected, do not properly represent
the shape of the boundary; previously those nodes were in the vicinity of a
non-boundary face, whereas in the modified model that face does represent
boundary.

The faces from the cellular model affected by the first case are determined
during the node copy operation. If the copied nodes in two adjacent copycells

6.6. Efficiently constructing a quality mesh 103

are transferred from their original coordinates by the same transformation,
then they have the same origin; otherwise, attention is required to assure
the quality of the mesh around the separating face. The second case can
be inferred from the combined modified model: for each face of a copycell
it is determined 1) whether it has nodes lying in that face, i.e. whether the
face was part of the BRep of the original model, and 2) whether nodes need
to lie in that face, i.e. the face is part of the BRep of the modified model.
If these two results are different, then the nodes in and near that cell face
need to be in the set of free nodes. This can be inferred by looking at the
classification of the face, from the perspective of the feature that supplied
the nodes to this cell. If this classification is persistent-different, then the
above is the case. We call the faces from the combined modified model that
require attention for the nodes in their vicinity, active faces.

For each active face, it is determined which nodes in its vicinity have to
be transferred to the set of free nodes. This is done by means of regularly
spaced sample points on the surface of the face. Each sample locates its
nearest node. All nodes that are nearest to a sample, become part of the free
set.

6.6 Efficiently constructing a quality mesh

The meshing procedure is basically the same as the one described in Chap-
ter 4, but adapted to avoid unnecessary computations. Instead of following
the procedure for creating the initial node distributing, we use the nodes as
determined by the procedures described in Section 6.4 and Section 6.5.
These nodes have been classified into two sets, fixed and free. In our
optimisation procedure, we only handle the free nodes and leave the fixed
nodes untouched. However, nodes from the fixed set can be transferred to the
free set. This happens twice during the optimisation, as we transfer the layer
of fixed nodes adjacent to the current free set, to the free set. The underlying
idea of this expansion of the set of free nodes, is to give the optimisation
procedure more freedom to achieve a quality connection between the free
and fixed nodes. It is done once directly after the first iteration of the
optimisation loop, and three iterations later a second time. The delay in
adding the second layer is to first give the smaller set of free nodes an
opportunity to settle a bit, as the biggest variations in node locations occur
during the first couple of iterations. Once the extent of the changes has
diminished, we expand the set of free nodes one more time. Figure 6.6
compares the new nodes, the active nodes at initialisation, and the active
nodes after the first expansion of the active set. The final set of active nodes
covers a sizeable region, compared to the initial set of active nodes. This is

104 6. Efficient tetrahedral remeshing

»

(@) New nodes (b) Active nodes

(c) Expanded active nodes (d) Expanded active nodes; ro-
tated view

Figure 6.6: New, active and expanded active nodes, for the models of Figure 6.4

necessary to uphold the quality of the final mesh. When expanding the free
node set, we must take care to keep the expansion local, as the Delaunay
mesh covering the convex hull also connects nodes that are not adjacent
in the final geometry. The risk of expanding the free set to a nonadjacent
region of the model occurs nearly always when expanding from a boundary
node to another boundary node. For that case, we have therefore added the
precondition that the two nodes share a connection to an internal node.
The other reduction in computational cost is achieved by adapting the
boundary procedure (see Section 4.1 and Section 4.3), wherein the boundary
samples are pulling on their closest node to achieve a balanced positioning
of the nodes on the boundary. Normally all boundary samples look for
their closest node, but since a large part of the mesh does not change at
all, this would be unnecessary work. Instead we only do this once for all
boundary samples at the start. Those boundary samples that have a free
node as their closest node are added to the set of active samples, the rest
is non-active. The samples adjacent to an active sample are placed in the
set of border-active samples. Only the active and the border-active samples

6.7. Results and discussion 105

are used in the boundary procedure to pull on nodes, to possibly change
their positions. Most of the time the border-active samples will have a fixed
node as their closest node, but when one does have a free node closest, then
this border-active sample is transferred to the set of active samples and its
non-active adjacent samples turn to border-active samples. This way we
remain confident that the boundary samples are doing their work where
needed, but no more than that. When the set of active nodes is expanded,
the set of active samples is also efficiently expanded where needed.
Summarising, the new meshing procedure is as follows:

1. Initialise the data structures.
2. Initialise the mesh with the free and fixed nodes.
3. Run the optimisation loop:

* use adjusted boundary procedure based on only the active sam-
ples

* optimise node positions of free nodes

o if iteration-step = 1 or iteration-step = 4: expand set of free nodes.
4. Extract the mesh.

The number of iterations performed in the optimisation loop will typi-
cally be the same number as would be used for a complete meshing of the
model. We will now show some of the results achieved by the complete
remeshing procedure.

6.7 Results and discussion

To study and compare the effectiveness of our remeshing procedure, we
present six cases of model modification, all shown in Figure 6.7:

(a) simple translation of block on top
(b) tooll-ab enlargement of pins

(c) tooll-ac translation of holes

(d) tool2-ab addition of stiffener

(e) tool2-bc translation of pipe

(f) tool3 reparametrisation of base block.

106 6. Efficient tetrahedral remeshing

These cases cover a range of situations encountered in model modification.
The first case (a) is a simple example that serves as a reference. The second
case (b) demonstrates a change where only reparametrised features are
involved. The third case (c) involves the creation of new holes and filling the
remaining voids. The fourth case (d) demonstrates the addition of a new
feature and its interaction with existing features. The fifth case (e) deals with
changes in feature interaction and topology. Finally, case (f) demonstrates
the capability of the approach to even handle changes in the shape of the
base feature. We do not consider this last case to be typical for the application
of remeshing.

The first aspect we consider is runtime. The results are shown in Table 6.1
(page 113). We compare the time that it takes to mesh the modified model
with the regular meshing procedure (total), with the time needed for the
remeshing procedure (fotal;). A breakdown of the total runtimes total;
and total, is given in Table 6.2 and Table 6.3, respectively. Because the final
number of nodes of a remeshed model is hard to control, we first perform the
remeshing. After this, the regular meshing procedure is performed, aiming
for the same number of nodes. Since occasionally nodes can be removed or
added during the algorithm, this match is not perfect. The column #nodes
in Table 6.1 and Table 6.2 lists the number of nodes in the final mesh for the
regular meshing procedure, whereas Table 6.3 shows the number of nodes
in the remeshing result. The numbers are generally very close. We have
roughly aimed at 15000 or 30000 nodes. The number of boundary samples
is, by means of a heuristic formula, set at roughly 8 times the number of
nodes that ends up on the boundary. This is a reasonable lower bound
for this ratio, since one would rarely want to use less boundary samples
per boundary node. The ACIS faceter component is used to generate the
samples. Each experiment is performed with either 5 or 10 iterations. The
final column of Table 6.1 lists the runtime of the remeshing procedure as a
percentage of the runtime of the regular meshing procedure.

We observe that in general:

* By remeshing, the runtime is brought down to between 10% and 45%
of the time for the regular meshing procedure.

¢ For a larger number of nodes, the efficiency gain is higher. In such
cases, the percentage of internal nodes is higher. Since the optimisation
of the internal nodes takes the bulk of the cpu-time, the realised savings
by remeshing are higher. A secondary factor is that for a higher number
of nodes, the expansion of the free node set by two layers affects a
smaller percentage of the nodes.

* The optimisation loop scales roughly with the number of iterations,

6.7. Results and discussion 107

hy oy

(@) simple-a and simple-b

b oy

(b) tool1-a and tool1-b

b &b

(c) tool1-a and tool1-c

VW

(d) tool2-a and tool2-b

Figure 6.7: Six cases of model modification

108 6. Efficient tetrahedral remeshing

& &y

(e) tool2-b and tool2-c

g &4

(f) tool3-a and tool3-b

Figure 6.7: [continued] Six cases of model modification

as this constitutes the bulk of the computations, and the other steps
are independent of the number of iterations.

¢ The time spent analysing the models and copying the nodes (t; and
t5; Table 6.3) is smaller than the setup time of the standard meshing
procedure (t1; Table 6.2).

We measure the quality of a mesh by calculating the volume-length
ratio of each tetrahedron (see Section 3.1), and display these values in a
histogram. The value 1 corresponds to a perfectly regular tetrahedron. The
mesh qualities corresponding to the results of meshing from scratch and
of remeshing, respectively, are very similar. The most salient differences
are shown in Figure 6.8. Here Figures 6.8(a), 6.8(b) and 6.8(c) show that the
quality of the regular meshing is slightly better than the remeshing results,
as the magenta bars stick out on the highest end of the quality spectrum,
and the blue bars on the lowest end. Figure 6.8(d) shows an example of the
opposite case, where the remeshing result is slightly better. The difference in
quality for all the other test cases is either similar or even less pronounced.

6.8. Conclusions 109

7000

6000
]
3500

5000]|

3000 =

2500

2000

E
il

0. 1.0 0.0 0.2 0.4 06 0. 1.0
volume-length ratio

3000

tetrahedrons
1
tetrahedrons
™

—

#
N
5
8
8
-

T
o
S
S
T

B mn |
.0 0.2 0.4 . .
volume-length ratio

=)

(@) tool1-ac, 10 iterations with close to 15000 (b) tool2-bc, 10 iterations with close to 15000

nodes nodes
= 1
]
4 |
= 10
3500
m [I
2 2 i
S 3000 u S -
=4 o]
E 2500 o - E r
6000

© 2000 & ° H
b= =
2 H o H N

1 4
i 4 d

1 1

il | 2000]
500| 9y
IS, ‘ e T
0.8 1.0 0.0 0.2 0.4 0. 0.8 1.0

0.0 0.2 0.4 0.6
volume-length ratio

vqume-IengtH ratio
(c) tool3, 10 iterations with close to 15000 (d) tool2-ab, 5 iterations with close to 30000

nodes nodes

Figure 6.8: Quality comparisons between result of regular meshing (magenta)
and remeshing (blue). Yellow denotes overlapping histogram bars.

The thin ‘tails” of lowest quality elements in the volume-length his-
tograms, can often be further improved with little effort. By application of
simple operations, such as flipping, most, if not all, of the remaining low
quality tetrahedrons can be eliminated.

Figure 6.9 shows the result of remeshing for model tool2, including a
close-up and a cut of the close-up, showing part of the interior of the mesh.
There are virtually no visible signs that the mesh for the stiffener in the
middle was added later by means of remeshing.

6.8 Conclusions

We have presented a viable technique for tetrahedral remeshing of feature
models for finite element analysis. It is based on the feature difference, and

110 6. Efficient tetrahedral remeshing

(b) (©)

Figure 6.9: Remesh result for tool2-ab

6.8. Conclusions 111

approaches the issue from the point of view of individual features. This is
sensible since incremental changes to feature models are made in terms of
addition, removal, and reparametrisation of features.

The approach has been actually implemented confirming the validity of
the approach, and enabling an evaluation of the performance. The imple-
mentation consists of two seperate C++ programs. The first analyses the two
models and the previous mesh, and outputs the initial fixed and free node
set. The second is a variant of the meshing program implemented to test
the algorithm described in Chapter 4, adapted to perform the remeshing
algorithm.

A reduction of meshing time between 55% and 90% is achieved for our
test models. The efficiency gain depends on several factors. Models that
have a large volume relative to the surface area, generally result in the
most substantial improvements, as they have relatively many elements that
remain fixed during the optimisation phase of the remeshing procedure.
For a particular model, a larger node set tends to show bigger gains in
efficiency, as the percentage of internal nodes, which are the most costly, is
higher. The time to construct the combined modified model can increase
quickly when many features are overlapping or interacting. In most feature
models, however, we expect the number of simultaneous interactions to
be low, as many overlapping features are an indication of a bad feature
model. Furthermore, for the analysis of the difference between the original
and the modified models, resulting in the output of the free and fixed
nodes set, we have implemented one particular approach. We feel that this
approach is a good compromise between complexity and efficiency. Other
approaches might improve the efficiency of this step, but this would have to
be researched.

The quality of the remeshing result is consistently on par with the high
quality of the normal meshing approach. A key factor in upholding the
quality is the expansion of the free node set, which incorporates nodes from
the immediate neighbourhood of the areas where the attention is directed
to, into the optimisation process. The optimisation procedure can achieve
a higher quality result when it can move more nodes. Not expanding the
node set leads to a visible disparity between the fixed and free nodes in
the final result, and it might even result in failure to properly represent the
boundary.

In our remeshing approach, the Delaunay property defines the connectiv-
ity. Obviously, when the connectivity had been changed to further optimise
the mesh, e.g. to remove near-slivers by flipping, this will not be transferred
to the new mesh by merely copying the points. In that case, we would need
to copy the connectivity too, or repeat the final optimisation step.

112 6. Efficient tetrahedral remeshing

The node density is currently assumed to be uniform over the model.
Obviously, when the geometry of the model changes, then the demands for
the mesh can change as well. In particular the required mesh density may
change. With the type of changes between models that we aim for, we do not
expect the need for model-wide adaptation of the density, but the change in
density requirements does need to be taken into account. Some regions will
have to be adapted. These regions can be identified either by comparing the
copied mesh with the new global requirements or, alternatively, through the
use of analysis features that specify the density requirements throughout
the model. In the latter case, the difference between the density require-
ments between the two models can be determined exactly. The feasibility of
adding density requirements through analysis features is, however, open
for research.

The procedure described in this chapter makes some assumptions on how
the analysis model is constructed as a feature model, and thus can be related
to previous iterations of the analysis model. The ability to relate features
between analysis models, implies a consistent relation between the design
and the analysis model, since the latter is an abstraction of the former. Unless
all changes to the analysis model are performed manually, we would thus
also assume propagation of changes between the design and the analysis
model. These assumptions usually do not hold in practice. Chapters 7 and 8
further address this issue, by exploring methods to integrate design and
analysis models, such that propagation of changes between the models does
become possible.

6.8. Conclusions

113

Table 6.1: Runtime measurements comparing the regular meshing procedure
with the remeshing procedure for the six cases of model modification. Nexp:
experiment number, #samples: number of boundary samples, #nodes: number
of nodes in the mesh for the modified model after meshing, #iter: number of
iterations of the optimisation loop. All times, total; and total,, are in seconds.
Column totaly corresponds to the regular meshing procedure, and column total,
to the remeshing procedure. % time = 100.0(total, /totaly).

’ Nexp \ model \ #samples \ #nodes \ #iter \

totaly | total, | % time

1 | simple 56232 15058 51 86329 | 91.74 10.62
2 ” 56232 15058 10 | 1634.37 | 163.80 10.02
3 ” 111532 30087 5 | 3145.85 | 236.34 7.51
4 ” 111532 30088 10 | 6030.42 | 433.20 7.18
5 | tooll-ab 89290 15195 5| 47246 | 90.97 19.25
6 ” 89290 15195 10 | 93237 | 113.61 12.18
7 i 165814 30341 5 | 1535.33 | 177.54 11.56
8 ” 165814 30341 10 | 2870.37 | 240.57 8.38
9 | tooll-ac 87352 14997 5| 469.40 | 108.08 23.02
10 ” 87352 14999 10 | 92229 | 165.83 17.98
11 ” 163136 30089 5| 1528.41 | 243.93 15.95
12 ” 163136 30075 10 | 2848.63 | 378.99 13.30
13 | tool2-ab 121788 15637 5| 196.89 | 77.86 39.54
14 ” 121788 15637 10 | 33276 | 98.10 29.48
15 ” 242711 31275 5| 505.77 | 161.64 31.95
16 ” 242711 31275 10 | 874.61 | 202.19 23.11
17 | tool2-bc 117216 15047 5| 19535 | 83.57 42.77
18 ” 117216 15038 10 | 327.27 | 103.91 31.75
19 ” 233187 | 30100 5| 515.15 | 154.20 29.93
20 ” 232111 30087 10 | 889.17 | 190.08 21.37
21 | tool3 51818 10248 51 193.81 | 83.86 43.26
22 ” 51580 10194 10 | 330.39 | 144.72 43.80
23 ” 101220 20480 5| 532.60 | 162.72 30.55
23 ” 101216 20420 10 | 984.91 | 271.79 27.59

114 6. Efficient tetrahedral remeshing

Table 6.2: Breakdown of runtime measurements for the regular meshing proce-
dure for the experiments listed in Table 6.1. Nxp: experiment number, #nodes:
number of nodes in the mesh for the modified model after regular meshing. All
times, t1—t3 and totaly, are in seconds. t1: setup, tp: optimisation loop, t3: mesh
extraction and other post-processing, totaly = t1 + tp + t3.

| Newp [#nodes [ty | | ts | total; |
115058 [24.85 | 835.32 | 3.12 | 863.29
2 [15058 | 25.01 | 1606.25 | 3.11 | 1634.37
3 [30087 | 87.54 | 3051.84 | 6.47 | 3145.85
4 [30088 | 87.37 | 5936.73 | 6.32 | 6030.42
5[15195 [4290 | 422.75 | 6.80 | 472.46
6 | 15195 | 43.07 | 882.48 | 6.81 | 932.37
7 [30341 | 84.99 | 1437.65 | 12.69 | 1535.33
8 | 30341 | 85.74 | 2772.13 | 12.50 | 2870.37
914997 [4146 | 42227 [5.67 | 469.40
10 | 14999 | 41.50 | 875.08 | 5.71 | 922.29
11 | 30089 | 82.97 | 1434.56 | 10.88 | 1528.41
12 [30075 | 83.59 | 2754.29 | 10.75 | 2848.63
13 [15637 | 28.65 | 161.59 | 6.65 | 196.89
14 | 15637 | 28.83 | 297.40 | 6.53 | 332.76
15 | 31275 | 65.89 | 427.40 | 12.48 | 505.77
16 | 31275 | 67.10 | 795.11 | 12.41 | 874.61
17 | 15047 | 35.81 | 149.42 [10.12 [195.35
18 | 15038 | 35.91 | 281.37 | 10.00 | 327.27
19 [30100 | 70.66 | 427.90 | 16.59 | 515.15
20 | 30087 | 70.84 | 801.57 | 16.76 | 889.17
21 [10248 [12.31 | 17898 [2.53 [193.81
22 | 10194 | 12.40 | 31554 | 2.46 | 330.39
23 | 20480 | 27.70 | 499.90 | 4.99 | 532.60
23 | 20420 | 28.28 | 951.69 | 4.94 | 984.91

6.8. Conclusions

115

Table 6.3: Breakdown of runtime measurements for the remeshing procedure for
the experiments listed in Table 6.1. Nexp: experiment number, #nodes: number
of nodes in the mesh for the modified model after remeshing. All times, t4—tg
and totalp, are in seconds. t4: setup and construction of feature difference, ts:
construction of combined model, copying and creation of nodes, and analysis
indicating free/fixed nodes, t4: setup for meshing, t7: optimisation loop, tg: mesh

extraction and other post-processing, totaly =ty + t5 + tg + t7 + tg.

| Newp | #nodes | ty | ts te ty ts | total, |
1[15062 [0.10 [5.07 [2826 | 54.88 | 3.44 | 91.74
2 15062 | 0.10 | 5.03 | 29.82 | 125.47 | 3.38 | 163.80
3130087 | 010 | 9.65 | 77.10 | 142.30 | 7.18 | 236.34
4130088 | 010 | 9.75 | 79.93 | 336.41 | 7.01 | 433.20
5[15199 [2.01 [1251 [4519 [2394 | 732 | 90.97
6| 15199 | 1.97 | 12.46 | 4539 | 4655 | 7.24 | 113.61
7 130345 | 1.99 | 24.11 | 88.03 | 49.74 | 13.67 | 177.54
8 | 30345 | 2.00 | 24.08 | 89.09 | 111.83 | 13.57 | 240.57
9 [15005 [2.34 [1291 [4430 | 4242 | 6.10 | 108.08
10 | 15007 | 2.33 | 12.89 | 44.49 | 100.02 | 6.10 | 165.83
11 [30097 | 2.37 | 25.68 | 89.24 | 115.09 | 11.55 | 243.93
12 [30083 | 2.28 | 25.66 | 87.24 | 252.19 | 11.62 | 378.99
13 [15649 [1.40 [9.01 [38.88 | 22.18 [6.39 | 77.86
14 | 15649 | 1.35 | 898 | 3897 | 4245 | 6.35 | 98.10
15 | 31287 | 1.39 | 16.26 | 86.78 | 45.64 | 11.57 | 161.64
16 | 31287 | 1.38 | 15.99 | 87.88 | 85.55 | 11.39 | 202.19
17 [15055 [232 [9.42 [40.74 | 2151 | 959 | 83.57
18 | 15046 | 2.30 | 9.23 | 40.48 | 42.23 | 9.66 | 103.91
19 [30108 | 2.32 | 16.59 | 81.27 | 37.69 | 16.33 | 154.20
20 [30095 | 236 | 16.81 | 81.12 | 73.78 | 16.01 | 190.08
21 [10272 [177] 862 [17.88 | 5257 | 3.03 | 83.86
22 [10218 | 1.79 | 856 | 18.12 | 113.31 | 2.95 | 144.72
23 [20504 | 1.76 | 16.67 | 37.34 | 101.07 | 5.87 | 162.72
23 | 20444 | 176 | 16.84 | 37.26 | 210.09 | 5.82 | 271.79

Chapter 7

Integration of
design and analysis models

We have argued in Chapter 2 that the integration of design and analysis mod-
els could be improved. In this chapter, we discuss previous approaches and
our vision on how to accomplish this. We briefly recall the characterisation
of these models and the issues surrounding the poor interaction between
them. For a more detailed account, one should refer back to Chapter 2.

A design model usually consists of low-level curves and surfaces stored
by means of NURBS or similar types of representation, a topological struc-
ture that describes how all geometric elements are related to each other,
a set of parametrised features and constraints that implicitly describe the
geometry of the model, and a set of attributes that is attached to certain
features or low-level geometric entities.

An analysis model is a geometry description on which an analysis is
based. Sometimes no distinction is made between the analysis model and the
analysis mesh, but we do: the analysis mesh is derived from the geometry
of the analysis model. In some analysis approaches alternative to FEA, the
geometry of the analysis model can be used directly [Hughes et al., 2005],
but this is not common in practice. Figure 2.2 showed an example of a design
model, together with a corresponding analysis model and a corresponding
mesh. The analysis model is used to track and store information on the
analysis that is independent of the mesh, which includes information to
steer the actual mesh generation, in particular mesh sizing.

The geometry of the analysis model is itself derived from the design
model, as it usually is an abstraction of the design product geometry. This
abstraction is better suited for analysis, generally because it has a simpler
geometry, leaving out the details that are irrelevant for the result of the

117

118 7. Integration of design and analysis models

analysis, and because its geometric description lends itself better for quality
mesh generation.

The representation of the analysis model varies. It can be a BRep com-
posed of splines, similar to the common representation of the design model,
but since it typically has a geometry that differs from the design model, it
has its own distinct representation. There are basically three ways to obtain
the analysis model: 1) build it from scratch, 2) adapt the design model into
an analysis model, and 3) create the analysis model starting from a faceted
BRep of the design model. The choice for a particular approach has con-
sequences for how the two models can interact. In current practice, this
commonly results in a poor integration.

But what is it exactly that we mean by integration in this context? Inte-
gration implies that we have two separate identities, which both should be
conserved. As soon as we can no longer distinguish between the two, we
have gone beyond integration and ended up with the stronger concept of
assimilation.

We could imagine a design environment where analysis would be assim-
ilated into the workflow, i.e. a situation in which there would be virtually
no distinction between the design and analysis aspect. In such a case, the
analysis would most likely be performed completely transparently, without
requiring the designer to activate a separate analysis process of which the
only purpose is to support decision making in the design process. In other
words, the designer would no longer intuitively experience that he is doing
analysis.

Although it is a nice fantasy, few people feel that a true assimilation
of design and analysis is within our current reach. Therefore, we aim for
something more attainable, which is integration. Here the conceptual divide
between the two tasks clearly remains, but the two should work together
more smoothly, as any interaction between the two should be transparent.
As it currently stands, the relation between design and analysis is not really
mutual. The analysis phase clearly serves the design process, but not so
much the other way around. In order to achieve integration, according to
the definition we have just given, the relation between design and analysis
models should become more symmetric, at least from a technical perspective.

Our solution is the analysis view, which builds on and extends the concept
of multiple-view feature modelling. In this chapter, we explain the concept
of the analysis view. In Chapter 8, we will discuss some techniques for
the realisation of this concept. We start out in this chapter, in Section 7.1,
with a comparison of five previously proposed approaches to improve the
integration of design and analysis, which usually comes down to a closer
integration of their respective models. We contrast these approaches with the

7.1. Approaches to integration of design and analysis 119

multiple-view approach, and in particular the analysis view, in Sections 7.2
and 7.3. The chapter is concluded in Section 7.4.

The larger part of this chapter has already been published in [Sypkens
Smit and Bronsvoort, 2009b].

7.1 Approaches to integration of design and analysis

There have been several propositions, or visions, on how to make the com-
bined workflow of design and analysis more efficient, or, in other words,
to achieve integration between CAD and CAE. We have selected five of
them to serve as a basis for comparison and discussion of approaches to this
integration. The approaches differ in level of technical detail, emphasis and
scope, but generally they represent attempts to integrate the design and the
analysis models. Together they give a good impression of the spectrum of
approaches to the integration of design and analysis.

An Early Vision

The paper Steps towards CAD-FEA integration [Arabshahi et al., 1993] is one
of the early publications to signal a need for more efficiency between the
CAD and CAE process, and gives an overview of “a future system which
would allow and encourage more automated CAD-FEA transformation using tools
that operate directly on the solid model.” The authors remind us that CAE
has not always been performed upfront to assist the design phase and to
confirm that products will work as expected, but rather was used in the
early days to investigate product failures a posteriori. Although there was
effectively no integration at all at the time of writing, the authors already
acknowledge the need to couple the design and analysis model: “For a truly
integrated CAD-FEA system, attributes must be applied to the design model so
that they can be taken into account during the different stages of the idealisation
process. A two-way link between attributes and geometry is required to be able to
query the geometry with regard to its attributes, and attributes with regard to their
geometry.” They also remark that: “[...] it should be possible to relate analysis
results back to the design geometry to allow for design modification/optimisation.
Because of differences in the geometric domain [...], a simple reverse geometric
transformation may not be possible. Formal links may therefore be required between
design and analysis models [...] by the exchange of parameters.” These ideas are
still topical today. In general, their view on CAD-CAE integration is similar
in many ways to the current views expressed by scholars.

Their vision, however, is mostly conceptual. The need for various tasks,
and for corresponding specialised tools, is recognised. They distinguish

120 7. Integration of design and analysis models

Product Data Abstracted
Prod Modsl > CAD-FEA Mode! >
uct Transformation Mesh

Description :
System Generation

Attribute Editor

Detaif Editor

Dimensionality Reducer

Subdivider Adaptive

Mesh Analysis

Adaptive A Rofinernent Model
Design

Adaptive
Idealisation

Results Analysis Resuts FE
Processing | Solution

Figure 7.1: Overview of the system proposed by Arabshahi et al. Image source:
Arabshahi et al. [1993].

functional components such as an attribute editor, detail editor, dimensional
reduction aid, and tools to preprocess the geometry for meshing. Figure 7.1
illustrates how the components fit together. They mention requirements
for data structures and representations, but details are, not surprisingly,
absent. In fact, they primarily perceived a lack of tools to properly derive an
analysis model from a design model, and properly prepare it for analysis.
Although they recognise the need to link the two models, they may have
underestimated how difficult this would prove to be.

Multiple Representations

In Integrating engineering design and analysis using a multi-representation ap-
proach [Peak et al., 1998], a multi-representation architecture (MRA) is pre-
sented. The evaluation and validation of the ideas was done in the spe-
cialised domain of solder joint fatigue routine analysis, but the proposed
architecture is generic and can also be applied in other domains. In many
domains, routine analysis is regularly applied, i.e. an analysis process that
is performed (almost) by default for each design, has a well-defined series
of input parameters and modelling elements, and requires little human
creativity. Such an analysis usually focuses on a single aspect of the physical
behaviour. Specialisation obviously makes it easier to achieve integration
and implement a system with richer semantics. This enables the MRA to
address the “information-intensive nature of CAD-CAE integration”, which is
the apt characterisation made by the authors.

7.1. Approaches to integration of design and analysis 121

(@ Product Model (@ Product Model-Based Analysis Mode!
PM
Pt Witg Assermbly (PWA) (2) Analysis Building Block
(@) Solution Method Mode!
PBAM ABB SMM
PMCDAEH . LP
[Component 7 "oy, | ABBESMM =
— r._l_m_m_mg_"“‘ W, ;| — i
— | PWE | badyy ST
Printed Wiring Board (PWB)

I Design Tools ' ' Solution Tools l

Figure 7.2: The multi-representation architecture. Image source: [Peak et al.,
1998].

The MRA consists of four components: 1) solution method model (SMM),
2) analysis building block (ABB), 3) product model (PM), and 4) product
model-based analysis model (PBAM). There are inter-representation map-
pings between the SMM and the ABB, and between the ABB and the PM. The
PBAM helps to bridge the gap between the ABBs and the PM. See Figure 7.2
for a schema of the architecture.

The PM effectively represents the design model. The design-oriented
attributes are related to idealisation attributes to support the information
needs of potentially many analysis models. The analysis model, as we
characterised it in Chapter 2, is here created by a particular PBAM, which
mainly represents a particular physical model, through the combination
of ABBs and creating fitting idealisations by means of the design-analysis
associativity and the rules of the PBAM. The ABBs are elementary analysis
primitives, such as a spring. They serve as product-independent elements
of analysis models that can be instantiated and combined. Analogous to the
design feature concept, we might consider them a kind of analysis features.
The analysis model is thus an assembly of several ABBs as created by a
PBAM. It can be converted into a solution method model, which can be
a finite element mesh together with all the other inputs that an external,
specialised analysis program might need. Identifiers are maintained along
the path of mapping one representation to the next, such that the analysis
results can be related back all the way to the design model, e.g. to identify in
the design model for which components the maximal stress was exceeded.

The results demonstrate that within a specialised domain and with the
modelling space sufficiently constrained, integration of design and analysis

122 7. Integration of design and analysis models

Product Data
Manager

Simulation Model

. Manager Simulation Data|!
Y Manager

v
Simulation Model h 4
Generators Adaptive Control

Tools

omputer-Aided| [Computer-Aided
Design Tools Analysis Tools

Figure 7.3: The Simulation Environment for Engineering Design (SEED) within
the product design cycle. Image source: [Shephard et al., 2004].

models can be achieved to a reasonable degree.

Simulation Environment for Engineering Design

In Toward simulation-based design [Shephard et al., 2004], the Simulation Envi-
ronment for Engineering Design (SEED) is described, and how this integrates
with CAD and product data management tools. This approach is quite
generic, as it is not tied to particular types of analysis, modelling techniques
or tools. There are four functional components of SEED: 1) simulation model
manager, 2) simulation data manager, 3) adaptive control tools, and 4) sim-
ulation model generators. Figure 7.3 shows how the components of SEED
interact with each other and with the other tools outside SEED.

The simulation model generators are responsible for the construction
of the analysis model. They do this based on the input of the adaptive
control tools, the simulation model manager, and the CAD system. The
simulation model manager contains a high-level functional view of the
design to support analysis of specific subsets of components. In conjunction
with the CAD system and the adaptive control tools, which decide on the
need for idealisation of geometry, a complete geometric representation for
analysis can be generated. The simulation model manager also contains
the topology associated with the geometric model. How the system deals
with the creation and/or maintenance of this topology, in particular when
subsets of components are analysed, seems to be an unresolved issue. The
simulation model generators are also responsible for creating the mesh
of the analysis model, based on cues from the adaptive control tools and
the topology. The simulation data manager is responsible for the effective
utilisation of simulation information within the design process. It does this

7.1. Approaches to integration of design and analysis 123

CAD/CAE Integrated Model

NMT Merged Set +
Design & Analysis Features

Integrated

Model Model l Select J Select

Detail Removal
Dimensional Reduction

CAD Model
Solid +
Design Features

CAE Model
NMT +
Analysis Features

Figure 7.4: Full CAD/CAE integration by means of a single master model. Image
source: [Lee, 2005].

by providing access to the analysis results, and communicating this to the
user as a response that is effective and fitting in the context of the analysis
problem.

The authors state that “[...] the historic mistake made by both CAD and
CAE developers has been to take the simplest view of this integration as a direct
data transfer process.” The objective of SEED is to bring the design model and
the knowledge involved in the analysis process closer together. With SEED,
the traditional way of supplying the input to the CAE tools is effectively
replaced by a layer of closely cooperating tools between the CAD system and
the CAE tools that generate the desired inputs for the latter. The interacting
components contribute and deal with knowledge important to the analysis
on the one hand, and knowledge of the design model on the other hand.
In the interaction of these components, the design and analysis models
are brought closer together. Although this generic approach results in a
high-level of automation, the models are not actually linked. For instance,
after a change to the design model, the process of preparing the analysis
model has to be executed again.

A Single Master Model

Lee [2005] describes in A CAD-CAE integration approach using feature-based
multi-resolution and multi-abstraction modelling techniques a feature-based sys-
tem in which both CAD and CAE models reside within a single master
model. This is referred to as full integration of CAD and CAE models; see
Figure 7.4.

The master model is stored as a non-manifold topology (NMT). A design
starts with the Boolean combination of form features. For each feature, an

124 7. Integration of design and analysis models

idealisation feature is automatically added to the model. The geometry of
all these features is stored together in the master model. When an analysis
needs to be performed, the analysis model can be automatically extracted
from the master model by the process of idealisation. This consists, firstly, of
choosing a level of detail (LOD), by default eliminating features on the basis
of the size of their volume. Secondly, for the resulting model the level of
abstraction (LOA) is selected. The criteria for determining the LOA depend
on the type of analysis. Due to the history-based modelling approach, to
make the proper assembly of a subset of dimensionally reduced geometries
possible, the features need to be rearranged, which is accomplished by the
identification of the effective zones of the features.

It is stated that in the master model the geometries of all features of all
abstraction levels are stored in the merged set, a structure that seems similar
to the cellular model discussed in Section 5.2. It is, however, unclear to what
extent all geometric entitities of the features at different levels of abstraction
reside in the same data structure. Obviously, when working with multiple
geometric representations for a single feature, care has to be taken that
efficiency remains acceptable, even for more complex models.

The underlying assumption of this approach is that an analysis model can
always be formed by the individual idealisations of a subset of the design
features. This will not always hold, since, for example, the geometry of some
analysis models is based on global shape characteristics such as symmetry.
The author acknowledges that the range and flexibility in dealing with the
analysis model could be improved. Although the proposal is conceptually
powerful, due to its very tight integration, it might not be generic enough to
scale to complex and realistic cases.

A Mixed Shape Representation

Hamri et al. [2008] and Drieux et al. [2007], the authors of Interfacing product
views through a mixed shape representation (Part 1 and 2), want to improve the
interface between product views in general, by introducing a representation
that can bring different data representations, basically CAD geometry and
faceted geometry, closer together. They call this a mixed shape representation,
and one of its applications can, obviously, be to bring the design and the
analysis model closer together. The mixed shape representation mainly
consists of a BRep NURBS topology and a faceted model that is organised
by means of Polyedges and Partitions, and a High Level Topology (HLT) that
links the CAD geometry and the polyedges and partitions. See Figure 7.5
for an illustration. The faceted model is a more natural data structure for
the preparation of an analysis model/mesh, and by means of the HLT this

7.1. Approaches to integration of design and analysis 125

| Polyhedron top ology |

| Polyedges, Partitions |

HLT entities

B-Rep NURBS
topology

Figure 7.5: Mixed shape representation. Image source: [Hamri et al., 2008].

representation also has information from the design model at its disposal,
making certain operations for the preparation of an analysis model/mesh
easier to automate.

The model or product view (PV) that is actively being modified is denoted
the master representation, whereas the other is the slave. The manipulation
of the mixed shape representation works by the application of operators,
which modify this representation from the point of view of either the CAD
or the faceted representation in a structured way, and can have semantics
associated with them. The link between the two representations makes it
easier to apply reasoning based on geometric algorithms, e.g. feature size
detection, and relate the faceted geometry to the NURBS model, and vice
versa. Operations in one view can thus be aided by the representation of
the other view. Although the link by means of the HLT is dynamically
maintained under the operations that the authors define, in particular op-
erations that prepare the geometry for analysis, it seems that the structure
is not maintained throughout the modelling process, as not all operations
that can be applied to a master representation can correspondingly be ap-
plied to the slave representation. The authors also acknowledge that linking
dimensionally reduced models has not yet been dealt with.

Conclusions

The five approaches that we have reviewed all contribute to the spectrum of
solutions for integrating design and analysis models, and through valuable
observations give us insight into what can and what needs to be done.

126 7. Integration of design and analysis models

One of the principal tasks in bringing design and analysis models closer
together, is to bridge the gap between their different geometries. This gap
consists of different levels of abstraction and detail, distinct underlying
representations, and requirements that the analysis model has to satisfy
to make it a suitable model to be meshed. In many operations that are
commonly performed in the process of turning a design model into an
analysis model, knowledge from both models is helpful. Performing a
straightforward conversion from the one representation to the other, means
losing the benefits that information from the other representation has to
offer. At least throughout the process of deriving an analysis model from
a design model, there should be a link that relates the two models to each
other.

Creating, and in particular maintaining such a link, has not been solved
in a general fashion, and the lack of knowledge of the other model stands in
the way of automation. In general, incorporation of knowledge is essential
for effective automation, as the modelling system needs to replace or assist
human actions that require some degree of ‘understanding’ of the analyses,
model types and common problems. Basically, anything that decreases
the number of tasks and input choices for the engineer can be considered
knowledge, e.g. the software knowing the meshing requirements for a spe-
cific analysis context, such as the need for a boundary layer mesh. Other
examples of knowledge incorporation would be features that help to steer
the abstraction process of their geometry, and coupling a faceted represen-
tation to a traditional BRep geometry, such as in [Hamri et al., 2008; Drieux
et al., 2007], which opens up new ways to reason with the analysis model.
Obviously, it is easier to incorporate knowledge for specialised domains or
tasks, as it is easier to identify common tasks and to enumerate special cases.

Although automation is improving, there is no true linking of models
in the sense that they are dynamically maintained under modification of
the design. This means that, in particular with many, quick iterations of
the design cycle, some steps will have to be repeated again and again. Also,
making modifications to the analysis model, as might happen, for example,
during design optimisation, and propagating those changes back to the
design model, seems infeasible to automate with the proposed approaches.

In essence, we need to integrate two separate specialisations, design and
analysis, which share a product model. Such integration has already been
realised with reasonable success for several tasks other than analysis within
the product development cycle. Complete integration of all technologies
and processes involved in product development, is called Product Lifecy-
cle Management (PLM) [Stark, 2005]. An important requirement for PLM
is that a designer working in any product development phase can work

7.2. Multiple-view feature modelling 127

with information that is relevant for that phase, without being diverted by
information that is relevant only for other phases. However, the information
for all development phases should be integrated, so that no inconsistencies
arise. We believe that a promising way to support this is multiple-view fea-
ture modelling. After having discussed, in this section, other approaches to
integrating design and analysis models, we now look at how various views
on a product have been integrated in this approach.

7.2 Multiple-view feature modelling

Current commercial feature modelling systems do not adequately support
PLM. Some systems have specific models for different development phases,
but these models are not very well integrated. Other systems do integrate
information for, for example, assembly design and part detail design, but
these systems typically do not have specific models for these development
phases.

Multiple-view feature modelling can do better here, by providing a sepa-
rate view on a product for each development phase, and integrating all
views. Each view contains a feature model of the product specific for the
corresponding phase. Since the feature models of all views represent the
same product, they have to be kept consistent.

Quite a lot of research has been done on multiple-view feature modelling
[de Kraker et al., 1997; Martino et al., 1998; Hoffmann and Joan-Arinyo,
1998]. These approaches all work on a single part of a product. A new
view on a part can be derived from an existing view by feature conversion,
the process of converting one feature model into another feature model.
Several views on a part can be simultaneously maintained. Modifications
made in one view, are automatically propagated to the other views on
the part, also by feature conversion, although not all approaches propagate
modifications in both directions. The approaches can be used to, for example,
support design for manufacturing: while a part is being built with design
features, these features can be immediately converted into features in a
manufacturing planning view, which can be used to concurrently check the
manufacturability of the product. Multiple-view feature modelling bears a
certain conceptual resemblance to the model-view-controller paradigm from
the field of software engineering [Buschmann et al., 1996]; within a single
modelling system, there can be several views that each offers a different
presentation of what is essentially a single underlying model.

To even better support the concept of PLM, an approach to multiple-view
feature modelling has been developed in our group, and implemented in
the Spirr prototype feature modelling system, that supports more product

128 7. Integration of design and analysis models

part detail
design view

assembly conceptual
design view design view

Figure 7.6: Multiple-view feature modelling as currently implemented

part manufacturing
planning view

development phases, in particular conceptual design, assembly design, part
detail design, and part manufacturing planning [Bronsvoort and Noort,
2004]; this is illustrated in Figure 7.6.

In the conceptual design view, the product configuration can be modelled
with conceptual components, which are to be implemented by one or more
parts, and interfaces between these conceptual components, which are to
be implemented by a connection. Components are built from a base shape,
concepts, such as depressions and protrusions, and reference elements.
Interfaces between components are characterised by means of degrees of
freedom between the components. The complete geometry of the compo-
nents does not have to be specified: for example, for some concept only
certain properties, such as its maximum volume, might be specified.

In the assembly design view, the connections between the components in
the product can be modelled with assembly features, in particular connection
features [van Holland and Bronsvoort, 2000]. A connection feature needs to
be created for each interface in the conceptual design view, and linked to
that interface. The interface and the connection feature should reduce the
same freedom. In order to accommodate the connection feature, features
may have to be created on the components in the assembly design view,
e.g. a pin feature and a hole feature for a pin-hole connection feature.

In the part detail design view, the detail shape of the parts can be modelled,
typically with features such as through holes and protrusions. It allows the
designer to refine the parts that are represented by the components in the
conceptual design view, and which may have been refined in the assembly
design view to accommodate connection features. Features may be created
for concepts in the conceptual design view, and linked to those concepts.
A feature should satisfy the requirements specified for the corresponding
concept, e.g. that the volume should be less than 80 cm?.

In the part manufacturing planning view, the way each part is to be man-

7.3. Analysis views 129

Figure 7.7: Part detail design view (left) and part manufacturing planning view
(right) on a part. Image source: [Bronsvoort and Noort, 2004].

ufactured is determined. Manufacturing planning features are similar to
detail design features, but note that the set of features for the manufacturing
planning view on a particular part can be quite different from the set of
features that has been used to design the part, simply because a product
can look different from the points of view of design and manufacturing
planning. This view allows the designer to analyse the parts for manufac-
turability and to create a manufacturing plan for them. The feature model in
a manufacturing planning view is automatically linked to the feature model
in the corresponding part detail design view. See Figure 7.7 for the part
detail design view and the part manufacturing planning view on a part.

Consistency maintenance integrates all views on a product, by ensuring
that their feature models remain consistent. It checks the consistency of pairs
of feature models, based on consistency definitions specified for these pairs.
If an inconsistency is found, it recovers the consistency of the models. This
involves, among other things, constraint checking and feature conversion in
both directions [Bronsvoort and Noort, 2004].

In the multiple-view feature modelling approach described above, there
are no analysis views yet, although analysis is an integral part of PLM. We
therefore here propose to add analysis views to the multiple-view feature
modelling approach, which leads to the integration of analysis with design,
and other product development tasks, in a generic way.

7.3 Analysis views

An analysis view in the multiple-view feature modelling approach should be
a view on the product that is suitable for an engineer to perform analysis with.
The view does not stand by itself, but is an integral part of the product model,
and is maintained as such. The engineer, however, should be able to control

130 7. Integration of design and analysis models

the analysis as flexibly as in a completely separate analysis environment.

Putting the analysis model on equal footing with the design model is dif-
ferent from the approach of integration that considers analysis as a derived
activity using a model with similar geometry. Making the analysis model an
integral part of the product model, automatically entails the realisation of
enduring consistency. This should ultimately be the most efficient, as every
operation that is applied to a particular view and has an effect on other views
as well, such as modifying shape dimensions, can be propagated automati-
cally to the other views where the operation has effect. The principal idea
is that no information that essentially appears identically in both models,
should be entered more than once. Consistency has to be maintained just as
well when employing several separate environments, only the burden then
lies with humans, and mistakes are therefore much more likely.

A product can have multiple analysis contexts, and within each context
several views. A particular analysis view presents a physical model of
the product that is best suited for that analysis context, e.g. joint fatigue,
injection mould flow, or stress analysis. The view allows interaction with the
analysis model, assignment of boundary values and boundary conditions,
and control over miscellaneous parameters, such as those within the physical
model, for mesh generation, and for control over the solution methods.

Having specialised analysis views for different analysis contexts based
on the underlying physical models, allows for specialisation. This helps
to bring the knowledge from specific analysis domains into the product
model space, and allows for reasoning with that knowledge to support the
creation and maintenance of analysis views and associated meshes in a
context-sensitive manner. In the work discussed in Section 7.1, it is nicely
illustrated how knowledge in a specific context can help to streamline the
automation.

Since analyses are performed at various stages of the design, also when
the detailed geometry is not yet complete, it should be possible to associate
a range of analysis views, at different levels of (dimensional) abstraction,
to a product model. Each view in turn can have multiple simulation runs
associated with it, with possibly different meshes.

In Figure 7.8 a schematic overview is given of how multiple analysis
views fit in our multiple-view feature modelling approach. There are several
analysis contexts that represent different physical problems. Within each
context, multiple analysis views can be created and maintained. Each view
essentially represents a single analysis model and can have its own particular
geometry. An analysis view has a mesh associated to it, and possibly the
results of earlier analyses, including the mesh that was used in the analysis,
and all other relevant parameters. An analysis view can relate to a single

7.3. Analysis views 131

part detail
design view

assembly
design view

Stress anaIysisH /

conceptual
design view

‘Mold flow Thermodynamics

part manufacturing
planning view

[
Analysis view 1 Analysis view 2 Analysis view 3
I I I I
Mesh]F-" 2 ‘.3 ‘ 4 Mesh Previ Mesh]F-’| 2 ‘.3
- revious Yiaw revious - revious
results results results

Figure 7.8: Multiple-view feature model with the addition of analysis views

part or an assembly of parts.

A central characteristic of the multiple-view feature modelling paradigm
is multi-directional propagation of modifications. With multiple views avail-
able, modifications of the model should be made within the view that prompts
for these modifications, as that view offers the most natural interface. Not
every modification in a particular view has effects on the other views, but if
it does, then the modelling system should either know how the effect should
be propagated to the other views, or let the engineer assist the propagation
at an appropriate time. This should also hold for the analysis view. When
the engineer, based on the analysis result, concludes that the geometry of
the model should be modified, he should be able to do this through the
analysis view. In particular in the case of analysis for geometry optimisation,
where the result is a shape that is optimal in certain respects, it should be
possible to propagate the result to the design view and other views.

Integrating design and analysis models by means of the multiple-view
feature modelling paradigm, will maximally exploit the similarities and
relations between the models. However, since the geometry of the design
and analysis models can have notable differences, we are confronted with a
major challenge to keep the models synchronized in an automatic way.

From the proposals discussed in Section 7.1 to improve the integration
of design and analysis, we can basically distil two approaches to bridge the

132 7. Integration of design and analysis models

gap between their two models: 1) convert the design model to an analysis
model on the basis of individual features [Lee, 2005; Peak et al., 1998], and
2) establish a link based on more low-level geometric elements, and support
the creation of the analysis model by operations along this path [Hamri et al.,
2008; Drieux et al., 2007]. The first approach can work in specialised cases,
but is not general enough to handle every type of geometry abstraction. In
particular combining the geometry of multiple features into a single unit of
abstraction is not supported, nor are analysis models that exploit symmetry
in the geometry of the model, and thus can be based on the partial geometry
of some features. The second approach is more generic, but is harder to
automate completely. More manual control and insight from the engineer
are required, as he often has to select and fine-tune the results of multiple,
geometric algorithms. Many of these issues can be mitigated, or possibly
even avoided, by establishing a relation between the geometry of the design
model and the geometry of the analysis model that is being prepared. With
this relation in place, the process of deriving the analysis model can be
supported by reasoning that builds on either representation.

None of the approaches discussed in Section 7.1 are, however, well suited
for actively maintaining the analysis model in combination with the design
model. For instance, when the analysis model has already been prepared,
it is generally not possible to make changes to the design model, and then
have the analysis model updated accordingly, without the need to derive
and prepare it yet again. Nor is it possible to make changes to the geometry
of the analysis view, and have these automatically propagated to the design
view.

The analysis view aims to combine the good elements of the known
approaches, and overcome the shortcomings. Obviously, we cannot cover
the complete scope of issues that the known approaches address, so we
focus in particular on the functionality that seems to be generally lacking,
which is maintenance of both models by means of propagation of changes.

To achieve this, it seems a prerequisite that the analysis view is a feature
model, with parametrised features, as is the case in our approach. The
individual features in the design view should support the abstraction process
where possible by containing options for abstraction, and possibly rules that
help to automatically choose between multiple options, or handle special
cases of interaction with other features; to support complex abstractions, the
relation between the features of the design view and the analysis view will
not be one-to-one in all cases. Applying boundary values and conditions to
the model should happen by means of analysis features, which demarcate
areas, line segments or points within the analysis model. In addition to the
parametrised representation, a more low-level geometry, such as a faceted

7.4. Conclusions 133

representation of the model, could be associated to the analysis model and
ease geometric reasoning, e.g. to determine local feature size throughout
the model.

The two models consisting of features can be linked by means of opera-
tions, similar to the concept of operations for the transformation of models
as used in [Hamri et al., 2008; Drieux et al., 2007], together with constraints.
The use of constraints is vital for achieving the level of automation that we
are aiming for. It is therefore a natural requirement that it is specified how
the design and analysis views relate to each other in terms of constraints on
their features. The constraints implicitly encode how the models can be var-
ied, and thus enable propagation of changes with relative ease. Important
research is how the relation of the constraints between the design and the
analysis view should be managed, considering also that not all constraints
that exist between features within a particular view, are valid in the other
view due to the lack of a one-to-one relation between features in the two
views. For instance, a constraint might refer to a feature that exists in only
one of the views.

Input and maintenance of the models should, obviously, not take more
effort than what is common in deriving the analysis model. Views should
certainly be kept synchronised, but to prevent too frequent checking, in
particular amidst modifications, synchronisation may have to be delayed to
suitable moments.

7.4 Conclusions

Attempts to improve the integration of design and analysis models already
span multiple decades. The models differ not only in representation, but
also in shape. Most efforts focus on automating the process to derive the
analysis model from the design model. Drawbacks of this unidirectional
approach are that the steps have to be repeated each time the design model
has changed, and that changes to the geometry of the analysis model cannot
be propagated back to the design model. These drawbacks can be addressed
by extending the multiple-view feature modelling concept to the realm of
analysis.

Integrating design and analysis models through the addition of an anal-
ysis view to a multiple-view feature modelling system, implies a more
equivalent treatment of the two models: both models are maintained si-
multaneously and kept consistent. The requirement for consistency can be
implemented by linking the views in such a way that either view can be
modified and that changes are propagated to the other.

Incorporation of knowledge of the analysis process and the requirements

134 7. Integration of design and analysis models

for the analysis model is essential for improving integration of analysis with
the rest of the product development cycle. Depending on, for instance, the
analysis context and the level of abstraction, different requirements hold.
Product development systems should ‘understand” when operations should
be executed automatically, or else from which limited set of operations the
engineer should be offered a choice. Integrating design and analysis models
by means of a multiple-view feature modelling approach, in which both
models are maintained concurrently as views on a single product, provides
a good way to incorporate knowledge on the transition between the two
models.

In the next chapter, we elaborate the idea of incorporating analysis views
in a multiple-view feature modelling approach. In particular, we look at the
issue of actually linking a design model and an abstracted analysis model, as
is required for the realisation of analysis views. We explore an approach that
links features in the design model to corresponding abstracted features in
the analysis model. By reinterpreting the constraints that define the design
model, we obtain an analysis model that functions as an autonomous feature
model. Although our approach is elementary, this is a first step towards
bidirectional propagation of changes between the two models.

Chapter 8

Relating an analysis view to
a design view

In the previous chapter, we have discussed analysis views. These offer a
specific interface for dealing with an analysis model that is linked to a design
model. This concept of linking views is not new, as it is a proven concept
from multiple-view feature modelling [Bronsvoort and Noort, 2004]. For
analysis views, however, there is the challenge that the geometry of the
analysis model and the design model can be different.

In this chapter, we discuss the issues involved in establishing a link
between a design model and an abstracted analysis view, and explore an
approach to realise such a link. As we have described in Chapter 7, an
analysis view can have a distinct set of features addressing analysis-specific
tasks, such as imposing boundary conditions or steering mesh characteristics.
However, in the context of establishing a link between the two views, our
principal concern is the geometry of the features in the design view and the
corresponding features in the analysis view.

The analysis model represents an abstraction of the design model. The
abstraction can consist of leaving out features that have no apparent effect
on the outcome of the analysis. This process is known as defeaturing or
model simplification. The features that are left out in the analysis model are
usually small relative to the aspects of interest for the analysis, and they
will probably complicate the analysis process. Another form of abstraction
is dimensional reduction. This would in most cases be used in conjunction
with defeaturing, and results in further abstraction. Dimensional reduction
commonly applies if some model dimensions, such as width or depth, are
small relative to other dimension(s) in the model. These small dimensions
are reduced to 0 in the abstraction, which means that their geometry is

135

136 8. Relating an analysis view to a design view

represented by a surface or a curve, instead of a 3D volume.

There are several techniques to automatically perform defeaturing and
dimensional abstraction, such as described by Lee [2005] and Sinha and
Suresh [2005]. However, in spite of the presentation of many promising
techniques, the impression remains that the challenge of doing this fully
automatically and enabling a dynamic link between the models, is still far
from being adequately solved, in particular for more complex models.

But why do these techniques have trouble to meet our needs? A likely
factor is that they are mostly geometry-oriented, in particular the meth-
ods for dimensional reduction. Instead of basing the construction on the
information contained in the feature model, the geometry as a whole is
analysed, and then a global abstracted shape is derived, commonly based
on the medial surface, medial axis, or a similar skeletal structure. In this
process, however, the connection of the analysis geometry with the features,
the corresponding semantics, and the constraints that define the design
model, is lost.

As we know from Chapter 7, it is our premise that such a link is essential
for a proper integration of design and analysis models. Without this link, it
would be virtually impossible to allow making changes to the analysis model
and having them propagated back to the design model, as the concept of
an analysis view requires. Given the difficulties with automatic abstraction
without aiming for propagation of changes between the models, we expect
the establishment of such a link to be a substantial challenge.

Our approach links the two models on the basis of individual features:
for each feature in the analysis model, there is a corresponding feature in
the design model. The same constraints that determine how the feature is
dimensioned and positioned in the design model, are used for the analysis
model as well, except that some adjustments are needed to compensate for
the change in dimension of some of the features. These adjustments arise
from a reinterpretation of the constraints for connecting the dimensionally
abstracted features. The presentation of these adjusted feature parameters in
the analysis view to the user is an issue in itself, as the adjustments cause the
constraints of the analysis model to be different from those that define the
design model. In our discussion on linking the models, we briefly outline
three ways of dealing with this.

We start out in Section 8.1 with a general description of our prototype
analysis view. Next, in Section 8.2, we discuss the procedure for abstraction
that has been used to derive the analysis model from the design model. It
implicitly defines how the two models are related. This is followed by a
presentation of the algorithm for the actual linking of the two models in
Section 8.3, together with a discussion of how the user can interact with an

8.1. A prototype for an analysis view 137

analysis model, whereas the design model is automatically updated. This
includes a discussion of the issue of presenting the adjusted parameters to
the user. After the presentation of our approach, we discuss the limitations
and the issues that remain to be solved in Section 8.4. Finally, the chapter is
concluded in Section 8.5.

8.1 A prototype for an analysis view

There are many aspects to an analysis view and its link with the design view,
as we have seen in Chapter 7 and the introduction of this chapter.

To better understand what issues we are exactly dealing with, we start
by listing the principal requirements for the prototype analysis view that
we take into account:

1. Support dimensional abstraction.
2. Function as a constraint-based feature model.

3. Support bidirectional propagation of model changes from and back to
the design view.

It is common to perform analysis with an abstracted model, i.e. a model
that has a geometry that is more suitable for a timely analysis, but gives
functionally equivalent results. Features that are small and are deemed
to have no discernible impact on the outcome of the analysis, should be
excluded from the analysis model, as their presence can complicate the mesh
generation and have a negative effect on the reliability. Also, the model can
be dimensionally abstracted by substituting (part of) the 3D geometry by
2D or 1D representations. For example, a block with one dimension much
smaller than the other two can be replaced for the analysis by a flat, 2D
rectangular plate. Effectively, the dimensions that are too small to have an
impact on the outcome of the analysis, are excluded. Hence the requirement
that the analysis view should support dimensionally abstracted features.

The second requirement ensures that the model can be adapted easily,
while maintaining the global relations between all features that have been
specified by means of constraints. The analysis view should be parametrised
in a way that is compatible with the design view: it should be impossible to
make changes to the analysis view that accidentally violate the constraints
and semantics of the design view. This allows for geometric optimization,
where models can be analysed for a range of parameters, which is dynami-
cally steered by the analysis process.

Propagation of changes between the views is quintessential to the concept
of the analysis view, hence the third requirement.

138 8. Relating an analysis view to a design view

(@) Block (b) Cylinder

|
|

(c) Abstractions of block feature: (d) Abstractions of cylinder feature:
rectangular plate and beam circular plate and beam

Figure 8.1: Examples of the features in the analysis view

These requirements obviously have consequences for how the analysis
view is composed. To enable modifications to the model in high-level terms,
it is necessary that the analysis view consists of parametrised features, and
constraints that describe how the features relate. The geometry of the fea-
tures can be a block, a cylinder, or an abstraction thereof, i.e. a rectangular
plate, a circular plate, or a beam. See Figure 8.1 for examples of the sup-
ported features. Features can use the geometry either in an additive or in
a subtractive manner, i.e. features such as holes and slots are supported as
well.

The features are all parametrised, i.e. each feature can represent a range of
continuously varying shapes. The parameters to these features can be speci-
fied through a direct, numerical value, but also by means of a mathematical
formula, or constraints, which can include references to other parameters
that belong to other features or are defined by the designer. For example,
a user-defined parameter base-height could be defined, and then a feature
could have its parameter for width set to twice the base-height plus the
width of some other feature. Such user-defined parameter are called model
parameters.

Table 8.1 list all the base shapes that are used by the features in the
analysis view, and their named entities that can be referred to by constraints.
A shape can be used by multiple features that differently define whether the
feature is additive or subtractive, and offer different other semantics that
affects how the feature is constrained with respect to other features in the
model.

The constraints in the analysis view are attach and position constraints.
A feature can be added to the model by using at least one attach constraint,

8.1. A prototype for an analysis view 139

Table 8.1: Geometric shapes used for the analysis features, their parameters, and
their geometric entities that can be referred to, e.g. in constraints

feature | parameters | faces | edges | vertices
block width, left, right,
height, bottom, top,
length back, front
cylinder radius, bottom, top | axis
height
rectangular plate | width, bottom, top left, right,
length back, front
circular plate radius bottom, top centre
block-beam length axis bottom,
top
cylinder-beam length axis bottom,
top

which requires two faces, one of the model and one of the feature, to be
coplanar (parallel at distance 0), and a number of position constraints, which
each requires a face of the model and a face (or axis, in case of a cylinder)
of the positioned feature to be parallel at distance d. See Figure 8.2, where
we see a feature B that has been attached to feature C and positioned based
on two pairs of faces, namely the pair in yellow, and the pair in red. The
constraint on parallelism of the attach faces can be satisfied with either
identical or opposing normals of the two faces, so this has to be specified
as part of the constraint. The opposing normals are most common in at-
tachment constraints for features that both add material. Within the plane
of attachment, the features are relatively positioned by specifying faces, or
reference planes, one from the feature that is added and one from the rest
of the model, which have to be parallel with a distance d. In the example of
Figure 8.2, the distance is 0 for both position constraints.

For the abstracted features, the constraints lean on knowledge of the orig-
inal, full-dimensional features. The analysis view thus cannot be considered
completely separate from the design view. In the design view, both attach-
ment and positioning are based on parallel faces, or a line/axis parallel to
a face, but constraints referring to abstracted features can also be based on
edges and vertices that correspond to a face of the original, full-dimensional
feature. For example, when a block is abstracted to a 2D rectangular plate,
it has lost four of its faces in the process. The edges on the boundary of
the plate each correspond to a face of the original feature from the design

140 8. Relating an analysis view to a design view

Figure 8.2: Attaching two features by means of constraints

view. The meaning of a constraint that refers to an edge or a vertex that
corresponds to a face that has been dimensionally reduced, depends on the
orientation of the original face. Basically, the orientation of the abstracted
feature must be kept consistent with the orientation of the original, full-
dimensional feature. For the features that we have in our analysis view, this
means that the position of the abstracted feature must coincide with that of
the mid-surface, or midline, of the original feature.

Consider, for example, a block feature, which has faces that are all at
a 90 ° angle with their adjacent faces, and one dimension that is relatively
small to the other two. This feature can be abstracted to a rectangular plate.
If there is a constraint that requires an edge of the plate feature to be coplanar
with the face from another feature, then positioning the feature such that the
edge lies in the face is not enough to satisfy the constraint. The plate feature
is known to be an abstraction of a block, and thus it must be positioned such
that is coincides with the mid-surface of the original block feature. For this
example, this is equivalent to requiring that the single rectangular face that
represents the plate feature is perpendicular to the face of the other feature.
This is illustrated in Figure 8.3.

All the attach and position constraints in the analysis view have a cor-
responding constraint in the design view. The constraints in the analysis
view function like a proxy to their original constraint, as the latter contains
more information, which in some cases is required when dealing with the
analysis view. For example, see Table 8.1, where the block-beam can be seen
to have just a single axis edge to refer to, whereas the corresponding feature
in the design view has four sides. The orientation of that feature is thus
specified in the design view, and from here it is referenced whenever this
information is relevant for an operation in the analysis view.

An example of the model geometry shown in an analysis view, in com-
parison to the corresponding design view, is shown in Figure 8.4. The model
is parametrised with the thickness and the height of the wood boards, the

8.1. A prototype for an analysis view 141

(@) Attachment in the de- (b) Attachment in the analy-
sign view sis view

Figure 8.3: Meaning of the attachment constraint referring to the edge of an
abstracted feature

= S

(@) Design view (b) Analysis view

Figure 8.4: An example of linked design and analysis views

height of the bed, and the length of the bed. The thickness of the wood
boards has been abstracted in the analysis view, such that all the wood
boards are 2D features. Manipulation of the analysis view is limited to
changing the feature and model parameters. Adding features to the analysis
view that have a full-dimensional equivalent in the design view, has not
been looked at.

Any analysis view that fulfils the earlier listed requirements must have
an automated method for generating an acceptable (abstracted) analysis
view from a design view, or else we would not be able to propagate changes
between the views. We discuss our method for this in the next section. A
more general discussion on automatic derivation of analysis models follows
in Section 8.4.

142 8. Relating an analysis view to a design view

8.2 Procedure for automated abstraction

For our analysis view, we use an automated abstraction procedure that
defines how the geometry of the abstracted analysis view and that of the
design view are related. It is a simple procedure that works for the set of
features and constraints in our analysis view, i.e. blocks, cylinders, plates,
and beams, related by attach and position constraints.

The essence of the approach is that the geometry of individual features
from the design view is abstracted. We assume that there is a method for
deciding which features are to be abstracted to which level, and which
features can be completely ignored in the creation of the analysis model.
This process is usually based on the characteristic size of the features in
relation to the mesh size that is aimed for, and the value of shape parameters
such as width, length and height relatively to each other. Knowledge on
the specific function of the features is also important, and obviously the
engineer can have a say in this as well.

Features can be abstracted to either 2D or 1D form. In the first case, the
abstracted geometry is the mid-surface of the feature. However, we want
the abstraction to depend on the geometry of the model as a whole, and not
on the particular way the features are parametrised and constrained with
respect to each other. Figures 8.5 and 8.6 illustrate this. The two models in
Figure 8.5 have the same geometry, but are composed in a slightly different
manner. When the features are abstracted by taking the geometry of the
mid-surface of the features, while adhering to the original constraints that
combine them, we end up with two different results (Figure 8.6(a) and 8.6(b),
respectively). Regardless of the composition that is chosen for the model,
we would like the resulting abstracted model to be the same, i.e. we prefer
the solution in Figure 8.6(c). An approach to achieve this would avoid many
of the inconsistencies that can be encountered when abstracting a model by
effectively thinning the individual features, i.e. changing the parametrisation
such that one of the shape dimensions becomes 0, while honouring the
original constraints without adjustments.

Looking at the desired solution in Figure 8.6(c), we notice two things
concerning the abstracted features:

1. They are positioned such that they overlap with the position of the
mid-surface from which their geometry is derived.

2. Their shape parameters are adjusted such that the constraints between
them are satisfied.

The first issue is reminiscent of the relation between a geometric object
and its medial axis. This is not surprising, as the medial axis, or medial

8.2. Procedure for automated abstraction 143

5<—> 5<—>
I
4 4 3 4

@ (b)

Figure 8.5: Two different models with an identical boundary

45<————*

(@) (b) (©

Figure 8.6: Approaches to abstraction of the models from Figure 8.5

surface, often plays a role in automated methods of abstraction. These
methods do not look at individual features, but the geometry of the model
as a whole. By pinning each abstracted feature down such that its geometry
coincides with the position of the mid-surface that it was derived from, we
maintain global coherence and consistency between the features.

So abstracting the individual features and pinning them to a certain posi-
tion does not by itself yield an acceptable analysis model. See Figure 8.7 for a
3D example. Here, the attachment of two features is shown. In Figure 8.7(b)
we see the result with the two individually abstracted features, with a clear
gap between them. In Figure 8.7(c) the most obvious solution is shown. It
can be achieved by taking the model in Figure 8.7(b) as a starting point,
and adapting the geometry of the features based on the constraints used
to attach the two features. Consequently, we can only make adjustments
when constraints have actually been specified. If the blocks in Figure 8.7(a)
would not be attached, but just happened to touch each other due to how
their dimensions were specified, then we would not adjust the dimensions
of the abstracted features such that they properly meet. We do not guess
how the design was intended, but only act on constraints that are explicitly
present in the design view.

The adjustments to the shape of the features can be either positive, i.e. an
increase in length, or negative, i.e. a decrease in length. In Figure 8.7, for ex-

144 8. Relating an analysis view to a design view

(@) Design view (b) Abstracted view (c) Abstracted view
without adjustments adjusted

Figure 8.7: Attachment of abstracted features

ample, both these types of adjustment occur. The feature in front is extended
to bridge the gap with the other feature, whereas the side of the other feature
is shortened a bit, such that we retain a proper corner as intended by the
constraints. For our analysis view, it is a rather straightforward procedure to
connect the abstracted features, corresponding to the specified constraints,
by adjusting the dimensions of the features. With more complex features
and ways of connecting them, we may need additional strategies. More on
this in Section 8.5.

We recall that the attach and position constraints in the analysis view are
essentially a single type of constraint on parallelism.

An abstracted feature can be regarded as the limiting geometry resulting
from changing the shape parameters of the corresponding design feature
such that a certain shape dimension becomes 0. In this process, certain faces
can be reduced to edges, and edges can be reduced to vertices. We thus
have a correspondence of certain edges in the abstracted feature to certain
faces in the original, full-dimensional feature. In a sense, the abstracted
features have ‘lost’ the latter entities in the process of abstraction, which is
why we refer to them as non-persistent entities. The geometric entities for
which a dimensional correspondence remains between the abstracted and
the original feature, i.e. the persistent entities, differ in their position. This is
due to the constraint that pins the abstracted feature down relatively to the
position of the corresponding, original feature. Comparing the position of
the persistent entities in the abstracted and original model, it becomes clear
that they differ by the distance to the mid-surface in the full-dimensional fea-
ture. In other words: replacing a full-dimensional feature by an abstraction
based on its mid-surface, can result in a discrepancy of the distance from
the original boundary to the mid-surface for certain attach constraints. In
Figure 8.7(b), one discrepancy is the gap between the two features, another

8.2. Procedure for automated abstraction 145

is the excess in length of the feature in the back.

We can compensate the discrepancies by adjusting the geometry of the
features that through a constraint refer to a persistent entity. We obviously
cannot translate the persistent entity, as we would risk losing global con-
sistency in the positioning of the abstracted features. Only adjustments to
the geometric shape of features are allowed, countering the discrepancies
locally, instead of making global changes to the position of features (see
Figure 8.7(c)).

The automated procedure for deriving an abstracted model, consists
merely of finding all adjustments needed to combine all individually ab-
stracted features into a proper analysis view. Which individual features are
present in the abstracted model, and their class of abstraction, is given as
input to the procedure. The method is outlined in Algorithm 1.

An essential part of the algorithm is identifying whether a constraint
(on parallelism) calls for adjustment of one of the features that are part of
the constraint. The abstracted features are, in a sense, responsible for the
discrepancy, so at least one of the two features in the constraint has to be
abstracted. If one of them is, then it is determined whether the abstraction
affects the validity of the constraint, i.e. whether it causes a discrepancy. If
so, then it is checked whether the shape parameters of the other feature can
be adjusted to bridge the gap. This is the case if this other feature has not
been abstracted along the same dimension as the first feature.

The outlined procedure does not specify what the adjustment entails.
For our set of features, the adjustment is simply a relatively small extension
or retraction of the feature to bridge the gap between the features such
that the constraint remains valid. If the constraint is between faces with an
opposing normal, then a small extension is needed, else a small retraction
(an extension with negative length) is warranted.

It is not enough to adjust the abstracted features based only on direct con-
straint relations. See, for example, Figure 8.8. Here an adjustment based on
the constraint between features B and C, affected the connection of features
A and B. We can avoid this by propagating the adjustments throughout the
abstracted view. For each adjustment that has been recognized, it needs to
be checked whether other constraints exist that depend on the entity that
has been adjusted. For example, look back at Figure 8.8: we first note that an
adjustment to the face of feature B, which is attached to feature A, is called
for due to the abstraction of feature C. Thereafter, we find that the constraint
between feature A and B is affected by this adjustment as well. Therefore
feature A also needs an adjustment to keep features A and B attached as
they were. This is taken care of by Algorithm 1.

The propagation process cannot result in an infinite loop. It ends when

146 8. Relating an analysis view to a design view

Algorithm 1: Find Feature Adjustments

Adjustment rule: if a persistent entity is constrained parallel to a
non-persistent entity by constraint C, then the non-persistent entity
should be adjusted by f,;

for constraint C € design view do

if C warrants feature adjustment f,q; to feature F then

if F has no existing adjustment conflicting with f,;; then
| adjust F by fo;

else
L abort: conflicting adjustments

| propagate(f,q))

propagate (f,4):

while fresh adjustments (start with f,4;) have been found do

for each adjustment fu4; do

for each constraint C that refers to the adjusted entity e,y; do
if C warrants feature adjustment f) 4 to feature F then
if F has no existing adjustments then

L adjust F by f;d]-

— fresh adjustment found

else if F has adjustments conflicting with f,;; then
L abort: conflicting adjustments

8.3. Linking the design and analysis views 147

B w
A
(@) Design view (b) Analysis view — with problem

Figure 8.8: Need for propagation of adjustments

A

Figure 8.9: Conflicting feature adjustment

no new adjustments have been made. The number of adjustments that can
possibly be made is clearly finite. The process can, however, end in a state
of conflicting adjustments. See, for example, Figure 8.9, where features B
and C attached to feature A result in conflicting adjustments.

8.3 Linking the design and analysis views

In the previous section, we have presented a procedure for an automated
derivation of an abstracted analysis model from the design model. The
resulting model consists of features that each individually correspond to
a feature in the design model, together with a set of adjustments to those
features. The adjustments are such that the constraints, as they are present
in the design model, remain satisfied. The meaning of these constraints
between abstracted features depends on the corresponding full-dimensional
features, as was discussed in Section 8.1.

The rules for deriving the abstracted model from the design model are
the key to linking the two models, as they define the relation between the
two models. With this algorithmic understanding of the relation, we can

148 8. Relating an analysis view to a design view

automatically maintain both models when changes are made to either of
them. In our view, there is no distinction between rules for deriving the
abstraction, and rules for maintaining the relation between the abstraction
and the design model from which it was derived. If you can do one, then
you can do the other as well.

Linking of the two models is achieved by relating the parameters of
the set of abstracted features in the analysis view to the corresponding
parameters in the design view. The abstracted features have a reference
to the original feature, and their parameters are formed by coupling the
parameter of the feature from the design view and the adjustments. In other
words, the definitions of the parameters in the analysis models do not exist
independently, but depend entirely on the corresponding definitions in the
design model in combination with the adjustments.

With this setup, we can maintain the resulting analysis view under mod-
ification of the parameter values in either model. In our discussion we
discern two kinds of parameters:

¢ feature parameters
¢ model parameters.

Feature parameters are specific to an individual feature, such as width,
height, or length. In our analysis view, this also includes parameters that
were abstracted from the design view, and correspond to a dimension that
does not exist in the geometry of the analysis view. These parameters are
nonetheless part of the analysis view and its features, not through geomet-
rical presence, but as input to the analysis. For example, if it would result
from analysis that a certain thickness that exists as abstracted parameter in
the model, is not sufficient, then it should be possible to modify this param-
eter in the analysis view. Model parameters are used in the design model
for relating feature parameters to each other and help in defining a global,
consistent parametrisation of the model, e.g. a user-defined parameter such
as a thickness that is referenced by multiple features. Model parameters
can be used in the definition of feature parameters, and feature parameters
can appear in the definition of model parameters, as long as there are no
circular dependencies.

Propagating changes in the design view to the analysis view is fairly
straightforward. All changes to feature and model parameters are auto-
matically reflected in the analysis view, since it does not maintain these
parameters independently, but in fact uses those of the design view. We
only need to update the set of adjustments. The adjustments correspond to
feature parameters in the original model that have been abstracted in the
analysis view, so updating is only necessary when such a parameter has

8.3. Linking the design and analysis views 149

been modified. After the adjustments have been updated, the analysis view
can be updated by changing the dimensions of the features that have been
affected by the change. We presume that in most cases the changes to the
model would not lead to essential changes in the abstraction, but to be sure
we would have to check this. It could happen that after the change, a feature
that used to be abstracted, should no longer be abstracted, or vice versa.
Another possibility is a change in abstraction, e.g. first the width and later
the depth should be abstracted. Also, the outcome of the defeaturing could
be different. Determining this falls outside the scope of our approach, but if
the changes are known, the analysis view can be updated accordingly.

The propagation of changes in the analysis view to the design view is
somewhat different. Since the parameters depend directly on the parameters
in the design view coupled with the adjustments, we can calculate the
change in the design view parameters from the change in analysis view
parameters. This is essentially reversing the adjustment. However, the
change of parameters in the analysis view is not as straightforward as one
would think. On a technical level, it is just a matter of taking the adjustments
correctly into account when translating the input of the user back to the
design view. The issue here, however, is with the input of the user. This has
no bearing on the working of our approach, but it is an interesting point
nonetheless.

What values and parameters are presented to the user when he edits
parameters in the analysis view? For example, the exact length of a feature
does not need to be identical in both views, because of the adjustments. In the
design view, the length parameter can be a numerical value, or be specified
as a formula referring to user-defined parameters or the parameters of other
features. In the analysis view, the definition is based on the corresponding
parameter in the design view. So what should it show? There are basically
three options: 1) the adjusted design view value, 2) the design view value
together with the adjustments, 3) the design view value.

The first option is to show the adjusted parameter definition from the
design view. If this is a numerical value then it is simple to adjust. Only the
feature parameters are directly affected by the adjustments, so when their
value is requested the value is adjusted. If a parameter is defined in terms
of a formula, then the formula can be presented as is, since the referenced
parameters will themselves be adjusted if necessary. This approach results
in an analysis view that feels completely independent of the design view.
A disadvantage could be confusion when a single user works with both
models due to the slightly different numerical values.

The second option is to show the definition of the parameter in the design
view together with the adjustment. In this case the adjustment is not done

150 8. Relating an analysis view to a design view

completely transparent, but the user is made explicitly aware that the values
in the two views are slightly different. This could be done by showing
both the adjusted and the unadjusted definitions, or make the adjustment
part of the definition such that it stands out as a separate unit. With this
approach, there is no longer the risk of confusion due to differences in
corresponding values between the views. However, the user is confronted
with the parameter adjustments, a technical aspect underlying the link
between the views, which he might not care for since his focus is on the
analysis view.

The third option is to show the parameter definitions from the design
view. This also works in a completely transparent manner, like the first
option, and avoids confusion over the slightly different values. However, in
this case there is a small inconsistency between the values that are shown
to the user, and the actual dimensions of the geometry in the analysis view.
Obviously, the user is aware that some parameters refer to abstracted di-
mensions, since he can edit the thickness parameter of a feature that is
shown with zero thickness in the view. The user does not necessarily have
a problem with discrepancies between the values shown to him and the
dimensions of the geometry in his view for such parameters. However, he
might have more difficulty with the incongruity when non-zero lengths of
the geometry in the view are involved. A solution could be to make the
user aware of this difference by showing the geometry with the unadjusted
measurements in his view when he is editing the parameter.

For the underlying approach, it does not really matter which option is
used. However, there might be a difference to the user. Will his decisions
on how to change the model be different depending on how the model
parameters are presented to him? Although small variations are probable,
as a 20 % change to a parameter of the analysis view is different from a 20 %
change to the corresponding parameter in the design view, it should not
really matter to the end result. The principal idea behind abstraction is that
certain details are not relevant to the outcome. Since the differences between
the parameter values of the design and analysis view are due to precisely
these details that were ignored, we expect the effect of using either set of
parameter definitions to be insignificant.

Although the establishment of a link between the design and the anal-
ysis view is possible with our simple approach sketched above, there are
undoubtedly many remaining issues. In the next section we briefly discuss
some of the shortcomings of our approach to linking design and analysis
models.

8.4. Open issues 151
8.4 Open issues

The approach we have explored for linking an analysis model with dimen-
sional abstractions to a design model, is admittedly limited. The set of
features and constraints is small, and the success of the method depends on
assumptions that may not hold for all realistic models.

In our approach, we abstract features on an individual basis, since this
enables us to have a true feature model in the analysis view. Such a model
cannot be the result of algorithms for dimensional reduction that are purely
geometry-oriented, unless some kind of feature recognition would be used.
It seems doubtful that the result of this model constructed on the basis of
recognition would be better than what could be derived from the original
features and constraints that define the design model. On the other hand,
we question whether it is always the best choice, or even possible in every
case, to create the abstracted model on the basis of individual features.

The features in our prototype offer straightforward ways for dimensional
abstraction, but for a more complex feature the way to abstract its individual
geometry might not be immediately clear. It could very well be that the
right abstraction depends on how the feature is combined and interacts
with other features. We imagine the possibility that multiple features in a
design model could be best represented by a single feature in the analysis
view. Our current approach cannot handle such cases, as we essentially
assume a 1-to-1 relationship between individual features of the design and
the analysis views.

Knowing how the geometry of an individual feature can be abstracted,
is not enough. In addition to a complete set of rules for adjusting feature pa-
rameters based on the constraints, which can combine individual abstracted
features into an analysis model, we also need rules to decide which features
should be abstracted and, if multiple abstractions are possible, in which way.
In our current approach, these decisions were part of the input. Some self-
evident heuristics on the relative sizes of various shape parameters can be
used here, but looking at just the individual features might give unwanted
results. The choice for abstraction of a particular feature, when looking at it
in combination with other features, might be different from what would be
concluded from just its individual shape. This is why geometry-oriented
algorithms for abstraction are popular, as they can take the whole geometry
into account, and do not need to worry about the abstraction of individual
features. Possibly a geometry-oriented approach could be used in conjunc-
tion with a feature-based approach in the derivation of the analysis view
for supporting these choices in the abstraction.

Another way to support the abstraction process is to incorporate seman-

152 8. Relating an analysis view to a design view

tics from the feature model in the decision procedure. This incorporation of
knowledge from other views, is one of the underlying ideas of the analysis
view, or views in general. To some extent it is known what the role of the
features is, whether they belong to a class of features that is usually excluded
from the analysis model, and whether there is an abstraction that is preferred
by default. This requires rich models that contain information that supports
an algorithmic understanding of our problems. As discussed in Chapter 7,
this is easier to achieve in specialised environments, where the number of
different features is confined, and interest is limited to a particular class of
analysis problems.

A further factor of complication is dealing with defeaturing, i.e. leaving
out features from the design model in the analysis model. We have not really
touched upon this with our approach. Assuming we know which features
to take out, we should be able to handle this, since our feature modelling
system can perform this operation and return a consistent and logical model.
This should work for most features considered for defeaturing, as they
usually have been added in the later stages of the design, and thus have no
other features depending on them. Difficulty arises when other features
depend, through their constraints, on a feature that is to be removed. Some
situations could be handled by dropping the references and replacing them
by constant values that correspond to the current state of the model, as this
would at least yield a solution. However, we then have lost information in the
process, and we do not know how to deal with this in the adjustments of the
constraints for the abstracted analysis model. If corresponding constraints
in the design and the analysis model were to depend on different features,
then propagation becomes an issue.

Another issue with propagation of changes from an abstracted analysis
model to a design model, is ambiguity. In our approach we assume that the
changes to the analysis model are limited to changes to existing parameters.
In that case, the design model can be updated based on the parameter corre-
spondence, while taking the parameter adjustments into account. In general,
however, propagating changes from a dimensionally abstracted model to
a full-dimensional model is not possible without ambiguity. For instance,
when attaching new features to the boundary of abstracted geometry, there
are multiple ways to translate this attachment to the full-dimensional model.
Possibly, it could be determined on the basis of heuristics what outcome
is likely to be desired, or otherwise the user would be required to refer to
geometric elements from the full-dimensional model when making changes
to the abstracted model.

The only constraints that we have explored for our linking of models are
perpendicular attach and position constraints, i.e. the mid-surface or midline

8.4. Open issues 153

(@ Attachment of (b) Use of an attach
two features feature

Figure 8.10: Connecting non-perpendicular midlines with an attach feature

of the abstracted feature has a perpendicular orientation with respect to
the other feature. In that case the shape parameters of the features can be
used to adjust the geometry of the model. In the case that the abstracted
geometry does not make a perpendicular attachment to the other feature,
it is less clear how the adjustment should be made. Adjusting the shape
parameters might give unwanted results, or maybe no results at all, as the
abstracted geometry does not intersect. A solution could be the introduction
of a special attach feature that connects two features in the abstracted view,
such as illustrated in Figure 8.10. However, though this solution may work,
it might not result in the analysis model an engineer would have built. This
is not necessarily a problem for the analysis, but it could be a barrier for
acceptance by engineers who would have preferred a different result. Of
course, there are other constraints than just attach and position constraints.
It has to be looked into, if and how these can be included into the adjustment
procedure as well.

In our approach, we leave the design model more or less untouched, and
attempt to achieve integration by focussing on the analysis model and its path
of derivation from the design model. We can, however, imagine a solution
that requires essential changes to the representation of the design model
and the tasks involved in specifying the model. Constraints in the design
model, for example, could be extended to include directions or hints on
the intention of the constraint in various cases of abstraction for an analysis
model. We have not explored this particular direction, but we are wary of
such approaches, as they might require the designer to make choices and
specify relations that fall outside his design focus. Keeping views separated,
at least from a user’s perspective, is fundamental to our general approach.

It is the great variety in features, models, abstractions, analyses, etc. that
makes a general solution to this problem hard. Some abstract models exploit
symmetries in the model, thus greatly reducing the computational work. See
Figure 8.11, which shows two examples of a design model and its abstracted
analysis model. It seems likely that at least some involvement of the engineer
would be required, in relating such an analysis model to the design model.

154 8. Relating an analysis view to a design view

Q<N

Figure 8.11: Two design models with a corresponding abstracted analysis model

This is essentially a failure to derive the analysis model in a completely
automated manner. Given all the difficulties that we have mentioned, such a
partial failure is to be expected from time to time. It is an interesting question
how this should be dealt with, since we want to maintain a transparent
link between the views. Is it possible to let the engineer intervene in the
derivation of the abstract models, and yet have the views transparently
linked afterwards?

Clearly, much research has yet to be done, before we will have an analysis
view with the functionality proposed in Section 7.3.

8.5 Conclusions

We have created a prototype implementation for linking an analysis view
and a design view. In this implementation, modelling is done by means of
scripts that perform the modelling operations. With a few simple features
and constraints, we have demonstrated a way to achieve propagation of
changes to the geometry of both the design and the analysis model. This is
a first step towards the realisation of analysis views.

The central idea of our approach is to have a correspondence between
the individual features in the analysis model and those in the design model.
The features in the design model are combined into a single geometry by
means of constraints, and these provide an indication of how the connection
of features is intended. We attempt to reinterpret these constraints for
the analysis model, such that the intention behind the combination of the
features is preserved. We do this by adjusting shape parameters of individual
features. For our simple example models, this approach works well.

Since the adjusted parameter definitions in the analysis view are basically
the same parameters as in the design view, there is a question of how to
present these parameters of the analysis view to the user. The same model
parameters that were used in the design view, should be present in the
analysis view. These parameters, however, refer to a different geometry.
The first option is that it is represented as a completely independent model,

8.5. Conclusions 155

without any mention of the adjustments that have been applied. Some
of the parameter values will be slightly different from the corresponding
values in the design view, but only if the user works with both views at
the same time, this might be a source of confusion. The second option
is that the user is made aware of the differences in geometry by showing
the adjustments in some way in the interface for changing the parameter
definitions. This would, however, interfere with the aim that the analysis
view is really a separate view, where the only concern is the analysis context.
The last option is that the same user-defined parameters are shown in the
interface of the analysis model, whereas the adjustments are only used for
the actual geometry that is shown in the view. From the point of ease of
use, and the aims of the analysis views, either the first or the last approach
is preferred. However, both have some risk of confusion, as either the
parameter values between the two views are slightly different, or changes
to the parameter values in the analysis view do not correspond 1-to-1 with
the changes of the geometry in that view. This may not be a problem, as
both effects are in the order of the adjustment values, and these are usually
small in comparison to the geometry as a whole. User testing would be
required to get a clearer picture of the drawbacks and advantages of the
various approaches to present the parameter definitions and values of the
analysis view.

As we have pointed out in the previous section, there are many issues
remaining. Although our approach is a first step, much research is left to be
done, before analysis views could be used in practice.

Acknowledgements

We kindly thank Rick van der Meiden for the use of his constraint solver.

Chapter 9

Conclusions and future research

This thesis addresses improvement of the integration of design and analysis.
Historically, the two disciplines evolved independently, but with the growing
capabilities of both, the need for interaction developed. Nowadays, analysis
is an established constituent of the product development cycle. However, the
integration between the design and analysis phases can still be characterised
as poor, or even lacking.

An important factor in this poor integration is the need to switch fre-
quently between various models, such as the design model, the analysis
model, and the analysis mesh. These transitions often involve some kind of
conversion of models, which is rarely completely automated, and thus leads
to tedious and redundant manipulation of models. In this work, we aimed
to improve the integration of design and analysis by increasing the reuse
of information when going back and forth between the various phases and
their corresponding models.

The first aspect we have looked at, is reducing the time spent on mesh-
ing an analysis model after a change in the design. To this end, we have
developed a procedure for efficient tetrahedral remeshing, which works by
relating the current and previous analysis model, and by identifying the
similarities and differences in their geometry.

The second aspect we have looked at, is the integration of design and
analysis models. We introduce the concept of analysis views for multiple-
view feature modelling, and describe how views interact in this approach.

Firstly, in Section 9.1, we summarise the conclusions drawn from these
two research aspects, and from the work as a whole. Secondly, in Section 9.2,
we discuss how the work in this thesis could be extended, and how it relates
to possible future developments for the integration of design and analysis.

157

158 9. Conclusions and future research

9.1 Conclusions

Remeshing of analysis models, based on the analysis model and the mesh
from the previous iteration, can improve the efficiency of the product devel-
opment cycle, in particular when the modifications to the analysis model
are small, the mesh has many elements, and the meshing procedure is time-
consuming. Small modifications are more likely when the development of a
product has progressed further, and so is the number of mesh elements, as
the accuracy of the analysis becomes more important at that stage. Meshing
algorithms that are time-consuming often have a variational nature, min-
imising an energy functional related to some quality measure, and therefore
delivering high quality meshes. Such meshes are advantageous for perform-
ing analysis, as they lower the computation time and increase the overall
reliability of the analysis.

Our tetrahedral remeshing approach delivers such high quality meshes.
The method can handle changes in topology between the original and mod-
ified models, such as addition or removal of features, which cannot be
handled with morphing-based techniques. The efficiency gains are higher
when the ratio of boundary samples to nodes is higher, but even for the
lowest acceptable ratio the gains are evident.

The remeshing approach is based on variational tetrahedral meshing.
We showed that with some adjustments, this algorithm can be suitably
applied to meshing of mechanical models. These enhancements are in
particular focussed on obtaining a correct representation of the boundary
in the mesh, as this is the principle concern of applying the Delaunay-
based method to mechanical models. The runtime of the algorithm is not
noticeably affected by our enhancements, as the repeated updates of the
Delaunay triangulation clearly dominate the computational costs. Some
models, however, remain difficult to handle with this method, as effectively
an approximate conforming Delaunay mesh is constructed. If small dihedral
angles are present in the model, or regions where different parts of the
boundary are close, then a very high number of elements will be needed for
a correct representation of the boundary. In general, however, the approach
behaves well for meshing mechanical models. Also, because it is a Delaunay-
based method, we can copy mesh subsets with relative ease. Only nodes
need to be copied, without taking explicit care for the connectivity, which
makes it very suitable to base our remeshing approach on.

Very important to our remeshing approach is the new concept of feature
difference. This description identifies and categorises, for each feature, the
geometric entities of the model that it covers. For each entity, including cells
of volume, it is recorded whether the geometry is persistent, old, or new.

9.1. Conclusions 159

Additionally, the interpretation of the entity is taken into account, and the
changes of interpretation are captured by the feature difference as well. For
our purpose of remeshing, the interpretation reflects for faces, edges and
vertices whether the entity was part of the model boundary, and for cells
the additive or subtractive nature of the cell.

The feature difference and the combined model, which is a data structure
derived from the feature difference, enable us to identify similar geometry
between related models, such that it can be used by our remeshing procedure.
This is possible since the differences and similarities are represented in a
geometrically exact manner. The description also connects closely to our
intuitive idea of how two models differ, as it is based on how individual
features evolve and interact with the other features in the model. This is
sensible since incremental changes to feature models are made in terms of
addition, removal, or reparametrisation of features. The cellular model is
essential to the representation of the feature difference. The information
contained in the feature difference model is virtually unobtainable from a
basic BRep structure. The concept of feature difference is very useful for
our remeshing procedure, and we therefore suppose that there are more
applications that might benefit from this approach to model comparison.

Altogether, the new remeshing approach that has been presented can
be profitable for variational tetrahedral meshing of mechanical models, but
the basic idea and some concepts used in it, can also be valuable for other
meshing approaches.

For the remeshing procedure it is required that the original and the
modified analysis model can be related to each other, i.e. we must be able to
map the features between the models, so that we know how the individual
features correspond between the two models. This requires consistency
between versions of the analysis models. Since an analysis model is an
abstraction of the design model, this implies a relationship between these
two models as well. There are several ways to obtain an analysis model
from a design model, each with different underlying data structures and
characteristics for manipulation. For automatically maintaining consistency
between iterations of an analysis model, and, consequently, between analysis
models and the design model, we need to collectively maintain the models.
The concept of analysis views for multiple-view feature modelling supports
this.

Analysis views offer an integration of design and analysis in which
the relationships between all models are automatically maintained in a
transparent manner. This avoids having to repeatedly derive an analysis
model, or manually update earlier derived models, after changes to the
design. They also enable bidirectional propagation of changes, i.e. changes

160 9. Conclusions and future research

can be made in any of the views, not just the design view. Although multiple-
view feature modelling has already demonstrated its viability in general,
a particular challenge here lies in the maintenance of views with different
geometry.

The analysis model is an abstraction of the design model, and as such,
similar features can be found in both models. Linking these two models,
even if the analysis model is a dimensional abstraction, can be done on the
basis of features and the constraints that define how the features are related.
In case of dimensional abstraction, the constraints need to be adjusted to
compensate for the differences in feature dimensions. The user can edit ei-
ther representation, because through the adjusted constraints, the constraint
relations in the design model can be updated.

The work on this aspect has shown that the concept of analysis views for
multiple-view feature modelling is both feasible and promising, but much
work remains to be done here to fully achieve an analysis view with the
capabilities that we envision.

9.2 Future research

In our remeshing approach, the Delaunay property defines the connectivity
of the mesh. Obviously, when the connectivity had been changed to further
optimise the mesh, e.g. to remove near-slivers by flipping, this will not be
transferred to the new mesh by merely copying the nodes. In that case, we
would need to copy the connectivity too, or repeat the final optimisation
step. In general, the ability to copy mesh connectivity is a requirement when
basing the remeshing procedure on alternative meshing algorithms that
do not have the connectivity implicitly defined. It would be interesting to
implement the remeshing strategy for such algorithms, and measure the
corresponding performance improvements.

The node density is currently assumed to be uniform over the model.
Obviously, when the geometry of the model changes, then the requirements
for the mesh can change as well. In particular the required mesh density
may change, and this needs to be taken into account when applying the
remeshing procedure. Some regions may have to be adapted. Through the
use of analysis features for the density requirements, the changes herein
could be determined exactly. The feasibility of this, and the impact on the
performance improvements, have to be studied.

The benefits of using a high quality mesh and of the remeshing proce-
dure have not been tested within the context of actual analyses. Realistic
experiments should be carried out to confirm the posited advantages, such
as shortening the preparation and analysis stages, and providing a higher

9.2. Future research 161

degree of reliability. In particular, such experiments would include a com-
parison with other meshing methods.

The feature difference relates features from two versions of a model, and
thus requires that the two models have their origin in the same modelling
system, and that they are a variant of each other. When the models originate
from different systems, or when they have not been constructed with a
feature modelling system, then the creation of the feature mapping between
the models would be a challenge on its own.

We have demonstrated how to link a design and an analysis model for
a very limited set of features and constraints. The approach assumes that
every feature in the analysis model relates to a single feature in the design
model, i.e. that there is a one-to-one relation between the features of the
analysis model to the features from the design model. This is not always the
case in practice. Also, some features from the design model might not be
included in the analysis model, as they are not significant for the outcome
of the analysis, and may even complicate and interfere with the analysis
process. This is an issue when there are features in the analysis model of
which the constraints depend on features that do not exist in the analysis
model. An extension of the approach that includes more types of features
and constraints, and resolving the latter and many other remaining issues,
would be very interesting.

Ideally, we would have a complete assimilation of analysis into design,
which would imply that the developer would no longer distinguish between
the separate tasks, but instead analysis would transparently be used to steer
the design process. This, however, is nowhere near to being realised, so the
coming years will focus on the integration of the two disciplines. The latter
will involve more and easier interaction primarily based on the exchange
of information on updates to the model, between the various tasks, which
could very well be achieved through a range of views on the product in the
spirit of what we have proposed.

Incorporation of knowledge of the analysis process and the requirements
for the analysis model is essential for improving integration of analysis
with the rest of the product development cycle. Depending, for instance,
on the analysis context and the level of abstraction, different requirements
hold. Product development systems should “‘understand” when operations
should be executed automatically, or at least know from which limited set of
operations the engineer should be offered a choice. Integrating design and
analysis models by means of a multiple-view feature modelling approach,
in which both models are maintained concurrently as views on a single
product, provides a good way to incorporate the relevant knowledge on the
transition between the two models.

162 9. Conclusions and future research

Although indirectly a lot has been written on the combined workflow of
design and analysis, in terms of specific problems and industrial cases, little
is known about how industry at large deals with the interaction of the two
disciplines. It would be useful to have more statistically backed insight on
this, in relation to the size and complexity of the models, the type or level of
abstraction of the analysis models, and the type of simulations. Collecting
such information, however, would be a huge effort, also because industry
is not always keen on disclosing the issues they are experiencing. On the
other hand, it might have a significant impact on the future research on
integration of design and analysis.

Bibliography

Acikgoz, N. and Bottasso, C. L., 2007. Metric-driven mesh optimization using a
local simulated annealing algorithm. International Journal for Numerical Methods in
Engineering, 71(2):201-223.

Ainsworth, M. and Oden, J. T., 1997. A posteriori error estimation in finite element
analysis. Computer Methods in Applied Mechanics and Engineering, 142(1-2):1 — 88.

Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M., 2005. Variational tetrahe-
dral meshing. ACM Transactions on Graphics, 24(3):617-625.

Amenta, N. and Bern, M., 1999. Surface reconstruction by Voronoi filtering. Discrete
and Computational Geometry, 22(4):481-504.

Apel, T. and Dobrowolski, M., 1992. Anisotropic interpolation with applications to
the finite element method. Computing, 47:277-293.

Arabshabhi, S., Barton, D. C., and Shaw, N. K., 1993. Steps towards CAD-FEA integra-
tion. Engineering with Computers, 9(1):17-26.

Bagemihl, F., 1948. On indecomposable polyhedra. American Mathematical Monthly,
55:411-413.

Baker, T. J., 2005. Mesh generation: Art or science? Progress in Aerospace Sciences,
41(1):29 - 63.

Beall, M. W., Walsh, J., and Shephard, M. S., 2004. A comparison of techniques for
geometry access related to mesh generation. Engineering with Computers, 20(3):210-
221.

Benzley, S. E., Perry, E., Merkley, K., Clark, B., and Sjaardama, G., 1995. A comparison
of all hexagonal and all tetrahedral finite element meshes for elastic and elasto-
plastic analysis. In Proceedings of the 4th International Meshing Roundtable, pages
179-191. John Wiley & Sons.

van den Berg, E. and Bronsvoort, W. F., 2010. Validity maintenance for freeform
feature modeling. Journal of Computing and Information Science in Engineering,
10(1):011006/1-14.

163

164 Bibliography

van den Berg, E., Bronsvoort, W. F.,, and Vergeest, J. S. M., 2002. Freeform feature
modelling: concepts and prospects. Computers in Industry, 49(2):217-233.

Bespalov, D., Regli, W. C., and Shokoufandeh, A., 2006. Local feature extraction and
matching partial objects. Computer-Aided Design, 38(9):1020-1037.

Biasotti, S., Marini, S., Spagnuolo, M., and Falcidieno, B., 2006. Sub-part correspon-
dence by structural descriptors of 3D shapes. Computer-Aided Design, 38(9):1002—
1019.

Bidarra, R. and Bronsvoort, W. F., 2000. Semantic feature modelling. Computer-Aided
Design, 32(3):201-225.

Bidarra, R., de Kraker, K. J., and Bronsvoort, W. F., 1998. Representation and manage-
ment of feature information in a cellular model. Computer-Aided Design, 30(4):301-
313.

Bidmon, K., Rose, D., and Ertl, T., 2004. Intuitive, interactive, and robust modification
and optimization of finite element models. In Proceedings of the 13th International
Meshing Roundtable. Sandia National Laboratories.

Botsch, M., Kobbelt, L., Pauly, M., Alliez, P, and Levy, B., 2010. Polygon Mesh
Processing. AK Peters.

Bozdoc, M., 2010. Marian Bozdoc’s history of CAD. http://mbinfo.mbdesign.net/
CAD-History.htm (accessed June 2010).

Branets, L. and Carey, G. F., 2005. A local cell quality metric and variational grid
smoothing algorithm. Engineering with Computers, 21(1):19-28.

Brenner, S. C. and Scott, L. R., 2007. The Mathematical Theory of Finite Element Methods.
Springer, 3rd edition.

Bronsvoort, W. F., Bidarra, R., and Nyirenda, P. J., 2006. Developments in feature
modelling. Computer-Aided Design and Applications, 3(5):655-664.

Bronsvoort, W. F. and Noort, A., 2004. Multiple-view feature modelling for integral
product development. Computer-Aided Design, 36(10):929-946.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M., 1996. Pattern-
Oriented Software Architecture, Volume 1: A System of Patterns. Wiley, Chichester,
UK.

CGAL Editorial Board, 2006. CGAL, Computational Geometry Algorithms Library.
http://wuw.cgal.org/ (accessed March 2006).

Chand, K. K., Diachin, L. F, Li, X., Ollivier-Gooch, C., Seol, E. S., Shephard, M. S.,
Tautges, T., and Trease, H., 2008. Toward interoperable mesh, geometry and
field components for PDE simulation development. Engineering with Computers,
24(2):165-182.

Bibliography 165

Chen, L., 2004. Mesh smoothing schemes based on optimal Delaunay triangulations.
In Proceedings of the 13th International Meshing Roundtable, pages 109-120. Sandia
National Laboratories, Williamsburg, VA.

Chen, L. and Xu, J., 2004. Optimal Delaunay triangulations. Journal of Computational
Mathematics, 22(2):299-308.

Cheng, S.-W., Dey, T. K., Edelsbrunner, H., Facello, M. A., and Teng, S.-H., 2000.
Sliver exudation. Journal of ACM, 47(5):883-904.

Chew, L. P,, 1989. Guaranteed-quality triangular meshes. Technical Report TR-89-983,
Comp. Science Dept., Cornell University.

Chong, C. S., Kumar, A. S., and Lee, H. P, 2007. Automatic mesh-healing technique
for model repair and finite element model generation. Finite Elements in Analysis
and Design, 43(15):1109-11109.

Cifuentes, A. O. and Kalbag, A., 1992. A performance study of tetrahedral and
hexahedral elements in 3-D finite element structural analysis. Finite Elements in
Analysis and Design, 12(3—4):313-318.

Cohen-Steiner, D., de Verdiere, E. C., and Yvinec, M., 2002. Conforming Delaunay
triangulations in 3D. In SCG '02: Proceedings of the Eighteenth Annual Symposium
on Computational Geometry, pages 199-208. ACM Press, New York.

Date, H. and Onosato, M., 2008. Triangular mesh deformation based on dimensions.
Computer-Aided Design and Applications, 5(1-4):287-295.

Delaunay, B., 1934. Sur la sphere vide. Izvestin Akademia Nauk SSSR, VII Seria,
Otdelenie Matematicheskii i Estestvennyka Nauk, 7(6):793-800.

Dittmer, J. P, Jensen, C., Gottschalk, M., and Almy, T., 2006. Mesh optimization using
a genetic algorithm to control mesh creation parameters. Computer-Aided Design
and Applications, 3(6):731-740.

Drieux, G., Léon, J.-C., Guillaume, F., Chevassus, N., Fine, L., and Poulat, A., 2007.
Interfacing product views through a mixed shape representation. Part 2: Model
processing description. International Journal on Interactive Design and Manufacturing,
1(2):67-83.

Du, Q., Faber, V., and Gunzburger, M., 1999. Centroidal Voronoi tessellations:
applications and algorithms. SIAM Review, 41(4):637-676.

Du, Q. and Wang, D., 2003. Tetrahedral mesh generation and optimization based
on centroidal Voronoi tessellations. International Journal for Numerical Methods in
Engineering, 56(9):1355-1373.

Du, Q. and Wang, D., 2006. Recent progress in robust and quality Delaunay mesh
generation. Journal of Computational and Applied Mathematics, 195(1):8-23.

166 Bibliography

Edelsbrunner, H. and Guoy, D., 2002. An experimental study of sliver exudation.
Engineering with Computers, 18(3):229-240.

Eppstein, D., 2001. Global optimization of mesh quality.
http://wuw.ics.uci.edu/~ eppstein/pubs/Epp-IMR-01.pdf (accessed
October 2010).

Field, D. A., 1988. Laplacian smoothing and Delaunay triangulations. Communications
in Applied Numerical Methods, 4(6):709-712.

Foucault, G., Cuilliere, J.-C., Francois, V., Léon, J.-C., and Maranzana, R., 2008.
Adaptation of CAD model topology for finite element analysis. Computer-Aided
Design, 40(2):176-196.

Francois, V. and Cuilliére,].-C., 2000. 3D automatic remeshing applied to model
modification. Computer-Aided Design, 32(7):433-444.

Frangois, V., Cuilliére, J. C., and Gueury, M., 1999. Automatic meshing and remeshing
in the simultaneous engineering context. Research in Engineering Design, 11(1):55-
66.

Frey, P. J. and George, P-L., 2000. Mesh Generation: Application to Finite Elements.
HERMES Science Publishing, Oxford, Paris.

George, P. L., Hecht, F,, and Saltel, E., 1991. Automatic mesh generator with specified
boundary. Computer Methods in Applied Mechanics and Engineering, 92(3):269 — 288.

Hamri, O., Léon, J.-C., Giannini, F., Falcidieno, B., Poulat, A., and Fine, L., 2008.
Interfacing product views through a mixed shape representation. Part 1: Data
structures and operators. International Journal on Interactive Design and Manufactur-
ing, 2(2):69-85.

Hoffmann, C. M. and Joan-Arinyo, R., 1997. Symbolic constraints in constructive
geometric constraint solving. Journal of Symbolic Computation, 23(2-3):287-299.

Hoffmann, C. M. and Joan-Arinyo, R., 1998. CAD and the product master model.
Computer-Aided Design, 30(11):905-918.

van Holland, W. and Bronsvoort, W. E,, 2000. Assembly features in modeling and
planning. Robotics and Computer Integrated Manufacturing, 16(4):277-294.

Hughes, T. J. R,, Cottrell,]. A, and Bazilevs, Y., 2005. Isogeometric analysis: CAD,
finite elements, NURBS, exact geometry and mesh refinement. Computer Methods
in Applied Mechanics and Engineering, 194(39-41):4135-4195.

Joe, B., 1995. Construction of three-dimensional improved-quality triangulations
using local transformations. SIAM Journal on Scientific Computing, 16(6):1292-1307.

Klingner, B. M. and Shewchulk, J. R., 2007. Aggressive tetrahedral mesh improvement.
In Proceedings of the 16th International Meshing Roundtable, pages 3-23. Springer.

Bibliography 167

de Kraker, K. J., Dohmen, M., and Bronsvoort, W. F., 1997. Maintaining multiple views
in feature modeling. In C. M. Hoffmann and W. F. Bronsvoort, editors, Proceedings
of Solid Modeling 97, Fourth Symposium on Solid Modeling and Applications, 14-16
May, Atlanta, USA, pages 123-130. ACM Press, New York.

Lawson, C. L., 1977. Software for C! surface interpolation. In J. Rice, editor, Mathe-
matical Software III, pages 161-194. Academic Press.

Lee, K., 1999. Principles of CAD/CAM/CAE systems. Addison-Wesley, USA.

Lee, K. Y., Armstrong, C. G., Price, M. A,, and Lamont, J. H., 2005. A small feature
suppression/unsuppression system for preparing B-rep models for analysis. In
L. Kobbelt and V. Shapiro, editors, SPM "05: Proceedings of the 2005 ACM Symposium
on Solid and Physical Modeling, pages 113-124. ACM Press, New York.

Lee, S. H., 2005. A CAD-CAE integration approach using feature-based multi-
resolution and multi-abstraction modelling techniques. Computer-Aided Design,
37(9):941-955.

Liu, W. and Yang, Y., 2007. Multi-objective optimization of an auto panel drawing
die face design by mesh morphing. Computer-Aided Design, 39(10):863-869.

Mackerle, J., 2001. 2D and 3D finite element meshing and remeshing: a bibliography
(1990-2001). Engineering Computations, 18(8):1108-1197.

Martino, T. D., Falcidieno, B., and Hassinger, S., 1998. Design and engineering process
integration through a multiple view intermediate modeller in a distributed object-
oriented system environment. Computer-Aided Design, 30(6):437-452.

Matula, D. W. and Sokal, R. R., 1980. Properties of Gabriel graphs relevant to
geographic variation research and the clustering of points in the plane. Geographical
Analysis, 12:205-222.

van der Meiden, H. A. and Bronsvoort, W. F., 2007. Solving topological constraints
for declarative families of objects. Computer-Aided Design, 39(8):652—662.

Nyirenda, P. J., Bidarra, R., and Bronsvoort, W. F., 2007. A semantic blend feature
definition. Computer-Aided Design and Applications, 4(6):795-806.

Open CASCADE S.A.S., 2010. Open CASCADE. http://www.opencascade.org/
(accessed June 2010).

Owen, 5., 2006. Meshing research corner. http://www.andrew. cmu. edu/user/sowen/
mesh.html (accessed October 2010).

Owen, S.]., 1998. A survey of unstructured mesh generation technology. In Proceed-
ings of the 7th International Meshing Roundtable, pages 239-267. Sandia National
Laboratories, Dearborn, MI.

168 Bibliography

Parthasarathy, V. N., Graichen, C. M., and Hathaway, A. F., 1994. A comparison of
tetrahedron quality measures. Finite Elements in Analysis and Design, 15(3):255-261.

Peak, R. S., Fulton, R. E., Nishigaki, I., and Okamoto, N., 1998. Integrating engineering
design and analysis using a multi-representation approach. Engineering with
Computers, 14(2):93-114.

Pernot, J.-P., Falcidieno, B., Giannini, F., and Léon, J.-C., 2008. Incorporating free-
form features in aesthetic and engineering product design: State-of-the-art report.
Computers in Industry, 59(6):626-637.

Persson, P.-O., 2006. Mesh size functions for implicit geometries and PDE-based
gradient limiting. Engineering with Computers, 22(2):95-109.

Quadros, W. R., Shimada, K., and Owen, S. J., 2004. Skeleton-based computational
method for the generation of a 3D finite element mesh sizing function. Engineering
with Computers, 20(3):249-264.

Rajan, V., 1994. Optimality of the Delaunay triangulation in R?. Discrete and Compu-
tational Geometry, 12:189-202.

Reddy, J. N., 2005. An Introduction to the Finite Element Method. McGraw-Hill, 3rd
edition.

Regli, W. C. and Spagnuolo, M., 2006. Introduction to shape similarity detection and
search for CAD/CAE applications. Computer-Aided Design, 38(9):937-938.

Requicha, A. A. G. and Voelcker, H. B., 1985. Boolean operations in solid modeling:
Boundary evaluation and merging algorithms. Proceedings of the IEEE, 73(1):30—44.

Rivara, M.-C., Hitschfeld, N., and Simpson, R. B., 2001. Terminal-edges delaunay
(small-angle based) algorithm for the quality triangulation problem. Computer-
Aided Design, 33(3):263-277.

Schneiders, R., 2006. Mesh generation & grid generation of the web. http://
www-users.informatik.rwth-aachen.de/~roberts/meshgeneration.html.

Schonhardt, E., 1928. Uber die Zerlegung von Dreieckspolyedern in Tetraeder.
Mathematische Annalen, 98:309-312.

Shah, J. and Méntyla, M., 1995. Parametric and Feature-based CAD/CAM: Concepts,
Techniques, and Applications. John Wiley & Sons, Inc.

Sheffer, A. and Ungor, A., 2001. Efficient adaptive meshing of parametric models.
Journal of Computing and Information Science in Engineering, 1(4):366-375.

Shephard, M. S., Beall, M. W.,, O’Bara, R. M., and Webster, B. E., 2004. Toward
simulation-based design. Finite Elements in Analysis and Design, 40(12):1575-1598.

Bibliography 169

Shewchuk, J. R., 1996. Robust adaptive floating-point geometric predicates. In
Proceedings of the Twelfth Annual Symposium on Computational Geometry, pages
141-150. ACM Press, New York.

Shewchuk, J. R., 2002a. Constrained Delaunay tetrahedralizations and provably
good boundary recovery. In Proceedings of the 11th International Meshing Roundtable,
pages 193-204. Sandia National Laboratories, Ithaca, NY.

Shewchuk, J. R., 2002b. What is a good linear element? Interpolation, conditioning,
and quality measures. In Proceedings of the 11th International Meshing Roundtable,
pages 115-126. Sandia National Laboratories, Ithaca, NY.

Shimada, K., 2006. Current trends and issues in automatic mesh generation. Computer-
Aided Design and Applications, 3(6):741-750.

Si, H., 2006. TetGen, a quality tetrahedral mesh generator and three-dimensional
Delaunay triangulator. http://tetgen.berlios.de/ (accessed november 2007).

SIAM, 2010. The history of numerical analysis and scientific computing. http://
history.siam.org/(accessed June 2010).

Sinha, M. and Suresh, K., 2005. Simplified engineering analysis via medial mesh
reduction. In SPM '05: Proceedings of the 2005 ACM symposium on Solid and physical
modeling, pages 207-212. ACM Press, New York.

Spatial Corporation, 2006. 3D ACIS modeler. http://www.spatial.com/products/
acis.html.

Stark, J., 2005. Product Lifecycle Management: 21st Century Paradigm for Product Realisa-
tion. Springer-Verlag, London.

Sutherland, I. E., 1963. Sketchpad, a man-machine graphical communication system.
In Proceedings of the Spring Joint Computer Conference, Volume 23, pages 329-346.
Cleaver-Hume Press, London.

Sypkens Smit, M. and Bronsvoort, W. F., 2007. The difference between two feature
models. Computer-Aided Design and Applications, 4(6):843-851.

Sypkens Smit, M. and Bronsvoort, W. F., 2008. Variational tetrahedral meshing
of mechanical models for finite element analysis. Computer-Aided Design and
Applications, 5(1-4):228-240.

Sypkens Smit, M. and Bronsvoort, W. F., 2009a. Efficient tetrahedral remeshing of
feature models for finite element analysis. Engineering with Computers, 25(4):327—
344.

Sypkens Smit, M. and Bronsvoort, W. E., 2009b. Integration of design and analysis
models. Computer-Aided Design and Applications, 6(6):795-808.

170 Bibliography

Tangelder,]. W. and Veltkamp, R. C., 2008. A survey of content based 3D shape
retrieval methods. Multimedia Tools and Applications, 39:441-471.

Tautges, T. J., 2001. The generation of hexahedral meshes for assembly geometry:
survey and progress. International Journal for Numerical Methods in Engineering,
50(12):2617-2642.

Tech Soft 3D, 2006. HOOPS. http://www.hoops3d. com/products/3daf.html (ac-
cessed December 2007).

Teng, S.-H. and Wong, C. W., 2000. Unstructured mesh generation: theory, practice,
and perspectives. International Journal of Computational Geometry and Applications,
10(3):227-266.

Thakur, A., Banerjee, A. G., and Gupta, S. K., 2009. A survey of CAD model sim-
plification techniques for physics-based simulation applications. Computer-Aided
Design, 41(2):65 — 80.

Unruh, V. and Anderson, D. C., 1992. Feature-based modeling for automatic mesh
generation. Engineering with Computers, 8(1):1-12.

Voronoi, G., 1907. Nouvelles applications des parametres continus a la théorie des
formes quadratiques. Journal fiir die Reine und Angewandte Mathematik, 133:97-178.

Weiler, K. J., 1988. The radial-edge structure: A topological representation for non-
manifold geometric boundary representations. In Geometric Modeling for CAD
Applications, pages 3-36. North Holland, Amsterdam.

Summary

Analysis, nowadays, plays a major role in the product development cycle.
It enables to check whether products will function to specification, it helps
to optimise designs for material use and physical characteristics, and it
promotes innovation by facilitating the exploration of less conventional
designs, without having to construct costly and time-consuming test models.

Historically, there was limited interaction between design and analysis,
as they started out as more or less separate disciplines. As their respective
capabilities advanced, the need for more frequent interaction increased.
Over recent decades, a closer interaction between design and analysis has
become very common, but their historic disparity is still evident by a clear
lack of integration between the two tasks.

In this thesis, we are concerned with improving the integration of design
and analysis, within the context of feature modelling. This means to decrease
the need to perform tedious or redundant tasks related to the transition from
design to analysis, or vice versa. It should be accomplished by remedying
the lack of reuse of information captured in different phases of the design
and analysis process, and will lead to cheaper, more reliable, and more
efficient product development.

We focus on two aspects within the design-analysis loop, and describe
how improvements can be made here. The first aspect concerns efficient
meshing of analysis models, whereas the second aspect concerns the inte-
gration of design and analysis models.

The first aspect we deal with, is the efficient remeshing of analysis models.
Quality meshes for analysis are popular, since they can decrease the runtime
of the calculations, lower the odds of failure of the analysis, and generally
increase the reliability of results. However, quality meshes take more time
to generate. Within the product development cycle, analysis is performed
multiple times, each time after some modification of the design model. Since
the changes in the geometry, after such a modification, are often minor and
local in scope, there is a great deal of similarity between the meshes of
successive analysis models as well. We exploit these similarities for the

171

172 Summary

efficient construction of a new mesh, based on the previous mesh.

Our work is based on the variational tetrahedral meshing algorithm. This
algorithm generates tetrahedral meshes with a very high quality, but it is
not really suitable for meshing mechanical models. We discuss the limita-
tions, and present improvements to overcome these, which we illustrate by
examples.

In order to reuse a mesh from a previous iteration of an analysis model,
we need a precise geometrical description of the similarities and differences
between two models. Since we work with feature models, and features have
a strong connection to how humans perceive a model and, by extension,
the similarities and differences between models, we base our approach on
the features that compose the models. For each feature, we determine a
description of the difference, which we call the feature difference. It describes
how the geometry and interpretation between two models changed, from the
point of view of that feature. All the individual feature differences together
constitute the difference model. We give a detailed explanation of the feature
difference by means of examples, and discuss its implementation.

Building upon the feature difference, and the improvements to variational
tetrahedral meshing, we present a method for efficient tetrahedral remeshing.
The method basically looks for the similarities between two models, based
on the features that compose them. For regions of similarity, mesh elements
are copied from the previous mesh to the new mesh, and for the remaining
regions new mesh elements are constructed. We take specific care that the
quality of the new mesh is on par with the quality of the previous mesh,
which in particular is important for those regions where mesh elements
of different origins meet. The efficiency gains are illustrated by means of
examples.

The second aspect that we deal with in this thesis, is the integration of
design and analysis models. In practice, the representation of design models
and analysis models is often different. This commonly results in a need for
conversion of a design model to an appropriate analysis model. We describe
the differences in representation, and various approaches to integration
that have been suggested in the past. We propose a tighter integration of
the two models, by means of analysis views. The analysis view extends the
multiple-view feature modelling paradigm, by offering an interface that is
specific for dealing with analysis models, but is linked to the representation
of the design model. This enables bidirectional propagation of changes
between the two models.

The analysis view offers new challenges over other views in multiple-
view feature modelling, as the geometry of the design and analysis model
can be different. The analysis model can even be dimensionally abstracted.

Summary 173

We discuss the difficulties that this poses, and present an algorithm for
linking a design and an analysis view, which enables propagation of changes
between the two views. We discuss its implementation, and the interaction
of the user with both views.

Finally, we present conclusions on what has been achieved, and reflect
critically upon the issues that remain. We also look ahead which further
improvements we might expect in the future with respect to the integration
of design and analysis.

Samenvatting

Productanalyse neemt tegenwoordig een belangrijke plaats in binnen de
ontwerpcyclus van producten. Een dergelijke analyse maakt het mogelijk
om na te gaan of producten aan de vereiste specificaties voldoen, helpt
om producten te optimaliseren voor materiaalgebruik en fysische eigen-
schappen, en stimuleert innovatie door de verkenning van minder gangbare
ontwerpen mogelijk te maken, zonder dat er geld en kostbare tijd hoeft te
worden besteed aan het maken van testmodellen.

In het verleden was er maar beperkte interactie tussen ontwerp en analyse,
aangezien deze als afzonderlijke disciplines zijn ontstaan. Met de toename
van de mogelijkheden van beide disciplines, groeide de behoefte aan meer
interactie tussen ontwerp en analyse. Gedurende de laatste decennia is
er wel meer interactie gekomen, maar de historische kloof is nog steeds
merkbaar aanwezig in de vorm van een duidelijk gebrek aan integratie
tussen de twee taken.

In dit proefschrift houden we ons bezig met verbetering van de inte-
gratie van ontwerp en analyse in de context van feature modelleren. Dit
houdt in dat de noodzaak tot het uitvoeren van omslachtige en overbodige
handelingen bij de overgang tussen de ontwerp- en de analysefase wordt ver-
minderd. Het dient te worden gerealiseerd door het gebrek aan hergebruik
van informatie die tijdens verschillende fasen van het ontwerp- en analy-
seproces wordt ingewonnen, te verhelpen. Dit zal leiden tot goedkopere,
betrouwbaardere en efficiéntere productontwikkeling.

We lichten er twee aspecten uit binnen de cyclus van ontwerp en analyse,
en beschrijven verbeteringen op deze deelgebieden. Het eerste aspect betreft
efficiénte meshgeneratie voor analysemodellen, en het tweede de integratie
van ontwerp- en analysemodellen.

Het eerste aspect dat aan bod komt is het efficiént opnieuw genereren van
een mesh, d.w.z. een rooster van tetraéders, van een analysemodel. Meshes
voor analyse van hoge kwaliteit zijn populair, aangezien ze de rekentijd
kunnen verminderen, de kans op falen van de analyse verlagen, en in alge-
mene zin de betrouwbaarheid van de analyse vergroten. Het genereren van

175

176 Samenvatting

meshes van hoge kwaliteit kost echter meer tijd. Binnen de ontwerpcyclus
wordt er meerdere keren analyse uitgevoerd, telkens nadat een reeks van
modelaanpassingen heeft plaatsgevonden. Aangezien de wijzigingen in de
geometrie, na zo'n reeks van aanpassingen, doorgaans beperkt en lokaal
van aard zijn, is er ook een grote overeenkomst tussen de meshes van op-
eenvolgende analysemodellen. Wij gebruiken deze overeenkomst voor het
efficiént opnieuw genereren van een mesh voor analyse op basis van het
eerdere mesh.

Ons werk is gebaseerd op het variational tetrahedral meshing algoritme.
Dit algoritme genereert meshes opgebouwd uit tetraéders van een zeer hoge
kwaliteit, maar het is niet echt geschikt voor toepassing op mechanische
modellen. We bespreken de beperkingen en presenteren verbeteringen
om deze te compenseren; de bereikte resultaten worden door voorbeelden
ondersteund.

Om een mesh van een eerdere iteratie van een analysemodel te kunnen
hergebruiken, hebben we een exacte geometrische beschrijving nodig van
de overeenkomsten en verschillen tussen de twee modellen. Aangezien we
met feature modellen werken, en features sterk gerelateerd zijn aan hoe wij
mensen een model intuitief beschouwen, ook wat de overeenkomsten en
verschillen tussen twee modellen betreft, baseren wij onze aanpak op de
features waar de modellen mee zijn opgebouwd. Voor elk feature bepalen we
een beschrijving van het verschil en dit noemen we het feature difference. Het
beschrijft hoe de geometrie en de interpretatie daarvan verschilt tussen twee
modellen, vanuit het gezichtspunt van dat feature. Alle individuele feature
differences samen, vormen het difference model. We geven een gedetailleerde
uitleg van het feature difference begrip aan de hand van voorbeelden en
bespreken de implementatie ervan.

Voortbouwend op het feature difference en de verbeteringen van varia-
tional tetrahedral meshing, presenteren we een methode voor het efficiént
opnieuw genereren van tetraéder meshes. De methode komt erop neer dat
de overeenkomsten, op basis van de features waaruit ze zijn opgebouwd,
tussen de twee modellen worden gezocht. Voor overeenkomstige gebieden
kunnen mesh elementen van het eerdere mesh worden gekopiéerd naar het
nieuwe mesh, en in de resterende gebieden worden nieuwe mesh elementen
geconstrueerd. We zorgen ervoor dat de kwaliteit van het nieuwe mesh
vergelijkbaar is met die van het eerdere mesh. Dit is met name van belang
voor de gebieden waar mesh elementen van een verschillende herkomst bij
elkaar komen. De winst in efficiéntie wordt geillustreerd aan de hand van
voorbeelden.

Het tweede aspect dat aan bod komt in dit proefschrift is de integratie
van ontwerp- en analysemodellen. In de praktijk verschilt de representatie

Samenvatting 177

van deze twee modellen vaak. Dit heeft tot gevolg dat het ontwerpmodel
moet worden omgezet naar een geschikt analysemodel. We beschrijven de
verschillen tussen de representaties, en een aantal aanpakken voor integratie
die in het verleden zijn voorgesteld. Wij streven naar een nauwere integratie
van de twee modellen door middel van analyse-views. De analyse-view is
een uitbreiding van het multiple-view feature modelling concept. Door een
specifieke interface voor de omgang met het analysemodel te bieden, maar
deze te verbinden met de representatie van het ontwerpmodel, wordt het
automatisch uitwisselen van wijzigingen tussen de twee modellen mogelijk
gemaakt.

De analyse-view biedt nieuwe uitdagingen binnen multiple-view featu-
re modelling, aangezien de geometrie van het ontwerp- en analysemodel
kunnen verschillen. Het analysemodel kan zelfs een abstractie met lager
dimensionale elementen zijn. We bespreken de moeilijkheden die dit met
zich meebrengt, en presenteren een algoritme voor het verbinden van een
ontwerp- en een analyse-view dat het automatisch uitwisselen van wijzigin-
gen tussen de twee views mogelijk maakt. We bespreken de implementatie
hiervan en de interactie van de gebruiker met beide views.

Tenslotte presenteren we conclusies op grond van wat er bereikt is, en
reflecteren we kritisch op de nog onopgeloste kwesties. We kijken ook
vooruit naar welke ontwikkelingen we in de toekomst mogen verwachten
op het gebied van integratie van ontwerp en analyse.

Curriculum Vitae

Matthijs Sypkens Smit was born on April 15, 1980, in Utrecht, the Nether-
lands. He graduated in 1998 from the Utrechts Stedelijk Gymnasium, a
grammar school with a history dating back to 1474. In 2005 he completed
the academic study Computational Science, focussing on large-scale scien-
tific computing and modelling, at the Department of Mathematics of the
University of Utrecht.

In October 2005 he started working as a Ph.D. student in the Computer
Graphics and CAD/CAM Group, of the Electrical Engineering, Mathematics
and Computer Science faculty at Delft University of Technology. The title of
the research project was Integration of design and analysis models, and it con-
cerned the improvement of the product design cycle by bringing geometric
feature modelling and numerical analysis of these models closer together.
The research culminated in the current thesis during the course of 2010.

179

