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Abstract

Software security plays a crucial role in the modern world governed by software.
And while closed source projects can enjoy a sense of confidentiality when addressing
security issues, open source projects undertake them publicly even though just as many
projects rely on them. In 50% of documented cases, the vulnerabilities could have been
spotted almost 20 days before their disclosure leaving plenty of time for a potential
attacker to exploit the weakness.

Based on the results of a basic text search, we conclude that the majority of
security-related activity is in reaction to known vulnerabilities and that maintainers
are not always mentioning security terms when fixing exploits. We also confirm that
many security-labeled issues are not pushed to vulnerability systems, even though the
maintainers realize their security aspect. Then, while commit classification models can
spot security-related commits automatically, the models struggle in realistic scenarios,
and no particular feature or sampling method is vastly better than the others. Nonethe-
less, we evaluated the state-of-the-art models which spot security-related commits with
an F1 score of 0.36.

Given the findings, we conclude that security-related activity is hard to automat-
ically distinguish from everyday development activity and that manual review is re-
quired to spot these traces. Proposed methods can make this review easier. We suggest
that more attention should be given to open source security to avoid early public traces
of vulnerabilities.
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Preface

It was quite a wake-up call to realize how fragile and potentially dangerous the software
ecosystem currently is. It’s really the case that some critical vulnerabilities are being dis-
covered while a ticket on them was public for weeks. It’s really the case that companies are
using libraries that were not updated in years. And it’s really the case that multiple projects
are maintained by one person or not maintained at all...

I, after working for a bit as a software engineer, am guilty of ignoring some security
concerns or known vulnerability warnings. But it needs to change. Vulnerability alerts
have to be more respected, packages need to be kept more up-to-date and libraries have
to be reviewed for their quality and sustainability before including them in solutions. To
achieve this common effort is needed from all parties. Maintainers need to keep packages
as backward compatible as possible to allow seamless updates. Managers need to set tar-
gets to keep as many vulnerabilities as possible out of the systems. Developers need to use
packages more responsibly. Finally, companies need to give back to the open source com-
munity to ensure it can keep on evolving. In this thesis I commonly refer to security-relevant
commits, but the truth is that all commits are important to security.

Special thanks to my supervisors: Dr. Magiel Bruntink and Dr. Sebastian Proksch who
lead me through this project and kept me motivated, as well as to the entire SIG Research
Team for the support along the way.

Andrzej Westfalewicz
Delft, the Netherlands

December 22, 2022
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Chapter 1

Introduction

In the modern world defined by computer systems, software security is a critical subject.
System vulnerabilities, data breaches and other types of exploits can cause serious damage
to companies or governments either by financial or trust losses. Altogether, cybercrime has
been estimated to cost the global economy approximately one trillion USD annually [57].
This can be partially attributed to software vulnerabilities. While developers can try to
examine components, modern systems are too complex to be grasped and fully audited for
security risks. Even when a company manages to fully secure its own code, there are still
third-party components: frameworks, interface layers, or standalone supporting systems
that a software project relies upon.

Where software is produced in an incremental fashion, many have decided to balance the
risk by accepting the threat of vulnerabilities and fixing security issues as soon as possible.
When the company discovers a security issue in their software (either by penetration testing,
analyzing logs or from an external source) they patch the issue and release a new version
of the product. As this happens, they can also choose to publish the information about a
security release to encourage client projects to update to a newer version. This can happen
via a security bulletin, or better yet, via a vulnerability database. Vulnerability databases
are structured catalogs of known vulnerabilities with standardized data schemas, allowing
automatic processing tools to determine whenever a given software stack has known vul-
nerabilities.

Disclosing vulnerabilities is especially useful in the case of open source packages,
where potentially millions of projects rely on the package and the maintainers have no way
of reaching out to them nor know who they are. Recent reports show that amongst these
projects are also systems in critical industries like public, health, and financial sectors [51].
As such, vulnerabilities in open source gained a lot of popularity in research and industry
in the latter years.

When a vulnerability is discovered, maintainers usually work on a patch and disclose the
problem after releasing the fix. Optimally the information about the vulnerability is limited
to a handful of trusted people before the fix is available, but because of the public nature of
open source, work being done on fixing vulnerabilities eventually becomes public. We show
that in a large number of cases vulnerabilities have public traces of security-related activity
such as commits, reviews or issues long before the vulnerability is published, which is
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1. INTRODUCTION

Figure 1.1: The number of vulnerabilities, from 2017 to 2022, by how much earlier their
documented references were published.

confirmed by other works in the field [39]. This means that an attacker could gain serious
leverage by monitoring the online repositories of an open source project and trying
out exploits that are being fixed or were recently fixed. Because these issues weren’t yet
integrated or disclosed to the public, client projects don’t know about the potential danger
they are in [29].

Seeing this problem, the main goal of this project is to evaluate methods of finding
the public traces of vulnerabilities and to characterize these traces. These methods can be
implemented to provide tools that monitor open source projects the client project depends
on and warn the developers if any security-related activity is published. Furthermore, by
characterizing the traces and showing it’s possible to spot we hope to encourage the open
source community to more responsible handling of vulnerabilities.

We have performed four different experiments to determine the properties of security-
related activity and to evaluate the performance of the methods listed below. Initially, we
split the data according to the ecosystem or programming language of the open source
project, but later explored also other classes of projects.

1. A method based around searching for security-related phrases like names of exploits
or weaknesses. We also determine if maintainers are explicit when addressing secu-
rity issues.

2. A method based on finding security-labeled GitHub issues. We also investigate
whether maintainers always ’promote’ a security issue to a vulnerability.

3. A method based around feature-based commit classification. We additionally explore
the features of security-related commits.

4. A method based on deep learning (DL) commit classification. We explore different
methods of sampling code to capture the security-related content, train our models,
and evaluate the transfer learning potential of existing solutions.

2



We find that security-related commits and issues are similar in nature to regular ones.
Many of them do not mention common security-related phrases. We also find that there
is no particular feature for which distribution is largely different for documented security-
related commits. This finding is also confirmed by the low performance of the data-driven
approaches. We believe, based on manually reviewed objects, that a large contributor to
these results is the fact that the same change can be considered a normal bug fix or a vulner-
ability fix depending on the context of the project or the file that was changed. Additionally,
a valuable finding is that even when issues are marked in the repository as security related,
they’re rarely pushed to a vulnerability database.

Focusing on the DL commit classification. While our models achieved competitive re-
sults, due to a lack of resources we were unable to evaluate them properly and relied on the
VulCurator [31] models (commit message classifier and VulFixMiner [59]) for the evalu-
ation. These state-of-the-art tools do not perform as well in our evaluation as in prepared
datasets, suggesting poor generalizability of the problem. Nonetheless, the models can as-
sist during the review of security-related activity, especially since they work best for larger
commits, potentially reducing the effort required. We also see that the performance of deep
learning models is affected by the sampling methods, but the best possible performance is
more likely determined by the training data rather than by the sampling method. We believe
that as long as the sampling doesn’t produce harmful artifacts, the transformer architecture
can extract a similar amount of information from the same changes.

These findings suggest that it’s difficult to automate the finding of security-related ac-
tivity. While this is good news, as malicious parties cannot automate their attacks in this
way, it’s troublesome for smaller companies that cannot afford a security team to assess
the current health of their dependencies. We believe that the goal should be to eliminate as
many early references as possible and suggest some features to be added to vulnerability
databases and repository hosting systems that could help with that.

Finally, to improve the results we recommend profiling the methods to specific reposi-
tories. For the deep learning models, we suggest utilizing context representation, e.g. the
embedding of the file within the project and the context of the project itself. Furthermore,
if a human is required to review suggestions of the model it’s worth investigating the ex-
plainability of the model to provide hints on what to look for in the commit. Lastly, we
recommend using a more thorough filtering process for acquiring the training data from
vulnerabilities to create classifiers.

Contributions

1. We provide models and datasets for security-relevant commit classification.

2. We test out novel approaches to sample code from commits.

3. We evaluate existing state-of-the-art models in a practical scenario.

4. We highlight the pitfall of current disclosure processes and suggest improvements.

3





Chapter 2

Project overview

In this chapter, we present the overall motivation and the approach that we are taking in
this project. First, we analyze the coordination process of fixing issues in an open source
project to find the best approaches to spotting security issues before their disclosure. Then
we analyze each of our proposed methods and formulate the research questions that can
help us understand the security-related activity.

2.1 Approach

Many vulnerabilities have documented traces that were available a significant time before
their disclosure, giving hints to attackers on possible exploits. As such, our goal is to un-
derstand the properties of these traces and devise methods for automatically spotting them.
These methods should be able to spot any security-related activity in the project, especially
those recent or non-disclosed. To determine the optimal approach, we look at the typical
integration process code changes go through in an open source project.

Figure 2.1 shows the typical Coordinated Vulnerability Disclosure (CVD) [21] process.
The process starts with the security issue being communicated to the maintainers, e.g. via
GitHub issue or private message. Even though many repositories suggest contacting main-
tainers confidentially about security issues, it’s possible that initially the security aspect of
the issue was not known. After some time an issue is usually followed by some discussions
before commits are pushed to the repository. When the changes are ready, usually a pull
request is created so that a second maintainer can validate the code before it’s merged to the
main branch. After that, the change is included in a release and the vulnerability is disclosed
to encourage client projects to update.

The CVD process is the recommended process by many vulnerability databases, includ-
ing GitHub Advisory Database.1 In this process disclosing the vulnerability is delayed until
a fixed version is published. In the meantime, only a few trusted people should know about
the exploit. For example, GitHub suggests creating a private fork for fixing the vulnera-
bility so that both the discussion and the pull request review are hidden from the public.
Nonetheless, after the change is merged into the main branch, it has to be public because of

1https://github.com/advisories
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2. PROJECT OVERVIEW

Figure 2.1: Typical coordination of vulnerability fixing in an open source project

the nature of open source. This applies only when the exploit was communicated privately
to the maintainers or was discovered internally – if the user that discovered the bug was un-
aware of the security application and created a GitHub issue, the vulnerability is traceable
publicly from the start of the fixing process. Naturally, the further in the process the more
data is generated. Each stage is characterized by additional data being produced that makes
classification hypothetically easier:

Stage 1 Issue created
In this stage, a user created an issue and it is awaiting to be handled by the maintainer.
The only available data is the issue itself and its metadata. The issue may be invalid
or just a question.

Stage 2 Maintainers responded to issue
Before work is done for a specific issue it is common for maintainers to discuss the
issue in comments under the issue, assign the right developer or ask for more details.
These discussions can be valuable for determining the importance and category of the
issue. Maintainers can also assign labels to categorize them or close them if they’re
invalid.

Stage 3 Review stage
The review stage is marked by code changes being pushed to the online repository.
Obviously, from this moment onward, code analysis can be used. Commonly the
commits are first reviewed by other maintainers before they’re merged into the main
branch. Until the commits are merged in, they can still be modified.

Stage 4 Preparation for release
After the changes are integrated into the main branch the change is prepared to be
released. This usually means testing the package on a specific frozen version to detect
potential bugs, changing version numbers in manifest files or preparing release notes.
Commits are now frozen on a public branch and metadata about the pull request (e.g.
how fast the changes were approved) can be used.

6



2.1. Approach

Stage 5 Preparations for disclosure
After the new version was released the maintainers can wait with the disclosure to
allow client projects to update before the vulnerability is communicated. This is
augmented by the fact that attackers may get encouraged by the publication of the
vulnerability in the first hours of it being out.

Depending on the data an approach relies upon, it can catch security-related activity in
different stages of this process. Relying on the initial issue body or the discussions enables
us to find the activity as soon as possible, but fixes for which these steps were made in
secret will remain invisible for approaches relying on these objects. On the other hand,
relying on, e.g. release notes, pushes the discovery date of security-related activities further
away from any initial traces that were exposed to the public. First, we evaluate simpler,
supporting methods in earlier stages to explore the security field: one based on issues and
discussions, and one based on the labels assigned by the maintainers. Then we focus on our
main method which will be relying on the commits pushed to the repository. We choose
commit classification because:

1. While other data can be easily obscured by handling the process confidentially, the
code changes have to be eventually submitted into the repository, as it’s the nature of
open source. Furthermore, while some issues are not created intentionally to reduce
the traces, some issues might have never been considered, for example when the fix
was performed ’accidentally’, entangled with other changes or as part of a refactor.

2. As mentioned, GitHub is currently promoting fixing security issues on a private fork
of the repository, meaning that issues and discussions won’t be public. Since GitHub
is our primary source of repository data, our approach should align with the recom-
mendation and focus on the moment when these changes become public, i.e. after a
pull request is created and quickly merged.

3. Using commit classification, one can catch security-related commits that were never
discussed, possibly spotting silent fixes or vulnerability-inducing commits.

4. Code changes are a natural validator of whenever an issue was valid and required
work to be fixed or implemented. When relying on the very first data, like the issues
and the discussions, there is much noise created by invalid issues or simple questions
to the maintainers. By placing our approach later in the process this noise is filtered
out.

5. Based on the related work in the field, state-of-the-art deep learning models reach
impressive results with performance metrics (like precision, recall, f1-score or area
under the precision-recall curve) above the 0.70 mark.

As deep learning models tend to obscure the problem and provide only final results, we
also test out a feature-based approach with statistical models (logistic regression, random
forest, and support vector classifier). The advantage of testing out this approach as well is
that in the process we can investigate the features of security-related commits and extract

7



2. PROJECT OVERVIEW

feature importance from the models to understand the nature of the commits better. It’s
also common practice to apply these simpler models before moving on to more advanced
deep learning methods, although these models tend to perform worse than a deep learning
approach [58].

The disadvantage of relying on commits is that security issues can’t be caught in the
first and second stages of the process, as they have no commits linked to them yet. As
such we propose the mentioned two supporting methods that do not rely on commits – one
relying on simple text search and the other on GitHub labels. Theoretically, these should be
able to find the vulnerabilities sooner than commit classification, which will be validated on
historical data from vulnerability systems.

Additionally, investigating these methods will show more information on how main-
tainers handle security issues. First, by looking into the result of the text search we will
gain insight into how explicit the maintainers are when addressing security issues. Are they
mentioning the exploits and weaknesses or are they avoiding mentioning these phrases and
only later discussing the vulnerability? Second, assuming that some open source projects
are maintained by hobbyists, they might not bother pushing the security issues to vulnera-
bility databases. As such we evaluate the security-related labels in selected repositories and
determine for how many of them we can find vulnerabilities.

Note that both the software engineering and the security fields are very dynamic, with
new practices, technologies, and solutions being introduced each year. As such in our
project, we have decided to focus mainly on the last 5 years, from 2017 to 2022. Fur-
thermore, we will analyze the dataset as a whole, but also zoom into the specific results
for the npm, PyPI, and Maven ecosystems (which correlate to JavaScript, Python, and Java
programming languages). These are the most popular and currently the most growing tech-
nologies in the industry. We hope to validate whether the ecosystem-specific results are
different from the overall trends.

Given our motivation, we have selected commit classification as the main focus, but
other approaches are also correct and also could have been applied. As security is a very
active field of research, other approaches have been proposed relying on different data, for
example: issue classification [61, 53, 23], release notes analysis [22], social media analy-
sis [47, 20], or project quality metrics [49].

2.2 Research Questions

Now, let us discuss how these methods correlate to research questions to know what pre-
cisely we need to evaluate in the experiments.

Experiment 1 In the first experiment, we will scan the GitHub activity for the usage of
security-related phrases. We want to know if security issues are mentioned openly or are
being hidden.

8



2.2. Research Questions

Research Questions
1.1) Are the maintainers explicit when solving security-related issues?
1.2) With what performance can a phrase search spot security-related activity before
disclosure?

In the first research question of this experiment, we want to know in how many cases the
maintainers and the community of open source projects use typical security-related phrases
when discussing issues. For this purpose, the most important evaluation will be verifying
how many vulnerabilities have traces that use these keywords. Conveniently, this is simply
the recall of the method based on using key-phrases to spot fixing vulnerabilities. This
experiment will also validate the approach as means to filter entities to be processed in
machine learning approaches explored later.

Keyword search is a very basic technique utilized by many other researchers as the first
filter to acquire data. It was used as the first step of filtering to select the security-related
issues for topic analysis [56]. Similarly, a text search was previously used to split GitHub
discussions into security-related and background discussions [36]. Furthermore, phrase
search can be used in combination with some statistical approaches, where the number of
different phrases and their hit count is analysed [27].

Depending on the details of the approach (the used set of keywords or applied thresh-
olds) the percentage of security-related entities in the results of the search varies from
0.11%, when the threshold is set very harshly, to 10% when more general phrases are used.
As such selecting the phrases will be a crucial part of this experiment.

To our knowledge, no recent research has been done into correlating the security-related
phrases to vulnerabilities or phrases used in the entities referenced by vulnerability reports.
The majority of approaches recently, tend to use data extraction and more advanced natural
language (NL) processing techniques than simple phrase search. In the second part of the
experiment, we will determine the performance of the method based on text search.

Experiment 2 In the second experiment, we narrow down the search to just the labels
field and validate if the data we are looking for isn’t already labeled.

Research Questions
2.1) How many GitHub issues are security-labeled, but are not present in any vulner-
ability database?
2.2) With what performance can a lookup for security labels spot security-related
activity before disclosure?

Here, we want to know if maintainers of some projects use security-related labels to
categorize work in their repository, but ignore vulnerability databases. If so one could
consider this as an alerting method – labeling an issue as security-related in the repository
of your dependencies could be handled with the same weight as the dependency disclosing
a new vulnerability.

The intuition is that maintainers will use security labels to assign priority to the issues.
It’s been shown that labels can be separated into 4 distinct families: Priority, Version, Work-

9



2. PROJECT OVERVIEW

flow and Architecture [4]. Labels in the priority family indicate how important the issue is
(e.g. prime); version labels specify the version that has the bug or that is targeted in the
pull request (e.g. TF 2.5, TF 2.6.0-rc0, subtype: ubuntu/linux); workflow labels relate the
status of the issue (e.g. ready to pull, awaiting review); and architecture labels annotate
the components related to the issue (e.g. comp:runtime, comp:tensorboard). The provided
examples were selected from the Tensorflow repository,2 one of the most popular machine
learning libraries, for which we can also see another class of labels about the type of the
issue (e.g. type:bug, type:feature). Seeing this background we are confident that there will
be some results to be found.

Sadly, these issues are quite rare – it was found in a study on 3,493 issues from GitHub
under the ’security’ label, that these issues accounted for 1.40% of scanned issues. However,
the amount of them was rising [3]. Although it’s estimated that a third of issues is miss-
labelled [17] these issues are still a considerable amount of data. Issues under this label also
had different resolution times, trends and relations to developers working on them.

To answer the first sub-question we will focus on filtering and manual review of security-
labeled issues fetched for some repositories. The correlation between security-related labels
and vulnerabilities wasn’t described in much detail in reviewed papers. After checking how
many of the issues are used on issues where maintainers have to fix exploits, we then map
the issues to vulnerabilities disclosed in that project.

In the second sub-question, we look at the results of the experiment and evaluate looking
for these labels as a method of spotting vulnerabilities. While the results of the review above
decide how precise the method is, we also need to evaluate other performance metrics and
investigate what filtering is needed.

Experiment 3 In the third experiment, we investigate the commits with metrics and begin
our classification methods to spot fixes in code.

Research Questions
3.1) Can the security-related commits be separated from the background using com-
mit metrics?
3.2) With what performance can feature-based commit classification spot security-
related activity before disclosure?

In the third experiment, we want to analyze the security-related commits with metrics
to see whether there are general tendencies of these commits and whenever they’re different
from the background. This might additionally help to design the final approach as we might
design our sampling methods differently for large and small commits. First, we investi-
gate them just by plotting them and investigating whenever they are visually different, and
second, we design a feature-based commit classification approach that combines patterns
across many metrics.

Then, we analyze feature-based commit classification as a method itself. Commit clas-
sification is a known topic in research, with common tasks being commit type prediction

2https://github.com/tensorflow/tensorflow/labels
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(corrective, perfective, adaptive) [28], bug introducing [32] or security-relevant [43, 58].
Furthermore, we can identify three dominant approaches: feature-based approaches where
the code is converted to metrics that are used to train the model; bag-of-words approaches
which capitalize on techniques like IT-IDF or TF-IGM [8] to extract the most important
phrases and tokens that are then processed by models; and deep learning approaches that
aim to understand code as input. In this method, we limit ourselves to the feature-based
approach to validate if a simple approach is good enough and to create a baseline for the
deep learning model.

Experiment 4 In the fourth experiment, we train and evaluate our own deep learning
commit classification model. We also experiment with different code sampling methods to
determine the optimal way to preserve the context and security-related nature of the commit.

Research Questions
4.1) What impact on the model performance have different sampling methods?
4.2) With what performance can a bilingual deep learning model spot security-related
activity before disclosure?

Different strategies and models have been proposed over the last 2 years in this field.
Our idea is a combination of approaches suggested in Commit2vec by Cabrera et al. [5] and
VulFixMiner by Zhou et al. [59]. First, VulFixMiner used CodeBERT [11] to generate the
representation of the added code in each file in the commit which was then aggregated to the
commit level. This approach has the limitation of cropping the data and not representing if
one file had more changes than the others. Additionally, the next iteration of the transformer
was released – GraphCodeBERT [14] which to our knowledge wasn’t yet tested in the
security-related classification task.

Second, in Commit2vec multiple samples were extracted from one file. As the samples
were chosen randomly, the files with the most changes were represented the most. Ap-
plying this sampling method together with a transformer-based code embedding tool may
yield much better results. Notably, both papers focused on the code representation and
disregarded the commit message, which, being the description of the change, can provide
more information. This gives yet another advantage to utilizing the transformer architec-
ture which has been pre-trained on programming and natural language. The selection of
these samples is the topic of the first research question when we test out 4 different ways of
extracting them from commits and compare the results.

Finally, the embeddings have to be combined to the commit level, as individual lines or
samples rarely are security related on their own. There were different aggregators proposed
over the years to deal with the variable length input of the commit representation. In this
project, we test 3 different approaches: the long-short term memory (LSTM) architecture,
the convolution architecture and an averaging approach.

The model is then evaluated with the precision, recall and F1-score metrics. If the
training of the model is too time-consuming we can fallback to utilizing existing models
provided by VulCurator [31] which were trained on the SAP-KB dataset [37]. Evaluation
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of this model will also shine a light on the transfer learning potential and the generalizability
of the problem.

Investigating the recall Finally, in the last technical section, we combine the results of all
the methods and evaluate them on different subsets of security-related data. In particular,
we focus on how the recall of the methods changes when applied to vulnerabilities from
specific years. Next, we validate if the recall is impacted by the severity of the vulnerability.
Furthermore, do the properties of the reference itself, like commit size or the star count of
the related repository, correlate to how easy it is to spot with suggested methods?

To solve these problems we use the same predictions as we did in the experiments,
but group them not by the ecosystem or the model used to get the prediction, but by the
specified properties. With this investigation, we hope to spot possible shortcomings of any
of the methods or spot patterns in how their respective performance changes.

2.3 Performance Metrics

Above we refer frequently to the performance of the models, without quantifying what we
mean by that. Especially for comparison purposes, the methods have to be evaluated in the
same manner. For that we will use four criteria:

Precision The precision of the method quantifies the number of false positives the method
yields. A low precision of a method would make it not viable to be applied as an
alerting system as unnecessary alerts would make developers start to ignore them.
Moreover, the lower the precision, the smaller the advantage of using the tool as a
filter since you have to investigate unnecessary items.

Recall The recall of the method quantifies how many vulnerabilities (percentage vise) it
can find. Especially required for filtering methods where the filtering should not
reject positive samples. Based on how much before the vulnerability the traces were
produced, we examine the recall at two moments in time, first at the day of disclosure
and second a week before it. Additionally, the higher the recall the more one can trust
the tool. Given the tool is extraordinarily high, one can start using the tool to skip
releases if it was decided to have no security-related activity

Applicability The applicability of the methods represents how many scenarios the method
can be applied to and whether it could be easily used in the industry. For example, if
the method relies on specific labels being defined in a project or can be applied to one
ecosystem, the applicability will be low. Obviously, low applicability is correlated
with a low recall as if a method cannot be applied too often, it will not catch all vul-
nerabilities. As this metric is hard to quantify, we only classify the method whenever
its applicability is low, medium or high.

Median Time Gain The median time gain is a measure of how much sooner the vulnerabil-
ities are generally discovered. For this, we analyze the median of the delays between
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the first spotted trace of the vulnerability and the disclosure date. Together with recall
at a week before disclosure these two provide a more time-based evaluation.

To validate the precision, a manual review process will be usually required. In the
process, we mainly focus on validating whether historically some changes/fixes were intro-
duced in code and whenever these changes could be connected to some security aspects.
These may include for example: validation, sanitization, memory handling or access con-
trol. While confident in our judgment we are not security specialists nor the maintainers
of projects that we are reviewing. As such we consider commits/issues as background only
if we are absolutely sure that the changes were not fixing a security problem, for exam-
ple, if the changes were in CSS or documentation files or when the changes were purely
cosmetic in nature. As a result, we might consider more objects to be positive suggesting
our estimates on precision are an upper bound. Other metrics will be analyzed by apply-
ing the methods to the ground truth historical data acquired from the vulnerability systems
described in the following chapter.
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Chapter 3

Data extraction

In this chapter, we describe our process of gathering and preprocessing the data. We utilize
the historical security data that was accumulated in the vulnerability databases as the ground
truth. It’s the validation data of the performance of our methods and the training data of the
machine learning approaches. Furthermore, we describe the dataset of repositories used in
case studies in the first and second experiments.

3.1 Security-related issues and commits

We extract the security-related objects based on the vulnerability reports submitted to vul-
nerability databases. Vulnerability databases agglomerate vulnerabilities for different prod-
ucts and ecosystems and store them in a standardized way. This way software development
tools can automatically cross this information with products used in the environment and
discover known vulnerabilities. In this research we consider 3 databases/feeds from the
industry that we believe have the most influence on the environment.

National Vulnerability Database The National Vulnerability Database (NVD) and the
Common Vulnerability and Exposure program (CVE) are the two oldest and biggest
(volume vise) vulnerability database systems. Both of them originated in 1999. Cur-
rently, they are maintained by the National Institute for Standards and Technology
(NIST) and MITRE respectively. While being separate projects they are constantly
synchronized and as such, they hold the same data.1 The CVE program is responsible
for feeding the data into the NVD – this is done via a community effort of various
partners CVE Numbering Authorities (CNAs) who can publish vulnerabilities into
the system. The NVD is then responsible for storing and serving the vulnerabilities
(while CVE and CNAs also have their own data stores).

Until September 2022 the database accumulated over 190k vulnerability reports, 101k
of them being in the last 5 years. This data is well respected both in the industry, as
it is used by various tools, especially maven dependency checker, and in the research
community as it has been a backbone of a multitude of papers since its creation.

1https://www.cve.org/About/RelatedEfforts

15

https://www.cve.org/About/RelatedEfforts


3. DATA EXTRACTION

As such including these two programs in our research is quite an obvious choice as
it’s the biggest dataset available and allows us to compare our results to previous work
in the field.

GitHub Advisory Database GitHub Advisory Database or GitHub Security Advisories
(GHSA) is a newer project launched in 2019 by GitHub which marked a big step for
the platform in moving towards secure software.2 It quickly grew in popularity as it
was much easier for maintainers to manage repositories and vulnerabilities from the
same website. Integration of the database in the same system as repository hosting
and issue tracking improved the practicality of the vulnerability management process
or feeding data in CI/CD tools like Dependabot.3 The vulnerability database is split
into two subsets: GitHub-reviewed which are manually reviewed security vulnerabil-
ities or malware that have been mapped to packages in supported ecosystems; and
un-reviewed which are vulnerabilities imported directly from the NVD feed. We de-
cided to include GHSA in our research as we utilize GitHub references to extract code
and issue tracking data. The GHSA is also the official source of vulnerabilities for
the Node package manager4 and one of the main sources for ecosystems like Erlang
or Elixir.5

Open Source Vulnerabilities (OSV.dev) A relatively recent addition to the security ecosys-
tem is the OSV.dev. Launched in 2021 and maintained by the Open Source Security
Foundation led by Google.6 The OpenSSF together with partners and open source
community input, has developed a schema that eases looking up vulnerabilities in the
case of open source packages. The OSV provides a shared feed and API of vulnera-
bilities from its partners who have adopted this format e.g. GHSA, Python Packaging
Advisory Database (PyPA) or Global Security Database (GSD).
We decided to include this feed into our datasets as it agglomerates many databases
from the open source world. Furthermore, as OSV is supported by some of the most
influential companies and foundations in the software world, we expect it to grow in
importance in the upcoming years.

Note that these are not all available data sources regarding current software security systems.
First of all, many CNAs in the CVE program maintain their own lists of vulnerabilities for
which not all are chosen to have a CVE identifier assigned. Examples of such CNAs are
snyk.io or OSSFuzz. These were discarded from research as we believe that in the majority
of cases vulnerabilities that are serious enough or are in popular packages will be pushed
to the CVE system. It is also problematic to extract structured data as many of these CNAs
internally use different data formats.

Furthermore, one can also extract exploit data from bug bounty systems. These are
programs where (within some regulation) users are invited to hack and break the systems

2https://github.blog/2019-09-18-securing-software-together/
3https://github.blog/2020-06-01-keep-all-your-packages-up-to-date-with-dependabot/
4https://github.blog/2021-10-07-github-advisory-database-now-powers-npm-audit/
5https://github.blog/2022-06-27-github-advisory-database-now-supports-erlang
6https://security.googleblog.com/2021/02/launching-osv-better-vulnerability.html
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of program participants and report the issues found. Users are then rewarded monetary
bounties with the value depending on the severity of the bug. Some of the highest bounties
reach up to 200,000$7 for serious vulnerabilities. We discarded this data for similar reasons
as the previous class of vulnerabilities, but additionally, many of the systems within these
programs are closed source and out of access for this project.

It’s also worth mentioning here the Open Source Vulnerability Database. It was a
vulnerability database operating from 2002 until 2016. The Database was a community
effort joining together different companies and individuals to look for and better analyze
open source vulnerabilities. The project was shut down after many companies started uti-
lizing their data for commercial uses without buying a license, as well as after the project
had disputes with the CVE program. Luckily many vulnerabilities from the OSVDB were
mapped to NVD before its closure. As we primarily focus on the last 5 years of software
development (since 2017) this data is not of such high importance to us.

To sum up, we proceeded with data from NVD, OSV and GHSA.8 The datasets were
downloaded from official sites of each project on 2022.08.18.

Processing the data Before proceeding with the references we need to handle the dupli-
cates and related vulnerabilities. The OSV schema supplies an alias field to indicate that the
vulnerability is the same as other ones. We consider vulnerabilities A and B to be related if
either of them contains the other in their aliases field (e.g. if B is present in the aliases field
of vulnerability A). This mechanic of related vulnerabilities will have the most impact on
the recall calculation as we consider the related vulnerabilities to share references, which
makes it possible to spot a vulnerability with an object from another report. Additionally,
we will consider the highest severity and the earliest disclosure date out of all related vulner-
abilities. Note, that this logic shouldn’t change the results if all properties in the disclosures
are the same.

We construct the sets of related vulnerabilities to include more data for each of the an-
alyzed vulnerabilities. But, we decided not to consider the vulnerability relation transitive,
e.g. if A is related to B and B is related to C then A is not necessarily related to C. This de-
cision was caused by some cases where multiple vulnerabilities from one dataset are related
to one vulnerability in the other (for example PYSEC-2021-88). This also could introduce
some significant inconsistencies in the case of vulnerabilities from Debian Security Advi-
sories, where the aliases field is used to represent aggregates – for example, the vulnerability
in Chromium identified as DSA-4824-1 is a shared vulnerability disclosure for 139 differ-
ent vulnerabilities in the NVD. All of these vulnerabilities are related to the security update
in Debian, however, they are individual vulnerabilities from the perspective of Chromium
and putting all of them in one bag would hide some detailed data i.e. the actual number of
vulnerabilities.

Since 2000 in total we analyzed 193,404, 8,696, 30,387 vulnerabilities from NVD,
GHSA and OSV.dev summing to 232,487 vulnerability reports. By applying our alias logic

7https://redmondmag.com/articles/2022/08/15/microsoft-awards-13-7-million-in-bug-b
ounty-program.aspx

8NVD:https://nvd.nist.gov/vuln/data-feeds, OSV:gs://osv-vulnerabilities, GHSA:http
s://github.com/github/advisory-database/commit/18385a478b
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we can join vulnerabilities together that have the same sets of related reports giving us the
final dataset of 214,736 unique sets of related vulnerabilities. Figure 3.1 shows the distri-
bution of vulnerabilities over time.

Figure 3.1: Number of disclosed vulnerabilities in each year since 2000. The sharp increase
in 2017 can be explained by increased coverage coming from OSV and GHSA databases.

In the final step of preprocessing we extract all links in references pointing to GitHub,
which is determined by investigating the host field in the URL. Then based on the segments
of the URL we recognize the repository of the reference, the type of reference and the id of
the referenced object. In the dataset we recognize 30,362 URLs to GitHub, among these,
were 9,259 to commits, 9,345 to issues/pulls, 5,935 to blobs/trees and 342 to diffs/compares.
By validating the uniqueness of each reference and resolving the blobs and tree to commits
as described below we find 9,362 issues, 9,271 commits and 337 compares.

Extracting commits While for issue-based methods the retrieved issues can be used on
their own, for commit-based approaches of RQ3 and RQ4, we need to resolve all references
to commits. Directly linked commits are just validated whenever they still can be reached.
For tree and blob references we extract the segment of the URL where we expect the hash of
the commit or the name of the branch to be. Since the top of the branch might have had more
commits pushed onto it, the link might not point to the same file version as initially when the
vulnerability was published. As such, we proceed only with the commit hashes which we
process in the same way as commits linked directly in the vulnerability. Compares and diffs
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are also simple to resolve as for these we make an API request which returns the commits
contained in the diff. We proceed with those as if they were linked to the vulnerability.

Much more complex logic is required for issues and pull requests which can represent
more complex development processes than just code changes. Apart from the issue itself,
we download the timeline, comments and events of the issue. These are used in cases
when the developers were discussing the issue in the comments or when commits were
referring to the issue. Furthermore, an issue can also represent a pull request (with which it
shares the same number in issue tracking). Thus, we check whenever the issue doubles as
a pull request and if so download the commits, pull request comments and the pull requests
specific data from the GitHub API. Finally, users of issue tracking systems cross-reference
issues and pull requests, for example: a very common mechanic is to create a new pull
request with a different issue tracking number and cross-reference it in the original with
a comment similar to ”Fixed in #123”. To find these cases we use the ’cross-referenced’
event in the timeline and download the commits and comments under related issues. To
limit the generation of unrelated data we use only directly referenced, i.e. we do not follow
cross-references to transitively linked. Having all this data, we extract all commits attached
that are in the repository of the initial issue.

We noticed that some vulnerabilities link entire releases in the published reports, which
might mean including normal, background commits as security fixes. To combat this we
reject commits from references that resolved to more than 10 commits. We found that 10
commits were a good middle ground to reject the large pull requests, but still keep the
majority of data. An alternative approach was to include all commits but assign less weight
to them if they were resolved with other commits. This approach was rejected due to added
complexity. In total we find 15,706 commits.

Investigating the delays We find that the median difference between vulnerability dis-
closure and GitHub objects referenced in the vulnerability is 17.4 days (15.8, 16.8, 42.3 for
npm, PyPI, and Maven respectively). To get the ecosystem data we analyze the ’configura-
tions’ fields in the NVD reports containing CPEs or the ’affected’ field in OSV reports. As
seen in Figure 3.2 the references slowly accumulate over time as objects from years before
a vulnerability was disclosed are sometimes referenced in it. This hints we are dealing with
a long-tail distribution. For this reason, we use the median time as our estimator instead
of the average, because it works better with a large range and with outliers. As expected,
the plot flattens out at 0 days as vulnerabilities cannot reference not yet created objects and
the majority of objects past this point are probably due to post-disclosure edits or related
vulnerabilities. In total, for every ecosystem more than 96% of traces were created before
the vulnerability. Additionally, 68.2% were created an entire week before the vulnerability
(61.8%, 75.7% and 76.0% for npm, PyPI, and Maven respectively).

When zooming into specific ecosystems in Figure 3.3 some more specific behavior can
be seen. First, reflecting on the total number of references and vulnerability pairs, the PyPI
ecosystem leads with about 3,000 references, followed by npm with 1,600 and 900 for
Maven. Because of this lower number of references, some bumps can be seen for example
around 60(npm), 80(PyPI), and 15(Maven) days before the disclosure, which might be a
result of different development processes or disclosure policies. Reflecting on the shape
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(a) 5 year before and a year after disclosure, bin=12
days

(b) 100 days before and 10 days after disclosure,
bin=1 day

Figure 3.2: Accumulated histograms of GitHub traces created n days before the disclosure.
The x-axis shows the time difference between the traces and the disclosure date; the y-axis
shows the number of traces with a time difference larger or equal to the x-axis.

(a) npm (b) PyPI (c) Maven

Figure 3.3: Accumulated histograms of GitHub traces created n days before the disclosure
for specific ecosystems. The x-axis shows the time difference between the traces and the
disclosure date; the y-axis shows the number of traces with a time difference larger or equal
to the x-axis.

of the histogram itself, the plots for npm and Maven follow the overall distribution for all
vulnerabilities, while for the PyPI ecosystem, the final month before the disclosure the plot
looks much more linear. We did an in-depth analysis on this to find that for PyPI, the
references are a bit shifted and the largest amount of references is made 6 days before the
disclosure date of the connected vulnerability. We then validated that the mean values are
indeed much higher than the medians. Looking for concrete results, shown in Table 3.1. We
also see that the issues on average are preceding the vulnerabilities more than commits.

Finally, in Table 3.2 we show the most important finding for this project. If the traces
only go back a day or two before the disclosure date, one could argue that no hackers will be
able to prepare any attack before the vulnerability fix is published and the clients are alerted
about the vulnerability. We see that overall 10% of vulnerabilities could have been spotted
a week before based on the references found in them. Note, that this value for the PyPI
ecosystem is above 50%. Furthermore, this value is calculated based on all vulnerabilities,
including closed-source products and those without GitHub references. Additionally, when
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Table 3.1: Count of found vulnerabilities and median delay in days for different kinds of
traces.

Reference type Whole dataset npm subset PyPI subset Maven subset
All entities 20,167 21.0 1,692 15.7 3,097 18.0 886 42.3
Issues only 9,991 27.6 666 32.8 871 40.2 518 38.6
First commit 14,794 16.7 1,512 12.1 2,841 16.1 636 49.1

Table 3.2: The percentage of vulnerabilities that had online traces n days before the disclo-
sure date.

Dataset 0 days prior 7 days prior

Whole dataset 14.3% 9.8%
npm subset 37.7% 23.8%
PyPI subset 69.1% 52.9%
Maven subset 24.5% 18.2%

we analyzed the references we found that at least 60% of the referenced traces within the
vulnerabilities are more than a week older than the report.

These results validate findings in prior work where similar values are reported. It also
further motivates the goal of this project - if these vulnerabilities could have been spot-
ted, why haven’t they been disclosed to the general public? We also see that the gained
time could be on average around three weeks, which is a very worrying result as for some
security-critical projects, staying three weeks in potential danger is non-negotiable. We also
see that (apart from the Maven ecosystem) issues preceded the vulnerabilities more than the
commits which is in line with the expectation based on the process presented in Figure 2.1.

3.2 Repositories selection

For the first and second experiments, we need a set of selected repositories for which we will
be downloading GitHub activity. These repositories should be a representative sample of
open source projects, but at the same time, they should include the most important packages
in ecosystems. We considered sampling these repositories from the vulnerability systems
but decided that the fact that the repository is mentioned in a vulnerability disclosure already
determines something about the practices implemented in the project. This is especially the
case for the second experiment where the practice and the popularity of security-related la-
bels will be investigated. Sadly, this abstraction cannot be applied to data-driven approaches
where training and validation data has to be acquired from the vulnerability system.

As mentioned, we decided to focus on 3 major ecosystems: npm (Node Package Man-
ager), PyPI (The Python Package Index) and Maven. Additionally, we decided to include
another set of top-starred GitHub repositories that represent not only packages but general
open source projects. These lists of packages are available in the reproduction package
[52].
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The most popular packages were downloaded using the portal libraries.io.9 Using the
search API we iterated over libraries on the platform with the highest page-rank score [33]
in the dependencies graph. As there were some duplicates in the dataset, we kept only the
most popular package for each unique GitHub repository. We decided to use page rank
rather than downloads count as it should more closely reflect the importance of a package.
Our goal was to acquire 1,000 packages from each ecosystem, but due to duplicated or
invalid repositories, we fetched 999, 997 and 965 for npm, PyPI, and Maven respectively.

The top-starred dataset was fetched directly from GitHub using the Search API.10 After
initial investigation we realized that many of the top starred repositories function as social
hubs or knowledge bases rather than being actual software projects – in the top 10 most
starred repositories only two projects are code repositories (vuejs/vue and facebook/react).
To balance out this issue, we decided to increase tenfold the size of this dataset compared to
the packages sets to get a sufficient amount of repositories with. The final selected dataset
had 9,906 distinct repositories.

9https://libraries.io/
10https://docs.github.com/en/rest/search
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Chapter 4

Is a text search enough?

In this chapter, we perform our first experiments and evaluate the method based on a simple
phrase search. We aim to answer whether maintainers mention the security issues in their
discussions when working on a fix and whether the text search can be used to filter GitHub
activity for spotting security-related issues and commits.

Research Questions
1.1) Are the maintainers explicit when solving security-related issues?
1.2) With what performance can a phrase search spot security-related activity before
disclosure?

4.1 Experimental setup

To evaluate this method we need both the phrases we search for and the data we will scan.
For our search we recognized the following objects containing natural language fields:

Issues titles and descriptions – GitHub issues are one of the main ways users communi-
cate with the maintainers of the project and how work is organized in online repos-
itories. Although many projects discourage people from making issues for security
topics, users may ignore them or not realize the potential threat of the bug they found.

Pull requests titles and descriptions – The title and the body of pull requests should
describe the changes it contains, possibly revealing that it’s security related.

Issue comments – Issue comments are the place where the maintainers and users can
discuss the issue and where someone could reveal how the issue is a security threat.
Based on prior work, we expect the discussions happening under issues to generate a
significant amount of data [36].

Review comments – Review comments are comments from a reviewer under a pull re-
quest with suggestions or opinions on the code change in the pull request. Whenever
a reviewer realizes that the pull request is introducing a vulnerability, they will hope-
fully correct the author of the change with an explanation that we can pick out.

23



4. IS A TEXT SEARCH ENOUGH?

Commit messages – Commit messages of commits pushed to the repository can some-
times contain large descriptions of the change made including references to security
concerns.

Commit comments – Finally GitHub users can comment on the code creating a commit
comment. While these aren’t usually used in the development process they can be
used by users to mark a security-relevant line in the repository.

Fetching all these fields from the GitHub API for all selected repositories in our dataset
would require several months of data scraping, which is outside of our resources. Luckily,
the project GHArchive1 is monitoring and saving the data feeds of public repositories cre-
ating a large, publicly available dataset. We used the dataset published on Google Cloud
BigQuery as it allowed us to perform the query remotely within Google Cloud services and
download only the results of the query. In the query, we used case-insensitive regular ex-
pression matching with each phrase sandwiched between a word boundary symbol(\b) to
perform the text search. The query, raw results and the supporting data required to execute
the query are provided in the reproduction package [52].

Phrases On the other side of the coin, we need phrases to search for in the selected dataset.
The phrases have to cover as many security-related topics as possible and at the same time
don’t forfeit precision. In this experiment, we aim to prioritize the recall as the method is
more likely to be used as a filter rather than an alerting tool. We construct our set of phrases
based on three sets;

• The base dataset is the set of phrases used by Le et al. [27] to query for vulnerability-
related discussions on developer Q&A websites. It contains 643 phrases written in
different forms including spelling differences or acronyms.

• Phrases extracted from Common Weakness Enumeration (CWE) names.2

• Phrases extracted from security-relevant commits.

The first step was to filter through the base dataset to remove phrases that were potentially
too general for our use. Then, to extract the phrases from CWE names we manually review
the list of CWE titles. As long strings of words are unlikely to be matched exactly in a text
search, we extracted the most important words from the CWE names, shortening them, at
the same time keeping at least two words to reduce false positives. We also reject phrases
that are likely to be normal, non-security-related bugs and reject technology-specific CWE
e.g. related to ’Struts’ or ’J2EE Bad Practices’ CWEs. In this step, we also add several
phrases that are referring to the same problem as the CWE but use different words which
might be used by developers in discussions. Usually, stemming is applied to construct a
more general representation of the keyword. However, as some of our phrases were very
short keywords (e.g. dos, zap), we decided to look for different versions of the phrases as
an entire word to exclude cases where the keyword was a substring within a word.

1https://www.gharchive.org/
2Version 4.8 was used available at https://cwe.mitre.org/data/
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4.2. Results

To extract code keywords we mine patch data of security-relevant commits extracted
from vulnerabilities as described in Chapter 3. We apply NFKD normalization [24] to each
added line in the commits. We then break apart multipart tokens, where a small letter is
followed by a capital letter to account for casing used in programming languages. We reject
tokens that are shorter than 4 characters and longer than 20 to include only meaningful and
non-shortened keywords. We then repeat the process for background commits mined from
the same repositories. Mined tokens are then sorted using a TF-IDF [38] inspired approach.
While the purpose of TF-IDF is to extract the most important terms from documents, we
aim to extract the tokens that are the best for discriminating the positive (security-related)
commits from the background. We define the term frequency of a token as the total number
of times the token appears in all commits divided by the number of commits to account
for imbalanced data. The document frequency is then the percentage of commits the token
appeared in. We use these metrics to calculate ratios which we designed to be the highest
for the most discriminative tokens.

ratio1(t) =
DFpositive(t)

DFpositive(t)+DFbackground(t)+ ε

ratio2(t) =
T Fpositive(t)∗DFpositive(t)

T Fbackground(t)∗DFbackground(t)+ ε

ratio3(t) =
T Fpositive(t)

DFbackground(t)+ ε

Ratio 1 is the ratio between document frequencies which expresses the precision given by
the token. We use this ratio to remove all tokens that would yield a precision lower than
0.95 in a balanced scenario. Because we chose to mine the data with more background
commits the threshold is lowered by multiplying it by the ratio of positive to background
commits. For simplicity, we added a zero guard to the denominators (ε) to avoid division
by zero errors. We then use the other ratios to create two sorted lists from each extracting
around 100 tokens that could be considered security-relevant and are not too general for our
search.

After all these steps and once more deduplicating the set of phrases for those that would
be detected by another phrase, we arrived at 770 phrases.

Manual review Finally, the results of the query are manually reviewed. We first look at
what keywords were found the most often and which did not occur in the scanned reposi-
tories. Then, we look whenever there are anomalies in specific repositories that have much
more found phrases than their size suggests. Next, we manually review the most found and
the longest phrases and reason the precision of the method.

4.2 Results

The considered timespan for the query was from 2017 until August 2022 (inclusive). In
the GHArchive query, a total of 41.9M GitHub objects were scanned, from which 2.2M
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contained security-related phrases. 1,532 repositories out of 11,857 (12.9%) had no activity
with security-related phrases in the inspected period. Out of these, 62 repositories had no
activity record on GHArchive. Moreover, 152 out of 773 (19.7%) phrases were not found
- not surprisingly most of them are more complex phrases that are less likely to be written
exactly in the way we search them for or those extracted from code.

Precision Sadly, as seen in related work, the major shortcoming of this method is its low
precision. In our case, this can already be seen by a large number of returned entities – 2.2
million potentially security-relevant issues and commits for around 13 thousand reposito-
ries. Considering that in this period around 150 thousand vulnerabilities were disclosed in
general (not only to the repositories considered in the search), we sadly have to expect that
the majority of hits are false positives.

In the manual review, we first have a look at the most frequently found phrases in the
dataset, as these have the most influence on the precision of the method. Not surprisingly
these were simple phrases. Some of them can be also associated with usual development
processes suggesting a bad choice of key phrases. The results of this analysis are shown in
table 4.1. The first finding immediately explains the large number of false positives found
with this simple method. Many of the vulnerability-specific phrases like ”vulnerability”,
”vulnerabilities” or ”cve” return a lot of issues created by bots that are suggesting an update
to packages in the system due to a known vulnerability. While they are not false alerts as
these commits are security-related, they are not useful when trying to spot security issues
before the vulnerability is published – since these are reactions to already existing vulnera-
bilities that are also in another repository.

Second, we notice a high percentage of valid issues for phrases like ”crash”, ”crashing”
or ”leak”. Indeed, issues with these phrases very often were fulfilling the requirement de-
scribed in the setup – they were linked to valid code changes, however, they might have been
regular bugs for which we cannot account for without a deeper knowledge of the project.

Third, the phrase ”overflow” shows the issue described more in the applicability anal-
ysis, where in one context (e.g. C++ code) it is a valid threat to the application while in
another (e.g. CSS) it is a normal language statement.

Finally, phrases like ’sandbox’ or ’secrets’ were often connected to continuous testing
practices, where bots were commenting issues with links to development environments,
i.e. sandboxes, where the code change can be tested. This lowers the hit count of actual
security-related issues.

The next group of results we investigated were the results of the longest phrases. As
these phrases are more specific we expected more precise results as these phrases should
not come up in everyday software development discussions. Table 4.2 shows 29 phrases
that were found in our data and are longer than 28 characters. If there were more than 50
hits for a phrase, we randomly sampled 50 of them. The first class of results found with
these long phrases were vulnerability references. Some of our phrases were used within
the titles of vulnerabilities and thus were included in the majority of alerts triggered by
the vulnerability in automatic pull requests. For example, the phrase ”improper privilege
management” was always connected to vulnerabilities, one of them being CVE-2022-0144.
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Table 4.1: The fraction of objects that were found with the most popular keywords and were
linked to potentially security-related code changes or referencing a known vulnerability.

Phrase # With code changes CVE responses

crash 50 0.72 0.08
crashing 50 0.66 0.00
cve 50 0.16 0.78
leak 50 0.74 0.12
overflow 50 0.30 0.06
sandbox 50 0.18 0.02
secrets 50 0.30 0.02
trusted 50 0.26 0.02
vulnerabilities 50 0.02 0.86
vulnerability 50 0.12 0.64

The second group of results were phrases that are used by static analysis bots. As
we found, many open source projects set up CI pipelines that respond to issues and pull
requests in comments. Some of these responses were found by looking for the phrases,
for example, one of the alerts commented by the LGTM bot3 is ’Use of a broken or risky
cryptographic algorithm’ which was detected by our phrase ’risky cryptographic algorithm’.
This comment was detected for example in pull 7404 in Apache Geode.4 While our initial
goal was to spot security-related discussions in comments under the issues, this gives the
method additional opportunities of utilizing outputs of in-depth static analysis without the
need for rerunning it or purchasing a license for the analyzer.

Third, even when the content of the issue or the discussion under it is mentioning a very
specific weakness, it is still possible that the issue is invalid or relates to documentation
which is the reason sometimes the issues were neither valid code-changing issues nor a
reaction to a disclosed vulnerability.

In another investigation, we looked at the entities that contained the most distinct secu-
rity phrases and entities which had the most comments with security phrases. We found that
in many cases these entities were serving as discussion threads to which other pull requests
and issues were linking to. Furthermore, some of these discussion threads were prepara-
tions for a release or pull request integrating a large number of changes. These entities
naturally agglomerated a lot of content from which some were mentioning security-related
phrases. While in our evaluation these are potentially security-related, from the perspective
of developers it makes no sense to review them due to their size and the developers are more
interested in the individual issues and changes.

Note that some objects, even though they have plenty of mentions of security-related
phrases, have very few linked changes. For example, this was the case for discussions about
the controversial node-ipc vulnerability (CVE-2022-23812), which attracted a lot of atten-

3https://lgtm.com/
4https://github.com/apache/geode/pull/7404
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Table 4.2: The fraction of objects that were found with phrases longer than 28 characters
and were linked to potentially security-related code changes or referencing a known vulner-
ability.

Phrase # With code changes CVE responses

exposure of private information 2 1.00 0.00
exposure of private personal information 15 0.67 0.93
expression language injection 9 0.11 0.22
external control of file name 10 0.70 0.10
external control of system
or configuration setting

1 0.00 0.00

externally-controlled format string 4 0.25 0.00
failure to restrict url access 1 0.00 1.00
improper certificate validation 50 0.04 0.82
improper privilege management 15 0.00 1.00
improperly controlled modification 14 0.00 1.00
improperly implemented locking 1 0.00 0.00
incorrect default permissions 6 0.00 0.67
incorrect permission assignment 5 0.00 0.80
inefficient regular expression complexity 50 0.06 0.92
insecure direct object reference 11 0.09 0.27
insufficient granularity of access control 1 1.00 0.00
insufficient session expiration 6 0.67 0.00
insufficiently protected credentials 9 0.00 0.67
mismatched memory management routines 1 1.00 0.00
missing function level access control 6 0.33 0.00
modification of assumed immutable data 1 1.00 0.00
non-serializable object stored 2 1.00 0.00
open web application security project 14 0.14 0.07
password hash with insufficient
computational effort

8 1.00 0.00

permissive regular expression 6 0.67 0.00
restrictive regular expression 2 0.00 0.00
risky cryptographic algorithm 50 0.36 0.52
uncontrolled resource consumption 50 0.14 0.74
uncontrolled search path element 8 0.25 0.63

tion even though the initial issue and code change were small and the issue is now deleted.5

Note that this highlights one of the benefits of implementing this tool as a monitoring tool
where the events feed is constantly scanned, as it will catch also the issues that are quickly
removed. Similarly, issue 192 in guzzle/psr76 was redacted to not show any information on

5https://github.com/RIAEvangelist/node-ipc/issues/233
6https://github.com/guzzle/psr7/issues/192
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the exploit. However by inspecting the events of the issue, one can discover that the previous
title of the issue was ”CWE-73: External Control of File Name or Path”. Finally, precision
is also discrepant in cases where the nature of the project itself is security-related. The
most common project of this kind we encountered in the manual review was the CodeQL7

project which scans projects for vulnerabilities. This naturally means that it will reference
weaknesses and other security-related phrases more often.

To sum up, only about 35% of the objects retrieved with this method contained code
changes. The actual percentage of issues that are security-related is likely to be much lower,
but as we aren’t the maintainers of the projects nor security experts we cannot deny their
security-related nature. The major contributor to low precision is the bot-generated content
by bots alerting for vulnerabilities in other projects.

Recall In Table 4.3, we see the results of applying the phrase search to the mined refer-
ences of vulnerabilities. In general, the percentage of vulnerabilities with references con-
taining security phrases is only about 53%. The value falls to about 37% when one counts
the issues created a week before the disclosure. Note that the values are highest for the
Maven ecosystem suggesting that the phrases list was matching this ecosystem the most.
Nonetheless, this value is much lower than we expected. It may suggest that many of the
vulnerabilities initially are fixed as normal bugs and are later ’promoted’ to a vulnerability.
Alternatively, it may mean that the security aspect of vulnerabilities is being actively hidden
until the disclosure which is a practice that should be encouraged.

For recall analysis, we also investigated which phrases were the most common in the
vulnerability-referenced objects. As one could expect the most popular phrases are the ones
like ’nvd’, ’cve’, or ’vulnerability’. These phrases might have been mentioned to create
the vulnerability or to link it to the record in the database. On the other hand, ’overflow’
and ’xss’ phrases are more specific to concrete examples of exploits and errors connected
to the vulnerabilities. Their relatively high number can be explained by a high number of
vulnerabilities from projects related to Linux, where integer overflow is a major concern,
and in the PHP ecosystem, where web vulnerabilities like cross-site scripting (XSS) are a
critical issue. This relation however was not firmly explored. We would recommend using
these frequently hit phrases if their context matches the project in question. The results of
this analysis are shown in Table 4.4.

Table 4.3: The percentage of vulnerabilities with issues containing security phrases public
n days before the disclosure among all vulnerabilities with documented issue traces

Dataset 0 days prior 7 days prior

Whole dataset 53.3% 36.6%
npm subset 51.2% 33.6%
PyPI subset 47.0% 33.4%
Maven subset 57.1% 41.4%

7https://github.com/github/codeql
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Table 4.4: The most found phrases in vulnerabilities together with the number of unique
entities containing them.

Phrase # vulnerabilities

cve 5205
vulnerability 4410
overflow 2450
xss 2232
attacker 1650
crash 1412
attack 1364
malicious 1267
vulnerabilities 1121
exploit 957

Median time gained As shown in Table 4.5 the median delay is about 20 days with values
from specific ecosystems varying from 17 to 34 days. Notably, these values are a bit lower
than the total value found for all data in Tables 3.1 in chapter 3, possibly suggesting that
the first content generated in the issue doesn’t contain the phrases and those are added later
in e.g. discussions. Still, the median value is generally higher than the median delay from
the first commit which is understandable based on the integration process described in the
project overview.

Applicability While the method has no theoretical limitations as text search can be per-
formed in any repository, there are some practical limitations. First, the phrase list should
be profiled to the ecosystem or even the project it is used on. As seen with the evaluation of
the ’overflow’ keyword while in some cases it was referring to a potentially dangerous bug
in the backend logic, sometimes it was referring to an inconvenience in the UI of the project.
Furthermore, some repositories use bots to automatically create a comment response to new
issues with checklists or extra information. In these cases, one has to obviously remove all
phrases that are present in this automatic response. The same applies when the repository
defines a template for issues or pull requests.

Second, the method is very reliant on the curated phrase list. If a reference doesn’t
mention any of the keywords or the maintainers make a typo when describing the exploit a
simple text search may fail to spot an obvious vulnerability. Such a flaw makes the method
not valid in some business applications. All things considered, we would say that the appli-
cability is medium.

4.3 Summary

We see that only 55% of the objects referred by vulnerabilities contain the selected security-
related phrases. This means that maintainers may be explicit when solving security-related
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Table 4.5: Median delay and the number of found vulnerabilities using security phrase
search.

Dataset Found vulnerabilities Median Delay [days]

Whole dataset 12,494 22.3
npm subset 887 16.9
PyPI subset 1,474 21.1
Maven subset 510 32.8

issues, however, it doesn’t happen as often as one would expect.
The major flaw of this method are objects created by bots that generate a lot of noise.

Furthermore, many big changes naturally agglomerate a lot of security-related phrases
which are again impractical to review. The methods’ performance metrics are:

• Based on the review of the most commonly found phrases we conclude that the pre-
cision of the method is equal to 35%. It’s worth noting that this is an upper bound,
as some of the objects considered by our relaxed conditions as security-related might
not be security-related. Furthermore, the precision highly differs from keyword to
keyword.

• By repeating the search on objects in vulnerabilities we find that the recall a week
before the disclosure is at least 36.6% and recall at the disclosure date is equal to
53.3%.

• The method has a medium applicability due to its dependence on the phrase selection
and that its phrase list has to be adjusted between ecosystems or project types.

• Method finds vulnerabilities with a 22 day median time difference between the issue
creation and the vulnerability disclosure date.
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Chapter 5

Are security-labeled issues
vulnerabilities?

In this chapter, we look into the issues labeled on GitHub as security-related and determine
if they represent the same problems as vulnerabilities. If so could they be considered equal
to vulnerabilities? To get these answers we evaluate a prealerting method based on security-
related labels.

Research Questions
2.1) How many GitHub issues are security-labeled, but are not present in any vulner-
ability database?
2.2) With what performance can a lookup for security labels spot security-related
activity before disclosure?

5.1 Experimental setup

The first step is to decide which labels we consider as security-relevant. In the work done by
Buhlman et al. [3] only issues with the ’security’ label were downloaded. While their results
were satisfactory, we believe that these are too restrictive and labels such as ’vulnerability’
should also be included. To validate this belief we have counted the most popular labels
on issues referenced in vulnerability reports. The 10 most popular labels are shown in
Table 5.1. We need to exclude general labels like ’bug’ or ’enhancement’ that usually
will not be assigned to a security-relevant issue. Quite common are also labels related
to a software testing technique called fuzzing based around providing randomly modified
inputs to programs. While their high count is likely caused by the project OSS-Fuzz,1

bugs resolving from these random inputs may not be security issues and thus are discarded.
Moreover, since our goal is to operate in the timespan before the vulnerability is disclosed
the ’cve’ label is of limited value for our task.

1https://github.com/google/oss-fuzz
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Based on this analysis we decided to include all labels that contain the keywords ’vul-
nerab’, ’secur’ or ’exploit’. These keywords will cover the majority of labels used in the
projects and are related exclusively to security-related data.

Table 5.1: Top ten most popular labels in vulnerability reports.

Label # of vulnerabilities Covered

bug 1751 No
security 585 Yes
kind/bug 163 No
cve 147 Yes
enhancement 126 No
invalid 124 No
fuzzing 113 No
area/security 112 Yes
the bug slayer 92 No
module 76 No
vulnerability 74 Yes

Downloading and processing the issues Each repository in the selected dataset is pro-
cessed in four steps:

1. Using the GitHub Search API we find labels that match selected keywords.

2. For each label we download the closed issues.

3. For each issue we download related issues and commits like discussed in subsec-
tion 3.1

4. Issues not connected to any commits are rejected.

In the first step, we look for any labels in the selected repositories that contain any of the
keywords. Then, in the second step, we download closed issues under found labels. We
fetch only closed issues to be able to determine if the issue is valid by checking whenever
any code changes are linked to the issue. Due to the constraints of the GitHub Search API,
we are limited to only 1,000 results returned for a search which wasn’t always enough in a
few cases. In these cases, we used the available 1,000 most recent issues.

The third and fourth steps are required to avoid the pitfall of the previous research ques-
tion of bot-generated content. After an initial investigation, we realized that the majority
of the content is generated by bots updating dependencies, like Dependabot,2 Renovate,3 or

2https://github.blog/2020-06-01-keep-all-your-packages-up-to-date-with-dependabot/
3https://docs.renovatebot.com/
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Snyk-bot.4 To remove these, in the third step we download details of the linked commits
and in the fourth step we reject all issues which had no commits with code changes linked.

After the automatic processing, the issues are manually reviewed. We once again verify
the connected changes and reject those for which we are certain that they aren’t security
related. Furthermore, we attempt to link the issues to vulnerabilities. While some issues
explicitly specify in their content the CVE identifier of the vulnerability created for the issue
(sometimes retrospectively), in most cases this data has to be downloaded and manually
matched. We extract vulnerabilities by comparing whether the repository name in the issue
URL matches up with any reference in the vulnerability. We additionally used the repository
name to search for CPEs in the NVD API and then added vulnerabilities under potentially
matching CPEs as well.

5.2 Results

Applicability We evaluate the applicability of the method based on the percentage of
repositories defining labels with our keywords. As expected by prior results [3], applica-
bility is not particularly high as at most 12.2% repositories define the labels as shown in
Table 5.2. Additionally, we see that the percentage drops further when we filter for issues
matching our criteria. The highest percentage is observed for the Maven and most starred
repositories datasets for which the percentage is still only 4%, which sets the applicability
as low.

Table 5.2: The number of repositories per ecosystem with security-related labels, issues
under these labels and issues that were full-filling criteria of RQ2.

Repositories... Most starred repos npm repos PyPI repos Maven repos

All repositories 9906 999 999 965
With defined labels 830 (8.4%) 109 (10.9%) 79 (7.9%) 118 (12.2%)
With any issues 567 (5.8%) 65 (6.5%) 39 (3.9%) 67 (6.9%)
With potential issues 369 (3.8%) 18 (1.8%) 21 (2.1%) 39 (4.0%)

Precision As presented in Table 5.3, results of the manual review show that the precision
of the method is between 56% and 77%. This confirms that the applied filtering increased
the percentage of valid issues in the dataset. The Maven ecosystem has the most security-
labeled issues, more than double the counts for other ecosystems, which correlates with the
fact that it has the most repositories defining the labels. This result is slightly unexpected,
as in Chapter 3 in the Maven ecosystem we found the lowest number of vulnerabilities
with GitHub references. Notably, the automatic filtering for linked changes is not perfect
as issues introducing only configuration changes were frequently referenced in other pull
requests or contained additional changes (e.g. automatic code styling).

4https://docs.snyk.io/integrations/git-repository-scm-integrations/github-integrati
on
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Table 5.3: The number of issues that we downloaded, manually review and are possibly
security related

Issues... Most starred repos npm repos PyPI repos Maven repos

All issues 8862 629 300 785
Potential issues 4174 142 145 330

Manually reviewed
116 / 150
(77.3%)

80 / 142
(56.3%)

104 / 145
(71.7%)

99 / 145
(68.3%)

Recall Finally, the results of the recall analysis are shown in Tables 5.4 and 5.5. First,
we see that in general only 80.4% of issues are created or labeled as security-related before
the disclosure of their vulnerability. We think that the major reason for this is assigning the
label post factum and issues that serve as documentation. The ratio drops further for issues
older than 7 days at disclosure time possibly suggesting that issues with security labels are
being handled with higher priority.

Second, as expected from the low percentage of repositories defining the label, when
considering all vulnerabilities the recall drops significantly to values around 8%

Table 5.4: The percentage of issues that were labeled security-related n days before the
disclosure.

Dataset 0 days prior 7 days prior

Whole dataset 80.4% 49.8%
npm subset 90.9% 77.2%
PyPI subset 64.0% 37.8%
Maven subset 80.8% 46.2%

Table 5.5: The percentage of vulnerabilities with linked security labeled issues out of all
vulnerabilities with linked issues.

Dataset 0 days prior 7 days prior

Whole dataset 8.1% 5.0%
npm subset 6.0% 5.1%
PyPI subset 8.2% 4.8%
Maven subset 7.7% 4.6%

Median delay The last metric we evaluated is the median time delay to disclosure. As
the date when the issue was spotted by the method we have selected the date when it was
assigned a security-related label. The results of the analysis can be found in Table 5.6. We
see that in the majority of cases the issues are spotted much closer to the disclosure date –
with a median delay of 7.1 days. From the npm ecosystem, the delay reaches over 100 days,
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which might be the result of artifacts and a low number of found vulnerabilities. The PyPI
and Maven ecosystems show values even lower than the general median of 0.8 and 4.7 days
of delay respectively.

In total, these values are much smaller than the creation date of issues explored in Chap-
ter 3. We believe there are two reasons for this, similar to the reasons for low recall. First, in
many cases we manually reviewed we found that the issues were receiving the security la-
bels retrospectively – it was not used to prioritize work, but rather as documentation means.
Second, after the security label is assigned to an issue it means that the maintainers realize
that the issue has security applications and fix it urgently. Both of these actions skew the
median closer to the disclosure date.

Table 5.6: Median delay and the number of found vulnerabilities using security-related
labels.

Dataset Found vulnerabilities Median delay [days]

Whole dataset 1,051 7.1
npm subset 44 103.2
PyPI subset 111 0.8
Maven subset 50 4.7

Mapping to vulnerabilities Additionally, for the first sub-question, we need to know
how many of these issues refer to vulnerabilities. We managed to find a vulnerability for
18.8% of the correct security issues. Interestingly, when comparing the references in vul-
nerabilities, only the only matching repository was tensorflow/tensorflow, suggesting that
the documentation is incomplete or it is rarely two-directional. Sadly, this result has to be
taken with a grain of salt, as with manual matching some vulnerabilities might have been
missed or assigned incorrectly. From these non-matched issues, one could extract a set of
12,937 commits linked to security-labeled issues, which could be an alternative source of
security-related commits sourced differently than from the vulnerability database. However,
while mining these commits additional filtering needs to be applied to reduce noise as for
some ecosystems only 56% of issues were correct.

5.3 Summary

We see that only 18.8% of the reviewed security-labeled issues were mapped to vulnerabil-
ities, suggesting that many potential vulnerabilities are marked on GitHub, but undisclosed
to any vulnerability database.

Thanks to its relatively high precision in repositories where the labels are used to coor-
dinate, the method has great potential as an alerting tool similar to how vulnerabilities are
considered. However, a major drawback of it is that not many repositories utilize considered
labels for coordinating fixing efforts.
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• The precision of the method stands at 77% with values for ecosystem subsets varying
from 56 to 72%. We suspect the method’s performance could be improved by com-
bining the applied code-changing commits filtering with filtering based on the author
of the issue.

• The recall of the method is 8.1% with values for ecosystem subsets varying from 6
to 8%. The main reason for this low value is that the majority of vulnerabilities are
being handled by more generic labels e.g. ’bug’ or ’enhancement’.

• The applicability of the method is low because not many projects define security-
related labels.

• The median delay time is 7.1 days with values for ecosystem subsets varying from 1
to 103 days. As this result is lower than the overall median for the issues, we believe
that labeled issues are handled with increased priority or are labeled post-factum for
documentation purposes.
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Chapter 6

Features of security-related commits

In this chapter, we are moving to commit classification. First, we look at the commits
through the lens of metrics to understand the security-related commits better. Then, we
test out feature-based models to investigate how a combination of metrics can separate the
set of security-related commits from the background. Furthermore, these models can be
used as another method and as a baseline for deep learning approaches. In this experiment,
the main points will be picking the right metrics that can be different for security-related
commits and choosing the right model to combine these metrics in the best way to separate
them from the background.

Research Questions
3.1) Can the security-related commits be separated from the background using com-
mit metrics?
3.2) With what performance can feature-based commit classification spot security-
related activity before disclosure?

6.1 Experimental setup

The first step in implementing this method is to collect the train and test datasets. First, the
positive samples will be the security-related commits described in Chapter 3. We filter this
dataset to include only repositories for which we find at least 5 security commits. We do
this to reduce the space of values for our features and exclude one-off commits in arbitrary
repositories. This will also reduce the mining time as not so many repositories need to be
cloned. Second, we also need the background commits from which the model will learn
to distinguish security commits. As mining entire repositories would require too many
resources and makes us include many silent fixes, we mine background commits with an
approximate ratio of 1:50. As this ratio is enforced by mining background commits with a
pre-calculated probability the actual ratio might vary. Additionally, not all commits found
in vulnerabilities are still present in repositories. Some commits might also contain no
code changes (e.g. merge commits) or have null values for many of the metrics and are
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also rejected. As such the actual ratio might be different and will be re-balanced to fit the
training in further stages.

Feature Selection The feature approach heavily depends on the right selection of features
extracted from the code. The best metrics are those that exhibit different values for positive
samples compared to background samples. While it is very unlikely that any of our selected
metrics have that property on their own, we hope that a combination of them can separate
the space of commits and that our ML model will pick those patterns up. Based on intuition,
prior work and initial investigation we select metrics for further evaluation. Based on the
reasoning behind the metric we separate them into classes described below. Furthermore,
for implementation purposes, we divide our metrics into two different levels: the commit
level - where metrics are calculated for the commit as a whole, either by being based on
commit-specific data or by being aggregated by an external tool; and the file level - where
metrics are calculated based on properties of a file and then aggregated to commit level. On
the commit level we investigate class metrics:

1. Author & committer based
We used the author and the committer (and the related author and committer dates)
of the commit to calculate several metrics. First, we check whenever the committer is
the same as the author, which might suggest the commit was merged urgently without
a pull request. Next, we realized in the manual review in previous chapters that bot-
produced commits play an important role in open source repositories. As such we
check whenever ’bot’ is present in the fields. Since established contributors play a
much more important role in security-related issues [3], we compare the committer
and author emails to the list of 100 top contributors in the repository. Finally, we also
calculate the difference between the author and the committer date [6]. While many
repositories use merge strategies that hide this difference, setting both of them to the
same value, in some cases this can be an indicator showing how long a commit was
waiting on a side branch before it was merged into the main branch, which we guess
will be shorter for security related commits. This can be partially seen by the vertical
lines in Figure 6.1 for the strapi1 project.

2. Delta maintainability model [9]
We used values calculated by the delta maintainability model as previous research has
shown that security-relevant commits may hinder maintainability [41]. Furthermore,
SIG has lately conducted a survey showing that poor maintainability is coupled with
a higher amount of vulnerabilities [48].

3. History based features
For the same reason as the difference of committer and author-date, we also analyze
the preceding and the following history around a given commit. We extract such
information as whether the commit is followed by a merge, how much time passed
until the next merge commit was added or how many commits were added. While

1https://github.com/strapi/strapi
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these metrics are used less often for commit classification tasks it has been shown
that for some applications in the security field they can perform better than typical
metrics [40]. These results also match our intuition that security-relevant commits
are likely to be processed with higher priority. These features are calculated based on
the 50 commits before and after as returned by iterating the repository, as such may
not always be correct, especially in complicated, non-linear histories.

4. Security keywords
For this class of features, we search for selected security keywords in the commit
message. We selected a small set of simple keywords that might hint at the security
nature of a commit. We separate the first line of the commit message cropped to 72
characters as the commit title for which we perform the text search separately. While
specifying the security aspect in the commit message is generally discouraged [21],
based on the result from the previous research question we can mine these features
out for inspection and perhaps reject them later.

5. Changed files
The final metric on the commit level is the number of changed files which is based on
the intuition that a security-relevant commit as a fix shouldn’t modify a large portion
of the code based and rather focus on small changes.

On the other hand, file-level metrics are calculated for each changed file in the commits
and are later agglomerated to the commit level. When calculating these metrics we can
process the changes in the code itself and focus on more fundamental features of the code.

1. Change types
One basic property we extract from each file is whenever the file was added, changed,
removed or renamed. We expect security-relevant commits to not modify the structure
of the projects and focus on fixing the issue.

2. Change & file sizes
Another basic extracted property is the size of the change and the size of the file. It
is generally believed that large, complex files are likely to contain vulnerabilities [13,
46]. On the other hand, we expect the majority of our security-related commits to
be security fixes that are small in nature. Apart from being a feature on its own, the
feature may be used by the model for scaling other values.

3. Lizard metrics
Lizard [55] is a complexity analyzer integrated into PyDriller [50] which can calculate
various complexity metrics such as token count, cyclomatic complexity or changed
method count. This class of metrics is commonly used to measure software and
predict its properties in commit classification, moreover, the complexity metrics may
contribute to the complexity issue described above.

4. Security Keywords
Same as with the commit message we search for security-related phrases in the patch
of the commit and the whole file.
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5. Test relations
Similarly to search for security-related keywords we look for the keyword ’test’ in
the filename and in the file path to detect test files compared to production code.
Whenever the commit contains tests for the issue it is fixing depends on the practices
of the community managing the repository, but based on a case study on two Apache
projects [35] it has been concluded that vulnerabilities are hard to test, and as such,
some pattern may show up in these metrics.

6. History based
Finally, similarly to commit level metrics, we investigate the history preceding and
following the commit to validate how often it was changed, if it’s a new file or when-
ever it was deleted shortly after.

Features calculated for individual files need to be combined to the commit level. This
can be done in two ways: either one joins file-level features together to the commit level
prior to processing them with a model or processing each file separately and agglomerating
the results. For simplicity, we decided to use the first method. Depending on the type of
metric, the results from files are combined in one of two ways. The first one, which is
aimed at flag values (e.g. keyword ’test’ in the filename), calculates the percentage of files
for which the condition is true. The second one, meant for numerical values, extracts the
maximum and the mean of the sequence of features. We select the mean value to represent
the general nature of the commit. However, in some cases (e.g. newly added components,
release files) features for some files might be extraordinarily large compared to others and
thus we also consider including the maximal value.

The full list of the metrics with the initial motivation and aggregation method is included
in Appendix A. The dataset of mined metrics is included in the reproduction package [52].

After the features are mined we need to select which of them to use in the models.
Utilizing all of them, including those with invalid values, would lead to easily over-fitting
models. First, we will validate how many data points the mining process was able to calcu-
late the value of each feature in each ecosystem. In particular, Lizard does not support all
programming languages and as such the metrics calculated by it might be empty. Second,
we will manually review these features by plotting them vs the author date of the commit to
spot anomalies suggesting the metric is invalid or was improperly calculated. Third, know-
ing that our features are correct, we will investigate their potential in a machine learning
model. We manually review the largest (absolute) values in the correlation matrix for our
features and remove features based on that. Furthermore, we evaluate which features have
little to no variance and decide whether to remove those as well. We reject these features
as they provide the least value for the classification while possibly causing the model to
overfit. We repeat this for each ecosystem and the whole dataset. The final step of feature
selection is recursive feature elimination (RFE) [15], where we train a random forest model
on data for each ecosystem, evaluate the feature importance based on the trained model and
remove the least valuable features for as long as the performance of the models is not falling
off.
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Models Apart from the features, the resulting performance of the model is influenced by
the architecture of the model. We select 3 machine learning models commonly used in
prior research for the same (or similar) task. We selected random forest classifier (RF),
used in [8, 45, 26, 60, 19]; logistic regression (LR), used in [26, 19, 32]; and support vector
classifier (SVC), used in [26, 60, 44]. We test the models in a number of hyper-parameters
settings tailored according to recommendations and setups in prior work. Based on the F1
score we select the best-performing model, for which we further improve the performance
by fine-tuning parameters. We decided to use the F1 score because it combines both the pre-
cision and the recall, which in an imbalanced class scenario are connected with a trade-off.
The implementation of these models in Scikit-learn [34] can be found in the reproduction
package [52]. Note that for all experiments (feature selection, model performance) metrics
are evaluated on a test dataset coming from randomly selected repositories. Having the opti-
mal parameters, we perform a 5-fold cross prediction (by rotating the test set of repositories)
to get the predictions for the final recall calculation.

6.2 Results

As shown in Table 6.1, in total, over 425 thousand commits were mined with around 8
thousand being linked to vulnerability reports. However, samples that are associated with
specific languages are less represented with npm having the most commits of all subsets at
561 security-related commits and 33,336 commits in total.

Table 6.1: Count of mined commits by each ecosystem

Dataset Security Relevant commits All commits

Whole dataset 7,986 425,891
JavaScript (npm) subset 561 33,336
Python (PyPI) subset 483 26,799
Java (Maven) subset 268 13,175

Selecting features First, we put aside commits mined from randomly selected repositories
to use commits from them as the test dataset. Next, we looked into the features that do not
have a set value due to processing being impossible. As predicted, in the majority of cases
these were the code complexity metrics calculated by Lizard, when the language wasn’t
supported by the tool. The only not supported language that we decided to include in our
ecosystems is TypeScript for the npm ecosystem and as such, it has a significant number
of invalid values. The final percentages of rows with NaN values for each ecosystem were:
29.1% for all data points, 16.7% for npm, 0.1% for Maven and PyPI. As these weren’t such
a large majority we continued with them filled with zeros while being aware it may swing
the correlation or the variance evaluations to the wrong side for some of these rows.

The next stage was plotting the data and manually reviewing the figures to determine
if features were calculated correctly and possibly spot features that separate well the space
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of metrics. For this purpose we use 2 types of plots: scatter and violin. First, the scatter
plots were generated with the data points being the value of the feature and the author date
of the commit. We first plotted all commits to indicate the space of possible values and
their distribution and then on top of these plotted the security-relevant commits to spot what
values they exhibit. In some cases, we also extract commits only for one repository and plot
them separately. Some example plots for the npm ecosystem are shown in Figure 6.1. The
first plot shows the difference between the author’s date to the committer date - indicating
how long it took for the commit to end up in its current location. Note the vertical lines
are probably representing branches or releases being prepared. The second plot shows one
of the history-based metrics, the average amount of times the files changed in the commit
were also changed in the following 50 commits. Next, the third plot shows the average
number of added lines in the commit. Note that in both these plots, the security-related
commits are primarily in the low values, sadly this is also the case for the majority of
background commits. The final fourth plot shows the DMM Unit Complexity metric of the
commits. Even though there are more commits with the value one, it seems that security-
related commits appear in both extrema of the spectrum. Note that these are only selected
plots showing only the part where both security-related commits and background commits
have valid values.

We also utilized violin plots, which were generated for the population of all commits
(blue) and the population of security-related commits (red). They represent what values
the different population exhibit and can be used to easily spot the features that have the
potential of discriminating security commits. Example plots for the PyPI ecosystem are
shown in Figure 6.2. In the first plot, we see the distribution of the feature values for the
number of changed files in the commits. These distributions look very alike, with both the
mean and median with similar values. Next, the second plot depicts the macro average of
the number of parameters in the changed method of the file. The distributions are a bit
different, with security commits being more likely to change methods with larger counts of
parameters. The third plot shows the distribution of the feature representing the percentage
of files that contained the ’secur’ substring in the patch. While the median for both classes
is 0, more security-related commits exhibit higher values for this feature. Finally, we also
plot the DMM Unit Size for the PyPI ecosystem. It shows that the intermediate values are
more thinned out because there are more data points in the background dataset. Using these
plots we also rejected some metrics that had no variance or that were not disambiguating
security commits as they were designed to.

Having validated our metrics we move to feature selection. In variance analysis, we see
that a significant number of keyword-based features show little to no variance. This was
expected as we designed these metrics to pick out primarily security-related commits which
are in a substantial minority. As such we use the variance filtering with a very low threshold
of 0.001 to remove just the features that show pretty much no variance at all. Almost all
keyword-based features calculated from method names had to be removed in this step, as
the selected keywords rarely appeared in the method names.

Next, we remove features based on their correlation with other features. As many of
our metrics were extracted from the same data and we were aggregating file-level metrics
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(a) Committer to Author date difference for
strapi/strapi. Note the vertical line represent changes

waiting to be merged in.

(b) The average number of times files changed in the
commit were also changed in the following

50 commits.

(c) Average added lines count. (d) The unit complexity metric from the Delta
Maintainability Model.

Figure 6.1: Plots of example metrics over time for commits containing JavaScript and
JavaScript-like languages. Red points indicate security-related commits.

into two values at the commit level it was expected to find a lot of correlated metrics. We
extracted pairs of features for which the absolute value of their correlation was above 0.75,
and review them manually. In particular, features based on the title of the commit were
highly correlated to the features based on the message of the commit suggesting that in the
majority of cases the commit message was short (i.e. just the commit title) or contained
no security-related information in the latter lines. Similarly, highly correlated were the
features correlated to the total complexity of the commit files as large files usually imply
high complexity and high token count. We see that including both the average and the
maximum value in the aggregation from the file level was in many cases excessive as these
values are frequently correlated. However, as in some cases when we had motivation to add
both, we left them in for the RFE process to decide their usefulness.

In the next step, we use RFE with cross-validation to eliminate the least important fea-
tures. In the elimination, we use the random forest classifier as its training process was
the fastest. We set up the process to yield a minimum of 40 features. After the feature
elimination 100, 73, 51, and 80 features were left for the dataset of all data points, npm,
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(a) Example of a feature with a similar distribution –
the number of changed files in the commit.

(b) Macro average (average of averages) of parameter
count in changed methods in files changed in

commits.

(c) The percentage of files in each commit containing
the ’secur’ string in the patch.

(d) DMM Unit Size

Figure 6.2: Violin plots used to compare the distribution of different metrics for commits
containing Python code. The left (blue) distribution shows the overall population while the
right (red) one shows just the security-related commits.

PyPI and Maven. While we expected the entire dataset to require the most features, we
were not expecting such large differences in the ecosystem datasets. This might suggest
that the commits mined in PyPI ecosystems span a smaller space than commits from other
ecosystems. Investigating the features, kept by the RFE process we find that features from
all classes were kept. In particular, many of the history-based features were favored by the
selection process. Additionally, many of the code metrics were also kept even though some
represented similar properties of code. Lastly, as expected due to the long-tail nature of the
data, in many cases both the mean and the maximum aggregation were among the chosen
features.

At this point, we can answer the first research question of this experiment. Visually no
metric was able to separate the security-relevant commits from the background. There are
some patterns in the features, for example, most of these commits are small, or commits are
primarily adding lines rather than removing them. However, in many cases, these patterns
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match the patterns of the background. When looking at feature importance we see that only
in one case the feature importance crossed the 0.05 mark – the feature ’secur’ in commit
message for the npm ecosystem. All other features were around or below 0.035. On the
other hand, many of the top features are repeated in different ecosystems suggesting the
similarity of the patterns. While most of these were history-based, others included ’secur’
in commit message, maximal file size in commit, and maximal number of lines of code in
changed methods.

Precision Models were trained with F1-score as the scoring function. As seen by the
results in Table 6.2, the results are quite underwhelming. The biggest issue, limiting the
performance of these models was the highly imbalanced classes. The models were trained
in over-sampling and under-sampling ratios of 1 to 8, where lower values were usually
preferred. This ratio is significantly different from the ratio in the test datasets which was
closer to 1:50. Using such a ratio in the training process would make the model ignore the
positive samples in the training process. On the other hand, oversampling causes easy over-
fitting or poor generalization of the models where the data points are repeated. Nonetheless,
the results leave much to ask for, as the highest F1-score is at 0.38.

The performance was significantly lower for the entire dataset and the Java subset com-
pared to JavaScript and Python subsets. We believe that the driving factor in this perfor-
mance was the size of the datasets and how uniform the practices in the languages in the
dataset are. For JavaScript, there was the largest dataset available for specific ecosystems
and the best results were achieved. Similarly, it was followed by Python, for which less data
was available, but perhaps since Python code is known for a very uniform coding style it
also yielded good performances. The opposite applies to the entire dataset where without
any filtering all practices were mixed making the classification much more difficult. The
worst performance was achieved for the Java subset where there was little data.

Focusing just on the precision of the best-performing models we achieved 0.16 precision
for the entire dataset and 0.54, 0.32, and 0.20 for JavaScript, Python, and Java respectively.
Note, a precision of 0.16 means that within the set of commits classified by the model as
security-related the class ratio is about 1:6.25 which represents an eight times increase in
the prevalence of the security-related commits compared to the base set.

Table 6.2: Precision, recall and the F1-score of the best performing models in searching for
optimal class ratios.

Model Whole dataset JavaScript subset Python subset Java subset
RF 0.13, 0.30, 0.18 0.54, 0.29, 0.38 0.50, 0.22, 0.30 0.20, 0.06, 0.09
SVC 0.15, 0.19, 0.17 0.19, 0.31, 0.24 0.33, 0.31, 0.32 0.10, 0.11, 0.11
LR 0.16, 0.08, 0.11 0.11, 0.31, 0.16 0.30, 0.28, 0.29 0.03, 0.11, 0.05

Recall To calculate the recall of the method, cross-fold predictions were utilized with 5
folds. To keep the results generalizable, the splits were done on the repository level which
could have created uneven splits that hurt the final prediction accuracy. We calculate the
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recall based on the number of vulnerabilities for which we had the prediction for at least
one commit. As such the recall might be different from the random trials made in the
previous sections. Furthermore, the result is affected by vulnerabilities being represented
by multiple commits and commits representing multiple vulnerabilities. The results are
shown in Table 6.3.

We see that the highest recall is achieved for the JavaScript ecosystem which lines up
with the results above. We also see that the ecosystem-wise classification performed better
than the overall one. The recall calculated for all vulnerabilities is 12.1% which is sadly
lower than what was expected from the performance metrics in the random trials.

Table 6.3: Recall of the feature-based commit classification approach on vulnerability level.

Dataset 0 days prior 7 days prior

Whole dataset 12.1% 7.7%
npm subset 28.0% 13.5%
PyPI subset 10.7% 5.5%
Maven subset 17.6% 11.5%

Median delay The median delay is evaluated based on the same data as the recall, but
instead of counting the spotted vulnerabilities with a delay of larger than 0 or 7 days, we
calculate the median of the delays. The results are shown in Table 6.4. The median de-
lay is smaller than the median delay calculated for the first commit which was calculated in
Chapter 3. This suggests that the models are classifying the commits closer to the actual dis-
closure. This might be affected that these commits were done with fixing the vulnerability
in mind, while the older references are ’accidental’ fixes.

Moreover, we see that the median delay is highest for the Java ecosystem, but as there
is limited data available the results might be unreliable. The delays of both JavaScript and
Python were below the overall median of 10.8 days.

Table 6.4: Median time gained by spotting security-related commits with feature-based
commit classification

Dataset Found vulnerabilities Median delay

Whole dataset 1,468 10.8
npm subset 89 4.7
PyPI subset 188 7.0
Maven subset 40 17.0

Applicability The method has high applicability as there are no significant limitations.
Theoretically, the method can be run on commits mined from any repository, however, some
restrictions may apply. First, the programming language of the project must be supported
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by Lizard to utilize many of the Delta Maintainability Model metrics as well as many of the
code metrics. Furthermore, some projects may clear the committer or author-date depending
on the git workflow. Similarly, the project maintainer may hide the security aspect of the
commit from the message or the comments as it’s suggested by MITRE.

6.3 Summary

Based on the results of this experiment we conclude that commit metrics are not enough
to pick out security-relevant commits from their background. Metrics of security-related
commits follow the general trends of the commits population. When applying machine
learning approaches, more complex patterns across metrics can be found, but they’re too
weak to result in good separation.

While the results of the method are not that astounding, one has to remember that it has
been evaluated in harsh conditions and where no apparent patterns were seen in the manual
review. The major obstacle for the method was the high imbalance of classes as well as
inconsistent patterns, which can be seen by the overall poor performance of the models
trained on the entire dataset.

• The precision of the method varies from 13% to 54% depending on the model, test
run, and the ecosystem. The highest scores were achieved for the npm ecosystem for
which there was the most data.

• The recall at the disclosure date of the method varies from the lowest of 10.7% for
the Python ecosystem to the highest of 28% for the JavaScript ecosystem.

• The applicability of the method is high as it can be applied to any repository and
the commits will always be public. Some features, however, may not be available to
the model depending on the ecosystem (e.g. code analysis may not be supported) or
project culture (e.g. using merge strategies that modify history).

• The median delay of the method is almost 11 days, which means it spots commits
that are pushed to the repository generally 11 days before the disclosure of the vul-
nerability.
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Chapter 7

Validating deep learning approach

Finally in this chapter, having explored the field and validated simpler approaches, we move
to apply deep learning models to the problem. In particular, we are testing the performance
of different sampling methods, training our model inspired by Commit2Vec [5] and by
VulFixMiner [59], and lastly evaluating the performance of deep learning models on our
datasets.

Research Question 4
4.1) What impact on the model performance have different sampling methods?
4.2) With what performance can a bilingual deep learning model spot security-related
activity before disclosure?

Background One of the biggest challenges in deep learning approaches is sampling the
code for the model. In the majority of cases, a machine learning model can only accept
inputs of a set length which is usually not big enough to handle entire files or changes. As
such code from these files needs to be sampled in a way that extracts as much information
on the code and code structure as possible. Many approaches for sampling are inspired by
techniques used in natural language (NL) processing.

Once converted to a sample, text data needs to be embedded into numerical values.
Early approaches create non-distributed embedding, meaning that samples are converted
into vectors where each token is mapped to one or a small group of output elements in the
vector. One of the simplest approaches is creating a map of tokens assigning each unique
token an index. These approaches may struggle in big vocabularies or when the same token
is used in a variety of contexts.

On the contrary, distributed approaches represent samples as vectors (or matrices) in
such a way that each token is distributed to many (if not all) of the output elements of
the vector. These representations have proven to work especially well with deep learning
algorithms which can capitalize on a more complete representation of the samples and pick
up more subtle patterns. One of the most popular implementations of this approach is
Code2Seq [1] and Code2Vec [2].

Bilingual models operate on both natural language and programming language (PL)
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inputs and usually produce distributed embeddings. As much of the code is accompanied
by some sort of a description - either an issue, commit message or just some comments,
these models have the potential to utilize even more data. Recently they have gained a lot of
attention due to the release of CodeBERT [11] and GraphCodeBERT [14], two pre-trained
RoBERTa [30] models on a large dataset of NL and PL pairs.

Finally, in the case of commit classification, the representation has to be on the commit
level and not on the sample-level. While there are other solutions for example those based
around graph neural networks [62, 54], the dominant trend is to utilize encoding of samples
produced for different files in the commit and aggregate them together into the commit
representation. This approach was suggested and evaluated in Commit2Vec [5] reaching
0.72 F1-score in a balanced set scenario.

7.1 Experimental setup

The experiment to answer this research question consists of 4 different stages.

Figure 7.1: Extraction of samples from commits

Stage 1: Mining and sampling The first stage is to obtain the data for training our mod-
els. Similarly to the previous research question, we will utilize the security-related commits
mined from the vulnerability reports to train the models. As shown in Figure 7.2 Graph-
CodeBERT model expects the input to be prepared in a specific way. The first token of
the input should be the CLS token which can be followed by the natural language input for
which we utilize the commit title of the commit. It is then followed by a separator token and
the programming language input. If required, additional separator and padding tokens are
appended. The sampling method of the programming language input from code can have
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an impact on the model performance [5]. The sampling method has to represent the na-
ture of the change, which in our case is preserving the security-related aspect of the sample
within the commit. Furthermore, it should put the code change in a wider context of the file.
We implement 4 different sampling methods described below inspired by practices used in
other research, 2 of which to our knowledge weren’t applied in security-related commit
classification tasks yet.

Added code The simplest of proposed methods for code sampling is just using the added
code for each file in the commit. This will yield as many samples as there were files
changed in the commit. Because the transformer has a fixed input size of 512 and
beside the code sample, the commit message is also included, and the code might get
cropped. However, at least 438 tokens (512 minus CLS, SEP tokens and at most 72
NL tokens) from the code will be added to the input. As simple as it is, it was utilized
in VulFixMiner [59] yielding promising results.

Rolling window A modified version of the added code sampling method is the rolling win-
dow method. Since added code may be cropped and contain only the beginning of the
change, it might contain a lot of boilerplate code at the file start. Also, the added code
method in no way represents the size of the change. We suspect that added code may
provide too little context for small changes. To counteract these flaws, in the rolling
window sampling method we randomly choose 100 lines added in the commit and for
each, we sample the line together with up to 10 preceding and following lines. This
way commits that have less than 100 changed lines will have fewer inputs and will
contain more context. Files that have relatively more changes than other files will be
more represented and by nature of random choosing more samples out of the 100.

AST Paths Many approaches in literature have been proposed that parse the code into the
abstract syntax tree (AST). An AST represents how the expressions are contained
within each other in the file structure, and as such it’s suspected that extracting sam-
ples from this structure captures more context. We implement a similar sampling
technique as used in Commit2Vec [5]. In the AST we randomly choose 2 nodes and
find a path between them. Then we collect all lines where the nodes on the path start.
This procedure is repeated 100 times. Looking for the paths between nodes can repre-
sent how related the changed lines were – a long input means a long path between the
changed lines and a spread-out change in the file. We use the start lines instead of the
tokens to hopefully utilize the pre-trained information on code structure contained in
GraphCodeBERT. This sampling method will also include information on the relative
change sizes in files as in the previous method.

Edit scripts The edit script based sampling method is a modification of the added code
sampling method. The difference is that instead of relying on changed lines as de-
scribed by Git, we compare the AST trees of the file before and after. Using the
GumTreeDiff tool [10] and the Chawathe algorithm [7] we generate an edit script
that represents the added and removed AST sub-trees between the two versions of the
file. Then each added sub-tree is mapped to its lines within the file and the lines are
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extracted as a sample. This way, the sampling method is not relying on just the line
numbers in a text file but involves actual code understanding in extracting the sam-
ples. Furthermore, we sample each sub-tree separately (which could be compared to
using each added hunk of the commit), to avoid cropping the data.

To determine the best sampling methods all of them will be evaluated for a selected
programming language and the final performance will be compared. Sampling methods
were implemented in Python and Java using PyDriller [50] and GumTreeDiff [10] tools.

Figure 7.2: Fine tuning model

Stage 2: Fine-Tuning The second stage of the processing is the fine-tuning of the Graph-
CodeBERT model [14]. Before one can use the model for the downstream task (of security-
related classification) it has to be fine-tuned to the vocabulary and the gradients in the data.
For the fine-tuning process, we follow the approach of VulFixMiner – we connect the output
of the CLS token to a linear layer which combines the output to two single values represent-
ing the probabilities if the sample is positive or if the sample is a background sample. The
model is trained using cross-entropy as the loss function. In this process we are training the
model to produce such embeddings for which exist two linear combinations: for positive
samples, one maximizing the first probability and one minimalizing the second; and for
background samples the inverse.

Using a pre-trained model and only fine-tuning it also means that we don’t have that
many hyper-parameters to optimize. In our preliminary experiments, we found 3 parameters
that had the most influence on the model performance. First, the class ratio - the proportion
of positive samples to background ones in the training phase impacts both precision and
recall. We control it by under-sampling background samples to a specific ratio. Second,
the over-sampling ratio, i.e. the number of times the positive samples are repeated, also
impacted the precision on the test subset. We control it by over-sampling the data points
- providing them multiple times to the model. Third, the learning rate recommended for
the fine-tuning process is 2e-5, however, we found that for some sampling methods this
value was too large. As such we test out models trained with a learning rate an order
of magnitude lower (2e-6). To find the optimal setup of hyper-parameters we perform an
exhaustive grid search on a subset of 5,000 samples randomly chosen from the appropriately
prepared dataset.
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(a) Mean Aggregator

(b) LSTM Aggregator

(c) Convolution Aggregator

Figure 7.3: The data flows within the proposed aggregator models.

Stage 3: Training Aggregators Up until this point, all processing is happening on the
sample level which are generated for given files or lines in the commit. These on their own
may not represent the whole story and to get the most out of the information we aggregate
all embeddings from the sample level to the commit level. For this task, we propose 3
methods used in related work or commonly used to concatenate a series of embeddings.

Mean Aggregator The simplest of the aggregators was the one applied by VulFixMiner.
For each element of the 768-long embedding vector, the mean value is calculated
across all samples for the commit. Then, the means are then contracted with a linear
layer to two values representing the probabilities for the commit.

LSTM Aggregator Long-short term memory (LSTM) networks are one of the most pop-
ular networks used to process sequences. Used for this task for example in Com-
mit2Vec, they usually outperform alternatives. Based on recommended settings, in
the experiments, we use an LSTM with 5 hidden layers and a dropout of 0.2. We
found this configuration of hyper-parameters to offer enough parameters to capture
the gradients and not overfit thanks to the dropout. The output of the LSTM is con-
tracted to two values as in the previous case.

Convolution Aggregator Inspired by their use in image processing tasks, convolution net-
works have the property of mixing and compacting the input. We built a small con-
volution network from two sets of Convolution, MaxPolling, and ReLU layers. The
output is then flattened to a single-dimensional vector. As before, their result is sub-
jected to dropout (p=0.3) and then it’s combined into 2 values by a linear layer.
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These aggregators will be trained on the embedding vectors produced by the fine-tuned
GraphCodeBERT transformers. The goal of the aggregator is to pick up on patterns within
the embedding and focus on the samples that determine the commit as security-related or
not. As such they should improve on the results of the individual samples. The final perfor-
mance should be evaluated with cross-validation to reduce the impact of randomness. For
the performance metrics, similar to the case of feature-based models, we have selected the
F1-score as the main indicator as our dataset is heavily imbalanced and the precision and
recall in case of similar F1-scores with more priority on the recall.

Note, that all performance testing is done by splitting the dataset according to the repos-
itories to ensure no data leakage between the train and test sets. Due to the repetition of the
commit message in all samples from one commit, the splits cannot be made on the sample
level, as the commit message part could have been repeated both in the training and test-
ing sets. Furthermore, the training and test split have to remain constant across all stages,
i.e. the training data points of the fine-tuning phase cannot be used in the test set of the
aggregator phase as it also produces unreliable results.

Stage 4: Evaluation In the final stage of this experiment, we evaluate the deep learning
approach as a method of prealerting for vulnerabilities. As in the previous chapter, we
use cross-fold validation to calculate the prediction of commits linked to vulnerabilities
and evaluate how fast they would have been spotted. This validation can also be done
with the models of VulCurator [31] which include a commit message classifier and the
VulFixMiner [59] model trained on the SAP-KB dataset [37].

7.2 Results

In total 171,628 commits were mined, where 8436 were positive commits. The most data
is available for the JavaScript language ecosystem, where 23,495 (744 security-related)
commits were mined. Table 7.1 shows the detailed numbers of commits and samples mined
for each subset. The sample columns indicate the total amount of mined data from all
methods. Regarding the individual sampling methods, the least data is available in the edit
script based sampling method where the programming language needed to be supported by
the parser and the parsing had to succeed for both before and after versions of the file.

Table 7.1: Counts of mined data for each ecosystem.

Dataset Total commits Positive commits Total samples Positive samples

Whole dataset 171, 628 8,436 12,487,465 729,211
JavaScript subset 23,495 732 1,931,436 61,096
Python subset 13,489 594 1,713,725 69,081
Java subset 6,712 313 1,037,158 43,868
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Fine-tuning and sampling methods After mining the code samples we started working
on finding the optimal setting for fine-tuning the GraphCodeBERT transformer as our em-
bedding producer. In this step, we limited the number of training samples to 5,000 and
validated different dataset rebalancing methods – oversampling for increasing the number
of training samples, and undersampling for controlling the prevalence of positive samples in
the training. Additionally, as the model was overfitting in the initial experiments, we tested
a lower learning rate. The values were calculated for the samples from the Java ecosystem
as it was the only ecosystem for which we had inputs from all sampling methods in the first
run.

We find that multiple configurations yielded significantly worse results than others, but
for each sampling method, there was a group of hyper-parameters that yielded the best
results. Then, we realized that in one case the rebalancing parameters of oversampling and
class ratio yielded the best (or similar to the best) results for all sample types. As such
we selected the class ratio (CR) equal to 2 and the oversampling ratio (OR) to 4. The
recommended learning rate (LR) was preferred in all cases, but for the rolling window
method. The results are shown in Table 7.2. Note, that the class ratio in the test dataset was
similar to the class ratio in the feature-based experiment – approximately 1:50.

From these results, we can see that the sampling methods achieve comparable perfor-
mance in almost all cases. Only the edit script method achieved worse performance. This
came as a surprise since the method requires the most computing to sample the data out of
code (as two files need to be parsed and their trees need to be compared). We believe that
this lower performance compared to other methods is caused by small trees returned by the
tree comparer, which generate small samples that can be repeated both in the positive and
in the negative dataset. One example of such a sample is the closing bracket added together
with an ’if’ statement, which in this method is converted to a standalone sample.

Table 7.2: Results of fine-tuning for samples with Java code.

Optimal parameters Achieved scores

Sampling method CL OR LR Pr Rc F1

Added code 2 4 2e-5 0.30 0.25 0.27
Rolling window 2 4 2e-6 0.22 0.34 0.27
AST based 2 4 2e-5 0.36 0.24 0.29
Edit script based 2 4 2e-5 0.29 0.17 0.21

On the other side of the spectrum, the AST paths based sampling method performed
slightly better than other methods, which is in line with the findings of the Commit2Vec
model. Note, that there is not that big of a difference between the scores of other methods.
In our opinion, this suggests that the transformer architecture has enough parameters and
can pick out the patterns regardless of the sampling method. The sampling method has
proven to matter in cases of other, simpler models, but when working with more complex
models results show that the extra effort in choosing samples might not be worth it.

Finally, reflecting on the actual classification results, the sample-level predictions are
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quite underwhelming. While they are better than the results of the feature-based commit
classification, considering the much more complex mining and used architecture one would
expect these values to be better. Furthermore, these results are significantly lower than
those reported in the literature for the final models. However, we suspect that in their cases
the sample level results also are lower than the final commit level performance, as not all
samples from the security-related commits might represent the security-related part of the
commit. As such, similar samples might be present in both the positive and background
dataset. Sadly, we also suspect that due to limited data filtration, the model might be picking
up on non-important patterns that have nothing to do with the security aspect of the change.

To sum up the answer to the first sub-question, some sampling methods may produce
input that inhibits the performance of the embedding transformer however there is no sig-
nificant improvement between ’good’ sampling methods.

Aggregator results Next, aggregator architectures were tested on the produced embed-
dings. First, we proceeded to test the models on filtered samples with only Java code. The
LSTM architecture was the most consistent model regarding finding a solution where it
would learn the patterns within the data without assigning all commits to one class. The
LSTM aggregator was however failing when not enough data was provided. In low-data
scenarios, the mean aggregator performed the best. The most probable reason for its su-
periority in these scenarios was a lower number of parameters that were not overfitting to
the specific commits in the training set. The convolution aggregator performed the worst.
This model had very few parameters, less than the mean aggregator, which count might
have been too low to capture the patterns produced by the transformer. Additionally, the
variable input size meant that padding to the 100 embeddings was required, which probably
impacted the convolution layers. All models had the tendency to be stuck classifying all
commits to one class in which case the training was restarted.

In these tests, we realized some pitfalls of our approach. First, training on the sam-
ples with only Java code restricts the data too much and the models seem to be learning
project-specific patterns rather than any security-related aspect of the commit. Increasing
the dropout within the models helped, but did not solve the issue entirely. Furthermore,
the large computational overhead of using deep learning and the long-running task of em-
bedding the input samples using the transformers meant our datasets were much smaller
reducing the credibility of the results. Time consumption was increased even further when
the models were evaluated using 5-fold cross-validation.

To combat these issues we simplified our setup. First, we moved our domain to all
security-related commits without limiting ourselves to one ecosystem. This helped with
overfitting to patterns within specific projects as more variety was introduced. This however
meant that the training data was more general, possibly hiding some patterns and that there
was more variance in the test set lowering measured performance. Second, to reduce the
time needed to embed the input, we have reduced the ratio of security-related commits to
background commits to only 1:5, abandoning the evaluated class ratios evaluated above.
This meant that the ratio of classes on the sample level was partially determined by the
amounts of samples in security-related and background commits pushing this ratio to values
of 10 to 15, as positive commits were usually smaller than the background. The mean
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and LSTM aggregators were trained with this class ratio of commits kept constant at 1:5,
but with the same ratio the convolution models were always classifying the commits as
background and we needed to drop the ratio to only 1:2.

With these modifications, we evaluated the aggregators again for the final results de-
picted in Table 7.3. These results have to be interpreted with the evaluation setup in mind
as the boosted ratio is quite unrealistic. Similarly to the results on the Java subset, the mean
and LSTM aggregators reached similar performance, while the convolution aggregator per-
formed much worse. A surprising result is the lower performance of the aggregators on the
input mined using the AST paths sampling method. Lower performance was already seen
in the fine-tuning process. Seeing that the convolution model performed the best on this
data, we suspect that this result is due to the aggregator models failing to converge in find-
ing the optimal solution in the limited runs we performed. To eliminate this uncertainty, we
recommend performing cross-validation or trying different splits into training and testing
data.

We also see that the convolution aggregator failed to find a good solution when working
on the samples generated with the added code method. This is understandable as there were
usually only a few samples per commit and the inputs to the aggregator were mostly empty.

Table 7.3: Aggregator as evaluated on subsets of data.

Added code sampling Rolling window sampling

Aggregator Precision Recall F1 score Precision Recall F1 score
Convolution 0.03 0.01 0.02 0.08 0.60 0.15
LSTM 0.52 0.56 0.54 0.51 0.51 0.51
Mean 0.60 0.43 0.50 0.55 0.44 0.49

AST paths sampling Edit scripts sampling

Aggregator Precision Recall F1 score Precision Recall F1 score
Convolution 0.15 0.34 0.20 0.16 0.15 0.16
LSTM 0.57 0.27 0.37 0.48 0.34 0.40
Mean 0.55 0.31 0.40 0.55 0.28 0.37

The results are promising as in multiple cases both the precision and recall reach values
above 0.5. However, as these results are calculated on random trials and one-off subsets,
we cannot rely on them for further evaluation. Unfortunately, calculating them with cross-
validation and with a better class ratio proved to be outside of our resources. As such,
to make the following results more reliable, we continue our investigation using existing
models from the VulCurator [31] project – a commit (code) classifier and a commit message
classifier.

Evaluation results Seeing that we use a ’third-party’ model the first step of the evaluation
was to exclude commits that were used in the training of the model. We found that there
were 41 commits in our dataset that are also in the SAP-KB dataset. We excluded these
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from further analysis. We also repeated the experiments presented by the researchers to
validate our setup. Having validated the models, we used them to classify 6624 security-
related commits, together with randomly sampled background commits so that the positive
commits amount to 10% of all commits in the dataset.

Figure 7.4: Commits classified by the VulCurator models. Red data points indicate security-
related commits while the blue ones indicate the background.

As can be seen in Figure 7.4 models classify the commits usually into the extremes –
the majority of commits are classified as very likely being security-related or background
and the probability is rarely around 50%. As both the commit message and the patch of the
commit can indicate the change is security-related we have chosen a decision boundary that
compromises them both. For the commit to be security-related, it needs to be 0.5 away from
the 0/0 point which is depicted in the figure with the quarter-circle. The numerical results
are shown in Table 7.4. In general, the precision of the models is at 0.38 and the recall is
0.34 resulting in an F1 score of 0.36. The precision of 0.38 means that in the set of commits
classified as security-relevant the ratio of true positives to false positives is around 1:2.6
which represents 3.8 times higher prevalence compared to the base set. We can also see that
the results are slightly larger for the Java and Python programming languages as those are
represented in the SAP-KB dataset. While not depicted in the Figure, we also found that
the patch classifier performed better than the message classifier.
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Sadly, the results aren’t as high as the results on the SAP-KB dataset. We believe there
are a few possible explanations. First, the evaluation setup in our experiment is harsher as
the ratio of security-related commits was lowered from 1:5 to 1:9. Second, our dataset might
be noisier as some commits linked to issues linked in vulnerabilities might not be security-
related. Finally, this drop might not be about the experimental setup, but about the nature of
the problem and poor generalizability and transfer learning potential. The model trained on
the SAP-KB dataset might have learned the pattern of vulnerabilities within projects in the
dataset and ways the community of these projects solves security issues. Once the model is
evaluated on another dataset the performance drops as these patterns are no longer visible.

Table 7.4: Precision, recall, and the F1 score for the commits classified with VulCurator
models assuming the decision boundary as depicted in Figure 7.4.

Dataset Precision Recall F1 score

Whole dataset 0.38 0.34 0.36
JavaScript (npm) subset 0.30 0.34 0.32
Python (PyPI) subset 0.40 0.43 0.41
Java (Maven) subset 0.36 0.47 0.41

Recall Next, we move to evaluate the recall on the vulnerability level. As in our dataset,
multiple commits are connected to the vulnerabilities, sometimes the model has multiple
occasions to spot the same vulnerability. Furthermore, spotting a commit linked to many
vulnerabilities might change the recall more than spotting one connected to only one. As
seen by the results shown in Table 7.5, we see that the overall recall drops to 30% (from 34%
at the commit level). This is possible in the case when the model was correctly classifying
security-related commits under the same vulnerability. We also see that the recall in the
Maven ecosystem is much higher compared to others. While this might be the result of the
fact that VulCurator models were trained on a dataset focused on this language, there are
only 143 vulnerabilities spotted with this method, increasing the uncertainty of the result.
Similarly to before, there are around 10 percentage points when moving from vulnerabilities
spotted just before the disclosure and a week before.

For comparison purposes, we also calculated other popular metrics used in the security-
related commit classification. First, we use the area under the precision-recall curve, which
is a threshold independent metric. In this case, threshold independence means that we don’t
select the decision boundary at which the model classifies commits as security relevant.
Instead, we allow the threshold to vary and calculate the precision and recall for each value.
We calculate this value at 0.33. Second, assuming the output of the models is to be reviewed
by a human, we use an effort-aware metric. Similarly to other projects, we have chosen
the recall at 5% of reviewed lines of code, which comes out to be 0.32. This result was
expected based on the visualization of the classification results where we saw the commits
being pushed to the side of the plot. Seeing both these values are similar and in line with the
overall precision and recall, we conclude that there are no distinctive patterns in the results
of the classification.
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Table 7.5: Recall of the DL models on the vulnerability level.

Dataset 0 days prior 7 days prior

Whole dataset 30.0% 20.2%
JavaScript (npm) subset 37.0% 22.7%
Python (PyPI) subset 30.9% 18.6%
Java (Maven) subset 61.2% 52.8%

Median time gained Directly connected to the recall of the method, the median time
gained describes how much sooner the vulnerabilities are spotted compared to the disclo-
sure. What we find is that in general, the median time gained is 15.2 days, similar to the
value of the first commit linked to the vulnerability. The median time gained is significantly
larger for the vulnerabilities in the Maven ecosystem, however in that case the median time
gained in spotting the first commit was also almost 50 days. The situation is different for
npm and PyPI vulnerabilities where the median time gained is lower than the overall median
time of the first commit. This suggests that for these ecosystems the model might not be
spotting the first possible commit and instead finding commits later in the fixing process or
those that are done with a higher priority.

Table 7.6: Median time gained for the DL-based prealerting method.

Dataset Found vulnerabilities Median delay [days]

Whole dataset 3,433 15.2
JavaScript (npm) subset 189 8.8
Python (PyPI) subset 345 9.7
Java (Maven) subset 143 55.2

Applicability The last factor to discuss is the applicability of the method. As already
discussed the methods are obviously limited only to commits, which might appear late in
the coordination process. This can be however seen as an advantage as the commits are
guaranteed to appear while issues might be kept confidential. As such, we determine that
the method has high applicability. However, the method performs much better if enough
data was generated for the project.

7.3 Summary

In this chapter, We have validated four different sampling methods to extract code to be pro-
cessed by the GraphCodeBERT transformer. We see that the worst-performing sampling
method, based on the edit script, is 28% worse, F1 score-wise, than the best-performing
method based on the AST path. This suggests that choosing a bad sampling method may
significantly impact the model’s performance. On the other hand, judging by all other sam-
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pling methods resulting in a similar F1 score, we think that because of the complex archi-
tecture, the transformer model can pick out a similar amount of information regardless of
the sampling method.

As such we believe that the sample level performance is primarily impacted by the
curated data and whenever the used samples actually use the tokens specifying the security-
related nature of the code. This in turn impacts the performance of the entire method. A
major drawback to the method is long training times and dependence on a large dataset of
training data. We were able to train and test our models only on subsets of data achieving
an F1 score of 0.54 but to keep our results reliable the DL method was evaluated using
VulCurator models. The results hint that the models may not generalize across repositories.
The methods’ performance metrics are:

• The precision of the method on the entire dataset is 0.38 with values for ecosystem
subsets varying from 0.30 to 0.40. The model works best on a subset in which the
programming language was represented in the training set.

• The recall at the disclosure date of the method is 0.30 with values for ecosystems
being 0.37, 0.31, and 0.61 days for JavaScript, Python, and Java subsets respectively.
The larger value for the Java subset might be explained by a relatively low number of
found vulnerabilities with references to objects with this language.

• The applicability of the method is high as it relies on the commits, which are public
from the nature of the open source. However, the models work best in the projects
and the ecosystems that were trained on. Additionally, if a complex sampling method
is used an adequate parser is required for the analyzed programming language.

• The median delay time is 15.2 days with values for ecosystems being 8.8, 9.7, and
55.2 days for JavaScript, Python, and Java subsets respectively. As for the recall, we
believe the larger value for Java is an artifact due to the lower amount of data.
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Chapter 8

Investigating the recall

In this chapter, we take a step back and look back at the problem of vulnerability prealert-
ing. In particular, we want to evaluate how the proposed methods behave in specific classes
of projects. First, this will give us more insights into the performance of the methods and
confirm or deny their effectiveness in more specific scenarios. Second, this evaluation will
provide us with more information on the nature of the security-related activity and its pat-
terns across different projects.

8.1 Property selection

As we focus on the prealerting aspect we will be looking into the recall of the previously
evaluated methods. We have chosen recall on the day of the disclosure as there was less data
available for the recall a week before disclosure. Previously, in the process of designing the
methods, we were splitting the data into sets according to their ecosystem or programming
languages. This approach is fairly common as projects written in one ecosystem rarely
depend on projects from another one. However, this split can hide insights on the recall
of the methods, for example, a particularly bad case would be if a method was particularly
poor at spotting critical vulnerabilities and would make up for it by spotting low-severity
ones. To get more data in each of the classes we don’t split the dataset into ecosystems
and use the entire dataset. We’ve selected four aspects that we believe may influence the
ability to spot the connection of the commit to the security aspect and may be interesting to
investigate.

The year of the disclosure As the engineering and security fields are dynamically chang-
ing, we validate the methods’ recall over time. We check how the different methods
perform when spotting security-related commits in the different years since 2017.
The year of the disclosure might affect the method’s performance in many ways.
First, over the years security practices might have changed and nowadays the main-
tainers might be more aware of the security ecosystem. Second, as investigated in
Chapter 3 in recent years there have been more vulnerabilities published which might
improve data-driven approaches. Finally, the deep learning models might suffer from
concept drift on the most recent vulnerabilities.
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Vulnerability severity The severity of the vulnerability can massively impact how the
maintainers of the open source project handle the fixing process. Here counter-
intuitively we would like for the methods to spot fewer vulnerability traces for more
severe vulnerabilities, as this would mean that these exploits are handled with more
care and dedication than less serious issues. We also expect a lack of data in the
low-criticality class, as these vulnerabilities are rarely disclosed or are linked to vul-
nerabilities with a higher score.
We split the dataset according to the commonly used severity classes linked to the
scores from the Common Vulnerability Scoring System (CVSS): low (0-4), medium
(4-7), high (7-9) and critical (9-10).

Commit Size Next, we move to the properties of the reference itself. We want to analyze
the impact of the commit size on the recall of our methods. The number of changed
lines in the commit might affect the recall in multiple ways. First, based on the find-
ings from Chapter 6, we might expect the data-driven approaches to disregard big
commits as the majority of security-relevant commits are small fixes and patches. On
the other hand, a bigger commit may contain more information which is easier to
extract with sampling methods or with feature extraction. Finally, some big commits
may also contain documentation or elaborate commit messages which address the
security fix or give credit to the discoverer of the vulnerability. While this class com-
parison is mostly meant for commit classification, we also apply the phrases search
on the commit message as in the case of the experiment.
We split the dataset into 3 sets of the bottom, middle and top thirds by the commit
size.

Repository stars count Finally, the repository stars count represents how popular and ap-
preciated the project is within the open source community. It also often correlated
with older age and bigger size of the repository. We believe that methods might work
differently on repositories with different star counts. It’s likely that more starred
repositories are more mature and handle the disclosure process more professionally,
decreasing the number of traces. Larger repositories might also impact commit classi-
fication methods, where there is more data available, but also there are more patterns
and more content to distinguish.
Similarly, we split the dataset into 3 sets of the bottom, middle and top thirds by the
number of stars in the repository.

Before comparing the methods recall, it’s important to mention that these values are
calculated in a slightly different way for each method. As the methods operate on different
data, their domains are different. The phrase-search method is the most general and can be
applied to any vulnerability for which we have a documented reference – either a commit
or an issue. The label-based method relies on labeled issues as such it is applied only to
vulnerabilities with an issue reference. Finally, the commit classification (CL) methods can
be applied only to vulnerabilities from which it was possible to extract and mine security-
relevant commits. This means that while the counts presented below mean always the same,
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i.e. the number of vulnerabilities spotted with the method, the recall is calculated based on
different sets of all possible vulnerabilities to spot.

Finally, as these results represent only the recall of the method they do not show the full
picture. To get more insights, the results have to be combined with the precision, applica-
bility and time gained results from previous chapters, which we discuss below.

8.2 Results

Table 8.1: The number of vulnerabilities spotted by each method in each year.

2017 2018 2019 2020 2021 2022

Security phrase 1703 2096 1900 1786 2818 2225
Security label 163 230 188 204 140 126
Feature-based CL 233 271 267 284 252 161
Deep learning CL 604 556 499 618 640 516

Table 8.2: Recall of different methods year by year.

2017 2018 2019 2020 2021 2022

Security phrase 0.66 0.71 0.70 0.60 0.54 0.51
Security label 0.09 0.09 0.09 0.15 0.06 0.06
Feature-based CL 0.15 0.15 0.19 0.22 0.10 0.09
Deep learning CL 0.36 0.33 0.33 0.44 0.33 0.28

Disclosure date First, let us discuss the data available each year for each method. Notably,
the order of magnitude of data available stays consistent across all years. The most data is
of course available for the phrase search-based method which was able to work with around
4,000 vulnerabilities each year.

Next, the recall of the methods is shown in Table 8.2 and Figure 8.1. Two trends can be
spotted: one for the security-related phrases method which peaks in years 2018 and 2019
at around 70% proceeds to fall; second for the rest of the methods for which the recall
rises until 2020 and falls off after that. The latter result is unexpected as especially for
the machine learning results, we expected them to work best on the most populous 2021
class. The peak might be a result of the COVID-19 pandemic which could have prompted
maintainers to communicate and document their activities in the repository, but at the same
time left more traces for the methods to spot.

The continued drop of explicit referring to the vulnerability is a good sign about the
awareness of responsible coordination of the vulnerability fixing problem. The recall of
other methods is also dropping for 2 years, proving this point further. While good news for
the security field, this is not beneficial to our methods which seem to work worse on current,
more important vulnerabilities than on the vulnerabilities from 4 years back. To counteract
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this issue we propose to increase the relevance of the freshest traces in selecting security
phrases or training machine learning models.

Table 8.3: Number of vulnerabilities spotted in each severity class

Method LOW MEDIUM HIGH CRITICAL

Security phrase 71 5195 4698 2505
Security label 17 423 399 209
Feature-based CL 24 571 597 274
Deep learning CL 25 1388 1301 712

Table 8.4: Recall of each method on vulnerabilities in given severity class

Method LOW MEDIUM HIGH CRITICAL

Security phrase 0.50 0.60 0.59 0.63
Security label 0.28 0.08 0.09 0.09
Feature-based CL 0.20 0.13 0.14 0.19
Deep learning CL 0.23 0.33 0.32 0.43

Severity score As before, let’s first reflect on the amount of data available in each class.
We see that in the medium and high severity class there is more data available than in
the other classes. Furthermore, as mentioned before, the least represented class is the low
severity class, where each method had less than 150 vulnerabilities to work with and each
spotted less than 100. As mentioned, this is likely due to low-severity issues not being
disclosed so frequently and if they contain an alias to a vulnerability with a higher severity,
that severity was used instead. As such the uncertainty of these results is high and should
be generally discarded.

Moving on to the recall depicted in Table 8.4 and the Figure 8.2, as expected the
security-phrases search has the biggest recall, which is of course balanced out by the low
precision. The method however is consistent across all severity classes with little difference
in the recall. On the other side, the deep learning model increases its performance for the
critical vulnerabilities class by 10 percentage points. This result is surprising as we ex-
pected the method to work best in the classes where the most data was provided. A similar
increase, but only by 5 percentage points, can be observed by the feature-based commit
classification method. Both these findings suggest that critical vulnerabilities may be han-
dled in a more generic way than others. Lastly, the label-based solution has recall below
10% across all classes apart from low. While this might be a numerical flaw due to little
amounts of data, the low-severity vulnerabilities may be disclosed from repositories where
these security labels are used because of a more advanced security culture.

From the software engineering perspective, these results are somewhat worrying as they
suggest that using machine learning models it’s easier to spot the most severe vulnerabilities.
Luckily, for methods where the precision is also high, the recall of the method is below
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50%. However, security-related phrases occur with similar probabilities in critical, high,
and medium vulnerability references hinting that maintainers do not pay too much attention
to hiding the critical vulnerabilities before the public before the disclosure. This equal result
also shows that the selected set of key phrases was universal for all severity classes.

Table 8.5: Number of vulnerabilities spotted by each method with references to commits in
specific size class.

Method Small commit Medium commits Large commits

Security phrase 1225 1038 1164
Feature-based CL 500 518 535
Deep learning CL 1290 1212 1350

Table 8.6: Recall of different methods on different commit size classes.

Method Small commit Medium commits Large commits

Security phrase 0.28 0.31 0.32
Feature-based CL 0.07 0.10 0.13
Deep learning CL 0.21 0.23 0.29

Commit Size We found that to split the dataset of security-related commits into approxi-
mate thirds, the thresholds had to be set at 10 and 40 changed lines in the commit. As such,
the bottom class are commits that change less than 10 lines, the mid class are the commits
that change from 10 to 40 lines, and the top class are the larger commits that changed more
than 40 lines. The top class was usually a bit underrepresented as the threshold was a bit off-
set and a notable amount of commits in this class were not mined. Again, the phrases search
method had the most data to work with as it can be applied to all security-related commits,
while the commit classification methods were limited to the sets of classified commits.

Here, an obvious realization is that the security-related phrase search is not performing
that well on commit messages. The method shows a recall of only around 30% recall in all
classes, much lower than the overall value of 50% evaluated in Chapter 4. This result was
expected as the method was designed for primarily issues, nonetheless, it’s surprising that
it’s not better for larger commits where we’d expected more elaborate commit messages.
On the other hand, both commit classification methods seem to work better for the top third
of commits. We expected they would work best in the middle class, where the size of the
commit is closest to the median. However, both feature-based and deep learning based
approaches increase recall with bigger commits. It suggests that the extra information in
the commits is more important than the single feature of commit size. Furthermore, the
biggest increase is seen for the deep learning models from mid to top class. This may be
the effect of cropping the data by the models (maximum of 20 files and an input length of
512 for each file) which combined with more data available, yielded the best results. The
results are shown in Table 8.6 and Figure 8.3.
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This is an important finding from the perspective of a person that is reviewing pushed
commits for being security-related. Simple commits are probably easier to assess than
larger ones. As such, one could design a tool that always prompts for manual review for
changes that changed less than 10 lines of code, and uses more profiled models on the larger
commits.

Table 8.7: Number of vulnerabilities spotted by each method with references to repositories
in each star count class.

Method Bottom-stared Medium-stared Top-stared

Security phrase 2388 3215 4176
Security label 107 236 510
Feature-based CL 175 407 887
Deep learning CL 540 1171 1753

Table 8.8: Recall of different methods on different repository classes.

Method Bottom-stared Medium-stared Top-stared

Security phrase 0.53 0.51 0.43
Security label 0.05 0.07 0.14
Feature-based CL 0.14 0.12 0.11
Deep learning CL 0.31 0.32 0.23

Repository star count Lastly, we divide the vulnerabilities according to the number of
stars of the repositories they refer to. We have analyzed the number of stars of repositories
for which we found security-related commits to find that to split the dataset into approximate
thirds one needs to split it at 400 and 3,200 stars.

First, for the phrase search method, we find a lower recall for the more starred project,
suggesting these projects handle the vulnerabilities less explicitly or with fewer public dis-
cussions. Similarly, commit classification approaches perform the worst on top starred
repositories where the drop for the deep learning method is especially significant. We sus-
pect that this drop is due to the added complexity of larger, more starred repositories which
the model couldn’t understand. It’s also possible that the drop is due to the top-starred repos-
itories being from different programming languages (C or JS) while the VulCurator models
perform best on Java and Python. Finally, it’s interesting to see that the security label-based
approach is performing better on the top third of repositories than the feature-based commit
classification.

The increase in the recall of the labels-based method suggests that more starred projects
have better awareness about software security. Interestingly, the vulnerabilities in these
top-starred repositories are harder to spot using security-related keywords than the other
thirds. This suggests they either handle vulnerabilities better or the list was not matching
their domain. Next, the feature-based commit classification method exhibits a slight drop in
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recall but remains mostly constant across all classes suggesting the security commits show
similar feature patterns across all types of projects. Finally, the deep learning approach
experiences an unexpected drop in performance for most starred repositories. This may be
due to the increased complexity of these repositories or due to the poor generalization of
the task.

8.3 Summary

• The relative recall of the methods in general stays consistent with phrase-search find-
ing the most vulnerability references followed by deep learning classification, feature-
based classification, and label-based approach. If the phrase search is limited (e.g. to
only commit messages), its recall drops significantly.

• The recall of all methods is falling in the last 2 years suggesting improving security
practices and/or a need to adjust the method to prioritize the latest data.

• The recall of machine learning methods is highest in the class of critical vulnerabili-
ties, hinting these leave the most generic traces out of the evaluated classes.

• Larger commits are easier to spot, which could be utilized to implement methods to
spot only these commits while relying on manual review for the smaller ones.

• More starred repositories are easier to spot using label-based methods compared to
the less starred repositories. All other methods experience the inverse relation.
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Figure 8.1: Methods’ recall on vulnerabilities disclosed in different years.

Figure 8.2: Methods’ recall on vulnerabilities with different severity scores.

Figure 8.3: Methods’ recall on vulnerabilities with references with different commit sizes.

Figure 8.4: Methods’ recall on vulnerabilities with references with different repository stars.
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Chapter 9

Discussion

In this chapter, we analyze the threats to the validity of the project, future work together with
suggestions about the security field, and the ethics of the project. Before that, however, let’s
elaborate on the findings from the experiments and discuss their impact on our main goals:
determining what are the characteristics of the security-related activity and determining how
easy it is to spot the activity in open source repositories.

Regarding the first goal, we can state that security-related issues and commits are
similar to regular ones coming from everyday development. First, we showed that in
47% of cases vulnerability-fixing efforts only explicitly mention security-related phrases
after the disclosure or do not mention them at all. This result might be impacted by our se-
lection of phrases that we searched for, but including more phrases might further decrease
the already low precision. This result is somewhat expected as it’s one of the recommenda-
tions in the CVD process. In the coordination manual, it’s recommended to not refer to the
vulnerability while fixing the issue. Sadly, this is not ideal as these commits and issues are
nonetheless public and could be utilized by malicious parties.

Second, we investigated issues with security-related labels. From the gathered activity
we were forced to remove 53% of issues that were either invalid or generated by bots updat-
ing dependencies. We tried to remove these by filtering for commits with changes in code
files. While it worked to some point, some automatic updates still contained code changes
made by autoformatter or were referenced by unrelated code-changing commits reducing
the precision which came out to be 77%. We find that only around 4% of projects use
security labels to coordinate security tasks in their repository. Moreover, we were able to
find a vulnerability disclosure only for 20% of the issues. This suggests that even then the
security aspect of an issue is known, the problem isn’t usually propagated to a vulnerability
database.

Next, we looked at many metrics for security-related commits compared to background
commits. For the metrics we mined, clear patterns can be seen for security-related commits.
Sadly, the same patterns are expressed by the majority of background commits. This was
further confirmed by machine learning models where almost no particular feature was much
more important than the others. The only exception was the ’secur’ in message feature for
the JavaScript commits which at an importance of 0.05 had twice the importance of other
features possibly pointing to worse practices in the npm ecosystem.
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Then, judging by the relative performance on the sample level of the deep learning ap-
proach, it doesn’t matter whether the sampling method is very localized (rolling window
method), contains the entire change (added code method), or contains parts of both the
change and the entire file (AST path method). In all these cases the F1 score of the model
was similar at 0.27, suggesting the same amount of information was extracted. The sam-
pling may have a larger impact if the code is interpreted by a less complex embedding tool.
Furthermore, based on the low F1 score we also believe that some parts of the security-
relevant commits are the same as some parts of regular commits.

Finally, judging by the lower performance of the VulCurator models [31] on our dataset
of security-related commits we suspect that the task is poorly generalizable. The same com-
mit in one repository might be security-related while being a background commit in another
one. It also may be that the models are learning only a little about the general patterns of
security-related commits (if there are such) and instead are focusing on the tendencies of
the vulnerabilities within the projects. For example, it has been shown that often multiple
vulnerabilities are follow-ups to a vulnerability that was published beforehand. Such a be-
havior can be learned by the model and it will recognize the vulnerability fixes based on the
fact they modify the same file.

Regarding the second goal, we can state that it’s possible to automatically spot
security-related issues and commits but with limited performance as expressed by the
low F1 scores below. In the case of all evaluated methods a final, manual review step is
required as the performance was not sufficient to use the output of the tool directly. Fur-
thermore, the highest recall was achieved by the phrase search, but it still caught only about
half of the possible vulnerabilities. The task of finding these traces also involves a common
drawback of rare class classification, where to increase recall, one has to sacrifice precision.

First, the method based on the phrases search suffered from low precision caused by
the overwhelming number of mentions of security-related phrases in reactions to disclosed
vulnerabilities in the projects’ dependencies. In the majority of cases, these mentions were
generated by bots which could make the filtering easier but sometimes they were added
by human users. Additionally, many phrases were showing up in discussions related to
security, but not in the context of fixing but rather improving it. Even with the relaxed
review requirements, which produced an unrealistic precision of 0.35, the F1-score of the
method is only 0.42. Nonetheless, the method could be used to scan what security topics
are discussed within a repository which could give hints on how to handle the dependency
within own projects.

The problem of low precision was partially solved in the second experiment where
filtering based on commits containing code changes was applied as the precision jumped to
77%. This sadly means pushing the discovery closer to the disclosure date, as one needs
to wait for any commits to be pushed. However, alternative filtering methods can be used
to remove the majority of the bot-created activity. The label-based method of prealerting
yielded a really promising result and we believe it could be applied in practice. However,
it is limited to only a handful of projects that do use security labels to coordinate work and
the overall F1 score is 0.14.

Moving to the feature-based commit classification the model performed surprisingly
well given the apparent lack of standing-out features. The major obstacle for the models
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was the heavily imbalanced classes, which we tried to counteract by adapting the class
ratio. We believe that the performance of the models can be further improved by creating
artificial features being combinations of the ones calculated. Filtering the data might also
improve the performance which in our experiments came out to be a 0.14 F1 score on the
entire dataset.

Finally, we were unable to reliably evaluate our own deep learning models. However,
experiments show a similar or better performance as in the case of the VulCurator models,
which in the end were used to evaluate the DL method. While the results were better than the
results of the feature-based models, the improvements were not as significant as expected
and disproportionate to the additional complexity and computational effort. The models
didn’t yield results as good as on the dataset they were initially evaluated on suggesting
that the patterns within the SAP-KB dataset don’t transfer to our dataset. Of course, it’s
also possible that our dataset is much noisier as no significant filtering was applied to the
commits extracted from vulnerabilities. Nonetheless, the model offered the best precision
and recall combination achieving an F1 score of 0.36.

We additionally evaluated the methods’ performance across vulnerabilities disclosed in
different years and on vulnerabilities in different severity classes. First, the recall of all
methods is falling in the last 2 years which can be caused both by the improving security
practices or by methods being too focused on older vulnerabilities. An improvement in
security practices is also hinted at by the fact that the recall of the phrase-search method
is falling since its peak in 2018. On the other hand, it seems that critical vulnerabilities
are easier to spot, which we believe is due to the ad-hoc nature of fixing them and a larger
response being generated for the critical issues.

In this evaluation, we also found that the top third of largest commits is easier to spot
than the bottom and mid thirds, which was a surprise as the expectation was for the models
to work best around the middle of the commit size distribution. We believe that this gives the
advantage to the models when used in pair with manual review as it’s the larger commits that
are the hardest to check. Lastly, we split the data up also according to the star count of the
referenced repository. Here, besides the label-based approach, all methods performed worse
on vulnerabilities in more starred repositories. This especially affected the deep learning
approach, which we believe is due to different practices in some popular repositories (e.g.
Linux, React, Vue) that are different from the training data of the SAP-KB dataset.

9.1 Future Work

Here we would like to discuss possible remediation for the early traces of vulnerabilities and
suggest ways to improve the methods. First, maintainers and developers of client projects
should consider more responsible disclosure and fixing coordination processes. Not enough
projects have disclosure policies and these aren’t always followed – either intentionally
or by accident. Also, when an issue is recognized to have security implications it should
be fixed in a confidential matter, merged and released as soon as possible. For example
OpenSSL1 recently disclosed two connected vulnerabilities: CVE-2022-3786 and CVE-

1https://www.openssl.org/
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2022-3602. First, the issue was disclosed to the maintainer privately. After the issue was
reported it was probably validated and fixed in private. After that, the team announced
that a security release is planned for 2022.11.01 that fixes a critical vulnerability,2 which
was further promoted by the news and on Twitter. Until that moment, no new changes
were pushed to the main branch and it remained frozen. On the 1st of November a new
release was available and two commits3,4 were merged into the main branch. Of course,
such an approach is not possible in all cases, but with the warning, all security teams can be
prepared for the update to the new version or at least improve their monitoring. Nonetheless,
this process shows that it’s possible to coordinate the process responsively so that no traces
are visible just until the disclosure

Addressing the fact that public issues might address security flaws, it could be consid-
ered for the issues first to be secret until a maintainer verifies that the issue doesn’t disclose
anything that it shouldn’t. This period of confidentiality could be applied to issues (or
commits) in which content was classified as security-related with issue (or commit) clas-
sification. This way the vulnerability is discoverable only much closer to the disclosure
date. On the other hand, if the security flaw is already traceable online, maintainers should
consider disclosing the vulnerability even before the fix is available.

Finally, a finding not coming directly from the results of this project, but realized while
investigating the world of open source. Many modern open source packages offer a vast
amount of features that in the majority of cases aren’t utilized and sometimes are enabled
by default. This flaw was for example the cause of the Log4Shell vulnerability (CVE-
2021-44228). As such we would recommend splitting the functionality of the package into
small sub-packages and disabling features by default. On the side of the client projects,
they should employ zero trust architectures and validate and escape the handled data in all
appropriate places.

On the side of improving the proposed methods, an obvious improvement to the phrases
search method would be to replace it with NLP models to determine the nature of the issue
or discussion. However, filtering of the bot-generated content or content containing vulner-
abilities from other projects still would be required. Similar approaches could be utilized
in the label-based method. As already mentioned the feature-based commit classification
could be improved by more advanced feature engineering. We also suggest including more
project-wide metrics or profiling the models to a specific group of projects e.g. servers or
single-page applications. Similar improvement can also be made in deep learning models
where a representation of the context of the project, extracted from the project’s readme or
dependencies, could help the model put the change into perspective and distinguish a crash
of a server from a crash of a desktop application. Alternatively, some projects suggest using
a graph neural network on the repository structure to capture the purpose of the file as done
in LineVD [18]. Lastly, our approach was also fairly naive, with typical supervised learning
to tackle the problem. Other approaches that focus more on the differences between positive
and background commits could work better in the heavily imbalanced scenario.

2https://mta.openssl.org/pipermail/openssl-announce/2022-October/000238.html
3https://github.com/openssl/openssl/commit/3b421ebc64c7b52f1b9feb3812bdc7781c784332
4https://github.com/openssl/openssl/commit/680e65b94c916af259bfdc2e25f1ab6e0c7a97d6
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9.2 Threats to validity

While many efforts were made to validate our methodologies and assumptions beforehand,
some of them may be wrong. First of all, almost all research done in this project relies on the
assumption that GitHub objects linked in the vulnerabilities are security related. One would
hope that the references point only to issues where the fixing work was coordinated or to
the commits patching the exploit, but references can also point to releases, documentation
issues, etc. To solve this issue, researchers apply various automatic filtering or utilize hand-
reviewed datasets. In our approach we decided to go with a fairly relaxed approach, filtering
only based on the number of commits pulled in by each reference to avoid parsing too
general objects like releases. While this means we are not introducing any ’fake’ patterns
in the data with our filtering, it means that our models have to work on a stretched space of
values, decreasing the performance of our data-driven approaches. The same applies from
the other side – some commits from the background dataset could have been security-related
commits, which were never referenced in any vulnerability or were implementing security
guards or features preemptively. While the assumption is that these commits are sparse,
likely some of them were randomly included in the background datasets.

This project also included many applications of manual tasks. In particular the manual
validation in Chapters 4 and 5 or manual selection of metrics in Chapter 6. We have taken
an effort to perform these manual steps as accurately as possible and we are confident in our
results, but it’s always possible that some errors were introduced. To limit these errors we
assumed fairly relaxed review criteria to get the upper bound of the precision and interpret
the result with that in mind.

Lastly, an external threat to the validity of the project is that developers are not sig-
nificantly motivated to update packages due to vulnerabilities in them [16, 48], which is a
worrying finding not only for our project but for the entire software industry. If develop-
ers update either way months after the disclosure of the vulnerability – there is no point in
gaining an additional couple of days before the disclosure. While this might be the case in
many companies, there are software projects that are security critical and do update as soon
as possible and would be interested in pushing their security even further. Second, we hope
that as more work is being done in the security field, to which this work contributes, more
awareness will be put on the topic, possibly changing developers’ behavior. When that hap-
pens, the vulnerability systems should be more mature so that the vulnerability disclosure is
really the first public information on a security exploit. Otherwise, why should developers
care to patch them urgently, since it was already discoverable e.g. for a week on GitHub?
We hope that as more work is done in the field this issue becomes less and less relevant as
it’s already seen by the year-by-year plots in Chapter 8.

9.3 Ethics

Lastly, as the project is security related it’s important to take a look at the bigger picture
and discuss the ethical side of found implications. In this research, we show ways how
vulnerabilities can be spotted before their disclosure, which can be utilized by malicious
parties to target exploits the general public is not yet informed about and not prepared for.

77



9. DISCUSSION

Note however that we are using data that is already publicly available and is commonly used
in the security field. It’s highly probable that more established hacker groups, advanced
persistent threats (APTs), are already monitoring open source packages for security-related
issues, especially if they are aware of the technological stack used by the target company or
government. Similarly, the same applies to security departments within these entities. The
details of how this monitoring is utilized and the damages caused by attackers are usually
kept confidential, but there are documented cases where APTs utilized old vulnerabilities to
attack systems.5,6

We believe that our research is essentially leveling the playing field for businesses that
cannot afford to have dedicated personnel for keeping track of current proceedings in their
package dependencies or security news, as they are focusing on developing the product.
We firmly believe that in the vast majority of cases when traces are already public, it is
beneficial for the vulnerability to be shared as soon as possible so that projects can react to
it, as it can be already known to people interested in exploiting it.

5https://techcrunch.com/2022/09/08/north-korea-lazarus-united-states-energy/
6https://www.wired.com/story/north-korea-hacker-internet-outage/
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Chapter 10

Related Work

In this chapter, we analyze similar approaches and results achieved by other researchers
working in the field. We separate the related works into two parts, first we discuss the latest
models performing security commit classification and then we discuss findings about delays
in vulnerability disclosures.

10.1 Commit classification

In the last 2 years, many papers have appeared tackling the task of vulnerability prediction or
security-related code classification. Table 10.1 sums up the performance metrics reported
by selected papers relevant to this project. Note, that these values cannot be compared
directly as they were achieved on different datasets, with different prevalences and with
different scopes. Apart from the popular classification metrics of precision(Pr), recall(Rc)
and F1 score, the area under the precision-recall curve(PR-AUC) is utilized as a threshold-
independent metric, and finally, the recall at 5%(Rc-5) of reviewed lines of code as an effort
aware metric accounting for the need to review the result of the model.

Table 10.1: Reported performance metric of state-of-the-art models.

# Pr Rc F1 Rc-5 PR-AUC

1 VulFixMiner, Zhou et al. [59] 0.49 0.81
2 VulCurator, Nguyen et al. [31] 0.81
3 Commit2Vec, Cabreara et al. [5] 0.73 0.71 0.73 0.82
4 LineVul, Fu et al. [12] 0.97 0.80 0.91
5 LineVD, Hin et al. [18] 0.56 0.27 0.36 0.642
6 E-SPI, Wu et al. [54] 0.88 0.92 0.89

First, many of the papers [59, 31, 18, 12] use the established CodeBERT [11] model
to generate the embeddings of code samples. The model is used in various setups. Some
models use it both to embed the commit message and code, while others parse it specifi-
cally for code. Interestingly no model uses the transformer in the initial way how it was
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conceived where the NL and the PL inputs are concatenated as a single input to the model.
Furthermore, since its release in 2020, a new iteration of the model was released – Graph-
CodeBERT which we test out in this project. We address these limitations by applying
the new model and concatenating the commit message together with the code sample. The
approaches of other papers usually include graph neural networks or other embedding tech-
niques.

Second, sampling methods vary more across different projects. The most common ap-
proach is the simplest by just taking the current or added code and processing it as a whole,
function by function or line by line [12, 18, 59, 31, 5]. The major limitation of this approach
is in handling bigger changes/functions where the input is cropped. But, as we found, the
majority of commits and functions are small causing this situation to affect only selected
commits. On the other hand, other papers propose more advanced sampling methods based
on AST parsing or control flow graphs [5, 54]. While it’s suspected that the sampling meth-
ods based on AST paths produce the best results, we investigate additionally the added code
and the rolling window methods as in some cases an AST parser is not available. In our ex-
periments, we found the impact of the sampling methods on the performance to be limited
when using an advanced embedding model.

As pointed out in the recent survey [25], one of the current limitations of many papers is
a lack of an evaluation that would truly reflect the industry application of the models. This
is one of the limitations we tried to address by evaluating the VulCurator models trained on
SAP-KB dataset [37] on the commits we extracted from vulnerabilities.

10.2 Vulnerability delays

Our approach to investigating the delays in vulnerability delays was fairly general and tool
oriented. We applied a sense of practicality by analyzing only totals of the vulnerabilities
that we were able to spot using methods, but lost other information that can be gathered
from more in-depth analysis. By focusing on one specific system one can get more insight
into the particular practices of the project and manually review a larger (percentage-vise) set
of commits. These case studies were done on other systems like Apache Tomcat, Apache
HTTP Server or Linux Kernel [35, 39]. They utilized linked commits in vulnerabilities or
changes integrated without many discussions to find commits 12, 54 and 48 days before the
disclosure (median time for Tomcat, median time for HTTP Server and average time for
Linux).

Next, in our research, we have only used GitHub as an external data source. This limi-
tation isn’t that substantial as GitHub is the main development platform for the majority of
open source packages and other research showed that the traces usually first appear here.
However, to get the full picture and catch more traces other data sources should be consid-
ered. Other research has taken a look at other development platforms, social media (e.g.
Twitter, Reddit) or mailing lists [47, 20, 42]. They find consistent results with our research
for example showing that 17% of CVE mentions on these social sites are before the vulner-
ability disclosure or that the median coordination delay is about 15 days.

Finally, Imtiaz et al. [22] analyzed the nature of security releases and found that the
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median time that security fixes require to be released is 4 days (0, 6, 13 days for npm, PyPI
and Maven respectively). Moreover, the advisory was found in their data before the fix
was implemented 10.1% of the time and 22.4% of the time before the fix was released. In
39.5% of cases, the security releases weren’t mentioning any security fixes hinting at a high
prevalence of silent fixes. Finally, they analyzed the time between the security release and
the disclosure concluding its median is at 25 days, which is a similar result to our results of
21 days between the disclosure date and the creation of referenced GitHub objects.

In this project, we have utilized the relatively new OSV and GHSA vulnerability databases
which currently aren’t popular in research. Seeing that the overall results are similar to ours
we can conclude that there is a consensus regarding the delays in publishing vulnerabilities
compared to the first traces being available. Hopefully, this delay will get smaller over the
years and the traceable vulnerabilities rarer.
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Chapter 11

Conclusion

In this project, we show that it’s possible to spot vulnerability-fixing efforts or initial exploit
reports in open source repositories before the disclosure of the vulnerability. We find that the
task of spotting these traces automatically is made difficult by the similar nature of security-
related activity compared to activity originating from everyday development. On one side,
this is good news when considering that the fixing is somewhat hidden from attackers. On
the other hand, it’s bad news for companies that need to stay in front of vulnerabilities in
their dependency chain, as they need to have people spending time reviewing the activity in
open source repositories and other security feeds.

In our experiments we have investigated methods based on filtering the activity with se-
curity keywords, looking for specific labels in issues, applying feature-based commit clas-
sification and evaluating state-of-the-art deep learning models. None of the evaluated meth-
ods had sufficient recall and precision at the same time to solve the problem automatically,
however, all methods can be used to assist in spotting vulnerabilities or gaining insights into
the specific repository.

We also discussed possible actions that one could take to improve open source security.
We conclude that the most important factor is for both the maintainers and the developers of
client projects to be responsible – follow disclosure policies and handle security issues with
utmost priority. Sadly, as this not always happens, maintainers should consider abandoning
the coordinated vulnerability disclosure model and notify developers as soon as possible.
We suggest using issue and patch classifiers similar to the ones we investigated to initially
hide potentially security-related objects until a maintainer approves them.

We hope that our experiments might inspire other researchers and that this work will
bring more attention to open source security.
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Appendix A

Commit classification features

In this section, we describe all features used in the feature-based models in the third experi-
ment, together with their motivation and aggregation method. Furthermore, we provide the
list of ecosystems where each of these features was used in the final model.

A.1 Feature descriptions

A.1.1 Labels

label repo full name Label for repository distinction.

label sha Label for commit distinction.

label commit date Label for historical analysis.

label securiry related Label for indicating which class commit belongs to.

A.1.2 Author and committer information

author to commiter date diff The difference between the committer and author data po-
tentially shows how fast the commit was merged.
Used in: npm, PyPI, Maven, ALL

same author as commiter Indicates if the author is the same as the committer potentially
indicating the commit was merged manually without a pull request.
Used in: npm, Maven, ALL

committed by bot Was the commit committed (usually merged) by a bot.
Used in: Maven, ALL

authored by bot Feature indicating whenever the commit was authored by a bot poten-
tially indicating an automatic code change.
Used in: ALL
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author in top 100 Feature indicating whenever the author of the commit is in the top 100
contributors of the repository. Since contributors are given by logins, while the com-
mits are signed with emails we compare the Levenstein distance between the login
and the first segment of the email to the length of the login. If the ratio is lower than
0.33 the identifiers likely match.
Used in: npm, Maven, ALL

A.1.3 Delta maintainability model

dmm unit complexity DMM metric related to McCabe’s cyclomatic complexity of meth-
ods and/or function changed in the commit.
Used in: npm, PyPI, Maven, ALL

dmm unit interfacing DMM metric related to sizes of interfaces changed or declared in
the commit.
Used in: npm, PyPI, Maven, ALL

dmm unit size DMM metric related to lines of code of methods and/or functions changed
in the commit.
Used in: npm, PyPI, Maven, ALL

A.1.4 Delta maintainability model

KEYWORD in message Feature indicating whenever a specific keyword from a prede-
fined list appears in the commit message. Keywords that were used in all ecosystems
were ’attack’, ’secur’ and ’vulnerab’.
Used in: 3 in npm, 3 in PyPI, 3 in Maven, 13 in ALL

KEYWORD in title Feature indicating whenever a specific keyword from a predefined
list appears in the commit title, i.e. the first 72 characters of the first line of the
commit message.
Used in: 0 in npm, 0 in PyPI, 0 in Maven, 3 in ALL

A.1.5 Delta maintainability model

commits prev 7 days Number of commits authored in the 7 days preceding the commit.
Used in: npm, PyPI, Maven, ALL

commits next 7 days Number of commits authored in the 7 days following the commit.
Used in: npm, PyPI, Maven, ALL

commits next 30 days Number of commits authored in the 30 days following the commit.
Used in: npm, PyPI, Maven, ALL

time to next merge The time difference to the next merge commit.
Used in: npm, PyPI, Maven, ALL
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commits to next merge Number of commits to the next merge commit.
Used in: npm, PyPI, Maven, ALL

commits since last merge Number of commits since the last merge commit.
Used in: npm, PyPI, Maven, ALL

time to prev commit The difference between the author date and the author date of the
previous commit.
Used in: npm, PyPI, Maven, ALL

time to next commit The difference between the author date and the author date of the
next commit.
Used in: npm, PyPI, Maven, ALL

A.1.6 Change size

changed files Number of files changed in the commit.
Used in: npm, PyPI, Maven, ALL

A.2 File level features

A.2.1 Ecosystem association

has ECOSYSTEM code Aggregation: flag
The file has an extension matching one of the predefined extensions for given ecosys-
tems. Used for filtering, but also provided to the model so that it can estimate how
many code files were modified in the commit.
Used in: npm (npm, PyPI), PyPI (PyPI), Maven (npm, PyPI, Maven), ALL (npm,
PyPI, Maven)

has ECOSYSTEM like code Aggregation: flag
The file has an extension matching one of the predefined extensions that are common
additions in given ecosystems. Similar to above but includes file extensions that are
related to the main extensions of the language.
Used in: npm (npm), Maven (Maven), ALL (Maven)

A.2.2 Change type

is add Aggregation: flag
Whenever the file was added to the commit. Allows the model to reason on how much
the commit is modifying the file structure of the project.
Used in: npm, PyPI, Maven, ALL

is rename Aggregation: flag
Whenever the file was renamed or moved in the commit. Allows the model to reason
on how much the commit is modifying the file structure of the project.
Used in: npm, ALL
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is delete Aggregation: flag
Whenever the file was deleted in the commit. Allows the model to reason on how
much the commit is modifying the file structure of the project.
Used in: Maven, ALL

is modify Aggregation: flag
Whenever the file was modified in the commit. Allows the model to reason on how
much the commit is modifying the file structure of the project.
Used in: npm, PyPI, Maven, ALL

A.2.3 Bag of words features

test in filename Aggregation: flag
Indicates if the filename contains the string ’test’. Provided to the model for examin-
ing the relationship between test files and security-related commits.
Used in: npm

test in path Aggregation: flag
Indicates if the full path of the file contains the string ’test’. Provided to the model
for examining the relationship between test files and security-related commits.
Used in: npm, PyPI, Maven, ALL

methods with KEYWORD count Aggregation: avg/max
The number of methods with the given security keyword in their name. Only possible
when the programming language of the file is handled by Lizard. Security-relevant
commits should contain more of these than background commits.
Used in: Maven (4), ALL (3)

KEYWORD in file content - Aggregation: flag
Indicates if a given keyword appears in the file. May hint whenever the file handles
security-relevant logic.
Used in: npm (9), PyPI (5), Maven (12), ALL (13)

KEYWORD in patch Aggregation: flag
Indicates if a given keyword appears in the file. May hint whenever a commit is
security related.
Used in: npm (4), PyPI (2), Maven(6), ALL (12)

A.2.4 Change size

removed lines count Aggregation: avg/max
The number of lines removed in the file. We expect security-relevant commits to be
smaller and add more code than is removed.
Used in: npm (avg, max), PyPI (max), Maven (avg, max), ALL (avg, max)

added lines count Aggregation: avg/max
The number of lines added in the file. We expect security-relevant commits to be
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smaller and add more code than is removed.
Used in: npm (max)

changed lines count Aggregation: avg/max
The count of added and removed lines. We expect security-relevant commits to be
smaller and add more code than is removed.
Used in: npm (avg, max), PyPI (max), Maven (avg, max), ALL (avg, max)

removed lines ratio Aggregation: avg/max
The ratio of removed lines counts to the file size. We expect security-relevant commits
to be smaller and add more code than is removed.
Used in: npm (avg, max), PyPI (max), Maven (avg, max), ALL (max)

added lines ratio Aggregation: avg/max
The ratio of added lines counts to the file size. We expect security-relevant commits
to be smaller and add more code than is removed.
Used in: npm (max)

modified lines count Aggregation: avg/max
The number of lines where added line number and removed line number matches -
suggesting the modification of the line rather than its addition or removal. Especially
small fixes, like off-by-one errors, will exhibit mostly these kinds of changes.
Used in: npm (avg, max), PyPI (avg, max), Maven (avg, max), ALL (avg, max)

modified ratio count Aggregation: avg/max
The ratio of modified lines as described above to the entire lines in the file.
Used in: None

file size Aggregation: avg/max
The size of the file. Security fixes may appear more in large files and this feature will
allow the model to perform reasoning compared to the filesize.
Used in: npm (avg, max), PyPI (avg, max), Maven (max), ALL (avg, max)

A.2.5 History related

changes to file in prev 50 commits Aggregation: avg/max
Indicates whenever how many times the file was changed in the last 50 commits.
Security fixes may be more present in frequently changed files that are hubs for func-
tionality.
Used in: npm (max), PyPI (max), Maven (avg, max), ALL (avg)

changes to file in next 50 commits Aggregation: avg/max
Indicates whenever how many times the file was changed in the next 50 commits.
Security fixes may be more present in frequently changed files that are hubs for func-
tionality.
Used in: npm (max), PyPI (max), Maven (avg, max), ALL (avg)

95



A. COMMIT CLASSIFICATION FEATURES

is file recently added Aggregation: flag
Indicates whenever the file was added in the previous 50 commits. We expect security
to change either old big files that are hubs for changes, or recently added files that
weren’t tested as much yet.
Used in: npm, PyPI, Maven, ALL

is file recently removed Aggregation: flag
Indicates whenever the file was removed in the following 50 commits. We expect
security-relevant changes to stay in the repository.
Used in: npm, Maven, ALL

A.2.6 Code metrics

changed methods count Aggregation: avg/max
The number of changed methods in the file in the commit. We expect this value to be
lower for security-relevant commits.
Used in: npm (avg, max), PyPI (avg, max), Maven (avg, max), ALL (avg, max)

total methods count Aggregation: avg/max
The number of methods in the file. It may suggest that large and complex files are
more likely to contain security-related flaws, but also it may be used as comparison
bases for other features.
Used in: npm (avg), PyPI (avg, max), Maven (avg), ALL (avg, max)

file complexity Aggregation: avg/max
The cyclomatic complexity of the file. Motivated as above.
Used in: ALL (avg)

file nloc Aggregation: avg/max
The number of lines of code in the file. Motivated as above.
Used in: npm (avg, max), Maven (avg, max)

file token count Aggregation: avg/max
The token count in the file. Motivated as above.
Used in: PyPI (max), ALL (avg, max)

(avg/max) method token count Aggregation: avg/max
The average and the maximum number of tokens in specific methods. Used as a
feature in determining the code quality in greater granularity than the delta maintain-
ability model.
Used in: npm (3), PyPI (2), Maven (2), ALL (3)

(avg/max) method complexity Aggregation: avg/max
The average and the maximum cyclomatic complexity in specific methods. Motivated
as above.
Used in: npm (2), PyPI (1), Maven (3), ALL (2)
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(avg/max) method nloc Aggregation: avg/max
The average and the maximum number of lines of code in specific methods. Moti-
vated as above.
Used in: npm (3), PyPI (1), Maven (2)

(avg/max) method parameter count Aggregation: avg/max
The average and the maximum parameter count in specific methods. Motivated as
above.
Used in: npm (3), PyPI (2), Maven (2), ALL (2)
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Appendix B

Reproduction package content

In this appendix, we enumerate the content of the reproduction package available at [52].
The reproduction is supplemented with the repository available at https://github.com
/NewWwest/masters-project. Additional descriptions are available in markdown files in
the reproduction package and in the repository itself.

Repositories The list of repositories described in Chapter 3 used in case studies in the first
two experiments

Vulnerability datasets Precise information on the versions of vulnerabilities used in this
project.

Extracted references Vulnerability references pointing to GitHub that we extracted from
the databases and resolved using the GitHub API.

Security related commits The datasets for security-related commits as extracted from vul-
nerabilities, the SAP-KB dataset, and security-labeled issues.

Phrase search The input, query, and result of the phrase search experiment.

Security labels The results of the security-labeled issues experiment, including downloaded
issues and manually annotated data.

Mined features Features mined for the feature-based commit classification experiment.

Models and results Evaluation of the best parameters for the models, the models them-
selves, and the final predictions in the feature-based commit classification experi-
ment.

Deep learning samples The samples mined for the deep learning commit classification
experiment.

Deep learning models The results of the final training sessions of our deep learning mod-
els.

99

https://github.com/NewWwest/masters-project
https://github.com/NewWwest/masters-project


B. REPRODUCTION PACKAGE CONTENT

Deep learning results The classification results of VulCurator models used in the evalua-
tion of the deep learning commit classification experiment.

Recall data Additional data that was collected for calculating the recall of the methods in
the evaluation chapter and the results that were used to generate the recall plots.
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