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In Context: Review

1. Introduction

Endoscopic vision can be obstructed due to fogging or 
soiling of the lens. Surgeons spend about 3% of their time 
during laparoscopic Nissen fundoplications on cleaning 
the endoscope lens.1 This equals about 6 cleaning events 
per hour.2 Schoofs and Gossot3 found that soiling of the 
endoscope lens during thoracoscopic procedures was 
considered troublesome by 68% of the surgeons. 
Contamination of the endoscope lens thus may disrupt 
the flow of the operation.1 Unnecessary disruptions and 
distractions may result in errors in judgment and tech-
nique, potentially causing patient injury.4-7 In addition, 
disturbances may lengthen the procedure time and may 
increase treatment costs, essentially decreasing surgical 
efficiency.8,9

In endoscopic surgery, lens contamination typically 
consists of body fluids (eg, blood), intercellular gel-like 
material (ie, ground substance), bone dust, and smoke 
plumes generated by surgical cautery devices.1 Surgical 
smoke consists of small (<500 nm) and large (>500 nm) 
particles.10 Small particles are produced by the nucleation 
of vapors as they cool, whereas large particles develop 

due to entrainment of tissue. High concentrations of small 
particles are most responsible for the deterioration of 
laparoscopic vision.10

Two commonly used techniques for cleaning the endo-
scope lens during surgery are manual wiping and the use 
of a lens irrigation system. The manual wiping method 
involves rubbing the endoscope lens against a nearby soft 
organ or, more often, requires a full withdrawal of the 
endoscope and a subsequent wipe of the lens with a gauze 
or clean cloth soaked in either a defogging solution or 
distilled water. Typically, before reinsertion, a final wipe 
with dry gauze is required to dry the lens. Moreover, due 
to a temperature difference between patient and operating 
room, condensation frequently occurs after reinsertion, 
leading to impaired vision.11-13 Therefore, cleaning the 
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lens using the manual wiping method may require multi-
ple steps.

The second method makes use of a hollow sheath 
wherein the endoscope is inserted. Examples of such 
systems are CLEARVISION II and the lens cleaning 
sheath for ENDOEYE FLEX.14,15 The hollow sheath 
adds an irrigation nozzle to the distal end of the endo-
scope that allows for in situ cleaning. The washing liq-
uid, generally saline or distilled water, flows through the 
irrigation channel down the endoscope lens. This clean-
ing method often does not clean the lens satisfactorily.9 
Moreover, as a result of irrigation, unwanted fluid 
buildup in the surgical site may eventually impair vision 
and further influence the surgical workflow. Another 
observed impairment is the possible accumulation of a 
bubble or fluid droplet on the endoscope lens after irri-
gation. In order to prevent this problem, some devices 
use a special pump that creates a negative pressure to 
extract remaining liquid after irrigation (eg, KARL 
STORZ GmbH & Co KG14).

1.2. Goal

The aim of this article is to identify, categorize, and 
describe techniques that can achieve optical surface 
cleanliness, and in doing so provide a comprehensive 
source of references. Through the categorization, the 
complete solution space is explored, and the existing 
and potentially relevant emerging cleaning techniques 
are presented. Thereafter for each of the techniques, the 
patents found with a potential application to endo-
scopes are described. Economic aspects of the pre-
sented techniques are outside the scope the presented 
research.

2. Methods

A literature review was conducted in November 2015 
using Web of Science. Non-English literature and patents 
were excluded. A total of 910 results were found using 
the following search query:

TI=((*clean* OR wash* OR rins* OR *foul*) AND 
(*eye* OR *lens* OR *glass))

Through this query, titles were searched for any combina-
tion of 2 sets of keywords. A second selection by hand 
based on title, abstract, and the removal of duplicates 
yielded 88 significant results.

In addition, a patent search in title and abstract was 
performed using Espacenet during the same time period, 
yielding 150 results, using the following search query:

((((clean* OR wash*) OR rins*) OR foul*) AND 
((eye* OR lens*) OR glass*)) AND scop*

In addition, the keyword “clean*” was used to search in title 
and abstract in categories confined by endoscope-related 
patents, respectively, A61B1/0008 and A61B1/00121. Last, 
47 patents were selected from these 3 searches combined 
based on their potential for use during surgery (in situ). 
Devices that are intended for cleaning endoscopes out of 
surgery (eg, sterilization systems) were discarded.

3. Categorization

The ACCREx method was implemented, which involves 
abstraction, categorization, reflection, reformulation, and 
extension of search results.16 Consequently, an all-inclu-
sive structure was created from the search results that 
offers insight into known working principles. Moreover, 
it identifies gaps in literature with respect to (transparent) 
surface cleaning methods suitable as solutions to the lens 
cleaning problem.

The constructed categorization structure is shown in 
Figure 1. The first level is Surface Cleanliness, which is 
lexically defined as “careful to keep or make clean.”17 On 
a lower level, a distinction between mechanical and chemi-
cal interactions is made. Results in Mechanical Interactions 
rely on forces other than the driving force of chemical 
reactions to establish surface cleanliness, whereas results 
in Chemical Interactions rely on chemical reactions or state 
changes.18 Both are subdivided into removal and preven-
tion methods, where removal methods are techniques that 
remove settled impurities from a surface and prevention 
methods block an impurity from reaching and settling on a 
surface. The abstract methods gathered in this review have 
been subdivided into 1 of these 4 categories as shown in 
Figure 1. Mechanical removal methods include Brush/
Wipe, Centripetal Force, Collision, Suction, and Vibration. 
The mechanical prevention methods that were found were 
thought to be too specific to create general categories. 
Chemical removal methods include Dissolution, 
Evaporation/Sublimation, Photo(catalytic) Degradation, 
and Surface Tension. Last, chemical prevention methods 
contain Hydrophilicity/Lipo-philicity, Hydrophobicity/
Lipophobicity, Amphi philicity, and Adhesion Resistance.

Note that it is impossible to create a perfect categoriza-
tion. Therefore, several solutions that rely on multiple 
working principles can be and have been placed in more 
than one category. Moreover, this classification is only used 
for the purpose of clarity, that is, to gain insight into existing 
solutions and to find gaps in literature. Last, with respect to 
many of the techniques identified in patents, literature vali-
dating those specific techniques is often lacking. Where 
available, appropriate references are provided.

4. Mechanical Interactions

In this section, solutions are described that rely on the use 
of a certain force other than the forces that drive a chemical 
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reaction.18 As previously discussed, this category is divided 
into removal and prevention methods. First, removal meth-
ods will be examined. Second, due to the lack of results in 
literature, hypothetical mechanical prevention methods 
and found patents will be described.

4.1. Removal Methods

4.1.1. Brush/Wipe. Brushing or wiping is effective in 
removing impurities from a surface if its forces are able 
to overcome particle adhesion forces.19 The major inter-
action forces are the van der Waals force and the electro-
static double layer force of repulsion, primarily in liquid 
environments.20 During wiping, particles are removed 
from the surface by a wiper or cloth. As numerous wipers 

and types of cloths exist, and possible wiping motions are 
infinite, this method is highly flexible. Nevertheless, 
wiper-based cleaning tends to be the most effective for 
removal of contamination from large surface areas in a 
controlled fashion.19 One of the simplest methods of 
cleaning glass is to wash the surface with a detergent and 
water, followed by wiping with cotton-wool steeped in 
isopropyl alcohol or another solvent.21

In patent literature 4 main types of devices could be 
distinguished. The first set of devices is intended to be 
inserted into the patient through a separate incision, next 
to the endoscope. Fisher et al22 designed an apparatus 
consisting of a plastic handle with a 0.89 mm cannula 
attached. In the hollow cannula at the distal end of the 
device a wick is located, which can manually be extended 

Figure 1. Schematic showing the ACCREx classification of results. Each box in the first 3 levels represents a category to 
(further) divide the found methods to achieve surface cleanliness. The lowest level (under Removal and Prevention) is the final 
categorization of solutions that is sorted in order of discussion and numbered correspondingly to the sections in this article.



512 Surgical Innovation 24(5)

and retracted. By extending and moving the wick toward 
the endoscope lens, it is possible to wipe it.23 Variations 
include an apparatus with a cloth being disposed between 
2 prongs that can be collapsed for insertion into the 
patient, and expanded to clean the lens.24

The second set of devices centers on wipers that can 
be attached to the distal end of an endoscope. In this set, 
devices use a wiper constructed from a super elastic 
alloy,25 and wipers controlled by an actuator26 or 
electromagnets.27

The third set of devices rely on sponges that are attached 
to either the trocar28 or a hollow sheath wherein the endo-
scope is inserted.29 In this way, the endoscope lens can be 
wiped while still being inside the trocar30 or patient.31 
Variations include comparable systems with an additional 
fluid channel to provide cleaning fluid to the sponge32 and 
a trocar with 3 different cleaning components.33

The fourth set of devices consists of those attached to 
and used inside the patient.34 Cassera et al evaluated a 
patented device named EndoClear that is attached to the 
inner abdominal wall at the start of a laparoscopic proce-
dure, allowing the surgeon to wipe the endoscope lens 
inside the patient. It was found that EndoClear lowers the 
cleaning time, but does not significantly improve overall 
procedure time as the device requires a set up and reposi-
tioning time.1 EndoClear is the only found commercial 
solution to significantly differ from the “traditional” 
cleaning techniques discussed in the introduction.

4.1.2. Centripetal Force. Centripetal force represents accel-
erated motion directed toward the center of curvature of a 
body in curvilinear motion. Devices exploiting centripe-
tal forces to clean a surface or to separate substances are 
known as centrifuges. Each particle is centrifuged at a 
rate proportional to the applied centrifugal field.35 As 
smaller particles (<50 µm) adhere to surfaces primarily 
by van der Waals forces, the force holding a 20 µm par-
ticle to a surface may be 10 000 times its weight.36-38 
Moreover, for smaller micrometer-size particles total 
adhesion can exceed the gravitational force by factors 
greater than 106.36 A relatively large force is therefore 
required to dislodge a small particle in a centrifuge.

Specific to endoscopes, a patent was found that 
describes a device exploiting centripetal force.39 It con-
sists of a transparent disk and a ring-shaped socket that is 
placed over the distal end of an endoscope. The ring is 
provided with rim turbine blades, which allows it to rotate 
due to one or more jets of pressurized air from a nozzle. 
As a result, the produced centripetal force should dis-
lodge impurities that may be present on the optical view-
ing disc. No actual prototype using the patent was found.

4.1.3. Collision. Particle collision plays an important role 
in a wide range of natural and industrial processes where 

agglomeration or breakup of particles is essential.40 When 
particles collide, momentum is exchanged through 
momentum transfer. Methods that exploit particle colli-
sion are sputtering and wet laser cleaning techniques.

Sputtering as a cleaning process relies on a stream of 
energetic particles bombarding impurities present on the 
surface. If the energy transferred to the surface particle 
has a component normal to the surface that is larger than 
the surface binding energy, the particle is dislodged (ie, 
becomes sputtered).41 Efficient sputtering methods to 
clean a glass surface are plasma glow discharge and pos-
itive-ion bombardment.21,42 However, preapplied coat-
ings with a thickness of several molecular layers may be 
removed during sputtering; therefore, this method is less 
suitable for cleaning coated surfaces.

Cho et al43 described the use of atmospheric pressure 
radiofrequency glow discharge plasma to remove organic 
contaminants from Indium Tin Oxide (ITO) glass. Li 
et al44 cleaned ITO glass using CO

2
 snow jet spray that 

relies on high pressure CO
2
 gas being expanded through a 

specially designed Venturi nozzle. In this way, a high-
velocity stream composed of solid CO

2
 snow particles, 

with diameters of up to 100 µm, was generated. By aiming 
this jet on the polluted surface, impurities were sputtered. 
This method is believed to be nonabrasive, residue-free, 
nondestructive, and environmentally friendly as there is 
no chemical waste. Moreover, the authors claim that CO

2
 

snow jet spray results in a cleaner surface compared to 
low-frequency ultrasonic cleaning and can therefore 
replace it. Another method is the use of microbubbles with 
a diameter of 10 to 100 µm to remove, for example, poly-
mer ink from a glass substrate.45

The lens irrigation system described in the introduc-
tion is an example of a technique based on momentum 
transfer and is described in various patents.46-55 All pat-
ents describe the use of a sterilizable or disposable56 
hollow sheath wherein the endoscope is inserted. This 
effectively adds an auxiliary fluid channel and irriga-
tion nozzle near the endoscope lens, and sometimes an 
additional suction channel to discharge the irrigation 
fluid.57 Some of the devices can be used to spray both a 
liquid and a gas,58-60 to, for example, dry the lens after 
irrigation61-63 or to form a fluid mixture,64-68 while oth-
ers are only able to spray a gas.69 Other patents describe 
the use of a flow guide used together with the irrigation 
system to direct a fluid flow in a more optimal way70-72 
or the use of suction to control and subsequently dis-
charge the fluid.73 Another patent describes a cylindri-
cally shaped balloon with a plurality of small holes on 
one side.74 The balloon has to be inserted into the endo-
scope’s working channel. By advancing the balloon out 
and filling it with a liquid, it expands while irrigating 
the lens through its small holes directed toward the 
endoscope lens.
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A second category exploiting collision is laser clean-
ing, which can be divided into dry and wet cleaning tech-
niques. Dry laser cleaning techniques rely on a laser 
disintegrating impurities directly through evaporation or 
sublimation. Therefore, these will be further discussed 
under chemical removal methods. In contrast, most wet 
laser cleaning techniques heat up a fluid or a metal plate 
inside a fluid container, thereby generating a turbulent 
bubble flow that is directed upwards to the surface of the 
liquid.75 When an unclean object is submerged in the con-
tainer, and positioned directly into the bubble flow, impu-
rities present on its surface are dislodged similar to 
sputtering. Contrary to dry laser cleaning techniques, 
most wet laser cleaning techniques keep the temperature 
rise of the object’s surface below 30°C since the fluid also 
acts as a coolant.75

Weng and Tsai75 studied 2 laser-induced wet cleaning 
techniques that were able to remove 0.5 µm particles 
from glass substrates. The first technique involved using 
a Nd:YAG laser to heat up a metal plate in water to create 
a bubble flow. The second method involved a CO

2
 laser 

that directly generated a turbulent bubble flow in the 
water to clean a glass substrate. In both methods the laser 
shone through the glass surface, which created a bubble 
flow on the side opposite of the laser itself, thus defining 
these methods as so-called backside laser cleaning tech-
niques. Logically, these methods only work if the surface 
is transparent enough, that is, allows for the transmittance 
of the laser beam’s wavelength. Additionally, a type of 
laser has to be chosen that emits the proper wavelength, 
such that its energy is being absorbed by the medium (eg, 
water or a metal plate) to create the bubble flow.

Another type of a wet laser cleaning technique is 
steam laser cleaning, which relies on a liquid film, having 
a thickness in the order of micrometers, being deposited 
on the surface just before flash heating with a laser.76 The 
laser causes the film to be super-heated rapidly, followed 
by a rapid explosive vaporization. A strong acoustic pres-
sure pulse that is generated then removes small particles 
down to 0.1 µm from the surface.77

4.1.4. Suction. Suction works due to a pressure difference in 
a gas or fluid. A common example exploiting suction is a 
vacuum cleaner. Surgeons frequently use suction to clean 
their surgical sites from blood and debris. No articles were 
found that describe the use of suction to clean a surface. 
Nevertheless, a patent was found that describes the use of 
suction in combination with a dental mirror.78

4.1.5. Vibration. Ultrasonic agitation is a method to remove 
gross as well as sub-micrometer impurities from a surface 
by using vibrations in a detergent. Stowers79 removed 
small yet larger than 5 µm contaminant particles from glass 
with an efficiency of 69% to 92%. This cleaning method 

can be divided into low- and high-frequency agitation. At 
relatively lower frequencies (20-100 kHz), large cavitation 
bubbles are generated. Cavitation blasts away impurities 
from the contaminated surface and therefore assists in 
removing gross particles. However, high cavitation ener-
gies can damage the surface and therefore careful control is 
required.21 High frequencies can also be used to realize a 
more gentle cleaning method to save brittle surfaces: cavi-
tation bubbles are smaller, and implosions are less intense. 
As a result, more time is required for cleaning surfaces 
than when using low-frequency agitation. In an optimized 
single process, one would employ low-frequency ultra-
sound to remove larger particles and high-frequency ultra-
sound to remove sub-micrometer particles.80 Note that 
smooth surfaces can roughen with increasing exposure to 
detergents.81

An endoscope-specific patent was found that describes 
the use of vibrating elements located at the distal end of 
the scope in combination with the previously described 
lens irrigation system.82 During irrigation with the wash-
ing liquid, the elements vibrate and may cause cavitation 
bubbles to enhance the cleaning ability of the liquid. One 
variant uses an ultrasonic resonating hollow sheath 
wherein the endoscope is inserted, thereby causing the 
impurities present on the instrument’s surface to be agi-
tated.83 This can be exploited to clean the endoscope lens.

4.2. Prevention Methods

In the literature, no articles describing mechanical pre-
vention methods were found. However, the following 
hypothetical concepts could be thought of. A device that 
is able to (automatically) move the surface that is required 
to stay clean out of the trajectory of an approaching impu-
rity, possibly imitating the flipping mirror in a single-lens 
reflex camera. Moreover, another plausible method 
involves a movable shield to let the impurity land on, 
instead of on the surface beneath it. This resembles an 
eyelid protecting the eye from foreign bodies.

Specific to endoscopes, a patent was found describing 
an apparatus that positions a clear movable film strip over 
the endoscope lens.84 One side of the film is facing the 
endoscope lens, while the other side is covering the lens 
and therefore prevents adhesion of impurities. When 
impurities land on the film, the strip can be moved such 
that the endoscopic field of view becomes clear again. A 
similar patent describes the same principle with pre-
folded films in a meandering configuration that replaces 
the top film automatically when it is removed.85

5. Chemical Interactions

In this section, solutions are described that rely on either 
state changes or the forces that drive a chemical reaction.18 



514 Surgical Innovation 24(5)

As discussed previously, solutions are divided into 
removal and prevention methods. First, the removal meth-
ods will be examined. Thereafter, prevention methods will 
be described.

5.1. Removal Methods

5.1.1. Dissolution. The process of dissolution is a widely 
used method to clean surfaces. For example, vapor 
degreasing is an effective process for removing molecu-
lar contamination from glass surfaces.21 Vapor degreas-
ing relies on solvent vapors condensing on the surface 
that dissolve impurities and removes them by dripping 
off.86 Tests indicate that effective cleaning can be 
obtained within a time interval of about 2 minutes.21 
When using isopropyl alcohol, vapor degreasing achieves 
higher surface cleanliness than ultrasonic cleaning, and 
almost provides results comparable to those obtained by 
ionic bombardment.21 Still, vapor degreasing fails to 
remove gross contaminants, and should therefore be used 
with another technique (eg, a detergent washing process) 
to remove these.21

5.1.2. Evaporation/Sublimation. Dry laser cleaning, or laser 
ablation, exploits the phenomena of evaporation or subli-
mation to clean surfaces. Traditional dry laser cleaning 
may cause damage, especially if the surface to be treated 
is brittle or has a low melting point, and therefore typi-
cally a pulsed laser beam or laser shock cleaning is used.87 
Laser shock cleaning relies on shock waves generated by 
a laser in a gaseous environment to remove small parti-
cles and can leave the optical and surface properties 
unharmed.87 Kumar et al87 studied the effects of dry laser 
shock cleaning on glass surfaces. They found that a 
Nd:YAG laser can remove radioactive uranium dioxide 
(UO

2
) particles efficiently. Römich et al88 used a pulsed 

laser to remove crusts from aged glass and found that 
irradiation at higher energies (200 pulses of ~2.0 J/cm2) 
irreversibly damaged the glass.

5.1.3. (Photo)catalytic Degradation. Photocatalytic degra-
dation or photocatalytic oxidation (PCO) is the chemical 
decomposition of carbon molecules (eg, organic impuri-
ties) by using photons and a photocatalyst. In PCO reac-
tions, metal oxide semiconductors (eg, TiO

2
 and ZnO) 

are often used as photocatalysts.89 TiO
2
 is inexpensive, 

chemically stable, and biologically inert (ie, biocompat-
ible). Moreover, it has a high mechanical toughness, 
photocatalytic activity (PCA), and a favorable redox 
potential.90-95

Many self-cleaning materials are based on TiO
2
 thin 

film coatings and are thus able to clean themselves 
through PCO reactions. However, as a thin film coating 
can get poisoned by reaction intermediates there are still 

practical limitations.96 Moreover, during the often neces-
sary thermal treatment, sodium ions from the glass sub-
strate migrate to the TiO

2
 film.97 This is highly detrimental 

to the PCA of the film. Other factors that influence PCA 
are film composition, atomic to nanoscale roughness, 
bulk and surface (nano)structure, as well as hydroxyl and 
impurity concentrations.98-100 As the technology is still in 
its infancy, individual effects of the aforementioned fac-
tors are not yet well understood.101

Besides properties of the thin film itself affecting 
PCA, the environment plays an important role: H

2
O and 

O
2
 molecules are required for photocatalytic degradation 

to function. However, as water tends to adhere to the 
active sites of the coating, the relative humidity of air is 
important. Increasing humidity levels decreases the PCA 
due to competition between water and organic pollutants 
for active sites.102,103 Nevertheless, an increase in tem-
perature is expected to increase the PCA due to a higher 
photodecomposition rate and other thermal effects (eg, 
evaporation of pollutants).104-106 Cedillo-Gonzalez et al97 
noted that at room humidity (ca. 63%), which would gen-
erally be detrimental to the PCA, increasing the tempera-
ture increases the PCA. They believe this is due to water 
molecules releasing from the surface. Even so, TiO

2
 coat-

ings work best in environments with low humidity and 
relatively high (>30°C) temperatures. Tests show that the 
thin films generally have a good chemical resistance to 
common household cleaning agents as they maintained 
their PCA when treated with boiling or deionized water, 
5% isopropanol, or a detergent.97

TiO
2
 thin film coatings can be made by using several 

techniques, including spin-coating, sol-gel dip coating, 
electrospinning, chemical vapor deposition, sputtering, 
and screen-printing.107-111 Common substrates that are 
used for these techniques are mainly glass and other high-
temperature–resistant materials as the temperature 
required to crystallize TiO

2
 is in the range of hundreds of 

degrees Celsius.112,113 Moreover, as TiO
2
 photocatalyti-

cally degrades organic molecules, caution is advised 
when using such coatings in conjunction with organic 
polymers. A solution to protect a polymer substrate would 
be to use a barrier layer before application of a TiO

2
 thin 

film. Suitable layers that have been applied include silica 
(SiO

2
), ZrO

2
, and polyurethane (PU).90,107,114,115 Likewise, 

sacrificial protective layers can be used.116

Another effect of TiO
2
 thin films is that they alter the 

surface reflection of transparent glass due to their refrac-
tive index. The minimum reflection of an ideal homoge-
nous single-layer coating is dependent on the refractive 
indices of the coating, medium, and substrate.117-119 
Yoldas117 found that the reflection at the boundary of air-
glass is 4.3%, while that of air-TiO

2
 is between 18.6% and 

21.9%.120 Moreover, increasing the thickness of TiO
2
 thin 

films leads to a decreased transparency.121-123 Paz et al115 
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noted that organic impurities of 50 nm thickness already 
scatter light and cause glare on automotive windshields.

Photocatalysis requires photons with a certain wave-
length or wavelength range, depending on the type of 
metal oxide semiconductor used. Most of the photocata-
lytic materials respond to UV light. TiO

2
 coatings can be 

doped with metallic ions to increase their PCA.124,125 
Murugan et al126 used Ni and Fe to obtain PCA in the vis-
ible light region. As PCO reactions are slow, disintegrat-
ing impurities on the surface is a process taking hours. 
Examples of timescales found in literature include 300 
minutes for a fingerprint (containing 0.5-1.5 nmol/cm2 
palmitic acid127), and 140 hours to remove 98 wt% of 
5.28 nm thick crystalline fluoranthene or 48 days of out-
door solar exposure under diffuse sunlight.128-130 The 
thickness of organic layers oxidizing on TiO

2
-coated sur-

faces was found to be 0.2 to 5 µm/day.115,127,131

Aside from PCO, catalytic oxidation exists that, 
instead of being driven by photons, depends on a catalyst 
and heat to disintegrate organic contaminants. Contrary 
to photocatalytic thin films, most existing coatings are 
not transparent and only work at temperatures between 
200°C and 350°C. Verhelst et al132 described a transpar-
ent catalytic coating that removed up to 98 wt% of a 0.6 
µm-thick layer of a fatty contaminant in 40 minutes at 
250°C.

5.1.4. Surface Tension. Surface tension is the tendency of a 
liquid to acquire the least amount of surface area possi-
ble. It can be measured as the energy that is required to 
increase the surface area of a liquid by a unit of area. 
Surfactants are substances that lower the surface tension 
between 2 liquids or between a liquid and a solid. Together 
with their intrinsic properties, they are able to soak up 
fatty acids by forming micelles. Classic cleaning formu-
lations contain, in addition to surfactants, alkaline build-
ers (eg, silicates, condensed phosphates), chelating 
agents, and several other substances.133 Zoller133 studied 
several surfactant-based formulations in water of medium 
hardness (0.0001% CaCO

3
) on their ability to clean dif-

ferent types of glass lenses. He found that a relatively 
high level of condensed phosphates, mainly sodium tri-
phosphate, and chelating agents are essential to the for-
mulation’s results.

Saponins are a category of surfactants and produce a 
soap-like foaming when shaken in aqueous solu-
tions.134,135 They are found in particular abundance in 
various plant species and are contained in soaps and 
detergents.9,136 Moreover, saponins have a wide range of 
beneficial biological activity, such as being anti-inflam-
matory, antiviral, and antiparasitic.137 Recently, studies 
reported oolong tea to exhibit surfactant properties due to 
saponins being present.137,138 As a result, oolong tea can 
be used to clean oil soiling.

Ito et al139 decided to use oolong tea as a lens-cleans-
ing solution in colonoscopies. Komazawa et al9 further 
examined the effects of using oolong tea as a washing 
solution in transnasal esophagogastroduodenoscopy. 
They compared oolong tea, barley tea (contains less sapo-
nin than oolong tea), and distilled water as lens-cleansing 
solutions. It was found that oolong tea improved the lens-
cleansing effect in small-caliber endoscopes compared to 
barley tea and distilled water. Moreover, the used volume 
was significantly smaller, and the procedure time shorter 
for oolong tea compared to the other 2 groups.140 
However, Yoshida et al141 found that the effects of oolong 
tea were limited when used in endoscopic submucosal 
dissection. Therefore, they developed a solution based on 
2 types of nonionic surfactants and pharmaceutical addi-
tives (eg, solubilizing agents) that reduces lens cloudi-
ness compared to standard lens cleaner (SL cleaner; 
Sugiken, Tokyo, Japan).

5.2. Prevention Methods

Several chemical prevention methods exist that rely on 
interactions near or on the surface of the object that is to 
be kept clean. Most found solutions are based on coatings 
that prevent impurities from adhering to the surface 
allowing impurities to simply slide off. Traditionally, 
many of these coatings exploit the hydrophilic or hydro-
phobic effect to keep a surface clean. Hydrophilic sur-
faces have an affinity for water whereas hydrophobic 
surfaces lack this affinity, thus repelling water. 
Analogously, a surface can be lipophilic or lipophobic: 
respectively having an affinity for fats, oils, lipids, and 
nonpolar solvents or lacking this affinity.

The degree of wetting, or the wettability, which is the 
ability of a liquid to maintain contact with a solid sur-
face, is determined by the interaction between adhesive 
and cohesive forces. These forces are respectively 
exerted by the surface and by the liquid within itself. As 
a result, the water contact angle (WCA), a static phe-
nomenon, is determined by this force balance. The WCA 
is the angle at which the liquid-vapor interface meets the 
solid-liquid interface. By measuring this angle, a surface 
can be defined as either being hydrophilic (WCA <90°) 
or hydrophobic (WCA >90°). Two special types of sur-
faces can be distinguished, namely, superhydrophilic 
(typical WCA <10°) and superhydrophobic (WCA 
>150°) surfaces.

5.2.1. Hydrophilicity/Lipophilicity. Hydrophilic coatings are 
often used in combination with photocatalytic degrada-
tion TiO

2
 coatings that exhibit a PCA and simultaneously 

exhibit hydrophilic effects that increase after having been 
irradiated by light (ie, photo-induced hydrophilicity). 
However, to compare solutions with each other, both 
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effects are described separately here. Since many articles 
describe different varieties of the method(s) or the 
coating(s) they have used, and often a comparison is 
involved, only the most suitable solution(s) for endo-
scopes (in the sense of highest transparency) of each arti-
cle is shown in Table 1.

While most photo-induced hydrophilic coatings oper-
ate under UV irradiation, some solutions are able to func-
tion under visible light. To achieve this and to improve 
material characteristics, thin films are often doped, or 
implanted, with other particles to change structural 
parameters.142 Another method to alter the behavior of a 
typical TiO

2
 thin film is the use of bilayers (ie, closely 

packed double layers of molecules). For example, Lin 
et al143 used 120 bilayers to obtain a photocatalytic sur-
face under visible light. However, the mechanical integ-
rity is often poor due to the absence of polyelectrolytes 
that glue the multilayers together.143 Furthermore, hydro-
philic surfaces can be created with nanostructures through 
microelectromechanical system (MEMS) fabrication 
techniques. Verma et al144 observed that the WCA 
decreased with an increase in nanostructure height and 
thus surface roughness. According to Wenzel’s law, a 
rougher surface indeed increases the wetting characteris-
tics of intrinsically hydrophilic surfaces.145

5.2.2. Hydrophobicity/Lipophobicity. As pure TiO
2
 thin films 

exhibit hydrophilic behavior, most hydrophobic surfaces 
are based on either nanostructures or impure coatings. Con-
trary to discussed hydrophilic surfaces, artificial hydropho-
bic surfaces often do not exhibit any PCA, that is, no 
photocatalytic degradation occurs on the surface. More-
over, the hydrophobic effects of these surfaces are not 
dependent on light (ie, are not photo-induced). An impor-
tant estimation parameter for the self-cleaning property of a 
hydrophobic surface is the sliding angle or hysteresis.162 It 
is defined as the critical angle of the surface where a water 
droplet begins to slide off.163 When the sliding angle is 
small, the water droplet is more inclined to roll off the sur-
face, greatly benefitting the self-cleaning ability of the sur-
face.164 Among the best optimized hydrophobic surfaces 
known to date are the leafs of the lotus (Nelumbo nucifera) 
and taro (Colocasia esculenta).165,166 The surfaces found 
that rely on hydrophobicity are summarized in Table 2.

5.2.3. Amphiphilicity. A molecule is said to be amphiphilic 
when it possesses both (1) hydrophilic and (2) lipophilic 
(or hydrophobic) properties. When used as a removal 
method, a common example of a fluid having these prop-
erties is a detergent, which allows fatty molecules (eg, 
food residue) to dissolve in water. The hydrophilic end of 
a detergent molecule then binds with water molecules, 
while the other end of the molecule binds with the fatty 
impurity, forming a micelle.

Besides detergents, amphiphilic behavior can be intro-
duced as a prevention method by using a coating. André 
et al167 used spermine on a glass surface to create durable, 
homogenous, and thin SnO

2
 films on glass. On exposure 

to sunlight the glass surface becomes hydrophilic. 
However, when the surface is not exposed to light, it 
becomes hydrophobic. This effect of light-driven behav-
ior acting as a switch can be exploited to get desired sur-
face properties in various settings.

5.2.4. Adhesion Resistance. Adhesion resistance is the abil-
ity of a material to selectively resist impurities adhering 
to its surface. Although many objects found in nature 
exhibit this anti(bio)fouling ability, the effect can also be 
achieved artificially by altering surface characteristics 
(eg, surface roughness). Methods to alter the surface fin-
ish include UV irradiation, deposition of thin film coat-
ings, and polymerization techniques. For example, Kougo 
et al168 sputtered semitransparent metal layers on glass to 
inhibit biofilm formation. Halfpenny et al169 radiated the 
surface of a silica substrate with UV light, resulting in the 
number of particles with a diameter of 0.3 µm adhering to 
the surface being 80% less. Zhang et al170 describe the 
superlow fouling properties of glass slides grafted with 
zwitterionic polymers via atom-transfer radical-polymer-
ization. Xu et al171 used zwitterionic polymers to develop 
anti-biofouling contact lenses. The final 2 solutions cre-
ated surfaces that resist the protein adsorption, and the 
adhesion of mammalian cells or bacteria.

Part of the adhesion resistance solutions are applied in 
marine environments, for example, to keep the hull of a 
ship free from impurities that increase the wave-making 
resistance. Moreover, solutions are used to keep under-
water cover glasses of sensors free from biofouling. 
Booth et al172 found that PMMA combined with Irgarol 
1051, an algaecide, has the best optical transparency, 
impact, and mechanical properties after 6 months in a 
marine environment. They conclude that this polymeric 
material is favored for its anti-biofouling properties. 
Dineshram et al173 also conducted research in a marine 
environment to study the (macro)biofouling of metal 
oxide coatings on glass substrates. They deposited silica, 
TiO

2
, and niobia (Nb

2
O

5
) on glass and kept the substrates 

underwater for 15 days. Nonetheless, these coatings did 
not prevent organisms from adhering, and no significant 
adhesion resistance compared to the control substrate was 
found.

To prevent biofouling in marine environments, 
Strahle et al174 designed a reusable plastic antifouling 
ring that slips over transmissometer lenses. The ring can 
be used to dispense antifoulant into the water in front of 
the lens for 4 months to retard macrofaunal growth (ie, 
barnacles, hydroids, and tunicates) without obstructing 
the light path. Although these rings significantly reduced  
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macrofaunal growth, other biological and sediment foul-
ing continued to block the light path.174

Besides artificial solutions, the peculiar eye surface of 
a green crab is probably antifouling.175 Greco et al175 used 
atomic force microscopy to obtain a new insight into the 
morphology of the crab eye’s surface and its characteris-
tics. They describe 3 key requirements to prevent biofoul-
ing adhesion: (1) cells/organisms must remain above 
topographical features and must not be able to settle 
between them, (2) they must not be able to contact and 
settle their entire structure on a single feature, and (3) if 
they bridge 2 features, then they must not be able to con-
tact the intervening floor. Concretely, a suitable surface is 
one with many dense peaks.

Another branch of anti-biofouling is the use of so-
called polymer brushes. A polymer brush is a chain of 
polymers that is attached to a surface with only one of its 
ends, thus resembling a brush filament. These are found 
to be useful in biomedical applications as they prevent 
adsorption of specific proteins such as bovine serum 
albumin, usually used as a nutrient in cell culture, and 
collagen type I, the most abundant protein in 
mammals.176,177

6. Discussion

Going back to the problem of the endoscope lens in sur-
gery, it is important, in terms of design and implementa-
tion requirements, for cleaning methods to be

•• Nondestructive
•• Nonabrasive (to lens and patient)
•• Biocompatible
•• Safe for both patient and surgeon
•• Fast: The time to achieve surface cleanliness 

should be as short as possible, preferably while 
maintaining visual acuity of the operative field

•• Residue-free, at least on the surface of the endo-
scope lens

•• Easy to use for the surgical team
•• Preferably not be exceeding the current endoscope 

sheath diameter significantly as this brings less 
maneuverability and potential incompatibilities 
with existing equipment

•• Not impairing vision (eg, be transparent), espe-
cially for methods that rely on altering the surface

•• Reposable/disposable or sterilizable (eg, resistant 
to high temperatures)

•• Cost-effective

In addition, technical and practical feasibility of solutions 
are equally important. Nonetheless, as previously 
described techniques may improve over time, currently 
unfeasible solutions may eventually become applicable 

to endoscopy. The economic aspects of the presented 
techniques and lens-cleaning solutions were kept outside 
the scope, as there is a lack of literature in this regard.

6.1. Mechanical Interactions

Starting with the mechanical removal methods, brushing, 
or wiping is very flexible as possible modes are infinite. 
A downside of using this method is that it adds to the 
dimensions of the endoscope. Surgical sites inside the 
body are often spatially limited, which makes a solution 
such as EndoClear in its current form not applicable for 
every endoscopic procedure. Patents describing wipers 
are more promising for use in a confined space, although 
they have to be made sterilizable or disposable. The same 
holds for altered trocars with cleaning systems inside. A 
downside of these systems is the lack of vision during 
cleaning, and that no experimental data exist on their per-
formance. In addition, these solutions might significantly 
add to the diameter of the endoscope sheath. Last, some 
procedures such as those performed though natural ori-
fices may not require a trocar and thus make a trocar with 
an inner cleaning system not universally applicable as a 
solution.

Cleaning methods exploiting centripetal force have 
the downside of having relatively rapid moving parts 
with a potential to cause harm when dislodged. For exam-
ple, the device consisting of a rotating disk39 should be 
implemented with caution as the ring could cause signifi-
cant injury when unintentionally dislodged inside the 
patient. Moreover, centrifugal devices might add to the 
overall diameter of the endoscope.

Methods relying on collision often need an additional 
system to be able to generate a jet of particles or a laser 
beam. The impurities that are dislodged by sputtering 
may cause harm to the patient as these particles move off 
the surface at high velocities. Principles relying on 
Plasma Glow Discharge would require a plasma to func-
tion, of which procedural risks to the human are less 
extensively documented compared to other energetic 
treatment techniques.184 Wet laser cleaning techniques 
rely on a medium, a fluid, to clean a surface and thus 
introduce new problems such as how to establish the 
medium inside a cavity. Steam laser cleaning is more 
favorable in this respect, but adds the dangers of super-
heated fluids inside the body with acoustic pressure 
pulses. Another aspect is the potential reflection of the 
laser beam that could cause damage.185 Last, due to local-
ized heating, the risk of thermal burns is present.

Suction techniques are widely used in surgery and 
offer potential as a means to clean the endoscope lens. 
However, when incorporated into the endoscope, this 
method may add to the total dimensions due to an extra 
channel. Considering no studies were found regarding the 
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effectiveness of cleaning a surface using suction, it may 
not clean the lens satisfactorily. Yet with respect to steril-
ization, suction tubes are widely available and adaptable 
for use in a suitable solution.

Ultrasonic agitation that brings cavitation bubbles 
inside the patient may be undesirable as it could cause 
damage and possible undesired vibrations in the surgical 
environment when the appropriate measures (such as 
shielding) are not taken. Another downside is the require-
ment of a medium, similar to wet laser cleaning. The 
device82 exploiting vibrating elements while using the 
already implemented lens irrigation system to clean the 
lens could be a feasible solution, but its effectiveness is 
unknown.

The patents84,85 relying on a movable clear film strip 
covering the lens as a mechanical prevention method 
offer potential. Possible issues here might be regarding 
sterilization, increased dimensions, and the removal of 
discarded film. In addition, no data are available on the 
effectiveness of these devices.

6.2. Chemical Interactions

Dissolution was found to be a chemical removal method 
that relies on solvents. Most (organic) solvents can lead 
to a sudden loss of consciousness when inhaled, or even 
death.186 Moreover, health hazards associated with sol-
vent exposure include toxicity, cancer, organ damage, 
respiratory impairment, and dermatitis.187,188 This bioin-
compatibility makes dissolution unsuited for use inside 
the patient to clean the endoscope lens as it can cause 
harm to both the patient and the surgical team.

Evaporation or sublimation by use of a laser may 
cause damage to the endoscope lens, especially if the sur-
face to be treated is brittle or has a low melting point. 
Furthermore, the risks involved with laser use in surgery 
include the laser beam potentially reflecting off of sur-
faces and, due to localized heating, thermal burns that 
potentially cause injury.185 Moreover, surgical smoke 
produced by the laser is a biohazard: it is considered a 
toxin, can be carcinogenic, and can even spread 
viruses.189-193 The implementation of a laser cleaning sys-
tem could interfere with the surgeon’s field of view, 
depending on the wavelength and the exposure time. 
Overall, due to the associated health risks, the use of laser 
cleaning techniques inside the patient may be cumber-
some and not the optimal solution.

Photocatalytic degradation is an interesting method, 
since TiO

2
 is chemically stable and biocompatible. 

However, possible wear of the thin film could turn out to 
be a downside after a certain amount of time. Certainly, 
the temperature requirements of these coatings is of 
importance with respect to sterilization and their use dur-
ing surgery. In laparoscopic procedures the temperature 

in the abdominal cavity is often lower than human body 
temperature,2,194 causing PCO coatings to perform subop-
timal. Nevertheless, the main downside of this cleaning 
method is the amount of time that is required for organic 
contamination to be disintegrated: the least amount of 
time reported is 5 hours, which is too long for intraopera-
tive use. Hence, unless the time required for photocata-
lytic degradation can be reduced to, for example, a few 
seconds, this method is unsuited for cleaning the endo-
scope lens in situ. Coatings exploiting catalytic oxidation 
share this downside and in addition have the disadvan-
tage of generally being nontransparent and requiring even 
higher temperatures.

The use of surfactants to lower the surface tension and 
subsequent soaking up of impurities is a promising 
method. The research into oolong tea yielded favorable 
results for certain applications. However, using oolong 
tea as a washing liquid for the lens irrigation system does 
not change the disadvantages of the current irrigation sys-
tem of fluid buildup in the surgical working area. 
Moreover, some surgeons favored a mixed solution of 
surfactants over the use of oolong tea. Decisively, more 
research is required into oolong tea and other natural sur-
factants as a washing solution for the lens irrigation 
system.

The chemical prevention methods, which yielded the 
most results in literature, are also the most promising 
solutions. Adhesion resistant surfaces have the potential 
to achieve surface cleanliness in endoscope lenses as they 
fulfill most of the listed requirements. A downside might 
be the low resistance to wear and sterilization procedures 
(eg, see Fraise et al195 for endoscope cleaning proce-
dures). The specificity that might be present is another 
downside: antifouling surfaces only provide adhesion 
resistance to a limited number of impurities. This method 
may therefore not be flexible enough, and more research 
is therefore required.

Hydrophilic coatings may not be ideal stand-alone 
solutions as the coatings only work for watery impurities. 
In addition, many hydrophilic coatings are photo-induced, 
requiring minutes to hours of irradiation before the sur-
face becomes hydrophilic and then functions for a limited 
amount of time when irradiation is absent. The aspect of 
irradiation time can possibly be countered by starting to 
irradiate the surface ahead of surgery, but the prolonging 
hydrophilicity property of these surfaces during surgery 
is unknown.

Most hydrophobic coatings are not photo-induced, 
giving them an advantage over typical photo-induced 
hydrophilic coatings. In combination with the lens irriga-
tion system, the watery impurities can easily slide off the 
lens surface. This mimics leafs found in nature, mainly 
the lotus leaf, which clean themselves when it is raining 
or when dew is present. Advantages of hydrophobic 
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coatings include the high transparency and the ease of 
application. However, data on the durability and tempera-
ture resistance of these coatings in surgery is not 
available.

An amphiphilic coating would combine hydrophilic 
and hydrophobic properties into one solution by using, 
for example, the switching behavior based on exposure to 
light. For example, amphiphilicity could be exploited for 
endoscope lens cleaning by allowing the lens to be hydro-
philic while applying a liquid. The created liquid film is 
maintained as the hydrophilic surface allows complete 
wetting. Whenever impurities land onto the surface of the 
lens, and thus touch the liquid film, the lens could be 
transformed into a hydrophobic surface. As a result, the 
liquid film could roll off the surface taking impurities 
along. Yet similar to photocatalytic degradation, the 
photo-induced switching behavior from one state to the 
other is a matter of hours. Therefore, at this moment, the 
benefits of using the amphiphilic coating as opposed to 
just a hydrophilic or hydrophobic coating are 
questionable.

6.3. Hybrid Solutions

The most optimal solutions can be obtained by combin-
ing methods to create hybrids. For example, a hybrid con-
sisting of a surfactant (eg, oolong tea) as a washing 
solution for the lens irrigation system and a hydrophobic 
endoscope lens. In this way, oolong tea soaks up the 
impurities (eg, fatty acids), while the hydrophobic coat-
ing lets the solution easily slide off, leaving no residue on 
the lens. Another promising hybrid is that of the current 
lens irrigation system and a hydrophilic coating on the 
lens. The hydrophilic lens would cause a film of water to 
remain on its surface similar to a tear film found in mam-
malian eyes. The irrigation system could then mimic the 
production of tears and simulate the function of an eyelid 
with, for example, bursts of water. Both proposed hybrids 
likely increase the cleaning capabilities as compared to 
current lens cleaning systems.

7. Conclusion

During endoscopic surgery it is of critical importance that 
the surgeon maintains a clear visualization of the opera-
tive field. However, throughout surgery the endoscope 
lens gets fouled by blood, ground substance, and other 
impurities, resulting in visual impairment. As manual 
wiping and the use of a lens irrigation system are still far 
from ideal, this literature review was conducted with the 
goal of finding a solution suitable for implementation in 
endoscopic instrumentation to achieve lens surface clean-
liness, thereby providing optimal visual acuity to the sur-
geon. Certain found techniques are unsuitable for this 

goal, based on the specified requirements regarding 
safety and cleaning speed. In conclusion, the application 
of a hydrophilic or hydrophobic coating to the endoscope 
lens and the use of the current lens irrigation system as a 
hybrid is likely the most promising method to achieve 
surface cleanliness in endoscope lenses.
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