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Abstract: Marginal costs in traffic networks are the extra costs incurred to the system as the result of extra 

traffic. Marginal costs are required frequently e.g. when considering system optimal traffic assignment or 

tolling problems. When explicitly considering spillback in a traffic flow model, one can use a numerical 

derivative or resort to heuristics to calculate the marginal costs. Numerical derivatives are computationally 

demanding, restricting its use to simple networks. Heuristic approaches in most cases approximate the 

marginal costs by only considering the extra costs on the links which are traveled by the extra traffic, 

excluding the possibly external costs incurred on other links due to spillback. This paper proposes a novel 

way to estimate the true marginal costs of traffic in a dynamic discrete LWR model which correctly deals 

with congestion onset, spillback and dissolution. The proposed methodology tracks virtual changes in 

density through the network by means of particles which travel along with the characteristics of traffic. By 

using density based cost functions, the virtual changes in density can be directly related to the marginal 

costs. The computational efficiency of the methodology stems from the fact that only local conditions are 

considered when propagating the virtual change in density.  The paper discusses the methodology and 

necessary model extensions, provides a numerical validation experiment illustrating the exact detail of the 

solution by comparison to a numerical derivative and discusses some generalizations  
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1. INTRODUCTION 

This paper deals with the subject of calculating marginal costs 

in a macroscopic first-order traffic flow model, without the 

need to calculate a computationally demanding numerical 

derivative or use a heuristic approximation which does not 

correctly deal with spillback. Marginal costs are the extra 

costs incurred to the whole system as the result of adding 

extra traffic. They can be separated in direct and external 

costs. Direct costs are experienced by the extra traffic, 

whereas external costs are experienced by other traffic in the 

network. The concept of marginal costs within traffic 

modelling has first been used in the context of road pricing by 

(Pigou A.C., 1920). Later on, marginal travel time functions 

where used for the purpose of system optimal (SO) traffic 

assignment as first described by (Merchant. D.K. and 

Nemhauser. G.L., 1978) to attain a system optimal state 

according to Wardrop’s 2
nd

 principle (Wardrop J.G., 1952) 

with minimal total travel time. In the context of system 

optimal assignment, most studies use analytical link travel 

time functions which have desirable mathematical properties 

but fail to represent the fundamental traffic characteristic of 

congestion onset, spillback and dissolution, as for example 

concluded in (Nie X. and Zhang H.M., 2005). For this reason, 

in (Peeta .S. and Mahmassani. H.S., 1995) the authors use a 

dynamic simulation model which explicitly models spillback 

and thus features better traffic realism. When formulating the 

dynamic SO assignment problem, they find themselves 

challenged to calculate the marginal path costs. Finding the 

true global marginal costs in that simulation model would 

require a numerical derivative and is quoted as: “… a brute 

force approach which is computationally in-efficient even on 

existing high powerful super computers.”. Therefore a 

heuristic approach is used. The heuristic approach fails to 

correctly estimate the true marginal costs by only considering 

the effects of spillback on the links which are travelled by the 

extra traffic, disregarding other affected links in the network, 

as the authors say: “… path marginal’s in these experiments 

are not necessarily global as they are based on local link level 

marginal travel times”. Similar reasoning is found in 

(Ziliaskopoulos. A.K et al., 2004) where again a heuristic 

approach is chosen.  

The motivation for this research is to generate on-line real-

time system optimal route guidance advices of which a 

description can be found in (Zuurbier F.S. et al., 2006). This 

problem is closely related to dynamic traffic assignment, as 

described by (Bottom J., 2000). For the representation of 

traffic, a macroscopic first-order traffic flow model is used,  

also known as the LWR model (Lighthill M.J. and Whitham 

G.B., 1955, Richards P.I., 1956). This model has desirable 

properties such as the minimal required state detail, 

computational efficiency, a convenient state-space 

formulation, the ability to be used as a state estimator and can 

properly represent congestion onset, spillback and dissolution. 
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This paper presents a computational efficient way to calculate 

the marginal costs of traffic in the discrete LWR model. The 

state in such a model can be described by cell densities. Given 

these cell densities, the cost and marginal cost of traffic per 

cell can be found using differentiable cell-cost functions. This 

paper describes a heuristic approach which allows modelling 

the propagation of a virtual change in density as it travels 

along with the characteristics of traffic. E.g. downstream (free 

flow) or upstream (congestion). By allocating this virtual 

change in density to the traffic cells correctly, as it spreads 

through the network in time and space, the marginal costs can 

be found by multiplying the virtual change in density with the 

marginal cell cost function. By summarizing all marginal 

costs for all cells to which the virtual change spreads an 

expression for the global marginal cost of the virtual change 

in density is found.  

Section 2 discusses the first-order dynamic traffic flow model 

for networks. In Section 3 the cost and marginal cost of traffic 

in the discrete LWR model is discussed. Section 4 discusses 

how virtual changes in traffic density can be tracked along 

with the characteristic of traffic. Section 5 combines 

differentiable cell-price functions with the virtual changes in 

density to calculate the marginal state costs. In Section 7 a 

numerical experiment is presented, illustrating the quality of 

the proposed methodology and the mild computational 

expense compared to numerical derivatives. In Section 7, the 

paper finishes with a series of conclusions and places the 

methodology in a broader context for optimization problems 

using the LWR model.  

In this paper, super scripts are used to distinguish parameters 

or similar variables. Sub scripts are used as indices in time 

and space. In general parameters are denoted by φ  with 

additional super and sub scripts for further specification.  

2. DISCRETE LWR MODEL FOR NETWORKS 

Within the discrete first-order traffic-flow model (LWR 

model), time and space are discretized in a step-size t∆  [h] 

and segment or cell length 
l

∆ℓ  [km] respectively where 

l ∈ l  is the index of a link from the set of links l  in the 

network. The state variable is the cell density 
lck

r  [veh/h] for 

cells with an index 
nCells1..
l

c φ=  of link l  at discrete time 

index k  where the latter denotes an interval in 

time[ , ( 1) )k t k t∆ + ∆ . The number of cells 
nCells

l
φ  on a link 

is related to the length of the link in the following 

way
length nCells

l l l
φ φ= ∆ℓ , whereby the cell length 

free

l l
tφ∆ = ∆ℓ  is based on the step size and the free-flow 

speed 
free

l
φ  [km/h]. The basic model state-space equation is 

given by:  

in out

, 1 ( )
lc k lck lck lck

l

t
r r f f+

∆
= + −

∆ℓ
  (1) 

Whereby 
in

lck
f  [veh/h] denotes the flux into a cell c  on link l  

at time k  and 
out

lck
f  [veh/h] the flux out of that cell. The flux 

determines the change in cell densities and constitutes the 

flow of traffic over the border of a cell. The fluxes determine 

the actual change in density per time step. Given the density 

of a cell, the first-order traffic flow model also assumes a 

homogeneous cell flow 
lck

q  [veh/h] associated with that 

density. To that end, the so-called fundamental diagram (FD) 

is used ( )
lck lck

q r= Γ . The Godunov scheme, as first applied 

to this model in (Lebacque J.P. and Khoshyaran M.M., 2002), 

determines the cell fluxes, by specifying a demand ( )
lck

D r  

[veh/h] and supply ( )
lck

S r  [veh/h] function based on the FD 

in the following way: 

critical

capacity

( ) if 
( )

,  otherwise

lck lck l

lck

l

r r
D r

φ

φ

Γ <
= 


  (2) 

And, 

critical

capacity

( ) if 
( )

,  otherwise

lck lck l

lck

l

r r
S r

φ

φ

Γ ≥
= 


  (3) 

Whereby the capacity 
capacity

l
φ  [veh/h] of a link determines 

the maximum vehicle throughput and the critical density 
critical

l
φ  [veh/km] indicates the threshold amount of vehicles in 

a cell from which this throughput capacity starts to deteriorate 

and congestion effects occur. Given the demand and supply 

function, the flux is defined as the minimum between both 

functions, where 
out

, 1,min( ( ), ( ))lck lck l c kf D r S r +=  for two 

adjacent cells. Necessarily the flux out of one cell equals the 

flux in to the next adjacent cell 
out in

, 1,l c k lckf f− = . 

Using this approach, all cells on a link can be updated by (1) 

except the first and last cell since the flux at these cells is 

determined differently. These depend on the way the link is 

located in a network and the route choice of traffic. In order to 

use the first-order traffic flow model on a network, the 

concept of a node n ∈n , given by an index n  from the set 

of indices n , is used. Nodes are defined as points and do not 

occupy physical space. They merely handle the exchange of 

traffic between the last cells of connected in-links and first 

cells of connected out-links. To that end, let 
in

n
i L∈  denote 

the index i  of an in-link from the set of in-links 
in

n
L  of node 

n . Likewise 
out

n
j L∈  denotes the index of an out-link j  

from the set of out-links 
out

n
j L∈  of node n . In addition, the 

route choice of traffic is represented by the split fraction ijkψ  

specifying the way in which the aggregated traffic flow is 

distributed over out-links j  when coming from link i  on that 

node at time k . The split fraction is the direct result of the 
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composition of traffic and the route choice it has. In this 

research, the route choice ijkψ  is determined exogenously.  

Given the demand function (2), the demand at the end of a 

link i  is determined as ( )
ik lck

D D r=  where 
nCells

l
c φ=  and 

l i= . This demand is directed over the out-links j  

according to the aggregated route choice ijkψ . As a result, the 

total demand for an out-link j  is found by 

in ( )
n

jk lck ijki L
D D r ψ

∈
=∑ . This demand is directed to the 

first cell of a link j , whereby the supply of this cell 

( )jk lckS S r=  is determined by the supply function (3) where 

1c =  and l j= . Given both jkD  and jkS , the flux into the 

first cell of link j  is defined as min( , )jk jk jkF D S= . 

Given this flux, the reduction jk jk jkM F D=  defines the 

ratio between what ‘wants’ to flow and what ‘can’ flow due to 

congestion per out-link j . Traffic flowing out of link i  to 

link j  does so at the maximum rate as determined by the 

most heavily congested out-link to ensure there is no 

overtaking. To that end, the node congestion multiplier 

r
i

ijk j k
M M=  specifies the reduction for each in- and out-link 

pair. Whereby 
r

i
j  is the representative direction for link i  

and defined as: r min( ) 0
i

jk ik ijkj k
M M D ψ= ∀ > .   

Given the multiplier, the flux out

in

n
jk ik ijk ijkj L

f D M ψ
∈

=∑  

into the first cell of a link j  and that out of the last cell 

in

out

n
ik ik ijk ijki L

f D M ψ
∈

=∑  can be determined in order to 

update the state space equation in (1).   

Given the network, origins o∈o  with index o  from the set 

of indices o  are defined as in-links to a node with an 

exogenous determined demand function 
ok

D  [veh/h] 

specifying the in-flow to a network. And likewise, 

destinations d ∈d  with index d  from the set of destinations 

d  are defined as out-links of a node with a pre specified 

supply function 
dk

S  [veh/h].  

This concludes the description of the first-order traffic flow 

model for aggregated traffic flow on a network consisting of 

links, nodes, origins and destinations. The next section will 

discuss the cost associated with traffic in this network.  

3. THE COST OF TRAFFIC  

The cost of traffic is defined at the cell level by a cost 

function ( )
lck

C r  based on the density 
lck

r  for link l , cell 

nCells1..
l

c φ∈  at time k . The cost function can for example 

express the cost associated with congestion or emission in that 

cell. The state vector 
k

r  is a vector of all cell densities for all 

links 
lck k

r ∈r  at time k . When performing an assignment 

from an initial time 0k  for a horizon of H  [-] steps, until 

step 0h
k k H= + , the total cost associated with the 

trajectory of states 
0

..
hk k

r r  is defined as the summation of all 

cell costs in that trajectory.  

The background of this research is route guidance. Route 

guidance advices are represented by 
tak

ϕ  [veh/h] and denote 

a flow of vehicles advised to take route a ∈a  from a set of 

considered routes a , at time 
t

k  during the optimization 

horizon 0 t h
k k k< < . For the purpose of routing control, we 

are interested in finding the change in total system costs 

corresponding to a change in routing which is written as: 

nCells

1

( )h l

t t

k

lck

l ck k ak

C r
ϕ

ϕ∈ ==

∆

∆
∑∑ ∑

l

 (4) 

Due to a change in routing 
tak

ϕ∆  changes in cell costs 

( )
lck

C r∆  starting from the initial time of routing 
t

k  until 

the end of the horizon 
h

k  will occur due to changes in density 

lck
r∆ . By replacing the exact change ∆  with an infinitesimal 

change d  and using the chain rule, the argument of (4) can 

be rewritten as: 

( ) ( )

t t

lck lck lck

lckak ak

C r dC r dr

dr dϕ ϕ

∆
=

∆
 (5) 

This notation is interesting since it brings us to the core of the 

solution, which is to separate the problem of calculating the 

marginal costs into two sub problems. The first is to calculate 

the marginal cell price functions and the second is to track the 

change in traffic density through the network as the result of 

the routing action. The first sub-problem is solved when 

assuming a differentiable cost function with respect to the 

state variable density. The remaining sub problem is to track a 

change in density through the network in the discrete LWR 

model. This is discussed in the next section.  

4. TRACKING CHANGES IN DENSITY 

In order to calculate the marginal costs according to (5), it is 

not necessary to actually change the density in the model (as 

would be the case when using a numerical derivative). By 

considering it infinitesimally small, it is only necessary to 

determine how and where this virtual change in density r∆  

spread through the network, which is discussed next.  

Assume a change in routing ϕ∆  occurs somewhere in the 

network at time 
t

k , resulting in a change in density r∆  
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downstream of where the routing instruction was given.  Let’s 

assume this change in density r∆  will initially travel 

downstream under free-flow conditions. In this situation, the 

change in system costs is incurred by r∆ , the so-called direct 

costs.  

When at some point the change r∆  reaches a cell c  for 

which it holds that the downstream cell 1c +  is congested, 

the change in density will not travel further downstream. This 

can be verified by considering the flux out 
out

lck
f  of the cell c  

as described in Section 2. The flux out is in this case 

determined by the downstream cell supply function 

, 1,( )l c kS r +  and does not change due to the presence of the 

extra traffic r∆ . The change is momentary stalled at cell c . 

However, if cell c  reaches a density which is over–critical, at 

some point the supply function , 1,( ) ( )lck l c kS r D r −<  will 

become smaller than the demand function of the upstream 

cell. When this occurs, the initial change in density r∆  will 

start to change the density of cell 1c −  resulting in external 

costs to the system.  

The above discussed principle is used to determine how the 

virtual change in density r∆  will propagate in the network. 

The methodology to do so is by introducing particles into the 

simulation which travel along with the characteristics of 

travel. Each particle has a vector of virtual densities. This 

vector describes the exact distribution of the initial change in 

density relative to the current position of the particle. The way 

in which the current state of the system effects the change in 

virtual density is captured by this vector. Compared to a 

numerical derivative (or co-state equation) only a few local 

calculations are required to determine the change in virtual 

densities and the current position of the particle. 

Let a particle 
tak

z ∈ z  be given an index z  from the set of 

indices 
tak

z  of particles which are used to track changes in 

density for route a  at time 
t

k . A particle has a current link 

index 
zk

l  , a current cell index 
zk

c , a downstream length left 

left

zk
l  [km] and a vector 

zhk
ξ  [veh/km] of virtual densities with 

length 
trail1..
z

h φ= . This vector captures the exact distribution 

of the virtual change in density r∆  relative to the current 

position of the particle as will be described in the second part 

of this Section.  

First the way in which the particle travels along with the 

traffic flow in down- and upstream direction is discussed. 

When travelling downstream, the particle is assumed to travel 

along with the characteristic speed of traffic. The 

characteristic speed ( )
lck

c r  [veh/h] is the speed with which 

small perturbations in density travel in the LWR model. This 

speed is found by the derivative of the flow-density 

relationship ( ) ( )
lck lck lck

c r d r dr= Γ . Given this speed, at 

each time step a distance ( )
lck

dl c r t= ∆  can be travelled. 

Let 
left

zk
l  [km] be the remaining length left until the end of the 

current cell 
zk

c c= . If at a time k  it holds that 

left 0
zk

l dl− <  the particle will propagate to the next 

downstream cell , 1 1z k zkc c+ = +  and the new length left 

becomes 
left left

, 1z k zk ll l dl+ = − + ∆ℓ .  

When a particle moves into a cell 
zk

c  which is congested 

(over critical 
crit

lck l
r φ> ), the particle will start moving 

upstream. It will do so in a manner that ensures that the 

particle is always located in the congested supply cell. So 

given the current position 
zk

c c= , the particle will move to 

cell , 1 1z k zkc c+ = −  if the following condition is met: 

, 2, , 1,( ) ( )l c k l c kD r S r− −>  (6) 

By the time the particle has reached the second cell 2c = , it 

is checked whether or demand jkD  at the node for link 

zk
j l=  at which the particle is on, exceeds that of the supply 

of the link jkS , which is the supply of the first cell. If this is 

the case, the particle moves to the first cell and the change 

will start to propagate upstream over the node. Se also Fig 1.  

At this point, the movement of the particle in the down- and 

upstream direction has been discussed. What is discussed next 

is how the initial change in density r∆ , as the result of a 

routing action ϕ∆  which was once all located in one cell at 

time 
t

k , will be distributed over the cells relative to the 

current position of the particle and captured by the vector of 

virtual densities 
zhk

ξ . 

zk
c

1

u

kh
ξ

2

c

kh
ξ

3 trailLength

d e

..kh kh
φ

ξ ξ

, 1,lck l c kD S +>

{ dr
�

ω

jk
D

 

Fig 1 Upstream propagation of a particle on a link and 

definition of the vector of virtual densities 

Surrounding the current position of the particle is the vector of 

virtual densities 
zhk

ξ  [veh/km]. The elements of this vector 

describe the exact amount of virtual density for a cell, relative 
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to the current cell position 
zk

c  of the particle. Whereby 

superscripts are added to distinguish between individual 

elements in the vector.  

Let 
u

zhk
ξ  represent the amount of virtual density located at the 

upstream cell of the current position of the particle, and so 

2
zk

c c h= − +  where 1h = . The element 
c

zhk
ξ  is 

positioned at the current cell 2h =  and represents the 

amount of virtual density there. Whereas all elements 
d

zhk
ξ  

are positioned downstream of the current location 
trail2
z

h φ< ≤ . 

So, right after time 
t

k  when a virtual change in routing 

tak
ϕ∆  resulted in a virtual change in density r∆  on some 

cell c  on a link l , particle is created on that exact position, 

ck
c c=  and 

zk
l l= , with all virtual density located in the 

element 
c

zhk
rξ = ∆  and all other elements zero. At that point 

the virtual change in density is directly attributable to the 

change in routing 
c

t
zhk lck ak

rξ ϕ= ∆ ∆ . When travelling 

downstream in free flow, all virtual density is presumed to 

remain located at the current position of the particle. This 

assumption is valid if changes in density travel at free-flow 

speed. This is the case when considering a triangular 

fundamental diagram. When assuming other types of 

diagrams rarefaction effects may occur. Rarefaction is the 

opposite of compression and results in an acceleration fan. As 

a result a small part of the change in density will travel faster 

compared to the characteristic speed and reach the end of a 

node before the particle does. This amount of density is small 

and so is its contribution to the marginal costs. As a result 

rarefaction is ignored.  

When the particle enters a congested cell, and (6) holds, the 

virtual change in density r∆  will spillback from cell 
zk

c c=  

to upstream cell 1c − . This change is captured by the rate of 

change 
l

ϑ . The rate of change is found by considering the 

derivative of (1) which yields:  

, 1, 1 , 1,

t t t

l c k l c k lck lck
l

lckak ak ak

dr dr dr dr

d dr d d
ϑ

ϕ ϕ ϕ
− + −= =   (7) 

This rate of change is in turn dependant on the derivative of 

the out-flux of a cell which is determined by the supply of the 

downstream cell when congested, and so:  

out

, 1,l c k

l

l lck

dft

dr
ϑ −−∆

=
∆ℓ

 and 

out

, 1, ( )l c k lck

lck lck

df dS r

dr dr

− =  (8) 

The vector of virtual densities captures the change in density 

t
zhk lck ak

dr dξ ϕ=  due to the change in routing and by 

substitution in (7) it can be rewritten as: 

, 1,zhk l z h kξ ϑ ξ −=   (9) 

This relationship can be used to determine the changes in the 

diffusion weights at each step by rewriting (9) as a state space 

equation which results in: 

, 1 , 1,(1 )zh k l zhk l z h kξ α ϑ ξ βϑ ξ+ −= − +  (10) 

With the exceptions that for 1h = , 0α =  which is 1 

otherwise, and for 
trail

h φ=  0β =  which is 1 otherwise.  

If the particle moves one cell upward, the elements of the 

virtual densities vector must be shifted in order to correctly 

represent the amount of virtual density per cell. This is 

because the vector is always defined relative to the current 

position of the particle. Shifting entails to set  *, 1, zhkz h k
ξ ξ

+
=  

where 
*

k  is an intermediate step, *

u 0
zhk

ξ =  and 

summarizing all residual virtual densities in the last element  

by *

d d d

, 1,zhk z h kzhk
ξ ξ ξ −= +  where 

trail
h φ=  to preserve the 

total amount of virtual density surrounding the particle.  

At this point, the propagation of a virtual change in density  

on a link has been discussed. Next, the propagation of virtual 

changes in densities at a node is discussed. 

*i

i

*j
j

*( )
i

c r

*j

j

*j
ω

i
ω

*
i

i

*( )
i

c r

 

Fig 2 Propagation of virtual changes in density at a node 

When a particle reaches the end of an in-link i  at time k  and 

wants to travel to out-link j  since 1ijkψ = , with  1ijkM =  

(no congestion), the change as a whole is propagated to the 

next link. Therefore , 1z kl j+ =  and , 1 1z kc + = . All weights 

remain unchanged and only 
c 0
zhk

ξ > . This is called 

propagation of the type down-down. Whenever a particle z  

travelling downstream is at the end of a link 
*

z
l i=  and 

encounters congestion 1ijkM < , the change r∆  will start to 

propagate to the other inlinks 
in

n
i L∈  of the to-node, which is 

called propagation of the type down-up. If a particle travelling 

upstream and has reached the begin cell of a link 
*

z
l j=  it 

will start to propagate the change r∆  to the in-links 
in

n
i L∈  

of the from-node which is called propagation of the type up-

357



 

up. All propagations of change are depicted in Fig 2. Changes 

of the type down-up and up-up are captured by the rates of 

change *
i ik

ϑ  and *
j ik

ϑ . These rates are determined in a 

similar way by evaluating the derivative of the state space 

equation (1) for the begin and end cells of a link. At these 

cells the fluxes 
in

jkf  and 
out

ik
f  are determined by the 

multiplier ijkM  which is in turn based on the Godunov 

demand and supply functions of the cells. Let the density 
ik

r  

be that of the last cell of in-link i  and likewise jkr  that of the 

first cell of out-link j . The relation between a change in 

density at *
i

r  or *
j

r  and its effect on 
i

r  is given by: 

*

*

, 1

t t

i ki k

i ik

ak ak

drdr

d d
ϑ

ϕ ϕ
+ =  and 

*

*

, 1

t t

j ki k

j ik

ak ak

drdr

d d
ϑ

ϕ ϕ
+ =  (11) 

Whereby the rates of change are given by: 

*

out out* *

( )

n n

ijkik

ijuk ijk ik ijuki ik
j L j L ii k i k

MdD t
M D

dr r
ϑ ψ ψ

∈ ∈

∂ −∆
= +

∂ ∆
∑ ∑

ℓ
 (12) 

And, 

*

out *
n

ijk

ik ijkj ik
j Li j k

Mt
D

r
ϑ ψ

∈

∂−∆
=

∆ ∂
∑

ℓ
 (13) 

These rates express how changes in density at the last cell of a 

link 
*

i  or the first cell of a link 
*

j  will propagate upstream at 

the node to other inlinks. More specifically, the change is 

propagated to the representative elements of the virtual 

densities vector of particles on the in-links of the node. The 

representative element is the element which represents the 

virtual density on the last of in-link i  and is denoted by: 
r

zhk
ξ . If the particle moves to an upstream, the representative 

element changes consequently.   

If a particle 
*

z  arrives (upstream travel on a link 
*

j ) at the 

beginning of a link *

*

z
l j= , then propagation of the type up-

up will occur. As a result virtual density from the element 

*

c

z hk
ξ  of the arriving particle, will propagate to the 

representative elements 
r

zhk
ξ  of new particles z  created on 

the in-links 
in

n
i L∈  of this node.  

The amount of virtual density being propagated each time step 

is determined by the rate of change *
j ik

ϑ  and the amount of 

density at the current cell of the initial arriving particle , 

similar to (7). At each time k  the change in virtual density to 

in-link i  becomes * *

up c

ik j ik z hk
ξ ϑ ξ∆ = .  

When a particle 
*

z  arrives at the node at the end of a link 

*

*

z
l i=  (it was moving downstream) and encounters 

congestion, virtual density will be propagated to other in-links 
in

n
i L∈  where 

*
i i≠ . The initial arriving particle 

*
z  will 

have its virtual density located in the current cell 

* *

c r

z hk z hk
ξ ξ=  which equals the representative element at the 

end of the link and propagation of the type down-up will 

occur.  

Propagation of the type down-up always occurs, since it will 

also occur between virtual densities at the representative 

elements of new particles created on the in-links. The total 

change in virtual density at time k  from links 
*

i  to a specific 

link i  and 
*

i i≠  is found by *

* in

down r

n

ik zhki ik
i L

ξ ϑ ξ
∈

∆ = ∑ .  

Given the the changes 
up

ik
ξ∆  and 

down

ik
ξ∆  the total change in 

virtual densities at the end of each time step can be 

determined by: 

in

c c up

, 1

n

zh k zhk ik

i L

ξ ξ ξ+

∈

= − ∆∑  where 
*

z
l j=  

(14) 

And 

*

in

r r in out

, 1 (1 )

n

zh k zhk ik iki lk
l L

ξ ϑ ξ ξ ξ+

∈

= − + ∆ + ∆∑  where 
z

l i=  

and 
*

i i=  

(15) 

The exact value of the rate of change 
l

ϑ , *
i ik

ϑ  and *
j ik

ϑ  

depends on the chosen form of the fundamental diagram 

( )
lck

rΓ  which is left implicit, since it does not change the 

methodology.  

This concludes the discussion of the methodology. Particles 

are created which travel along with the characteristics of 

travel on a link. Surrounding the particle is a vector which 

represents virtual densities; the virtual change in density due 

to the virtual change in routing. When encountering 

congestion, expressions can be derived which relate the rate of 

change between elements in this vector. This rate is 

determined by evaluating the derivative of the state equation 

with respect to an upstream cell, either on the same link or on 

a connected in-link of a node.    

5. ESTIMATING MARGINAL COSTS 

The marginal cost associated with a particle is found by 

multiplying the vector of virtual densities with the marginal 

cell costs. Let the [ ]
tak

z k∈ z  denote the collection of all 

particle indices which are in use at time k  to track the initial 

change in density r∆  due to the initial route change 
tak

ϕ∆  
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at time 
t

k  (when new particles are created they are added to 

the same set). The marginal state cost at time k  is found by: 

trail

1

( )

akt

zhk lck

hz

C r
φ

ξ
=∈

∆∑ ∑
z

 and 2
zk

c c h= − +  (16) 

6. RESULTS 

To illustrate the quality of  the above approach, an experiment 

is carried out which compares the numerical estimated 

marginal state costs with that of the approximated marginal 

state costs using the heuristic. To that end, the network in Fig 

3 is used.  

1o

2
o

3
o

4o

5
o

1
d

capacity length nCells{ , , , }
l l l

l φ φ φ

1n

2
n

 

Fig 3 Validation network for estimating marginal costs 

The network consists of seven links and eight nodes, relevant 

link information is displayed in the figure. Destination 1d  

has a limited capacity of 
1

3000
d k

S =  [veh/h]. Origins have 

demand 
ok

D  as plotted above them. As a result, spillback 

will occur and eventually reach every origin. The step size is 

1t∆ =  and 
free 100
l

φ =  for all links. The experiment starts 

with an empty network and an initial assignment of 150 steps. 

From 0 150k =  the network will be evaluated to 

0h
k k H= +  where 2000H = . The marginal costs are 

evaluated when travelling from 1o  to 1d  on the route with 

links [1,2]. A fundamental diagram of the type Smulders 

(Smulders S.A., 1989) is used and a fixed trail-length of 
trail 10φ = . The cell-price function is chosen as 

21
2

( ) ( )
lck lck

C r r=  with marginal price ( )
lck lck

C r r∆ = .  

Given this setup, a numerical derivative is calculated by 

comparing the state costs between two network assignments 

of which one actually has a unit of 1r∆ =  [veh/km] added at 

0k  to the first cell 1c =  of link 1l = . The state cost is 

found as the summation of all cell costs for all cells and links 

at a time k .  

The marginal costs are approximated using the proposed 

methodology by creating a particle z  at link 
0

1
zk

l =  and cell 

1
zk

c =  with initial virtual density 
c

zhk
rξ = ∆  and all other 

elements zero.  

The experiment compares the marginal state cost at time 

0k k+  between the numerical derivative and the particle 

approximation. The results are displayed in Fig 4. 

 

Fig 4 Comparison of numerical and particle derived marginal 

state costs 

Due to the chosen topology and origin sizes the following will 

happen. First propagation of type down-up will occur at node 

1n  at step 0 20k k= + . As a result three particles are created 

on links [1, 3, 7] which after some steps have summed virtual 

densities vector of [0, 0.64, 0.36] [km/h] respectively. Then, 

at step 0 195k k= +  the particle which was created on link 3 

will reach node 2n  and start propagating up-up. As a result, 

three new particles are formed on links [4, 5, 6] with eventual 

summed virtual densities vector of [0.32, 0.19, 0.13]. From 

that point on, the particles at links [7, 4, 5] will reach the 

origins 2 3 5{ , , }o o o  at steps 0 {687,704,1742}k k= +  

respectively and exit the network.   

As can be verified from Fig 4, the estimated marginal state 

costs which are drawn by the black squares almost exactly 

coincide with the numerical estimated state costs drawn by the 

red dots. When looking at the bottom part, it can be seen that 

an error is made at the beginning when congestion is first 

encountered. This is due to ignoring the acceleration fan. In 

addition, when the particles reach the origins an error is made 

as well. This is due to the rate of change which is not well 

defined for an origin link due to the absence of a fundamental 

diagram there. Overall, the proposed methodology 

approximates the numerical derivative with an error 0.004< .  
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The experiment also shows the importance of estimating the 

external costs correctly. In this experiment, direct costs are 

only made for the first 20 steps. The external costs however, 

linger on for 1980 steps and are huge compared to the direct 

costs. Which supports the result in (Kuwahara. M., 2007) 

where the marginal cost are shown to be more closely related 

to the duration of congestion.  

The example also shows how heuristic approaches which only 

consider the marginal costs incurred on the links which are 

travelled by the extra traffic, will severely underestimate the 

external costs. Heuristic approaches would only consider the 

external costs on links [1, 2] whereas the overall contribution 

of links [7, 3, 5, 4, 6] in this example is far greater.   

In addition, since particles can be tracked back all the way to 

the origin, hidden congestion can be quantified and directly 

attributed to the control action responsible. This is 

information which is not available in other heuristic 

approaches  

Given the small scale of the network a single run of H  steps 

would takes only 0.08τ =  [s] for a normal network. When 

simultaneously estimating the marginal costs of extra traffic 

from all origins, the computation time increased to 
* 0.14τ =  seconds. In order to do this using numerical 

derivatives would have required (5 1)τ+  runs rendering the 

particle approach faster. Due to the small scale of the 

experiment, results are expected to increase for larger 

networks. In addition, future research will be aimed at 

increasing the efficiency further by aggregating particles 

which are travelling upstream with the same characteristic 

which can reduce the number of needed particles.    

There are situations in which the approximated costs differ 

slightly from the numerical costs. These situations occur due 

to the explicit ignoring of rarefaction and the accompanying 

acceleration fan. As a result, a small part of the initial 

downstream travelling change will arrive at the link-end on an 

earlier time compared to the particle. In the numerical 

derivative, this early arriving change due to rarefaction will 

already start being propagated at the node. When i) 

propagation of the type down-up occurs, and ii) node 

conditions are still changing (link demand and supply), a 

small difference can be found between the numerical 

derivative and particle approximation. Fortunately, when 

estimating the marginal costs on a later time this error is likely 

to disappear since node conditions will have stabilized or 

congestion may have spilled back onto the link preventing the 

change from ever reaching the node.  

This concludes the validation experiment. The estimated 

marginal costs correctly take into account all external costs 

due to spillback without the need to explicitly calculate a 

numerical derivative.  

7. CONCLUSION 

The paper presented a novel and efficient way of estimating 

external marginal costs due to spillback in the discrete LWR 

model correctly.  

The presented methodology can be generalized to other traffic 

control problems aimed at system optimization. As long as the 

effect of a change in control 
tk

u∆  at time 
t

k  can be 

expressed in an accompanying change in density 
lck

r∆  on a 

link l  for cell c  at time 1
t

k k= + .  
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