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ABSTRACT

The optimal power flow (OPF) problem is a classic and widely-studied topic in the field of power systems.
Its purpose is to minimize the running costs of a power system by determining the optimal operating points,
while respecting a set of physical constraints. While most power systems are currently controlled by a central
coordinator, there is significant interest in the research of decentralized schemes. By eliminating the need for
a central coordinator, fully decentralized algorithms eliminate the single point of failure, thereby enhancing
the reliability of the overall system. Moreover, as communication and telemetry play a progressively vital role
in the power grid of the future, decentralized methods reduce the strain on the data infrastructure. In other
words, the computational and communication load on the central computer is decreased, as it no longer has
to gather and process large amounts of information from all the nodes in the system. As a result, although new
challenges are introduced with distributed algorithms, the OPF becomes more scalable in some regards. One
fully decentralized method for performing OPF calculations is Consensus+Innovation (C+I). The C+I method
is based on the Karush-Kuhn-Tucker (KKT) Conditions class of optimization, where the solution is found
iteratively using an update strategy. Moreover, communication is only required between directly connected
nodes, or neighbors. This method has been applied in the cases of AC systems as well as unipolar DC systems,
reporting promising results. However, until now, no decentralized algorithm existed for bipolar DC systems.
Bipolar topologies, while they are more complex to model and optimize, possess numerous advantages over
unipolar ones. By providing two voltage levels, larger loads can be connected directly between the two poles
in order to provide double the power. This increased voltage level allows for the current to be halved for the
same amount of power, thereby significantly reducing the conductive losses. On the other hand, smaller loads
are connected between one of the poles and the neutral, meaning that power electronic devices with lower
ratings can be used. Furthermore, generators and loads can be connected in parallel at the same location.
This means that they must be modelled as controlled current sources which are connected between two
physical nodes. In other words, the optimization variables are altered from nodal voltages and powers to
node voltages and source currents. However, these changes in the modelling, optimization, and control of the
grid mean that the single line diagram (SLD) equivalent circuit, used by the algorithms for unipolar systems,
is no longer valid for bipolar ones. Thus, the objective of this thesis was to develop a fully decentralized OPF
algorithm for bipolar DC grids. The algorithm is based on online optimization, meaning that measurements
from the physical grid are taken and used in every iteration of the OPF. Moreover, the algorithm is based on
bipolar DC grids wherein the power electronic converters follow a droop control scheme, the effect of which
is directly accounted for in the newly developed update strategy. The algorithm is tested on four different
simulated case studies with varying operational scenarios. These test cases include both fixed and variable-
power loads and controllable generators. Furthermore, the algorithm is demonstrated to successfully achieve
line congestion management using demand response. Finally, a case with unbalanced loading is simulated
successfully, while respecting all of the physical limits of the system.

keywords: Smart Grids, Decentralized, Optimal Power Flow, Online Optimization, Bipolar, DC Grids, Con-
gestion Management, Demand Response, Consensus+Innovation, Droop Control.
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NOMENCLATURE

N =NN ∪N+∪N− Neutral, positive, and negative nodes.

N ∅ All nodes except the reference node.

m,n ∈N Nodes in the network.

(m,n) ∈G A pair of nodes that are connected by a line.

Gm Set of lines that are connected to node m.

(m,n, s) ∈S Individual source s connected between nodes (m,n).

S =SC ∪SP Sources which are loads (consuming) or generators (producing).

Sm Set of all sources connected to node m.

um Voltage at node m [V].

im,n Line current flowing from node m to n [A]. Equal to −in,m .

im,n,s Current of one source, connected from node m to n [A].

pm,n,s Power of one source, connected from node m to n [W].

λI
m Current LMP at node m [m.u./A].

λP
m,n Power LMP at between nodes m and n [m.u./W].

µI
m,n Dual variable for current limit of line m,n [m.u./A].

µU
m,n,s ,µ

U
m,n,s Dual variables for voltage limits of source m,n, s [m.u./V].

µI
m,n,s ,µ

I
m,n,s Dual variables for current limits of source m,n, s [m.u./A].

µP
m,n,s ,µ

P
m,n,s Dual variables for power limits of source m,n, s [m.u./W].

(−)∗ Superscript denoting the optimal value of a variable.

ˆ(−) Hat sign denoting that the variable is a measured one from the grid.

U m,n,s ,U m,n,s Minimum and maximum node-to-node voltages for source s [V].

Gm,n Conductance of a line [S].

I m,n , I m,n Minimum and maximum line currents [A].

I m,n,s , I m,n,s Minimum and maximum source currents [A].

P m,n,s ,P m,n,s Minimum and maximum source powers [W].

cS
0 ,cS

1 ,cS
2 Constant, linear, and quadratic coefficients of cost polynomials [m.u], [m.u./W],

[m.u./W2].

AC Alternating current.

DC Direct current.

OPF Optimal power flow.
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1
INTRODUCTION

1.1. BACKGROUND
An increase in natural disasters and unprecedented rises in average temperatures around the world have
underlined the effects of climate change and environmental degradation. Such effects are exacerbated by
a continued rise in the global population as well as the growth in the rate of access to electricity in the de-
veloping world. In order to satisfy this demand in a sustainable and effective manner, most global leaders,
communities, and individuals agree that the development and application of renewable energy sources (RES)
is paramount to achieving this crucial task. This is reflected by various international treaties such as the Kyoto
Protocol of 1997 and the more recent Paris Agreement of 2015. Although some countries have since retracted
their commitments to the agreements, the scientific evidence supporting the need for a transition away from
fossil fuels towards RES remains well established.

However, the adoption of RES has proven to present various challenges in the context of the traditional
alternating current (AC) power system. These changes in the energy mix are expected to have a significant
impact on the future of power grids [3]. One example of this is the complications introduced by the increasing
integration of distributed energy resources (DER), such as rooftop photovoltaics (PV) and electric vehicles
(EV) [4]. Problems such as the intermittent nature of renewable energy, line congestion, and low load factor
of power plants are prime examples of these drawbacks [5]. Several solutions have been proposed, including
demand response (DR) and transitioning towards direct current (DC) power systems [6]. Moreover, optimal
power flow (OPF) can be implemented to increase the economic efficiency of power systems. Although it
introduces additional control challenges, OPF aims to minimize the total costs of operating the grid while
respecting its physical limits.

1.2. THE RETURN OF DIRECT CURRENT SYSTEMS
The present power system remains mainly operated on alternating current, in large part due to historic rea-
sons. One example is the need to transform voltages to higher levels for long distance transmission, which
until recently, was only possible using AC transformers. However, the advancement of semiconductor-based
power electronic technologies, coupled with the proliferation of RES into the grid, has led to a resurgence of
DC power systems. This type of system provides numerous benefits, such as reduced losses, increased power
transfer capacity, and the elimination of reactive power requirements. Moreover, as most RES devices already
operate on DC, removing the stages required for AC results in fewer converter losses [7]. Therefore, these
factors make DC an interesting and viable choice to consider when designing the future power system.

1.3. BIPOLAR VS UNIPOLAR DC
DC grids can be classed into two main topologies; unipolar and bipolar. The former uses only two conductors
and therefore can be controlled using a scheme with a lower level of complexity. The disparity between the
two topologies is reflected in the modelling and optimization when comparing the in the optimization, which
is the focus of this thesis. Despite these challenges, bipolar grids are viewed as superior in some cases due to
the various advantages they inherently possess. With the addition of only one conductor, the power transfer
capability is doubled in bipolar grids compared to unipolar ones [8]. The addition of this neutral line also al-
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2 1. INTRODUCTION

lows for different configurations for the connection of loads and generators, which are generalized as sources.
Smaller sources with a lower power and voltage capability can be connected between one of the poles and the
neutral. On the other hand larger sources can be connected directly between the positive and negative poles.
Hence, the voltage over the source is doubled, resulting in half the current for the same amount of power.
This means that the conductive losses in the lines can be reduced by a factor of 4. Together, these advantages
make bipolar DC grids a promising topology for research and development.

1.4. DECENTRALIZATION
The OPF problem is among the most extensively researched topics for many types of power systems, includ-
ing both AC and DC. However, it is mainly formulated as a centralized problem with a central coordinator.
Nevertheless, increasing interest in smart grids and the Internet of Things (IoT) for future power systems pro-
vides ample motivation for the development of decentralized OPF (D-OPF) methods. Such control schemes
possess numerous advantages over the currently prevailing centralized approaches. Firstly, fully decentral-
ized OPF eliminates the need for a central coordinator, which determines the optimal operating points at all
points in the system. The main disadvantage of this is that the central controller serves as a single point of
failure, which can undermine the system in the case of contingencies [1][9]. Moreover, in a more complex
smart grid with advanced telemetry, gathering and processing large amounts of information is a strain on the
central computer [1][9], and a communication bottleneck can be created [10]. These issues are expected to
be exacerbated by the increase in intermittent and decentralized RES, as well as the introduction of more par-
ticipants in the electricity markets, such as aggregators and prosumers. On the other hand, such drawbacks
can be partially eliminated using a fully decentralized algorithm, where nodes only communicate with their
direct neighbors. Thus, D-OPF methods are promising in terms of improving reliability and scalability, which
are vital attributes for an ever expanding and increasingly dynamic power system.

1.5. RESEARCH MOTIVATION
There are existing algorithms to calculate OPF for both AC and DC grids using decentralized methods such as
Consensus+Innovation (C+I). However, previous research on DC grids is only for unipolar topologies, which
are modelled differently and are less complex than bipolar ones.

While existing work has been done to calculate optimal power flow for bipolar DC grids, this has only
been done in a centralized manner. This thesis aims to formulate the problem in a way which can be solved
in a fully decentralized fashion using a novel update strategy based on the C+I method. Furthermore, the
developed algorithm adapts the C+I by using online optimization, where measurements are taken from the
grid and directly influence the OPF process. Moreover, the inclusion of droop control in the physical grid are
included in the update strategy.

In conclusion, before this thesis project, no prior research was previously conducted pertaining to D-OPF
for bipolar DC grids. Therefore, this thesis adds value to the existing research by presenting a novel approach.

1.6. OBJECTIVES AND RESEARCH QUESTIONS

1.6.1. MAIN OBJECTIVE
The main goal of this thesis is to develop an algorithm which performs online power flow optimization
for bipolar DC grids with droop control, in a fully decentralized manner using the Consensus+Innovation
method.

1.6.2. RESEARCH QUESTIONS
The aforementioned objective is partly accomplished by answering the following research questions:

1. How can the Consensus+Innovation method be applied in the case of bipolar DC grids?

2. How does the change in the chosen optimization variables affect the modelling of the grid and the
consequent update strategy?

3. How can the algorithm be developed using online optimization on a grid which uses droop control?

4. How can a physical interpretation of the update coefficients aid in defining the parameters for the up-
date strategy?
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1.7. STRUCTURE OF THE REPORT
This thesis is composed of six chapters. This first chapter serves as an introduction to the overall problem
and provides a formulation of the main objective as well as the research questions posed. Secondly, Chapter
2 presents a review of the relevant literature concerning electricity markets, bipolar and unipolar DC grids,
and existing methods for decentralized OPF calculations. There, the lack of a decentralized OPF algorithm
for bipolar DC grids is underlined.

Next, the methodology developed in this thesis is discussed in Chapters 3 and 4. In Chapter 3, the mod-
elling of bipolar DC grids and the formulation of the original optimization problem are given. Moreover, a
centralized version of the load flow calculations is described and a droop control scheme is proposed. In
Chapter 4, some minor changes to the OPF formulation are provided and the dual of the problem is derived.
This is used to develop the update strategies of the variables and to define their corresponding coefficients.
The chapter also discusses the interface between the physical/simulated grid and cyber optimization layers
of the algorithm, including the creation of the droop control curves.

Furthermore, Chapter 5 involves four hypothetical case studies, which are used to test the algorithm un-
der some typical operating conditions: a smaller 6-node network with fixed power loads; 9-node network
with differing generator costs and capacities; a 9-node network with line congestion, which is managed using
demand response; and a 9-node network with unbalanced loads.

Finally, the report is concluded in Chapter 6, which evaluates the overall work by answering the research
questions and proposes recommendations for future work.





2
LITERATURE REVIEW

This chapter discusses the existing literature concerning optimal power flow (OPF) which is relevant for the
development of a decentralized algorithm for bipolar DC grids. First, a review of electricity markets and
demand-side management such as demand response is performed. Moreover, the benefits of DC grids over
AC ones are underlined. Further, a comparison between unipolar and bipolar typologies is made, where the
advantages of the latter are discussed. Next, some existing decentralized methods optimal power flow are ex-
amined, where one is chosen for its benefits. Subsequently, a previous methodology of a decentralized OPF
algorithm for unipolar DC networks is presented. Finally, an overview of the related literature and implemen-
tations is given as a reference for the algorithm which is developed in this thesis.

2.1. ELECTRICITY MARKETS
The traditional electrical power system is one which is largely vertically structured, where a group of pro-
ducers generate the required amount of energy which is demanded by the consumers. With several parties
involved in the exchange of the commodity of electrical energy, two main types of agents can often be identi-
fied. The bidding agents first submit their price bids and their available generation capacity to a centralized
market operator. The market operator then sorts these generators in the order of increasing price, and deter-
mines the clearing price according to the marginal demand which must be satisfied. As a result, all generators
which have a price lower than this marginal price (MP) are dispatched, while the more expensive ones are
turned off. This is known as the merit order curve [11], an example of which is shown in Fig. 2.1.

Although such a market mechanism allows the central coordinate to ensure system stability by equalizing
demand and supply, it does not take into account all the physical and geographic limitations of the system.
For example, it does not account for the congestion of a line in the case that a cheaper generator is located
farther away from a large demand region. It also does not consider the power losses incurred by the trans-
mission and distribution of the energy due to a certain solution to the economic dispatch.

Moreover, the increased adoption of RES into the current power system introduces a new set of problems.
Firstly, their intermittent and non-dispatchable nature mean that the balance of demand and supply can
no longer be maintained using traditional methods. Secondly, the geographic dependency of sources such
as wind and solar introduces additional constraints on the system, with line congestion being a common
example. Although such downfalls are inherent in the essence of RES, several Smart Grid (SG) technologies
are proposed as possible solutions. One is the use of Demand Response (DR) as a subset of the more general
demand-side management (DSM), which contributes to the adoption of DER with an increased efficiency [5].
The paper also argues that this mechanism enables consumers to participate more actively in the increasingly
liberalized electricity market. Although DR programs are numerous and vary in terms of classifications, time
frames, and implementations, their overall benefits have been underlined in existing literature [12].

A possible implementation to include consumers in the market process is to add a cost function to the
loads. Such a function is typically either constant or linear, as shown in Fig. 2.2. However, it can also be
modelled as a quadratic one [1]. This concept also holds for alternating current (AC) systems, as such repre-
sentations have been used before [13]. The main reason for this is that the cost of conventional fuel-based
generators, such as diesel, is more accurately approximated as a quadratic function of the power produced
[14]. As real systems during the transition to RES will likely still incorporate these sources, they must be in-
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Figure 2.1: Example of a merit order curve with four generators with different marginal costs.
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Figure 2.2: Generic example of constant, linear, and quadratic cost functions

2.2. THE CASE FOR DC GRIDS
The so-called War of the Currents between Thomas Edison and George Westinghouse (using technology de-
veloped by Nikola Tesla) in the 1880s ultimately resulted in alternating current becoming the dominant form
of electrical power transmission and distribution for almost a century and a half. However, increasing tech-
nological research and developments support a transition of the electrical grid to one which incorporates DC
systems. While the use of high-voltage DC (HVDC) in transmission systems over long distances is more preva-
lent in industry, extensive scientific literature suggests that medium- and low-voltage DC (MVDC, LVDC) dis-
tribution networks and microgrids also provide numerous benefits over AC ones [1][2][6][8][15]. This includes
reduced power losses and increased transmission capacities in the lines and the elimination of reactive power.
Moreover, most RES and DER technologies, such as photovoltaics (PV), electrical energy storage (ESS), and
wind energy operate on direct current. As a result, the use of a DC power system can reduce the number of



2.3. COMPARISON OF UNIPOLAR AND BIPOLAR DC GRIDS 7

required conversion steps and thus can increase the overall efficiency of the overall system [7].
Furthermore, the development of power electronic converters using solid-state technologies allows two

major challenges facing DC systems to be overcome, namely: achieving a reliable conversion between AC
and DC, and the interruption of both nominal and fault currents in a DC system [16]. Such technological ad-
vancements, coupled with the aforementioned economic benefits, provide valid arguments for considering
DC as a feasible form for future power systems.

2.3. COMPARISON OF UNIPOLAR AND BIPOLAR DC GRIDS
The main physical difference between bipolar and unipolar DC grids is the addition of a neutral conductor in
the former (see Fig. 2.3 and 2.4). This provides three voltage levels instead of only two. As a result, a bipolar
topology, although it introduces additional challenges, provides valuable benefits. Firstly, it allows smaller
sources (generators or loads) to be connected between one of the poles and the neutral conductor, generally
at a voltage of 350V in LVDC grids. Conversely, larger sources can be connected directly between the poles,
thereby granting double the voltage. As a result, the same amount of power can be delivered with half the
current, thereby effectively doubling the lines’ power transfer capacity [2]. At the same time, small sources
can still be connected at the lower voltage level in order to prevent an increase in the component costs. This
means that bipolar grids allow for double the power transfer capacity while only requiring one additional
conductor (a 50% increase). Another benefit is an increased robustness to faults due to the ability to reroute
the power flow to some of the loads. For example, in case the top line in Fig. 2.4 is lost, the bottom load
can still be supplied using the two remaining conductors. This is an advantageous attribute of meshed grids,
although it can present its own challenges as discussed later.

½Gm,n

im,n

im
Gen

in,m

node m node n

½Gm,n

⇔

in
Load

Figure 2.3: Basic example of a two-node unipolar grid, shown using the electric circuit (left) and SLD (right) representations. SLD is
adapted from [1, p. 16]

.

While the bipolar topology grants economic improvements over unipolar ones, the main drawback is the
inherent potential for asymmetrical loading (for both generators and loads). This results in an unbalance in
the power flow between the positive and negative parts of the grid. This phenomenon can be illustrated using
the simple example in Fig. 2.4. Consider the case that the top generator is a small PV system, the bottom one
is a diesel generator, and that all the other elements are symmetrical. As a result, the top generator has a lower
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Figure 2.4: Simple bipolar grid consisting of 2 communication nodes, 6 physical nodes, 2 generators, and 2 loads.

cost than the bottom one and will produce more power to supply the loads on the right side. Consequently,
the power flowing in the top branch (positive conductor) will be higher than the negative one in the bottom.
Moreover, depending on the amperage limits of the lines, partial congestion can occur [2]. Therefore, the
commonly used single-line diagram (SLD) representation shown in Fig. 2.3 can no longer be used to model
and control bipolar networks. This distinction between the two typologies can be compared to single-phase
and three-phase AC systems. In the latter, a network with unbalanced loading cannot be modelled using the
SLD and other techniques are used instead, such as the Fortescue symmetrical components method.

In the case of bipolar DC, voltage balancing converters have been developed in prior research as a way to
stabilize the pole-to-neutral voltages by transferring power between the poles [17]. However, the inclusion of
such devices in a way which perfectly balances the voltages at all points in the grid would increase the costs
of the system. Moreover, the partial usage of this technology is not included in the developed OPF algorithm
as it is out of the scope of this thesis. Therefore, the model for unbalanced bipolar networks presented by [8]
is used as the starting point for the development of a decentralized OPF algorithm for bipolar DC networks.
In terms of grid modelling, [8] proposes that the generators and loads be modelled as current sources, which
are connected between nodes in a vertical fashion. As previously mentioned, they can be connected between
one of the poles and the neutral or directly between two poles. In this way, several sources can be connected
between the same two nodes while having unequal power flowing through them, which would not be possible
if they were modelled as voltage sources. Following the passive sign convention for power, generators inject
current into the grid and therefore always have negative current and power values. Conversely, loads, which
absorb power from the grid, have positive current and power values. Finally, [2] presents a voltage-droop
control scheme which increases the stability of the grid by increasing the flexibility of the converters. In this
thesis, a modified version of this is used to calculate the centralized load flow, which is used for the emulation
of the grid. This is discussed in more detail in Chapters 3 and 4.

2.4. EXISTING METHODS FOR DECENTRALIZED OPF
As previously discussed, decentralized OPF (D-OPF) is an interesting point of research for the development of
smart grids, as it provides advantages in terms of robustness and scalability over traditional control schemes.
Moreover, OPF allows the grid to be operated in a more economically efficient manner, and is thus widely
studied. The literature discussed in the previous section concerning OPF for bipolar DC grids has been used
to include electrical storage systems (ESS) for multi-period optimization as well as optimal storage sizing and
positioning [18]. However, at the time of writing this thesis, no decentralized algorithm exists for performing
OPF on bipolar DC grids.

OPF can be implemented in various ways, including centralized, distributed, and decentralized methods.
This can be achieved using mathematical approaches which can be categorized into two main methods,
namely Augmented Lagrangian Relaxation (ALR) and the Karush-Kuhn-Tucker (KKT) Conditions approach
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Figure 2.5: A V-I droop curve for a storage unit, which can have positive or negative current current values [2, p. 18].

[1] [19] [20]. ALR can be subdivided into numerous methods, including the Auxiliary Problem Principle (APP),
Analytical Target Cascading (ATC), and the Alternating Direction Method of Multipliers (ADMM). The latter
has been presented as a solution for energy trading in the context of microgrids by [21]. However, these
methods all involve a central central coordinator [19] and are thus not fully decentralized. Therefore, they are
not feasible solutions in terms of the objective of this thesis. Nevertheless, Proximal Message Passing (PMP)
has been proposed as an addition to ADMM in order to achieve a fully decentralized algorithm [22].

The other category of OPF methods are based on the KKT Conditions, which were developed by Karush
[23], and Kuhn and Tucker [24]. They are used to optimize problems which include non-linear constraints,
which is the case for bipolar grids. KKT-based decentralized methods include Optimality Condition Decom-
position (OCD) [25] [26], the Distributed Interior Point [10], and Consesus+Innovation [27]. The C+I method
has been applied in the context of AC grids in previous studies [28][13]. Moreover, in the latter, a conver-
gence analysis was performed as a formal proof that C+I indeed provides an optimal solution to the DC ap-
proximation for OPF for AC systems (DC-OPF) [13]. However, these DC-OPF algorithms are actually a DC
approximation for AC grids, where line losses are neglected. This is often referred to as Lossless OPF (L-OPF).
Furthermore, C+I was also successfully used for the development decentralized OPF algorithms for true DC
grids [1] [20] [9]. These implementations include the line losses in the modelling, where the latter uses phys-
ical measurements. Therefore, OPF for lossy systems is also often referred to as Exact OPF (E-OPF). It should
be noted that type of OPF, which includes the line losses, is the one which is suitable for online optimization
using grid measurements, and is therefore only referred to as OPF hereafter. While previous applications of
C+I for DC grids are successful, they are only applicable for unipolar topologies. Nevertheless, their positive
results make C+I a promising solution for solving OPF for bipolar DC grids in a fully decentralized way.

2.5. FUNDAMENTALS OF THE CONSENSUS+INNOVATION ALGORITHM

As the chosen algorithm, C+I uses the Karush-Kuhn-Tucker (KKT) conditions to solve the OPF problem in
a decentralized way. This algorithm is proposed as an improvement to the Consensus method [27]. More
specifically, it provides counter measures to the problems of a decentralized network, such as non-ideal com-
munication [27][1]. Moreover, the algorithm is a fully decentralized one, meaning that there are no global
variables, and that communication is only required between direct neighbors. As the name suggests, this is
achieved due to its two fundamental components, which define the update strategy of the optimization vari-
ables. The first is the consensus element, which aims to achieve an agreement between neighbors such that a
consistent solution can be reached. This is especially important for variables such as the locational marginal
price (LMP) and node voltages.

The fundamentals of C+I can be explained using a generic optimization problem, which aims to minimize
a global cost function:
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min
x

∑
m∈N

fm(xm) , (2.1)

where fm is the quadratic cost at node m, which is a function of the optimization variables represented by
xm . The problem is subject to equality and inequality constraints, which are defined as:

hm(xm) = 0 ∀m ∈N

gm(xm) ≤ Gm ∀m ∈N

gm(xm) ≥ Gm ∀m ∈N

(2.2)

From this primal problem, the objective function and constraints are combined, in order to create the
Lagrange function:

L = ∑
m∈N

fm(xm)

+ ∑
m∈N

λm ·hm(xm)

+ ∑
m∈N

µG
m · (gm(xm)−Gm

)
+ ∑

m∈N

µ
G
m · (−gm(xm)+Gm

)
(2.3)

Using the Lagrange function, the KKT conditions are derived as follows. The first order optimality condi-
tions are:

∂L

∂xm
= 0 ∀m ∈N

∂L

∂λm
= 0 ∀m ∈N

(2.4)

Next, the feasibility conditions are:

∂L

∂λm
= hm(xm) = 0 ∀m ∈N

∂L

∂µG
m

= gm(xm)−Gm ≤ 0 ∀m ∈N

∂L

∂µ
G
m

=−gm(xm)+Gm ≤ 0 ∀m ∈N

(2.5)

The complementary slackness conditions must also be met:

µG
m · (gm(xm)−Gm) = 0 ∀m ∈N

µ
G
m · (−gm(xm)+Gm) = 0 ∀m ∈N

(2.6)

Finally, all the dual variables of the inequality constraints must be positive. These are known as the posi-
tivity conditions:

µG
m ,µ

G
m ≥ 0 ∀m ∈N (2.7)

The algorithm updates each of the local primal and dual variables in that node using the KKT condition
derivatives which are directly related to them [13]. In general terms, this means that a nodal variable xm is
updated using the rule:

xm(l +1) =P
[

xm(l )+Φm · gm(xm(l ))
]

(2.8)

Here, l is the iteration number and gm(xm) is the vector of first order optimality constraints related to the
variable xm at node m. Moreover, Φm is a vector of the tuning parameters at node m, which determine the
level of influence each constraint has on the update of the variable in question. As discussed in Section 2.6
and Chapter 4, the update rules are determined in a way such that the used KKT constraints provide both the
consensus and innovation components required for the C+I algorithm.
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2.6. FULLY DISTRIBUTED OPF FOR UNIPOLAR DC GRIDS
The C+I algorithm discussed in the previous section has been successfully applied to develop a decentralized
DC-OPF for AC grids [13]. Moreover, a modified version has been created to solve OPF for unipolar DC grids
in a decentralized manner [20][9][1]. As [1] is the most recent implementation with improved results, it is
used as the main reference for the development of the algorithm for bipolar DC grids in this thesis. Thus, a
summary of this version of the decentralized OPF algorithm for unipolar DC grids is presented in this Section.
One of the major additions is the use of grid measurements, which increases the convergence rate of the OPF.
However, as this is the first decentralized algorithm to be developed for bipolar grids, the adaptive behavior
of the tuning parameters is out of the scope of this thesis.

Firstly, the objective function is defined as the minimization of a quadratic cost function:

min
pS

∑
m∈N

AS
m(pS

m)2 +B S
m(pS

m)+Km , (2.9)

where Am , Bm , and Km are the quadratic, linear, and constant polynomial coefficients of the cost function,
and pS

m is the power injected into a node m by a generator with index S. The minimization problem is subject
to the following constraints:

pS
m = um

∑
(m,n)∈Gm

Gm,n(um −un) ∀m ∈N (2.10)

Gm,n(um −un) ≤ I m,n ∀(m,n) ∈G (2.11)

P S
m ≤ pS

m ≤ P
S
m ∀m ∈N (2.12)

U m ≤ um ≤U m ∀m ∈N (2.13)

Here, um and un are the voltages of the observed and neighboring nodes, respectively, while Gm,n is the
conductance of the line which connects the two. Similarly, (m,n) ∈ G is the set of all lines connecting all
nodes m and n and (m,n) ∈Gm is a subset of the lines which are connected to a node m. Finally, I m,n are the

current maximum values of the lines, P S
m and P

S
m are the generator minimum and maximum power limits,

and U m and U m are the nodal voltage limits.
As can be seen, these constraints are due to the physical laws and limitations of the grid. The first con-

straint (2.10) is an equality, which dictates that the power injected into a node by the connected generator
must be equal to the sum of all the power which leaves that node. This is known as the power mismatch equa-
tion, and is illustrated in Fig. 2.3. Here, the right side of the equality is the power exiting the node because
it is the product of the voltage and the sum of the currents coming out of the node. The second constraint
(2.11) pertains to the current limit of the lines. Although the power flow in the lines can be bi-directional, the
limit is defined as an upper limit only. However, this limit exists for both directions, which is needed for de-
centralized congestion management as discussed in more detail in Chapter 4. The last two constraints (2.12,
2.13) are the power and voltage limits of the generators and nodes, respectively. It should be noted that in this
formulation for unipolar DC grids, generators were defined as sources with positive power, while loads have
negative power. However, the opposite is true for the bipolar formulation developed in this thesis in Chapters
3 and 4, which follow the grid model presented in [8].

Following the C+I method reviewed in Section 2.5, the Lagrange function was defined as the following.

L = ∑
m∈N

(
Am(pS

m)2 +Bm pS
m

)
+ ∑

m∈N

λP
m

(
um

∑
(m,n)∈Gm

Gm,n(um −un)−pS
m

)
+ ∑

m∈N

∑
(m,n)∈Gm

µm,n

(
Gm,n(um −un)− I m,n

)
+ ∑

m∈N

µP
m

(
pS

m −P
S
m

)
+ ∑

m∈N

µ
P
m

(−pS
m +P S

m

)
+ ∑

m∈N

µU
m

(
um −U m

)
+ ∑

m∈N

µ
U
m

(−um +U m

)

(2.14)



12 2. LITERATURE REVIEW

where the λ and µ terms introduced are the so-called dual variables, which are directly associated with the
equality and inequality constraints of the primal problem. Most notably, the λP

m term is the power LMP,
which indicates how much the cost will rise for an increase of one unit of power at a node. Another important
component to underline is the the dual variable of the line limits is summated over every node using

∑
m∈N .

This is necessary for the decentralized algorithm because every node must account for the congestion of all
the lines which are connected to it. It should also be noted that the constant term Km of (2.9) is neglected in
the Lagrange function because it does not affect the optimization or solution.

From this Lagrange function, the KKT conditions are derived. Firstly, the first order optimality conditions
are:

∂L

∂pS
m
=2Am pS

m +Bm

−λP
m +µP

m −µP
m

(2.15)

∂L

∂um
=λP

m

∑
(m,n)∈Gm

Gm,n(um −un)

+λP
mum

∑
(m,n)∈Gm

Gm,n − ∑
n∈Ωm

λP
n unGm,n

+ ∑
(m,n)∈Gm

Gm,n(µm,n −µn,m)+µU
m −µU

m = 0

(2.16)

∂L

∂λP
m

=−pS
m +um

∑
(m,n)∈Gm

Gm,n(um −un) = 0 (2.17)

∂L

∂µm,n
= ∑

(m,n)∈Gm

Gm,n(um −un)− I m,n ≤ 0 (2.18)

∂L

∂µP
m

= pS
m −P

S
m ≤ 0 (2.19)

∂L

∂µ
P
m

=−pS
m +P S

m ≤ 0 (2.20)

∂L

∂µU
m

= um −U m ≤ 0 (2.21)

∂L

∂µ
U
m

=−um +U m ≤ 0 (2.22)

For a more compact notation, all the above equations apply to every node. That is, ∀m ∈ N . In [1], it
is demonstrated that the substitution of Gm,n(um −un) for the line currents im,n should be done only after
the KKT conditions are derived, where it becomes a value which is measured from the grid. In this way, the
problem is formulated in such a way that the LMP of neighboring nodes appear in the KKT conditions of a
node in equation (2.16). As discussed in Section 2.5, this distinction is necessary for the consensus element of
the C+I algorithm, and it would not work as intended otherwise. This technique is used in a similar manner
for the bipolar grid as explained later on in this thesis.

Moreover, the complementary slackness conditions are found to be:

µm,n

(
I m,n −Gm,n(um −un)

)
= 0 ∀(m,n) ∈Gm (2.23)

µn,m

(
− I m,n +Gm,n(um −un)

)
= 0 ∀(m,n) ∈Gm (2.24)

µP
m

(
P

S
m −pS

m

)= 0 ∀m ∈N (2.25)

µ
P
m

(
pS

m −P S
m

)= 0 ∀m ∈N (2.26)

µU
m

(
U m −um

)= 0 ∀m ∈N (2.27)

µ
U
m

(
um −U m

)= 0 ∀m ∈N (2.28)

(2.29)
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Finally, the positivity conditions dictate that the µ values must all be positive:

µm,n ,µn,m ≥ 0 ∀(m,n) ∈G

µP
m ,µ

P
m ,µU

m ,µ
U
m ≥ 0 ∀m ∈N

(2.30)

These KKT conditions, when met, ensure that a consistent and optimal solution has been reached. This is
achieved using an update strategy with communication of the relevant variables with the neighboring nodes.
The update strategy developed for unipolar DC grids in [1] is summarized as follows. The update strategy is
divided into two main regions, which depend on the operation mode of a source (can be load or generator).

Figure 2.6: LMP-power characteristic curve for a generator with a quadratic cost, used for the update strategy in unipolar OPF by [1,
p. 23].

As depicted in Fig. 2.6, the middle section represents the marginal operation region, where the source has
not reached its power limits. In this case, the LMP can be updated directly using:

λP
m(l +1) = 2Am ·pS

m(l +1)+Bm (2.31)

This holds for when a generator is marginal, where the LMP should be equal to the derivative of its
quadratic cost function. Note that this update rule also holds for linear cost functions, where the Am term
would just be zero.

Then, the power is updated using the relevant KKT terms using:

pS
m(l +1) = pS

m(l )+αp
λ

∂L

∂λP
m

−αp
u
∂L

∂um
(2.32)

where the α values are known as the tuning parameters, which dictate how much of an influence a derivative
term has on the variable update. As seen in (2.18), the first derivative term is the power mismatch at that
node. For example, if it is positive, then there is a deficit of power in the node and the generator should ramp
up its production. The second derivative term comes from (2.16) and is responsible for the price consensus
between the nodes, where a weighted average of the neighboring LMPs is performed.

Next, the constant power region is when a generator or load is has reached its maximum or minimum
power. In this region, the LMP can no longer be set directly using (2.32), but instead with some KKT deriva-
tives as such:

λP
m(l +1) =λm(l )−αλu

∂L

∂um
+αλλ

∂L

∂λP
m

(2.33)

Similarly to the power update in the marginal operation region, the LMP update here depends on the power
mismatch equation. The consensus term is vital in this update because when a source is in constant power
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mode, the LMP will depend mainly on its neighboring nodes. Further, the power update in this region is
straightforward; because the power cannot exceed the limits, it is clamped depending on which bound is
violated. In other words:

pS
m(l +1) = P

S
m (2.34)

Furthermore, the node voltages are update independent of which mode the connected source is operating
in. This general update is given as:

um(l +1) = um(l )−αu
λ

∂L

∂λP
m

−αu
u
∂L

∂um
(2.35)

Again, the same two derivatives are used. The power mismatch can be partially solved by this update because
the voltage determines how much power is flowing in and out of the node from the neighbors. On the other
hand, if one of the connected lines is congested, then the voltage is updated using a different rule:

um(l +1) = I m,n∑
(m,n)∈Gm Gm,n

+un(l ) (2.36)

In this way, the voltage can be changed to directly reduce the connected line current to the maximum limit,
solving the congestion. However, since the neighbor voltages are not shared in the communication, un can
be removed using Ohm’s law:

im,n =Gm,n(um −un) (2.37)

By making un the subject and substituting it into the first equation, the new voltage update is defined as:

um(l +1) = um(l )+ I m,n − im,n∑
(m,n)∈Gm Gm,n

(2.38)

Note that here, im,n is a measured value of the current in the connected line. As a result, the voltages no longer
need to be communicated between neighboring nodes.

In this update strategy, the tuning parameter α values are mostly defined using the inverse of the product
of a sum of connected conductances and the node voltage. In other words:

α= k

um
∑

n∈Ωm Gm,n

[
V

W

]
(2.39)

The constant in the numerator is chosen depending on the number of steps it should take to solve a
mismatch. For example, in the case of aλu , a value of 0.5 is chosen such that the LMP update does not cause
nodes to oscillate against each other due to an over-imposed consensus. However, in the implementation for
unipolar grids, some tuning parameters were set by trial and error using test cases [1].

The last set of update rules are forµ dual variables, which represent the status of the inequality constraint.
In the unipolar implementation, they all follow the general rule:

µm(l +1) =P
[
µm(l )+β ∂L

∂µm

]
(2.40)

where the β is a tuning coefficient similar to the α parameters, and the derivative used is the one which is di-
rectly linked to the µ being updated. Here, the P is an operator which maps the dual variable into the feasible
region. This means that the value is set to zero if either the update makes it negative or if the associated limit
is not violated. In other words:

P⇒µm(l +1) = 0, if
(
µm ∩ ∂L

∂µm

)
≤ 0 (2.41)

Firstly, the line congestion µ update is:

µm,n(l +1) =P
[
µm,n(l )+βm,n

∂L

∂µm,n

]
(2.42)
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Similarly, the voltage limit dual variables are updated using:

µU
m(l +1) =P

[
µU

m(l )+βU ∂L

∂µU
m

]
(2.43)

µ
U
m(l +1) =P

[
µ

U
m(l )+βU ∂L

∂µ
U
m

]
(2.44)

Lastly, the power limit µ’s follow the update rule of:

µP
m(l +1) =P

[
µP

m(l )+βP ∂L

∂µP
m

]
(2.45)

µ
P
m(l +1) =P

[
µ

P
m(l )+βP ∂L

∂µ
P
m

]
(2.46)

The β values are all found using trial and error in this implementation [1]. Although this update strategy is
not applicable to the bipolar grids, the logic behind it can be useful as a reference for developing the new
algorithm required.
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2.7. OVERVIEW OF EXISTING LITERATURE/METHODS
In Fig. 2.7, an overview of the most closely related literature is given. The first study of C+I was done by
J. Mohammadi et al. [13], and is based on AC grids. This was expanded by Karambelkar et al. in order to
create a decentralized OPF algorithm for unipolar DC grids [20]. Moreover, several improvements to param-
eter tuning and the addition of asynchronous communication were added by D.M. Dolaputra [9]. Next, the
same algorithm was expanded to include online optimization as well as adaptive behavior by P.G.L. Parreira
[1]. These last three algorithms, were created as parts of their respective authors’ Master’s Thesis projects.
However, they are only applicable to unipolar topologies, as previously discussed. On the other hand, the
first formulation of a centralized OPF for bipolar topologies was presented by L. Mackay et al. [15], and was
broadened to include electrical storage systems (ESS) as well as a business model by R. Guarnotta [18]. How-
ever, these last two are only centralized formulations of the problem. Therefore, a decentralized algorithm
for bipolar DC grids does not exist in previous scientific research, and hence this thesis aims to fill that gap.

Decentralized L-OPF 

(J. Mohammadi et
al., 2014)

Decentralized E-OPF 

(S. Karambelkar 
et al., 2018)

Centralized E-OPF

(L. Mackay 
et al., 2016)

AC Grids Unipolar DC Grids Bipolar DC Grids

Decentralized E-OPF 

+ improved tuning
parameters

+ asynchronous 

(D.M. Dolaputra, 2018)

Decentralized E-OPF

+ online optimization
+ adaptive behavior

(P.G.L. Parreira, 2019)

Centralized E-OPF 

+ ESS 
+ business model

(R. Guarnotta, 2016)

Decentralized E-OPF

+ improved update
coefficients

+ online optimization

(This Thesis, 2020)

Figure 2.7: Overview of the existing literature and implementations for centralized and decentralized OPF algorithms.



3
CENTRALIZED OPF FOR BIPOLAR DC

GRIDS

In this chapter, the OPF problem for bipolar DC grids is defined and formulated in a centralized manner. First,
the quadratic cost function is defined for both generators and loads, and the constraints of the problem are
given. Next, the centralized OPF is converted to a load flow with droop control, which is used as a simulation
of the grid for the decentralized OPF developed in Chapter 4. Finally, some concluding remarks are made
regarding the grid modelling and simulation.

3.1. FORMULATION OF THE ORIGINAL PRIMAL PROBLEM
As mentioned in Section 2.3 of the literature review chapter, the single line diagram equivalent circuit cannot
be used to carry out an OPF for bipolar grids which have asymmetrical loading. This is also the case when
the generators connected to the poles have different generation capacities, or when the lines are partially
congested. This is illustrated in Figures 2.3 and 2.4, where a disparate flow in the three lines results in the SLD
being an incorrect model for the system. Moreover, it should be possible to have two sources connected at
one node, which can be independently controlled. An example of this is a diesel generator and a photovoltaic
system connected at one house, which would have separate cost functions as well as distinct power genera-
tion limits at a certain point in time. These cases, which may happen often in a stable bipolar network, must
be captured in the optimization and control algorithm.

Therefore, a new model of the grid is made with a different optimization problem. This changes the op-
timization variables as well as the set of constraints, as suggested by L. Mackay [8]. In this model, all loads
and generators are modelled in a generalized fashion as so-called sources. They are interfaced with the grid
via a power electronic (PE) interface or converters. The sources are modelled as hybrid controlled current
sources, which are connected between two nodes as shown in Fig. 2.4. In this way, the current flowing be-
tween the nodes can be controlled directly, and hence the power as well. As previously mentioned, this is
necessary in the case where multiple sources are connected in parallel, which is not possible with voltage
sources. Moreover, it is assumed that the converters allow the control of the nodal voltages.

Thus, the main optimization variables are the source currents and node voltages, as opposed to voltage
and power used in the unipolar implementations in [1][9][20]. In a bipolar grid, this choice in the model
results in a more elegant mathematical formulation, where divisions by voltage difference can be avoided for
example. Finally, for the sake of simplicity, the line currents are also chosen as optimization variables in the
centralized OPF and load flow (see Section 3.2).

Hence, the centrally-solved optimization problem is defined in the following way. First, the objective
function is the sum of all the generation costs in the system:

minimize Ctot al =
∑

(m,n,s)∈S

(
cS

2 · ((um −un) · im,n,s
)2 + cS

1 · ((um −un) · im,n,s
)+ cS

0

)
subject to: (3.2)− (3.8)

(3.1)

The line currents are defined using Ohm’s law:

im,n =Gm,n · (um −un) ∀(m,n) ∈G (3.2)

17
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Kirchhoff’s Current Law (KCL):∑
(m,n)∈Gm

im,n + ∑
(m,n,s)∈Sm

im,n,s −
∑

(n,m,s)∈Sm

in,m,s = 0 ∀m ∈N ∅ (3.3)

One reference voltage:
u0 = 0 (3.4)

Line current limits:
− I m,n ≤ im,n ≤ I m,n ∀(m,n) ∈G (3.5)

Node/source voltage limits:

U m,n,s ≤ um −un ≤U m,n,s ∀(m,n, s) ∈S (3.6)

Current and power limits of sources:

I m,n,s ≤ im,n,s ≤ I m,n,s ∀(m,n, s) ∈S (3.7)

P m,n,s ≤ (um −un)im,n,s ≤ P m,n,s ∀(m,n, s) ∈S (3.8)

First, the (um −un) · im,n,s term in the cost function is equal to the power consumed or generated by the
sources, pm,n,s . Following the passive sign convention, loads are determined to have a positive power whereas
generators have a negative power. Therefore, the cost-coefficient are chosen to be negative for loads, because
they increase revenue by consuming power, thereby reducing the total cost. This is also known as utility and
is illustrated in Fig. 3.2. On the other hand, only the linear term cS

1 must be negative for generators, where
an increased power production entails an increase in costs. A generic example of a generator’s cost function
is shown in Fig. 3.1. Note that a generator is supplying its highest absolute power when it is actually at
the minimum power value, P m,n,s . Conversely, a generator produces a lower absolute value of power at the

maximum, P m,n,s , which is typically near zero where the generator is turned off.
Furthermore, such quadratic cost functions are a realistic approximation for various types of generators

and have been used in previous implementations for both AC and DC systems [28][20]. More specifically, this
is commonly used for fuel-powered sources such as diesel generators, which become less efficient at their
peak power output. As a result, the cost increases more steeply when the power values reach their maximum
absolute values.

The first constraint in (3.2) pertains to the line currents, the values of which must all follow Ohm’s law.
Next, the KCL equation in (3.3) dictates that the algebraic sum of all outgoing line and source currents must
be zero. It should be noted that this constraint is applied to all nodes except for the reference node. This
is because, in the centralized algorithm, a reference node is defined and chosen to have a fixed voltage of
zero using (3.4). The reference node is excluded from the KCL because this last constraint would be linearly
dependent on the others, and is thus not required [2]. Next, the line current limits are defined in (3.5) as
double-sided constraints because the current and power can flow bi-directionally. The last three constraints
(3.7-3.8) concern the voltage, current, and power limits of the sources in the system respectively. Most no-
tably, the voltage limits are defined in terms of a difference between two nodes. Conversely, in a centralized
OPF as in [2], the voltage limits can be defined per node. However, in a decentralized system, there is no ref-
erence voltage, and therefore voltage limits must be defined as potential differences. For a more consistent
transition, this is already done here in the centralized OPF algorithm. This developed OPF can thus be used
as a reference, to compare the results of the decentralized algorithm. Moreover, it is modified in order to carry
out load flow calculations with droop control as discussed in the following section.
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Figure 3.1: General quadratic cost function of a generator. The generator is has a negative power value because it supplies power to the
grid.
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Figure 3.2: General quadratic cost function of a load. The cost is always positive because the load generates utility by consuming power.

3.2. CENTRALIZED LOAD FLOW AS GRID SIMULATION
As previously mentioned, one of the main uses of the centralized OPF for this thesis is that it can be used
to perform load flow (LF) calculations. Load flow calculations are similar to OPF in that a feasible solution
to physical constraints of the grid is found. However, the principal difference is that it is not an optimiza-
tion problem and thus the objective function is removed. The second important point is that, because this
simulates a real grid with converters, droop control is included in the system of equations and inequalities.
The last change to create the load flow system is to remove the reference voltage u0 and add a KCL condition
for that node. While the total number of equations remains the same, this makes for a more straightforward
implementation when this is included into the larger decentralized OPF problem.

Thus, the complete load flow problem is defined by the following set of linear and non-linear constraints.

Ohm’s law to define the line currents:

im,n =Gm,n · (um −un) ∀(m,n) ∈G (3.9)
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KCL: ∑
(m,n)∈Gm

im,n + ∑
(m,n,s)∈Sm

im,n,s −
∑

(n,m,s)∈Sm

in,m,s = 0 ∀m ∈N (3.10)

Line current limits:
− I m,n ≤ im,n ≤ I m,n ∀(m,n) ∈G (3.11)

Source limits:
U m,n,s ≤ um −un ≤U m,n,s ∀(m,n, s) ∈S (3.12)

I m,n,s ≤ im,n,s ≤ I m,n,s ∀(m,n, s) ∈S (3.13)

P m,n,s ≤ (um −un)im,n,s ≤ P m,n,s ∀(m,n, s) ∈S (3.14)

Droop curve:

im,n,s = fdr oop

(
im,n,s , (um −un)

)
∀(m,n, s) ∈S (3.15)

where fdr oop is a nonlinear function which ensures that all source currents lie on their respective droop
curves.

3.3. DROOP CONTROL
As discussed in Section 2.3, [2] proposes a control mechanism by which the system can maintain stability
even when communication is lost. This is the droop control which is represented by the curve shown in Fig.
2.5. This is necessary because future systems with DER and RES connected have significant problems due to
reduced inertia. By using droop control in the lower hierarchical levels of the control scheme, the converters
in the grid can continue to work in case of a communication failure. The way which this works is explained
after some modifications are made to the original droop control curve. The main part of the previous curve
given in Fig. 2.5 follows the equation:

um,n = d · im,n,s +u0
m,n (3.16)

where um,n is the voltage difference over the source and is a more compact notation for um −un . Moreover,
u0

m,n is the intercept of the droop with the vertical voltage axis. Finally, d is the slope of the droop curve and
has the units of V/A orΩ. The slope is calculated using the current range of the source as well as the maximum
allowed voltage deviation as such:

d = ∆um,n

I m,n,s − I m,n,s

(3.17)

where a voltage deviation value ∆um,n =5V is a standard practice for DC grids [1, p. 29]. The first change that
is made in the unipolar implementation and this thesis, for simplification, is to neglect the deadband. The
purpose of this region is to turn off the converter near the zero current. Next, the main curve definition can
be inverted to make the source current the subject of the equation as:

im,n,s = d ′ ·um,n + i 0
m,n,s (3.18)

where d ′ is the inverse of d and has the units of A/V or Ω−1. This is inversion is done because the original
VI-droop curve causes problems in implementation due to its nature as a one-to-many. As can be seen in
Fig. 2.5, the current and power limits make it seem like the converter can hold several voltage values at the
same current operating point. Conversely, when rearranged to the form of (3.18), the complete droop curve
becomes a one-to-one function from voltage to current (IV-curve). This is illustrated by the new curves in Fig.
3.3 and 3.4, which is used henceforth in this thesis. Moreover, this rearrangement is suitable for the sources,
which are primarily defined as controlled current source converters.

The stabilizing effect of droop control on the system is due to the current and voltage regulation in the
main curve. When the voltage at some point in the grid drops, then the connected generator will inject more
current into the network. Because they have a negative value, the current will actually decrease in the direc-
tion of I m,n,s as seen in Fig. 3.3. Conversely, in the case of loads, an undervoltage in the system will cause
the load to reduce its demanded power and hence current. In this way, the stress on the grid is reduced and
system stability can be maintained. This is reflected in Fig. 3.4.
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Figure 3.3: Droop control curve for a generator, including the current and power limits. Dotted lines indicate the regions where a limit is
not active.
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Figure 3.4: Droop control curve for a load, including the current and power limits. Dotted lines indicate the regions where a limit is not
active. In this example, the current limits are never active.
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3.4. IMPLEMENTATION AND CONCLUDING REMARKS
The centralized formulation of the load flow is used as an emulation of the grid using simulations in the
Python programming language [29]. Although the solvers of the pandapower library [30] are not applicable
to bipolar DC grids, the general structure of the network data-frames were modified to save the information
describing the grid and its elements. Furthermore, the centralized load flow calculations used to simulate
the grid were performed using solvers from the SciPy library [31]. The results of these computations, as well
as the decentralized OPF iterations, were stored using data-frames from the pandas library [32]. Finally, the
matplotlib library was used to create the plots of the simulation results [33].



4
DECENTRALIZED OPF ALGORITHM FOR

BIPOLAR DC GRIDS

This section discusses the decentralized optimal power flow (D-OPF) algorithm developed. First, some changes
to the original primal problem formulation are presented. Next, the dual problem consisting of the Lagrange
function and the KKT conditions is derived. Consequently, the physical interpretations of some variables
and parameters are explored. This is useful for the development of the update strategy for the optimization
variables. Furthermore, the interface between the grid and the optimization layers is investigated, and a com-
parison between simulations and real-world implementations is carried out. Finally, the chapter is concluded
with an overview of the algorithm and the interdependence of the variables is illustrated.

4.1. CHANGES TO THE PROBLEM FORMULATION
This section describes the transition from the original primal problem used for the centralized optimization
and the one which is used to develop the decentralized algorithm. Although the problem is the same in both,
the formulation is adjusted when implemented in a decentralized manner for increased clarity.

First, the cost function remains unchanged between the two formulations as seen in (3.1) and (4.1), while
the constraints in (3.2)-(3.8) are reformulated as (4.2)-(4.6). The first and most noticeable adjustment made is
the removal of the Ohm’s law equation, which is substituted directly into the other constraints which involve
the line currents. The effect of this is the removal of an equation in the primal problem, as well its correspond-
ing Lagrange multiplier in the dual problem. As a result, the update strategy is more simplified and there is
one variable less required to be found. This is discussed in more detail in the dual problem Sections 4.2.1 and
4.2.2, as well as the update strategy in Section 4.3.

Next, the reference node voltage constraint (3.4) is completely removed. Similarly, the KCL equations are
now defined for all nodes in the system N , and node 0 is no longer excluded. This does not affect the opti-
mality of the problem because one equation is already linearly dependent on the others. The motivation for
this change is both intuitive and necessary because, in a decentralized system, there is no longer a reference
node.

The final variation in the two formulations is that the line current limits in (3.5) are now formulated as
single-sided constraints as opposed to double-sided ones. Since the line currents are not defined as optimiza-
tion variables in the decentralized algorithm, these limits are taken care of by both nodes between which a
line is connected. In other words, the nodes ensure that their outgoing branch currents do not exceed a max-
imum only. However, since both nodes simultaneously perform this check from either side, bidirectional line
currents can be ensured to remain within their limits. This formulation results in a more condensed set of the
associated dual variables, as can be seen in Section 4.2. This also allows for a reduction in complexity in the
update strategy, which is discussed in Section 4.3.

23
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NEW PRIMAL PROBLEM

Based on the aforementioned changes, the new primal form of the problem is reformulated. This primal
problem is the one which is used in the rest of the thesis and the overall decentralized algorithm. Thus, the
optimization problem is formulated as follows.

Minimization of a total cost function:

minimize Ctot al =
∑

(m,n,s)∈S

(
cS

2 · ((um −un) · im,n,s
)2 + cS

1 · ((um −un) · im,n,s
)+ cS

0

)
subject to: (4.2)− (4.6)

(4.1)

Kirchhoff’s Current Law:

∑
(m,n)∈Gm

Gm,n(um −un)+ ∑
(m,n,s)∈Sm

im,n,s −
∑

(n,m,s)∈Sm

in,m,s = 0 ∀m ∈N (4.2)

Maximum current of lines:

Gm,n(um −un) ≤ I m,n ∀(m,n) ∈G (4.3)

Source voltage limits:

U m,n,s ≤ um −un ≤U m,n,s ∀(m,n, s) ∈S (4.4)

Source current limits:

I m,n,s ≤ im,n,s ≤ I m,n,s ∀(m,n, s) ∈S (4.5)

Finally, the source power limits are:

P m,n,s ≤ (um −un)im,n,s ≤ P m,n,s ∀(m,n, s) ∈S (4.6)

4.2. DERIVING THE DUAL PROBLEM

The multiplication of the voltage and current in the objective function makes this problem is a bilinear op-
timization, which is a type of nonlinear optimization. However, due to the non-linearity in the inequality
constraints, specifically the power limits, quadratic programming cannot be used to solve the optimization.
As discussed in the Literature Review of Chapter 2, the Karush-Kuhn-Tucker (KKT) conditions can be used
to solve nonlinear optimization problems. These conditions, when met, ensure that an optimal solution is
found. In this thesis, only the First Order Necessary Conditions (FONC) are considered, which comprises the
foundation of the overarching C+I algorithm. As a result, the found solution is guaranteed to be a local opti-
mum. Conversely, the Second Order Sufficient Conditions (SOSC) are not derived, which are out of the scope
of this thesis. These conditions are used to check that a global optimum is reached in the case of non-convex
problems. Thus, the Lagrange function and KKT conditions are derived in the following subsections.
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4.2.1. LAGRANGE FUNCTION

L = ∑
(m,n,s)∈S

(
cS

2 (um −un)2i 2
m,n,s + cS

1 (um −un)im,n,s + cS
0

)
+ ∑

m∈N

λI
m

( ∑
(m,n)∈Gm

Gm,n(um −un)+ ∑
(m,n,s)∈Sm

im,n,s −
∑

(n,m,s)∈Sm

in,m,s

)
+ ∑

(m,n)∈G

µI
m,n

(
Gm,n(um −un)− I m,n

)
+ ∑

(m,n,s)∈S

µU
m,n,s (um −un −U m,n,s )

+ ∑
(m,n,s)∈S

µ
U
m,n,s

(
U m,n,s −um +un

)
+ ∑

(m,n,s)∈S

µI
m,n,s

(
im,n,s − I m,n,s

)
+ ∑

(m,n,s)∈S

µ
I
m,n,s

(
I m,n,s − im,n,s

)
+ ∑

(m,n,s)∈S

µP
m,n,s

(
(um −un)im,n,s −P m,n,s

)
+ ∑

(m,n,s)∈S

µ
P
m,n,s

(
P m,n,s − (um −un)im,n,s

)

(4.7)

4.2.2. KKT CONDITIONS

First order optimality conditions:

∂L

∂um
= ∑

(m,n,s)∈Sm

(
2cS

2 (um −un)i 2
m,n,s + cS

1 im,n,s

)
− ∑

(n,m,s)∈Sm

(
2cS

2 (un −um)i 2
n,m,s + cS

1 in,m,s

)
+λI

m

∑
(m,n)∈Gm

Gm,n − ∑
(n,m)∈Gm

λI
nGn,m

+ ∑
(m,n)∈Gm

µI
m,nGm,n − ∑

(n,m)∈Gm

µI
n,mGn,m

+ ∑
(m,n,s)∈Sm

µU
m,n,s −

∑
(n,m,s)∈Sm

µU
n,m,s

+ ∑
(n,m,s)∈Sm

µ
U
n,m,s −

∑
(m,n,s)∈Sm

µ
U
m,n,s

+ ∑
(m,n,s)∈Sm

µP
m,n,s im,n,s −

∑
(n,m,s)∈Sm

µP
n,m,s in,m,s

+ ∑
(n,m,s)∈Sm

µ
P
n,m,s in,m,s −

∑
(m,n,s)∈Sm

µ
P
m,n,s im,n,s = 0 ∀m ∈N

(4.8)

∂L

∂im,n,s
= 2cS

2 (um −un)2im,n,s + cS
1 (um −un)

+λI
m −λI

n +µI
m,n,s −µI

m,n,s

+µP
m,n,s (um −un)−µP

m,n,s (um −un) = 0 ∀(m,n, s) ∈S

(4.9)

∂L

∂λI
m

= ∑
(m,n)∈Gm

Gm,n(um −un)+ ∑
(m,n,s)∈Sm

im,n,s −
∑

(n,m,s)∈Sm

in,m,s = 0 ∀m ∈N (4.10)
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∂L

∂µI
m,n

=Gm,n(um −un)− I m,n ≤ 0 ∀(m,n) ∈G (4.11)

∂L

∂µU
m,n,s

= (um −un −U m,n,s ) ≤ 0 ∀(m,n, s) ∈S (4.12)

∂L

∂µ
U
m,n,s

= (U m,n,s −um +un) ≤ 0 ∀(m,n, s) ∈S (4.13)

∂L

∂µI
m,n,s

= (im,n,s − I m,n,s ) ≤ 0 ∀(m,n, s) ∈S (4.14)

∂L

∂µ
I
m,n,s

= (I m,n,s − im,n,s ) ≤ 0 ∀(m,n, s) ∈S (4.15)

∂L

∂µP
m,n,s

= (
(um −un)im,n,s −P m,n,s

) ≤ 0 ∀(m,n, s) ∈S (4.16)

∂L

∂µ
P
m,n,s

= (
P m,n,s − (um −un)im,n,s

) ≤ 0 ∀(m,n, s) ∈S (4.17)

The slackness conditions must also be met:

µI
m,n

(
Gm,n(um −un)− I m,n

)= 0 ∀(m,n) ∈G (4.18)

µU
m,n,s (um −un −U m,n,s ) = 0 ∀(m,n, s) ∈S (4.19)

µ
U
m,n,s

(
U m,n,s −um +un

)= 0 ∀(m,n, s) ∈S (4.20)

µI
m,n,s

(
im,n,s − I m,n,s

)= 0 ∀(m,n, s) ∈S (4.21)

µ
I
m,n,s

(
I m,n,s − im,n,s

)= 0 ∀(m,n, s) ∈S (4.22)

µP
m,n,s

(
(um −un)im,n,s −P m,n,s

)= 0 ∀(m,n, s) ∈S (4.23)

µ
P
m,n,s

(
P m,n,s − (um −un)im,n,s

)= 0 ∀(m,n, s) ∈S (4.24)

Finally, all the dual variables of the inequality constraints must be positive. These are known as the posi-
tivity conditions:

µI
m,n ≥ 0 ∀(m,n) ∈G (4.25)

µU
m,n,s ,µ

U
m,n,s ≥ 0 ∀(m,n, s) ∈S (4.26)

µI
m,n,s ,µ

I
m,n,s ,µP

m,n,s ,µ
P
m,n,s ≥ 0 ∀(m,n, s) ∈S (4.27)

4.2.3. REMARKS ON THE KKT CONDITIONS
The above KKT conditions serve two main purposes. Firstly, they are a means to check that the computed
solution is an optimal one. Secondly, they are used directly in the update strategy, which is the way in which
the optimal solution is found in an iterative manner. This is discussed in more detail in the following section.
Concerning the latter, the KKT conditions can be analyzed to identify some elements which are beneficial
to the larger algorithm. More specifically, they are characteristic expressions which are vital for the C+I al-
gorithm which is used for the update strategy. The first instance is the presence of a weighted average in
the LMPs of connected nodes, which is found in (4.8). The product of the neighboring LMP λI

n with the
conductance Gn,m captures the effect of the connectedness of the node. Moreover, the appearance of the
neighboring λI

n in one of the equations related to node m provides a consensus term, which is necessary for
the C+I algorithm. The other component of the C+I method is the innovation term, which can be seen in (4.9),
which only includes source terms and no neighboring terms. Thus, the distinction between the λI

n terms in
(4.8) and (4.9) should be underlined.

The remaining KKT conditions which are significant to the algorithm are the nodal current mismatch in
(4.10) and the grid physical limitations in (4.11)-(4.17). Another differentiation between local and communi-
cated variables can be seen here. The line current limit condition is used by the two connected nodes in the
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updates of their respective dual variables, while the source limit conditions are kept within the communica-
tion node. These factors are important to consider for the development of the update strategy. One reason
is because they affect the interdependencies created between the variables as a consequence of the defined
update rules. Furthermore, the distinction between source variables and neighboring variables is important
to note as this affects how many and which variables must be communicated.

4.3. UPDATE STRATEGY
While the KKT conditions presented in the previous section provide a way to evaluate the optimality of the
found solution, an update strategy is required in order to reach said operating point. As previously discussed,
the update strategy is based on the C+I method which uses the KKT conditions to calculate the primal and
dual variables in an iterative manner. Although the unipolar implementation provides a reference example, a
new update strategy is developed for bipolar networks, which are more complex due to the nonlinear expres-
sions such as the power limits. As a consequence, the definition of marginal sources as shown in Fig. 2.6 is
no longer valid. This is because now sources can operate at the limit in one variable but still be ’marginal’ in
another. For example, a load may be at the maximum current value but still not reach the maximum power.
This is because in the bipolar model of the grid, the voltage and current are independent variables, while the
power is defined as the product of the two. Conversely, in the unipolar implementation, the current limits are
defined directly based on the power and voltage limits [1], and are not used in the optimization layer. In other
words, unipolar grids have linear voltage and power limits, which hold for one node only. On the other hand,
sources in a bipolar network are constrained by linear voltage limit current limits, as well as nonlinear power
constraints in the form of bilinear inequalities. As a result, sources in a bipolar grid can operate in 23 = 8
possible regions at a time, depending on which of the three constraints are violated. In unipolar systems, this
is only two regions; a source is either marginal or at a limit. A distinction is made here in terms of the voltage
constraints. This is because the voltage limits are defined independently per node in unipolar systems, in-
stead of for the sources as in bipolar systems. This can be seen by comparing the circuit schematics of Fig. 2.3
and 2.4, respectively. Therefore, in this thesis, the update rules are defined in a more generalized form which
is applicable in all regions of operation. One example of a consequence of this is that the shortcut of (2.31)
can no longer be used and a more generic rule is required. Thus, all the update rules necessary for the primal
and dual variables developed in the following subsections. These are created with the aid of Tables 4.1-4.3,
which give the units of the variables, KKT conditions, and update coefficients respectively. This provides an
insight into the meaning of the variables and a physical interpretation of them, which allows for a better up-
date strategy to be developed. In this way, the trial and error element for tuning these parameters used in [20]
can be reduced to a certain extent. Consequently, the update coefficients can be set in a more direct fashion,
and the speed of convergence may also be increased as a result.

Table 4.1: Units of the parameters, primal, and dual variables.

Variable/Parameter Units

Gm,n Ω−1

cS
0 m.u.

cS
1 m.u./W

cS
2 m.u./W2

um , U m,n,s ,U m,n,s V

im,n , im,n,s , I m,n , I m,n , I m,n,s , I m,n,s A

µU
m,n,s ,µ

U
m,n,s m.u./V

λI
m , µI

m,n , µI
m,n,s ,µ

I
m,n,s m.u./A

λP
m,n m.u./W

4.3.1. VOLTAGE UPDATE

The update strategy developed for most of the variables uses the generic C+I idea given in (2.8), which dictates
that a variable is updated using the KKT conditions that are directly related to it. In the case of nodal voltages,
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Table 4.2: Units of the Lagrange L and KKT Conditions.

Equation/Inequality Units

Lagrange function m.u.

∂L /∂um m.u./V

∂L /∂im,n,s m.u./A

∂L /∂λI
m A

∂L /∂µI
m,n A

∂L /∂µU
m,n,s , ∂L /∂µ

U
m,n,s V

∂L /∂µI
m,n,s , ∂L /∂µ

I
m,n,s A

Table 4.3: Units of the tuning parameters of the update equations.

Tuning Parameter Units

αu
λ

V/A

αu
u V2/m.u.

αλ
λ

m.u./A2

αλu V/A

αi
i A2/m.u.

this mainly involves the first and third optimality conditions, as can be seen in (4.8) and (4.10). Firstly, the
λI

m derivative of the Lagrange is the more straightforward one, as it is equal to algebraic sum of the current
exiting node m. As previously discussed, this value must always be made zero in a real circuit, which can be
achieved by controlling the voltages. For example, an outgoing source connected to that node increases its
current, then the value of ∂L

∂λI
m

will increase. This means that the voltage must decrease in the next iteration

in order to draw more current from the neighboring nodes via the lines, thereby maintaining a balance and
satisfying KCL. Therefore, this derivative term is included in the form of a subtraction in the update of the
voltage, as shown in (4.28). This mechanism can be paralleled to the inclusion of the power mismatch in the
unipolar implementation [1], except that it is a current mismatch in this case instead.

The next derivative term used to update the voltage is the derivative of the Lagrange function with respect
to um , or ∂L

∂um
, and involves several vital elements to the overall strategy. The first terms are the cost informa-

tion of connected sources, which is equal to the product of their marginal costs and the source current during
that iteration. The next term is the weighted average of the node’s LMP with that of its direct neighbors. As
previously discussed, this is fundamental to the C+I algorithm. The way this works can be illustrated with a
simple example. Considering a node m with an LMP that is lower than the average of its direct neighbors,
then this node should export current (and thus power). Looking at (4.8), then this component of ∂L

∂um
will be

negative. Consequently, subtracting this derivative from the voltage will cause it to increase, thereby increas-
ing the current sent by node m to its neighbors. As a result, the desired effect of the LMP differences on the
physical elements in the grid is achieved. The µ values which also appear in ∂L

∂um
allow the OPF to maintain

line current and source voltage and power limits to be respected for the elements connected to node m. For
example, if the current flowing out of m via line (m,n) exceeds its physical limit, then the µI

m,n multiplier will

begin to increase. This will cause ∂L
∂um

to increase, thereby providing a negative contribution to um(l +1) as
shown in (4.28). Consequently, the voltage at node m will decrease, causing the current in line (m,n) to be
lowered. A similar process occurs with congestion in incoming line currents, which are measured as nega-
tive outgoing currents. However, in this case, the µI

n,m is actually calculated by the neighboring node n and
communicated to node m. In this way, both nodes cooperate to manage the congestion of the line which
connects them. Finally, the voltage and power limit terms follow the same philosophy, except that they only
involve the same communication node and therefore no communication with neighbors is required.

Thus, the voltage update is given as:
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um(l +1) = ûm(l )−αu
λ

∂L

∂λI
m

−αu
u
∂L

∂um

−αu
∆i

∑
(m,n,s)∈Sm

(
∆im,n,s −∆in,m,s

)−au
∆u∆um

(4.28)

where ûm(l ) is the previous value measured from the grid and the α’s are the update coefficients. Moreover,
∆im,n,s and ∆um are difference between the OPF setpoints sent to the grid and the measured values in itera-
tion l , of the connected source currents and node voltage, respectively. In other words,

∆im,n,s = îm,n,s − im,n,s (4.29)

where îm,n,s is the measured grid value, and im,n,s is the OPF operating point which was sent beforehand in
the same computation iteration l .

Similarly, the voltage change is defined as:

∆um = ûm −um (4.30)

where um is the optimization setpoint and ûm is the measured value from the grid.
The current component serves a similar purpose to the KCL current mismatch. Here, if the droop control

in the physical grid layer causes the connected sources to draw more current from the node, then its voltage
should decrease. Finally, the ∆um term allows the OPF to correct the deviation of the grid value from the
reference voltage which was sent by the OPF layer. This can also be interpreted as a negative feedback. The
next subsections provide the definitions of the update coefficients for the voltage, in a way which aims to
minimize trial-and-error tuning.

DEFINING αu
λ

The main reason of having the current mismatch equation in the voltage update is that the line currents
component can be directly influenced by a change in the voltage at that node. In other words, the current in
line m,n at one iteration is equal to the previous value plus an increment:

im,n(l +1) = im,n(l )+∆im,n = (um +∆um −un)Gm,n (4.31)

where ∆um is the increment of the voltage at node m during iteration l + 1. By rearranging the previous
equation, and assuming un does not change, the change in line current can be isolated in the following way:

im,n(l )+∆im,n = (
um(l )−un(l )

)
Gm,n +∆umGm,n (4.32)

Therefore:
∆im,n =∆um ·Gm,n (4.33)

This means that the line current component of the current mismatch should be proportional to the sum
of the change in line currents due to a voltage change at node m. In other words:∑

(m,n)∈Gm

∆im,n = ∑
(m,n)∈Gm

∆um ·Gm,n (4.34)

Making ∆um the subject, considering it can be taken out of the summation:

∆um =
∑

(m,n)∈Gm ∆im,n∑
(m,n)∈Gm Gm,n

(4.35)

This means that the voltage needs to take a step in order to contribute towards solving this excess cur-
rent at that node, thereby partially eliminating the current mismatch. Thus, such is the responsibility of the
following KKT term in the voltage update:

∆um =αu
λ

∂L

∂λI
m

(4.36)

The two previous equations are combined, and it is assumed that the ∂L
∂λI

m
only consists of the excess

line currents term (
∑

(m,n)∈Gm ∆im,n). This is done because only that component of the current mismatch is
directly influenced by the voltage update. Finally, we rearrange the equality and get the following definition
for the tuning parameter:
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αu
λ = k∑

(m,n)∈Gm Gm,n
(4.37)

where k is a unitless tuning constant. If this value is set to 1, then the current mismatch at that node would
be solved in one iteration. However, this could cause oscillations in the algorithm as the voltage on the other
side of the line will also make a step in the opposite direction. Therefore, the value is set to 1/2. This is halved
further to 1/4, as the current source component of the mismatch will also take a step to eliminate this error.

DEFINING αu
u

Theαu
u tuning parameter should determine the influence of the LMP mismatch between neighbouring nodes

on the voltage. Equation (4.8) is substituted into (4.28) and the ∂L
∂λI

m
term is neglected for now, and the voltage

update becomes:

um(l +1) =−αu
u

( ∑
(m,n,s)∈Sm

(
2cS

2 (um −un)i 2
m,n,s + cS

1 im,n,s

)
− ∑

(n,m,s)∈Sm

(
2cS

2 (un −um)i 2
n,m,s + cS

1 in,m,s

)
+λI

m

∑
(m,n)∈Gm

Gm,n − ∑
(n,m)∈Gm

λI
nGn,m

+ ∑
(m,n)∈Gm

µI
m,nGm,n − ∑

(n,m)∈Gm

µI
n,mGn,m

+ ∑
(m,n,s)∈Sm

µU
m,n,s −

∑
(n,m,s)∈Sm

µU
n,m,s

+ ∑
(n,m,s)∈Sm

µ
U
n,m,s −

∑
(m,n,s)∈Sm

µ
U
m,n,s

+µP
m,n,s im,n,s −µP

n,m,s in,m,s

+µP
n,m,s in,m,s −µP

m,n,s im,n,s

)
= 0

(4.38)

Assuming that all the constraints are met, the µ terms are zero. In that case, the two cost terms and the
LMP terms must cancel each other when the KKT condition is met. Following intuition, the example of αu

λ
can be applied again. The reasoning in this situation is that the λGm,n terms should be in the same order
of magnitude as the two cost terms, and thus the whole ∂L

∂um
can be scaled down by a tuning parameter

which is proportional to the inverse of that value. Using numerical examples, the LMPs are in the order of
magnitude of 1000-4000 m.u./A, while the conductances are typically between 10 and 50 Ω−1. Considering
that the voltage should change by roughly 1 Volt for each 100 m.u./A of LMP mismatch, we can set the tuning
parameter as:

αu
u = 0.01

Nm
∑

(m,n)∈Gm Gm,n
(4.39)

where Nm is the number of neighbors connected to node m. The update coefficient is divided by this value to
ensure and oscillations are avoided in the case of highly interconnected nodes. Consequently, the consensus
of the LMPs is reached in a more stable way.

DEFINING αu
∆i

The third component of the voltage update has the purpose of maintaining a balance in the net current at a
node during the online optimization. Therefore, it is defined in the same way as αu

λ
:

αu
∆i =

k∑
(m,n)∈Gm Gm,n

(4.40)

DEFINING αu
∆u

The last element required to update the voltage is to reverse the step away from the value sent by the OPF
layer to the grid in the previous iteration. This aims to move the voltage back towards the value that the
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optimization has chosen previously. It is found that taking the middle-point of the two values provides good
results. Hence, the update coefficient is defined as:

αu
∆u = 0.5 (4.41)

4.3.2. LMP UPDATE
As previously discussed in the voltage update, the price information of the nodes have a strong impact on the
physical values in the grid. The main dominant variable among the economic variables is the nodal current
LMP, λI

m . Therefore, this value should change depending on the current mismatch during an iteration of the
optimization. In the bipolar DC OPF algorithm, the LMP is defined in terms of current instead of power, but
it follows the same behaviour as the unipolar version. This means that, if the total outgoing current is positive
( ∂L
∂λI

m
> 0) then the LMP should increase. In this way, its neighbors will begin to deliver more current to that

node, thereby decreasing the excess current and solving the KCL mismatch.
If a source, regardless of whether it is a generator or a load, in a bus or converter is operating at its maxi-

mum or minimum current value, then it is said to operate in the constant current region. The same holds for
the power limits, where a source is said to operate in a constant power region in that case. These conditions
directly influence the LMP values of the connected nodes at the optimal solution and are directly related to
(4.8) and (4.9).

Subsequently, the next component in the update is KKT term ( ∂L∂um
), and has a negative sign. The signifi-

cance of this expression is to assure that there is consensus in the LMP between neighbouring nodes. This is
interpreted as a convergence of the λI

m values towards the same value, assuming that there is no congestion
of the lines or the sources. For example, if the weighted difference between λI

m and λI
n has a positive value,

then λI
m should decrease. In this way, the LMP consensus can be achieved between neighbors.

The next two terms are ∂L
∂im,n,s

, which involve the sources which are connected to node m and feed current

into or draw out of the node. Looking at (4.9), it can be seen that this term involves three components. These
are: the current derivative of the cost ( ∂Cost

∂im,n,s
), the LMP difference over the nodes (λI

m −λI
n), and the current

limit dual variables (µI
m,n,s −µI

m,n,s ). The last part is of most significance in this particular update equation
because it is the only one which includes the current limit behavior of connected sources, in the LMP update
of that node.

Finally, the current deviations between the OPF setpoints and the grid measurements are used in the LMP
update. This follows the same reasoning as in the voltage update, because this plays a similar role as the KCL
mismatch. The need for this is due to the actual value of ∂L

∂λI
m

always being zero in the real or simulated grid

for obvious reasons. The LMP derivative of the Lagrange function is still kept in the LMP update for the sake
of generality, because it is required if the optimization is done offline, for example.

Hence, the LMP is updated using the following rule:

λI
m(l +1) =λI

m(l )+αλλ
∂L

∂λI
m

−αλu
∂L

∂um
−αλi

∑
(m,n,s)∈Sm

∂L

∂im,n,s
+αλi

∑
(n,m,s)∈Sm

∂L

∂in,m,s

+αλ∆i

∑
(m,n,s)∈Sm

(
∆im,n,s −∆in,m,s

) (4.42)

This LMP update equation is general because it works for all regions of operation, as it includes all vari-
ables associated with the LMP directly, via the KKT conditions used. By combining the methods discussed by
Mackay [2] and Parreira [1], it would seem that the LMP can be determined in one step when all the connected
sources are marginal. This may be attempted using the definition of a power LMP used in the centralized OPF
for bipolar DC grids as:

λP
m,n = λI

m −λI
n

um −un
(4.43)

This can be combined with the update strategy used in the unipolar implementation, namely:

λP
m,n(l +1) = 2cS

2

(
um(l +1)−un(l +1)

)
im,n,s (l +1)+ cS

1 (4.44)

This results in a direct definition of the LMP for marginally operated sources in the following way:
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λI
m(l +1) =λI

n(l +1)+2cS
2

(
um(l +1)−un(l +1)

)2im,n,s (l +1)+ cS
1

(
um(l +1)−un(l +1)

)
(4.45)

This is equal to the current derivative of the Lagrange function, as seen in (4.9). With a central controller,
the power LMP can be determined directly when the sources are marginal. However, this implementation
is not possible in a decentralized algorithm for bipolar networks, because it causes oscillations with the two
node voltages. On the other hand, this resemblance to ∂L

∂im,n,s
is beneficial in approaching the optimal value.

Therefore, this KKT term is included in the update rule shown in (4.42).

DEFINING αλ
λ

The αλ
λ

tuning parameter determines how much the LMP at a node will change in response to a certain

amount of excess (or deficit) of current at that node. According to previous numerical results, λI
m values

are typically in the order of 1000-4000 m.u./A, and the source and line currents are in the range of Amperes to
tens of Amperes. Assuming that the current mismatch at a node is safely below 10A, and that the LMP should
change by about 1% each iteration, the tuning parameter can be found in the following way:

αλλ ·10A = 1% ·2000m.u./A (4.46)

Finally, the tuning parameter is found as:

αλλ = 2.0 [m.u./A2] (4.47)

Note that the 1% value and the current mismatch of 10A can be changed depending on the case with
tuning. Furthermore, these values can change adaptively during the simulation depending on the real-time
value of the current mismatch as well as the speed of the convergence.

DEFINING αλu
Similar to the αu

u , this tuning parameter is concerned with the influence of the LMP values of neighbouring
nodes on the LMP of the node itself. More specifically, it should determine how much λI

m should change
as a result of the weighted difference with its neighbours’ values. Therefore, the derivation follows the same
reasoning as αu

u , but with a different numerator value according to the physical meaning:

αλu = k

Nm
∑

(m,n)∈Gm Gm,n
(4.48)

Looking at the weighted LMP difference in the ∂L
∂um

equation, it can be seen thatλI
m has the largest weight-

ing coefficient. Therefore, this averaging of the LMPs with respect to node m is most significantly influenced
by the LMP at m itself. The positive effect of this is that it reduces oscillations in the value of λI

m and, there-
fore, the constant k can be set to 1. However, the associated derivative term is included in the update rules
of several other variables, which may result in instability. Therefore, the value of the constant k is decreased
further to 0.25 in order to avoid step sizes which are too large, resulting in all LMPs oscillating together.

DEFINING αλi
As previously discussed, the ∂L

∂im,n,s
terms in the LMP update connect the LMP with the marginal cost and cur-

rent limit dual variables of the connected sources. The goal of this is to cause a change in the LMP which takes
the KKT conditions a step closer towards being met in order to ensure optimality. In this case, the derivatives
involved in the update should be made equal to zero, after which the LMP value will stabilize. Focusing only
on the current derivative of the Lagrange function for only one outgoing source, and substituting (4.9) into
(4.42), yields:

λI
m(l +1) =λI

m(l )−αλi
(
2cS

2 (um −un)2im,n,s + cS
1 (um −un)

+λI
m −λI

n +µI
m,n,s −µI

m,n,s

+µP
m,n,s (um −un)−µP

m,n,s (um −un)
) (4.49)

A simplified example is given for clarity to describe the mechanism in the following way. The update
coefficient is set to 1, and the connected source is assumed to be a load operating at a fixed current limit
without a cost function (i.e. no demand response) and no power limits. This leads to:
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λI
m(l +1) =λI

m(l )−
(
λI

m −λI
n +µI

m,n,s −µI
m,n,s

)
−→λI

m(l +1) =λI
n +µI

m,n,s −µI
m,n,s

(4.50)

Thus, the LMP can be found directly from the value of the connected source’s dual variable in this case.
Similarly, considering a connected source operating in the marginal operation region results in:

λI
m(l +1) =λI

m(l )−
(
2cS

2 (um −un)2im,n,s + cS
1 (um −un)+λI

m −λI
n

)
(4.51)

This results in the same solution found previously for the marginal operation region in (4.45). However,
the value of the update coefficient should not be set to 1, because that would cause oscillation between the
two nodes where the source is connected. Moreover, the inclusion of the same derivative term in the im,n,s

and µI
m,n,s , µ

I
m,n,s updates indicates that this value should depend on the number of update equations that it

appears in, in a similar way to (4.58). Therefore, αλi is defined as:

αλi = 1

2Sm +Smar g i nal
m +SCC R

m

(4.52)

Where Smar g i nal
m is the number of connected sources in marginal operation mode and SCC R

m is the number
of connected sources which are in the constant current region. A factor of 2 is included in the first term
because the ∂L

∂im,n,s
of the same source appears in two different λI

m updates, one of which as ∂L
∂in,m,s

, as seen in

(4.42). Moreover, the number of connected marginal and CCR sources is used due to their influence in the

im,n,s and µ
I
m,n,s updates, respectively. For example, a neutral node which has one source connected above

and one below should have an αλi value of 1/8.

DEFINING αλ
∆i

The last part of the LMP update concerns the deviation in the current of the connected sources, which plays
a similar role to the current mismatch at the node. Therefore, αλ

∆i is defined in the way as αλ
λ

.

4.3.3. SOURCE CURRENT UPDATE
The update strategy for the source currents follows the same logic as the LMP and the voltage. This means
that the value is first updated using a general strategy, regardless of the operating region:

im,n,s (l +1) = îm,n,s (l )−αi
i
∂L

∂im,n,s
−αi

λ

∂L

∂λm
+αi

λ

∂L

∂λn
−αi

∆i∆im,n,s (4.53)

where îm,n,s (l ) is the measured source current value from the grid from the previous iteration.
Here, the first term ( ∂L

∂im,n,s
) captures the economic influence of the λI values of the nodes between which

the source is connected. This can be explained using an example with a generator which has a linear cost
function. This component in the cost derivative term is always negative, and the LMP difference λm −λn is
assumed to be positive, as this is usually the case. If in one iteration the LMP difference over the generator
is lower than the cost term, and that the limits are not reached, then the ( ∂L

∂im,n,s
) will have a negative value.

From previous literature [1][2][20], it is known that a generator should reduce its power if the LMP is lower
than the marginal cost. Therefore, the KKT derivative term ( ∂L

∂im,n,s
) should be subtracted from the source

current update in order to increase the generator current, in the direction of zero (turned off). The same
mechanism holds in the opposite way for loads. Moreover, when either the current or power limit is reached,
then the appropriate µ values will begin to grow. In the case of a load reaching its maximum current, for
example, this will cause ( ∂L

∂im,n,s
) to become more positive, thereby driving the current downwards in the next

update iteration.
Furthermore, the second and third derivative terms in the current update ensure that the KCL conditions

are satisfied for the two nodes. For example if the ∂L
∂λm

is positive, it means that there is an excess of current
going out of node m. Thus, im,n,s should decrease, meaning a negative sign is required. Similarly, if node n
has too much current flowing into it, then ∂L

∂λn
will be negative, thereby causing im,n,s to decrease again.

Finally, the deviation from the OPF value of the measured grid value in the previous iteration is used in
the source current update. Analogously to the voltage update, this is needed in order to move im.n,s (l + 1)
back towards the desired OPF value after it has deviated in the real grid due to the droop control.
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Using the same idea as the unipolar implementation, if the source variable update causes a source limit to
be violated, then it must be clamped. The change for the bipolar implementation, however, is that the power
update is replaced by the source currents. This is because the source power is not an optimization variable,
but voltage and current are instead. If a source is operating at its maximum or minimum current, then the
current should be set to the limit value:

im,n,s (l +1) = I m,n,s (4.54)

Similarly, if one of the power limits is violated, then the source current is clamped according to:

im,n,s (l +1) =
P m,n,s

um −un
(4.55)

DEFINING αi
i

The first tuning parameter of the im,n,s update is linked to the current derivative of the cost of a source and the
difference in the LMPs of the two nodes it is connected to. In a load that has not reached its current limit, the
cost-related term is always negative and the λm −λn part is always positive. Therefore, in order for the KKT
condition to be met ( ∂L

∂im,n,s
= 0), the source current should increase in order to cancel LMP terms. Assuming

again that LMP values are within the range of 1000-4000 m.u./A and source currents are in the order of several
Amperes to tens of Amperes, a typical step size can be achieved. Using an average value of 2000m.u./A for
λI

m −λI
n ( 400V ·5m.u./W) and choosing a step size of 1% of the middle point of the source current limits, the

tuning parameter is determined as follows:

αi
i · (λI

m −λI
n) = 1% ·

|I m,n,s − I m,n,s |
2

(4.56)

Rearranging gives the tuning parameter, defined as:

αi
i = 1% ·

|I m,n,s − I m,n,s |
2 · (λI

m −λI
n)

(4.57)

For example, if a load has a current range of 0-50A, and a current LMP difference of 2000m.u./A, then the
associated tuning parameter will have a value of 0.000125A2/m.u.

DEFINING αi
λ

The next update coefficient defined for the current update is the αi
λ

. This value affects how a source current
reacts in response to a current mismatch or KCL violation at either of the two nodes to which it is connected.
Looking at the KKT equation for KCL, it can be seen that the sum of all branch and source currents at the node
are present. Therefore, for the im,n,s update, it is reasonable each current component shares the responsibility
of meeting that constraint. One way to achieve this is by setting the tuning parameter as:

αi
λ =

1

Nm +Sm
(4.58)

where Nm is the number of neighbors (and thus number of branch currents), and Sm is the number of
sources, connected to node m. Substituting this into the update, we arrive at:

im,n,s (l +1) = im,n,s (l )+αi
i
∂L

∂im,n,s
− 1

Nm +Sm
· ∂L
∂λm

− 1

Nn +Sn
· ∂L
∂λn

(4.59)

As can be seen, sources which are more interconnected with other sources or lines will have a lower αi
λ

value to prevent oscillations between each other while trying to solve the KCL mismatch.

DEFINING αi
∆i

The final α in the current update strategy causes the new OPF value to take the average between the previous
measured grid and OPF values. It is chosen that half of this deviation should be reverted, and thus the update
coefficient is set as:

αi
∆i = 0.5 (4.60)
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4.3.4. LINE CURRENT LIMIT DUAL VARIABLE UPDATE
This dual variable is the one linked to the current limits of the lines, and is therefore responsible for the line
congestion management of the OPF algorithm. As with the other dual variables of the inequality constraints,

µI
m,n should have a nonzero value when value of zero when the line current exceeds the maximum. Con-

versely, if the limit is met, then the dual variable should be decreased depending on how much overhead is
available in the line. Following previous implementations, this means that it should be updated according to:

µI
m,n(l +1) =P

[
µI

m,n(l )+βµµ
∂L

∂µI
m,n

]
(4.61)

where βµµ is an update coefficient that is set by tuning to a value of 1m.u./A2. Moreover, the P[.] operator
sets the value of µ(l +1) to 0 if and only if it becomes negative, because that is outside of the feasible region.
This operation is used for all µ updates. In other words:

P :µ(l +1) 7→ 0 iff µ(l +1) < 0 (4.62)

Looking at (4.61), the increase in the value of µI
m,n is directly proportional to the amount of overcurrent in

the associated line. Conversely, when the limit is respected, then the ∂L

∂µI
m,n

term would be negative, thereby

causing µI
m,n to begin decreasing towards zero. As this Lagrange multiplier appears in the ∂L

∂um
derivative

term, it has a direct effect on the updates of the other variables. For this reason, the voltage derivative term

is added to the µI
m,n update in the case that the line m,n is overloaded. In other words, a stabilizing negative

feedback loop is created by defining the update as:

µI
m,n(l +1) =P

[
µI

m,n(l )+βµµ
∂L

∂µI
m,n

−βµu
∂L

∂um

]
(4.63)

where βµu has a small value in the range of 0.25
Gm,n

in order to avoid oscillations, as with previous update coeffi-

cients using this KKT term. In this way, the congestion in a line can be resolved during the online optimization
with these update rules.

4.3.5. SOURCE CURRENT LIMIT DUAL VARIABLE UPDATE
Similarly to the lines, the sources have their own current limits which must be respected by the optimization.
However, in the case of source currents, ∂L

∂µI
m,n,s

and ∂L

∂µ
I
m,n,s

alone are not sufficient to find the values of these

dual variables at the optimal solution. This may be due to the bilinear nature of the cost functions, which
involve a product of the current with the voltage difference of a source. Consequently, a different update rule
to that of the line current µ must be defined, which takes into account the optimality conditions.

The aim of the update rules is to transition the system towards an optimal solution, i.e. one that satisfies

the KKT conditions. In this particular case, ∂L
∂im,n,s

should be made equal to zero by changing the µI
m,n,s and

µ
I
m,n,s values. Once this is achieved, those µ values should stop changing. Thus, when the current of a source

is above the maximum level, then µI
m,n,s is updated using:

µI
m,n,s (l +1) =P

[
µI

m,n,s (l )−βµi
∂L

∂im,n,s

]
(4.64)

On the other hand, if the opposite is true, and the current is below the minimum, then µ
I
m,n,s is updated

instead:

µ
I
m,n,s (l +1) =P

[
µ

I
m,n,s (l )+βµi

∂L

∂im,n,s

]
(4.65)

Looking at the first case as an example, if βµµ is set to 1 and the derivative value is substituted from (4.9),
this yields:

µI
m,n,s (l +1) =P

[
µI

m,n,s (l )−
(
2cS

2 (um −un)2im,n,s + cS
1 (um −un)+

λI
m −λI

n +µI
m,n,s −µI

m,n,s

)] (4.66)
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This can be demonstrated with a numerical example in the following way. A generator has a linear cost
function with cS

1 = −5m.u./W, voltage of 300V has a marginal cost of -1500m.u./A. Assuming it is operating
at its maximum value (i.e. it is off, with zero current), the difference in the LMP values would be lower in
magnitude than the marginal cost, for example 1000m.u./A. This results in:

µI
m,n,s (l +1) =P

[
µI

m,n,s (l )−
(
−1500+1000+µI

m,n,s (l )−µI
m,n,s (l )

)]
(4.67)

Since the minimum limit is not reached, µ
I
m,n,s (l ) has a value of 0, and the µI

m,n,s (l ) terms cancel each

other out. This results in a value of 500m.u./A for µI
m,n,s (l ). Substituting this back into the KKT derivative,

it can be verified that this indeed results in the condition being met. However, solving it directly will cause
increased oscillations and a reduced influence of the other variables, which is not a desired effect. As there
are four other variables which attempt to solve this derivative term via the updates, a value of 1/4 may be
chosen. However, βµi is set to half of that value for a more gradual transition. This method works in a similar
way for a generator operating at the minimum current, as well as both cases for a load. Note that, for shorter
notation, it is assumed here that the ∂L

∂im,n,s
expression and its components are from iteration l although it is

omitted.
Finally, the same idea as in Section 4.3.4 is used to de-ramp either µI

m,n,s or µ
I
m,n,s in the case that the

appropriate limit is not reached. In other words, when ∂L

∂µI
m,n,s

< 0, then upper limit µ follows the update:

µI
m,n,s (l +1) =P

[
µI

m,n,s (l )+βµµ
L

∂µI
m,n,s

]
(4.68)

The same thing holds in the case of undercurrents, where the update for that dual variable then becomes:

µ
I
m,n,s (l +1) =P

[
µ

I
m,n,s (l )+βµµ

L

∂µ
I
m,n,s

]
(4.69)

where βµµ is the update coefficient, which is chosen by tuning in the range of 0.1-0.5m.u./A2.

4.3.6. VOLTAGE LIMIT DUAL VARIABLE UPDATE
Unlike the source current and power limits, the voltage limits are not ensured by the droop control of the grid,
as can be seen in Fig. 3.3 and 3.4. The same holds for the current limits, which must be satisfied by the update
strategy of the OPF algorithm. Therefore, the update strategy developed for the voltage limits µ’s follow the

same reasoning as the line current limit ones. This means that µU
m,n,s and µ

U
m,n,s should be triggered by their

corresponding KKT conditions, ∂L

∂µU
m,n,s

and ∂L

∂µ
U
m,n,s

, respectively. This makes it so that more significant over-

and under-voltages have a stronger influence on ∂L
∂um

and ∂L
∂un

. As these are used in the updates of the node
voltages, the voltage congestion in the connected sources can thus be resolved. This effect can be seen in
the voltage update strategy in (4.28) as well as the interdependence diagrams of Fig. 4.2 and 4.3. Hence, the
update rules are defined as:

µU
m,n,s (l +1) =P

[
µU

m,n,s (l )+βµµ
∂L

∂µU
m,n,s

]
(4.70)

µ
U
m,n,s (l +1) =P

[
µ

U
m,n,s (l )+βµµ

∂L

∂µ
U
m,n,s

]
(4.71)

where βµµ is a tuning coefficient, where a value of 1.0m.u./V2 provides stable results based on simulations. In
the case that a voltage limit is not reached, this coefficient is reduced to half the value, for a smoother rate of
de-ramping and improved stability.

4.3.7. SOURCE POWER LIMIT DUAL VARIABLE UPDATE

The power limit dual variables appear in the two first optimality conditions, namely ∂L
∂um

and ∂L
∂im,n,s

. In the

first, as can be seen in (4.8), they are multiplied by the value of the current of their sources. Moreover, each
source power limit multiplier is present in two ∂L

∂um
expressions, since the latter is a nodal variable while the

former is linked to a source. On the other hand, µP
m,n,s and µ

P
m,n,s are multiplied by (um −un) in the second

KKT condition, ∂L
∂im,n,s

. Following the examples of the update equations for µI
m,n,s , µ

I
m,n,s , µU

m,n,s , and µ
U
m,n,s ,
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the update strategies of the power µ’s should include both KKT derivatives (4.8) and (4.9). A possible solution
is:

µP
m,n,s (l +1) =P

[
µP

m,n,s (l )−βµi
∂L

∂im,n,s
· 1

(um −un)
−βµu

∂L

∂um
· 1

im,n,s
+βµu

∂L

∂un
· 1

im,n,s

]
(4.72)

µ
P
m,n,s (l +1) =P

[
µ

P
m,n,s (l )+βµi

∂L

∂im,n,s
· 1

(um −un)
+βµu

∂L

∂um
· 1

im,n,s
−βµu

∂L

∂un
· 1

im,n,s

]
(4.73)

In this way, the power µ terms can cancel out the remainders of the KKT terms involved, which must
have a value of 0 at the optimal solution. However, the inclusion of the ∂L

∂um
terms may cause instability

because the value of im,n,s can become 0 when the source is turned off, thereby causing an infinite step size.
As a result, the algorithm would become completely unstable. This problem does not exist in the current
derivative component because the value of (um −un) is always within a finite limit, in the range of 300-400V
for LV grids for example. Therefore, the ∂L

∂um
term is removed, and the update rules are defined as:

µP
m,n,s (l +1) =P

[
µP

m,n,s (l )−βµi
∂L

∂im,n,s
· 1

(um −un)

]
(4.74)

µ
P
m,n,s (l +1) =P

[
µ

P
m,n,s (l )+βµi

∂L

∂im,n,s
· 1

(um −un)

]
(4.75)

where βµi is defined as in the source current limits. In the case of the power limits, simulations yield that this
value can be set to 0.25m.u./V.

Finally, in the same way as (4.68)-(4.69), µP
m,n,s and µP

m,n,s are decreased using ∂L

∂µP
m,n,s

and ∂L

∂µ
P
m,n,s

, respec-

tively, depending on which limit is not reached:

µP
m,n,s (l +1) =P

[
µP

m,n,s (l )+βµµ
∂L

∂µU
m,n,s

]
(4.76)

µ
P
m,n,s (l +1) =P

[
µ

P
m,n,s (l )+βµµ

∂L

∂µ
U
m,n,s

]
(4.77)

where βµµ is a tuning parameter in the range of 0.001m.u./W2.

4.3.8. LINE CONGESTION MANAGEMENT
In the case that one of the lines connected to a node is congested, while at the same time a voltage limit is

reached, then the problem becomes more complex. The µI
m,n term appears in the ∂L

∂um
KKT derivative, which

is frequently used for the update strategies of the other variables. Therefore, when a line is congested, the
optimization process is affected via the value of this derivative term. Therefore, in such circumstances, the
update of the voltage limit dual variable of the connected sources is adjusted to include this KKT condition.

This follows the same principle as the update strategy for µI
m,n itself, where a negative feedback loop is re-

quired in the update strategies for stabilizing reasons.
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4.4. ALGORITHM OVERVIEW

4.4.1. FLOWCHART AND VARIABLE INTERDEPENDENCE DIAGRAMS
An overview of the complete decentralized algorithm is given in Fig. 4.1. The first step is the initialization of
the primal, dual, and KKT variables, then the slopes of the droop curves are calculated. Then, the online op-
timization begins in an iterative manner, which is represented by a loop. Within this loop, the computational
nodes first communicate the values of the LMPs and line congestion dual variables with their direct neigh-
bors. Then, the KKT conditions are calculated based on the previous values of the primal and dual variables.
These are then used to perform the update strategy in order to calculate all the optimization variables for the
next iteration. Based on these values, the vertical intercepts of the main droop curves are calculated. This
is discussed in detail in Section 4.4.2. Next, the new values of the optimization variables and droop curve
parameters are sent to the grid. Using these values as reference setpoints, the grid implements the infor-
mation provided by the optimization layer in conjunction with the droop control scheme of the converters.
Afterwards, the measurements of the voltages and currents in the physical grid are taken and passed on to
the cyber layer. The steps within this purple rectangle represent the interface between the physical grid and
the optimization layer. Assuming that system is still operating in a stable fashion, a new iteration begins and
the process is repeated. In the case that the droop control fails to maintain grid stability, the optimization is
interrupted and the grid is left to operate using traditional methods.

Finally, a variable interdependence diagram, shown in Fig. 4.2, shows the connections between the opti-
mization variables. This includes which primal and dual variables appear in the optimality conditions. This
also shows the influences in the opposite direction, where the KKT condition differential terms affect the vari-
ables via the updates. As can be seen, this causes many positive and negative-feedback loops. However, these
loops, alongside indirect connections, increase the complexity of the algorithm. However, this is necessary
to reach the optimal solution, as previously discussed. Nevertheless, the system becomes more sensitive to
the values of the update coefficients. If these values are too high, oscillations increase, and the system can
even become unstable. Conversely, values that are too low will unnecessarily slow down the optimization and
more iterations will be needed to reach the optimal solution. Therefore, this diagram aids in understanding
the links between the components of the OPF, which allows for easier tuning of the parameters. An alternate
form of this variable interdependence is given in Fig. 4.3.

4.4.2. CREATING THE DROOP CURVES
The slope of the droop curves d ′ is fixed, and is only calculated once during the initialization process accord-
ing to equation (3.17). On the other hand, the y-intercept of the droop control curve changes during each
iteration of the optimization. As seen in Fig. 4.1, this is set by the optimization layer. By rearranging the
main droop curve equation given in (3.18) for i 0

m,n,s , the intercept of the function with the vertical axis can be
defined as:

i 0
m,n,s = im,n,s −d ′ ·um,n (4.78)

where im,n,s and um,n are the current and voltage values of the source sent by the optimization layer, respec-
tively. In this way, the droop curves are created and adjusted by the optimization layer during each iteration
before it is sent to all the converters in the grid.

4.4.3. SIMULATION VS. REAL-WORLD IMPLEMENTATION
Although the algorithm developed in this thesis is implemented and tested on simulated grids, the method is
intended to be applicable to real-life systems with minor modifications. However, some differences between
the two cases can be identified, which provide their own benefits and drawbacks.

Firstly, it should be noted that the use of online optimization reduced the length and severity of the os-
cillations during the process leading to the converged solution. This is largely due to the value of the KCL
mismatch ( ∂L

∂λI
m

being equal to zero at each iteration, as previously discussed. This derivative term is used in

the update rules of many optimization variables, as discussed in Sections 4.3.1-4.3.3.
Furthermore, the inclusion of droop control in the load flow simulation of the grid means that a feasible

solution could always be reached. However, some contrasts between converters in the real-world grids and
simulated ones exist. For example, the simulated converters are assumed to be linearly controllable, as seen
in the main droop curve of Fig. 3.3 and 3.4. All though this is an ideal characteristic, it may not be true for
all converters in reality. Moreover, in a real-life system, it may be the case that the limits of the converters
are more constraining. This may be, for example, tighter current limits of a load, yielding less flexible droop
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curve with a lower slope value. Such an scenario may potentially result in a failure of the grid to reach feasible
solution, which would cause instability or even a system collapse.

Another aspect which is neglected in the simulation of the grid is the communication losses and delays be-
tween the communication nodes. Some of these issues may be alleviated by implementing an asynchronous
communication scheme [1]. However, this is not in the scope of this thesis as this is the first version of a
decentralized OPF algorithm for bipolar DC grids.

Finally, the transients which exist in a real DC grid are not included in the modelling and simulation
used in this thesis. It is assumed that such processes occur at a much smaller time scale than that of the
optimization, which lie in a higher level of the control scheme. However, if the step sizes of the optimization
algorithm are not sufficiently long in time, then some instabilities may be created. This can occur if a new
OPF setpoint is sent to the grid before the results of the previous iteration have reached a quasi steady-state. A
similar problem can be created if the magnitude of the step is too large, causing a large dV/dt or di/dt within
a converter for example, which may trigger undesired transients. Another physical example is the grounding
schemes which are required for a DC grid. These can exist in various forms, including multiple grounding
points or capacitive grounding, which are proposed to allow selectivity for larger distribution netoworks [2].
However, such processes are not covered in this thesis as they are out of the scope of the project.

In summary, simplifications are made in the modelling of the converters and lines in the grid, while tran-
sients and imperfect communication are neglected.
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Figure 4.1: Flowchart of the overall logic behind the decentralized algorithm, including the interface with the grid.
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Figure 4.2: Variable interdependence diagram for the update strategy.
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Figure 4.3: Alternate representation of the variable interdependence diagram for the update strategy.





5
CASE STUDIES

This chapter presents four case studies which are used to test the algorithm under disparate operating con-
ditions and scenarios. The first (CS1) is a smaller six-node system with two variable generators and two fixed
power loads. Moreover, the second network (CS2) is a relatively larger one consisting of nine physical nodes,
making three bipolar communication nodes. It has variable loads and sources with their distinctive marginal
costs in order to demonstrate the effect of the pricing on the optimization. Furthermore, the third case study
(CS3) is designed to overload some of the branches in the system, and hence illustrates the line congestion
management of the algorithm. Finally, the fourth case study (CS4) includes two loads with different power
limits in order to illustrate the effect of unbalanced sources on the system.

5.1. CASE 1: FIXED POWER LOADS
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Figure 5.1: Circuit schematic of the six-node network with two fixed loads and two variable generators.

The first case study (CS1) is a 6-Node Network with two generators and two loads. While there are six
physical nodes, there are actually two communication nodes as can be seen in Fig. 5.1. On the left, two
variable generators, with capacities of 20kW and linear marginal cost values of -5m.u./W, are each connected
between a pole and the neutral. On the right side, two fixed-power loads of 10kW are present. Load 0 is
connected from the positive node 3 to the neutral node 1, while load 1 is on the negative half; between neutral
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node 1 and negative node 5. The two computational nodes are connected to each other via three identical
lines with conductance Gm,n values of 25Ω−1. This means that a voltage difference of 1V over one of the lines
will cause a current of 25A to flow through it. These values are chosen for simplification purposes, but they
are comparable to that of a 100m long copper conductor with a cross section of 50mm2. Moreover, the lines
are set to have a sufficiently high current limit, as this is not the focus of this case study. In real systems,
most standards use voltage limits of around 325V to 375V for converters. However, the sake of clarity in the
numerical results, these limits are rounded to 300V and 400V, respectively. Finally, a value of 5V is used for
the voltage deviation in calculating the slopes of the droop curves in (3.17), as per the standardization for DC
grids [1].

The results of the simulation of this case study are given in Fig. 5.2-5.21. Firstly, Fig. 5.2 shows that the
voltages of the two positive nodes 2 and 3 converge to around 401V and 400V, respectively. Looking at the
neutral and negative voltages in Fig. 5.3 and 5.4, respectively, it is computed that the final values of the source
voltages are then 400V for the generators and 399V for the loads. While this final value is reached within a
small number of iterations, it can be seen that an overshoot of the generator voltages occurs within the first
100 iterations. These overvoltages therefore cause the corresponding dual variables of the generator upper

voltage limits µU
m,n,s to increase sharply during this time frame, as seen in Fig. 5.11. Note that the same limits

are not violated in the case of the loads, where the µU
m,n,s are not triggered in Fig. 5.12. These dual variables

appear in ∂L
∂um

, which is used in the update strategy of the node voltages. In other words, they are indirect
signals within the OPF algorithm to adjust the nodal voltages when the limits of the connected sources are
violated. This relationship is discussed in Chapter 4 and can be seen in the interdependence charts of Fig.
4.2 and 4.3. The same phenomena can be seen in the negative nodes, where the voltages are given in Fig.
5.4. However, because the loading of the system is balanced in this case study, the voltages of the two neutral
buses are the same and no current flows in that conductor.

Next, the real-time values of the source currents and powers are given in Fig. 5.5 and 5.6, respectively. As
can be seen in Fig. 5.6, the value of the load powers increases sharply to 10kW, which is the minimum value
set for the OPF. The generators have the same power output, but this is equal to -10kW due to the chosen
convention. This is achieved by increasing the source currents in the first 50 iterations of the simulation,
as seen in 5.5. This is reflected in 5.16, where the dual variable linked to the load minimum power limit
begins to increase sharply. The same does not hold for the load current and generator power and current
dual variables, as shown in Fig. 5.13-5.15, as those limits are not reached in this case study. The source
currents converge to a value of approximately 25A, as this is the magnitude needed for a power of 10kW at the
maximum voltage difference of 400V over the generators. The currents flow clockwise in the circuit as a result
of the aforementioned voltage drops of 1V, from node 2 to node 3, and from node 5 to node 4.

The last variables to be discussed are the LMPs, which are given in Fig. 5.7-5.9. Because the system is bal-
anced, the neutral nodes remain close to zero, while the positive λI

m ’s converge to approximately 2000m.u./A
after an initial overshoot. This is the expected solution, because it is equal to the product of the generators’
marginal cost (5m.u./W) with the voltage difference over them (400V). This occurs in this case because the
generators are still operating within their marginal region. Conversely, the loads are operating in their min-
imum power zone, and therefore their locational marginal price is dependent on those of their neighboring
nodes. This is achieved using the consensus term of the algorithm, where the ∂L

∂um
term is used for the update

of λI
m . The same holds for the negative nodes, as seen in Fig. 5.9, due to the symmetry of the simulated grid.

The final part of the analysis pertains to the optimality of the reached solution. This is checked according
to the KKT conditions, as discussed in previous chapters. Since the physical limits are satisfied, the conditions
in (4.11)-(4.17) are met. Moreover, the complementary slackness and positivity conditions of (4.18)-(4.24) and
(4.25)-(4.27), respectively, are satisfied via the update strategy. The first three KKT condition equations are the
most complex, and are the most directly linked to the optimality of the solution. Because the optimization is
done online by application to the grid, the KCL condition in (4.10) is always automatically met by the mea-
sured values. This is is portrayed in Fig. 5.19, where the value from the grid is zero in all iterations of the
simulation. On the other hand, (4.8) and (4.9) are the consensus and innovation terms, respectively, and are
depicted in Fig. 5.17 and 5.18. In the beginning, ∂L

∂um
reaches values in the range of 10,000m.u./V, indicating

that the variables are still not at the optimal solution. The same holds for ∂L
∂im,n,s

, where the initial values are

in the range of -2000m.u./A, depending on the source. However, within 250 iterations, all these derivative
terms converge at zero, meaning that the conditions are met. The reason that the system settles at the maxi-
mum voltage over the generators is that this allows for the same amount of power to be delivered for a lower
amount of current. Therefore, the total power losses in the lines is reduced. This effect is captured by the KKT
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condition ∂L
∂um

, which includes the conductance values of the connected lines Gm,n and is used to update the
voltages and LMPs. In conclusion, the fulfillment of these conditions means that the reached solution is an
optimal one.
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Figure 5.2: Voltages for positive nodes in the 6-node fixed power loads case (CS1).
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Figure 5.3: Voltages for neutral nodes in the 6-node fixed power loads case (CS1).
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Figure 5.4: Voltages for negative nodes in the 6-node fixed power loads case (CS1).
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Figure 5.5: Source currents in the 6-node fixed power loads case (CS1).
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Figure 5.6: Source powers in the 6-node fixed power loads case (CS1).
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Figure 5.7: Positive node LMPs in the 6-node fixed power loads case (CS1).
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Figure 5.8: Neutral node LMPs in the 6-node fixed power loads case (CS1).
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Figure 5.9: Negative node LMPs in the 6-node fixed power loads case (CS1).
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Figure 5.10: Line current limit Lagrange multipliers in the 6-node fixed power loads case (CS1).
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Figure 5.11: Generator voltage limit Lagrange multipliers in the 6-node fixed power loads case (CS1).
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Figure 5.12: Load voltage limit Lagrange multipliers in the 6-node fixed power loads case (CS1).
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Figure 5.13: Generator current limit Lagrange multipliers in the 6-node fixed power loads case (CS1).
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Figure 5.14: Load current limit Lagrange multipliers in the 6-node fixed power loads case (CS1).
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Figure 5.15: Generator power limit Lagrange multipliers in the 6-node fixed power loads case (CS1).
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Figure 5.16: Load power limit Lagrange multipliers in the 6-node fixed power loads case (CS1).
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Figure 5.17: Voltage derivative of the Lagrange function at every node in the 6-node fixed power loads case (CS1).
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Figure 5.18: Source current derivative of the Lagrange function at every generator and load in the 6-node fixed power loads case (CS1).
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Figure 5.19: Nodal current mismatch ( ∂L
∂λI

m
) at every node in the 6-node fixed power loads case (CS1). The value is always zero because

KCL is always met by the grid in online optimization.
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Figure 5.20: Change in the nodal voltages between OPF set-points and grid simulation measurements in the 6-node fixed power loads
case (CS1).
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Figure 5.21: Change in the source currents between OPF set-points and grid simulation measurements in the 6-node fixed power loads
case (CS1).
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5.2. CASE 2: GENERATOR CONGESTION/ DIFFERENT PRICES
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Figure 5.22: Circuit schematic of the 9-node system with variable loads and generators (CS2). The generators on the left are cheaper but
have a lower power capacity.

The second case study (CS2) consists of 9 physical nodes and 3 communication nodes, as depicted in
Fig. 5.22. It is designed as a scenario to test the power congestion management of the generators alongside
variable loads, with their own cost functions, using demand response. On the left side, two cheap generators
with a marginal cost of -4m.u./W are connected. However, their minimum power is -4kW, meaning that their
power output capacity is only 4kW. On the other hand, the generators on the right are more expensive with a
marginal cost of -5m.u./W and a higher power range of -10kw to 0kW. Finally Loads in middle have a linear
cost function with cS

1 equal to -5m.u./W, and a power range of 0-10kW. This means that each Watt that the
load consumes will generate a revenue of 5 monetary units to the overall system. By designing the case in this
way, it is comparable to an economic dispatch problem, where generators with lower costs are activated first
in order to satisfy the load demand.

The results of this simulated case study are given in Fig. 5.23-5.42. In the first 50 iterations, Fig. 5.26
and 5.27 show that the source currents and powers increase sharply in magnitude, before several limits are
reached. More specifically, generators 0 and 1 reach their minimum power limit of -4kW. Due to the power
limits in the droop control in the grid layer as well as the current clamping in the OPF code, this power value
is never exceeded, and the values for those two generators remains at the optimal point. When looking at
the other sources, it is seen that the current and power continue increasing. This happens until the load
reaches its maximum of power limit of 10kW, where the corresponding dual variable (see Fig. 5.37) is triggered
for some iterations. However, during this transitional period, the more expensive generators 2 and 3 are
activated, and begin to inject power into the grid, despite this not being part of the optimal solution. This
occurs because the grid layer forces them on in order to maintain stability of the system, with the help of the
droop control. The reason behind this steep initial increase in current is due to the ∂L

∂im,n,s
term. As shown

in Fig. 5.39, the initial value of this is as high in magnitude as almost 2000m.u./A. By referring to (4.9), an
initial value of zero for all λI

m ’s and µ’s means that this derivative term is highly negative for the loads, thereby
significantly increasing their current as per the update strategy. However, as the LMPs increase to the correct
value as seen in Fig. 5.28-5.30, this causes the KKT terms to increase towards zero, and hence the source
currents begin to gradually decrease again. Thus, the system converges stably with the cheaper generators at
their output limit of -4kW. Due to demand response, the loads also converge at 4kW, and do not draw power
from the more expensive generators, which are turned off. The generators on the left go to the maximum
absolute value because the load can compensate them for their cost. Conversely, the generators on the right
are off because the load is not providing enough compensation. This is because the generator requires a
higher price incentive than its own cost to account for the losses. Otherwise, it would lose money by providing
power, and thus should not be activated according to the optimization.
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Next, the dual variables are analyzed, as they are a vital part for the convergence of the optimization.
Firstly, as previously mentioned the LMPs converge to the expected values, as seen in Fig. 5.28-5.30. On the
left side, this is equal to approximately 1911.6m.u./A and -1911.6m.u./A, for the positive and negative nodes,
respectively. In the center of the grid, where the loads are connected, the LMPs are slightly higher, with a
magnitude of 1913.7m.u./A. This discrepancy between the LMPs of the nodes is due to what is often referred
to in literature as marginal losses, which are associated with the power losses in the system. The LMPs on the
right side are equal to the ones in the center because the generators connected there are also non-marginal
(maximum power region), and therefore follow the λI

m values of the neighbors due to consensus. As the test
results support, the LMP values of these connected must be the same, as no current or power flows between
them at the optimal solution. The numerical values of the λI

m can be validated using (4.43), where the power
LMP should be equal to the marginal cost for a marginal source. In this case, the voltage difference does not
reach the maximum of 400V, but converges at around 383V. This means that the LMPs in this case are dictated
by the marginal costs of the loads, which are the marginal sources in the system. Furthermore, because the

minimum power limits of generators 0 and 1 are reached, µ
P
m,n,s converge at around 0.99m.u./W as shown in

Fig. 5.36. As expected, this is equal to the difference between the marginal prices of the generators and the
loads. All the other µ’s converge at zero, because the other limits such as line current limit are not reached.
It should be noted that the voltages do not take the maximum value here, as seen in Fig. 5.23-5.25. However,
the optimal solution is usually at the maximum voltage, in order to reduce the losses. Nevertheless, Fig. 5.38
and 5.39 show that a local optimum value has been reached. For the first term, the nodal derivatives converge
between -0.088m.u./V and 0.0007m.u./V, depending on the nodes, with the highest nonzero value being in
node 4. Looking at the equation (4.8), this is equivalent to an error in the LMP of 0.00176m.u./A when dividing
by the conductance value. Compared to the converged value of 1913.74m.u./A, this equates to a negligibly
small error. The same analysis holds for the ∂L

∂im,n,s
terms, which converge to negligibly small values between

0.000119m.u./A and 0.005m.u./A. Looking at the losses, it is calculated that the total power losses in the lines
are only around 8.9W, with approximately 4.4W in each of the two conducting lines. This equates to a small
fraction of the total generated power; 0.11%. Conversely, if the obtained solution yielded in the maximum
voltage of 400V, then the currents would be reduced to about 10A in order to deliver the same 4kW of power for
each load. As a result, the losses in the lines would be reduced to 4W each. Compared to 4.4W, the increase in
the total losses by having a lower voltage level is negligible. Finally, the cause behind this effect is attributed to
the central solvers used to simulate the physical grid. As shown in Fig. 5.41, this part of the simulation causes
a significant deviation from the OPF setpoints. More specifically, the grid values of the voltages to decrease
significantly in the earlier stages of the simulation. This is attributed to the solver packages used, which may
sometimes not work very well with the nonlinear and piece-wise constraints used to model bipolar DC grids
with droop control. Therefore, it can be concluded that the operating point achieved by the decentralized
OPF algorithm is a desired one, where a locally optimal solution is reached.
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Figure 5.23: Voltages for positive nodes in the 9-node variable sources case (CS2).
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Figure 5.24: Voltages for neutral nodes in the 9-node variable sources case (CS2).
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Figure 5.25: Voltages for negative nodes in the 9-node variable sources case (CS2).
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Figure 5.26: Source currents in the 9-node variable sources case (CS2).
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Figure 5.27: Source powers in the 9-node variable sources case (CS2).
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Figure 5.28: Positive node LMPs in the 9-node variable sources case (CS2).
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Figure 5.29: Neutral node LMPs in the 9-node variable sources case (CS2).
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Figure 5.30: Negative node LMPs in the 9-node variable sources case (CS2).
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Figure 5.31: Line current limit Lagrange multipliers in the 9-node variable sources case (CS2).
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Figure 5.32: Generator voltage limit Lagrange multipliers in the 9-node variable sources case (CS2).
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Figure 5.33: Load voltage limit Lagrange multipliers in the 9-node variable sources case (CS2).
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Figure 5.34: Generator current limit Lagrange multipliers in the 9-node variable sources case (CS2).
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Figure 5.35: Load current limit Lagrange multipliers in the 9-node variable sources case (CS2).
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Figure 5.36: Generator power limit Lagrange multipliers in the 9-node variable sources case (CS2).
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Figure 5.37: Load power limit Lagrange multipliers in the 9-node variable sources case (CS2).
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Figure 5.38: Voltage derivative of the Lagrange function at every node in the 9-node variable sources case (CS2).
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Figure 5.39: Source current derivative of the Lagrange function at every generator and load in the 9-node variable sources case (CS2).
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Figure 5.40: Nodal current mismatch ( ∂L
∂λI

m
) at every node in the 9-node variable sources case (CS2). The value is always zero because

KCL is always met by the grid in online optimization.
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Figure 5.41: Change in the nodal voltages between OPF set-points and grid simulation measurements in the 9-node variable loads case
(CS2).
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Figure 5.42: Change in the source currents between OPF set-points and grid simulation measurements in the 9-node variable loads
case (CS2).
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Figure 5.43: Circuit schematic of the 9-node system with variable loads and generators (CS3). The lines on the left become congested
due to the lower marginal cost of the generators on that side.

The third case study (CS3), depicted in Fig. 5.43, aims to test the algorithm’s ability to cope with line
congestion. In the middle, communication node 1 contains two variable loads. The two loads have a marginal
cost of -5m.u./W and a controllable power value in the range of 0-10kW. The top load is connected from
physical node 4 to 1, while the bottom one is connected between nodes 1 and 7. On the left side, two cheap
generators, with marginal costs of -4m.u./W and sufficiently high power generation capacities of -20kW, are
present. The lines connecting the generator nodes on the left to the loads in the center of the grid have a
conductance of 25Ω−1 and a maximum current limit of 20A. Finally, the last two generators on the right side
have a higher cost of -5m.u./W and a power capacity of up to -10kW each.

The results of this simulated case study are plotted in Fig. 5.44-5.61. Firstly, Fig. 5.44 shows that the
voltages on the positive nodes begin to increase sharply until they overshoot the 440V mark within the first
50 iterations. This is due to the very large negative value of ∂L

∂um
at node 3, where the positive side of one of

the cheaper generators is connected. Although this is not initially the case for all nodes, the droop control
in the physical layer forces the voltages to adjust in order to maintain grid stability by satisfying the hard
limits of the system. Consequently, the voltages in the neutral and negative nodes also begin to increase,
as shown in Fig. 5.45 and 5.46, respectively. After the 400th iteration, the positive, neutral, and negative
node voltages converge to approximately 440V, 40V, and -360V, respectively. As expected, this means that the
voltage differences over the generators are at the maximum value of 400V, resulting in reduced conduction
losses. The dynamic transition in the beginning takes place until the upper voltage limits of the sources are
violated. This causes the dual variables shown in Fig. 5.53 and 5.54 to be activated, which contribute to
decreasing the voltage again via the ∂L

∂um
term used in the update strategy. Once the voltages start to decrease

in order to satisfy the constraints, the µ values also begin de-ramping as intended. At the steady state region,
the voltage dual variable of the generators converges to a nonzero value towards the end of the simulation
because the potential difference over them is at the upper limit of 400V. During the same period, the violation
of the lines’ current limits also triggers the responsible multipliers from an early stage in the simulation, as
seen in Fig. 5.52. At around the 50th iteration, when the voltage is adjusted to manage the line congestion,

µI
3,4 and µI

7,6 seize to increase and converge at approximately 392m.u./A.
Next, the source currents and powers are plotted in Fig. 5.47 and 5.48, respectively. The power consumed

or delivered by the sources directly follows the same dynamic behavior as the current flowing through them,
as the latter is the controlled optimization variable. In the beginning of the simulation, a high negative value
of ∂L

∂im,n,s
causes the load currents to increase sharply within less than 10 iterations. The mirrored effect occurs

in the two low-cost generators on the left side, while the higher cost of the generators on the right causes
them to remain at zero current. During this first period, the high source currents temporarily overload the
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connected branches, which have a maximum amperage of 20A. However, the currents are capped at 25A by
the 10kW power limit by the droop control of the loads. As expected, Fig. 5.58 shows that this event causes

the µP
m,n,s of the loads to increase sharply for some iterations, before decreasing again when the power limits

are satisfied. The aforementioned congestion management aspect of the OPF algorithm causes the source
currents to gradually converge to 20.0A. This is achieved with a voltage difference between nodes 3 and 4,
and 8 and 6 of 0.8V, which results in the same current value of exactly 20.0A to flow through the lines. This
results in a power of approximately 8kW being consumed by each of the two loads. Due to the line losses,
the power actually produced by the generators is slightly higher in magnitude. Furthermore, the oscillations
seen in almost all the variables in the simulations are caused by the deviations between the grid layer and the
OPF setpoints. This is reflected in the core variables of node voltage and source current in Fig. 5.62 and 5.63,
respectively.

While the previously discussed variables are mainly concerned with the goal of the OPF to meet the phys-
ical constraints of the system, the final part of the analysis pertains to the economic optimality of the system.
More specifically, LMPs serve as vital economic signal to the other variables of the optimization. Firstly, Fig.
5.49 demonstrates that the LMPs at the positive nodes increase sharply, overshooting the optimum for some
iterations, before converging at their final values. At the leftmost node 3, the value converges to 1600m.u./A.
This numerical solution can be validated by computing a power LMP which has an absolute value of 4m.u./W.
As expected, this is equal in magnitude to the marginal cost of the generator, which is indeed operating within
the marginal operation region. Similarly, the marginal loads connected between nodes 4 and 1, and nodes 1
and 7, both have a current LMP difference of 1996m.u./A over them. Again, as they are operating marginally,
with a voltage difference of 399.2V, the resultant power LMP is calculated to have a magnitude of 5m.u./W.
Due to the consensus part of the C+I algorithm, the deactivated generators on the right have the same LMP
values as the directly neighboring nodes. Moreover, as shown in Fig. 5.51, the behavior of the LMPs of the neg-
ative nodes is the same as the positive ones. This is due to the symmetry present in this case study. Moreover,
Fig. 5.50 shows the expected result that the LMP values converge to zero in all neutral poles, as no current or
power is flowing between them. Finally, Fig. 5.59-5.61 verify that the converged solution is an optimal one.
Thus, the OPF algorithm is demonstrated to successfully resolve line congestion in a decentralized manner.
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Figure 5.44: Voltages for positive nodes in the 9-node line congestion case (CS3).
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Figure 5.45: Voltages for neutral nodes in the 9-node line congestion case (CS3).
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Figure 5.46: Voltages for negative nodes in the 9-node line congestion case (CS3).
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Figure 5.47: Source currents in the 9-node line congestion case (CS3).
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Figure 5.48: Source powers in the 9-node line congestion case (CS3).
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Figure 5.49: Positive node LMPs in the 9-node line congestion case (CS3).

0 200 400 600 800
Iteration number [-]

80

60

40

20

0

20

I m
 [m

.u
./A

]

Current LMPs: I
m (Neutral Nodes)

bus 0
bus 1
bus 2

Figure 5.50: Neutral node LMPs in the 9-node line congestion case (CS3).
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Figure 5.51: Negative node LMPs in the 9-node line congestion case (CS3).
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Figure 5.52: Line current limit Lagrange multipliers in the 9-node line congestion case (CS3).
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Figure 5.53: Generator voltage limit Lagrange multipliers in the 9-node line congestion case (CS3).
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Figure 5.54: Load voltage limit Lagrange multipliers in the 9-node line congestion case (CS3).
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Figure 5.55: Generator current limit Lagrange multipliers in the 9-node line congestion case (CS3).
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Figure 5.56: Load current limit Lagrange multipliers in the 9-node line congestion case (CS3).
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Figure 5.57: Generator power limit Lagrange multipliers in the 9-node line congestion case (CS3).
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Figure 5.58: Load power limit Lagrange multipliers in the 9-node line congestion case (CS3).
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Figure 5.59: Voltage derivative of the Lagrange function at every node in the 9-node line congestion case (CS3).
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Figure 5.60: Source current derivative of the Lagrange function at every generator and load in the 9-node line congestion case (CS3).
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Figure 5.61: Nodal current mismatch ( ∂L
∂λI

m
) at every node in the 9-node line congestion case (CS3). The value is always zero because

KCL is always met by the grid in online optimization.
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Figure 5.62: Change in the nodal voltages between OPF set-points and grid simulation measurements in the 9-node line congestion
case (CS3).
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Figure 5.63: Change in the source currents between OPF set-points and grid simulation measurements in the 9-node variable loads
case (CS3).
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5.4. CASE 4: UNBALANCED LOADS WITH DEMAND RESPONSE
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Figure 5.64: Circuit schematic of the 9-node system with unbalanced loading (CS4). The loads have a higher marginal cost magnitude
than the generators, so they are activated to the maximum power.

The fourth and final case study (CS4) presented in this thesis involves unbalanced loading on the positive
and negative poles. As depicted in Fig. 5.64, the loads connected in the middle of the network are con-
trollable, and employ demand response with a marginal cost of -5m.u./W. The top load has a higher power
consumption capacity of up to 15kW, while the second can only consume up to 10kW. The network consists
of 3 communication nodes and 9 physical nodes. On the left and right sides, there are two controllable gen-
erators each, totalling four generators. Their nodes are connected to the nodes of the loads via 6 conductors
with Gm,n values of 25Ω−1. Finally, all generators have a maximum power output capacity of 20kW each, and
a low marginal cost of -4m.u./W.

The results of the case study are plotted in Fig. 5.65-5.84. Initially, the update strategy causes the voltages
of the positive nodes to increase as shown in Fig. 5.65. However, this quickly causes the voltages over the
sources to exceed the maximum threshold, thereby triggering the associated dual variables in Fig. 5.74 and
5.75. Consequently, the nodal voltages on the positive poles begin to decrease for some iterations in order

to satisfy the physical limitations of the system. After an initial undershoot in the voltages, the µU
m,n,s values

begin to decrease, thereby causing um to ramp up again. On the negative side, Fig. 5.67 shows a similar yet
less extreme pattern. This is because the load and generators on the negative poles have a lower amount of
power, and therefore the change in voltage due to the optimization is more gradual. Moreover, the unbalance
in the two poles causes some fluctuations in the neutral buses as depicted in Fig. 5.66.

Next, Fig. 5.68 shows that the source currents increase sharply in magnitude during a small number of
iterations of the algorithm. This is due to the innovation terms ∂L

∂im,n,s
, plotted in Fig. 5.81, which are used in

the update strategy of the load currents and cause them to increase steeply. However, looking at Fig. 5.69, it is
found that the maximum power limits of the loads are reached from an early stage of the optimization. As a
result, the loads begin to operate in the maximum power region, which causes the responsible dual variables
in Fig. 5.79 to begin rising. Consequently, the current update from that point in the simulation is follows the
inverse behavior of the voltage. In other words, the simulation shows that the OPF causes the source currents
to decrease, while the voltages to increase. This means that the loads continue to operate within the constant
power region while reducing their currents in order to reduce the losses in the lines. Towards the end of the
simulation, the top load has an im,n,s value of approximately 37.72A while the bottom one consumes 26.07A.
This is supplied by the generators, where the top ones output 18.86A, and the bottom ones produce 13.03A
each. The disparity is due to the unbalanced loading, which causes a current of 5.83A to flow in each neutral
line, from node 1 to node 0 on the left side, and from node 1 to node 2 on the right.

This rapid convergence towards the optimum is largely driven by the price signals, or LMPs, which are
given in Fig. 5.70-5.72. Although there is an initial overshoot, followed by an undershoot during adjustment,
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the source current LMPs converge in the neighborhood of 1600m.u./A. This is the expected result, as the non-
marginal loads follow the LMPs of the neighboring marginally operated generators. Looking more closely,
the LMP difference over top-side generators reaches 1595.08m.u./A by the 1000th iteration. With a voltage
difference of 398.61V, the magnitude of the resulting power LMP is 4.00m.u./W, which is valid because it is
equal to the marginal cost of the generators. However, the current LMP difference over the bottom generators
is lower at this point in the simulation, with a value of 1536.64m.u./A. Nevertheless, as previously mentioned,
the source voltage on this side is still not at the maximum. This means that with a voltage difference of around
383.90V, the power LMP is still computed to have the same absolute value of 4.00m.u./W. In terms of the loads,
similar results are found, except that the power LMPs are slightly higher at 4.03m.u./W and 4.01m.u./W for
the top and bottom sides, respectively. This is caused by the aforementioned marginal losses. Furthermore,
Fig. 5.80 and 5.81 show that the two first order optimality conditions experience some significant oscillations
in the first 400 iterations. This is highly connected to the deviations from the OPF setpoints of the measured
node voltages and source currents, as seen in Fig. 5.83 and 5.84, respectively. Nonetheless, it should be
noted that the values of these voltages are all increasing towards the upper limits gradually. For example, the
voltage over bottom left generator increases by 2V over the last 100 iterations. As a result, the KKT conditions
all approach the zero point gradually near the end of the simulation. Therefore, it can be concluded that the
system is converging at the optimal solution.
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Figure 5.65: Voltages for positive nodes in the 9-node unbalanced loads case (CS4).
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Figure 5.66: Voltages for neutral nodes in the 9-node unbalanced loads case (CS4).
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Figure 5.67: Voltages for negative nodes in the 9-node unbalanced loads case (CS4).
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Figure 5.68: Source currents in the 9-node unbalanced loads case (CS4).
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Figure 5.69: Source powers in the 9-node unbalanced loads case (CS4).



84 5. CASE STUDIES

0 200 400 600 800
Iteration number [-]

0

250

500

750

1000

1250

1500

1750
I m
 [m

.u
./A

]

Current LMPs: I
m (Positive Nodes)

bus 3
bus 4
bus 5

Figure 5.70: Positive node LMPs in the 9-node unbalanced loads case (CS4).
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Figure 5.71: Neutral node LMPs in the 9-node unbalanced loads case (CS4).
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Figure 5.72: Negative node LMPs in the 9-node unbalanced loads case (CS4).
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Figure 5.73: Line current limit Lagrange multipliers in the 9-node unbalanced loads case (CS4).
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Figure 5.74: Generator voltage limit Lagrange multipliers in the 9-node unbalanced loads case (CS4).
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Figure 5.75: Load voltage limit Lagrange multipliers in the 9-node unbalanced loads case (CS4).
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Figure 5.76: Generator current limit Lagrange multipliers in the 9-node unbalanced loads case (CS4).
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Figure 5.77: Load current limit Lagrange multipliers in the 9-node unbalanced loads case (CS4).
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Figure 5.78: Generator power limit Lagrange multipliers in the 9-node unbalanced loads case (CS4).
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Figure 5.79: Load power limit Lagrange multipliers in the 9-node unbalanced loads case (CS4).
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Figure 5.80: Voltage derivative of the Lagrange function at every node in the 9-node unbalanced loads case (CS4).
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Figure 5.81: Source current derivative of the Lagrange function at every generator and load in the 9-node unbalanced loads case (CS4).



90 5. CASE STUDIES

0 200 400 600 800
Iteration number [-]

4

2

0

2

4
dL

/d
I m
 [A

]

KKT3: dL/d I
m

bus 0
bus 1
bus 2
bus 3
bus 4
bus 5
bus 6
bus 7
bus 8

Figure 5.82: Nodal current mismatch ( ∂L
∂λI

m
) at every node in the 9-node unbalanced loads case (CS4). The value is always zero because

KCL is always met by the grid in online optimization.
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Figure 5.83: Change in the nodal voltages between OPF set-points and grid simulation measurements in the 9-node unbalanced loads
case (CS4).
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Figure 5.84: Change in the source currents between OPF set-points and grid simulation measurements in the 9-node unbalanced loads
case (CS4).





6
CONCLUSIONS AND FUTURE RESEARCH

6.1. CONCLUDING REMARKS
To summarize, the C+I method was successfully implemented for the development of a fully decentralized
OPF algorithm for bipolar DC grids. The algorithm uses grid measurements in order to achieve online opti-
mization. This was accomplished by developing a model for bipolar DC grids which employ localized droop
control schemes. Based on this, a new update strategy was created, which accounted for the droop control
in the physical grid layer. Moreover, the created algorithm requires a low amount of communication, which
is only required between neighboring nodes. More specifically, the modelling of the grid and the use of on-
line measurements meant that the number of communicated variables was reduced. Furthermore, four case
studies with various common operational scenarios were tested successfully. Namely, these included grids
with: fixed power loads, variable generators, line congestion management, and unbalanced loading. There-
fore, it may be concluded that the main objective of this thesis project was attained.

6.2. ANSWERING THE RESEARCH QUESTIONS
The primary goal of this study is reflected upon by answering the research questions posed in Section 1.6.

HOW CAN THE CONSENSUS+INNOVATION METHOD BE APPLIED IN THE CASE OF BIPOLAR DC
GRIDS?
The first question aims to compare the application of the C+I method in the case of bipolar DC grids with
unipolar DC and even AC ones. While the fundamental philosophy of the C+I method to use the KKT condi-
tions in the update strategies remains the same for all three implementations, the one for bipolar DC grids is
currently the most complex. The original application for a lossless approximation for AC grids [13] proposes
to only use the constraints which are directly related to the variables, according to (2.8). On top of that, it is
suggested that some of the µ’s do not require an update as they only appear in one constraint. However, this
could not be applied in the case of bipolar DC grids, due to a higher level of inter-connectivity between the
variables. This was illustrated in the interdependence diagrams given in Fig. 4.2 and 4.3.

In contrast to unipolar grids, the complexities introduced by bipolar topologies are deepened by the in-
troduction of nonlinear constraints, such as those of the power limits. The effect of this is evident when com-
paring the update strategy developed for unipolar DC grids, summarized in Section 2.6, with that of bipolar
ones in Section 4.3. An example of this is the update of the dual variable of the source power limits, which
is developed in 4.3.7. As previously discussed, this update rule has two variants depending on which region
the source is operating in during that iteration. When a limit is reached, it is found that the innovation term
must be used to update this dual variable according to (4.74) or (4.75). Another change made in this thesis
is of the formulation of the OPF for bipolar grids from the previous centralized version [2]. For example, the
disappearance of a reference node for decentralized grids meant that the voltage limits had to be defined for
the sources instead of the individual nodes themselves. In other words, these constraints were reformulated
in terms of differences between node voltages instead of the nodes themselves.

Thus, significant changes to the formulation of the OPF were necessary to adequately model bipolar
topologies, which allows the problem to be solved in a fully decentralized way. Consequently, a new update
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strategy based on the C+I method was created for this purpose.

HOW DOES THE CHANGE IN THE CHOSEN OPTIMIZATION VARIABLES AFFECT THE MODELLING

OF THE GRID AND THE CONSEQUENT UPDATE STRATEGY?
As previously discussed, the main optimization variables for unipolar DC grids were node voltage and source
powers. This is possible because the single line diagram (SLD) representation could be used to model the
grid, and the resulting OPF was comprised of only linear constraints. Conversely, bipolar grids can have un-
balanced loading, meaning that the SLD equivalent becomes an invalid model. Moreover, the generators
and loads are modeled as sources which are connected between two physical nodes within a communication
node. As a result of this, choosing voltage and power as the core decision variables leads to a more cumber-
some formulation of some of the physical constraints of the OPF, such as the power mismatch and current
limit terms. For these reasons, the optimization variables for a bipolar grid are changed to node voltage and
source currents. However, the sources in the model represent converters in a real grid, and therefore power
limits must also be included in the OPF. This has an undesired effect on the formulation of the problem and
the development of the subsequent update strategy. As previously discussed, this adds a nonlinear inequality
constraint, which uses the product of two of the decision variables. However, this was solved by including
additional terms and mechanisms in the update strategies of the related variables. Nevertheless, the neces-
sary change in the chosen optimization variables strongly influences the developed algorithm in numerous
stages.

HOW CAN THE ALGORITHM BE DEVELOPED USING ONLINE OPTIMIZATION ON A GRID WHICH

USES DROOP CONTROL?
The algorithm is developed to operate using online optimization. This means that measurements from the
physical grid must be taken, and used by the OPF in the cyber layer during every iteration as discussed in
Chapter 4. Furthermore, the inclusion of a droop control scheme for the converters in the grid layer has an
effect on the real operating point of the system at every point in time. An overview of the complete algo-
rithm is presented in the flowchart of Fig. 4.1. During the initialization phase, the slopes of the main droop
curves are computed based on predetermined limits of the converters. Then, within the online optimization
loop, a cyclical interaction between the OPF and grid layers takes place. First, measurements from the grid
are used to re-calculate the KKT derivatives from that iteration. Then, they are used to execute the update
strategy, while using the measured physical variables as the previous values. One noteworthy term is the cur-
rent mismatch or KCL term. A great advantage of using online optimization is that this term is automatically
equal to zero because it is measured from the grid. Consequently, this KKT condition is always met at the
start of every iteration. Moreover, the update strategy takes into account the deviation of the measured grid
values from the previous OPF value, such as in Section 4.3.1. Furthermore, the vertical intercepts of the main
droop curves are recalculated, based on the updated OPF setpoints, as discussed in Section 4.4.2. This means
that a new droop curve is created by the optimization layer in each iteration. These are then sent to the grid
layer which implements the new setpoints, before the loop is reiterated. Hence, a two-way dependence be-
tween the physical and cyber layers of the algorithm is created in order to achieve online optimization, while
accounting for the presence of droop control in the former.

HOW CAN A PHYSICAL INTERPRETATION OF THE UPDATE COEFFICIENTS AID IN DEFINING THE

PARAMETERS FOR THE UPDATE STRATEGY?
The last research question pertains to the definition of the update coefficients, which has a strong influence
on the convergence of the algorithm as found in previous studies [1][9][20]. If one of the parameters is too
low, the number of iterations to converge can be increased dramatically. Conversely, a value that is too high
causes increased oscillations which can result in major instabilities. Therefore, a balance is achieved by taking
into consideration the physical meaning behind the individual parameter and the differential term linked to
it. For example, the αu

u term used for the voltage update in Section 4.3.1 is dependent on on the connectivity
of the node m in terms of the sum of the conductances Gm,n . It is also based on the number of neighbors
it has, where a division by Nm is used to reduce the oscillations which can be caused when trying to reach
a consensus. Hence, most of the update coefficients are dependent on the associated node or source. At
the same time, the definition for each type of parameter follows the same equation. Therefore, a physical
interpretation of the update coefficients and their associated terms aids in defining the parameters in such a
way that increases the convergence rate of the algorithm, while avoiding oscillations and instabilities.
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6.3. FUTURE RESEARCH
This section presents some suggestions for future work in order to improve and further validate the developed
model and OPF algorithm. As previously mentioned, the centralized solvers used to simulate the grid caused
significant instabilities and often failed to compute a solution to the given load flow problem. Therefore,
it is recommended that a more suitable package is developed or found, which is more stable at the limits,
can handle piece-wise and nonlinear constraints, and returns solutions with smaller deviations from OPF
setpoints. Secondly, while theoretically designed to do so, the algorithm should be tested on ring and meshed
grids, as the case studies used here were all radial networks. Thirdly, future work should be done to adapt
existing test communication networks, for example the one developed for unipolar DC networks in [1], to use
the new bipolar algorithm instead. Such tests can emulate real networks by analyzing the effect of imperfect
communication on the convergence of the algorithm, which is followed by adapting it accordingly. Fourthly,
the decentralized OPF algorithm should be tested on a real grid with power electronic converters which use
droop control. Lastly, a convergence analysis in the form of a formal mathematical proof can be carried out,
in order to ensure that the algorithm converges for all cases.





BIBLIOGRAPHY

[1] P. G. L. Parreira, Fully Distributed Optimal Power Flow for Low Voltage DC Grids, Master’s thesis, Delft
University of Technology (2019).

[2] L. Mackay, Steps towards the universal direct current distribution system, Ph.D. thesis, Delft University of
Technology (2018).

[3] J. Beerten, Modeling and Control of DC Grids, Ph.D. thesis, KU Leuven (2013).

[4] G. Pepermans et al., Distributed generation: definition, benefits and issues, Energy Policy 33, 787 (2005).

[5] M. Lotfi, C. Monteiro, M. Shafie-Khah, and J. P. Catalao, Evolution of Demand Response: A Historical
Analysis of Legislation and Research Trends, 2018 20th International Middle East Power Systems Confer-
ence, MEPCON 2018 - Proceedings , 968 (2019).

[6] L. Mackay, N. H. der Blij, L. Ramirez-Elizondo, and P. Bauer, Toward the Universal DC Distribution Sys-
tem, Electric Power Components and Systems 45, 1032 (2017).

[7] H. Kakigano, Y. Miura, and T. Ise, Low-voltage bipolar-type dc microgrid for super high quality distribu-
tion, IEEE Transactions on Power Electronics 25, 3066 (2010).

[8] L. Mackay, R. Guarnotta, A. Dimou, G. Morales-España, L. Ramirez-Elizondo, and P. Bauer, Optimal
power flow for unbalanced bipolar DC distribution grids, IEEE Access 6, 5199 (2018).

[9] D. M. Dolaputra, IEEE Access, Master’s thesis, Delft University of Technology (2018).

[10] W. Lu, M. Liu, S. Lin, and L. Li, Fully Decentralized Optimal Power Flow of Multi-Area Interconnected
Power Systems Based on Distributed Interior Point Method, IEEE Transactions on Power Systems 33, 901
(2017).

[11] D. F. M. Kuipers, Merit order effect across borders, (2016).

[12] M. H. Albadi and E. F. El-Saadany, A summary of demand response in electricity markets, Electric Power
Systems Research 78, 1989 (2008).

[13] J. Mohammadi, S. Kar, and G. Hug, Distributed Approach for DC Optimal Power Flow Calculations, arXiv:
Optimization and Control , 1 (2014), arXiv:1410.4236 .

[14] J. Mohammadi, G. Hug, and S. Kar, Fully distributed DC-OPF approach for power flow control, IEEE
Power and Energy Society General Meeting 2015-Septe (2015), 10.1109/PESGM.2015.7285770.

[15] L. Mackay, A. Dimou, R. Guarnotta, G. Morales-Espania, L. Ramirez-Elizondo, and P. Bauer, Optimal
power flow in bipolar DC distribution grids with asymmetric loading, in 2016 IEEE International Energy
Conference (ENERGYCON) (2016) pp. 1–6.

[16] M. E. Baran and N. R. Mahajan, DC distribution for industrial systems: Opportunities and challenges,
IEEE Transactions on Industry Applications 39, 1596 (2003).

[17] G. Van den Broeck, Voltage control of bipolar DC distribution systems, Ph.D. thesis, KU Leuven (2019).

[18] R. Guarnotta, Delft University of Technology, Master’s thesis, Delft University of Technology (2016).

[19] A. Kargarian, J. Mohammadi, J. Guo, S. Chakrabarti, M. Barati, G. Hug, S. Kar, and R. Baldick, Toward Dis-
tributed/Decentralized DC Optimal Power Flow Implementation in Future Electric Power Systems, IEEE
Transactions on Smart Grid 9, 2574 (2018).

[20] S. Karambelkar, L. Mackay, S. Chakraborty, L. Ramirez-Elizondo, and P. Bauer, Distributed Optimal
Power Flow for DC Distribution Grids, IEEE Power and Energy Society General Meeting , 1 (2018).

97

http://dx.doi.org/ 10.4233/uuid:42a19101-c829-4127-959b-c8ab7d17e37d
http://dx.doi.org/https://doi.org/10.1016/j.enpol.2003.10.004
http://dx.doi.org/10.1109/MEPCON.2018.8635264
http://dx.doi.org/10.1109/MEPCON.2018.8635264
http://dx.doi.org/ 10.1080/15325008.2017.1318977
http://dx.doi.org/ 10.1109/TPEL.2010.2077682
http://dx.doi.org/ 10.1109/ACCESS.2018.2789522
http://dx.doi.org/10.1109/tpwrs.2017.2694860
http://dx.doi.org/10.1109/tpwrs.2017.2694860
http://dx.doi.org/ https://doi.org/10.1016/j.epsr.2008.04.002
http://dx.doi.org/ https://doi.org/10.1016/j.epsr.2008.04.002
http://arxiv.org/abs/1410.4236
http://arxiv.org/abs/1410.4236
http://arxiv.org/abs/1410.4236
http://dx.doi.org/10.1109/PESGM.2015.7285770
http://dx.doi.org/10.1109/PESGM.2015.7285770
http://dx.doi.org/ 10.1109/ENERGYCON.2016.7513921
http://dx.doi.org/ 10.1109/ENERGYCON.2016.7513921
http://dx.doi.org/ 10.1109/TIA.2003.818969
http://dx.doi.org/10.1109/TSG.2016.2614904
http://dx.doi.org/10.1109/TSG.2016.2614904
http://dx.doi.org/10.1109/PESGM.2018.8586629


98 BIBLIOGRAPHY

[21] H. Wang and J. Huang, Incentivizing Energy Trading for Interconnected Microgrids, IEEE Transactions on
Smart Grid 9, 2647 (2018).

[22] S. Chakrabarti, M. Kraning, E. Chu, R. Baldick, and S. Boyd, Security Constrained Optimal Power Flow
via proximal message passing, 2014 Clemson University Power Systems Conference, PSC 2014 , 1 (2014).

[23] W. Karush, Minima of Functions of Several Variables with Inequalities as Side Conditions, Master’s thesis,
University of Chicago (1939).

[24] H. W. Kuhn and A. W. Tucker, Nonlinear Programming, in Proceedings of the Second Berkeley Symposium
on Mathematical Statistics and Probability (University of California Press, Berkeley, Calif., 1951) pp. 481–
492.

[25] A. J. Conejo, F. J. Nogales, and F. J. Prieto, A decomposition procedure based on approximate Newton
directions, Mathematical Programming 93, 495 (2002).

[26] F. J. Nogales, F. J. Prieto, and A. J. Conejo, A Decomposition Methodology Applied to the Multi-Area Opti-
mal Power Flow Problem, Annals of Operations Research 120, 99 (2003).

[27] S. Kar and J. M. F. Moura, Consensus + innovations distributed inference over networks: cooperation and
sensing in networked systems, IEEE Signal Processing Magazine 30, 99 (2013).

[28] J. Mohammadi, G. Hug, and S. Kar, A benders decomposition approach to corrective security con-
strained OPF with power flow control devices, IEEE Power and Energy Society General Meeting (2013),
10.1109/PESMG.2013.6672684.

[29] G. Van Rossum and F. L. Drake Jr, Python tutorial (Centrum voor Wiskunde en Informatica Amsterdam,
The Netherlands, 1995).

[30] L. Thurner, A. Scheidler, F. Schäfer, J. Menke, J. Dollichon, F. Meier, S. Meinecke, and M. Braun, pan-
dapower — An Open-Source Python Tool for Convenient Modeling, Analysis, and Optimization of Electric
Power Systems, IEEE Transactions on Power Systems 33, 6510 (2018).

[31] E. Jones, T. Oliphant, P. Peterson, and Others, {SciPy}: Open source scientific tools for {Python}, (2001).

[32] W. McKinney and Others, Data structures for statistical computing in python, in Proceedings of the 9th
Python in Science Conference, Vol. 445 (Austin, TX, 2010) pp. 51–56.

[33] J. D. Hunter, Matplotlib: A 2D graphics environment, Computing in science & engineering 9, 90 (2007).

http://dx.doi.org/10.1109/TSG.2016.2614988
http://dx.doi.org/10.1109/TSG.2016.2614988
http://dx.doi.org/10.1109/PSC.2014.6808131
https://projecteuclid.org/euclid.bsmsp/1200500249
https://projecteuclid.org/euclid.bsmsp/1200500249
http://dx.doi.org/ 10.1007/s10107-002-0304-3
http://dx.doi.org/ 10.1023/A:1023374312364
http://dx.doi.org/10.1109/MSP.2012.2235193
http://dx.doi.org/10.1109/PESMG.2013.6672684
http://dx.doi.org/10.1109/PESMG.2013.6672684
http://dx.doi.org/ 10.1109/TPWRS.2018.2829021
http://www.scipy.org/

	List of Figures
	List of Tables
	Introduction
	Background
	The Return of Direct Current Systems
	Bipolar vs Unipolar DC
	Decentralization
	Research Motivation
	Objectives and Research Questions
	Main Objective
	Research Questions

	Structure of the Report

	Literature Review
	Electricity Markets
	The Case for DC Grids
	Comparison of Unipolar and Bipolar DC Grids
	Existing Methods for Decentralized OPF
	Fundamentals of the Consensus+Innovation Algorithm
	Fully Distributed OPF for Unipolar DC Grids
	Overview of Existing Literature/Methods

	Centralized OPF for Bipolar DC Grids
	Formulation of the Original Primal Problem
	Centralized Load Flow as Grid Simulation
	Droop Control
	Implementation and Concluding Remarks

	Decentralized OPF Algorithm for Bipolar DC Grids
	Changes to the Problem Formulation
	Deriving the Dual Problem
	Lagrange Function
	KKT Conditions
	Remarks on the KKT Conditions

	Update Strategy
	Voltage Update
	LMP Update
	Source Current Update
	Line Current Limit Dual Variable Update
	Source Current Limit Dual Variable Update
	Voltage Limit Dual Variable Update
	Source Power Limit Dual Variable Update
	Line Congestion Management

	Algorithm Overview
	Flowchart and Variable Interdependence Diagrams
	Creating the Droop Curves
	Simulation vs. Real-World Implementation


	Case Studies
	Case 1: Fixed Power Loads
	Case 2: Generator Congestion/ different prices
	Case 3: Line Congestion Management - Demand Response
	Case 4: Unbalanced Loads with Demand Response

	Conclusions and Future Research
	Concluding Remarks
	Answering the Research Questions
	Future Research

	Bibliography

