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Abstract

The explosive growth of e-commerce creates a need for increasingly responsive omni-channel fulfillment capa-

bilities, which raises new challenges in inventory management and order fulfillment for retailers. In response

to these challenges, many retailers attempt to establish so-called ship-from-store concepts, which leverage

their physical store networks to fulfill online orders. In this study, we analyze the optimal setup of these in-

store fulfillment processes of online orders for an omni-channel retailer. We use a simulation-based approach

combined with exploratory modeling to prescribe optimal fulfillment policies under a variety of sources of

uncertainty. We apply our proposed model to a case study informed by real data from a leading sports fashion

retailer in New York City in order to illustrate the practical applicability and value of our approach. Our

results determine (i) the optimal amount of time to allow for batching of online orders prior to starting the

in-store picking process; (ii) the optimal amount of time to allow for readily picked orders prior to starting the

delivery process; (iii) the optimal number of pickers; and (iv) the optimal number of packers, and the related

performance measures. Finally, we build on our analysis results to derive a set of managerial implications

applicable to many omni-channel problems.

Keywords: e-commerce, omni-channel retailing, logistics, simulation, exploratory modeling analysis

1. Introduction

An increasing number of brick-and-mortar (B-n-M) retailers has recently started to integrate their tra-

ditional physical sales channel with their digital one, moving towards a so-called “omni-channel” retailing

approach. Omni-channel provides customers with a seamless shopping experience across channels that lever-

ages their physical store network (Verhoef et al., 2015). A significant consequence of the growing importance

of e-commerce is the shift towards customer-value creation with the goal of increasing customer experience

and sales (Difrancesco & Huchzermeier, 2020; Ishfaq et al., 2016). This requires retailers to rethink the

supply chain and its processes, moving towards a customer-centric supply chain that is able to rapidly fulfill

demand from anywhere in the network, including retail stores (Ishfaq et al., 2016; Lim & Winkenbach, 2019).
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In this context, omni-channel retailers are increasingly looking at exploiting their physical store network to

leverage localized inventory positions from which to fulfill online orders. Items stored in traditional B-n-M

shelf space and back room storage are thus used not only to satisfy walk-in customer demand in the physical

channel, but also to cater for online orders which are picked, packed and shipped to the customer directly

from the stores. This allows retailers to expand fast, without the need to design and invest in new logistics

facilities (Hübner et al., 2016). This concept is also known as ship-from-store (SFS) strategy and is most

commonly seen in dense urban markets. Several retailers such as Walmart, Target, Best Buy, Decathlon

and Amazon-Whole Foods have already implemented in-store e-commerce fulfillment concepts (Cain, 2018;

Stelzer, 2017; Villaécija, 2019).

However, meeting customers’ requirements and keeping up with quickly advancing service standards in

e-commerce (e.g., the emergence of delivery services of two hours or less; Ehmke & Campbell, 2014; Castillo

et al., 2018; Janjevic et al., 2020) is becoming increasingly challenging from an operational point of view,

especially in metropolitan areas. Here, customer concentration is high and last-mile logistics are often the

dominant component of the cost and complexity of a global supply chain (Goodman, 2005; Lim & Srai,

2018). On the one hand, these delivery services further raise customer expectations and may become a key

distinguishing factor for consumers to choose between competing vendors. On the other hand, the cost of

fulfillment of online orders increases rapidly as delivery lead times reduce further. Moreover, the store space

and layout is not designed for inventory and picking optimization, increasing the cost of picking and the risk

of out-of-stock due to the simultaneous interaction of online and walk-in customers (Hübner et al., 2016).

Therefore, it is critical for omni-channel retailers to find the optimal trade-off between providing a high

service level and customer experience enabled by fast fulfillment capabilities and containing the fulfillment cost

of their online orders (Janjevic & Winkenbach, 2020). One the one hand, ship-from-store strategies can help

retailers to move closer to the consumer and enable higher sales, faster deliveries, lower cost, and improved

margins (Accenture, 2018; Cain, 2018; Stelzer, 2017). On the other hand, failure to properly implement such

a strategy can result in a number of critical issues, including both online and offline stock-outs, higher costs,

lost sales, and eventually customer dissatisfaction or loss. This explains the relevance of order fulfillment and

last mile delivery for the strategic planning of omni-channel retail.

In this paper, we are modeling the in-store fulfillment process of an omni-channel retailer using a ship-

from-store strategy to fulfill online orders. The primary focus of our analysis is the trade-off between customer

service level and cost. We develop a discrete event simulation model to analyze and optimize the in-store e-

commerce fulfillment process under a variety of sources of uncertainty. We combine our proposed simulation

approach with an exploratory modeling analysis (EMA), which allows us to incorporate and test various

fulfillment policies in a variety of scenarios of analysis.

There are three main contributions of this paper. First, we develop a comprehensive end-to-end view

of a typical in-store fulfillment process for omni-channel retailers following a ship-from-store strategy. This

serves as the basis for our subsequent quantitative modeling and analysis of the trade-offs inherent to this
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process. Second, we derive simulation-based insights into optimal in-store fulfillment policies that are gener-

ally applicable to many omni-channel fulfillment problems. Third, we apply our proposed model to a realistic

case study informed by real data from a major sports fashion retailer. This case study provides case-specific

insights and demonstrated the applicability and relevance of our proposed method to real-world decision

problems in omni-channel fulfillment.

The remainder of this paper is structured as follows. In Section 2, we review the relevant literature, and

in Section 3, we describe the general problem. We introduce the simulation model and solution approach in

Section 4, and in Section 5, we present and discuss the results of the simulation and conduct a sensitivity

analysis on the major parameters. In Section 6, we describe and discuss the case study and show the results

hereof. Finally, we conclude in Section 7.

2. Literature

In this section, we present the relevant literature on online order fulfillment, picking strategies, and

methodologies to analyze fulfillment problems in an omni-channel environment, on which our solution ap-

proach is based.

2.1. Online Order Fulfillment

The extant literature on order fulfillment addresses the different options available for retailers to fulfill

customers’ orders. Ishfaq & Raja (2018) provide a comprehensive framework for the order fulfillment alter-

natives, which includes the use of (i) distribution centers (DCs), in which retailers integrate the fulfillment

of store and online demands through a unified warehouse; (ii) dedicated direct-to-consumers fulfillment cen-

ters (DTCs) to fulfill online demand from dedicated centers direct-to-customer; (iii) retailer stores, which

leverage store inventory to fulfill both online and walk-in demands; and (iv) vendors, which directly fulfill

online orders without the need of store inventory. The use of a centralized facility (e.g., DC or DTC) for

fulfillment enables important operations efficiencies due to economy of scale and the use of the most advanced

automation. This implies a larger product assortment and lower employees costs (wages for DC employees are

usually lower when compared to sales employees in retailer stores). On the contrary, fulfillment from retailer

stores allows to use the already existing network facilities by the flexible adaption of the stores, reduces the

price markdowns, and decreases delivery time and cost. Especially the last two elements result to be of high

importance in the customer-centric omni-channel environment (Hübner et al., 2016; Ishfaq & Raja, 2018).

The majority of the extant literature has focused on the analysis of a single fulfillment option, e.g.,

Acimovic & Graves (2015) and Torabi et al. (2015) study a fulfillment policy for online orders using dedicated

fulfillment centers; Liu et al. (2010) analyze the possibility of fulfillment using distribution centers; Alawneh

& Zhang (2018) present a dual channel warehouse for both offline and online channels. Aksen & Altinkemer

(2008) study the online order fulfillment problem through B-n-M stores. In particular, retailers have to decide

from which store serve which order, based on the store operating cost and the last-mile delivery cost from

the store to the customer’s homes.
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More recent studies examine a combination of different order fulfillment options and compare their perfor-

mance. For example, Mahar et al. (2012) develop a model to fulfill online orders using either store inventory

(combined with in-store pickup) or DCs inventory. In the latter case, customers can choose to either have

the product shipped at home or pick it up in store. The results reveal that it is optimal to use only a subset

of all stores for online order fulfillment. Zhao et al. (2016) model a dual-channel supply chain in which the

manufacturer manages an online store and follows an online-to-offline (OTO) strategy according to which

online orders are fulfilled from the B-n-M inventory of the manufacturer’s retail partners, with the possibility

of inventory transshipments between the retailer and the manufacturer in case of stock-outs. Their findings

show the existence of an optimal inventory policy and an optimal transshipment price. Ishfaq & Bajwa (2019)

develop a non-linear mixed integer programming model in order to evaluate the optimal fulfillment strategy

over multiple periods. The authors determine the optimal sales quantity to be fulfilled directly by the ven-

dor, and the optimal sales quantity to be fulfilled indirectly through distribution centers, direct-to-customer

fulfillment centers, and retail stores. Bayram & Cesaret (2020) investigate stochastic dynamic fulfillment

decisions that include both online and in-store single-items orders. Online orders can be fulfilled either from

the fulfillment center or from one of the stores. The authors develop a heuristic policy that maximizes the

retailer’s total profit from sales across all channels.

In our paper, we exclusively focus on the retailer store fulfillment option and analyse a pure-play ship-

from-store strategy according to which both online orders and walk-in purchases are fulfilled from in-store

available inventory. Note that we do not attempt to find an optimal ordering policy, which is a problem widely

discussed in the literature (see, e.g., Alawneh & Zhang, 2018; Boyaci, 2005; Geng & Mallik, 2007; Schneider &

Klabjan, 2013; Zhao et al., 2016). Rather, we focus on prescribing optimal in-store fulfillment policies for SFS

strategies in omni-channel retailing, taking into consideration a variety of sources of uncertainty. Specifically,

our model intends to determine the optimal amounts of time to allow for batching of online orders prior to

starting the in-store picking process and of readily picked orders prior to starting the delivery process. We

use our model to derive a set of managerial implications applicable to many omni-channel problems.

2.2. Picking Strategies for Online Fulfillment

Picking strategies for e-commerce fulfillment can be traced back to the picking problem widely discussed

in the extant literature (Chew & Tang, 1999; de Koster et al., 2007; Hall, 1993; Tang & Chew, 1997). Picking

strategies are characterized by (i) the warehouse layout, (ii) the picking policy, and (iii) the picker routing

policy.

Regarding the warehouse layout, the number of blocks (determined by the number of cross aisles) and

the shape of the warehouse are of critical importance for the efficiency of the picking routes (de Koster et al.,

2007). Among the various different types of warehouse layouts analyzed in the extant literature (de Koster

et al., 2007; Ho et al., 2008; Petersen & Aase, 2004; Van Nieuwenhuyse & de Koster, 2009), a simple and

well-studied warehouse layout is the 1-block warehouse with either a rectangular or square shape (see, e.g.,

Chew & Tang, 1999; Tang & Chew, 1997).
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The picking process can generally be triggered in two different ways. Orders can be either picked as

soon as they occur, or they can be accumulated up to a certain trigger point, and then picked in batches.

In this second case, all orders accumulated during a fixed time interval are assigned to one batch (fixed

time interval batching (FTIB) policy), or pickers start the picking only once a certain number of orders

have arrived (variable time interval batching (VTIB) policy) (Chew & Tang, 1999; de Koster et al., 2007,

2012; Van Nieuwenhuyse & de Koster, 2009). In terms of picking policies, de Koster et al. (2007) offer

a comprehensive overview of various policies for manual picking that have been defined in the literature.

Among these, two commonly discussed approaches are the pick-by-article (batching), where multiple customer

orders are picked simultaneously, and the pick-by-order (discrete picking) policies, where each order is picked

individually, one line item at a time. We can further detail these two approaches introducing a given picking

sequence for the picker to follow (in order to optimize the picking route), and, in case of orders split, a zoning

strategy (i.e., the storage space is divided into smaller areas and each picker picks the part of the order

that is located in his assigned area). Based on the process sequence, zoning can be further classified into

progressive and synchronized. In the progressive zoning, orders picked in one zone need to pass to another

zone for completion; in the synchronized zoning, pickers from different zones can work on the same order

batch simultaneously.

Lastly, the picker routing policy is an essential characteristic of picking strategies. In many studies,

warehouse routing for picking is seen as a special case of the Travel Salesman Problem (TSP) (Chew & Tang,

1999; Hall, 1993). The extant literature discusses intensively that the picking routing problem is mainly

solved by means of heuristics rather than optimal routing (de Koster et al., 2007). Several studies (see, e.g.,

de Koster et al., 2007; Petersen, 1997; Roodbergen & De Koster, 2001) compare different methods for solving

the picker routing problem. They conclude that the so-called composite routing heuristic performs best. The

composite routing heuristic combines the so-called traversal strategy (i.e., the picker entirely crosses all the

aisles containing at least one pick) and the so-called largest gap strategy (i.e., the picker crosses the aisle up

to the “largest gap”, defined as the maximum distance between two adjacent picks).

2.3. Scenario Discovery for Complex Systems Under Deep Uncertainty

In this section, we discuss the extant literature on scenario discovery techniques, which is a popular

methodology to analyze complex systems under deep uncertainty. In many real-world situations, decision

makers have to take actions and make decisions in the presence of multiple, hard to predict, and irreducible

sources of uncertainty, which is generally referred to as deep uncertainty. In such circumstances, the literature

suggests to recur to exploratory modeling (see, e.g., Bankes, 2008; Dalal et al., 2013; Kwakkel & Jaxa-Rozen,

2016; Pruyt et al., 2013). Exploratory modeling is defined as “the use of series of computational experiments

to explore the implications of varying assumptions and hypothesis” (Bankes, 2008, p. 435). This exploration

uses model-based scenario discovery techniques for the systematic exploration of a very large ensemble of

plausible futures (Kwakkel, 2017). There exist two major strategies for performing scenario discovery, one

focused on a “patient” rule induction method (PRIM), and the other focused on a “greedy” (or “semi-greedy”)
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rule induction method. The main difference is the search criteria (patient strategy vs. greedy strategy)

applied in examining the space of possible preconditions to construct each rule (box) (Friedman & Fisher,

1999). For more details on algorithms based on greedy strategies (e.g., CN2, FOIL, RIPPER, CART), see

Friedman & Fisher (1999) and Kwakkel (2019).

Currently, PRIM is one of the most commonly used algorithms to solve scenario discovery problems

(Kwakkel & Jaxa-Rozen, 2016; Kwakkel, 2019). PRIM, initially introduced by Friedman & Fisher (1999),

finds subregions in the input variables that result in a high (or low) objective outcome. The algorithm finds a

subspace within the uncertainty and policy space where there is a high density and coverage of the outcome

of interest (Polonik & Wang, 2010). An experiment is of interest when the constraints of the model are met.

Subspaces are found by so-called peeling and pasting trajectories (cf., Kwakkel & Jaxa-Rozen, 2016; Polonik

& Wang, 2010). Results of the PRIM analysis are subspaces with limits for the uncertainties and policy

levers. Coverage defines the fraction of all experiments of interest that fall within the subspace. Density

defines the fraction of experiments within the subspace that are of interest1. A very high value for density

may lead to a box which is too small to be useful, i.e., larger values of density lead to smaller values of

coverage (and vice-versa), defining a trade-off between them (Friedman & Fisher, 1999). There exists no

clearly superior criterion to follow when determining a threshold value between density and coverage, which

allows the analyst to make his or her own trade-off based on each specific situation (Friedman & Fisher,

1999). In this paper, we employ the PRIM strategy to perform scenario discovery for the in-store fulfillment

policies of interest.

2.4. Research Gaps

The review of the literature shows that research on order fulfillment in an omni-channel environment is

still relative young and several papers highlight the need for further and deeper studies in this field (e.g.,

Hübner et al., 2016; Melacini et al., 2018). Most of the previous works on omni-channel fulfillment analyze the

problem of determining the optimal policy in terms of which items should be fulfilled from which facilities

in order to minimize costs or maximize profit. Instead, our paper considers a single store scenario used

to fulfill both walk-in and online orders, focusing on the simultaneous real-time interaction of walk-in and

online orders. We focus on the optimal fulfillment policy in terms of the picking and delivery cut-off times,

combining the literature on picking strategies with that on omni-channel fulfillment. Also, we detail our

analysis including the optimal staffing of employees for picking and packing, which is generally omitted in

most of the omni-channel literature.

While existing problems are mainly constrained by elements such as costs and/or inventory availability, we

explicitly model three constraints on the service level, space requirement in the store backroom, and delivery

1As an explanatory example, consider a set of experiments (of which 100 are of interest) and a subspace containing a total of
60 experiments, 50 of interest and 10 not of interest. The coverage of the subspace is 0.5, since 50/100=50% of all experiments of
interest fall within the subspace. The density of the subspace is 0.83, since 50/60=83% of the subspace consists of experiments
of interest.
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due time. Despite the generalizability of our model, we pay particular attention to environments that are

sensitive to short (e.g., two-hour) delivery lead times and to space requirements that can constrain in-store

fulfillment operations. As discussed in Sections 1 and 2.1, these represent critical aspects in omni-channel

retail, where the trade-off between customer service and operational efficiencies is constantly challenged.

Further, while most of the previous works focus on the single-item scenario, we model the multi-item scenario

where customers are allowed to order different SKUs and more items of the same SKUs. Lastly, a variety

of sources of uncertainty are considered and carefully analyzed with our proposed model, using exploratory

modeling analysis techniques. To the best of our knowledge, this is the first study to combine the literature

and research streams on picking strategies, omni-channel fulfillment, and scenario discovery under deep

uncertainty.

3. Problem Setting

Modeling assumptions. In the following, we briefly list some of the core assumptions underlying our modeling

of the in-store fulfillment process. More details will be provided at later stages of the manuscript.

i) A single store is considered.

ii) Online and walk-in order arrivals follow a Poisson distribution.

iii) Both online and walk-in customers are allowed to order more than one item of the same SKU.

iv) The demand of both online and walk-in customers for a given SKU follows a Geometrical distribution.

v) The demands of both online and walk-in customers for the various SKUs are independent.

vi) Both online and walk-in orders are fulfilled exclusively from in-store inventory. If two orders compete for

the same item, walk-in orders are prioritized over online orders. This assumption reflects the technical

inability of most space-constrained stores to reserve individual items for online orders before they have

been picked, as well as the fact that walk-in orders are generally more profitable than online orders for

the same items (Bayram & Cesaret, 2020).

vii) We do not allow for partial online order fulfillment, i.e., orders that cannot be fulfilled in full are

lost. This assumption is motivated by the fact that two-hour delivery services like the one studied

in this paper are typically offered by high-end retail brands to drive consumer satisfaction and brand

recognition. Delivering an incomplete order defeats this purpose and reflects poorly on the brand.

viii) The initial inventory for each SKU is an externally given parameter informed by the optimal ordering

policy of the retailer, based on average daily demand.

ix) Order batching occurs according to an FTIB policy.

x) The warehouse layout is modelled as a 1-block storage divided into zones, and each zone follows a

synchronized pick-by-article picking strategy and a composite heuristic picking route. This assumption

is a reasonable representation of the highly space-constrained picking environment, such as the back

room of the retail stores that we consider.

xi) Online customers’ locations are randomly distributed over a defined delivery surface, and distance

between each pair of locations is calculated by means of a L1-distance metric.
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xii) Deliveries are prioritized according to the order’s time window, i.e., the longer an order has been in the

system, the sooner it should be delivered.

xiii) Carriers are readily available at the store at the beginning of each route, and their speeds follow a

normal distribution.

xiv) The delivery process is modelled as a capacitated vehicle routing problem with soft bounds time win-

dows.

Overall omni-channel fulfillment process. We consider an omni-channel retailer receiving orders from both

online and walk-in customers. The retailer fulfills both streams of demand exclusively from its in-store

inventory. Especially in dense urban areas, retailers are constrained by the limited storage space. Hence,

inventory is stored on the sales floor shelves and in the store back room, meaning that the same inventory

is indiscriminately used to fulfill both online and walk-in customers. The online order fulfillment process of

the omni-channel retailer can generally be structured as follows: First, an online customer builds his or her

shopping cart. While the cart is built, the retailer checks the current inventory availability for each stock

keeping unit (SKU) and quantity selected by the customer. Based on the inventory information, the customer

is notified of a delivery time for the order. After the order is finalized, checkout and payment occurs. Second,

finished online orders are accumulated (i.e., batched) until the next picking cycle is triggered. Once picking

starts, online orders are separated into SKUs to be picked. This enables pick-by-article picking, and articles

to be picked are divided among the pickers in the store back room. The store back room is organized by zones

and each zone is assigned to one picker. The pickers work simultaneously on their picking list. They follow

a discrete order batch release mode, i.e., pickers can only start working on the next order batch when the

previous one is fully completed. Therefore, the picking time per order corresponds to the picking time of the

order batch, and the zone with the highest service time defines the total picking time per order batch. Third,

the picked items are then sorted, assembled according to the original orders, and packed into ready-to-ship

orders. Ready-to-ship orders are temporarily staged to wait for the next carrier pickup to be triggered.

Finally, online orders are picked up by carrier for customer delivery. Carriers conduct multi-stop routes to

serve all online orders included in the order batch that is assigned to them.

Order consolidation vs. stock-out and late delivery risk. For the sake of our analysis, we are assuming that

order picking is delayed following an FTIB policy, introduced in Section 2.2. Here, the longer the cut-off

time for the start of the picking process is, the more online orders are accumulated before the picking starts.

Since inventory availability for online orders is checked upstream during the purchase process and the in-store

inventory is indiscriminately used to also satisfy walk-in customers, it can happen that the actual inventory

availability has changed by the time the picking begins. Therefore, on the one hand, this consolidation of

orders helps to increase the efficiency of the picking process. On the other hand, it increases the probability of

inventory stock-outs due to potential walk-in customers. Moreover, delaying the start of the picking process

increases the probability of late deliveries to the customers. A similar logic applies for the start of the delivery

process. Carrier pickup can be triggered immediately after a picking process is completed, or it can be delayed
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to wait for additional orders to be picked and sent out on a consolidated carrier route. For the sake of our

analysis, we are assuming that carrier pickup is delayed following an FTIB policy. The longer the available

batching time for orders that are ready for delivery, the more cost efficient the delivery will be. However,

delaying the deliveries also implies an increased probability of delivering late. Moreover, as the number of

orders accumulated between two carrier pickups increases, staging area constraints become relevant.

Picking cut-off time vs. delivery cut-off time. Since the picking process is performed according to an order

batching policy, we synchronize the delivery process with the picking process. In this way, we make sure to

optimize the order consolidation in a given time interval and avoid to delay in vain the start of the delivery

process (which would increase the probability of late deliveries). Therefore, we model the delivery cut-off

time as a multiple of the picking cut-off time.

Delivery process. The delivery process is modelled as a capacited vehicle routing problem with time windows

(CVRP-TW), a generalization of the travelling salesman problem (TSP). The orders within a delivery batch

are randomly distributed over the defined delivery surface. The warehouse (in our case corresponding to the

store) is located in the middle of the service area. Distances are calculated by means of the L1-distance metric,

also known as Manhattan distance. The time when an order has been placed and the promised delivery time

define the order’s time window. Thus, the longer the order has been in the system, the earlier the order

was placed and the sooner it should be delivered. The time window has soft bounds to ensure feasibility of

the CVRP-TW, meaning that orders can be delivered on late and still represent a feasible solution for the

routing problem. Delivery routes are further constrained by the limited capacity of a vehicle in one tour. The

optimization objective is to minimize the total distance of the routes, which is a reasonable proxy for cost

minimization, and to ensure that the customers are served within the time window. The CVRP-TW is solved

using an existing implementation of a Guided Local Search Heuristic available in the Google Optimization

tools (OR-Tools) library (Google, 2019). Similar to Voudouris & Tsang (1999), this heuristic tries to avoid

the local minimum by local searching for more solutions to get a solution space. Google OR-Tools starts with

an initial solution that is generated by a heuristic, in our case the parallel cheapest insertion. This heuristic

iteratively builds solutions by inserting the cheapest node in its cheapest position. In our case, the cheapest

option is based on the travel distance and, most importantly, on the delivery time (i.e., if the node is served

within the desired time window) (Kindervater et al., 1989). The number of vehicles results from the solution

of the CVRP-TW and is generally a function of the number of orders and the capacity of the vehicles, which

we assume to be readily available at the store at the beginning of each route.

Policy levers. All in all, finding the right trade-off between, on the one hand, delaying in-store picking pro-

cesses and carrier pickups for increased efficiency, and, on the other hand, increasing the risk of customer

dissatisfaction due to unexpected stock-outs or late deliveries, is not trivial. In the course of the following

section, we propose a methodology to quantitatively assess this trade-off and optimize the in-store fulfillment

policy of an omni-channel retailer following a ship-from-store strategy. The available policy levers correspond

to the parameters governing the in-store fulfillment process which we are eventually optimizing over. Specif-
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ically, we derive optimal policy recommendations for the following policy levers: (i) the picking cut-off time,

TF , i.e., the time between two consecutive cut-off times to start the picking process; (ii) the delivery cut-off

time, TS = TFN , i.e., the time between two consecutive cut-off times to start the delivery process (defined

as a multiple N of the picking cut-off time); (iii) the number of employees (‘pickers’) conducting the picking

in the store back room, Z; and (iv) the number of employees (‘packers’) conducting the sorting and packing

in the store back room, K. The combinations of these four levers defines a policy. For a given desired service

level, delivery due time, and staging space limit, our goal is to determine the values of TF , N , Z, and K that

result in the most desirable system performance.

4. Methodology and Problem Formulation

In this section, we propose a simulation model to optimize the in-store e-commerce fulfillment process

under a variety of sources of uncertainty. The remainder of this section is structured as follows: In Section

4.1, we provide a mathematical formulation for some of the core processes and relationships characterizing the

in-store fulfillment process for online orders of an omni-channel retailer following a SFS strategy. Specifically,

we model the journey of an online order as shown in Figure 1. In Section 4.2, we propose a discrete event

simulation model of the in-store fulfillment process. Finally, in Section 4.3 we present a scenario discovery

study based on PRIM to determine favorable parameter values characterizing the in-store fulfillment policy.

Figure 1: In-store fulfillment process for online and walk-in orders

4.1. Problem Formulation

Notation. Tables 1, 2 and 3 provide an overview of the notation used in the following.

Demand uncertainty. The retailer receives online and walk-in orders at an average rate per time unit of λo

and λw respectively, with λ being the rate parameter of the Poisson counting process describing the orders

arrival. We assume, without loss of generality, that λo and λw are given as hourly order arrival rates. TF ,
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Table 1: Notation: parameters

Symbol Parameter Definition

cc Wage of couriers per time unit
cs Set up cost per delivery tour
cK Wage of packager per time unit
cZ Wage of picker per time unit
di Travelled distance up to stop i
dptz Expected travel distance of a picker in zone z
dt Travelled distance during delivery tour t
foi , f

w
i , f

w,p
i Binary factors determining if the order i can be fulfilled (fi = 1) or not (fi = 0)

lz Number of aisles in zone z
m SKU subscript (m = 1...M)
pom, p

w
m Parameter of the geometric distribution for the online and walk-in customer demand of SKU

m, respectively
rz Shape (yz/xz) of zone z
sp Average travel speed of the picker
toi , t

w
i Relative time of arrival of online order / walk-in order i

tAi Absolute time of arrival online order i since the last delivery cut-off
tCi Waiting time between completing order packaging and starting delivery for order i
tdi Delivery time for order i
tdt Total delivery tour time of a tour t (t ∈ T )
tp Total picking time per order batch
tppz Picking time in zone z
tps Waiting time between the picking cut-off time and the start of the picking process
tptz Travel time of the picker in zone z
ts Total sorting and packaging time per order batch
tw Store opening hours
tWi Waiting time of order i between order placement and beginning of the picking process
vi Vehicle speed during the tour up to stop i
vt Vehicle speed during delivery tour t
wm Storage space required by a stock keeping unit of SKU m
xz Longitudinal distance of zone z
yz Latitudinal distance of zone z
z Number of zones of the warehouse (z = 1...Z)

Continued in Table 2

expressed in hours, measures the time interval between two consecutive cut-off times to start the picking

process. The probability of n online orders accumulating over TF , No
(
TF
)
, to be equal to n is thus

P
[
No
(
TF
)
= n

]
=

(
λoTF

)n
n!

e−λ
oTF

. (1)

During the same time period, the number of walk-in orders accumulating follows a Poisson distribution,

P
[
Nw

(
TF
)
= n

]
=

(
λwTF

)n
n!

e−λ
wTF

. (2)

Each order can consist of different SKUs m ∈ {1, . . . ,M} and each SKU can be purchased in non-negative

quantities Y om or Y wm for online or walk-in customers respectively. Both Y om and Y wm follow a geometric

distribution with parameter pom and pwm respectively. The total number of items for SKU m to be picked

when the picking cut-off time occurs is therefore a sum of i.i.d. geometrically distributed random variables

(note that the number of random variables within the sum is itself a random variable), which itself follows

11



Table 2: Notation: parameters (continued)

Symbol Parameter Definition

Az Area of zone z in the warehouse in square distance unit
Mo
m,M

w
m Number of items for SKU m of online and walk-in orders respectively accumulated during

the cut-off time for picking
Mw,p
m Number of items for SKU m of walk-in orders accumulated during online order picking

M̂o
m, M̂

w
m Number of items for SKU m that could effectively be picked when the picking cut-off

time occurs for online and walk-in orders
M̂w,p
m Number of items for SKU m of walk-in orders that could effectively be picked during

online order picking
No, Nw Number of online / walk-in orders accumulated during the cut-off time for picking
Nw,p Number of walk-in orders during online order picking
N̂o
m, N̂

w
m, N̂

w,p
m Number of online and walk-in orders that could effectively be fulfilled

Nz Number of picks in zone z per order batch
S Desired service level for online order batch
Sd Surface of the delivery area
TDi Total delivery lead time of order i
TDD Delivery due time per order
TS Time between two consecutive cut-off times to start the delivery process
W Maximum available space for the staging area
Y om, Y

w
m Demand for SKU m in each online and walk-in order, respectively

λo, λw Arrival rate parameter for the online and walk-in orders respectively
γo Probability that online orders waiting for delivery fit in staging area
ηa Set up time for sorting and packaging per order batch
ηp Fixed time for picking a SKU m
ηs Sorting time per item
ηf Packaging time per order
ρv Maximum order capacity of a vehicle
%o Online order service level
τ q Service time per item per delivery stop

a negative binomial distribution. Similarly, the total number of walk-in purchases for SKU m that have

occurred between two consecutive picking cut-offs is a negative binomially distributed random variable,

Mo
m =

No∑
i=1

Y om,i ∼ NB (No, pom) , Mw
m =

Nw∑
i=1

Y wm,i ∼ NB (Nw, pwm) . (3)

Service level performance. The service level defines the probability to fulfill in full the online orders received

during TF . Since we model a single store with same-day delivery scenario, this study is interested in com-

puting the order-level service level with respect to the simulation day, i.e., which fraction of all orders can

or cannot be fulfilled in full within the day. To define the order-level service level, we need to compute

Table 3: Notation: decision variables

Symbol Variable Definition

N Multiplying factor defining the cut-off window for delivery
K Number of packers
TF Time interval between two consecutive cut-offs to start the picking process
Z Number of pickers

12



the probability to fulfill each unit of each SKU composing the order. This translates into computing the

joint probabilities of the linear combination of online and walk-in customers’ demands, which turns into the

convolution product of several non-linear terms. Given the inherent complication of assessing the obtained

order-level service level analytically, we instead evaluate it numerically in the course of our simulation study,

which we present in Section 4.2. Specifically, we evaluate the arrival times, the SKU compositions, and the

picking times of each online order, walk-in orders, and walk-in order during the picking process. Based on

that, we determine which orders can still be served. A more detailed description can be found in Section A.1

of the Supplementary Material.

Since it is hardly possible to reserve on-shelf inventory for customers of a specific channel and, since—especially

in dense urban environments—store back rooms typically only provide very limited storage space, in this re-

search, we do not allow for inventory reservation. This means that inventory cannot be blocked from being

bought by a walk-in customers when an online order has occurred. Therefore, a walk-in customer can still

have impact on the availability of an item in an online order up to the moment the picker is at the shelf

of this item. As a result, our model also needs to further distinguish the number of walk-in orders arriving

exclusively during the picking time. The number of walk-in orders accumulated while online orders are being

picked thus follows

P [Nw,p (tp) = n] =
(λwtp)

n

n!
e−λ

wtp . (4)

For online orders, the total number of items for SKU m that can effectively be picked (taking into account

unavailable items and corresponding orders that cannot be fulfilled) follows a negative binomial distribution,

M̂o
m =

No∑
i=1

Y om,if
o
i ∼ NB

(
N̂o, pom

)
, (5)

N̂o =

No∑
i=1

foi , (6)

where the number of orders that can effectively be served is given by N̂o.

Similarly, for walk-in orders and walk-in orders during online order picking we get

M̂w
m =

Nw∑
i=1

Y wm,if
w
i ∼ NB

(
N̂w, pwm

)
, M̂w,p

m =

Nw,p∑
i=1

Y wm,if
w,p
i ∼ NB

(
N̂w,p, pwm

)
, (7)

N̂w =

Nw∑
i=1

fwi , N̂w,p =

Nw,p∑
i=1

fw,pi , (8)

where foi , fwi , f
w,p
i ∈ {0, 1} are binary factors that determine which order can still be served and which

cannot (see Section A.1 of the Supplementary Material for further details). This gives the service level of an

online order batch, i.e. how likely it is that we fulfill the entire batch of online orders successfully, as

%o =
N̂o

No
. (9)

Total delivery time. The total delivery time of an online order consists of five components: i) the waiting

time between order placement and the beginning of the picking process, ii) the picking time, iii) the sorting

and packaging time, iv) the waiting time between completing the order packaging and starting the delivery,

13



and v) the delivery time. The total delivery time of a given online order i is thus given by

TDi = tWi + tp + tsi + tCi + tdi . (10)

The waiting time between order placement and the beginning of the picking process can be computed explicitly

for every online order i generated in our simulation framework (see Section 4.2), based on the sampled relative

arrival time of that order. This waiting time includes the time between arrival of the online order and cut-off

time for batching. Specifically, the waiting time of order i for the start of the picking process is

tWi = TF (1− toi ) , (11)

where toi indicates the relative time of arrival of the online order (toi ∈ [0, 1]). The picking time consists of (i)

the waiting time between the picking cut-off time and the start of the picking process, (ii) the time to pick

the items from the shelves and (iii) the travel time of the picker through the back room. The waiting time

between the picking cut-off time and the start of the picking process is

tps = max
[
0, tpb−1 − T

F
]
, (12)

where tpb−1 indicates the picking time of the previous batch.

The picking time at the shelves corresponds to the quantity of items for all the SKUs stored in a zone

multiplied by a fixed picking time per item, ηp. Let Mz denote the set of SKUs located in back room zone

z ∈ {1, .., Z}. In absence of better data, we randomly assign SKUs to zones with equal probability of either

SKU to be located in either zone. Then, the picking time in a given zone z is given by

tppz = ηp
∑
m∈Mz

M̂o
m. (13)

Based on Hall (1993), the expected travel distance of a picker in a zone z is approximated by

dptz =E[Dlon]z + E[Dlat]z

=
√
Az/rz[2 (Nz − 1)/(Nz + 1)] + lz

√
Az
√
rz

Nz∑
c=0

(
Nz
c

)[
1

lz

]c[
lz − 1

lz

]Nz−c

[1− 0.5c] , (14)

where Az is the area of the zone z, rz = yz/xz is the shape of the zone and lz is the number of aisles in the

zone. Nz represents the number of SKUs (not items) to be picked in zone z, i.e., the number of stops the

picker has to make. This number follows from our simulation experiment as

Nz =
∑
m∈Mz

P [Mo
m > 0] . (15)

Note that, since we model the possibility of walk-in orders while picking, the picker stops at every SKU he

is supposed to pick, even if it turns out that there is no item for that SKU left in the shelf. From this, we

derive the travel time required by the picker within zone z,

tptz =
dptz
sp
, (16)

where dptz denotes the travelled distance and sp the average walking speed of the picker. Travel speed of the

picker can be assumed to follow a normal distribution. The total picking time is thus given by

tp = tps +max
[
tpp1 + tpt1 , . . . , t

pp
Z + tptZ

]
. (17)

Due to the batching and picking-by-article strategy, the sorting and packaging time ts needs to be included.
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Based on Van Nieuwenhuyse & de Koster (2009), the sorting and packaging time consists of a set-up time

per order batch ηa, a fixed sorting time per item ηs, and a packaging time per order ηf . In order to capture

possible delays in sorting and packaging activities, these times are assumed to follow a normal distribution

with average values ηa, ηs, and ηf , respectively. Therefore,

tsi = ηa + ηs
M∑
m=1

M̂o
m + ηf N̂o. (18)

The waiting time between completing the order packaging and starting the delivery for order i is the time

between the arrival of the order at the staging space and the delivery cut-off time, TS = NTF . This means

that, when the order arrives at the staging area, the batching picking, sorting and packing have already been

completed. Thus, the waiting time of order i after packing and before delivery is given by

tCi = NTF − (tAi + tWi + tp + tsi ), (19)

where tAi represents the absolute arrival time of the online order (not the relative arrival time toi ) since the

last delivery cut-off. Note that this implies TS = NTF ≥ tAi + tWi + tp + tsi , which is reasonable to assume

since typically, NTF >> tp + tsi . Thus, the effect of the picking, packing and sorting time of an order that

arrives very late within the NTF interval exceeding the delivery cut-off is marginal and can reasonably be

neglected for clarity of the argument. Then, the total delivery time of an order can be obtained inserting

equation (19) into (10):

TDi = tWi + tp + tsi + tCi + tdi = NTF − tAi + tdi . (20)

We remark the importance of explicitly computing the waiting time tWi , the picking time tp, and the sorting

and packaging time tsi since they include the decision variables for our problem and they represent important

steps in our simulation model.

The delivery process is modelled as a CVRP-TW, as discussed in Section 3. For modeling the CVRP-TW,

the maximum order capacity of a vehicle, ρv, and the surface of the delivery area, Sd, have to be defined.

For our analysis, the delivery time per order and the delivery time per tour have to be computed. In both

cases, the delivery time consists of the service time at the stops and the travel time. We define the set of

delivery tours as T = {1, .., R} (where each tour also includes the return distance) and the set of orders to

be delivered in each tour as JT = {1, .., IT }. Each stop of the tour corresponds to one order to be delivered;

therefore the order index i ∈ JT in the delivery tour corresponds to the stop index in the tour. The delivery

time per order i depends on the travel time, the service time at each stop before stop i, and the service time

at stop i. This gives

tdi =
di
vi

+ τ q
i∑

j=1

M∑
m=1

Ŷ oj,m, (21)

where di is the travelled distance up to stop i, vi is the vehicle speed during the tour up to stop i, and τ q

is the fixed service time per item per stop. Vehicle speeds can be assumed to follow a normal distribution.

Similarly, the delivery time for the entire tour t ∈ T is given by

tdt =
dt
vt

+ τ q
IT∑
i=1

M∑
m=1

Ŷ oi,m. (22)
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On time delivery performance. An online order i is on time when the time between customer checkout and

the order delivery is less or equal to the promised delivery lead time TDD, TDi ≤ TDD.

Staging space requirements. Be M̂o
m ≤ Mo

m the quantity of available SKU m to be picked after TF . Once

the items are picked, they are assembled into customer orders and temporarily stored in the staging area

(with finite space capacity W ) until they are shipped to the customers. The shipment occurs only after NTF

time has elapsed and the N-th batch has been packed. We can thus formulate the probability that the online

orders fit within the staging area as

γo = P

 N∑
j=1

M∑
m=1

wmM̂
o
j,m ≤W

 , (23)

where wm represents the storage space required by a SKU m and W is the maximum available space in the

staging area. Note that the negative binomial distributed random variables M̂o
m in Equation (5) are not i.i.d.,

so their sum does not follow a well-known distribution. Therefore, we again evaluate the sufficiency of staging

area W based on our simulation experiment. For each simulation iteration, we evaluate the probability of

exceeding the total staging space required. A more detailed description can be found in Section A.2 of the

Supplementary Material.

Total system cost of operation. Our goal is to minimize the picking, packaging, and delivery costs, defined

by pickers and packers hourly wage during the picking period, cZ and cK , the set up cost per delivery tour

cs, and the couriers hourly wage cc multiplied by delivery tour time. The period for a picker and a packer

is the time that they are available at the warehouse, either idle or working. It is assumed that the number

of pickers and packers will be constant throughout the simulation run, thus the number of pickers Z and the

number of packers K will be multiplied by the hourly wage and the store opening hours, tw. The courier

wage cost is based on the delivery time per tour, tdt with t ∈ T .

The constraints for our problem are the online order service level per batch with lower bound of service S,

the staging space capacity W per delivery batch, and the delivery lead time per order TDD. The probability

that these values do not exceed the limits must be equal to or higher than α, β and δ respectively. This gives

the following problem formulation,

Minimize
K,Z

tw (ZcZ +KcK) +
∑
t∈T

(
cs + tdt cc

)
(24)

subject to

P (%o ≥ S) ≥ α, (25)

P
(
TDi ≤ TDD

)
≥ β, (26)

γo ≥ δ. (27)

The objective function (24) minimizes the picking and packing cost (defined as the hourly wage during the

store opening hours tw) and the delivery cost (defined as the set up cost per delivery tour plus the hourly

wage during the delivery tour time). Constraint (25) ensures that at least a fraction α of the batches meets

the desired service level S. Constraint (26) ensures that at least a fraction β of the online order does not
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exceed the delivery due time TDD. Constraint (27) makes sure that at least a fraction δ of the delivery

batches does not exceed the staging space capacity W , which is included into the term γo.

4.2. Simulation Model

Our simulation model describes the journey of an online order within the omni-channel environment

as described in Section 3. It is implemented in Python as the general coding environment and SimPy, a

process-based discrete event simulation framework.

Simulated operational decisions. The simulation starts with randomly generating online as well as walk-in

orders to enter the system. Here, the number of orders, the number of items in each order, and the number and

type of SKUs per order follow the probability distributions defined in Equations (1) through (3). Incoming

online orders are batched until the next picking cut-off occurs, governed by the constant time interval TF . At

this point, we determine which orders and thus SKU items can effectively be fulfilled given current inventory

levels (see Equations (5) through (8)). Pickable items are then allocated to the picking zones available given

our decision on the number of available pickers Z. Note that we are assuming a fixed and unique assignment

of pickers to zones.

For each zone, we calculate the maximum picking time given by Equation (14). We assume that the

location of SKUs are uniform distributed over the zones as defined by Hall (1993). Note that walk-in orders

for an item to be picked for online orders could still occur until the picker has reached the shelf position for

that item. Thus, whether or not the item is actually available for picking can only be determined once the

picker is about to pick the item. In case the exact number of items to be picked for this SKU is unavailable at

that point, the travel time of the picker remains unaffected, but the picking time to retrieve the actual items

is reduced accordingly. For more details, we refer the reader to Section A.1 in the Supplementary Material.

The effective service level per batch of online orders can then be calculated according to Equation (9). The

overall picking time incurred before sorting and packing can start is defined by the longest picking across

zones (see Equation (17)).

After all available items for a batch of online orders are picked, they are sorted back into orders. Next, the

readily sorted orders will be packed. The number of orders that can be packed simultaneously is defined by

the number of packers of the policy, K. The sorting and packaging time is given by Equation (18). Once an

order is packed, it waits in the staging area. The staging space needed per delivery batch is given by Equation

(23). Delivery starts when the orders of N order batches have arrived in the staging area. Delivery (i.e.,

customer) locations are assumed to be uniformly distributed over the service area. For simplicity, we assume

that the store is located in the middle of the service area. We employ a readily available meta-heuristic

solution approach to the CVRP-TW (Google, 2019) to determine the required number of delivery routes and

their stop sequences. The duration of a route is given by Equation (22). The delivery time of a specific order

is given by Equation (21). When an order is delivered, the total delivery lead time of this specific order is

determined by Equation (10).
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At the end of the simulation, the following four metrics are computed and recorded for our later analysis:

(i) the total cost of operations; (ii) the service level of the online orders batch; (iii) the staging space; and

(iv) the average delivery lead time per order.

Simulation time horizon. The model is based on a finite time horizon since the omni-channel store has fixed

opening hours of 12 hours per day. Customers can order products online 24 hours a day, which makes this

process a continuous system. However, this research focuses on the interaction between online and walk-in

orders in presence of a tight delivery window. Since walk-in orders only occur during the opening hours of

the store, the model can be seen as a discrete system. This means that the analysis of the store system, as

well as the simulation, starts as new every day. This also implies that for our analysis, we are not taking

into account decisions on inventory levels or replenishment policies. Similar to other contributions in the

literature that focus their analysis on the fulfillment process (see, e.g., Torabi et al., 2015; Acimovic & Graves,

2015; Bayram & Cesaret, 2020), we assume that a replenishment policy has already been adopted by the

retailer and we can treat starting inventories as a fixed given for every simulation cycle. Specifically, for

our analysis, inventory is assumed to be replenished daily over night (i.e., before the opening hour), when

no online orders nor walk-in customers have arrived yet. Based on our conversations with industry experts,

daily over-night replenishment is frequently employed in retail stores in dense urban centers that are highly

frequented, yet highly space constrained. The need for daily over-night replenishment is further amplified in

case of very short deliver lead times being offered to online customers (e.g., same-day or instant delivery).

In these cases, there is not enough time available to fulfill an order from a centralized distribution center or

to replenish a store via inter-store transshipments in case a given SKU requested by an online customer is

out of stock. Consequently, inventory levels have to be filled up every day before the start of the business

day. As a result, the model needs to reach a steady state by means of a warm-up phase, before capturing

results. Furthermore, a cool-down phase needs to be added at the end of the day to ensure that all online

orders received during the opening hours will be delivered.

Sources of uncertainty. The uncertainties of the model are the arrival rates of the online and walk-in orders.

In this research, we conduct a stylized analysis (see Section 5) and a case study analysis informed by real-

world data (see Section 6). For the stylized analysis, we let the arrival rates vary within a range of possible

values. We distinguish three time frames in this analysis namely morning, afternoon and evening. Depending

on the time of the day, the inventory level varies, which can affect the optimal policy. Since we assume

that restocking does not occur during the day, the service level and, therefore, the optimal policy can differ

depending on the time frame. Thus, in order to get valuable insights, it is useful to split the day into time

frames for the stylized analysis. For the model, this translates into different starting states for the inventory

level depending on the time of the day. For the case study, the arrival rates of both order types vary by time

of day, based on the historically observed arrival rates of a leading sports fashion retailer.

Model calibration. Our simulation model follows the assumptions and formulas defined in Section 3. The

values for the parameters, such as wage and dimensions of the warehouse, are defined based on data from
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a large sports fashion retailer and in consultation with experts of the fields. Also, the threshold values for

the service level S, the space constraint W and the delivery time TDD have been set by means of expert

interviews. The main focus of our research is to investigate the online order fulfillment process, given the

interaction with the walk-in orders. Therefore, the model generates results and analyzes performances for

the online orders only. Each simulation run produces the objective cost function and the three constraint

values for each picking batch, delivery batch and order.

4.3. Scenario Discovery

In order to identify and investigate the effect of different policies with respect to the picking and delivery

processes, scenario discovery is conducted. In this research, we rely on scenario discovery techniques since a

total enumeration approach across all policy levers would be prohibitive, given the high number of possible

combinations of uncertainties and policy levers defining each fulfillment policy. As discussed in Section 2.3,

scenario discovery allows to consider and analyze a wider range of alternatives, with the use of a limited

number of computational experiments, in turn encouraging the choice for more robust solutions (Kwakkel,

2019). This analysis is performed by mean of the Python library Exploratory Modeling and Analysis Work-

bench (EMA Workbench). This library builds on established scenario discovery techniques, including the

PRIM used for our analyses, to combine policies and scenarios into efficient designs of comprehensive nu-

merical experiments. Specifically, the scenarios and policies explored in our analysis are derived using a

Latin Hypercube2 or, when the size of the experiments is not prohibitive, a Full Factorial sampling, which

samples over every possible combination of policies and scenarios. Each computational experiment consists of

a scenario in combination with a possible policy. The set of computational experiments generated using the

PRIM implementation of EMA Workbench allows us to efficiently cover the space of exogenous uncertainties

and possible variations of the available policy levers. For our problem, an experiment design, i.e., a specific

combination of a scenario of analysis and a policy configuration, is of interest when the constraints on the

service level, delivery time and staging space, as defined in Section 4.1, are met. The EMA Workbench

Python library also provides convenient ways to visualize experiment results in order to validate and analyze

them. Specifically, it allows us to illustrate which ranges of value combinations for the various policy levers

are most likely to result in a better performance of the e-commerce in-store fulfillment process under the

various sources of exogenous uncertainty discussed above. We summarize below the steps of the exploratory

analysis with EMA:

1. Define uncertainties, policy levers and sampling method.

2. Perform experiments. The number of experiments is a combination of uncertainties (scenarios) and

policy levers (policies) given the chosen sampling method.

3. Analyze the behaviour of the model by means of a correlation plot.

2In the Latin Hypercube sampling, each parameter’s domain is divided into sub-intervals containing the same number of
sample points. In each interval, one point is randomly sampled (Burhenne et al., 2011).
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4. Assign experiments of interest. This is indicated by a binary classification, thus an experiment is

of interest (1) or not (0). In our case, experiments are of interest when they meet the constraints of

the problem.

5. Perform the PRIM analysis. The peeling and pasting process of PRIM (see Section 2.3) searches

for boxes that define limits for the policy levers.

6. Select the experiments that meet the limits for the policy levers from step 5.

7. Calculate the average cost per policy. The average cost per policy is the sum of the cost for all

scenarios divided by the total number of scenarios of that policy.

8. Define the policy with the minimum average cost as optimal policy.

We will provide some numerical insights from our stylized analyses in the following.

5. Stylized Analysis

In this section, we present a stylized analysis before moving on to a case study analysis informed by real-

world data in Section 6. However, the data and parameters assumed for this stylized analysis are inspired by

the real case study data. The stylized analysis is performed in order to identify if and in which measure the

model variables impact the problem performance. Based on these results, we then conduct a more detailed

analysis narrowing down the search, which allows us to quantify the model performance and, among different

policy configurations, define the best performing one. The remainder of this section is organized as follows.

First, in Sections 5.1 and 5.2, we present the results of a global sensitivity analysis and the findings of a

parametric sensitivity analysis. In Section 5.3 and 5.4, we then introduce the stylized experiment design

consisting of the policy configurations we consider and the scenarios we intend to analyse. Lastly, we present

and discuss the results of the PRIM in Sections 5.5 and 5.6.

5.1. Global Sensitivity Analysis: Sobol indices

The Sobol indices analysis measures the sensitivity of the outcomes to the input variables. The Sobol

sequence is used as sample function to generate inputs. The analysis provides the First-order Index “S1”,

which measures how a single input alone affects the output variance, and the Total-order Index “ST”, which

measures how a single input, including its first-order and higher-order effects3, affects the output variance

(Herman & Usher, 2019). All the indices assume values between 0 (lowest impact of the input parameter) and

1 (highest impact of the input parameter). The results of the analysis also provide the confidence intervals,

which are set by default at 95%. We refer the interested reader to Saltelli (2002), Saltelli et al. (2010), and

Sobol (2001) for more details on the Sobol method, and to (Herman & Usher, 2019) and Kwakkel (2017) for

the implementation of the Sobol method in EMA workbench and Python. We perform the Sobol analysis

on the two uncertainties first and on the four policy levers after, and report the results in Table 4, Table 5

respectively.

3For example, consider the following 3 inputs: x1, x2, and x3. The Total-order Index for input 1 is calculated as: ST(x1)
= S1(x1) + S2(x1-x2) + S2(x1-x3) + S3(x1-x2-x3), where S1, S2 and S3 represent the first-, second- and third-order indices
respectively. It is intuitive to see that, as the number of variables increases, evaluating each of the higher-order indices becomes
computationally demanding and generate results of not easy interpretation. Therefore, it is usually preferable to compute the
Total-order Index instead of each of the higher order-indices (Homma & Saltelli, 1996).
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Table 4: The First-Order (S1) and Total-Order (ST) Sobol indices for the model uncertainties

Outputs
Total cost Service level Staging space Order lead time

Inputs S1 index ST index S1 index ST index S1 index ST index S1 index ST index
λo 0.162 0.265 0.001 0.007 0.118 0.161 0.102 0.167
λw 0.106 0.205 0.921 0.937 0.176 0.219 0.229 0.292

The Sobol index analysis on the model uncertainties (Table 4) shows a significantly high contribution

of the walk-in arrival rate alone to the service level (first-index order is equal to 0.921). The fact that the

total-order index is slightly higher than the first-order index means that the effect on the service level is

mainly attributable to the walk-in arrival rate alone. The walk-in orders are, indeed, currently prioritized

over the online ones, and, therefore, they drive the availability of the inventory. As a result, the service level

is extremely sensitive to the walk-in orders’ arrival rate. We further observe an impact of the walk-in orders

arrival rate and of the online orders arrival rate on the total cost variance (10% and 16% of the cost variance

is caused by the walk-in orders arrival rate’s and online orders arrival rate’s variance, respectively), and such

effect increases when the arrival rates simultaneously vary. The walk-in orders arrival rate (both alone and

in combination with the online orders arrival rate) also affects the order lead time: we observe that almost

23% of the order lead time variance is caused by the walk-in orders arrival rate variance. A low impact is

observed for both uncertainties concerning the other outcomes. The Sobol indices come with extremely small

confidence intervals (for further details, see Section B in the Supplementary Material), indicating that our

results are very robust.

Table 5: The First-Order (S1) and Total-Order (ST) Sobol indices for the model policy levers

Outputs
Total cost Service level Staging space Order lead time

Inputs S1 index ST index S1 index ST index S1 index ST index S1 index ST index

TF 0.385 0.544 - - - 0.598 - 0.577
N 0.450 0.601 - - - 0.820 - 0.753
Z - - - - - 0.958 - 0.918
K - - - - - 0.768 - 0.779

Considering the results of the Sobol index analysis for the policy levers (Table 5), we observe that, with

only a few exceptions, the values of the first-order indices are very low or null, while the values for the

total-order indices are very high, implying that a higher order interaction is occurring. More in particular,

we observe that the total cost of operations is highly affected by the picking cut-off time and the delivery

cut-off time (alone and in combination with all the other inputs); the staging space and the lead time are

instead only affected when simultaneously varying all the inputs. The service level is not affected by the

inputs’ variation. With the same considerations as for the model uncertainties, our results on the policy

levers are very robust. We can conclude that the total cost is sensitive to variation of the picking cut-off

time and delivery cut-off time (alone), and highly sensitive to the variation of the picking cut-off time and

delivery cut-off time in combination with all the other policy levers. The service level is highly sensitive to
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the variation of the walk-in order arrival rate, a factor that falls outside of the control of the retailer and thus

cannot be fully controlled by its fulfillment policy. The staging space and order lead time are both highly

sensitive to the simultaneous variation of the four policy levers.

The results of the global sensitivity analysis reveal that (i) the walk-in arrival rate highly affects the

service rate, (ii) the picking and delivery cut-off times affect the total cost of operations, and (iii) different

combinations of the policies highly affect the staging space requirement and the order lead time.

5.2. Parameter Sensitivity Analysis

In this section, we perform a sensitivity analysis on some major parameters by considering their effects

on the simulation results. In Figure 2, we plot the effect of the vehicle capacity on the model outcomes. The

Figure 2: Sensitivity analysis on the vehicle capacity

capacity is defined by the number of orders that fit in each vehicle in each delivery tour. Since SFS strategy is

most commonly seen in dense urban areas, we perform deliveries by means of electrical bicycles. Nonetheless,

the results that follow can be generalized to any kind of delivery vehicles. We observe that, as the capacity of

the vehicle increases, the total cost significantly decreases because fewer vehicles are needed. On the contrary,

the order lead time significantly increases because the same vehicle now deliver more orders and, overall, it
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results in less number of vehicles needed to cover the same delivery area (with the same number of stops),

which increases the average lead time per order. Furthermore, we observe that, as the capacity increases,

its marginal effect on the outcome decreases. More in particular, we notice that the marginal cost benefit of

increasing the capacity from 1 to 2 orders is significantly higher compared to the cost benefit generated by

any further increment of the capacity.

In Figure 3, we represent the impact of the promised delivery time to customers (expressed in minutes)

on the model outcomes. When the promised delivery lead time decreases, then the order lead time decreases

Figure 3: Sensitivity analysis on the promised delivery lead time, minutes (picking cut-off time: 1 hour)

because orders should be delivered in a shorter time frame and late orders are penalized in the delivery

optimization. When the promised delivery lead time decreases, the total cost increases. We observe that the

promised delivery lead time impacts the cost results up to a certain threshold value: after that, no significant

increase/decrease in the cost outcome is observed. This means that, depending on certain parameters, such

as the order rates and picking and delivery policies, omni-channel retailers can promise their customers a

tighter delivery time, without further increasing their costs. Furthermore, we notice (see section C.1 in the
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Supplementary Material) that the above mentioned threshold value changes according to the picking policy

(i.e., if the picking cut-off time increases, a shorter promised delivery lead time challenges the retailer more,

and vice versa). Therefore, in case of shorter picking cut-off time, the cost performance shows much less

sensitivity to variations in the promised delivery lead time since the probability of a late delivery decrease.

The results of the parametric sensitivity analysis reveal, among others, the relationship and the trade-off

between model constraints and performance, which are of importance while searching for the optimal policy.

5.3. Considered Policy Configurations
In our analysis, different policies are tested on various scenarios in order to examine the entire solution

space. A possible range of values is set for the four policy levers. The picking cut-off time ranges from 15

minutes to 2 hours, with steps of 15 minutes. Since our research focuses on tight delivery windows (within

the same day delivery) and in line with what some major retailers are already offering in large urban areas,

we believe that it is interesting to focus our study on the 2-hour delivery challenge. Therefore, we consider

a maximum picking cut-off time of 2 hours. Steps of 15 minutes seem realistic especially considering that,

for smaller values, the picking time may exceed the picking cut-off time. With a similar logic, the delivery

cut-off time is multiple of the picking cut-off time and the multiplicative factor ranges between 1 and 8.

The number of pickers and packers range between 1 and 5 workers. This upper limit is set considering that

stores in an urban area do not allocate a high number of employees to picking and packaging activities. In

this way, we reduce the number of experiments to run and, thus, the computational time. The ranges of

policy levers are combined with the range of scenarios into a joint experiment design. The first analysis is

performed considering the full range of policy levers and scenarios. The combinations are designed by means

of Latin Hypercube sampling (Olsson et al., 2003). From this analysis, a tighter range for the policy analysis

is constructed and more experiments are performed by means of Full Factorial sampling (Morris et al., 2019).

The analysis is based on the sales of 8,034 different SKUs. Our research focuses on fashion items sold in

different sizes; each size of an item corresponds to an SKU. For example, a shirt in size S, M, L, and XL is

defined by four different SKUs. The inventory position per SKU differs over the 8,034 SKUs; the minimum

and median stock per SKU is 1 item, and the maximum stock per SKU is 141 items. The yearly store sales

per SKU range between 1 (slowest SKU) and 1,167 (fastest SKU) and the yearly online sales range between 1

(slowest SKU) and 285 (fastest SKU). Sales quantity for each individual SKU m of online orders and walk-in

orders follow a geometric distribution with parameter pom and pwm respectively. Over the 8,034 SKUs, pom has

a minimum value of 0.979 and a maximum value of 0.999; pwm has a minimum value of 0.995 and a maximum

value of 0.999. The high settings for the probability parameters of the geometric distribution means that it

is more likely that a low number of items per SKU is ordered; often 0, 1, or 2 items per SKU are ordered.

An overview of this information is provided in Table 6. The input parameters that contextualize the stylized

analysis have been validated by business experts and are provided in Table 7.

5.4. Considered Scenarios of Analysis
In order to conduct a robust analysis, we perform the PRIM algorithm setting a threshold value for

density at 0.7, i.e., at least 70% of the experiment in the box should be of interest to ensure that the results

24



Table 6: SKUs Specifications

Number of SKUs 8,034 Geometric parameter for online
orders per SKU, pom

min: 0.979
min: 1 item max: 0.999

Inventory per SKU median: 1 item Geometric parameter for walk-in
orders per SKU, pwm

min: 0.995
max: 141 items max: 0.999

Table 7: Input parameters for the stylized analysis
Warehouse Delivery

Input Parameter Symbol Value Input Parameter Symbol Value
Longitudinal distance of the warehouse x 20 m Vehicle speed during delivery tour t vt 10 km/h
Latitudinal distance of the warehouse y 30 m Service time per item per delivery stop τ q 1.5 min
Number of aisles in the warehouse l 15 Maximum order capacity of a vehicle ρv 3 orders
Fixed time for picking a SKU m ηp 6 s Surface of the delivery area Sd 59.1 km2

Average travel speed of the picker sp 1 m/s Costs
Set up time for sorting and packaging
per order batch ηa 12 s Input Parameter Symbol Value

Sorting time per item ηs 10 s Wage of picker per hour cZ $ 12
Packaging time per order ηf 35 s Wage of packager per hour cK $ 12

Set up cost per delivery tour cs $ 16.5
Wage of couriers per hour cc $ 25

are underlined with an adequate number of experiments of interest (cf., Section 2.3 for technical details of the

PRIM implementation). The limits for the model constraints, and the probability of meeting these limits are

settled as shown in Table 8. According to PRIM, these limits identify whether an experiment is of interest

or not. As discussed in section 5.1, the variability of the arrival rates can have a significant impact on the

Table 8: Constraint Values for Stylized Analysis

Constraint Desired limit value Probability to meet limit
Service level per batch S = 90% α = 0.80
Delivery lead time per order TDD = 120 minutes β = 0.85
Staging space W = 100 items δ = 0.85

model outcomes. Therefore, in order to conduct a more complete and realistic analysis, we consider different

ranges of possible values for the arrival rates. Three scenarios are analyzed, namely (i) a scenario with peak

of online arrival rate, (ii) a scenario with peak of walk-in arrival rate, and (iii) a scenario where both walk-in

and online order are stabilizing. The arrival rates for the online and walk-in orders for the stylized analysis

are based on real data and differ per scenario; the ranges for values are shown in Table 9.

5.5. Analysis Results

In the following, we discuss the stylized analysis results for the three scenarios introduced above, indicating

the optimal policy configuration that emerges for each of these scenarios.

5.5.1. Scenario (i): High Online Arrival Rate

This scenario is characterized by a high online order arrival rate (11 to 19 online orders per hour) and a

comparatively moderate number of walk-in orders entering the system (6 to 15 walk-in orders per hour).

Correlation. Figure 4 shows a strong positive correlation between the staging space and the order lead time,

while there is no direct correlation visible between the other variables.
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Table 9: Arrival Rates for the three Scenarios

Scenario Arrival Rate Online
(orders/hour)

Arrival Rate Walk-in
(orders/hour)

(i) High online arrival rate 11 - 19 6 - 15
(ii) Offline peak 9 - 10 17 - 20
(iii) Stabilizing 8 - 9 2 - 17

Figure 4: Correlation Graph of Scenario 1: High Online Arrival Rate

Analysis of Policy Ranges. With the PRIM analysis, the ranges of the policy variables can be determined.

A box with coverage of 0.885 and density of 0.861 has been detected and investigated closely. With p-values

of the three restricted dimensions less than 0.05, the following smaller ranges for the decision variables are

determined as shown in Table 10. With these new policy lever ranges, new experiments are analyzed with

PRIM. The results confirm the optimal range for the number of pickers between 2 and 5. This means that

it is optimal for a retailer to split her store back room into two to five picking zones.

Table 10: Decision Variables of Scenario (i): High Online Arrival Rate

Policy Lever Range
Picking cut-off time 15 min - 60 min
Multiplying factor for delivery cut-off time 1 - 6
Number of pickers 2 - 5

Optimal Policy per Time of the Day. In the analysis, a day is split into three time windows namely morning,

afternoon and evening, as previously discussed in Section 4.2. The optimal policy for a time window depends

on the overall lowest cost of the policy. To get the most robust optimal policy, the mean of the cost objective

per policy and the probability to meet the problem constraints are calculated. Thus, the optimal policy per
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time window for a high online arrival rate scenario is summarized in Table 11. The results show that, in this

scenario, the optimal policy would be to batch the online orders for 45 minutes before starting the picking,

and deliver the orders every 90 minutes. The results also show that the high number of online orders does

not affect the optimal fulfillment policy over the various time windows. The main difference between the

fulfillment policies in the three time windows is that the optimal number of packers during the morning is two

(instead of one), whereas the total cost is the lowest. Moreover, the service level per batch in the morning

is lower compared to that in the other two time windows. Thus, less online orders are fulfilled during the

morning, which explains the lower costs. Since our model needs to meet the constraint on the service level

per batch (with a probability of 80%), it can result preferable for the retailer to fulfill less online orders in

order to reduce the total cost. Thus, in this scenario, there exists a clear trade-off between costs and service

level per batch.

Table 11: Optimal Policy for the Morning, Afternoon, and Evening in Scenario 1: High Online Arrival Rate

Policy Lever Optimal Value Constraint Result
Morning

Picking cut-off time 45 min Average cost $ 981
Delivery cut-off time 90 min Service level per batch 83.3%
Number of pickers 2 Staging space 100.0%
Number of packers 2 Delivery on time per order 88.4%

Afternoon
Picking cut-off time 45 min Average cost $ 1,207
Delivery cut-off time 90 min Service level per batch 95.6%
Number of pickers 2 Staging space 100.0%
Number of packers 1 On time delivery per online order 85.3%

Evening
Picking cut-off time 45 min Average cost $ 1,089
Delivery cut-off time 90 min Service level per batch 95.5%
Number of pickers 2 Staging space 100.0%
Number of packers 1 Delivery on time per order 85.9%

5.5.2. Scenario (ii): Offline Peak
The second scenario consists of a high arrival rate of walk-in customers, ranging from 17 to 20 walk-in

order per hour and an average number of online order arrivals between 9 and 10 orders per hour.

Correlation. Similarly to the first scenario, Figure S.5 in the Supplementary Material shows a strong positive

correlation between the staging space and the delivery lead time, while there is no direct correlation visible

between the other variables.

Analysis of Policy Ranges. Through the PRIM analysis, the ranges of the policy variables can be determined.

From the first iteration of the PRIM analysis, a box with coverage of 0.791 and density of 0.958 has been

detected and investigated closely. The second iteration, conducted on a smaller policy lever ranges and with

a Full Factorial sample, generates an additional restriction to the policy lever ranges. A box with coverage

of 0.926 and density of 0.961 shows that the range for the optimal picking cut-off time should be less than

one hour. With p-values of the restricted dimension less than 0.05, new ranges can be determined for the
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decision variables to obtain the results of interest, similarly to what was done for scenario (i) (see Table S.2

for details).

Optimal Policy per Time of the Day. Similar to the previous scenario, the optimal policy per the time of the

day is summarized in Table 12. For the offline peak scenario, the optimal policy indicates a delivery cut-off

time of one hour and a picking cut-off time of 30 minutes (in the morning and afternoon) and of 15 minutes

(in the evening). The reason of this picking policy lies in the fact that, given the high walk-in order rate,

many items are not available anymore in the evening. To satisfy the service level constraint for the online

orders, the picking should then be performed more often in the evening. This is also an explanation for

the decrease in service level per batch in the afternoon: less items are available in the afternoon and, when

following the same fulfillment policy as in the morning, less online orders can be fulfilled. In the evening,

when the picking cut-off time is reduced to 15 minutes, the service level per batch increases again. Over the

three time windows, the on-time delivery performance increases. The reason is that the number of online

orders that can be fulfilled decreases during the day and then stabilizes. Since a lower number of online orders

leads to a lower number of orders accumulated in the staging space, this also leads to a lower delivery lead

time (see the discussion of correlation between staging space and delivery time in Section 5.6) and, therefore,

higher on-time delivery performance.

Table 12: Optimal Policy for the Morning, Afternoon, and Evening in Scenario 2: Offline Peak

Policy Lever Optimal Value Constraint Result
Morning

Picking cut-off time 30 min Average cost of operations $ 888
Delivery cut-off time 60 min Service level per batch 100.0%
Number of pickers 2 Staging space 100.0%
Number of packer 1 Delivery on time per order 96.0%

Afternoon
Picking cut-off time 30 min Average cost of operations $ 851
Delivery cut-off time 60 min Service level per batch 97.0%
Number of pickers 2 Staging space 100.0%
Number of packer 1 Delivery on time per order 98.8%

Evening
Picking cut-off time 15 min Average cost of operations $ 879
Delivery cut-off time 60 min Service level per batch 98.9%
Number of pickers 2 Staging space 100.0%
Number of packer 1 Delivery on time per order 99.4%

5.5.3. Scenario (iii): Stabilizing
In this scenario, both the online and walk-in order arrival rates stabilizes. There is an average amount of

online orders (8 to 9 online order per hour) and the number of walk-in customers decreases over time from

17 to 2 walk-in orders per hour.

Correlation. Similar to the previously discussed scenarios, Figure S.6 in the Supplementary Material shows

a strong positive correlation between the staging space and the order lead time, while there is no direct

correlation visible between the other variables.
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Analysis of Policy Ranges. With the PRIM analysis, the ranges of the policy variables can be determined.

The first PRIM analysis detected a box with coverage of 0.742 and density of 0.936. The second PRIM

analysis provides a box with coverage of 0.849 and density of 0.955 and a tighter range of values for the

optimal picking cut-off time, from 15 minutes to 45 minutes. With p-values of the restricted dimension less

than 0.05, new ranges can be determined for our decision variables to obtain the results of our interest,

similarly to what was done for scenario (i) (see Table S.3 for details).

Optimal Policy per Time of the Day. Similarly to the previous scenarios, the optimal policy per time of the

day is calculated. The optimal policy per time window for the stabilizing scenario is summarized in Table 13.

In this scenario, our analysis suggests two different optimal policies. While the optimal number of pickers (2)

and packers (1) remains the same, the morning and the afternoon are characterized by a shorter picking and

delivery cut-off times, i.e., picking and delivery happen more frequently compared to the evening. Since the

amount of online orders assumes rather constant values, while that of walk-in customers decreases over time,

the retailer faces less pressure to fulfill online orders in the evening and, therefore, can increase the picking

and delivery cut-off times in a small measure. However, such policy relaxation translates into a decrease in

the service level per batch and on-time delivery per order for the evening scenario compared to the morning

and afternoon. Moreover, the on-time delivery performance decreases over the three time windows. The main

difference between the morning and the afternoon time window is that, due to a lower number of walk-in

orders, the service level per batch of online orders is slightly higher in the afternoon. However, as more online

orders can be fulfilled, more staging space is required and also delivery lead times increase, which results in

a significant decline in on-time delivery performance.

Table 13: Optimal Policy for the Morning; Afternoon, and Evening in Scenario 3: Stabilizing

Policy Lever Optimal Value Constraint Result
Morning

Picking cut-off time 15 min Average cost of operations $ 887
Delivery cut-off time 75 min Service level per batch 99.7%
Number of pickers 2 Staging space 100.0%
Number of packer 1 Delivery on time per order 99.3%

Afternoon
Picking cut-off time 15 min Average cost of operations $ 845
Delivery cut-off time 75 min Service level per batch 100.0%
Number of pickers 2 Staging space 100.0%
Number of packer 1 Delivery on time per order 97.0%

Evening
Picking cut-off time 30 min Average cost of operations $ 830
Delivery cut-off time 90 min Service level per batch 98.7%
Number of pickers 2 Staging space 100.0%
Number of packer 1 Delivery on time per order 93.8%

5.6. Discussion of Stylized Analysis Results

When comparing the results obtained for the three scenarios discussed above (high online arrival rate,

offline peak, and stabilizing), we observe a strong correlation between the staging space and the delivery lead
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time per order in all of the three scenarios considered: the more orders need to be delivered, the longer the

average delivery lead time per order is. While this would be straightforward in the case of a fixed number and

capacity of vehicles, in our case, although the capacity of the vehicles remains constant, we do not constrain

the number of available vehicles ready for delivery. Thus, even with an unlimited vehicle availability, the

delivery lead time strongly correlates with the number of items accumulated in the staging space to be

delivered. This is a consequence of the trade-off between delivery costs and on-time delivery performance

that occurs in the optimization model: it is preferable to compromise on delivery time in order to minimize

the costs for the number of vehicles and delivery tours. Furthermore, as there is a strong correlation between

the staging space and the delivery time, the on-time delivery performance decreases with the number of

online orders since the required staging space is bigger in the presence of a high number of online orders (i.e.,

more orders need to be stored for delivery).

The results of the scenario with high online arrival rate (Table 11) also indicate relatively low service

levels compared to the scenario with offline peak and stabilizing (Tables 12 and 13). This variation in results

can be explained by the trade-off between costs and service level in the model. Since the scenario (i) with

high online arrival rate is characterized by a high number of online orders, the total cost for picking and

delivery would be higher. As a result, it is more cost efficient for the retailer to lose some orders than picking

and delivering more frequently/more orders in order to fulfill a higher number of online orders.

The possibility of an online order to be fulfilled decreases when the number of walk-in orders increases,

since they affect the inventory position, resulting in more frequent picking and delivery to guarantee a good

service level. For the morning time window in the presence of offline peaks, we observe that the conflict

existing in the two sales channels (i.e., online and B-n-M channels) highly affects the frequency of picking as

well as delivering online orders. In the evening, we observe the shortest picking and delivery cut-off times

in the presence of a high number of walk-in orders. An explanation for this lies in the fact that the store

has already been open for 8 hours and many products could have a limited availability. In order to ensure a

high service level for the online orders in the evening, picking should happen more frequently, especially in

the presence of many walk-in customers. Therefore, the cut-off time for picking is supposedly smaller than

in the morning or afternoon. Thus, the simultaneous combination of high walk-in orders and evening time

window has a high impact of the online order service level and results in the shortest picking and delivery

cut-off times.

The results from the stylized analysis show that the optimal policies in the afternoon are quite similar to

those in the morning scenario. Thus, an omni-channel retailer does not need to differentiate her picking and

delivery policies between morning and afternoon.

Lastly, we note that the optimal ranges for the policy levers in Table 10 and Tables S.2 and S.3 in the

Supplementary Material are quite similar over all scenarios. Although the arrival rate of orders has a high

impact on the optimal policy (as discussed in Section 5.1), the value ranges per scenario are comparable due

to the relative short time frame of the analysis (2 hours). These ranges represent the subspace of the decision
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variables that contains the optimal solution, following that similar feasible ranges do not necessarily lead to

the same optimal solution (as shown by our optimal policies).

6. Case Study Analysis

This section presents a case study inspired by the real challenges of a sports fashion retailer looking to

determine an optimal in-store picking and delivery strategy using the simulation-based methodology presented

in this paper. The case study is performed with the same model and real input parameters as the stylized

analysis; however it differs in (1) evaluating an entire day in the store instead of a time window, and (2) the

arrival rate of the orders fluctuates per hour instead of considering a fixed arrival rate per time window. Our

analysis results underline the practical relevance of the problem and the value of our proposed approach in

solving real-world omni-channel fulfillment problems.

6.1. Case Study Description

The following case study is based on real demand data and store parameters from a global sports fashion

retailer offering a highly fragmented product assortment and selling over 900 million items annually to

customers through its physical retail locations, online and brick-and-mortar retail partners, as well as its own

online channel. We are focusing on data from the borough of Manhattan in New York City. We conduct

our analysis based on masked and standardized data to protect the confidential information of the company.

With a physical footprint of over 1,300 own retail stores worldwide, the company seeks to leverage its physical

retail presence for ship-from-store fulfillment of its online orders in major urban areas. To face the pressure

deriving from online customers expectations and from competitors offering delivery services such as two-

hour delivery in some major cities, fast delivery is becoming more and more a distinguishing factor for the

company. One of the best ways to deal with this issue in dense urban markets is to adopt the ship-from-store

strategy. However, while implementing this strategy, the company faces the big challenge of maintaining a

high service level due to the in-store interaction of both walk-in and online orders and the constraint of tight

delivery windows. In this context, we develop our case study focusing on the urban area of New York City

(NYC), which is a particularly relevant market to roll out such services.

We study an entire day of operations of this store, limited by its walk-in opening hours (10 a.m. to 22

p.m.). Figure 5 illustrates how online and walk-in customer orders evolve throughout the course of that day.

These patterns are informed by several months of real demand data and can be considered representative of

an average business day. For our analyses, we follow the same in-store picking strategy for online orders as

defined in Section 4. Being this case study set in Manhattan, NYC, we assume electrical bikes as the delivery

vehicles employed, since they are likely to move faster in this highly congested environments than motorized

vehicles. The case study uses actual sales data from the large sports fashion retailer. The store has 8,034

SKUs available to be sold online or offline. The inventory position per amount of SKU is shown in Figure

6. The inventory of the vast majority of SKUs consists only of one or two items; every size of an item is

a different SKU. Less than 20 SKUs have inventory of more than 40 items. Sales volumes per online and

walk-in order are determined by actual sales data of several months. Since the number of SKUs and items
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Figure 5: Arrivals during opening hours in Broadway store, NYC

per SKU are simulated via a Geometric distribution, the probability that an item per SKU is sold in one

order can be calculated. The distribution of sales is therefore randomly assigned over 8,034 SKUs. With the

real sales data, an order often consists of 2 to 3 SKUs with 1 or 2 items. The other input parameters for the

case study are summarized in the stylized analysis in Table 7.

Figure 6: Inventory position in Broadway store, NYC

Our case study analysis is targeted at determining (i) the optimal fulfillment policy (in terms of picking

and delivery cut-off times, number of pickers, and number of packers); (ii) the key performance indicators

associated to the optimal policy (in terms of cost of operations, service level, staging space requirements, and

on time deliveries) for this company under average business day conditions. We will summarize our results

in the following.

6.2. Results

Table 14 presents the ranges of policy levers to explore the entire solution space of policies. In total, we

tested (7 x 7 x 5 x 5 =) 1,225 different policy configurations with five replications per policy. Only the policies

that were able to meet the problem constraints in all five replications are taken into account for defining the

optimal policy. The PRIM analysis shows that, in order to enable a cost-optimal in-store fulfillment process,

the picking cut-off time needs to be less than 75 minutes while the delivery cut-off time should be less than

six times the picking cut-off time. While this gives a first indicative idea of how a well-performing policy

configuration could look like, it does not provide an optimal policy configuration yet. Minimizing the total

fulfillment cost while enforcing all problem constraints eventually yields an optimal policy for the store under

consideration in this case study, which we summarize in Table 15.
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Table 14: Policy Configurations of Case Study

Policy Lever Range Nr. possible values per policy lever
Picking cut-off time 15 min - 105 min 7
Multiplying factor delivery cut-off time 1 - 7 7
Number of pickers 1 - 5 5
Number of packers 1 - 5 5

Table 15: Optimal Policy and KPI’s for Case Study

Optimal Policy Key Performance Indicators
Picking cut-off time 15 min Cost $ 2,427
Delivery cut-off time 60 min Service Level 96.7%
Number of pickers 2 Delivery batches that do not exceed staging space 98.6%
Number of packers 1 Delivery on time per order 100.0%

With a picking cut-off time of 15 minutes and a delivery cut-off time of one hour, the sports fashion retailer

would achieve a great order service level (96.7%) and a perfect on-time delivery performance (100.0%). The

cost related to the operations of picking, packaging and delivery would be around $2,427 with two pickers and

one packer during the day. Also, the staging space will only exceed the space constraint in 1.4% of the cases

in one day. We then perform sensitivity analysis on the initial inventory level in order to investigate whether

our results would be affected by a different inventory availability. For each SKUs, we let the values of initial

inventory first decrease by 25% and then also increase by 25% and compare them with the base scenario. The

results are reported in Figure S.7. We observe that the correlation pattern does not significantly change when

varying the initial inventory level. We additionally performed the PRIM analysis and found that the PRIM

ranges and optimal policy do not significantly vary over the different inventory, meaning that the results are

robust with respect to the initial inventory level.

6.3. Discussion of Case Study Analysis

Our case study illustrates how our proposed methodology can be employed to determine an optimal policy

for implementing a two-hour delivery ship-from-store online fulfillment service in a megacity such as NYC. As

shown in Table 15, the proposed picking cut-off time is the lowest possible cut-off time that is defined for the

policy levers. This could be explained by the high number of walk-in orders during the day in a Manhattan

store. From noon to 8 p.m., there are even more walk-in customers than online customers. This means that

the possibility of items being unavailable for the completion of online orders is high. Therefore, the picking

cut-off time is quite tight. Our model suggests a delivery cut-off time that is four times the picking cut-off

time. This means that four batches of readily picked orders are consolidated before dispatching them for

delivery by bike. Thus, given a two-hour delivery lead time, the bikes have about one hour left to deliver

all these orders to customers across Manhattan. Assuming that there is always a sufficient supply of bike

couriers, this is a reasonable result. In real life, courier shortages may complicate the problem.

In this case study, we attempt to determine one optimal policy for the entire day, even though the

intensity of online and walk-in orders arriving varies throughout the day. One could employ the same

methodology to devise tailored policy recommendations for different parts of the day. However, this would
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require the company to be flexible enough to adjust its policy and the associated cut-off times and staffing

levels throughout the day. Besides defining a single optimal policy, this case study also provides insight into

the viable ranges of the various policy levers we explore. For example, we find that the system never requires

more than two pickers to perform well. It is more effective to adjust the picking and delivery cut-off time

policy levers than to hire more than two employees dedicated to the same task. Moreover, to reliably enable

a two-hour delivery lead time, the picking cut-off time should never be above 75 minutes. This can be seen

as the upper limit defining the bandwidth of picking cut-off times within which a dynamic policy could vary

during the day.

7. Conclusion

In this paper, we model the in-store fulfillment process of an omni-channel retailer using a ship-from-store

strategy to fulfill online orders in a dense urban market in presence of a tight promised delivery time and

a variety of sources of uncertainty. Specifically, we combine a simulation-based approach with exploratory

modeling to prescribe optimal fulfillment policies under various sources of uncertainty.

The primary focus of our analysis is the trade-off between customer service level and operational costs,

given the constraints on the service level, delivery due time, and staging space. Specifically, our analysis

determines (i) the optimal time to allow for batching of online orders prior to starting the in-store picking

process; (ii) the optimal time to allow for readily picked orders prior to starting the delivery process; (iii) the

optimal number of pickers; and (iv) the optimal number of packers, as well as the related system performance.

We incorporate and test various fulfillment policies in a variety of scenarios of analysis and use our model to

derive a set of managerial implications applicable to many omni-channel problems. This study contributes

to defining the multidimensional nature of the omni-channel fulfillment problem and the interactions of each

dimension with the others. We find that a higher number of walk-in customer orders leads to optimal online

order fulfillment policies with higher delivery frequencies, i.e., shorter staging times, which are required to

mitigate the effect of increasing competition among the two sales channels for the same inventory positions

on online service level. Further, our results demonstrate the critical trade-off between operational costs and

service performance in omni-channel fulfillment, which may lead omni-channel retailers to compromise on

their on-time delivery performance or service level in order to mitigate the cost of offering an omni-channel

customer experience.

We then apply our proposed modeling approach to a case study informed by real data from a leading

sports fashion retailer in New York City in order to illustrate the practical applicability and the value of

our approach. Specifically, the case study illustrates how our proposed methodology can be employed to

determine an optimal policy for implementing a two-hour delivery ship-from-store online fulfillment service

in a major urban market such as New York City. Besides determining a single optimal fulfillment policy,

we provide insights into the viable ranges of the various policy levers we explore. Our proposed method is

of relevance for many real-world decision problems in an omni-channel environment, as it helps to calibrate

the major parameters and decision variables that define a company’s online fulfillment strategy such that it
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guarantees a high service level and is able to meet the promised delivery due dates at minimal cost.

The results of our case study analysis confirm and extend the findings from our stylized analysis. For

instance, it confirms that (i) a growing arrival rate of in-store customers negatively affects the online order

service level, encouraging shorter online order delivery cut-off times; (ii) the exact calibration of the online

fulfillment policy significantly affects the total cost of online fulfillment; and that (iii) changes to the on-

line fulfillment policy parameters, such as reducing delivery cut-off times, significantly affect in-store space

requirements (specifically for staging) and delivery lead times. Our results further illustrate the trade-off

between the restrictiveness of the model constraints and the observed system performance. For instance,

in determining the optimal fulfillment policy, it is important to understand how the system performance

responds to different order arrival rates. As different order arrival rates can be observed throughout different

parts of the day, our analysis gives an example of if and when an omni-channel retailer needs to differentiate

her fulfillment policies according to different time frames.

This work can be extended in the following ways. First, it will be of interest to include courier supply

uncertainty, i.e., analyze how the model and results would change in case couriers are not always immediately

available for delivery. Second, one could include restocking of the store inventory during the day: in real

life, it may be desirable to be able to leverage intra-day replenishment as another policy lever to improve the

performance of the company’s in-store fulfillment operations for online orders. Lastly, it would be of interest

to extend this work to perishable products and investigates if and how the results obtained for non-perishable

products would change.
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Supplementary Material

A. Steps of the Simulation

In this section, we further detail some steps of the simulation process related to the online order fulfillment.

A.1. Simulating Order Fulfillment Availability

1. Simulate for every iteration of the simulation experiment:

• the number of online orders in TF , No,

• the number of walk-in orders in TF , Nw, and

• the number of walk-in orders during the picking of online orders in tp, Nw,p.

2. For every online order, walk-in order, and walk-in order during online order picking i simulate:

• the relative time (and thus sequence) of arrival of the online or walk-in order within TF , toi , twi ∈

[0, 1],

• the relative time (and thus sequence) of arrival of the walk-in order during the picking of the online

order batch within tp, tw,pi ∈ [0, 1], and

• the number of items of SKU m in the order, Y om,i / Y wm,i / Y
w,p
m,i .

3. Check which walk-in orders can be fulfilled during TF (fwi ∈ {0, 1}) and update the inventory level

accordingly.

4. When the picking cut-off time TF occurs, check whether online order i can be fulfilled or not, foi ∈ {0, 1}.

5. Separate online order i into SKUs and allocate SKUs to zones for picking.

6. For every SKU m to be picked, simulate the relative time of its picking within the zone it is kept in,

tpm ∈ [0, tp], based on an uniform distribution on location of the SKU in the zone.

7. Check which walk-in orders can be fulfilled during the picking time tp (fw,pi ∈ {0, 1}) and update the

inventory level accordingly.

8. After picking, combine SKUs according to the original orders and check again whether online order i

can still be fulfilled or not, foi ∈ {0, 1}.
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A.2. Simulating Staging Area Requirements

1. For each simulation iteration (see above), evaluate the total staging space needed.

2. Based on the results of the previous step, determine:

• the probability of exceeding the available staging space W , which corresponds to 1− γo, and

• the extent to which W is exceeded, which defines a probability distribution of the excess space

requirements.

B. Sobol Indices: Confidence Intervals

We present in Table S.1 the confidence intervals, relatively to the First-order and Total-order indices, for

the Sobol analysis on the model uncertainties. We observe that the values are very small or null, meaning

that the results of the Sobol analysis presented in section 5.1 of the paper are very robust.

Outputs
Total cost Service level Staging space Order lead time

Inputs CI (S1 ) CI (ST ) CI (S1 ) CI (ST ) CI (S1 ) CI (ST ) CI (S1 ) CI (ST )
λo 0.0192 0.011 0.033 0.021 0.011 0.007 0.018 0.011
λw 0.014 0.007 0.001 0.001 0.014 0.006 0.013 0.007
TF 0.035 0.029 NaN NaN 0.060 0.066 0.055 0.068
N 0.034 0.032 NaN NaN 0.077 0.063 0.056 0.084
Z 0.002 0.000 NaN NaN 0.073 0.059 0.083 0.088
K 0.002 0.000 NaN NaN 0.072 0.056 0.071 0.081

Table S.1: The Sobol indices’ confidence intervals (CI) on the model uncertainties and policy levers (S1: First-order index; ST:
Total-order index). The "NaN" values correspond to the fact that the service level results to be always the same and, therefore,
no variance can be determined.
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C. Parameter Sensitivity Analyses

In this section, we further detail some aspects of the parameter sensitivity analysis conducted in section

5.2 of the paper.

C.1. Sensitivity to the Promised Delivery Lead Time

In Figures S.1 and S.2, we represent the impact of the promised delivery time (expressed in minutes)

on the model outcomes in case of a long and a short picking cut-off times, respectively. Similarly to what

discussed in section 5.2 of the paper, when the promised delivery lead time decreases, the total cost increases

and there exists a certain threshold value after which no significant impact in the cost outcome is observed.

We notice that this threshold value decreases in presence of shorter picking cut-off times, meaning that the

total cost shows much less sensitivity to variations in the promised delivery lead time. As a consequence of

that, when the fulfillment policy implies a short picking cut-off time, the cost performance is less affected by

the promised delivery lead time, since the picking process happens frequently and, staying other parameters

the same, the probability of a late delivery decreases.

Figure S.1: Sensitivity analysis on the promised delivery lead time (picking cut-off = 2 hours)
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Figure S.2: Sensitivity analysis on the promised delivery lead time (picking cut-off = 15 minutes)
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C.2. Sensitivity to the Picker Travel Time

In Figure S.3, we show the sensitivity of the model outcomes to the travel time of the picker during the

picking process. The time is expressed in minutes and represents the time needed by a picker to travel a

meter. We observe that, when the picking is slower, than the delivery lead time increases because the delivery

process starts later.

Figure S.3: Sensitivity analysis on the picker travel time: Time (in minutes) needed by a picker to travel a meter, ranging
between 0.005 minutes (corresponding to 0.3 seconds) and 0.05 minutes (corresponding to 3 seconds)
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C.3. Sensitivity to Vehicle Delivery Speed

In Figure S.4, we represent the effect of varying the vehicle delivery speed. Since deliveries are performed

by means of bicycles, the values refer to a bicycle speed and are expressed in km/h. Our results show that

an increase of the delivery vehicle speed decreases the cost and the delivery lead time. Furthermore, the

sensitivity analysis also show a clear correlation between the outcomes of interest. In particular, the order

lead time and the cost of operations, the staging space and the cost of operations, and the staging space and

the order lead time are positive correlated.

Figure S.4: Sensitivity analysis on the delivery vehicle speed (km/h)
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D. Detailed Analysis Results

In Tables S.2 and S.3, we present the new ranges for the decision variables to obtain the results of interest

for the scenarios (ii) Offline peak and (iii) Stabilizing, respectively.

Table S.2: Decision Variables of Scenario (ii): Offline Peak

Policy Lever Range
Picking cut-off time 15 min - 60 min
Multiplying factor for delivery cut-off time 1 - 5
Number of pickers 2 - 5

Table S.3: Decision Variables of Scenario (iii): Stabilizing

Policy Lever Range
Picking cut-off time 15 min - 45 min
Multiplying factor for delivery cut-off time 1 - 5
Number of pickers 2 - 5

In Figures S.5 and S.6, we represent the correlation plots in the scenario with high walk-in orders and in

the stabilizing scenario, respectively. Similar to what observed in Figure 4 of the paper, in both cases, the

results show a strong positive correlation between the staging space and the order lead time, while there is

no direct correlation visible between the other variables.

Figure S.5: Correlation Graph of Scenario 2: Offline Peak
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Figure S.6: Correlation Graph of Scenario 3: Stabilizing

In Figure S.7, we represent the correlation plots for different initial inventory levels. For each SKUs, we

let the values of initial inventory first decrease by 25% and then also increase by 25% and compare them

with the base scenario. We observe that the correlation pattern does not significantly change when varying

the initial inventory level, meaning that the results are robust with respect to the initial inventory level.
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Figure S.7: Correlation Graph for different initial inventory levels
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