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ABSTRACT: The level-ice forces exerted on a scale model of a compliant bottom founded structure are identified from non-
collocated strain and acceleration measurements by means of a joint input-state estimation algorithm. The identification is 
performed based on two different finite element models: one entirely based on the blueprints of the structure, and an updated 
one which predicts the first natural frequency more accurately. Results are presented for two different excitation scenarios 
characterized by the ice failure process and ice velocity, and known as the intermittent crushing and the continuous brittle 
crushing regimes. The accuracy of the identified forces is assessed by comparing them with those obtained by a frequency 
domain deconvolution on the basis of experimentally obtained frequency response functions. Results show a successful 
identification of the level-ice forces for both the intermittent and continuous brittle crushing regimes, even when significant 
modeling errors are present. The ice-induced displacements of the structure identified in conjunction with the forces are also 
compared to those measured during the experiment. These are found to be sensitive to the modelling errors in the blueprint 
model. By a simple tuning of the model, however, the estimated response is seen to match the measured one with high accuracy. 

KEY WORDS: Dynamic ice-structure interaction; inverse problems; Kalman filtering; force identification. 

1 INTRODUCTION 
Level-ice forces have been measured on bottom-founded 
structures since the very first oilplatforms in the Cook Inlet, 
Alaska [1]. The action of the level-ice on the platforms 
induced severe vibrations, on some occasions threatening the 
structural integrity. The Molikpaq platform was deployed at 
different sites in the Canadian Beufort Sea in the 1980’s. The 
platform was equipped with data acquisition systems for 
measuring ice forces and deformations of the structure. The 
measured ice forces from the so-called MEDOF panels have 
been widely used since then, but also questioned for their 
operational accuracy and reliability, reviewed by e.g. 
Frederking et al., Jefferies et al. and Spencer [2-4]. 

Force identification by means of frequency domain 
deconvolution was performed by Montgomery and Lipsett [5] 
to study the river-ice forces on the bridge crossing the 
Athabaska river in Alberta, Canada. They identified the forces 
using a frequency response function (FRF) from a single-
degree-of-freedom model and measured structural response. 
Määttänen [6] applied the same method to identify the ice 
forces on a lighthouse in the Gulf of Bothnia. An ice-breaker 
vessel connected by a wire to the lighthouse was used to 
perform a step relaxation test ([7]) in order to obtain the FRF 
from the measured excitation and response. Unfortunately, a 
poor coherence function was found, such that the ice forces 
had to be identified using a FRF from modal decomposition 
instead. Määttänen [8] identified the ice forces using the 
experimentally obtained FRF in a later publication. The 
accuracy of the frequency domain deconvolution approach has 
been questioned by Timco et al. [9] and Singh et al. [10] 
where attention was drawn to the fact that the identified ice 
forces were overestimated compared to the directly measured 
forces in regimes where the response was close to the natural 

frequency of the structure. In order to reduce the difference 
between the identified and measured forces they suggested to 
increase the damping in the dynamic model. Fabumni [11] 
studied the number of forces that can be identified at a 
specific frequency dependending on the number of 
participating modes at that frequency. In the special case 
when only one mode is contributing in the response signal 
around the natural frequency, Fabumni demonstrated that only 
one force can be reconstructed with acceptable accuracy.  

The harsh environment affects the ability to deploy sensors 
on arctic offshore structures. Unless the inner surface of the 
structure can be accessed, the ice-action point may be a 
challenging location to install a sensor since the ice is 
crushing on the outer surface of the structure. This implies 
that non-collocated sensors may be the only realistic option. 
Hollandsworth [12] demonstrated the significance of sensor 
collocation, and found that if the sensors were deployed far 
from the excitation point, the forces were likely to be 
underestimated. Water level fluctuations or rafting of the ice 
cause variations in the location of the ice-action point on 
bottom-founded structures. This implies that perfect 
collocation of the sensors is in practice difficult to achieve. 

Identification accuracy does not only depend on the sensor 
locations or modeling errors, since the structural design of the 
experiment, calibration procedures and noise levels may 
prevail. When using direct ice-force measurements, the 
internal damping and natural frequencies of the load panels or 
load cells must be treated carefully, as they may interfere with 
the ice-failure. Whenever the directly measured force signals 
include inertia from the measurement setup itself, subtraction 
of the undesired inertia is required to attain the ice force 
(Barker et al.[13]). 
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Another instrument that can be used to obtain the ice forces 
is the tactile sensors (e.g. [14]-[15]). These sensors have the 
advantage that they can measure pressure with a high spatial 
resolution and that they can be tailored to fit any indenter and 
enable extraction of both contact area and pressure. However, 
the sensors can only measure stresses normal to the surface of 
the indenter, so that any shear stresses have to be derived 
through assumed static and dynamic friction coefficients. So 
far the application of the tactile sensor has been limited to 
small and medium scale experiments. 

Ice forces have traditionally been obtained by either direct 
force measurements or deterministic force identification in the 
frequency domain. A disadvantage of the latter method is that 
it is often problematic to accurately determine the FRFs of 
large structures. Since the offshore structures deployed in the 
arctic are not an exception, in situ ice forces are difficult to 
obtain from frequency domain deconvolution and output only 
measurements. Direct measurement, on the other hand, 
implies heavy costs related to the load panels, installation and 
maintenance. Response measurements are therefore still 
favorable as a means to obtain the forces. Additionally, they 
provide important information about the structural motion. 

In this contribution, we demonstrate a methodology to 
overcome the aforementioned difficulties. A recently 
developed combined deterministic-stochastic approach is used 
to jointly identify the ice forces and the states. The original 
algorithm was proposed by Gillijns and De Moor [16], and 
was intended for use in the field of optimal control. Lourens et 
al. [17] extended the algorithm for use with reduced-order 
systems, as often encountered in structural dynamics. Niu et 
al. [18] used the original algorithm to identify forces on a 
laboratory scale structure. The deterministic-stochastic nature 
of the algorithm allows for improved results when the model 
equations are inexact. Since the algorithm requires no 
regularization, it can be applied online.  

In what follows, the ice forces are identified in conjunction 
with the states using the original algorithm [16] and a limited 
number of response measurements on a laboratory test setup 
designed for ice-induced vibrations. The results are assessed 
by comparison with the forces obtained with frequency 
domain deconvolution, and the estimated displacements are 
compared with the ones measured.  

2 FUNDAMENTALS 

2.1 System equations 
The governing equations of motion for a linear system 
discretized in space and excited by an external force, can be 
written as follows:  

 ( ) ( ) ( ) ( ) ( )pMu t Cu t Ku t f t S p t+ + = =&& &  (1) 

where DOFnu∈R  is the displacement vector, and the matrices 
, , DOF DOFn nM C K ×∈R  denote the structural mass, damping and 

stiffness matrix, respectively. The excitation vector 
( ) pnp t ∈R is acting on the desired locations through the force 

influence matrix DOF pn n
pS ×∈R , where pn  is the number of 

force time histories. 

2.2 State-space description 

The continuous time state vector ( ) snx t ∈R , 2   s DOFn n= is 
defined as:  
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and the equation of motion of second order, Eq.(1), can be re-
written as a first-order continuous-time state equation  

 ( ) ( ) ( )c cx t A x t B p t= +&  (3) 

where the system matrices s sn n
cA ×∈R  and s pn n

cB ×∈R are 
defined as  
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The measurements are arranged in a data vector ( ) dnd t ∈R , in 
which the observations can be a linear combination of 
displacement, velocity and acceleration, with dn  the number 
of data measurements. The data vector is constructed as 
follows: 

 ( ) ( ) ( ) ( )a v dd t S u t S u t S u t= + +&& &  (5) 

where the selection matrices ,  a vS S  and d DOFn n
dS ×∈R  are 

populated according to the spatial location where acceleration, 
velocity and/or displacement are measured. By premultiplying 
Eq. (1) with 1M − , inserting the resulting expression into Eq. 
(5), and further utilizing the definition of the state vector, 
Eq.(5) can be transformed to the state-space formulation: 

 ( ) ( ) ( )c cd t G x t J p t= +  (6) 

where the matrices d sn n
cG ×∈R  and d pn n

cJ ×∈R  represent the 
output influence matrix and direct transmission matrix, 
respectively, defined as:  

 
1 1 1[ ], [ ]c d a v a c a pG S S M K S S M C J S M S− − −= − − =  

In discrete time under a zero-order hold assumption and given 
a sampling rate of 1 / tΔ , Eqs. (3) and (6) can be defined as 
follows: 

 1k k kx Ax Bp+ = +  (7) 

 k k kd Gx Jp= +  (8) 

where  

 ( ),  ( ),  ( ),  1,...,k k kx x k t d d k t p p k t k N= Δ = Δ = Δ =  

and 
1,  [ ]cA t

c cA e B A I A BΔ −= = −  
, c cG G J J= =   

2.3 Joint input-state estimation algorithm 

Assuming the system matrices known, the algorithm 
developed by Gilljins and De Moor [16] is used to jointly 
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estimate the forces and states. By introducing random 
variables kw  and kv  representing the stochastic system and 
measurement noise, respectively, the discrete-time state-space 
equations become 

 1k k k kx Ax Bp w+ = + +  (9) 

 k k k kd Gx Jp v= + +  (10) 

where it is assumed that the vectors kw  and kv are mutually 
uncorrelated, zero-mean, white noise signals with known 
covariance matrices { } 0k lQ E w w= ≥  and { } 0k lR E v v= > . 
The algorithm predicts the force and state in three steps: the 
unbiased minimum-variance input estimation (MVU), the 
measurement update and the time update. 
  
Input estimation:  

 | 1
T

k k kR GP G R−= +%  (11) 

 1 1 1( )T T
k k kJ R J J R− − −=M % %  (12) 

 | | 1ˆ ˆ( )k k k k k kp d Gx −= −M  (13) 

 1 1
[ | ] ( )T

p k k kP J R J− −= %  (14) 

Measurement update:  

 1
| 1

T
k k k kL P G R−

−= %  (15) 

 | | 1 | 1 |ˆ ˆ ˆ( )k k k k k k k k k kx x L d Gx Jp− −= + − −  (16) 

 | | 1 [ | ]( )T T
k k k k k k p k k kP P L R J P J L−= − −%  (17) 

 [ | ] [ | ] [ | ]
T

xp k k px k k k p k kP P L J P= = −  (18) 

Time update:  

 1| | |ˆ ˆk k k k k kx Ax Bp+ = +  (19) 
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For more details on the algorithm and the assumptions it is 
based upon, the reader is referred to [16]. 

3 EXPERIMENTAL  
The force identification algorithm outlined above is applied to 
data from the Deciphering Ice-Induced Vibration test 
campaign at the Hamburg Ice Basin HSVA, carried out in 
2011. See Määttänen et al. [19], Hendrikse et al. [20] and 
Nord and Määttänen [21] for further details. One test from 
that campaign, referred to as test 4300, is used in this study. 
The main components of the experimental setup are shown in 
figure 1. The ice sheet was floating on water and the 
compliant test structure was fixed to a carriage. During testing 
the carriage forced the structure through the ice sheet causing 
continuous ice failure at the indenter. The carriage velocity 
(ice velocity) was changed in order to investigate the different 
crushing regimes governing the interaction. 

3.1 Test structure 
The structure was designed to have a nominal scale ratio of 
1:8-1:10 to a generic bottom-founded offshore structure. The 
structure was scaled to achieve modal similitude, meaning that 
the natural modes of the laboratory structure resemble the full-
scale natural modes. More about the dynamic scaling can be 
found in Määttänen et al. [19]. The first two natural modes 
have large amplitudes at the ice-action level. The frequency of 
vibration was expected to change from the first to the second 
natural frequency with increasing ice velocity.  

To make the structure flexible the main beam was supported 
by two leaf springs attached to the two vertical support beams 
displayed in yellow in figure 1. The flexibility of the system 
could then be adjusted by changing the spacing between the 
vertical supports. To be able to further tune the system 
towards the desired natural frequencies the disc weights 
displayed in green in figure 1 could be added to the bottom 
and top of the structure. The bracings and joints were 
designed to retain low internal friction in order to avoid 
nonlinearities and to maintain a low structural damping. At 
the location of the ice action, a cylindrical indenter with a 
220mm diameter was attached to the main shaft. 

 
Figure 1: Overview of the test setup. The compliant structure 
was mounted to the carriage that forced the structure through 

the ice sheet. 

3.2 Sensoring and data acquisition 
All sensors were located on the lower part of the structure 
(figure 2). The accelerometer was installed close to the 
indenter, while the strain gauge was attached to the main 
beam approximately 750mm above the ice-action point. Two 
laser displacement sensors were installed on a separate frame 
to monitor the structural displacements at the lower part of the 
beam. The load cell installed at the ice-action point was only 
used to access the dynamic properties of the structure before it 
was subjected to ice forces. The data was sampled at 100Hz. 

 
3.3 Dynamic calibrations  
A step relaxation test in open water prior to each ice test 
provided the static and dynamic properties of the structure [7]. 
A steel rod connected to the structure at the ice-action level 
was gradually loaded using a jack. Between the rod and the 
ice-action point a weak link was installed, which failed at a 
selected load level, causing transient vibrations. From the 
measured excitation and response, the FRF was calculated. 
Note that an active load cell was installed only during the 



Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014 

3778 

dynamic calibrations, and not during ice action. Direct ice-
force measurements would require a more complex structure 
design with a comprehensive installation and calibration. 
Therefore the frequency domain deconvolution method based 
on the experimentally obtained FRFs was used to reconstruct 
the ice forces (see section 5.2). At least one calibration test 
was performed for each structural configuration. In test 4300, 
the first and second natural frequencies were identified to be 
12.2 and 16.2 Hz. 
 

 
Figure 2. Test-setup overview, photo from ice-testing. 

3.3 Ice-sheet properties 
The ice properties are important for the repeated ice failure, 
hence influencing the characteristics of the dynamic response. 
The tests were carried out in the 78 m long and 10 m wide 
HSVA Large Ice Tank. The water depth is 2.5 m with a deep 
section of 5 m at the end of the basin (10 × 12 m). The ice 
sheets were columnar-grained, produced in NaCl-doped water 
with a salinity of 6.8‰ by seeding. The crystal size was 
controlled by scraping the ice from underneath. Gas bubbles 
were embedded in the growing ice sheet to ensure the brittle 
behavior of the ice as described by Määttänen et al. [19] and 
Evers and Jochmann [22]. Subsequent to the ice growth 
process at -22°C, the temperature was raised to hit the target 
ice properties. Test 4300 had relatively warm ice, hence the 
uniaxial compressive and flexural strength values were low. 
The governing ice parameters can be found in Nord et al.[23]. 

4 FE MODEL AND STRAIN OBSERVATIONS 

4.1 FE Model  
To obtain the system matrices ,  ,  A B G  and J  the structural 
properties in terms of the global M , C  and K matrices must 
be known. These matrices can be obtained by discretization 
using the finite element method. The FE model of the 
structure used in this work is displayed in Figure 3. The 
structure is modeled as a beam supported by two linear 
springs. 43 Beam elements with 6 DOFs in each node are used 

for the hollow-section (RHS120x80x6) profile main beam, 
while the additional mass of the structure at discrete locations 
is modelled using lumped masses.  
 

 
Figure 3. FE-model showing the spring locations, side view of 
beam profile and vibration modes. The first and second modes 

are displayed in the left and right figure, respectively. 

First, a model based only on structural blueprints is used in 
the identification to assess how well the force can be 
reconstructed without any prior knowledge of the true 
(measured) dynamical properties. Secondly, a tuned model is 
assembled based on the knowledge obtained from the 
dynamic calibrations. The FE software was used to derive the 
M and K  matrices while Rayleigh damping is used to 
construct the damping matrix.  
 
Model based on structural blueprints 
The stiffness of the linear springs is the combined stiffness of 
the vertical support beams and the leaf springs, where the 
combined stiffness relies on the accuracy of the simplistic 
beam formulas used for the structural design. The added 
masses from the weight discs were 120kg in top and bottom, 
while the indenter and foundation masses were 32kg and 
15kg, respectively. The design was intended to provide low 
internal damping, so that Rayleigh damping coefficients are 
calculated based on an assumed damping ratio of 2% in the 
first and second modes. 
 
Model tuned using dynamic calibration data 
The modeling errors are assumed to originate mainly in the 
foundation. The boundary conditions used in the design 
calculation of the combined stiffness rendered a smaller 
stiffness than observed. As a consequence, the tuning solely 
affects the model springs. The stiffness is tuned until the first 
natural frequency is close to the one found in the receptance 
plot from the dynamic calibrations. This limited amount of 
tuning parameters is considered to be favorable for the 
comparative results presented in section 5. The structural 
properties for both the blueprint and the tuned model are 
given in Table 1. 
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Table 1. FE model properties 

 

4.2 Strain observations  

In order to use the measured strain data to identify the forces 
and states, the strains must be described through the linear 
relationship between the output influence matrix, G, and the 
states. When the shape functions used to establish the finite 
element are known, they can be readily used to establish the 
complete transformation from (predicted) states to strain. A 
two-node beam element has been used in this work. The 
element has six degrees of freedom (directions illustrated in 
Figure 4) in each node and shear deformations have been 
taken into account - see [24] and [25] for further details.  

 
Figure 4. Beam element directions. 

The general relation between the transverse displacement field 
and the generalized degrees of freedom can be written as 
follows:  

 ( ) qw x N q=  (21) 

where 2 3[1 ]qN x x x=  and 1
elq A v−=  are the generalized 

displacement patterns and the generalized DOFs, while v  
symbolizes the physical element DOFs. The elA  matrix must 
be given for deformations in both xz and xy planes. For lateral 
motion in the y direction and rotation about the z axis (xy 
plane), the matrix elA is the following: 
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(22) 

whereα  is the dimensionless shear coefficient given in [24]. 
Inserting the expression for the generalized DOFs into Eq. 
(22), the element shape functions are obtained as follows:  

 1( ) el
y q q elw x N q N A v N v−= = =  (23) 

When the shape-functions elN  are given through the relation 
in Eq. (24), the bending strain can be found as: 
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 (24)  

where y  is the distance from the center of inertia to the point 
on the cross-section where the strain is measured. Since the 
strains are not continuous between the elements, the bending 
strain at the node of interest can be taken as the average over 
two neighboring elements. The data influence matrix for strain 
(see equation (5)), denoted dS , has to be populated according 
to the global DOF vector u . 

5 RESULTS AND DISCUSSION 

5.1 Observations 
The ice velocity (recorded carriage velocity) was increased in 
steps, ranging from 10 to 300 mm/s. At low velocities the ice 
followed the deflection of the structure with a ductile load 
build up and a subsequent spring-back deflection due to brittle 
failure. These response characteristics were only observed for 
a few seconds; thereafter the failure process alternated 
between intermittent and continuous brittle crushing. 
Underwater cameras revealed that the extrusion of crushed ice 
primarily consisted of small particles with some larger pieces 
spalling off. Radial cracks were occasionally observed, but 
they did not expand to the walls of the ice tank.  

5.2 Reference force 
The FRF was obtained experimentally from the step-
relaxation test as described in section 3. The ice force used for 
validation was subsequently found by inverting the FRF as 
follows: 

 † ˆˆp̂( ) H ( ) d( )ω ω ω=  (25) 

where p̂ pn∈R is the force, d̂ dn∈R is the measured response 

and †Ĥ d pn n×∈R is the pseudo-inverse of the FRF matrix. A 
more detailed description of this procedure can be found in 
Nord et al. [23]. In what follows, the forces obtained using the 
measured FRF will be referred to as the reference force. 

5.3 Force identification 
The ice force and the states are identified on the basis of one 
strain gauge and one accelerometer, both non-collocated as 
shown in Figure 2. The values assigned to the diagonals of the 
covariance matrices 0| 1, ,Q R P −  required by the joint input-
state estimator (section 2.3), namely 10e-8, 10e-6, and 10e-8, 
are chosen based on the peaks in the measured response and 
the identified states, see [17] for details. The initial state 

0| 1x̂ − is assigned the value of 0, effectively treating it as an 
unknown. 
 
Blueprint model  
The identified force appears almost identical to the reference 
force (figure 5), with the only discrepancy observed at the 
very end of the test. In order to investigate whether the 
algorithm and an approximate model are able to reconstruct 

Property Lower 
Spring 
stiffness 

Upper 
Spring 
stiffness 

Natural 
Frequencies 

Damping 
Ratios 

Rayleigh 
coefficients 

symbol kL 
[kN/m] 

kU 
[kN/m] 

f1 
[Hz] 

f2 
[Hz] 

ζ1 
[%] 

ζ2 
[%] 

α β

Blueprint 
model 

7.10 4.62 11.17 16.84 2.0 2.0 1.68 2.27e-
4 

Tuned 
model 

8.84 5.61 12.12 17.34 2.0 2.0 1.79 2.16e-
4 
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the forces in the two fundamental ice-crushing regimes, two 
short sequences representing each of these regimes are 
selected. The results for the intermittent crushing regime are 
shown in figure 6. The identified force exhibits the classical 
saw-tooth behavior of intermittent crushing, as each cycle 
appears almost identical to the reference force. The 
corresponding Fourier spectrum is shown in figure 7. In the 
more dynamic, continuous crushing regime (Figure 8), the 
force is also identified accurately. Only at higher frequencies 
(see figure 9), the difference becomes slightly more 
pronounced. In general, the convincing agreement between 
the reference force and the force identified based on an 
approximate blueprint model, provides a strong motivation for 
using the joint-input state algorithm for in-situ full-scale ice-
force identification.  

 

 
Figure 5. Identified force (light grey) and reference force 

(black) for the blueprint model. 

 

 
Figure 6. Identified (light grey) and reference force (black) for 

the blueprint model in intermittent crushing. 

 

 
Figure 7. Frequency spectra of the identified (light grey) and 
reference force (black) for the blueprint model in intermittent 

crushing. 

 
Figure 8. Identified (light grey) and reference force (black) for 

the blueprint model in continuous crushing. 

 

 
Figure 9. Frequency spectra of identified (light grey) and 

reference force (black) for the blueprint model in continuous 
crushing. 

Tuned model 

Figure 10 shows an overall excellent reconstruction of the 
forces based on the tuned model. The improvements can be 
spotted in the peaks and valleys in figure 11 (cf. figure 8), 
Where a small discrepancy is observed at the end of the time 
series for the blueprint model (figure 5), it is now almost 
absent in the tuned model (figure 10). 

 

 
Figure 10. Identified force (light grey) and reference force 

(black) for the tuned model. 

 
Figure 11. Short sequence of brittle crushing, identified (light 

grey) and reference force (black) for the tuned model. 

5.4 Response estimation 
While the foregoing application of the algorithm focused on 
the identification of the forces, here the aim is to show the 
accuracy of the (jointly) estimated displacement at 
unmeasured locations. Recall that, in what follows, only the 
non-collocated acceleration and strain gauge are used to 
estimate the displacement at the location of the lowermost 
laser. 

 
Blueprint model  
The measured and estimated displacements are displayed in 
figure 12. The displacements are overestimated throughout the 
test. In the intermittent crushing regime (figure 13) the peak 
offsets remain constant, while for the continous crushing 
regime (figure 15), some peaks differ less than others. The 
shape of each cycle is well captured for the intermittent 
regime, while for the brittle crushing regime the load build up 
phase differs prior to the terminal ice failure. Still, the 
frequency plots in figure 14 and figure 16 show that the 
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dominant frequency components are in good agreement with 
the measurements. Since the significant modeling errors for 
this test setup pertain to the foundation stiffness, their effect 
influences mostly  the state prediction, while acceptable force 
identification accuracy was preserved. 
 

 
Figure 12. Estimated displacement (light grey) and the 

measured (black). 

 
Figure 13. Estimated displacement (light grey) and the 

measured (black) in intermittent crushing. 

 
Figure 14. Estimated displacement (light grey) and the 

measured (black) in intermittent crushing, frequency domain. 

 
Figure 15. Estimated displacement (light grey) and the 

measured (black) in continuous brittle crushing. 

 
Figure 16. Estimated displacement (light grey) and the 

measured (black) in continuous brittle crushing. 

 
 

Tuned Model 
The overall agreement between measured and estimated 
response (figure 17) improves significantly when tuning the 
foundation stiffness. The constant peak offset in the 
intermittent regime (figure 18) reduces to 1mm, while in 
continuous crushing (figure 20) the difference ranges from 0 
to 2mm. Reducing the peak offset for intermittent crushing 
has limited effect on the higher frequencies displayed in figure 
19. The improved accuracy is as expected more visible in the 
frequency domain during continuous crushing (figure 21). The 
light grey and dark lines follow each other well and the major 
frequency components are well captured. 
 
 

 
Figure 17. Estimated displacement (light grey) and the 

measured (black). 

 
Figure 18. Estimated displacement (light grey) and the 

measured (black) in intermittent crushing. 

 
Figure 19. Estimated displacement (light grey) and the 

measured (black) in intermittent crushing, frequency domain. 

 
Figure 20. Estimated displacement (light grey) and the 

measured (black) in continuous brittle crushing. 
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Figure 21. Estimated displacement (light grey) and the 

measured (black) in continuous brittle crushing, frequency 
domain. 

6 CONCLUSIONS 
The ice forces acting a generic bottom-founded offshore 
structure have successfully been identified in conjunction with 
the states using a joint input-state algorithm and a limited 
number of response measurements. The ice forces are well 
reconstructed in two important regimes governing the 
dynamic ice-structure interaction. The estimated response is 
found to be prone to modelling errors, while excellent force 
identification results are obtained even with an approximate 
model. Simple tuning of the model foundation stiffness 
greatly improved the estimated response at the ice-action 
level. The results shown in this contribution provide a strong 
motivation for monitoring of full-scale structures in the Arctic 
region.  
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