

Delft University of Technology

Enabling robots to autonomously search dynamic cluttered post-disaster environments

Rado, K.; Baglioni, M.; Jamshidnejad, A.

DOI
10.1038/s41598-025-18573-y
Publication date
2025
Document Version
Final published version
Published in
Scientific Reports

Citation (APA)
Rado, K., Baglioni, M., & Jamshidnejad, A. (2025). Enabling robots to autonomously search dynamic
cluttered post-disaster environments. Scientific Reports, 15. https://doi.org/10.1038/s41598-025-18573-y

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1038/s41598-025-18573-y
https://doi.org/10.1038/s41598-025-18573-y

Enabling robots to autonomously
search dynamic cluttered post-
disaster environments
Karlo Rado, Mirko Baglioni & Anahita Jamshidnejad

Robots will bring Search and Rescue (SaR) in disaster response to another level, in case they can
autonomously take over dangerous SaR tasks from humans. A main challenge for autonomous SaR
robots is to safely navigate in cluttered environments with uncertainties, while avoiding static and
moving obstacles. We propose an integrated control framework for SaR robots in dynamic, uncertain
environments, including a computationally efficient heuristic motion planning system that provides
a nominal (assuming there are no uncertainties) collision-free trajectory for SaR robots and a robust
motion tracking system that steers the robot to track this reference trajectory, taking into account
the impact of uncertainties. The control architecture guarantees a balanced trade-off among various
SaR objectives, while handling the hard constraints, including safety. The results of various computer-
based simulations, presented in this paper, showed significant out-performance (of up to 42.3%) of the
proposed integrated control architecture compared to two commonly used state-of-the-art methods
(Rapidly-exploring Random Tree and Artificial Potential Function) in reaching targets (e.g., trapped
victims in SaR) safely, collision-free, and in the shortest possible time.

Keywords  Autonomous motion-planning, Dynamic obstacle avoidance, Robust model predictive control,
Search and rescue robotics

Autonomous Search and Rescue (SaR) robots are emerging in post-disaster response, in order to reduce the
exposure of human SaR staff to life-threatening risks. Structural damages and collapsed buildings reshape an
environment post disaster. Thus, reliable and effective control methods for autonomous, safe navigation in
dynamic and (partially) unknown environments are crucial for SaR robots1–6. Another main challenge for
autonomous navigation of SaR robots is avoiding the obstacles that move according to generally nonlinear
trajectories, without (significantly) compromising the mission criteria. State-of-the-art solutions either rely on
assuming static obstacles only, or provide ad-hoc solutions that cannot be generalized or provide guarantees on
the performance of SaR missions via robots7–9.

To tackle these challenges, we propose a novel control architecture for autonomous SaR robots that should
reach known target positions in dynamic cluttered post-disaster environments: We first divide the mission
planning of SaR robots into two stages, motion planning and optimal motion tracking. We extend the greedy
heuristic path planning method10 that has been introduced to generate a nominal obstacle-free path towards
the targets of the robot, in order to account for dynamic obstacles that may appear on the way of the robot.
Note that by nominal, we are referring to a trajectory that is determined assuming there are no uncertainties
or uncontrollable disturbances. We then integrate this path planning method with an optimal motion tracking
system that closely follows the nominal trajectory estimated by the heuristic motion planning system while
guaranteeing robustness to bounded uncontrollable disturbances.

The optimal motion tracking system is based on a robust version of MPC, called Tube-based Model Predictive
Control (TMPC). TMPC has proven very effective in steering robots for post-disaster SaR11, due to its unique
capability in providing robustness to bounded uncertainties, balanced trade-offs among competing objectives
of SaR (e.g., maximizing the area coverage and minimizing the mission time4), systematic handling of the states
and inputs constraints, and on-the-go stability guarantees12.

Main contributions and road map of the paper
This paper introduces a novel planning and control framework for autonomous navigation in dynamic, cluttered
environments with the following main contributions:

Control and Operations Department, Delft University of Technology, 2629 HS Delft, The Netherlands. email:
m.baglioni@tudelft.nl

OPEN

Scientific Reports | (2025) 15:34778 1| https://doi.org/10.1038/s41598-025-18573-y

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-18573-y&domain=pdf&date_stamp=2025-9-24

•	 Unified planning and control: We integrate a greedy heuristic path planning system with a robust Tube-
based Model Predictive Control (TMPC) system within a single-layer architecture. This design synergizes
the responsiveness of heuristic reasoning with the constraint-handling guarantees of Model Predictive Con-
trol (MPC)-based systems, leading to enhanced computational efficiency and safety compared to traditional
bi-level planning-control schemes.

•	 Dynamic obstacle avoidance via obstacle belts: We extend the path planning system to handle moving
obstacles by predicting their trajectories and aggregating them into time-indexed constraint regions, called
obstacle belts, to enable anticipatory collision avoidance.

•	 Uncertainty-aware TMPC reformulation: We reformulate TMPC by replacing its nominal controller with
the heuristic planning mechanism, while retaining the ancillary controller for robust trajectory tracking.
Time-varying constraints and dynamic tightening account for both external disturbances and perception
uncertainty.

•	 Stateless, perception-driven control: The framework operates without memory of past states, by relying
solely on real-time perception. While this condition can be relaxed in the presence of advanced sensing and
computational resources, this non-restrictive design reduces reliance on such infrastructure and enables de-
ployment in partially observable environments typical of SaR missions.

Extensive simulations demonstrate the superior performance of the proposed method compared to state-of-the-
art planners, particularly Horizon-based Lazy Rapidly-exploring Random Tree (HL-RRT*), which embodies
heuristic reasoning similar to our planning system, and COLREGS Artificial Potential Function (APF), which
emphasizes systematic obstacle avoidance and target convergence, as does the TMPC component of our
proposed framework. The proposed approach outperforms both, especially in scenarios involving uncertainty
and dynamic constraints.

In the rest of this paper we provide a background discussion, the problem statement and assumptions,
our proposed methods, the results of the case study with discussions, conclusions, and topics for future work.
Moreover, Table 1 gives the mathematical notation that is frequently used in the paper.

Background discussion
Planning the disaster response via robots depends on the disaster’s environment. Three operational environments
are identified for SaR13, urban (involving constrained environments14, e.g., inside a collapsed building),
wilderness (involving open-ended environments15, e.g., a forest), and air-sea (involving waters16, e.g., a sea where
vessels accidents or water landing has occurred). Ground robots17, flying robots18, and underwater robots19 may
be used in SaR, while for various indoor constrained environments ground robots are preferred20. Our focus is
on urban SaR via ground robots. We address the problem of autonomous, effective mission planning and safe
navigation of these robots. This yields to a generally nonlinear constrained optimization-based problem with
multiple competing objectives, e.g., reducing the mission time while increasing the area coverage.

For SaR robots, it is common to use heuristic methods, especially those based on shortest path planners and
artificial intelligence, e.g., reaction-based swarming21, fuzzy logic control22, and ant colony optimization23. The
main motivation for using these methods is their computational efficiency, making them suitable for on-board
deployment in SaR robotics. The main shortcomings of heuristic approaches, however, are their ad-hoc case-
specific nature and the lack of performance guarantees. With advances in computational power and robotics
technology24,25, incorporating guaranteed mathematical approaches or novel integrated versions of them that
provide balanced trade-offs between a high performance and computational efficiency has been emerging4,10,26–29.

Model Predictive Control (MPC) is a mathematics-based, systematic control approach that determines a
sequence of control inputs by optimizing an objective function within a given prediction window, satisfying the
state and input constraints. MPC is implemented in a rolling horizon fashion, i.e., after determining the control
input sequence, only the first one is injected into the controlled system and the MPC problem is solved for the
shifted prediction window at the next time step. MPC has proven very effective for addressing constrained

Notation Explanation Notation Explanation

κ Discrete time step xstatic,obs(o) The x position of static obstacle o

c Control sampling time ystatic,obs(o) The y position of static obstacle o

Np Prediction horizon of MPC xdyn,obs
κ (o) The x position of dynamic obstacle o at time step κ

xrob
κ The x position of the robot at time step κ ydyn,obs

κ (o) The y position of dynamic obstacle o at time step κ

yrob
κ The y position of the robot at time step κ vdyn,obs

x,κ (o) Horizontal velocity of dynamic obstacle o at time step κ

θrob
κ Heading angle of the robot at time step κ vdyn,obs

y,κ (o) Vertical velocity of dynamic obstacle o at time step κ

vrob
κ Linear velocity of the robot at time step κ ρobs Radius of the obstacle or of the smallest circular area encountering it

ωrob
κ Angular velocity of the robot at time step κ xref

κ
Vector of robot’s reference states for time step κ

ρrob Radius of the robot (assuming a circular shape) uref
κ Vector of robot’s reference control inputs for time step κ

Table 1.  Frequently used mathematical notations.

Scientific Reports | (2025) 15:34778 2| https://doi.org/10.1038/s41598-025-18573-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

optimization-based problems. MPC has often been used in static SaR environments for tracking a reference
trajectory that is assumed to be provided by another path planning approach20,27,30,31.

In connection to path planning for robots, exploration and coverage of the SaR environment are both
crucial32,33. Various approaches for area coverage have been proposed based on random search34 or artificial
intelligence (especially deep learning, reinforcement learning, fuzzy logic control22,35,36). In this regard, MPC
has been used for SaR robots to determine control inputs that maximize a reward for visiting new parts of
the environment28,37,38. Another novel application of MPC in multi-objective SaR via robots is through a bi-
level architecture4, where a supervisory MPC level enhances the area coverage by re-distributing SaR robots
when they locally decide to visit the same or neighboring parts of the environment. This division of local and
supervisory decision making provides a balanced trade-off between optimizing the global objectives of the SaR
mission and meeting the computational requirements.

Robust versions of MPC39, in particular robust Tube-based Model Predictive Control (TMPC)40, deal with
bounded uncertainties, e.g., bounded disturbances and perception errors that often occur for SaR robots. In
TMPC, first the nominal version of the MPC problem is solved where no uncertainties are considered and the
constraints have been tightened compared to the original problem41. Constraint tightening implies adjusting the
bounds on the states and/or control inputs (e.g., by shrinking their admissible sets) to ensure that the controlled
system always operates within its safe operational limits12, although the operational conditions may be affected by
larger disturbances than those considered in the decision making procedure. During the online implementation
of TMPC, an ancillary control input minimizes the error between the nominal and actual states42. While the
actual state trajectory may deviate from the nominal one, it always remains within a safe bounded region, called
the tube, where the constraints are guaranteed to always be satisfied. The diameter of the cross section of the
tube is determined according to the maximum difference between the nominal and actual states, considering the
worst-case uncertainty scenario.

Navigating SaR robots is often target-driven43, i.e., it involves steering the robot via reference points towards
a given target. In this context, learning-based methods, such as reinforcement learning, are widely adopted44,45.
Recent hybrid approaches combine high-level learning-based decision policies with classical planners to achieve
more adaptive navigation. For example, RLoPlanner46 integrates reinforcement learning with low-level motion
planning, while hierarchical navigation algorithms, e.g.,47, employ model-free strategies to guide flying robots
in structured environments.

However, many of these methods focus on static or slowly changing environments and lack explicit
mechanisms for handling time-varying constraints introduced by moving obstacles. They often require extensive
training data and do not provide formal safety guarantees.

In contrast, this paper proposes a novel control architecture specifically tailored for dynamic SaR scenarios.
Our framework integrates a heuristic steering approach with robust, constraint-aware MPC. This allows for
real-time adaptation to moving obstacles and bounded disturbances48, without relying on learned policies
or hierarchical coordination, and results in a lightweight, yet reliable, architecture that maintains safety and
computational efficiency under high environmental uncertainty.

Problem statement and assumptions
We consider the control problem of a SaR ground robot that should autonomously navigate a dynamic, cluttered,
and (partially) unknown environment to reach a known target point. The control problem is formulated within
a 2D continuous-space framework in discrete time, with time step variable κ. In the mathematical derivations,
we consider a differential drive49 ground robot with a circular shape of radius ρrob, but the proposed methods
are adoptable for different types and shapes of robots and post-disaster environments. For the sake of simplicity
of the mathematical formulations, the static and dynamic obstacles all have a circular shape with a fixed radius
ρobs. This is equivalent to considering the smallest circular area that encounters an obstacle an area for the robot
to avoid. The robot has a camera that provides visual information within a circular perception field centered
around the robot and perceives the shape, position, and velocity of the obstacles. In addition to static obstacles
(e.g., rubble or stones) there are moving obstacles (e.g., humans or falling debris) in the environment. The control
system should determine per control time step the linear and angular velocities that steer the robot towards its
next desired states.

We consider the following assumptions:
 A1 Per time step, the robot has perfect information of its own states and scans and gathers information

about the part of its environment that falls within the perception field of the robot’s camera. The robot keeps no
memory of the past.

A2 Environmental unmodeled disturbances (e.g., unevenness or non-smoothness of terrain) affect the states
of the robot. In other words, the position, given for the center of the robot, and the velocity may diverge from their
nominal values due to terrain-induced disturbances. Such effects are treated as bounded external disturbances.

A3 The perception of the robot about the position of the static obstacles is perfect, but for dynamic obstacles
this perception is prone to a bounded error (which may be due to, e.g., the motion blur or the obstacle moving
faster than the camera’s update rate).

Bi-level control architecture for autonomous safe searching of dynamic cluttered
areas
The control architecture that is proposed for steering a robot in dynamic cluttered SaR environments is illustrated
in Fig. 1: In order to improve the computational efficiency and the responsiveness of the steering system of the
robot, both highly crucial for SaR missions50,51, we opt to separate the steering system into a motion planning
system and an optimal motion tracking system, which must follow the trajectory that is generated by the motion

Scientific Reports | (2025) 15:34778 3| https://doi.org/10.1038/s41598-025-18573-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

planning system as closely as possible. The output of the motion planning system (shown via a green box in
Fig. 1) is injected, as the reference trajectory, into the optimal motion tracking system (shown via a gray box in
Fig. 1), which will request the motion planning system to re-plan the trajectory whenever needed.

Motion planning system: Heuristic planning
Due to its ease of implementation and computational efficiency, the obstacle-avoiding shortest path approach
introduced by Jamshidnejad and Frazzoli10 was chosen as the basis for the motion planning system. There are,
however, two main challenges regarding the adoption of this approach for a dynamic, cluttered SaR environment
that should be addressed: First, the approach only includes static obstacles and does not incorporate dynamic
ones. Second, since this approach relies on local knowledge of the robot from its environment, its feasibility may
be at risk.

Modified obstacle-avoiding shortest path approach for dynamic environments
In the original algorithm10, a greedy heuristic approach has been adopted to avoid obstacles that are composed of
any arbitrary union of circular shapes, by generating the path across the tangential arcs to these circular shapes
(see Fig. 2a). This way various arbitrarily-shaped obstacles can be handled by dividing them into smaller pieces
and by approximating each piece by the smallest circle that encounters the piece. Due to its limited perception
field, the robot determines a temporary intermediate target, which it intends to approach, per control time step.
The motion planning system evaluates the shortest paths at both sides of the straight path that, regardless of the
obstacles, connects the current position of the robot and the position of its current temporary target. In case
the candidate paths are of the same length, one is chosen randomly. Equidistant points on the shortest path are
injected as reference points into the local motion tracking system of the robot. In case the resulting shortest
path is non-smooth or self-intersecting (see the green curves in Fig. 2a), a tangent line is drawn across the outer
obstacles to smoothen the path (see the black curve in Fig. 2a).

We made the following modifications to the heuristic path planning approach, in order to make it suited for
practical cases where the robot should avoid moving obstacles as well and does not store detailed past information
for efficiency of the on-board computations and the memory and energy consumption (see Assumption A1): Due
to the limited awareness of the robot about its environment (limited to the perception field of its camera), it may
face situations where the temporary target that connects its current position and the final target is unreachable
according to the robot’s environmental awareness (Fig. 2b). We address this by replacing the original candidate
paths with traversable paths within the detection zone of the robot that have an endpoint as close as possible to
the unreachable temporary target.

Moreover, in order to incorporate the dynamic obstacles into the heuristic motion planning approach, the
following steps are taken, assuming perfect knowledge about the dynamic equations of the obstacle:

	Step 1	 The obstacle avoiding path planning approach is implemented to generate traversable, safe paths for the
robot considering only the obstacles perceived as static.

	Step 2	 Using the predicted dynamics of the dynamic obstacles within a given prediction window, all relevant
dynamic obstacles are modeled, each as a set of static obstacles located at these predicted positions.

	Step 3	 The reference points of the robot for all the time steps within this prediction window are specified on the
shortest traversable and safe path obtained via Step 1, with all positions of the dynamic obstacle for the
time steps within the prediction window included in the picture of the robot as static obstacles.

Fig. 1.  General control architecture proposed for autonomous steering of robots in cluttered dynamic SaR
environments.

Scientific Reports | (2025) 15:34778 4| https://doi.org/10.1038/s41598-025-18573-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	Step 4	 In case, by comparing the position of the robot and the static obstacles that represent the position of the
dynamic obstacle any risks of collision are detected, the illustrated static obstacles for the time steps with
a risk of collision will be united to form an obstacle belt. A new collision-free path is then generated.

	Step 5	 Repeat Step 1–Step 4 until the shortest traversable and safe path is determined.

Figure 2c illustrates how the shortest traversable and safe path is determined, by first considering only the static
obstacle (shown via the black circle) and then by modifying the resulting path in order to avoid collisions with
the static obstacles that represent the dynamic obstacle for all the time steps within the given prediction window.
We assume that the robot moves across this path with linear and angular velocities that ensure a trade-off
between performance and safety. This, for instance, is obtained by selecting the higher threshold between half of
the maximum velocity of the robot and its midpoint velocity.

Remark 1  Obstacle representation and generalization: To enable safe navigation in environments with ar-
bitrarily-shaped or moving obstacles, we adopt the concept of a forbidden belt, originally introduced in10. This
construct allows multiple circular (primitive) obstacle regions, each representing predicted positions of dynamic
objects at discrete time steps, to be unified into a deformable constraint region. The resulting belt approximates
the occupancy of arbitrarily shaped or time-evolving obstacles over a prediction horizon. This abstraction sup-
ports the generalization of our method to real-world SaR environments, where obstacle boundaries are often
irregular and unknown a priori. Crucially, the method does not require explicit modeling of obstacle geometry,
but instead incorporates their aggregated occupancy.

Remark 2  Compatibility with memory-augmented settings: While the no-memory assumption enables a
lightweight and reactive implementation, the proposed framework remains fully compatible with memory-aug-
mented modules (e.g., SLAM or local map tracking), which will potentially further improve robustness in par-
tially observable environments.

Next, we expand the discussions for situations where the dynamics of the moving obstacles is not perfectly
known by the robot, thus the robot’s predictions about the future positions of the obstacle are prone to errors.

Including dynamic obstacles when perception errors may exist in the motion planning system
In practice, especially in cluttered SaR environments that are prone to various uncontrolled stimuli, the dynamics
of the obstacles cannot be perfectly captured via mathematical models. Additionally, the perceived position of
dynamic obstacles based on the images of the camera is prone to errors (Assumption A3). Therefore, the path
planning approach must be made robust to these uncertainties. This is guaranteed if the robot safely navigates
in the environment even when maximum uncertainties are realized, i.e., when the forbidden areas (hollow
circles around each dynamic obstacle in Fig. 2) are expanded considering the maximum modeling or perception
error. Moreover, the cumulative errors enhance the uncertainty of the predictions. This effect is incorporated
by increasing the upper value of the errors according to the proximity of the prediction to the current time.
In fact, a larger prediction window allows to incorporate and assess longer-term impacts of current control
inputs, which increases the chances of a safe and optimal mission and decreases the risk of recursive infeasibility.
However, in addition to heavier online computations, prediction in larger windows leads to larger cumulative
errors and thus risks to safety and degrading the performance. This further motivates the introduction of a
bi-level control architecture that generates a reference path that approximately provides safety and desirable
performance, and that delegates the obstacle avoiding task to a reference tracking control system (see Fig. 1).

Fig. 2.  Main idea behind the heuristic path planning approach10. Black hollow circles surrounding static
(black) and dynamic (red) obstacles show forbidden areas for the robot. In plot 2b the robot is at the origin and
its current perception field is the light blue area. In plot 2c the robot is at the left-hand side end of the black
piece of line and its current target is at the right-hand side end of it.

Scientific Reports | (2025) 15:34778 5| https://doi.org/10.1038/s41598-025-18573-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Whenever the local reference tracking control problem becomes infeasible or the performance criteria falls
under desirable thresholds, the motion planning system updates the reference path, based on the updated
information. Meanwhile, the optimal motion tracking system keeps the motions of the robot safe and crash-free.

Optimal motion tracking system: Robust Tube-based Model Predictive Control (TMPC)
Based on assumptions A1 and A3, two sources of uncertainties affect the performance of the robot: The
unmodeled disturbances that deviate the states of the robot from the planned states and the errors in perceiving
the position of dynamic obstacles. Therefore, we use robust TMPC in motion tracking in order to optimally follow
the reference trajectory that is determined by the motion planning system, while systematically incorporating
all the constraints into the decision making procedure. TMPC uses dynamic mathematical models to predict
the states of the robot and of the dynamic obstacles in a given prediction window, and uses these predictions to
optimize the control inputs. The state vector of the robot, which encapsulates all the necessary past information
for time step κ to predict the future states, is given by xrob

κ = [xrob
κ , yrob

κ , θrob
κ]⊤, which includes, respectively,

the 2D position of the center of the robot and the robot’s orientation with respect to the horizontal axis. The
control input vector that steers the motion of the robot for time step κ is given by urob

κ = [vrob
κ , ωrob

κ]⊤, which
includes, respectively, the linear and the angular velocities of the robot. The obstacles are identified by their
position vector rstatic,obs(o) = [xstatic,obs(o), ystatic,obs(o)]⊤ for static obstacle o and by their state vector
xdyn,obs

κ = [xdyn,obs
κ (o), ydyn,obs

κ (o), vdyn,obs
x,κ (o), vdyn,obs

y,κ (o)]⊤ per time step κ for dynamic obstacle o,
including the 2D position rdyn,obs

κ (o) and the velocity elements of the obstacle, respectively (note that due to the
circular shape of obstacles, instead of their orientation or angular velocity, the robot perceives the components
of the linear velocity). The state evolves due to the accelerations aobs

x,κ(o) and aobs
y,κ(o) by the driving forces of the

obstacle. Next, we explain how the motion tracking system predicts the states of the robot and of the dynamic
obstacles within a given prediction window.

Dynamic prediction models for the motion of the robot and of the dynamic obstacles
The kinematics equations for translational motion of the centroid of a differential drive mobile SaR robot, as well
as the orientation of the robot, both used by the motion tracking TMPC system are given by:

	
xrob

κ = xrob
κ−1 + c

(
vrob

κ cos
(
θrob

κ−1
)

− cωrob
κ vrob

κ sin
(
θrob

κ−1
))

� (1a)

	
yrob

κ = yrob
κ−1 + c

(
vrob

κ sin
(
θrob

κ−1
)

+ cωrob
κ vrob

κ cos
(
θrob

κ−1
))

� (1b)

	 θrob
κ = θrob

κ−1 + cωrob
κ � (1c)

 The state update equations (1a)-(1c) have been discretized in time using sampling time c, i.e., the states are
updated every c time units, while during this interval their most recently updated values are used.

In the proposed architecture, both the motion planning system (in Step 3) and the optimal motion tracking
system (as a prediction model embedded in MPC) need to model the dynamics of the moving obstacles. In
case any knowledge exists or is deducible via filters52 about the pattern of movement of the obstacles, the
corresponding kinematics equations may be obtained.

Otherwise, since the proposed framework does not rely on prior knowledge of precise obstacle trajectories,
it should predict obstacle motions based on rational assumptions, e.g., obstacles follow motion patterns similar
to the behavior of the robot itself.

Since based on assumption A2, robots deploy perception pipelines that estimate obstacle motion under
bounded uncertainty, predicted uncertainty envelopes can be incorporated into the obstacle belt representation
to preserve safety guarantees, even in the presence of unpredictable or partially observed obstacle motions29.

Regardless of the prediction method, the TMPC system, as is detailed in the next section, incorporates
time-varying constraint tightening, which accounts for uncertainty in obstacle motion. This ensures that safety
constraints remain satisfied, even under bounded deviations. The robot continuously monitors the motion of
objects within its perception field, and if significant changes are detected, the framework triggers real-time re-
planning, supported by the rolling-horizon strategy of TMPC. This combination of conservative planning and
adaptive response enables safe navigation in environments with limited or noisy motion information.

Formulating the TMPC problem of the motion tracking system incorporating the impact of uncertainties
The objective function of the MPC problem for motion tracking per time step κ is composed of two terms:
The first term includes the offset of the state vector trajectory of the robot from the reference trajectory {

xref
κ+1, . . . , xref

κ+Np
}

 within the prediction window Pκ = {κ + 1, . . . , κ + Np} that is generated by the
heuristic motion planning system. The second term of the objective function represents the kinetic energy of
the robot and incorporates the impact of the velocity vector of the robot to improve the energy efficiency for its
motion and to assist with obstacle avoidance. This term serves dual purposes: Reducing energy consumption and
moderating velocity near dynamic obstacles, which enhances safety in cluttered or uncertain environments. Note
that replacing this term with a time-minimization one encourages maximum velocity, which may compromise
energy efficiency and increase the risk of unsafe behavior near obstacles. Alternatively, adding a time-related
term alongside the existing objectives introduces a competing priority into the optimization problem that
potentially undermines the real-time tractability and responsiveness required in safety-critical scenarios.

These terms are weighed using positive parameters w1 < 1 and w2, where the impact of the predictions that

Scientific Reports | (2025) 15:34778 6| https://doi.org/10.1038/s41598-025-18573-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

correspond to farther times in the future is discounted (due to being prone to larger estimation errors) by
multiplying them by wk

1 . In other words, when k is a larger time step within the prediction horizon, the weight
of the corresponding term is smaller, because w1 < 1. The TMPC problem for time step κ, with xrob

κ and
urob

κ−1 given, is formulated within the prediction window Pκ via the following minimization problem:	

min
ũrob

κ (Nc,Np),x̃rob
κ (Np)

(κ+Np∑
k=κ+1

w
k/(κ+1)
1

∥∥xrob
k − xref

k

∥∥ + w2

κ+Np−1∑
k=κ

(
urob

k

⊤ · urob
k

))
� (2)

subject to the following constraints, within the given prediction window Pκ:

	 (1) holds for updating the states of the robot � (3a)

	 (1) or a dynamic equation deduced from a Kalman filter holds for moving obstacles � (3b)

	 xmin ≤ xrob
k ≤ xmax � (3c)

	 umin ≤ urob
k−1 ≤ umax � (3d)

	
∥∥urob

k−1 − urob
k−2

∥∥ ≤ usmooth � (3e)

	
∥∥rrob

k − rrob
κ

∥∥ ≤ ρplan
κ − ρsafe � (3f)

	
∥∥rrob

k − rstatic,obs(o1)
∥∥ ≥ ρsafe + wrob

k , for o1 ∈ Istatic,obs
k � (3g)

	
∥∥rrob

k − rdyn,obs
k−1 (o2)

∥∥ ≥ ρsafe + wrob
k + wdyn,obs

k−1 , for o2 ∈Idyn,obs
k and for k >κ+1 � (3h)

∥∥rrob

k −rdyn,obs
k (o2)

∥∥≥ρsafe+wrob
k + wdyn,obs

k , for o2 ∈ Idyn,obs
k � (3i)

 	
∥∥rrob

k − rdyn,obs
k+1 (o2)

∥∥ ≥ ρsafe + wrob
k + wdyn,obs

k+1 , for o2 ∈Idyn,obs
k and for k <κ + Np � (3j)

	 urob
k−1 = uref

k−1 + Kk−1
(
xrob

k−1 − xref
k−1

)
� (3k)

where ũrob
κ (Nc, Np) =

{
xrob

κ+1, . . . , xrob
κ+Np

}
 and x̃rob

κ (Np) =
{

urob
κ , . . . , urob

κ+Nc−1, . . . , urob
κ+Np−1

}
, with

ũrob
κ+Nc−1 = . . . = urob

κ+Np−1. Constraints (3c) and (3d) impose lower and upper limits on, respectively, the
states and control inputs of the robot, where the symbol ≤ for vectors is executed element-wise on those vectors.
Constraint (3e) limits the rate of the changes in the consecutive control inputs that are injected into the actuators
of the robot, and guarantees smooth mechanical movements or dynamic variations for the actuators of the robot.
Constraint (3f) ensures that the position of the center of the robot for the entire prediction window remains
within a bounded zone with safe borders. This zone should embed the trajectory that is planned via the heuristic
motion planning system of the robot as much as safety considerations allow for it. In other words, this constraint
keeps the position of the center of the robot within a circle that is centered around the current position rrob

κ
of the robot with a radius ρplan

κ − ρsafe, where ρplan
κ is the largest distance of rrob

κ from the planned path and
ρsafe ≥ ρrob + ρobs is a parameter that is tuned based on how conservatively the safety guarantees are defined.
Subtracting ρsafe from the planned radius ensures that when the center of the robot is positioned on the borders
of the safe zone, the robot will not crash into potential obstacles outside the zone. Figure 3 illustrates the essence
of including constraint (3f). The variables Istatic,obs

κ and Idyn,obs
κ in (3g)–(3j) are, respectively, the sets of all

the static and dynamic obstacles that fall within the perception field of the robot at time step k ∈ Pκ. Constraint
(3g) keeps the robot away from the detected static obstacles for all time steps k ∈ Pκ taking into account the
impact of the disturbances on the position of the robot, by including the upper bound wrob

k for the disturbances.
In other words, terrain-induced disturbances, as described in Assumption A2, are modeled as bounded external
disturbances within the motion tracking system and are compensated for through the TMPC formulation via
the corresponding constraint. Constraints (3h)–(3j) prevent the robot from crashing into the dynamic obstacles
that have been detected within the perception field of the robot at time step κ, by incorporating the impact of
both the external disturbances that affect the position of the robot, with the upper bound wrob

k (for k ∈ Pκ), and
the error in the perception of the estimated states of the dynamic obstacles, with the upper bounds wdyn,obs

k−1 ,
wdyn,obs

k , and wdyn,obs
k+1 for time steps k − 1, k, and k + 1, respectively, where k ∈ Pκ\{κ, κ + Np}. Note that

since a discrete-time problem is solved, per time step k ∈ Pκ\{κ, κ + Np} the collision avoidance of the robot
and the obstacle is enforced by providing the safe distance between their centers for the current time step and its
immediate previous and next time steps, in order to reduce the risk of infeasibility. The reason for excluding time
steps κ and κ + Np from these constraints is the following: Since the robot does not hold any memories of the
previous time steps (Assumption A1), at the beginning of the prediction horizon, i.e., at time step k = κ, it does
not have access to the information of the dynamic obstacle for time step k − 1 = κ − 1. Therefore, it cannot
estimate (3h). Moreover, since the upper limit of the prediction horizon starting at time step k = κ is time step
κ + Np, thus at time step k = κ + Np the robot does not have any information about the dynamic obstacle for
time step k + 1 = κ + Np + 1 and hence, cannot estimate (3j). The upper bounds are time-varying to account
for the errors accumulated within the prediction horizon, while preventing too much conservatism for TMPC39.

Scientific Reports | (2025) 15:34778 7| https://doi.org/10.1038/s41598-025-18573-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

TMPC estimates or deploys nominal trajectories for the state and control inputs, and adjusts the control
inputs online in order to ensure that, despite the external disturbances and perception errors, the realized
state trajectory of the controlled system remains within a safe, feasible region, called the tube. In our proposed
architecture, the nominal state and control input trajectories for (2), subject to constraints (3a)–(3k), are instead
those that have been injected into the motion tracking system via the motion planning system, i.e., xref

k and
uref

k . The control input adjusted online via TMPC is then determined via (3k), where the reference control input
is adjusted using a control increment term that is determined based on a feedback from the system, i.e., the
error between the realized and reference state trajectories. The gain Kk used for k + 1 ∈ Pκ is determined per
time step, as is common in TMPC literature, such that it stabilizes the error dynamics (which is usually done
by linearizing (1) per time step k to obtain the dynamic and input matrices Ak and Bk , respectively, and by
enforcing the condition fSR (Ak + BkKk) < 1 where fSR(·) is the spectral radius function, i.e., a function
that determines the largest eigenvalue of the input matrix, in this case Ak + BkKk). In particular, (3h)–(3j)
ensure that the realized states remain within a safe tube that is dynamically tuned via the time-varying bounds
wrob

k and wdyn,obs
k , which we explain in the next section how to determine.

In case the tracking TMPC problem is deemed infeasible, it calls back to the heuristic motion panning system
to ask updating the reference trajectories. The optimization problem of TMPC is in general nonlinear and non-
convex and may be solved by state-of-the-art global algorithms, e.g., genetic algorithm53 or pattern search54,
using multiple starting points.

Dynamic adjustment of the tube in TMPC due to disturbances and perception errors
We decouple the evolution of the states of the robot due to its dynamics and due to the approaching dynamic
obstacles, and independently incorporate the influence of these sources of uncertainties on the tube of TMPC.
The values of wrob

k and wdyn,obs
k , computed at time step κ and for k ∈ Pκ, in the worst case are determined via

the following geometric sequences:

	
wrob

k = w̄rob
k−κ−1∑

i=0

(1 − ξrob)i � (4)

	
wdyn,obs

k = w̄dyn,obs
k−κ−1∑

i=0

(1 − ξdyn,obs)i � (5)

where ξrob ∈ [0, 1] and ξdyn,obs ∈ [0, 1] are the damping values for the deviation of the robot states and for the
perception error regarding the position of the dynamic obstacles, respectively, and w̄rob and w̄dyn,obs are the
upper bounds for the external disturbances that impact the robot states and for the perception error of the robot,
respectively. Based on these values, constraint tightening may be performed. Note that the damping vales should
carefully be tuned to provide a balanced trade-off between increased robustness and reduced conservativeness
for TMPC.

Case study
Simulations were run to compare the performance of the proposed control architecture (called HP+TMPC,
referring to integrated heuristic motion planning and TMPC) with two state-of-the-art methods, Horizon-
based Lazy Rapidly-exploring Random Tree (HL-RRT*)55 and COLREGS Artificial Potential Function (APF)56.
These two state-of-the-art methods were selected due to their complementary strengths: On the one hand,
COLREGS APF represents reactive and safety-focused navigation and offers explicit obstacle avoidance and
target convergence mechanisms via attraction–repulsion fields. On the other hand, HL-RRT* exemplifies
computationally efficient, heuristic-based planning and responsiveness suited for partially known environments.
These methods reflect two critical attributes that our framework is designed to unify: (1) robustness and safety

Fig. 3.  The white area around the robot shows its perception field. Any (parts of the) obstacles that fall within
this perception field are known to the robot, while the robot is unaware of those obstacles that fall outside this
field. If no safety measures are considered, by positioning its center on the borders of the perception field, the
body of the robot may crash into the obstacles that are positioned close-by to the borders of its perception field
and outside of it.

Scientific Reports | (2025) 15:34778 8| https://doi.org/10.1038/s41598-025-18573-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

in dynamic, uncertain environments; and (2) real-time feasibility with scalable planning capabilities. Thus,
this evaluation can safely be considered sufficient and representative for demonstrating the effectiveness of the
proposed method within the scope of this study.

For all the simulations, the CPU used was a 4 core 2.5 GHz Intel® Core™ i7-4710MQ with 8GB of RAM
memory and an integrated GPU of Intel® HD Graphics 4600. The operating system was Ubuntu 18.04.6 LTS, a
64-bit OS, with open-source drivers, where applicable. The simulations were done on MATLAB R2020b, where
the parameters used have been made publicly available in the 4TU.ResearchData repository57.

HL-RRT* is a path planning approach based on Rapidly-exploring Random Tree (RRT*), which uses random
sampling in its search space and builds up a tree with branches that connect the nearest points of the tree to each
random sample, when this connection corresponds to a collision-free path. Once the target point is connected to
the tree, the suitable path from the starting point to this target is selected. For enhanced computational efficiency,
HL-RRT* uses a horizon-based strategy to guide the exploration, where the sampling is biased toward the points
that are closer to the horizon and/or to the target. Moreover, HL-RRT* only checks the final candidate path for
collision avoidance58,59.

COLREGS APF refers to the deployment of APF for navigation, complying with the rules of COLREGS56,
i.e., international regulations for preventing collisions at sea. APF steers the heading and velocity of the robot
based on the vector that combines all attraction and repulsion (e.g., due to obstacles on the way) forces between
the robot and its target. The core aspect of COLREGS APF used in this case study is a horizon-based collision-
avoidance strategy, which makes the comparison with an MPC-based method more relevant.

A square-shaped environment of size 14 m × 14 m was simulated, considering case 1 with 10 scenarios,
each including 6 static and 5 dynamic obstacles, and case 2 with 10 other scenarios, each including 8 static and
8 dynamic obstacles. In case 2 in particular initial configurations and kinematics were designed for the obstacles
such that a temporarily infeasible problem would appear for the robot. The scenarios were carefully designed to
ensure that reaching the destination for the robot was always feasible in the long term. The random variables (e.g.,
the external disturbance affecting the position of the robot) were different among the scenarios for each case (for
details see the data repository57). Note that while the error in perceiving the position of dynamic obstacles and
the deviation of the states of the robot due to external disturbances were bounded and randomly generated, the
same values were used for different control methods in order to make the comparisons fair.

The simulations were run following two setups: (1) A computation budget (0.15 s per decision making for
MPC and HL-RRT*, while APF does not in practice need this time budget, as it solves the problem almost in real
time) was considered, where the simulations were terminated as soon as the budget was exhausted. (2) The three
approaches ran until either the target was reached by the robot or reaching the target was deemed infeasible.
The comparisons of the performance among the three approaches were with regards to the rate of success of the
three methods (i.e., whether or not the robot reaches the target without any collisions and without falling into a
livelock, e.g., circling) and the length of the path taken by the robot to the target. In setup (2), the overall mission
time (i.e., the time taken by the robot to reach its target) was also compared.

To simulate the motion of each dynamic obstacle o, the following nonlinear equations were considered:

	 xdyn,obs
κ+1 (o) = xdyn,obs

κ (o) + RK
(
vdyn,obs

x,κ (o), c
)

, vdyn,obs
x,κ+1 (o) = vdyn,obs

x,κ (o) + RK
(
α(xatt(o) − xdyn,obs

κ (o)), c
)

,� (6)

	 ydyn,obs
κ+1 (o) = ydyn,obs

κ (o) + RK
(
vdyn,obs

y,κ (o), c
)

, vdyn,obs
y,κ+1 (o) = vdyn,obs

y,κ (o) + RK
(
β(yatt(o) − ydyn,obs

κ (o)), c
)
� (7)

with RK(·, c) Runge-Kutta 3/8 operator that integrates the given variable across one sampling time c. The initial
positions and the velocities of the obstacles were sampled based on a uniform distribution, and the motions were
around fixed attraction points with coordinates [xatt(o), yatt(o)]⊤ per obstacle o. For the constant multipliers
α and β we considered:

	
α = 0.2 1 + 4η

vrob,max
x − vrob,min

x +
∥∥xdyn,obs

0 (o) − xatt(o)
∥∥ , β = 0.2 1 + 4η

vrob,max
y − vrob,min

y +
∥∥ydyn,obs

0 (o) − yatt(o)
∥∥

with η ∈ [0, 1] a random number per obstacle that is sampled from a uniform distribution, and vrob,max
x , vrob,min

x ,
vrob,max

y , vrob,min
y the maximum and minimum velocities of the robot in the x and y directions, respectively.

These choices allow for relative velocities for the robot and the dynamic obstacles that result in obstruction of the
path of the robot, thus evaluating the given approaches based on relevant, meaningful simulations. We assume
that the robot uses a filter to estimate the motion of the dynamic obstacles, simply using linear approximation
for the velocities. Such an approximation, considering the prediction horizon of Np = 5 used in the case study,
results in a bounded error of maximum 3.57%, which is acceptable for the simulations.

Simulation results
In this section the results of the simulations are presented. Due to the large number of experiments, we have
presented only a few representative cases: Figs. 4, 5, Figs. 6, 7, and Figs. 8, 9 correspond to deploying, respectively,
HP+TMPC, HLRRT*, and APF for case 1 and case 2. The dash-dotted blue and solid green trajectories in the
plots correspond to, respectively, setup 1 and setup 2. Static and dynamic obstacles are illustrated as solid black
and red circles, respectively. In the plots on the right-hand side of these figures, the realized distance of the robot
from the closest obstacle during the simulation, as well as the minimum safety radius (black dashed lines) are
shown.

Tables 2 and 3 show the results for the path length and mission time of the robot for case 1 and case 2,
respectively. A dash symbol is used to indicate mission failure, i.e., the robot did not reach the target, due to
either collisions or falling into livelocks.

Scientific Reports | (2025) 15:34778 9| https://doi.org/10.1038/s41598-025-18573-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Discussion of the results
In this section, the results are discussed. In general, APF failed to perform satisfactorily in both case 1 and
case 2, showing only a single success from the 10 scenarios for both setup 1 and setup 2. Failures occurred
because the robot got stuck in an 8-shaped path (see Fig. 8a and 9a). This turned out to be related to the tuning
of APF, since after re-tuning it, the livelock disappeared and a trajectory towards the target was found (see
Fig. 10a). This behavior was ultimately linked to the tuning of the hyper-parameters of APF, since after re-tuning
them the livelock was eliminated and a feasible trajectory to the target was found (see Fig. 10a). This, however,
highlights a fundamental limitation of APF and similar approaches, i.e., their high sensitivity to hyper-parameter
settings. This sensitivity stems from the way APF combines attractive and repulsive potential fields, i.e., using
fixed weights and influence radii, to compute motion commands. Any small changes in these parameters can
significantly distort the resulting gradient field and lead to undesired behaviors, such as livelocks or oscillations,
particularly in complex or dynamic environments. In practice, manual re-tuning of these parameters is often
infeasible, especially in unstructured or time-critical scenarios. While online adaptation or learning-based tuning
mechanisms will theoretically address this issue, such solutions introduce new practical and computational
burdens that raise serious concerns about reliability and applicability in safety-critical domains, including SaR
robotics.

From Table 2, HP+TMPC had a higher success rate than HL-RRT* for setup 1. All failures of HL-RRT*
were due to crashing of the robot into obstacles, especially in a specific scenario designed to increase the risk

Fig. 5.  (a) Sample robot paths for case 2, setups 1 and 2 (called low and high budget respectively) for the
proposed control architecture and (b) the distance of the robot from the closest obstacles.

Fig. 4.  (a) Sample robot paths for case 1, setups 1 and 2 (called low and high budget respectively) for the
proposed control architecture and (b) the distance of the robot from the closest obstacles.

Scientific Reports | (2025) 15:34778 10| https://doi.org/10.1038/s41598-025-18573-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

of crashing (see Fig. 10b), where the robot was placed between two dynamic obstacles or one dynamic and one
static obstacle. In this case, HL-RRT* did not find an alternative lower cost path in time that keeps the robot safe.
These failures reflect key structural limitations of HL-RRT*. Specifically, this planner lacks predictive modeling
of obstacle motion and therefore, unlike TMPC, cannot anticipate future constraint tightening. Its reliance on
lazy collision checking and a fixed-time planning horizon further exacerbates the problem. Once the robot
enters a narrow or transiently safe corridor, the planner may fail to re-plan in time, or may commit to paths
that become infeasible during execution. In summary, unlike feedback-based methods, such as TMPC, HL-
RRT* offers no mechanism for online correction or constraint adaptation. These make the planner vulnerable in
scenarios where reactive safety is critical.

Instead, HP+TMPC avoided crashing into the obstacles in this challenging scenario, by either considering an
obstacle belt (as a result of modeling the motion of dynamic obstacles within the prediction horizon) to avoid,
or setting a reference trajectory outside the unsafe region.

For setup 2, however, HL-RRT* always handled this high-risk scenario, but with a high computational cost.
In fact, using HL-RRT* the robot only moves across a path that leads to a lower cost, in this case a path that is
closer to the target. Thus, unless a node was found closer to the target than the current position of the robot, it
simply refused to move. Since in setup 2 there was always time to find such a node, HL-RRT* showed a 100%
success rate.

Comparing the path lengths, HL-RRT* generally took a longer path than HP+TMPC, while the path of
HL-RRT* was generally shorter in setup 2 compared to the same approach used in setup 1. In a few cases, HL-
RRT* took a slightly shorter path than HP+TMPC, due to its random nature. See the path made by HL-RRT* in

Fig. 7.  (a) Sample robot paths for case 2, setups 1 and 2 (called low and high budget respectively) for HL-
RRT* and (b) the distance of the robot from the closest obstacles.

Fig. 6.  (a) Sample robot paths for case 1, setups 1 and 2 (called low and high budget respectively) for HL-
RRT* and (b) the distance of the robot from the closest obstacles.

Scientific Reports | (2025) 15:34778 11| https://doi.org/10.1038/s41598-025-18573-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Fig. 6a, where a wide berth is made to avoid the middle obstacles, partly due to the sampling and partly because
of the local cost propagation in the tree, a limitation of RRT*. This is confirmed considering the tree that was
used at the time of the berth (see Fig. 10c).

For HP+TMPC, setup 1 resulted in paths that were approximately 10% longer on average than for the same
approach used in setup 2. This can be explained via Fig. 4a, where a small berth for setup 1 is observed that is
avoided in setup 2 (see Figure 5a). This is linked to the limited knowledge about dynamic obstacles within a
limited computational window. In fact, for setup 2 HP+TMPC found a lower cost path by slightly changing
the course and speeding up, and it almost always found a local minimum, while the optimization in setup 1
sometimes stopped prematurely.

For the mission time, in setup 1 in various cases when HL-RRT* has found a path, this path has generally
resulted in a smaller mission time than with HP+TMPC. In setup 2, in almost half of the cases HL-RRT* wins
in achieving a smaller mission time, while in the other cases HP+TMPC wins, with, on average, 11% reduced
time for the winning approach in both cases. Comparing, for instance, Figs. 4 and 6, it is clear that HP+TMPC
has opted for the shortest path to the target, but since this requires moving closely to various obstacles, it may
have compromised its speed for remaining crash-free, whereas by taking a longer path, HL-RRT* has avoided
the obstacles significantly. This is mainly due to the formulation of the optimization problem for HP+TMPC
(see (2)), where no explicit term for reducing the mission time has been considered in the objective function,
but rather the controller is asked to minimize its distance from a reference trajectory that, according to the
heuristic motion planning system, provides the shortest path to the target. This implies that a potential point of
improvement for reducing the mission time of HP+TMPC is to include the mission time as an additional term
in the objective function of TMPC.

Fig. 9.  (a) Sample robot paths for case 2 for APF and (b) the distance of the robot from the closest obstacles.

Fig. 8.  (a) Sample robot paths for case 1 for APF and (b) the distance of the robot from the closest obstacles.

Scientific Reports | (2025) 15:34778 12| https://doi.org/10.1038/s41598-025-18573-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Based on Table 3, for case 2, similarly to APF, HL-RRT* failed to show any success in reaching the target
point. In particular in setup 2, none of the failures of HL-RRT* was due to colliding with any obstacles, but was
mainly because, even with the larger computational budget, the algorithm failed to find any feasible paths. From
Fig. 7a, HL-RRT* explores a variety of options, which are quickly dismissed, because of the lack of dynamic
prediction for the moving obstacles. The main reason for the back-and-forth motions is that HL-RRT* followed
a path for a while, which turned out to be infeasible later. The consistent failure of HL-RRT* in case 2, even under
extended computational budget (setup 2), can be attributed again to fundamental limitations of this algorithm
in dynamic environments. First, HL-RRT* lacks any mechanism for predicting the motion of dynamic obstacles,
causing it to generate paths that are quickly invalidated during execution. Second, its horizon-based sampling
strategy and cost bias tend to prune exploratory branches that may be necessary for avoiding moving obstacles,
especially in constrained or deceptive regions. Third, the lazy collision checking of this algorithm delays the
detection of invalid paths, leading to repeated re-planning cycles without structural adaptation. These factors
combined to make the problem effectively infeasible for HL-RRT* in the more complex, dynamic scenarios of
case 2.

The failures of HP+TMPC in case 2 were primarily due to the inability of the optimization solver to find a
feasible control solution within the allowed number of iterations. Specifically, the heuristic planner is unaware of
future obstacle motion and may steer the robot into narrow regions (e.g., Fig. 10b), where obstacle trajectories
eventually close in, forming a so-called ‘crushing zone’. Once inside this zone, the TMPC controller receives an
infeasible problem, as in fact no admissible sequence of control inputs within the velocity and safety constraints
can lead to a collision-free trajectory. In these situations, the optimization solver often reaches the iteration limit
without success, especially when the prediction horizon is too small to find a viable escape plan for the robot.

In setup 2, we observed additional cases where the controller generated overly aggressive inputs, which
lead to a velocity constraint violation. This occurred when TMPC attempted to recover from a deteriorating
situation introduced by the planner, and accordingly pushed the system close to the limits of feasibility. Without
a sufficiently large prediction horizon or relaxed constraints, this led to constraint violations or solver failure.

These observations point to a fundamental limitation of the decoupled heuristic+MPC structure. The
heuristic planner lacks awareness of dynamic feasibility, and the controller has limited authority to correct
flawed plans, particularly under real-time constraints. Addressing this limitation requires tighter integration,
larger prediction horizons, or more predictive planning mechanisms.

Scenario

HP+TMPC HL-RRT* APF

Path Time Path Time Path Time

1 18.8 49.8 - - - -

2 20.1 55.7 20.0 44.5 - -

3 22.3 50.5 - - - -

4 17.9 53.3 19.3 40.2 - -

5 16.5 41.1 19.8 44.2 - -

6 21.0 55.2 21.9 52.1 - -

7 15.2 32.3 15.0 30.9 15.4 30.8

8 22.4 49.7 - - - -

9 20.0 59.5 24.9 22.9 - -

10 17.8 39.3 19.2 39.2 - -

Mean 19.2 48.6 20.0 44.2 15.4 30.8

Standard deviation 2.40 8.50 2.99 8.94 - -

Scenario

HP+TMPC HL-RRT* APF

Path Time Path Time Path Time

1 15.5 40.6 26.4 50.7 - -

2 16.8 37.1 19.4 41.2 - -

3 21.0 52.1 24.0 46.3 - -

4 16.8 37.6 18.7 35.0 - -

5 16.5 42.7 17.6 32.5 - -

6 18.2 38.1 21.0 44.5 - -

7 15.0 31.8 16.0 30.9 15.4 30.8

8 19.1 50.6 22.9 50.4 - -

9 18.2 41.1 20.5 42.5 - -

10 16.9 41.9 18.3 33.3 - -

Mean 17.4 41.4 20.5 40.7 15.4 30.8

Standard deviation 1.78 6.13 3.18 7.74 - -

Table 2.  Results in terms of the path length (m) and the mission time (s) for case 1, setup 1 (left-hand side
table) and setup 2 (right-hand side table).

Scientific Reports | (2025) 15:34778 13| https://doi.org/10.1038/s41598-025-18573-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

To further investigate these failure modes, we tested variations with increased prediction horizons and larger
solver budgets. Both mitigated the failure cases, suggesting that windows with longer look-ahead planning
improve safety, but this comes at the cost of increased computation time. This highlights the inherent trade-off
between prediction depth (safety) and responsiveness (reactivity) that should be carefully balanced in real-time
applications.

Under setup 1 with limited computational budget, occasional solver timeouts were observed due to the strict
0.15 s time limit. This particularly occurred in scenarios with dense obstacles or high dynamic constraints (e.g.,
Fig. 10b). Nevertheless, feasibility was preserved in the majority of cases because (i) the solver returned the

Fig. 10.  Particular conditions in the simulations of the case study.

Scenario

HP+TMPC HL-RRT* APF

Path Time Path Time Path Time

1 - - - - - -

2 - - - - - -

3 19.1 47.8 - - - -

4 - - - - - -

5 - - - - - -

6 20.9 51.0 - - - -

7 - - - - - -

8 - - - - - -

9 - - - - - -

10 - - - - - -

Mean 20.0 49.4 - - - -

Standard deviation 1.26 2.26 - - - -

Scenario

HP+TMPC HL-RRT* APF

Path Time Path Time Path Time

1 19.2 50.7 - - - -

2 16.2 43.1 - - - -

3 17.4 41.0 - - - -

4 18.4 45.0 - - - -

5 19.5 52.0 - - - -

6 17.2 48.7 - - - -

7 18.4 46.8 - - - -

8 - - - - - -

9 - - - - - -

10 - - - - - -

Mean 18.0 46.8 - - - -

Standard deviation 1.16 4.01 - - - -

Table 3.  Results in terms of the path length (m) and the mission time (s) for case 2, setup 1 (left-hand side
table) and setup 2 (right-hand side table).

Scientific Reports | (2025) 15:34778 14| https://doi.org/10.1038/s41598-025-18573-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

best feasible iterate available at timeout, and (ii) tightened constraints within the optimization loop of TMPC
inherently maintained safety margins.

For unlimited computation budget (setup 2), whenever the problems were structurally feasible, the
optimization algorithm always converged, considering a threshold of 10−6 over an average objective function
cost in range 20–200.

Overall, these results indicate that, under the given computational resources and simulation setup, TMPC
achieved real-time feasibility. Given the consistent convergence of the optimization solver in the unlimited
computation budget setting (i.e., setup 2) and its robustness under limited computation budget setting (i.e.,
setup 1), these findings suggest that, with hardware comparable to or exceeding our simulation platform,
the proposed architecture is well-positioned for making the next step to real-world deployment. Naturally,
transitioning from computer-based simulations to physical experiments will introduce new challenges (e.g.,
sensor noise, unmodeled dynamics, onboard resource constraints) that will require further validation and
potential adaptations to ensure reliable real-time performance.

Conclusions and topics for future research
In this paper, we proposed a novel control architecture for motion planning and reference tracking of autonomous
robots in dynamic cluttered environments, based on a modified version of a heuristic motion planning method10
and robust Tube-based Model Predictive Control (TMPC). In a case study, we compared our proposed approach
to two state-of-the-art methods and showed, especially for complex scenarios, to have similar or significantly
higher success rates and shorter path lengths with the proposed control architecture, while producing collision-
free trajectories despite multiple moving obstacles.

In the future, the proposed control architecture will be validated for different robot models, and for more
variations in the motion of the obstacles, where proper filters should be merged into the control architecture
to estimate the motion of these obstacles in real time. In addition, more scenarios will be simulated, including
environments with varied shapes and obstacle configurations. In missions where time minimization is critical,
such as emergency response, evacuation support, or medical delivery, the objective function of TMPC can be
adapted to explicitly penalize time-to-go or to reward forward progress toward the target. This adaptation shifts
the trade-off in favor of mission speed. Exploring such reformulations represents a promising direction for
extending the applicability of the proposed framework to a broader range of real-world scenarios. This control
architecture should further be extended to multi-robot systems, with potentially heterogeneous characteristics.
Expanding the comparative simulations to include more recent methods, such as deep reinforcement learning,
imitation learning, or hybrid planning approaches, will provide a broader benchmarking context. This constitutes
a relevant future direction, especially for extending our framework to more complex or data-driven navigation
scenarios. Accordingly, as part of future work, the comparative analyses should be extended by including more
recent learning-based and hybrid planning methods to further benchmark the proposed framework against
a broader range of navigation strategies. Finally, real-life experiments should be performed to validate the
effectiveness of the control architecture beyond computer-based simulations.

Data availability
The data and parameters used in the simulations are publicly available in the 4TU.ResearchData repository:
Baglioni, M. Tables with parameters values underlying the publication: Enabling robots to autonomously search
dynamic cluttered post-disaster environments. ​h​t​t​p​s​:​​/​/​d​o​i​.​​o​r​g​/​1​0​​.​4​1​2​1​/​​a​a​7​5​2​​8​d​a​-​0​9​​8​6​-​4​5​3​​c​-​b​1​9​6​​-​4​2​7​7​a​2​d​b​4​d​
a​a (2024).

Received: 13 January 2025; Accepted: 2 September 2025

References
	 1.	 Murphy, R. R. Disaster Robotics (MIT press, 2014).
	 2.	 Liu, Y. & Nejat, G. Robotic urban search and rescue: A survey from the control perspective. J. Intell. Robotics Syst. 72, 147165.

https://doi.org/10.1007/s10846-013-9822-x (2013).
	 3.	 Rajan, J., Shriwastav, S., Kashyap, A., Ratnoo, A. & Ghose, D. Disaster management using unmanned aerial vehicles. In Unmanned

Aerial Systems, 129–155 (Elsevier, 2021).
	 4.	 de Koning, C. & Jamshidnejad, A. Hierarchical integration of model predictive and fuzzy logic control for combined coverage and

target-oriented search-and-rescue via robots with imperfect sensors. J. Intell. & Robotic Syst. 107, 40 (2023).
	 5.	 Mohanan, M. & Salgoankar, A. A survey of robotic motion planning in dynamic environments. Robotics Auton. Syst. 100, 171–185.

https://doi.org/10.1016/j.robot.2017.10.011 (2018).
	 6.	 Katrakazas, C., Quddus, M., Chen, W.-H. & Deka, L. Real-time motion planning methods for autonomous on-road driving: State-

of-the-art and future research directions. Transp. Res. Part C: Emerg. Technol. 60, 416–442. https://doi.org/10.1016/j.trc.2015.09.011
(2015).

	 7.	 Pandey, A., Pandey, S. & Parhi, D. Mobile robot navigation and obstacle avoidance techniques: A review. Int Rob Auto J 2, 00022
(2017).

	 8.	 Ohki, T., Nagatani, K. & Yoshida, K. Collision avoidance method for mobile robot considering motion and personal spaces of
evacuees. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1819–1824 (IEEE, 2010).

	 9.	 Liu, Z., Li, M., Fu, D. & Zhang, S. Design of intelligent controller for obstacle avoidance and navigation of electric patrol mobile
robot based on PLC. Scientific Reports 14, 13476 (2024).

	10.	 Jamshidnejad, A. & Frazzoli, E. Adaptive optimal receding-horizon robot navigation via short-term policy development. In 15th
International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, Singapore, November 18-21, 2018, 21–28,
https://doi.org/10.1109/ICARCV.2018.8581157 (IEEE, 2018).

	11.	 Surma, F. & Jamshidnejad, A. State-dependent dynamic tube MPC: A novel tube MPC method with a fuzzy model of disturbances.
International Journal of Robust and Nonlinear Control 35, 1319–1354 (2025).

Scientific Reports | (2025) 15:34778 15| https://doi.org/10.1038/s41598-025-18573-y

www.nature.com/scientificreports/

https://doi.org/10.4121/aa7528da-0986-453c-b196-4277a2db4daa
https://doi.org/10.4121/aa7528da-0986-453c-b196-4277a2db4daa
https://doi.org/10.1007/s10846-013-9822-x
https://doi.org/10.1016/j.robot.2017.10.011
https://doi.org/10.1016/j.trc.2015.09.011
https://doi.org/10.1109/ICARCV.2018.8581157
http://www.nature.com/scientificreports

	12.	 Hoy, M., Matveev, A. S. & Savkin, A. V. Algorithms for collision-free navigation of mobile robots in complex cluttered environments:
A survey. Robotica 33, 463–497 (2015).

	13.	 Grogan, S., Pellerin, R. & Gamache, M. The use of unmanned aerial vehicles and drones in search and rescue operations–a survey.
Proc. PROLOG (2018).

	14.	 Nagasawa, R., Mas, E., Moya, L. & Koshimura, S. Model-based analysis of multi-UAV path planning for surveying postdisaster
building damage. Sci. Reports 11, 18588 (2021).

	15.	 Hashimoto, A., Heintzman, L., Koester, R. & Abaid, N. An agent-based model reveals lost person behavior based on data from
wilderness search and rescue. Sci. Reports 12, 5873 (2022).

	16.	 Serra, M. et al. Search and rescue at sea aided by hidden flow structures. Nat. Commun. 11, 2525 (2020).
	17.	 Kruijff, G.-J. M. et al. Rescue robots at earthquake-hit Mirandola, Italy: A field report. In 2012 IEEE International Symposium on

Safety, Security, and Rescue Robotics (SSRR), 1–8 (IEEE, 2012).
	18.	 Schedl, D. C., Kurmi, I. & Bimber, O. Search and rescue with airborne optical sectioning. Nat. Mach. Intell. 2, 783–790 (2020).
	19.	 Fattah, S. et al. R3Diver: Remote robotic rescue diver for rapid underwater search and rescue operation. In 2016 IEEE Region 10

Conference (TENCON), 3280–3283 (IEEE, 2016).
	20.	 Colas, F., Mahesh, S., Pomerleau, F., Liu, M. & Siegwart, R. 3D path planning and execution for search and rescue ground robots.

In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 722–727 (IEEE, 2013).
	21.	 Arnold, R., Jablonski, J., Abruzzo, B. & Mezzacappa, E. Heterogeneous UAV multi-role swarming behaviors for search and rescue.

In 2020 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA), 122–128 (IEEE, 2020).
	22.	 San Juan, V., Santos, M. & Andújar, J. M. Intelligent UAV map generation and discrete path planning for search and rescue

operations. Complexity 2018, 6879419 (2018).
	23.	 Loukas, G. & Timotheou, S. Connecting trapped civilians to a wireless ad hoc network of emergency response robots. In 2008 11th

IEEE Singapore International Conference on Communication Systems, 599–603 (IEEE, 2008).
	24.	 Davids, A. Urban search and rescue robots: From tragedy to technology. IEEE Intell. Syst. 17, 81–83 (2002).
	25.	 Bogue, R. Disaster relief, and search and rescue robots: The way forward. Ind. Robot: Int. J. Robotics Res. Appl. 46, 181–187 (2019).
	26.	 Stecz, W. & Gromada, K. UAV mission planning with SAR application. Sensors 20, 1080 (2020).
	27.	 Berger, J. & Lo, N. An innovative multi-agent search-and-rescue path planning approach. Comput. & Oper. Res. 53, 24–31 (2015).
	28.	 de Alcantara Andrade, F. A. et al. Autonomous unmanned aerial vehicles in search and rescue missions using real-time cooperative

model predictive control. Sensors 19, 4067 (2019).
	29.	 Baglioni, M. & Jamshidnejad, A. A novel MPC formulation for dynamic target tracking with increased area coverage for search-

and-rescue robots. J. Intell. & Robotic Syst 110, 140 (2024).
	30.	 Hoy, M., Matveev, A. S. & Savkin, A. V. Collision free cooperative navigation of multiple wheeled robots in unknown cluttered

environments. Robotics Auton. Syst. 60, 1253–1266 (2012).
	31.	 Farrokhsiar, M., Pavlik, G. & Najjaran, H. An integrated robust probing motion planning and control scheme: A tube-based MPC

approach. Robotics Auton. Syst. 61, 1379–1391 (2013).
	32.	 Nattero, C., Recchiuto, C. T., Sgorbissa, A. & Wanderlingh, F. Coverage algorithms for search and rescue with UAV drones. In

Artificial Intelligence, Workshop of the XIII AI* IA Symposium on, vol. 12 (2014).
	33.	 Galceran, E. & Carreras, M. A survey on coverage path planning for robotics. Robotics Auton. Syst. 61, 1258–1276 (2013).
	34.	 Brooks, A., Kaupp, T. & Makarenko, A. Randomised MPC-based motion-planning for mobile robot obstacle avoidance. In 2009

IEEE International Conference on Robotics and Automation, 3962–3967 (IEEE, 2009).
	35.	 Paez, D., Romero, J. P., Noriega, B., Cardona, G. A. & Calderon, J. M. Distributed particle swarm optimization for multi-robot

system in search and rescue operations. IFAC-PapersOnLine 54, 1–6 (2021).
	36.	 Niroui, F., Zhang, K., Kashino, Z. & Nejat, G. Deep reinforcement learning robot for search and rescue applications: Exploration

in unknown cluttered environments. IEEE Robotics Autom. Lett. 4, 610–617 (2019).
	37.	 Mohseni, F., Doustmohammadi, A. & Menhaj, M. B. Distributed model predictive coverage control for decoupled mobile robots.

Robotica 35, 922–941 (2017).
	38.	 Ibrahim, M., Matschek, J., Morabito, B. & Findeisen, R. Hierarchical model predictive control for autonomous vehicle area

coverage. IFAC-PapersOnLine 52, 79–84 (2019).
	39.	 Bemporad, A. & Morari, M. Robust model predictive control: A survey. In Robustness in Identification and Control, 207–226

(Springer, 1999).
	40.	 Langson, W., Chryssochoos, I., Raković, S. V. & Mayne, D. Q. Robust model predictive control using tubes. Automatica 40, 125–

133 (2004).
	41.	 Liu, Z. & Stursberg, O. Recursive feasibility and stability of MPC with time-varying and uncertain state constraints. In 2019 18th

European Control Conference (ECC), 1766–1771 (IEEE, 2019).
	42.	 Mayne, D. Q., Kerrigan, E. C., Van Wyk, E. & Falugi, P. Tube-based robust nonlinear model predictive control. Int. J. Robust

Nonlinear Control 21, 1341–1353 (2011).
	43.	 Wang, H., Tan, A. H. & Nejat, G. NavFormer: A transformer architecture for robot target-driven navigation in unknown and

dynamic environments. IEEE Robotics Autom. Lett. (2024).
	44.	 Guo, Y., Song, A., Bao, J., Hongru, T. & Cui, J. A combination of terrain prediction and correction for search and rescue robot

autonomous navigation. Int. J. Adv. Robotic Syst. 6, 24 (2009).
	45.	 Devo, A., Mezzetti, G., Costante, G., Fravolini, M. L. & Valigi, P. Towards generalization in target-driven visual navigation by using

deep reinforcement learning. IEEE Transactions on Robotics 36, 1546–1561 (2020).
	46.	 Xue, Y. & Chen, W. RLoPlanner: Combining learning and motion planner for UAV safe navigation in cluttered unknown

environments. IEEE Transactions on Veh. Technol. 73, 4904–4917 (2023).
	47.	 Chen, W. & Xue, Y. Hierarchical UAV autonomous navigation algorithm based on event-triggered deep reinforcement learning.

IEEE Transactions on Veh. Technol. (2025).
	48.	 Sani, M., Robu, B. & Hably, A. Pursuit-evasion games based on game-theoretic and model predictive control algorithms. In 2021

International Conference on Control, Automation and Diagnosis (ICCAD), 1–6 (IEEE, 2021).
	49.	 Dhaouadi, R. & Hatab, A. A. Dynamic modelling of differential-drive mobile robots using Lagrange and Newton-Euler

methodologies: A unified framework. Adv. Robotics & Autom. 2, 1–7 (2013).
	50.	 Scattolini, R. Architectures for distributed and hierarchical model predictive control - a review. J. Process. Control. 19, 723–731

(2009).
	51.	 Basescu, M. & Moore, J. Direct NMPC for post-stall motion planning with fixed-wing UAVs. In 2020 IEEE International Conference

on Robotics and Automation (ICRA), 9592–9598 (IEEE, 2020).
	52.	 Esteves Henriques, B., Baglioni, M. & Jamshidnejad, A. Camera-based mapping in search-and-rescue via flying and ground robot

teams. Mach. Vis. Appl. 35, 117 (2024).
	53.	 Mitchell, M. An Introduction to Genetic Algorithms (MIT press, 1998).
	54.	 Torczon, V. On the convergence of pattern search algorithms. SIAM J. on Optim. 7, 1–25 (1997).
	55.	 Chen, Y., He, Z. & Li, S. Horizon-based lazy optimal RRT for fast, efficient replanning in dynamic environment. Auton. Robots 43,

2271–2292 (2019).
	56.	 Lyu, H. & Yin, Y. COLREGS-constrained real-time path planning for autonomous ships using modified artificial potential fields.

The J. Navig. 72, 588–608 (2019).

Scientific Reports | (2025) 15:34778 16| https://doi.org/10.1038/s41598-025-18573-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	57.	 Baglioni, M. Tables with parameters values underlying the publication: Enabling robots to autonomously search dynamic cluttered
post-disaster environments. ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​o​r​​g​/​​1​0​.​4​1​​2​​1​/​a​a​7​​5​2​​8​d​a​-​​0​​9​8​6​-​​​4​5​3​c​-​​​b​1​9​6​-​4​2​7​7​a​2​d​b​4​d​a​a (2024).

	58.	 Bruce, J. & Veloso, M. M. Real-time randomized path planning for robot navigation. In Robot Soccer World Cup, 288–295 (Springer,
2002).

	59.	 Yang, M.-S., Lai, C.-Y. & Lin, C.-Y. A robust EM clustering algorithm for Gaussian mixture models. Pattern Recognit. 45, 3950–
3961 (2012).

Acknowledgements
This research has been supported jointly by the NWO Talent Program Veni project “Autonomous drones flock-
ing for search-and-rescue” (18120), which has been financed by the Netherlands Organisation for Scientific
Research (NWO) and by the TU Delft AI Labs & Talent programme.

Author contributions
K. Rado performed the conceptualization, designed and performed the simulations, contributed to methodolo-
gy, analysis and validity assessment of the results, and wrote the first draft of the paper. M. Baglioni contributed
to methodology, analysis and validity assessment of the results, supervision, and reviewing the final draft of the
paper. A. Jamshidnejad contributed to conceptualization, methodology, analysis and validity assessment of the
results, editing the final draft of the paper, project administration and supervision, and funding acquisition.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025

Scientific Reports | (2025) 15:34778 17| https://doi.org/10.1038/s41598-025-18573-y

www.nature.com/scientificreports/

https://doi.org/10.4121/aa7528da-0986-453c-b196-4277a2db4daa
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Enabling robots to autonomously search dynamic cluttered post-disaster environments
	﻿Main contributions and road map of the paper
	﻿Background discussion
	﻿Problem statement and assumptions
	﻿Bi-level control architecture for autonomous safe searching of dynamic cluttered areas
	﻿Motion planning system: Heuristic planning
	﻿Modified obstacle-avoiding shortest path approach for dynamic environments
	﻿Including dynamic obstacles when perception errors may exist in the motion planning system

	﻿Optimal motion tracking system: Robust Tube-based Model Predictive Control (TMPC)
	﻿Dynamic prediction models for the motion of the robot and of the dynamic obstacles
	﻿Formulating the TMPC problem of the motion tracking system incorporating the impact of uncertainties
	﻿Dynamic adjustment of the tube in TMPC due to disturbances and perception errors

	﻿Case study
	﻿Simulation results
	﻿Discussion of the results
	﻿Conclusions and topics for future research
	﻿References

