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ABSTRACT
One way to help users navigate debated topics online is to apply
stance detection in web search. Automatically identifying whether
search results are against, neutral, or in favor could facilitate di-
versification efforts and support interventions that aim to mitigate
cognitive biases. To be truly useful in this context, however, stance
detection models not only need to make accurate (cross-topic) pre-
dictions but also be sufficiently explainable to users when applied
to search results – an issue that is currently unclear. This paper
presents a study into the feasibility of using current stance de-
tection approaches to assist users in their web search on debated
topics. We train and evaluate 10 stance detection models using a
stance-annotated data set of 1204 search results. In a preregistered
user study (𝑁 = 291), we then investigate the quality of stance de-
tection explanations created using different explainability methods
and explanation visualization techniques. The models we imple-
ment predict stances of search results across topics with satisfying
quality (i.e., similar to the state-of-the-art for other data types).
However, our results reveal stark differences in explanation quality
(i.e., as measured by users’ ability to simulate model predictions and
their attitudes towards the explanations) between different models
and explainability methods. A qualitative analysis of textual user
feedback further reveals potential application areas, user concerns,
and improvement suggestions for such explanations. Our findings
have important implications for the development of user-centered
solutions surrounding web search on debated topics.
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1 INTRODUCTION
Stance detection, the task of predicting whether a document is
against, neutral, or in favor concerning a debated topic, has received
increasing attention in recent years and finds important real-world
applications [8, 60, 93, 101, 118]. One such application is situated in
web search: users commonly search the web for advice on important
decisions surrounding debated topics (e.g., whether to become veg-
etarian) [15, 39, 74] but may be unaware [40, 89] that this type of in-
teraction can be biased in several different ways [9, 30, 38, 119, 120].
For example, recent research has shown that viewpoint biases on
search engine results pages (SERPs) can lead to systematic attitude
change in users following whatever viewpoints are most prominent
in highly ranked search results [6, 12, 33, 83, 90, 121]. Automati-
cally identifying the stances of search results via stance detection
could facilitate search result diversification efforts [78, 116] and sup-
port interventions that help users navigate online debates (e.g., by
displaying warning labels for viewpoint biases) [16, 34, 97, 99, 125].

Although supplementing SERPs with automatically generated
stance labels for search results is a promising step towards boosting
users’ ability to overcome biased information interaction and atti-
tude change in web search [34, 82, 97], such stance labels may not
reach their full potential until users understand the rationale behind
them. Adding explanations for predictions from stance detection
models (e.g., highlighting prediction-relevant words in the search
result title and snippet) could assist users in navigating SERPs re-
lated to debated topics. For instance, coupling such explanations
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with stance labels for search results related to the topic vegetarian-
ism could help users quickly identify stance-specific patterns (i.e.,
what key terms and arguments are commonly brought forward
on either side of the vegetarianism debate) and explicitly notice
what sort of content they tend to consume. Web search interface
applications designed to tackle undesired effects on users indeed
often explain aspects of the SERP with the aim of supporting users’
critical thinking [16, 34, 70, 97] because lack of reasoning is re-
lated to biased information interaction [82]. However, to the best
of our knowledge, explanations for stance labels have not yet been
explored in this context.

Why have stance detection explanations so far not been applied
in web search on debated topics? Previous research investigat-
ing the mitigation of biased attitude change in web search users
has predominantly assigned stance labels via expert annotations,
crowdsourced annotations, or proxymeasures instead of using auto-
matic stance detection models [32–34, 128]. Furthermore, although
there have been attempts to apply stance detection to search re-
sults [99], earlier work in this area has so far largely focused on
tweets [3, 8, 24, 77], argument sentences [92, 93, 107], news arti-
cles [101], microblogs [124, 129], and online forum entries [130],
and efforts to explain stance detection models have only recently
begun [52]. It has thus been unclear whether and how automatic
stance detection models and relevant explainable artificial intelli-
gence (XAI) methods could be applied in the web search context.
Search results and the web pages they refer to are much more
diverse (e.g., concerning text length and language) and less straight-
forward compared to the document types typically handled by
stance detection models. Moreover, explanations in natural lan-
guage processing are not always easily interpretable by users [105]
and it is currently not known what types of stance label explana-
tions users would exactly require in what situations.

This paper supports the ongoing efforts toward more diverse,
transparent, and trustworthy web search. We report on a preregis-
tered1 user study investigating whether and how explanations for
automatic stance detection models can help users in their online
information interactions. Two research questions guide our work:
RQ1. Are current stance detectionmethods sufficiently explainable

for users when applied to web search results?
RQ2. What explanation visualization techniques can best explain

stance detection for search results?
We address these research questions by first training and evaluat-
ing 10 different stance detection models (i.e., using classical ma-
chine learning and transformer-based language models) on a data
set containing 1204 search results on 11 different debated topics
(e.g., vegetarianism; see Sections 3 and 4). Our evaluations show
satisfying predictive performances from several approaches, with
RoBERTa-base, BERT-base, linear SVM, and logistic regression de-
livering some of the highest macro-f1 scores. We then investigate
the explainability of these four models by asking participants in
a preregistered user study to forward-simulate model predictions
based on explanations (i.e., generated using different XAI methods
and displayed as either salience-based or bar plot explanations;
Section 5). We find that some model/XAI method combinations

1Preregistering our user study involved openly declaring our hypotheses, experimental
setup, and statistical analysis plan before data collection; see https://osf.io/nu28f.

(e.g., LIME for transformer-based language models and coefficients
from inherently interpretable models) can produce explanations
that are sensible to users most of the time, and significantly more
interpretable than randomly generated explanations. A qualitative
analysis further reveals potential application areas, challenges, and
improvements for such explanations. We discuss the implications
and limitations of our findings in Section 7. Supplementary material
related to this research (e.g., data, code, and task screenshots) is
openly available: https://osf.io/fyvqu.

2 RELATEDWORK AND HYPOTHESES
Although users typically trust web search engines to deliver accu-
rate and unbiased content [15, 89], search results may in reality be
biased toward particular viewpoints or orientations [30, 38, 90, 119,
120]. How much SERP biases can affect users is exemplified in the
search engine manipulation effect (SEME): users tend to change their
attitude in accordance with the most prominent viewpoints among
highly-ranked search results [6, 9, 12, 32, 33, 83, 121] without neces-
sarily being aware of it [40]. Recent research has argued that such
undesired outcomes root in cognitive user biases that emerge when
the cognitive load exceeds users’ cognitive capacities [9, 32, 82].
Indeed, reducing the cognitive load by re-organizing [34], summa-
rizing [70], or explaining [34, 97, 125] elements of the SERP based
on the viewpoints expressed in search results (e.g., re-ranking for
greater diversity or displaying warning labels for viewpoint biases)
has been shown to help users overcome adverse effects such as
SEME. Such interventions have so far largely relied on manual
viewpoint annotation of search results but applying them at scale
requires reliable and explainable stance detection methods. More-
over, providing users with rich information about search results’
stances may generally assist them in navigating debated topics
online, even when no particular SERP biases or cognitive biases are
at play. The remainder of this section discusses recent advances in
stance detection and how it may be explained to users.

2.1 Stance Detection
Stance detection is predominantly applied in a target-specific fash-
ion; i.e., a text classifier is trained and evaluated on documents that
all refer to a single topic or claim (often referred to as the target, e.g.,
“people should be vegetarian”) [5]. For instance, previous work has
built models to detect the stance on atheism or the feminist move-
ment in tweets [25, 60, 62, 77]. Popular stance detection tasks, data
sets, and models concern document types such as tweets [2, 22, 69,
77, 110, 114], microblogs [124], online debates [1, 79, 85, 111, 115],
and news content [10, 37, 49, 69, 84]; featuring a wide range of top-
ics and several different languages [5, 60, 104]. Due to the multiclass
nature of stance detection (i.e., typically classifying documents into
against, neutral, and in favor ; although sometimes additional classes
such as other/unrelated are added [44]), predictive performances
are most commonly reported in terms of macro-f1 scores [60]. State-
of-the-art target-specific stance detection models (e.g., applied to
tweets and online forum posts) now regularly achieve macro-f1
scores ranging from .73 to .97 depending on document type and
topic [42, 54, 91, 102]. Practical target-specific stance detection
applications include handling rumors [18] and fake news [20, 45]
related to specific topics on social media. However, web search
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Figure 1: Example of a salience-based explanation (using
BERT-base and LIME) from our user study.

interventions targeting the mitigation of undesired effects such as
SEME require target-agnostic stance detection models to quickly
respond to the large variety of debated topics users may search for.

Web search applications need to apply cross-target stance detec-
tion. In this variant, stance detection models are applied to data
sets in which each document may refer to one of a variety of top-
ics [5, 60]. Building models that can detect stances related to any
topic in such a way usually leads to somewhat weaker predic-
tive performances compared to target-specific models but makes
stance detection applicable at scale. Macro-f1 scores for cross-target
ternary stance detection (e.g., working with tweets or news articles)
have ranged – again depending on document type – roughly from
.450 to .750 [4, 7, 8, 46, 93, 123]. Although stance detection has thus
far not been applied to openly available search result data, some
data sets feature content similar to search results. The Emergent
data set lends itself well to cross-target stance detection and is
comparable to a search result data set: it contains a large number
of news articles that have each been expert-annotated as against,
observing, or in favor concerning one of 300 rumored claims [37].
Cross-topic stance detection models evaluated at the Emergent data
set (and its follow-up version, the 2017 Fake News Challenge data
set [84]) have achieved macro-f1 scores of up to .756 [43, 101, 108].

2.2 Explaining Text Classification
Although many methods have been proposed to explain the behav-
ior of natural language processing (NLP) models generally (i.e., from
abstract global explanations such as Submodular Pick LIME [94]
and behavioral probes [64] to local explanations such as SHAP [112],
SEA [96], or input reduction [36]), user-focused solutions often
involve explaining specific model predictions. How a particular
model prediction came about can be explained in multiple ways,
e.g., by adding influential examples [57, 88] or counterfactuals [100].
Jayaram and Allaway [52] recently proposed supplementing at-
tention weights with crowdsourced human rationales to explain
predictions of stance detection models. Arguably the most common
and straightforward way to explain specific text classification pre-
dictions, however, is to produce input feature explanations. These
explanations consist of token-wise importance attributes [72] that
can be derived from XAI methods such as LIME [94], anchors [95],
integrated gradients [113], or Grad-CAM [106].

2.2.1 Evaluating Explanation Quality. Explanation quality can be
measured in numerous ways, from application-oriented evaluations
that focus on specific use cases (e.g., using human-annotated ground
truth data sets) to functionality-oriented evaluations that inspect
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Figure 2: Example of a bar plot explanation below the search
result (using BERT-base and LIME) from our user study.

how well explanations reflect a model’s technical process (i.e., often
referred to as faithfulness or fidelity) [27, 28, 71, 72, 87]. A commonly
chosen path when aiming to evaluate explanations directly with
users whilst avoiding the cost of creating a ground truth data set
is to conduct human-oriented evaluations. These evaluation tasks
typically ask users to either choose the best of several models or
perform forward simulation, i.e., to recreate model predictions based
on explanations [28, 51, 72]. Despite some earlier work pointing to a
general lack of interpretability among deep learningmodels [17, 36],
it has been demonstrated that explanations can help users simulate
the predictions of artificial intelligence (AI) systems [56, 86, 127].
In the NLP domain specifically, earlier work suggests that expla-
nations help users to better understand models [47, 80]. Jayaram
and Allaway [52] created explanations for stance detection mod-
els based on human-annotated rationales and found users deemed
such explanations congruent with model predictions and sufficient.
We expect that users will also be able to simulate search result
stance predictions when provided with automatically generated
model explanations with greater accuracy than when provided
with pseudo-explanations (i.e., a baseline that looks like a proper
explanation but really only highlights words at random).
Hypothesis 1 (H1). Users can simulate the predictions of stance
detection models for search results with greater accuracy when pro-
vided with a model-specific explanation than a pseudo-explanation
that highlights random words.

2.2.2 Explanation Visualization Techniques. Input feature expla-
nations are typically visualized using one of two techniques: as
salience-based explanations that highlight words or tokens directly
in the relevant document depending on their importance [21, 72,
105] (see Figure 1) or bar plots that indicate the token- or word-wise
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Stance Distribution
Topic N Against – Neutral – In Favor
Zoos 48 50% – 6% – 44%
Bottled water 48 46% – 15% – 40%
Vegetarianism 45 38% – 31% – 31%
Homework benefits 45 47% – 18% – 36%
Obesity as a disease 48 33% – 25% – 42%
Milk health benefits 49 29% – 37% – 35%
Social networking sites 50 42% – 26% – 32%
Cell phone radiation safety 50 56% – 20% – 24%
Intellectual property rights 299 13% – 19% – 69%
School uniforms 276 28% – 29% – 43%
Atheism 246 22% – 46% – 32%
Total 1204 27% – 28% – 45%

Table 1: The topic and stance distributions in our data set.

importance individually [105] (see Figure 2). Although salience-
based explanations are often seen as an intuitive way to explain
text classification models’ predictions [21, 72], Schuff et al. [105]
recently demonstrated that end users may find those explanations
difficult to understand and less intuitive than bar plots. We thus
expect that there will be a difference in simulatability for search
results stance predictions depending on whether users see salience-
based or bar plot explanations.
Hypothesis 2 (H2). Users’ ability to simulate stance detection
model’s decisions differs depending on the way in which the expla-
nation is visualized.

3 DATA
To train, test, and explain stance detection models, we assembled a
data set containing search results on 11 debated topics (see Table 1).
We obtained these data by combining three different data sets that
we had created as part of earlier work [30, 32, 97]. These previously
created data sets included URLs, titles, snippets, and stance labels
for a total of 1453 search results, which we had retrieved via API or
web crawling from two popular web search engines. Stance labels
had been assigned on seven-point Likert scales (i.e., ranging from
−3 to 3 and thus including three degrees of opposing or supporting a
topic) via crowdsourcing in two cases (i.e., taking the median anno-
tation of at least three crowd workers with satisfactory inter-rater
reliability; Krippendorff’s 𝛼 = {.78, .79}) [32, 97] or expert anno-
tation in one case (i.e., mostly single annotations; Krippendorff’s
𝛼 = .90) [30]. We mapped these seven-point stance labels into the
three categories against (−3,−2,−1), neutral (0), and in favor (1, 2, 3)
because automatic stance detection methods typically consider this
ternary label taxonomy [60]. Using the provided URLs, we crawled
the full web page text bodies (stripped of any HTML tags) for all
search results. We here dropped 249 search results from the data as
their text bodies could not be retrieved, leaving 1204 search results.
Finally, we concatenated each search result’s title, snippet, and text
body (in this order) into single documents and removed all other
information from the data aside from the documents’ stance labels.

Table 1 shows the stance distribution per topic in our final data
set. These 1204 annotated search results provide a ground truth for
stance detection – both for evaluating classification performance
(Section 4) and to inform a user study where participants forward
simulate stance detection models’ predictions based on provided
explanations (Section 5).

4 SEARCH RESULT STANCE DETECTION
Explanations for stance detection models’ predictions inevitably
depend on the models’ predictive performance. To ensure a real-
istic explanation pipeline in the context of search results, we first
investigate the performance of current stance detection approaches
and determine which methods may work particularly well here.
This section thus describes the implementation and evaluation of
10 different stance detection models that we applied to our data
(see Section 3). We measured the models’ test set macro-accuracy,
-precision, -recall, and -f1 scores across different model initializa-
tions and data splits, and compared their performance to the state of
the art on other data sets (e.g., containing news articles or tweets).
Finally, we selected four particularly well-performing models to
generate explanations for.

4.1 Stance Detection Models
We implemented two different types of models to perform stance de-
tection on our search result data (see Section 3): transformer-based
language models and classical machine learning models. Although
transformer-based language models have recently dominated text
classification and other NLP tasks [41], classical machine learn-
ing models such as logistic regression continue to demonstrate
competitive predictive performances while remaining highly inter-
pretable [75, 98]. It is thus relevant to investigate the performance-
explainability trade-offs between these two model types.

4.1.1 Transformer-based Language Models. We implemented five
pretrained language models, fine-tuning each of them on our search
result data in 10 epochs and using a learning rate of 0.00003.2 Each
model considered the first 512 tokens per document (or 1024 tokens
in the case of Longformer).
• BERT-base [23]: one of the most commonly used pretrained
language models [48, 67, 103] and often used for stance detec-
tion [5, 44, 46, 53, 93, 102, 104].

• DistilBERT-base [103]: a light version of BERT that allows for
much faster fine-tuning and inference, yet often with compa-
rable predictive performance [103]. DistilBERT has been used
for stance detection before [73] and also performed well on the
related task of news classification [14].

• RoBERTa-base [67]: an improved version of BERT that has been
trained for a longer time and on more data. RoBERTa has also
often been used for stance detection [44, 108, 131].

• DeBERTa-base [48]: another improved version of BERT that
focuses on disentangling attention mechanisms. Although De-
BERTa has so far not been used for stance detection, it has been
implemented for the related tasks of agreement detection in on-
line debates [85] and fake news detection [109].

2We tried different model types (e.g., base and large) and hyperparameter values but
observed only marginal improvements beyond these settings.
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• Longformer-base [11]: an adaptation of RoBERTa to handle
long texts and thus potentially better suited for search results
and the (often long-form) web pages they refer to. Whereas all
above models only considered their maximum of 512 tokens, our
Longformer implementation considered the first 1024 tokens per
document. Longformer has already been used for rumor stance
detection on different kinds of social media posts [55].

4.1.2 Classical Machine Learning Models. We applied five classical
machine learning models to a tfidf feature matrix we had created
from a preprocessed version of our data set.3 This matrix considered
all unigrams with a document frequency between 0.005 and 0.8.4

• Logistic regression: an inherently interpretable model (i.e., co-
efficients reflect feature importance) that has often been used for
stance detection in previous research [19, 46, 50, 60, 61, 117].

• Linear support vector machine (linear SVM): arguably the
most common stance detection approach before the advent of
transformer-based language models [26, 60, 61, 65, 66, 76, 81, 117,
122].We used linear rather than kernel SVM because it performed
slightly better during testing and is inherently interpretable.

• Random forest: a tree-based ensemble model that is often used
for stance detection [60, 61, 65, 66, 117, 117].

• Gradient boosting: another tree-based model commonly used
for stance detection [60, 65, 117].

• Naive Bayes: a fully interpretable and highly simple machine
learning model that has been used for stance detection in earlier
work [60, 61, 66, 76] and lends itself to forming a baseline.

4.2 Evaluation
To enable a thorough and fair comparison between stance detection
models, we used different random seeds to create 10 different 80-
10-10 (i.e., train, validation, test) splits of our data. We then fine-
tuned/trained each of the 10 models we consider (as described
in Section 4.1)5 a total of 100 times (i.e., 10 times using different
random seeds that control model randomness on each of the 10
different data splits).6 Each time we had fine-tuned/trained a model,
we produced predictions for the unseen test set and subsequently
computed the macro-accuracy, -precision, -recall, and -f1 score for
those test set predictions. Table 2 shows each model’s performance
averaged over the 100 trials. To compare our results with previous
research on stance detection (see Section 2.1), we focus on mean
macro-f1 scores for the evaluation.

As expected, transformer-based language models (mean macro-
f1 = [.647, .703]) performed considerably better than classical ma-
chine learning models (mean macro-f1 = [.570, .662]). Pairwise
one-sided Wilcoxon signed-rank tests between models show that
RoBERTa significantly outperformed all other models aside from
DeBERTa (mean macro-f1 = .703; all 𝑝adj < 0.005).7 DeBERTa and
Longformer both delivered strong predictive performances in most

3Aside from removing long (>127 characters) and stop words, this preprocessing
involved lemmatization and stemming (all using the nltk library [68]).
4We decided to include only unigrams here as experiments wherein we included bi-
and trigrams did not show improved model performances.
5For models that do not need validation data for training, we added the 10% validation
data to the 80% training data, thus using 90% of the data for training in these cases.
6For deterministic models such as naive Bayes or logistic regression, the 10 model
initializations for any particular data split were identical.
7We Bonferroni-adjusted all 𝑝-values reported here to correct for multiple testing.

Mean Macro-
Model Accuracy Precision Recall F1

RoBERTa .770 (±.004) .652 (±.005) .641 (±.005) .703 (±.005)
BERT .741 (±.004) .614 (±.005) .598 (±.006) .669 (±.004)
Linear SVM .741 (±.002) .604 (±.004) .589 (±.003) .662 (±.003)
DistilBERT .737 (±.003) .602 (±.005) .591 (±.005) .660 (±.004)
DeBERTa .757 (±.007) .609 (±.016) .617 (±.011) .655 (±.016)
Longformer .747 (±.005) .598 (±.014) .598 (±.009) .647 (±.015)
Logistic Regr. .719 (±.002) .584 (±.004) .542 (±.003) .642 (±.003)
Random Forest .687 (±.003) .551 (±.005) .477 (±.004) .607 (±.004)
Grad. Boosting .668 (±.002) .569 (±.007) .434 (±.003) .606 (±.005)
Naive Bayes .651 (±.003) .520 (±.008) .404 (±.003) .570 (±.006)
Table 2: Mean test set performances (± standard error) of
stance detection models over 100 trials (i.e., using 10 differ-
ent seeds controlling any model randomness for each of 10
different data splits; best scores in each column are bold).

of the 100 trials but had their average scores greatly reduced by
occasional bad runs (see Figure 3). This was especially surprising in
the case of Longformer, as Longformer had twice as much training
data available compared to the other transformer-based language
models (i.e., the first 1024 instead of 512 tokens per document).
Linear SVM delivered the best predictions among classical machine
learning models, still outperforming all other models of this type
(mean macro-f1 = .662; all 𝑝adj < 0.005).

Our macro-f1 scores ranging from .570 to .703 are comparable
to cross-target stance detection conducted on similar (but much
larger) data sets, where recent work has achieved macro-f1 scores
ranging from around .450 to .750 (see Section 2.1). Moreover, the 6%
performance increase from linear SVM to RoBERTa in our exper-
iment aligns with earlier work that has found similar differences
between classical machine learning models and transformer-based
language models for cross-target stance detection [93].

5 USER STUDY SETUP
To investigate the explainability of stance detection models in the
web search context (RQ1 and RQ2), we applied several different
XAI methods to four of the best-performing models we had imple-
mented (see Section 4). Specifically, we here considered the two
best-performing methods (i.e., in terms of mean macro-f1 score)
from each of the two model types; that is, the top two transformer-
based language models (i.e., RoBERTa-base and BERT-base; see
Table 2) and the top two classical machine learning models (i.e.,
linear SVM and logistic regression). The motivation here was to
assemble a group of models that has strong overall predictive perfor-
mance and represents a broad range of existingmethods, yet is small
enough to efficiently conduct a meaningful user study without too
many different conditions. Furthermore, although we had trained
and evaluated the models using 10 different data splits (see Section
4.2), we generated explanations for only one specific scenario, i.e.,
using the data split where the four selected models performed best
overall (see Table 3). The aim here was to reduce the complexity
of explanation evaluations while maintaining comparability be-
tween stance detection models. For the non-deterministic models
RoBERTa and BERT, we chose their respective best-performing
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Figure 3: Distributions of macro-f1 scores across stance detection models (see also Table 2). Whereas box plots (in white) show
medians and interquartile ranges, violin plots (in green) show how macro-f1 scores were distributed over the 100 runs.

Mean Macro-
Model Accuracy Precision Recall F1

RoBERTa-base .793(±.004) .697(±.003) .676(±.009) .740(±.003)
BERT-base .771(±.011) .654(±.015) .643(±.015) .706(±.013)
Linear SVM .774 .648 .629 .704
Logistic Regr. .730 .597 .550 .656

Table 3: Mean test set performances (± standard error; except
for deterministic models) over 10 random seeds on the data
split where the four selected models performed best.

initializations on the selected data split. The remainder of this
section describes how we created and visualized input feature ex-
planations and evaluated their quality in a preregistered, online
user study.

5.1 Materials
Input Feature Explanations. To enable an explainability compar-

ison between the four stance detection models we selected (i.e.,
RoBERTa-base, BERT-base, logistic regression, and linear SVM), we
created explanations for 20 test set documents (i.e., using the data
split where these four models performed best overall) for which all
four models made the same stance prediction (i.e., 10 correct and 10
incorrect predictions). This allowed us to directly compare the dif-
ferent explanations by looking at howmany predictions users could
successfully simulate. We obtained feature attributions for specific
predictions from transformer-based language models by applying
three different XAI methods (i.e., integrated gradients [113] and
Grad-CAM [106]; both using Captum [58]; and LIME [94]). For
the two classical machine learning models we considered (i.e., lo-
gistic regression and linear SVM), we obtained feature attributions
from the model coefficients as these models are inherently in-
terpretable. Moreover, to create a baseline, we also generated one
set of random feature attributions for each document. Each of
the 20 selected test set documents thus received a total of 3 (XAI
methods) × 2 (transformer-based language models) + 2 (inherent

coefficients of classical machine learning models) + 1 (random fea-
ture attributions) = 9 sets of feature attributions.

We mapped feature (token) attributions onto the original text
by assigning each word the relevant token attribution (or 0 if there
was none). To words that consisted of several tokens, we assigned
the maximum attribution among the tokens it consisted of. We
finally performed a min-max normalization on the word-wise attri-
butions for each document to bring attributions from all methods
to the same scale. This process resulted in nine sets of explanations
indicating per-word importance for each of the 20 documents.

Explanation Visualization Techniques. Our aim was to visualize
the nine different sets of input feature explanations per document
in ways that are (1) intuitively understandable for users and (2)
integratable into a search engine user interface. That is why we
decided to consider not the full documents but only the title and
snippet (thus only the top portion; see Section 3) of each document
for the explanation visualizations, as this is what could be shown on
a regular SERP. To further limit cognitive load for users and make
methods better comparable, we set all negative feature attributions
to 0. We created two different visualizations:
(1) Salience-based explanations over search results (see Figure

1) highlightedwords depending on their attributions. The darker
the shade of a word highlight, the greater the word’s importance
in the model prediction. Words whose (normalized) attributions
were below a threshold of 0.25 were not highlighted.

(2) Bar plot explanations below search results (see Figure 2)
visualized each word’s attribution with a bar. The longer the
bar next to a word, the greater the word’s importance in the
model prediction. Words whose (normalized) attributions were
below a threshold of 0.25 were not listed in the bar plot.

5.2 Variables
Our study showed each participant the same set of 20 search results
for which we had created explanations (see Section 5.1). However,
participants saw different explanations for those search results de-
pending on the conditions (i.e., explanation content and explanation
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visualization) they had been randomly assigned to. We evaluated
participants’ proportion of successful simulations and additionally
measured several descriptive and exploratory variables.

5.2.1 Independent Variables. These variables were used to test our
hypotheses H1 and H2 (see Section 2.2).

• Explanation content (between-subjects, categorical). Each par-
ticipant saw explanations stemming from only one of the nine
different stance detection model/XAI method combinations we
considered (i.e., integrated gradients, GradCam, or LIME explana-
tions from either of the two transformer-based language models,
coefficients from either of the two classical machine learning
models, or random explanations).

• Explanation visualization (between-subjects, categorical). Each
participant saw explanation content visualized in one of two
ways: either salience-based or as bar plots.

5.2.2 Dependent Variable. Both of our hypothesesH1 andH2 had
the same dependent variable (see Section 2.2).

• Simulation proportion (continuous). We recorded the number
of times each participant had correctly identified the stance de-
tection models’ predictions and divided that by the total number
of documents (20).

5.2.3 Descriptive and Exploratory Variables. We used these mea-
surements to describe our sample and for exploratory analyses, but
we did not conduct any conclusive hypothesis tests on them.

• Demographics (categorical). We asked participants to state their
gender, age group, and level of education from multiple choices.
Each of these items included a “prefer not to say” option.

• Attitudes (ordinal). We recorded participants’ attitudes on each
of the debated topics mentioned in the 20 search results they saw
(i.e., nine of the eleven topics in Table 1) by asking participants
to indicate these attitudes on seven-point Likert scales ranging
from “strongly disagree” to “strongly agree”.

• Simulation rationale (open text). We asked participants to
shortly describe their rationale behind each of the 20 simulations.

• Simulation confidence (continuous). Participants reported their
confidence in each of their simulations on a seven-point Likert
scale from “extremely unconfident” to “extremely confident”.

• Explanation quality perceptions (ordinal). We asked partici-
pants to state on seven-point Likert scales the degrees to which
they (1) understood what was expected of them in this task, (2)
felt that the explanations helped them understand the AI sys-
tem’s decisions, and (3) believe that such explanations (if they
have good quality) could make a useful feature in search engines.

• Textual feedback (open text). We asked participants to provide
feedback on the explanations in three items:
– “Who would benefit most from stance label explanations for
search results? If you don’t think such explanations are helpful
to anyone, why not?”

– “In what situations do you think users would benefit from such
explanations?” (optional)

– “What would need to change for such explanations to be (more)
useful in web search?” (optional)

5.3 Procedure
Participants of our study went through three subsequent steps.
First, after agreeing to an informed consent, participants stated
their gender, age group, and level of education. We here also asked
participants for their attitudes concerning each debated topic (see
Section 5.1; including one attention check where we specifically
instructed participants on what option to select from a Likert scale).
Second, we randomly assigned participants to one of the nine ex-
planation content conditions and one of the two explanation
visualization conditions, gave them a task introduction, and then
presented them – one by one – with the 20 search results. Each
search result was accompanied by one of the nine different expla-
nations displayed using one of the two visualization techniques
depending on the conditions participants had been assigned to.
Below each search result, we asked participants to (1) simulate the
stance detection model’s prediction, (2) describe their rationale be-
hind the simulation, and (3) state their confidence in the simulation.
Third, next to another attention check, we measured participants’
perceived explanation quality in three different Likert scale items
and asked them to provide textual feedback (see Section 5.2).

5.4 Participants
Prior to the conducting study, we had computed a required sam-
ple size of 290 using the software G*Power [35] for an ANOVA;
specifying the default effect size of 0.25, a significance threshold of
𝛼 = 0.05

2 = 0.025 (i.e., due to testing multiple hypotheses), a desired
power of 0.8, (9 × 2) = 18 groups, and the respective degrees of
freedom for the two hypothesis tests (regarding H1 and H2) we
aimed to conduct. We eventually recruited 302 participants from
Prolific (https://prolific.co), who were all above 18 years of age and
had high proficiency in English (i.e., as reported by Prolific). The
task was hosted on Qualtrics (https://www.qualtrics.com). Each
participant was allowed to participate only once and rewarded
$5 for completing the study (i.e., equivalent to an hourly wage of
$11.26 considering the median completion time of 26:39 minutes).
We excluded observations from 11 participants from data analysis
because they had failed at least one of the attention checks in the
task, thus leaving 291 observations to be statistically analyzed.

5.5 Statistical Analyses
To test our two hypotheses (see Section 2), we conducted an ANOVA
with the two between-subjects-factors explanation content (to test
H1) and explanation visualization (to test H2) as independent vari-
ables and simulation proportion as the dependent variable. Because
we were testing two hypotheses as part of this study, we applied
a Bonferroni correction to our significance threshold, reducing it
to 0.05

2 = 0.025. We additionally conducted Tukey posthoc tests to
analyze pairwise differences in case there was a main effect in the
ANOVA (i.e., here thus adjusting our 𝑝-values automatically so that
the significance threshold could remain at 0.05). Bayesian hypoth-
esis tests8 (e.g., to quantify evidence in favor of null hypotheses)
and exploratory analyses (e.g., to note any unforeseen trends in the

8Wedenote Bayes Factors as BF10 or BF01 depending onwhether they quantify evidence
in favor of the alternative or the null hypothesis, respectively, and interpret them
according to the guide proposed by Lee and Wagenmakers [63].

227

https://prolific.co
https://www.qualtrics.com


CHIIR ’23, March 19–23, 2023, Austin, TX, USA Draws et al.

data) further helped us to better understand our results. Using At-
las.ti (https://atlasti.com), we finally conducted a reflexive thematic
(qualitative) analysis [13] of the participants’ textual answers to
systematically dissect their feedback.

6 RESULTS
This section describes the results of the user study we conducted
to evaluate explanations for stance detection models in the web
search context (see Section 5; RQ1 and RQ2). We report the results
of our preregistered hypothesis tests as well as exploratory and
qualitative analyses that may help interpret our findings.

6.1 Descriptive Statistics
Among the 291 recruited participants who passed both attention
checks and were thus eligible for statistical analysis (see Section
5.4), 140 (48%) identified as female, 141 (49%) as male, and 9 (3%)
as non-binary/third gender, while one participant (< 1%) preferred
not to state their gender. Participants were rather young, with most
(237; 81%) being under 35 years of age, although there were at least
some participants from all age groups until 84 years. There was a
diversity of education levels among participants, as only about half
of them (146; 50%) had completed a university degree. While seven
participants held a doctorate degree, six participants did not hold
a high school diploma. Participants’ attitudes on the nine debated
topics present in the 20 search results they saw were reasonably
balanced: across topics, there were always at least 5% who opposed
and at least 20% who supported the topic. The average number of
highlighted or listed words across explanation content conditions
was 11.41 (SD = 3.62) and ranged from 8.10 (SD = 6.83, integrated
gradients for RoBERTa) to 17.00 (SD = 5.01, random explanations).

Nearly all participants (270; 93%) stated that they understood
what was expected from them in this task (i.e., by selecting “some-
what agree”, “agree”, or “strongly agree” for the relevant item).
A majority of participants (216; 74%) at least somewhat agreed
that the explanations helped them understand the stance detection
model’s predictions, with 57(20%) participants strongly agreeing
and only 10(3%) participants strongly disagreeing here. Similarly,
217(75%) participants at least somewhat agreed that the explana-
tions they saw (if they have good quality) could make a useful
feature in search engines. Participants’ overall mean simulation
proportion across conditions was .54; slightly above a proportion of
.50 that participants would have achieved had they always selected
the true instead of (as instructed) the predicted stance label, as half
of the shown explanations were for incorrect predictions (see Sec-
tion 5.1). They reported a mean simulation confidence of 1.11 (i.e.,
on a scale ranging from −3/extremely unconfident to 3/extremely
confident). Examining participants’ simulation rationales indicated
that participants indeed understood the task and were interpreting
the explanations according to the highlighted or listed words (e.g.,
“The word help could be a positive meaning for the AI”).

6.2 Hypothesis Tests
Figure 4 shows the mean simulation proportion per explanation
content, split by explanation visualization technique. Whereas the
difference between explanation types was significant (H1; 𝐹 =

25.615, 𝑝 < .001, 𝜂2𝑝 = .42; see Section 5.5 for our analysis plan),

the difference between explanation visualization techniques was
not (H2; 𝐹 = .105, 𝑝 = .746, 𝜂2𝑝 < .01). A Bayesian ANOVA further
strengthened these findings, revealing extremely strong evidence
for a difference between explanation types (H1; BF10 = 4.28× 1026)
and moderate evidence for the null hypothesis that there is no
difference between visualization techniques here (H2; BF01 = 6.36).

Pairwise Tukey posthoc tests between explanation content con-
ditions showed that five explanation types (i.e., coefficients for
logistic regression and linear SVM, LIME for RoBERTa and BERT,
and integrated gradients for BERT) led to significantly greater sim-
ulation proportions (M = [.576, .682], SE = [.019, .028]) than the
random explanations (M = .452, SE = .019; 𝑝adj = [< .001, .015]).
However, there were no significant differences among these five
best-performing explanation types. We also found no significant
differences between the remaining three explanation types (i.e., in-
tegrated gradients for RoBERTa and Grad-CAM for both RoBERTa
and BERT; M = [.373, .424], SE = [.016, .022]) and the random ex-
planations or each other. Our results thus suggest that explanations
generated from logistic regression and Linear SVM coefficients,
LIME for RoBERTa and BERT, and integrated gradients for BERT
lead to greater simulation proportions among users than other
methods or random explanations. Moreover, these five methods all
led to median simulation proportions above 0.5 (see Figure 4), indi-
cating that most participants who saw these explanations did better
than if they had tried to predict the true stance labels themselves.

6.3 Exploratory Analyses
We conducted exploratory analyses in addition to the hypothesis
tests described above to better understand our results. The aim of
these additional analyses is to shed light on whether the differences
in simulation proportion (see Section 6.2) are reflected in partici-
pants’ subjective experiences (i.e., whether the explanations were
indeed helpful for participants). Note that the analyses below were
not preregistered as we conducted them after inspecting the data.

6.3.1 Simulation Proportion Regarding Correct Versus Incorrect Pre-
dictions. Although the set of 20 explanations we showed to partici-
pants included equal amounts of correct and incorrect predictions
and many participants’ simulation proportions were greater than
if they had tried to predict stance labels themselves (see Sections
6.1 and 6.2), we conducted a separate analysis to test whether par-
ticipants tended to assign the true instead of (as instructed) the
predicted stance label. Had this been case, participants’ simulation
proportions would be higher for correct than for incorrect model
predictions. We thus performed a paired-samples 𝑡-test between
participants’ simulation proportion for the 10 correct versus the 10
incorrect predictions. Participants’ mean simulation proportions
were .535 and .542 for correct and incorrect predictions, respec-
tively. This difference was not significant (delta = .007, 𝑡 = −0.525,
𝑝 = .600, 𝑑 = −0.03), with a Bayesian 𝑡-test suggesting that par-
ticipants simulation proportions for explanations of correct and
incorrect predictions may be the same (BF01 = 13.28).

6.3.2 Relationship Between Simulation Confidence and Simulation
Proportion. Our main analyses (see Section 6.2) measured explana-
tion quality by participants’ simulation proportions (i.e., reflecting
the degree to which users can understand model predictions based
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Figure 4: Mean simulation proportion per explanation content, split by explanation visualization (Coeff. = coefficients, LR =
logistic regression, LSVM = linear SVM, IG = integrated gradients, GC = Grad-CAM). The dotted line reflects always selecting
the true instead of (as instructed) the predicted stance label (i.e., 10 out of 20 explanations were for incorrect predictions).

on explanations), but that does not necessarily mean that partici-
pants realized when they correctly identified model predictions. To
investigate whether participants grasped their ability to simulate
model predictions, we looked at the relationship between partici-
pants’ simulation proportions and their mean confidence (i.e., Likert
scale items ranging from −3/extremely unconfident to 3/extremely
confident; averaged over 20 items per participant). A Pearson cor-
relation analysis revealed a significant association between these
two variables (𝑟 = .17, 𝑝 = 0.003), suggesting that participants
were more confident in their simulations when they had stronger
simulation proportions. Users thus may have a sense of their ability
to make correct simulations; however, we note that this positive
correlation was also rather weak. An ANOVA did not reveal any ex-
ploratory evidence for differences in participants’ mean confidence
across explanations (𝐹 = 0.782, 𝑝 = .619, 𝜂2𝑝 = 0.02) or explanation
visualization techniques (𝐹 = 1.462, 𝑝 = .228, 𝜂2𝑝 = 0.01).

6.3.3 Differences in Explanation Quality Perceptions. Simulation
proportion and confidence measure participants’ ability to correctly
simulate stance detection model predictions but do not necessarily
speak to participants’ perceived or subjective explanation quality.
As with simulation confidence, we found exploratory evidence for a
positive relationship between simulation proportion and the degree
to which participants felt that the explanations helped them to un-
derstand the model’s predictions (𝑟 = .20, 𝑝 < 0.001). We did not find
any evidence for differences between explanations or explanation
visualization techniques regarding participants explanation quality
perceptions, though. Given that participants’ overall simulation
confidence and perceived usefulness was rather high (see Section
6.1), participants across conditions may have felt that the expla-
nations shown to them are useful even when they did not help
them to successfully simulate model predictions. There was no sign
of a relationship between simulation proportion and participants’
perception that explanations for search results could make a useful
feature in search engines if they have a good quality. Participants

may have thus judged the general usefulness of such explanations
independently from their experience in the task.

6.4 Qualitative Analyses
We conducted a qualitative, reflected thematic analysis [13] on par-
ticipants’ textual feedback to gain insights regarding where partici-
pants could see such explanations applied and what improvement
suggestions they may have. To perform this analysis, one author
generated response codes for participants’ textual feedback in an
inductive fashion and grouped them into code clusters. This re-
sulted in the identification of four web search scenarios where
stance label explanations could be especially helpful, three user
groups who may particularly benefit from stance label explana-
tions in search results, two concerns about such explanations, and
two ways in which stance label explanations for search results
could be improved according to our participants. We report on
these themes below, indicating in brackets how many of our 291
participants mentioned a given theme.

Web Search Scenarios. A common theme among our participants
was that explanations for search result stance labels could be used
by those who intend to research debated topics, i.e., for school or
university assignments (13), to prepare for a debate (9), to write an
essay (3), or for academic work (29; e.g., “to facilitate literature re-
views”). Participants also emphasized that stance label explanations
for search results could help ordinary users in forming opinions
by organizing the landscape of arguments on topics (26), enabling
users to identify biased search results (3), and offering a diversity of
viewpoints (18; e.g., “I think that this would be a great tool for people
to have the option to take a look contrasting perspectives about a sub-
ject.”) Related to this, participants believed that such explanations
can lead users to better understand the topics or viewpoints they
are searching about (8) and how search engines work (4; e.g., “[...]
why a result was given to them”). Participants finally remarked that
stance label explanations for search results deliver great utility by
helping users to save time (46; e.g., “it helps users to think quickly”)
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and teaching them how to search in a more targeted fashion (18;
e.g., “[...] a summary in that sense would make it easier to choose
what you want to actually read and spend your time on”).

User Groups. Many participants thought that search result stance
label explanations could help web search users in general (54; e.g.,
“I think everyone that uses search engines would benefit from these
explanations [...]”). Additionally, participants identified three main
user groups for whom stance label explanations may be particularly
helpful: neurodivergent users who have trouble comprehending
complex topics (14; e.g., “those with learning difficulties”), research-
ing users such as students (33), teachers (5), academics (56), con-
tent creators (3), debaters (1), or journalists (6; e.g., “Journalist or
researchers who need to filter a lot of material”), and industry users
and practitionerswho work directly with stance detection models
(14; e.g., “AI/ML model auditors”) or seek to inform business deci-
sions (7; e.g., “people who search for quick answers and information,
advertising companies and generally the marketing section [...]”).

Concerns. Despite the largely positive feedback (see also Section
6.1), participants’ answers contained two themes involving con-
cerns surrounding stance label explanations for search results. The
first aspect some participants found problematic was bad expla-
nation quality; specifically, participants stated that explanations
missed context (1), contained overwhelming amounts of informa-
tion (2), sometimes highlighted wrong or misleading words (8; e.g.,
“i cant see that we can be sure they are accurate based on AI deci-
sions”), or were just not useful in general (7; e.g., “[...] they are
difficult to understand”). Although we gathered such feedback from
all participants, i.e., including those who saw randomly generated
explanations, these comments indicate that explanation quality
may be a key concern for web search users. The second problematic
aspect participants saw involved the explanations’ influence on
users: they believed that explanations could induce biased behavior
in users by providing too much information and thereby discourag-
ing critical thinking (22; e.g., [...] “it should be up to the individual
to make their own mind up rather than be pushed into believing what
the author writes”). Participants were particularly concerned about
users’ confirmation bias, i.e., that stance label explanations would
lead more users to just consume content they already agree with
(13; e.g., “[...] If someone is trying to prove their point (whether it is
in an everyday discussion, or in science), they could be biased in find-
ing arguments for their point of view because they could easily filter
for search results that suit their opinion”). Concerned participants
were distributed across conditions, that is, we did not observe any
qualitative differences regarding participants’ concerns between
explanation content or visualization conditions.

Improvement Suggestions. Partly in line with their concerns sur-
rounding stance label explanations for search results, participants
described two main improvement suggestion themes. One of these
was rather straightforward: explanations should have better qual-
ity, i.e., predictions should be highly accurate and explanations
should be more consistent in highlighting key terms (20; e.g., “ac-
curacy must be top notch” or “improve the keywords chosen by the
AI”), explanations should highlight words in a smart fashion (4;
e.g., “omit repeating words” or “Maybe linking words together [...]”),
stop words and other neutral terms should be ignored (9; e.g., “Cut

out generic words like, the and it etc.”), and explanations should
be simpler and clearer in general (7; e.g., “just a quick guide, don’t
get too bogged down in details”). Some participants, on the other
hand, wished for more extensive explanations, i.e., supplement-
ing search result stance label explanations with a clear labelling
system or description for what makes a stance on the topic at hand
(2), confidence scores for stance label predictions (2), more context
(4; e.g., “samples could have been a little longer”), or just more
information in general (11; e.g., “Examples of how it works, decisions
that were made based on the algorithm”). We again observed no dif-
ferences regarding improvement suggestions between conditions.
As previous research has pointed out [52], a key issue for the fu-
ture development of stance label explanations for search results
thus seems to be trading off simplicity and clarity with providing
information that is extensive enough for users to fully comprehend
the stance label predictions.

7 DISCUSSION
This paper has presented a preregistered user study investigating
the quality of stance label explanations for web search results. We
first applied 10 different stance detection models to search result
data and found that several transformer-based language models
(e.g., RoBERTa and BERT) significantly outperformed classical ma-
chine learning models (e.g., linear SVM and logistic regression) in
terms of predictive quality (Section 4.2). Asking user study partici-
pants to simulate 20 different stance detection model predictions
based on different kinds of explanations (Section 5), we found dif-
ferences between explanation types regarding participants’ pro-
portions of correctly simulated predictions (RQ1; Section 6). Sev-
eral XAI methods (i.e., coefficients from inherently interpretable
models, LIME for transformer-based language models, and inte-
grated gradients for BERT) led to significantly higher simulation
proportions than other methods or randomly generated explana-
tions. However, we found no evidence for any differences among
these best-performing explanations or between explanation visual-
ization techniques (RQ2). The remainder of this section pairs these
findings with results from our exploratory and qualitative analy-
ses to paint a comprehensive picture of how web search engines
could implement stance label explanations to assist their users in
navigating debated topics in search results.

7.1 Implications and Recommendations
Can stance label explanations for search results be sufficiently

explainable using current methods? Most participants in our user
study felt that the explanations helped them understand stance
detection model predictions and that such explanations could make
a useful feature in web search (Section 6.1). Our hypothesis tests
confirm that explanations from at least some XAI methods can lead
users to better understand model predictions than randomly gener-
ated explanations (Section 6.2). Moreover, participants’ simulation
proportions were positively related to their simulation confidence
ratings and feelings that the explanation helps them understand
model predictions (Section 6.3). This suggests that simulation pro-
portion may be a good proxy for explanation quality in the user’s
eye. Our qualitative analyses underlines the potential usefulness
stance label explanations for search results as participants could
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imagine a range of potential application areas and user groups who
may particularly benefit from such explanations (Section 6.4). Given
the stronger predictive performance of transformer-based language
models and no apparent explainability differences between stance
detection model types in this context, models such as RoBERTa
and BERT, coupled with XAI methods such as LIME, may be prime
candidates for this endeavor. However, participants also pointed
to weaknesses and concerns surrounding search result stance label
explanations that need to be dealt with for these explanations to be
truly useful.

What would stance label explanations for search results ideally look
like? None of our analyses (including a null hypothesis significance
test; see Section 6.2) point to any difference in simulation propor-
tion, explanation quality, or preference between the two explanation
visualization techniques we had implemented (i.e., salience-based
and bar plot explanations). Although our between-subjects user
study design meant that we could not show both explanation visual-
izations to participants for direct comparisons and related research
suggested otherwise [105], our findings incline us to assume that
there is indeed no difference between these two methods in the
web search context. Salience-based explanation visualizations over
the search results may, however, still be the better option in this
case as they do not require any additional space on the SERP.

Our qualitative analyses send at least two clear messages regard-
ing the future development and implementation of search results
(Section 6.4). First, explanations have to be of high quality, i.e.,
highlight key terms and relate them to each other while ignoring
irrelevant terms such as stop words. The number of words that
were highlighted in an explanation did not seem to matter to partic-
ipants as two of the worst-performing explanation types featured
the least and most highlighted words on average, respectively (see
Section 6.1); indicating that users care primarily about the qual-
ity of word highlights. This not only means that predictive model
performance has to be high but also that the explanation content
(i.e., the word attributions) has to clearly describe the model’s rea-
soning in a human-like way [52, 126]. Second, there is a concern
that stance label explanations negatively influence user behavior
and thereby contribute toward the fragmentation of society. Such
concerns could be alleviated by supplementing explanations with
information about stance detection and XAI methods, (cognitive)
biases in web search [9], or the greater context on the topic at hand.

7.2 Limitations and Future Work
We acknowledge that our work is limited in several important
ways. First, in line with most previous work on stance detection
(see Section 2), we have considered a simple, ternary taxonomy for
stance classification (i.e., against, neutral, in favor). Recent work
has represented stances in more comprehensive ways (e.g., on con-
tinuous [59] or ordinal [31] scales) and supplemented them with
logics of evaluation (i.e., reasons behind stances) [29]. Future work
could explore how to predict (and subsequently explain) these more
nuanced viewpoint representations. Second, for consistency, the
topics in our data were all based on claims formulated in a positive
direction (e.g., in favor on vegetarianism meant supporting the idea
that one should be vegetarian; see Table 1 and Section 3). Users
may get confused if they conceptualize topics in other ways (e.g.,

“vegetarianism is unhealthy”) and find that stance labels do not
match their preconceived notions (e.g., in favor suggesting that veg-
etarianism is healthy). Aside from further exploring how to explain
stance predictions for search results, future work could thus also in-
vestigate how to explain debated topics and stances more generally
to users and whether external factors (e.g., users’ trust in different
web page sources) could play a role in this context. Third, we here
only looked at two different explanation visualization techniques
(i.e., salience-based and bar plot explanations). Future work could
explore alternative explanation formats or derive novel explanation
styles that lend themselves particularly well to the web search con-
text. Fourth, although our search results came from different search
engines and featured 11 topics, we did not have much data at hand
and search results had been annotated in part by experts and in part
by crowd workers (see Section 3). We recommend that future work
creates larger data sets of search results with high-quality human
annotations for better performance of stance detection models.

8 CONCLUSION
Recent proposals towards more reliable, bias-free, and trustwor-
thy interactions with debated topics for web search users would
greatly benefit from automatic and explainable cross-topic stance
detection methods. In this paper, we have presented a preregistered
user study investigating the feasibility and ideal implementation
of search result stance label explanations. Our findings suggest
that automatic stance detection for search results is possible and
promisingly show that at least some explainability methods can
deliver compelling explanations to users. Moreover, our qualitative
analyses reveal potential web search scenarios and user groups
where such explanations could be particularly helpful but also un-
cover important user concerns and improvement suggestions. We
hope that this work can meaningfully contribute to the ongoing
efforts of understanding and mitigating undesired effects on users
in web search.
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