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A B S T R A C T

Speeding is a key behavioural factor contributing to increased crash frequencies along road segments, especially 
horizontal curves. Estimating the effect of speeding on crashes is, however, very challenging due to several 
reasons. Traditional speeding data collection methods often introduce measurement error in the analysis. In 
addition, there is a complex inter-relationship between driver behaviour, roadway geometry, and crash risk 
leading to endogeneity between speeding and crash risk. While instrumental variable modelling has been pre
viously used for addressing such endogeneity, the effectiveness of this technique depends on strong instruments 
that correlate well with speeding but not with crashes. Moreover, the effects of explanatory variables on crashes 
may vary across locations and time too.

This study aims to address these gaps by developing a new methodology combining improved data collection 
and a hybrid statistical-machine learning model for better identification of speeding and a more accurate esti
mation of its effect on crashes. The model, tested on 179 km of horizontal curves along rural roads in Iran, 
integrates negative binomial regression and gradient boosting with shapley values. The negative binomial model 
is specified with random parameters and mixed spline indicators accounting for unobserved heterogeneity and 
temporal instability in the data. Results indicate high predictive power of the machine learning model in pre
dicting speeding from exogenous variables, complemented by intuitive shapley values and feature importance for 
those variables. A comparison of statistical fit between the proposed model and several state-of-the-art modelling 
candidates showed that our model is superior to the existing modelling techniques. The results of this model 
suggest that curve’s geometry and traffic characteristics are strong predictors of speeding, while driving more 
than 20 % over the speed limit substantially contributes to increased crash frequency. The effects of passenger 
and heavy vehicle traffic on crashes change over time.

1. Introduction

Traffic crashes are among the top ten causes of deaths and severe 
injuries globally and remain a major public health issue, despite ongoing 
efforts to improve road safety. These crashes are often complex and are 
the result of an interaction between drivers, vehicles, and the road 
environment. Driver behaviour is the primary contributor of these 
crashes, accounting for nearly 95 % of them in road networks (Abdel-Aty 
& Radwan, 2000; Petridou & Moustaki, 2000). In particular, speeding 
behaviour – where the average speed exceeds the + 3 % threshold of the 
posted speed limit (Chevalier et al., 2016)– has been consistently shown 
as a primary contributing factor to the frequency (and severity) of traffic 

crashes (Elvik et al., 2004). It is responsible for approximately 50 % of 
all crashes worldwide, a figure that is notably higher in low- and middle- 
income countries (World Health Organization, 2023). Speeding-related 
crashes are more prevalent on rural roads, horizontal curves, and roads 
with elevated speed limits (Choudhari & Maji, 2019; Council et al., 
2010; Dhungana & Qu, 2005). Rural roads, in particular, are unique due 
to their distinct roadway geometric features and limited speed 
enforcement. Sharp horizontal curves, narrow lanes, and decreased 
visibility are common roadway characteristics in these areas contrib
uting to a higher likelihood of crashes, especially in conjunction with 
speeding behaviour (Calvi, 2015; Pratt et al., 2019; Wu et al., 2017). 
Additionally, lower traffic volumes typically observed in rural areas may 
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encourage drivers to drive at a higher speed, thereby increasing the 
likelihood of crashes (Ali et al., 2007). This is particularly concerning 
given that rural roads, in many countries, account for a disproportionate 
share of fatalities (Afukaar et al., 2003).

Accurate estimation of the effect of speeding on crash risk, however, 
is not straightforward because of several reasons. First and foremost, 
speeding and crash occurrence may be endogenous because they are 
inter-dependent and can influence each other. In econometrics and 
causal inference, endogeneity arises when an explanatory variable is 
correlated with the error term, often due to simultaneous causality, 
omitted variables, or measurement error (Nakamura & Nakamura, 
1998). While speeding increases the likelihood of crashes due to reduced 
reaction time / longer stopping distances (Nassiri & Mohammadpour, 
2023), crashes can influence speed selection of drivers too because 
drivers who experience or observe crashes may alter their speed—either 
by slowing down due to risk-compensating or by speeding in less regu
lated areas to compensate for the lost time (Oviedo-Trespalacios et al., 
2020; Soole et al., 2013; Yasmin et al., 2022). This feedback loop means 
the two variables affect each other. In addition, unobserved factors may 
affect both speeding and crash frequency, creating a spurious relation
ship. For example, risk-taking drivers are more likely to speed and to be 
involved in crashes (Gheorghiu et al., 2015), but this personality trait is 
often not measurable particularly in aggregate (segment-specific) crash 
studies. Finally, speeding data are commonly collected in locations with 
higher risk of crashes and using speed cameras. As a result, the data may 
not capture actual driving behaviour of drivers, potentially skewing the 
observed relationship between speeding behaviour and crash outcomes 
(Yasmin et al., 2022).

Secondly, while many roadway characteristics and features (such as 
divided median or shoulder) are designed to mitigate crash frequency 
(for instance, by separating the opposing traffic or providing recovery 
space for errant vehicles), they may imply a ‘safe opportunity’ for 
drivers to exceed the speed limit and take over other vehicles which in 
turn may adversely increase crash frequency. Moreover, the effects of 
the above factors on speeding behaviour and ultimately on crash fre
quency may vary across locations (Afghari et al., 2018a; Liu and Chen, 
2009). These varied effects are referred to as unobserved heterogeneity 
(F. L. Mannering et al., 2016). These effects may vary across time as well 
because many external factors such as safety campaigns and enforce
ment policies result in behavioural changes over time (F. Mannering, 
2018). Overlooking either of these three properties (endogeneity, un
observed spatial heterogeneity and temporal instability) may lead to 
biased parameter estimates and erroneous inferences about the effects of 
speeding behaviour on crash frequency.

In response to the above issues, advanced methodologies have been 
developed and used in modelling crash frequency. Instrumental variable 
models (and latent variable models, both under the umbrella of simul
taneous equation modelling technique) have been used to account for 
endogeneity between driver behaviour and crash frequency (Afghari 
et al., 2018b, 2019, 2023; Heydari and Forrest, 2024; Yasmin et al., 
2022). These models regress the endogenous variable against all exog
enous variables and then use its predicted value in the crash frequency 
model. Random Parameters (with/without heterogeneity in the means 
and/or variances) (Barua et al., 2016; Chen et al., 2017; Coruh et al., 
2015; Heydari, 2018; Heydari et al., 2018; Huo et al., 2020; A. S. M. M. 
Islam et al., 2023; Shaon et al., 2018) and latent class (or finite mixture) 
models (Afghari et al., 2016; Kim, 2023; Li et al., 2018; Park & Lord, 
2009) have been largely used to address unobserved heterogeneity in 
the effects of factors on crash frequency. These models allow parameters 
to vary across observations (or groups of observations), providing a 
more nuanced presentation of the complex dynamics influencing crash 
frequency (Anastasopoulos & Mannering, 2016; F. L. Mannering & Bhat, 
2014; Washington et al., 2020). Finally, year-specific negative binomial 
models (Dzinyela et al., 2024; Fu et al., 2022; Mohammadi et al., 2014), 

year-indicator pooled negative binomial models(Alnawmasi & Man
nering, 2022, 2023; Bhowmik et al., 2019b; Pervaz et al., 2024), and 
most recently, spline-indicator pooled negative binomial models 
(Marcoux et al., 2024; Phuksuksakul et al., 2025; Shabab et al., 2024) 
have been used to capture instability of model parameters across time. 
The spline-indicator pooled model employs spline functions to introduce 
temporal variations, offering a more flexible and interpretable way to 
capture changes over time, and has been shown to have superior per
formance to the other two modelling alternatives (Shabab et al., 2024).

Despite the above methodological advancements, there are still 
important gaps in understanding the effects of speeding on crash 
frequency:

(i) The effectiveness of instrumental variable modelling (in miti
gating the potential effects of endogeneity bias) highly depends on the 
presence of strong instruments (exogenous variables) in the data which 
are well correlated with speeding (the endogenous variable) but are not 
correlated with crash frequency (the dependent variable). Previous 
studies have consistently highlighted the challenge of identifying suit
able instruments for this purpose (Afghari et al., 2021, 2023). A po
tential solution for this dilemma is to make use of machine learning 
algorithms to create the instrumented variable. These algorithms are not 
bound to any distributional assumptions and use all nuances in the data 
to predict an outcome and therefore have much higher predictive power 
than conventional statistical models. A few recent studies have inte
grated these algorithms into instrumental variable modelling, although 
in a different context, and found that such an integration enhances the 
overall accuracy of the models (Afghari et al., 2022; Hussain et al., 
2022).

(ii) Most of the conventional data collection methods for assessing 
speeding behaviour result in measurement error in speeding data (the 
difference between the measured value of speeding and its unknown
true value). Overt and fixed speed cameras provide censored data on 
speeding because of behavioural adaptation of drivers at the locations of 
those cameras (Marciano & Norman, 2015), whereas covert and mobile 
speed cameras are easily recognisable with the new capabilities of 
smartphones and in-vehicle technologies. The advent of advanced data 
collection technologies, such as unmanned aerial vehicles (UAVs), has 
further improved the precision and granularity of traffic monitoring, 
offering an innovative solution to the biases associated with traditional, 
fixed-location sensors (Dronova et al., 2022). UAVs enable capturing 
detailed data on vehicle trajectories and speed profiles, providing 
unparalleled insights into the interaction between road geometry, traffic 
volume, and speeding behaviour (Ghalehni & Boroujerdian, 2023; 
Karimi & Boroujerdian, 2021; Xing et al., 2019). This level of detail is 
crucial for enhancing the accuracy of crash frequency models and for 
developing more targeted interventions to mitigate the risks associated 
with speeding-related crashes. In addition, UAVs have fewer 
perspective-view issues or calibration requirements in comparison with 
fixed cameras (Fig.1). The difficulty in calibrating fixed cameras at long 
distances, where the perspective becomes more pronounced, limits the 
coverage area of these cameras. In contrast, UAVs with their orthogonal 
video recording capabilities, can cover greater lengths with minimum 
distortion, providing more accurate and expansive data.

2. Analytical framework

The proposed analytical framework in this study consists of two 
components, operating in two stages subsequently. A machine learning 
algorithm is used in the first stage, and a statistical model is used in the 
second stage in which the output of the first stage is used. A schematic of 
the proposed hybrid framework is presented in Fig. 2. The details of this 
schematic are presented in the following subsections.

For a better readability of the framework, a few notations are pre
sented in the following and prior to presenting each component. Let i (i 
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= 1, 2, …, I) represent the location of each curve, and t (t = 1, 2, …, T) 
represent the time period, corresponding with different years of data. Let 
k (k = 1, 2, 3) represent the magnitude of speeding categories, with k = 1 
representing ’minor speeding’ (less than 10 % over the speed limit), k =
2 representing ’moderate speeding’ (between 10 % and 20 % over the 
speed limit), and k = 3 representing ’major speeding’ (more than 20 % 
over the speed limit). Since the proposed analytical framework is 
segment-specific, the speeding behaviour of drivers is aggregated across 
a segment and is used in the models as the proportion of vehicles 

speeding in the above three categories (more on this will be presented in 
Section 3).

2.1. First Stage: Speeding behaviour component

In the first stage of the framework, the speeding behaviour of drivers 
(in the form of a proportion) is predicted using a Gradient Boosting 
Method (GBM) to serve as an instrument for the observed speeding 
behaviour in the second stage. In other words, observed speeding will be 

Fig. 1. Comparison of distortion view in fixed cameras (a) and (b) versus an unmanned vehicle (c) (Fitzsimmons et al., 2013).

Fig. 2. A schematic of the proposed hybrid framework for estimating the relationship between speeding and crash frequency.
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replaced by predicted speeding in the subsequent crash frequency model 
which addresses the potential endogeneity between observed speeding 
behaviour and crash frequency. GBMs are ensemble learning techniques 
that combine multiple shallow decision trees to capture nonlinear re
lationships and complex interactions among roadway and traffic char
acteristics (Natekin & Knoll, 2013; M. Sadeghi et al., 2024; Wen et al., 
2021). Compared to alternatives such as Random Forests, which may 
overemphasize variance reduction, or neural networks, which typically 
require larger datasets and more intensive calibration, GBMs provide a 
balanced trade-off between predictive accuracy, interpretability, and 
computational efficiency—making them particularly suitable for the 
present dataset.

The GBM is implemented using the XGBoost framework (Boehmke & 
Greenwell, 2019), leveraging a Gamma distribution to effectively model 
the skewed nature of the speeding data.1

The underlying latent propensity for the speeding behaviour 
component can be formulated as: 

ŷ(r)
kit =

∑M

m=1
fm(xit) = ŷ(r− 1)

kit + fr(xit) (1) 

where ŷ(r)
kit denotes the estimated proportion of speeding behaviour for 

location i and t time period after r iterations, M is the number of additive 
trees, and xit represents the input features (analogous to independent 
variables in statistical models) influencing the speeding behaviour.

The objective function for minimizing the loss in the GBM model can 
be expressed as: 

∑n

i=1
l(ykit , ŷkit)+

∑M

m=1
Ω(fm) (2) 

where l
(
ykit, ŷkit

)
is the loss function, and Ω

(
fm
)

represents the regula
rization term to prevent overfitting and reduce complexity, defined as: 

Ω(fm) = γTm +
1
2

λ
∑Tm

n=1
ω2

n (3) 

In this formulation, Tm denotes the number of leaves in the mth tree, 
ωn signifies the L2 norm of the nth leaf scores, and n indicates the total 
number of speeding instances in the sample data.

Regularization in Ω
(
fm
)

is applied specifically to manage the model’s 
complexity by penalizing:

Tree Depth: Limiting the maximum depth of each tree reduces the 
number of splits, making trees shallower and less prone to overfitting.

Number of Leaves: Penalizing the number of leaves in each tree 
helps prevent the model from memorizing details in the training data, 
thereby enhancing its generalization ability.

Leaf Weights (Shrinkage): Each leaf in the GBM has an associated 
weight that contributes to the prediction. By penalizing larger weights, 
the model ensures that no single tree dominates the prediction, allowing 
a more balanced contribution from each tree and improving the model’s 
robustness.

This structure, with the combined effects of tree depth, leaf number, 
and weight penalties, helps the model avoid excessive complexity while 
providing an accurate estimation of speeding behaviour across 
iterations.

By employing the GBM model, which effectively identifies key pre
dictors of speeding through its iterative learning process, the analysis 
captures the complex relationships present in the data without neces
sitating predefined theoretical assumptions. This capacity is crucial for 

isolating the instrumental variable, enhancing the subsequent analysis 
in the Random Parameters Negative Binomial (RPNB) model.

2.2. Second Stage: Crash frequency component

In the second stage, the frequency of crashes across road segments is 
analyzed using a random parameters negative binomial model 
(Anastasopoulos & Mannering, 2009) with spline indicator variables 
originally introduced by Shabab et al., (2024). In this approach, spline 
indicators provide a piecewise linear representation of time, allowing 
explanatory variables to capture gradual changes in their effects across 
years rather than abrupt shifts tied to year-specific dummies. By 
combining this temporal formulation with random parameters, the 
model simultaneously accounts for spatial heterogeneity across loca
tions and temporal instability in coefficient estimates.

Let us assume that the frequency of crashes at segment i during time t 
(cit) follows a negative binomial distribution with the mean (expected 
value) μit. The probability density function of cit can be expressed as: 

(cit) =

Γ
(

cit +
1
λ

)

Γ(cit + 1)Γ
(

1
λ

)

(
1

1 + λμit

)1
λ
(

1 −
1

1 + λμit

)cit

(4) 

Where, P(cit) is the probability that segment i will experience cit crashes at 
time t, and λ is the overdispersion parameter in the negative binomial 
distribution. μit is structured as a log-link function of exogenous cova
riates as: 

μit = exp
(
Xʹ

itβ + Zʹ
iθi + Wʹ

tγt + εit
)

(5) 

Where, Xit is a vector of exogenous covariates with fixed coefficients (β), 
Zi is a vector of exogenous covariates with random coefficients varying 
at segment (location) level (θi) allowing for spatial unobserved hetero
geneity, and following a normal distribution with mean θ and standard 
deviation σ. Wt is a vector of exogenous covariates with coefficients 
varying at temporal (year) level (γt) allowing for temporal instability, 
and εit is a random error term; exp(εit) follows a Gamma distribution 
with mean 1 and variance λ.

Borrowing from Shabab et al., (2024), we create a set of time- 
dependent variables as: 

Year1 = Max(Yearrecord − Yearbase,0); (6) 

Year2 = Max(Yearrecord − Yearbase − 1,0);

YearN = Max(Yearrecord − Yearbase − (N − 1),0);

Where Yearrecord represents the observation year, and Yearbase is the 
reference year. A product of the above indicators and the temporally 
instable variables (changing more than 5 % over time) are then used as 
covariates in Equation (6). This formulation allows for a piecewise linear 
representation of temporal effects, enabling a more flexible and efficient 
evaluation of changes in parameters over time.

Speeding behaviour is now introduced into the model in the form of 
speeding proportions in the kth category (minor, moderate, and major) 
denoted by Ykit . The log-link function, incorporating the speeding vari
able(s), is then expressed as: 

μit = exp
(
Xʹ

itβ + Zʹ
iθi + Wʹ

tγt + Yʹ
kitωkit + εit

)
(7) 

where ωkit is a vector of estimable parameters. Ykit is, however, endog
enous with observed crash frequencies and thus is replaced by the pre
dicted speeding proportions from the Gradient Boosting Model in the 
first stage (Ŷkit). The final log-link function of the mean, incorporating 
the instrumental variable becomes: 

μit = exp
(
Xʹ

itβ + Zʹ
iθi + Wʹ

tγt + Ŷ
ʹ
kitωkit + εit

)
(8) 

1 Speeding data are usually skewed to the left because minor speeding (less 
than 10% above the speed limit) is much more common than moderate and 
major speeding (more than 10% above the speed limit) (Perez et al., 2021). This 
is the case in the sample of speeding data in this study too.
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This hybrid model formulation (stage 1 and 2, together) is referred to as 
the mixed spline indicator pooled random parameters negative binomial 
model with gradient boosting method (MSIPRPNB-GBM) in this manuscript 
and accounts for the unobserved heterogeneity across segments and 
temporal instability while also addressing the endogeneity between 
speeding behaviour and crash frequency.

2.3. Model performance

The models in the first and second stages are evaluated based on 
various performance metrics. The predictive accuracy of the GBM model 
in the first stage is assessed using Mean Squared Error (MSE), Mean 
Absolute Error (MAE), R-squared (R2), the Receiver Operating Charac
teristic (ROC), and Area Under the Curve (AUC), providing a detailed 
evaluation of predictive performance. These metrics are calculated as 
follows:

Mean Squared Error (MSE): 

MSE =
1
N

∑N

i=1
(Ykit − Ŷkit)

2 (9) 

Where N is the total number of observations, Ykit represents the observed 
speeding proportion, and Ŷkit denotes the predicted speeding propor
tion. Lower MSE values indicate higher predictive accuracy.

Mean Absolute Error (MAE): 

MAE =
1
N

∑N

i=1
|Ykit − Ŷkit | (10) 

The MAE provides a measure of prediction error without squaring the 
deviations, making it less sensitive to outliers than MSE. Lower MAE 
values signify improved model precision.

R-squared (R2): 

R2 = 1 −

∑N
i=1(Ykit − Ŷkit)

2

∑N
i=1(Ykit − Ykit)

2 (11) 

where Ykit is the mean of observed values. The R2 metric provides the 
proportion of variance in speeding proportion explained by the GBM 
model, with values closer to 1 indicating better explanatory power.

ROC AUC Score:
This score evaluates the model’s ability to differentiate between 

speeding severity levels by measuring the area under the Receiver 
Operating Characteristic (ROC) curve, which plots the true positive rate 
against the false positive rate at various thresholds. The AUC (Area 
Under the Curve) quantifies this performance, with values closer to 1 
indicating stronger classification ability. A high AUC demonstrates the 
GBM model’s effectiveness in accurately identifying instances of each 
speeding category.

The performance of the negative binomial models in the second stage 
are assessed using Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC): 

AIC = 2P − 2LL (12) 

BIC = PLn(N) − 2LL (13) 

where P is the total number of estimable parameters, N is the total 
number of observations, and LL is the log-likelihood value of the model 
at convergence. The model with the lowest AIC and BIC is preferred as it 
strikes a balance between goodness of fit and complexity.

By employing many different metrics of performance (MSE, MAE, R2, 
ROC AUC, AIC and BIC), the analysis provides a robust evaluation of 
predictive accuracy (which is needed for the first stage) and statistical fit 
(which is needed for the second stage).

2.4. Model explanation

To interpret the GBM, both feature importance scores and SHapley 
Additive exPlanations (SHAP) values are employed. Feature importance 
in the GBM model is calculated using gain-based importance, which 
measures the average improvement in model accuracy attributed to 
each feature across all trees. Each feature’s importance score is derived 
by summing the reduction in prediction error achieved each time that 
feature is used for a split and averaging it across splits. Mathematically, 
the importance for feature fi is given by: 

Importancefi =

∑
j∈Sfi

Gainj
∑

K∈F
∑

j∈Sfk
Gainj

(14) 

where Sfi represents all splits involving feature fi, Gainj is the reduction 
in loss from split j, and F is the set of all features. This allows for a clear, 
quantitative ranking of features according to their contribution to the 
model.

In addition, SHAP values offer a comprehensive view of feature 
impact by calculating the marginal contribution of each feature to the 
model’s prediction for each individual sample (analogous to marginal 
effects in the statistical models). Let xi be the i-th sample, xi,j the j − th 
feature of xi, and y the baseline (expected value) of the model. SHAP 
values (ϕj) for feature j in sample xi are computed as: 

yi = y+
∑K

j=1
f
(
xi,j

)
(15) 

where f
(
xi,j

)
denotes the contribution of feature j to the prediction for 

sample xi. SHAP thus provides an additive approach to decompose each 
prediction, enabling a detailed analysis of how individual features drive 
model outcomes.

3. Data and Empirical Design

Speed data in this study were collected using a UAV on rural roads in 
Khorasan Razavi and Gilan provinces, in Iran. The extent of the network 
is 179 km comprising segments of various lengths, all with horizontal 
curves. Speed data were collected over 28 days in May and June 2018. A 
total of 1,245 vehicles passed through these curves during this period. 
For vehicle detection and tracking, the YOLOv5 model(Redmon et al., 
2016) and a Kalman filter-based Simple Online (Welch & Bishop, 1995) 
and Realtime Tracking (SORT) algorithm (Bewley et al., 2016) were 
employed. YOLOv5 is a state-of-the-art deep learning model which is 
able to detect objects using a convolutional neural network. This algo
rithm divides each video frame into a grid, assigning bounding boxes to 
potential objects within each grid cell. Using regression-based proba
bility estimates, YOLOv5 classifies the detected objects—specifically, 
vehicles—while resolving overlapping bounding boxes through non- 
max suppression to ensure accurate localization. Following the detec
tion of vehicles, the SORT algorithm tracks them across frames by uti
lizing Kalman filtering to predict the position and movement of each 
object. The filter models the bounding box centre, scale, and aspect 
ratio, alongside their time derivatives. Predicted states are matched to 
new detections in subsequent frames using the Hungarian algorithm, 
which minimizes identity switches. This process enables the system to 
maintain robust tracking, even when objects momentarily disappear 
from the frame or experience occlusions, ensuring consistent vehicle 
tracking throughout the video. The final output of the software is vehicle 
trajectories from which vehicles’ speeds were calculated for the purpose 
of this study.

Since the scope of this study is segment-specific, the speeding 
behaviour of drivers was aggregated across road segments by taking the 
average of actual speed for every driver along the horizontal curve and 
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comparing it with the posted limit. The number of speeding vehicles was 
then recorded in three categories: (1) minor speeding: less than 10 % 
above speed limit (including no speeding),2 (2) moderate speeding: be
tween 10 % and 20 % above the speed limit and (3) major speeding: more 
than 20 % above the speed limit (Zhou et al., 2024a). Consequently, the 
speeding variable in this study is expressed as a proportion:  

Crash data were collected from police reports for the same road seg

ments for eight years, from 2011 through 2018. The data contained 
information about the time and location of crashes, severity levels, and 
crash type. Additionally, vehicle count data were extracted from traffic 
camera datasets provided by the Provincial Departments of Roads and 
Urban Development for Khorasan Razavi and Gilan, covering the same 
period from 2011 to 2018.

To bring the two datasets (speed and crash data) to the same units, a 
proportional (linear) extrapolation method was used to extrapolate 
speeding proportions from monthly (28-day observation period) to 
yearly data from speeding tickets issued to drivers across the same lo
cations over the same 8 years as crash data. In doing so, the ratio of 
speeding tickets (issued in the same categories as above) across different 
months and years were used to determine the monthly and yearly trends 
and then these trends were applied to the observed speeding data to 
create yearly speeding data for 8 years. The summary statistics of the 
final speeding and crash data are presented in Table 1 below.

To further illustrate the potential association between crash fre
quency and speeding behaviour, binned means of crash frequencies 
across all segments with their 95 % confidence intervals, together with a 
locally weighted smoothing line (LOWESS) have been plotted in Fig. 3. 
In this figure, each point represents the average crash frequency within 
equal-width bins of speeding proportions, while the red line indicates 
the general trend across the sample. These bins and the line show that 
crash frequency increases with higher speeding proportions. The 
increasing slope of the LOWESS curve suggests a positive association 
between crash frequency and the proportion of speeding, implying that 
segments with a greater prevalence of speeding are more likely to 
experience higher crash occurrences.

In addition, roadway geometric characteristics were collected for the 
same network too. Some of these characteristics, such as lane width, 
shoulder width, and grade, were directly measured at the site, while 
other variables, such as deflection angle, curve radius, and length, were 
calculated from the UAV aerial footage. The radius of curves varied 
between 30 and 150 m, while the vertical grade ranged between − 8% 
and + 8 %. The summary statistics of road geometric data are presented 
in Table 2.

To further illustrate the variation in driving behavior across roadway 
environments, the distribution of vehicle speeds is presented by posted 
speed limit categories. Table 3 summarizes the average and 85th 
percentile of speed across road segments with different speed limits, 
providing a clearer picture of the actual operating speeds relative to the 
posted speed limit.

4. Results and Discussion

4.1. Speeding behaviour component

The GBM model within the first stage of the hybrid model was 
implemented using the XGBoost library (version 3.0.0) in Python. In 
developing this model, several hyperparameters were determined 
through trial and error. The final values included a learning rate of 

0.001, a maximum depth of 8 for the trees, a subsample of 0.8, and a 
total of 1000 trees, with early stopping applied after 100 rounds. A list of 
all hyperparameters, including both the default values provided by 
XGBoost and the values adopted in this study, is presented in the Ap
pendix. While trying other values of these hyperparameters may in
crease the performance of the GBM model, optimizing the 
hyperparameters is not within the scope of this study. The dataset was 
divided into 80 % training data and 20 % testing data. Two GBM models 
were developed, one for minor and one for major speeding categories 
(the proportions of the three speeding categories must sum to unity and 
so developing three separate models could introduce inconsistencies in 
the second stage where their combined predictions might exceed 1). The 
final GBM models demonstrated strong predictive performance, with R- 
squared (R2) values of 0.842 and 0.834, alongside ROC AUC scores of 
0.904 and 0.941, indicating high classification accuracy. Table 4 pre
sents the predictive performance metrics for these two GBM models.

Results of the SHAP analysis for the two speeding prediction models 

Table 1 
Summary statistics of dependent variables in the study.

Dependent 
Variables

Definitions Mean Standard 
Deviation

Minimum Maximum

Proportion 
of 
Minor 
speeding

Number of 
vehicles driving 
less than 10 % 
above the 
posted speed 
limit / Total 
number of 
observed 
vehicles

0.40 0.16 0.08 0.74

Proportion 
of 
Moderate 
speeding

Number of 
vehicles driving 
between 10 and 
20 % above the 
posted speed 
limit / Total 
number of 
observed 
vehicles

0.41 0.05 0.21 0.48

Proportion 
of 
Major 
speeding

Number of 
vehicles driving 
more than 20 % 
above the 
posted speed 
limit / Total 
number of 
observed 
vehicles 

0.17 0.24 0.00 0.97

Crash 
frequency

Total number of 
crashes 
recorded per 
year

3.09 4.60 0.00 22.00

Speeding proportion =
Number of observed vehicles in each speeding category per segment

Total number of observed vehicles per segment 

2 Since the scope of this study is to contrast normal/minor speeding behav
iour versus high-risk or aggressive speeding, the first speeding category 
included non-speeding vehicles too, especially because slight speed limit ex
ceedance (e.g., 1–5 km/h over the speed limit) is common and often considered 
socially acceptable or legally tolerated in Iran.
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are illustrated in Fig. 4. Each point in these figures represents one 
observation. Features are ranked by their average predictive power on 
the outcome variable (speeding proportions), with the location of each 
point along the horizontal axis representing this power on the specific 
observation. The colour gradient indicates the feature value (low to 
high), and the SHAP values indicate the magnitude of the effect. Please 
note that visual differences between the minor and major speeding plots 
arise from overlapping points with SHAP values near zero—particularly 
for low-importance features—not from unequal sample sizes. Features 
with wider SHAP value ranges appear denser because their points are 
more spread, while features with narrower SHAP value ranges cluster 
around zero.

Radius is the most influential feature in predicting minor and major 
speeding proportions. Higher values of radius (red dots) contribute to 
decreased predicted speeding proportions, particularly for major 
speeding category (Fig. 4 (b)). The degree of curve and deflection angle 
are among predictors of the speeding behavior too: flatter curves and 
lower deflection angles contribute to increased predicted minor and 
major speeding proportions.

Pavement Condition Index (PCI) contributes positively to both pre
dictions, with higher PCI (better pavement quality) linked with 
increased predicted speeding proportions. In contrast, curve length 
contributes negatively to speeding predictions, where longer curves 
contribute to slightly lower predicted proportions of minor and major 
speeding. Outer shoulder width has a negative effect on speeding pre
dictions too, more noticeably for minor speeding.

Widening, MADT, and the percentage of heavy vehicles have mixed 
effects. Widening appears to result in decreased minor speeding pro
portions, while higher MADT (red dots in Fig. 4)b() results in increased 
major speeding proportions. Heavy vehicle percentage plays a stronger 
role in predicting the minor speeding proportions, where higher values 
of this feature reduce the predicted proportion of minor speeding.

Additional features such as edge and centerline marking quality, 
grade, and curve type have smaller but consistent effects. Better marking 
quality and lower grade values generally contribute to the prediction of 
reduced speeding proportions.

To have a better understanding of the contributions of the above 
features to the prediction of speeding proportions, their feature impor
tance (ranked from the highest to the lowest) are presented in Figs. 5 and 
6 for the minor and major speeding categories, respectively.

A comparison of the SHAP analysis with the feature importance re
sults reveals differences in the ranking and predictive power of specific 
features. Nonetheless, these features are analogous to instruments in 
conventional instrumental variable modelling, and the predicted 
speeding proportions from this GBM model are postulated to be less 
subject to endogeneity in comparison with the observed speeding pro
portions. However, an important conundrum is whether this postulation 
is valid after all because when the instruments are constructed in a way 
that maximize prediction, they might capture the same unobserved 
factors (‘noise’ in the language of machine learning) that are correlated 
with crash frequency. While proving this exogeneity is very difficult (as 
the true effect of speeding on crash frequency in the population is not 
known), the shapley values together with the feature importance anal
ysis in our study show that the GBM’s high accuracy is due to meaningful 
features rather than unobserved errors. This explanation is even more 
reinforced noting that most of the important features in predicting the 
speeding proportions (radius, degree and length of horizontal curves, 
type of curves, deflection angle, pavement condition index, quality of 
centerline and edge lane markings, and shoulder width) have intuitive 
causal link with speeding but are not statistically significant when used 
directly in the mean function of the negative binomial model in the 
second stage (more on this will be presented in the next section). In other 
words, the effect of these features on crashes is only through speeding.

4.2. Crash frequency component

In the second stage of the hybrid framework, the negative binomial 
crash frequency model was estimated using the predicted speeding 
proportions from the first stage as well as other explanatory variables, 
using STATA 17.0 statistical software package. In estimating the crash 
frequency model in the second stage, explanatory variables were 
selected using a stepwise variable selection criterion. They were tested 

Fig. 3. Binned mean crash frequency versus speeding proportion with 95% confidence intervals and locally weighted smoothing line (LOWESS).
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for multicollinearity by computing the Pearson or Spearman correlation 
coefficients, and the variables with unacceptably high (>0.7) correla
tion coefficients were not simultaneously introduced into the model. The 
parameters of all variables were tested for random parameters specifi
cation (across location) and normal distribution was used as the distri
bution for all of the random parameters. The parameters were 
considered random only if their standard deviations are statistically 
significant. The parameters of all variables with more than ± 5 % 
variation during the study period were tested for temporal instability. 
The models were estimated using the maximum simulated likelihood 
approach with 500 Halton draws. The required number of Halton draws 
was selected so that further increasing the number of draws does not 
change the estimates significantly. The final specification of the model 
was based on statistical significance guided by a 95 % confidence level. 
The results of this model are presented in Table 5 and 6 below. In 
Table 5, we present a comprehensive examination of temporal fluctua
tions of each variable’s impact on crash frequency while in Table 6 we 
present the net effects of these variables on crash frequency across the 
years.

Monthly Average Daily Traffic3 (MADT) exhibited a statistically 
significant and temporally dynamic effect on crash frequency, consistent 
with the patterns observed in the literature (Shabab et al., 2024). As 
shown in Table 5, the coefficient for the natural logarithm of MADT is 
zero prior to 2014 and becomes increasingly positive in the subsequent 
years, peaking in 2015 and gradually declining thereafter. This shift 
underscores the importance of accounting for temporal instability in 
modeling traffic safety outcomes. The non-significant role of MADT 
during the early years might be due to the dominance of single-vehicle 
(such as run-off-road) crashes in those years as illustrated in Fig. 7. 

Table 2 
Summary statistics of independent variables in the study.

Continuous 
variables

Mean Standard 
Deviation

Minimum Maximum Temporal 
Variation

Monthly 
Average 
Daily Traffic 
(MADT) 
(vehicles/ 
day)

1319.89 220.42 859 1742 28 %

Percentage of 
heavy 
vehicle 
traffic (%)

4.38 1.64 1.97 8.32 25.7 %

Curve length 
(m)

74.98 47.16 24.7 205.4 <5%

Widening (m) 1.18 1.73 0 7.5 <5%
Inner lane- 

shoulder- 
width (m)

2.04 2.23 0 9.5 <5%

Outer lane- 
shoulder- 
width (m)

3.02 2.15 0 7.8 <5%

Curve radius 
(m)

64.89 37.68 15 153 <5%

Deflection 
angle (◦)

107.58 39.72 32 170 <5%

Radius 64.89 37.805 15 153 <5%
Degree of 

curve*
67.66 99.89 3.82 360 <5%

Centre line 
marking 
quality (of 
tenth)

5.83 2.20 1 8 <5%

Edge line 
marking 
quality (of 
tenth)

3.21 2.16 1 7 <5%

Road vertical 
slope 
(absolute 
value)

4.86 2.42 0 8 <5%

Pavement 
condition 
index

69.88 14.44 37 95 <5%

Categorical 
variables

​ ​ Sample 
frequency

Sample 
share

Temporal 
Variation

Posted speed 
limit

​ ​ ​ ​ ​

20 km/h ​ ​ 16 0.10 <5%
30 km/h ​ ​ 32 0.21 <5%
40 km/h ​ ​ 40 0.26 <5%
50 km/h ​ ​ 16 0.10 <5%
60 km/h ​ ​ 48 0.33 <5%
Sufficient 

stopping 
sight 
distance**

​ ​ ​ ​ ​

Yes ​ ​ 83 0.54 <5%
No ​ ​ 69 0.46 <5%
Curve type ​ ​ ​ ​ ​
S-curve ​ ​ 43 0.28 <5%
Normal ​ ​ 109 0.72 <5%
Before Curve 

Existence
​ ​ ​ ​ ​

Yes ​ ​ 61 0.40 <5%
No ​ ​ 91 0.60 <5%
Curve 

direction
​ ​ ​ ​ ​

Right turn ​ ​ 101 0.66 <5%
Left turn ​ ​ 51 0.34 <5%
Outer lane 

shoulder- 
type

​ ​ ​ ​ ​

Paved ​ ​ 131 0.86 <5%
Unpaved ​ ​ 21 0.14 <5%

* The central angle is created by two radii extending from the centre of a circle 
to its ends. It is 100 m (feet in imperial units) long.

** Thresholds of 50 m and 80 m has been used for this variable according to 
(American Association of State and Highway Transportation Officials, 2018).

Table 3 
Speed distribution by posted speed limit.

Speed Limit (Km/h) Average Speed (Km/h) 85th percentile speed (Km/h)

20 28.83 37.35
30 44.86 59.54
40 47.69 53.73
50 52.18 64.03
60 47.06 58.76

Table 4 
Performance metrics for Gradient Boosting Machine (GBM) models predicting 
major and minor speeding proportions.

MSE MAE R-Squared 
(R2)

ROC AUC 
Score

GBM Model for minor 
speeding

0.007 0.069 0.834 0.941

GBM Model for major 
speeding

0.009 0.042 0.842 0.904

3 While Annual Average Daily Traffic (AADT) has been long used as a mea
sure of exposure in road safety modelling (Elvik et al., 2009), the choice be
tween AADT and MADT depends on the purpose of study and the level of 
accuracy that is needed. AADT is usually widely available and standardized 
across road agencies. It is useful for long-term planning, network-level safety 
models, and comparisons between road segments. However, it masks seasonal, 
monthly, and temporal fluctuations. It may lead to under- or over-estimation of 
risk if crashes correlate with specific seasonal traffic surges. In contrast, MADT 
captures temporal variability and is a more precise exposure metric when 
crashes show seasonal patterns (Jessberger et al., 2016)– which is the case in 
our study. Therefore, we used MADT for our analysis to capture temporal nu
ances in the effects of exposure on crash frequency.
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Traffic volume might not be a major risk factor for these crashes. After 
2014, however, multi-vehicle crashes become dominant and the effects 
of MADT become positive and increasing over the next years. This 
interpretation supported by changes in the distribution of crash types 
across the years is in line with the findings from the literature noting that 
increased exposure in dense traffic conditions often leads to a higher 
likelihood of interaction-based crashes (Geedipally & Lord, 2010). The 
observed pattern reinforces the benefit of the temporally segmented 
modelling and the spline-based specification in uncovering evolving risk 
within crash data, thereby offering a more nuanced understanding of the 
traffic volume–crash relationship over time.

These findings further reinforce the nonlinear relationship between 
traffic volume and crash risk, highlighting the dynamic influence of 

traffic flow on roadway safety, especially with respect to different crash 
types. Moreover, this finding aligns with those from the existing litera
ture, suggesting that dynamic traffic conditions play a crucial role in 
shaping road safety outcomes (Alnawmasi & Mannering, 2022; Council 
et al., 2010).

The percentage of heavy vehicles demonstrated a temporally un
stable coefficient in its relationship with crash frequency across the 
study period. Between 2011 and 2013, the coefficient is positive, sug
gesting that higher percentage of heavy vehicles increases crash likeli
hood — a finding consistent with traditional safety concerns of heavy 
vehicles because of their large mass, limited maneuverability, and 
longer stopping distances (Zhu & Srinivasan, 2011; Zubaidi et al., 2022). 
However, between 2014 and 2016, the coefficient becomes negative, 

Fig. 4. SHAP summary plot illustrating the impact of road and traffic features on (a) minor speeding predictions, (b) major speeding predictions.
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and sharply increases again in 2017 and 2018. This non-monotonic 
trend underscores the temporal volatility of the variable’s effect on 
crash risk.

At first glance, the negative coefficient during the mid-period (be
tween 2014 and 2016) may appear counterintuitive. However, the 

presence of heavy vehicles could induce more cautious or conservative 
driving behavior among other road users, thereby offsetting some of 
their inherent risk (Shabab et al., 2024). This behavioral adaptation — 
where drivers self-regulate speed, increase following distance, or reduce 
overtaking around large trucks — may temporarily lower the overall 
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Fig. 5. Feature importance for the predictors used in the minor speeding model.
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Fig. 6. Feature importance ranking for the predictors used in the major speeding model.

Table 5 
Estimation results of mixed spline indicator pooled random parameters negative binomial model with gradient boosting method – base and deviation effect of 
variables.

Variable Year

2011 2012 2013 2014 2015 2016 2017 2018

Time variant variables ​ ​ ​ ​ ​ ​ ​ ​
Constant − 1.756 (− 5.61)* − − − − − − − 1.231 (− 2.27)
Ln(MADT) − − − 1.058 (7.35) − − 1.373 (− 5.93) − −

Percent of heavy vehicles 0.215 (5.13) − − − 1.440 (− 6.68) − 2.327 (5.79) − −

Time invariant variables ​ ​ ​ ​ ​ ​ ​ ​
Inverse absolute grade** 33.660 (4.44) − − − − − − −

Pavement Condition Index − 0.015 (− 2.18) − − − − − − −

Inner Shoulder type − 0.387 (− 2.10) − − − − − − −

Major speeding (instrumented) ​ ​ ​ ​ ​ ​ ​ ​
Mean 2.058 (2.13) − − − − − − −

Variance over locations 0.006 (16.62) − − − − − − −

Logarithm of dispersion parameter − 0.876 (− 1.97) − − − − − − −

​
​

* Numbers in brackets present the corresponding Z-values.
** The absolute grade was offset by 10 values to compensate instances where the original grade was zero.
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crash rates. Alternatively, changes in fleet composition, enhanced 
training or enforcement targeting commercial drivers, or changes in 
crash type distributions could have moderated their contribution during 
those years.

The inverse of the absolute grade in the negative binomial model has 
a statistically significant and positive parameter (33.660 with p-value <
0.001), indicating that as the inverse of the absolute grade increases, the 
expected number of crashes increases too. This inverse relationship 
suggests that as the absolute grade increases, the gradient of the crash 
likelihood decreases, implying that while increasing the steepness of the 
road increases crash likelihood, this relationship is not linear, and the 
effect becomes less pronounced at higher grades. This finding indicates 
that steeper roads experience a higher frequency of crashes compared to 
flat segments. One plausible reason for this finding is that increased road 
steepness generally leads to reduced vehicle speeds. This finding aligns 
with the results from the GBM model too, which highlighted a positive 
effect of absolute grade on predicting speeding. As the grade becomes 
steeper, vehicles naturally reduce their speed to navigate the incline, 
thereby lowering the likelihood of major speeding. Consequently, on 
steep grades, the resulting lower speeds contribute to a reduced overall 
crash frequency compared with the segments with lower absolute 
grades. This finding underscores the importance of considering both the 
geometric characteristics of the road and driver behaviour in assessing 
crash frequency. While steeper grades might intuitively suggest higher 
crash frequency due to increased difficulty in navigation, the reduction 
in vehicle speed on inclined segments can mitigate this risk.

Paved inner shoulder was found to have a consistent and statistically 
significant negative association with crash frequency across all years, as 
evidenced by its stable coefficient (− 0.387) in the model. This negative 
coefficient suggests that paved inner shoulders contribute to lower crash 
occurrences compared to unpaved ones, likely due to their capacity to 

enhance roadway recovery zones and allow greater maneuverability in 
emergency situations. Paved shoulders may also improve driver 
perception of lane boundaries and increase operational space, particu
larly in high-speed environments. This finding is consistent with prior 
studies which suggest that geometric enhancements — such as paved 
shoulders — provide critical margins for error that can prevent both run- 
off-road and sideswipe collisions (Bisht & Tiwari, 2022; Hallmark et al., 
2009).

Pavement condition index is negatively associated with crash fre
quency, indicating that improved pavement conditions is associated 
with fewer crash occurrences. Poorer pavement quality, associated with 
lower PCI, could potentially compromise vehicular stability, thereby 
increasing crash frequency. This association highlights the importance 
of maintaining high-quality road surfaces to promote safety and aligns 
with the results from prior studies (Elghriany, 2016; P. Sadeghi & Goli, 
2024).

Finally, the parameter estimate for major speeding is 2.058, indi
cating a positive and statistically significant association with crash fre
quency. This result implies that higher rates of major speeding lead to an 
increased number of crashes. Speeding is a well-established risk factor in 
crash occurrence, as it reduces reaction time, increases stopping dis
tances, and heightens crash severity upon impact. Furthermore, the 
variance of the parameter across locations suggests that unobserved 
location-specific factors influence the degree to which speeding con
tributes to crash risk. These factors may include environmental condi
tions such as vegetation density, which affects drivers’ speed choices by 
altering visibility, or weather conditions that influence road friction and 
stopping distances. This finding aligns well with extensive evidence 
showing that speeding, particularly at major levels, exacerbates both the 
frequency and severity of crashes (Alnawmasi & Mannering, 2022; 
Yasmin et al., 2022) and underscores the importance of major speeding 

Table 6 
Net effects of variables in mixed spline indicator pooled random parameters negative binomial model with gradient boosting method.

2011 2012 2013 2014 2015 2016 2017 2018

Constant − 1.756 − 3.512 − 5.268 − 7.024 − 8.780 − 10.53 − 12.29 − 15.27
Ln(MADT) 0 0 0 1.058 2.116 1.801 1.486 1.171
Percent of heavy vehicles 0.215 0.43 0.645 − 0.58 − 1.805 − 0.703 0.399 1.501
Inverse absolute grade 33.660 33.660 33.660 33.660 33.660 33.660 33.660 33.660
Pavement Condition Index − 0.015 − 0.015 − 0.015 − 0.015 − 0.015 − 0.015 − 0.015 − 0.015
Inner Shoulder type − 0.387 − 0.387 − 0.387 − 0.387 − 0.387 − 0.387 − 0.387 − 0.387
Major speeding (instrumented) ​ ​ ​ ​ ​ ​ ​ ​
Mean 2.058 2.058 2.058 2.058 2.058 2.058 2.058 2.058
Variance over locations 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
Logarithm of dispersion parameter − 0.876 ​ ​ ​ ​ ​ ​ ​

Fig. 7. Sample share and frequency of various crash types across different years in the study area (the numbers above bars indicate crash frequencies).
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which is often linked with aggressive driving behaviours. It highlights 
the need for context-specific speed management strategies that account 
for localized conditions to effectively reduce crash likelihood.

4.3. Statistical evidence for endogeneity between speeding and crash 
occurrence

In the Introduction section, we presented a theoretical argument 
behind endogeneity between speeding and crash occurrence. To provide 
statistical evidence for this endogeneity (and hence the need for the 2- 
stage hybrid model), we estimated the mixed spline indicator pooled 
random parameters negative binomial model with observed speeding 
proportions used directly in the mean function of the negative binomial 
distribution. The parameter of these speeding proportions was then 
compared with those of the hybrid model using the Durbin-Wu- 
Hausman statistical test. The result of test is used to demonstrate that 
speeding is correlated with the error term of the crash frequency model. 
The Durbin-Wu-Hausman test is the most widely used formal test for 
showing endogeneity (Patrick, 2021). It compares the difference be
tween estimates from an instrumental variable model and a regular 
model (the hybrid model and the negative binomial model, in our 
study). The full estimation results of the negative binomial model with 
observed speeding are presented in the Appendix. However, the 
parameter of the speeding variable (major speeding proportion) in the 
negative binomial model is 1.46 with standard error 1.01. Using these 
estimates as well as those of the hybrid model (2.058 with standard error 
0.966) in the Durbin-Wu-Hausman test, the p-value of the test was found 
to be 0.042, rejecting the null hypothesis on lack of endogeneity. 
Therefore, and in addition to the theoretical hypothesis behind the 
endogeneity between speeding and crash occurrence, there is statistical 
evidence too for this endogeneity which motivated us to develop the 
hybrid model.

4.4. Model comparison

To better highlight the significance of our hybrid model, we also 
estimated a state-of-the-art instrumental variable negative binomial 
model as well as its extension with spline indicator variables and 
compared their parameter estimates and statistical fit with those of our 
hybrid model. The final model candidates for comparison are:

Model #1: a mixed spline indicator pooled random parameters 
negative binomial model with observed speeding proportions directly in 
the model (MSIPRPNB–Observed); the model that was used in the 
Durbin-Wu-Hausman test;

Model #2: an instrumental variable random parameters negative 
binomial ordered probit fractional split model (PRPNB–OPFS); an 
instrumental variable model in which we regress the speeding variables 
(major, moderate, and minor speeding proportions) against all exoge
nous variables and then use their predicted values in the crash frequency 
model. Ordered probit factional split model (Bhowmik et al., 2019a) is 
used in the first stage of this model for predicting speeding proportions;

Model #3: an instrumental variable mixed spline indicator pooled 
random parameters negative binomial ordered probit fractional split 
model (MSIPRPNB–OPFS); an extension of model #1 including the 
spline indicator variables for capturing temporal instability; and.

Model #4: a mixed spline indicator pooled random parameters 
negative binomial model with gradient boosting method 
(MSIPRPNB–GBM); the full proposed hybrid model including spline 
indicator variables for capturing temporal instability.

Model #1 serves as the baseline for comparing the parameter of 
speeding variable. The comparison between models #2 and #3 de
termines the suitability of the spline indicator variables in capturing 
temporal instability whereas the comparison between models #3 and 
#4 determines the suitability of the proposed hybrid framework in 
capturing endogeneity.

Full estimation results of models #2 and #3 are presented in the 

Appendix (Tables A3-A5) too. In model #2, the ordered probit fractional 
split model in the first stage was used for modelling proportions of the 
discrete ordered speeding variable (Bhowmik et al., 2019a) aligning 
well with the hypothesis in this study. The statistically significant vari
ables in this model (Table A3) were mostly the same as the features in 
the GBM within the hybrid model, and with intuitive parameter esti
mates. However, its predictive accuracy is notably lower (R2 = 0.27) 
than the GBM (R2 = 0.842), highlighting a significant limitation for its 
use in a two-stage instrumental variable crash frequency modelling. The 
parameter estimates of the random parameters negaive binomial model 
in the second stage of this model (Table A4) are intuitive too and similar 
to those of the hybrid model.

In model #3, the same ordered fractional model as in model #2 was 
used in the first stage but the random parameters model in the second 
stage was extended and included the spline indicator variables for 
capturing temporal instability. The parameter estimates of the negative 
binomial model in the second stage of model #3 (Table A5) reveal a 
similar pattern to those of model #2 and the hybrid model regarding the 
statistically significant variables and their effects on speeding and crash 
frequency. However, the key distinction between them lies in the 
different estimates for the parameter of the major speeding proportion 
variable.

The parameter of major speeding proportions in models #2, #3 and 
#4 are 3.321, 3.94 and 2.058, respectively. The same parameter in 
model #1 is 1.46 – which is believed to be biased due to endogeneity. To 
better understand the differences between these parameters, we simu
lated their distribution and compared their kernel densities. Under the 
Central Limit Theorem (Kwak and Kim, 2017), we can assume: 

ω N(ω, SE(ω))

where ω is the parameter estimate for the speeding variable from any of 
the models, and SE(ω) is its standard error. The corresponding kernel 
densities of these parameters (Fig. 8) demonstrate that the variance of 
the distribution from the hybrid model is much lower than that of the 
other models indicating that this model provides a more efficient 
parameter estimate for speeding. Moreover, the distribution from the 
model with observed speeding (red curve) is centered furthest to the left, 
followed closely by the hybrid model (green curve), both of which 
exhibit relatively sharp peaks and narrower spreads, suggesting more 
precise estimates. The instrumental variable model without temporal 
instability (orange curve) appears more dispersed and centered further 
to the right, whereas the instrumental variable model with temporal 
instability (blue curve) has the widest distribution and is centered at the 
highest values among all models. This finding indicates that the two 
modelling methodologies (instrumental variable modelling and hybrid 
modelling) may mitigate the endogeneity bias in the parameter for 
speeding and yield a more accurate estimate for that parameter. Since 
the true value for this parameter is not known, it is not directly possible 
to select the best model. However, a comparison of the statistical fit 
between the models may shed more light on these findings.

The statistical fit measures between the four model candidates 
(Table 7) show that the hybrid model has a lower AIC and BIC (618.90 
and 647.25, respectively) in comparison with the rest of the models 

Table 7 
Goodness of fit measures between the hybrid and the conventional models.

AIC BIC log-likelihood

Model #1* 624.62 666.95 − 298.30
Model #2** 650.06 668.20 − 318.10
Model #3*** 632.64 668.92 − 304.31
Model #4**** 618.90 647.25 − 295.44

* Negative binomial model with temporal instability and observed speeding.
** instrumental variable model without temporal instability.
*** instrumental variable model with temporal instability.
**** hybrid model with temporal instability.
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demonstrating a superior goodness of fit.
The above findings all together show that the hybrid framework with 

GBM in the first stage and mixed spline indicator specification of the 
negative binomial model in the second stage outperforms the existing 
models for the data in this study. These results further highlight the 
strength of the machine learning approach in addressing endogeneity 
and support the growing body of literature that advocates for the use of 
machine learning techniques combined with econometric methods to 
overcome the traditional limitations of the later methods in transport 
safety modeling (Afghari et al., 2022; Jin et al., 2023; Zhou et al., 
2024b).

5. Conclusions

Crash risk along horizontal curves, measured by the frequency of 
crashes at these locations, is influenced by a complex interplay of 
roadway geometry, traffic characteristics, and driver behaviour, 
particularly speeding. Addressing endogeneity between speeding 
behaviour and crash risk remains a key challenge in crash modeling. In 
addition, traditional data collection methods for collecting speeding 
data often suffer from measurement error because of driver adaptation 
with speed cameras. This study aimed to address these gaps by intro
ducing a novel framework, consisting of speeding data collection by 
unmanned vehicles and using these data in a hybrid mixed spline indi
cator pooled random parameters negative binomial model with gradient 
boosting method, for determining the effect of speeding on crash 
frequency.

Empirical testing of the proposed hybrid model and comparing it 
with the existing instrumental variable models demonstrated its sub
stantial benefit, in terms of finding suitable instrumental variables for 
addressing endogeneity and enhancing prediction accuracy. Shapely 
values of the predictors in the gradient boosting model as well as their 
feature importance painted an explainable picture of the variables and 
their impact on predicting speeding. These values were consistent with 
statistically significant variables in the conventional fractional split 
model and aligned closely with the findings of (M. Islam et al., 2024), 

where shapely values were employed for variable selection. This con
sistency reinforces the robustness of SHAP-based feature importance 
analysis, highlighting its reliability in determining critical predictors 
within complex traffic safety models. While machine learning models 
have high predictive power, they may be prone to overfitting too, 
capturing noise rather than true causal variation, which can lead to 
misleading estimates. A highly accurate model may replicate observed 
values without adequately addressing endogeneity. We demonstrated 
that further investigations (such as SHAP analysis, feature importance 
and Durbin-Wu-Hausman test) should be conducted to determine an 
appropriate balance between accuracy and endogeneity.

Incorporation of random parameters varying across locations into 
the hybrid model further enhanced the model’s ability to capture 
localized variability. The variance associated with speeding, for 
example, illustrated the importance of considering site-specific factors 
in crash prediction models. Similarly, the temporal instability observed 
in the variability of the vehicular and heavy vehicle traffic over time 
emphasized the dynamic nature of traffic patterns and their influence on 
crash likelihoods. The incorporation of temporal instability and het
erogeneity not only improves model accuracy but also provides a more 
nuanced understanding of the factors influencing crash frequency, 
reinforcing the need for adaptive and context-specific models in trans
port safety research.

Overall, our study showed that collecting speed via unmanned ve
hicles and modelling it using a hybrid statistical-machine learning 
approach allows for a more reliable and robust estimation of the com
plex relationship between speeding and crash frequency and may ulti
mately lead to more effective road safety interventions and policy 
recommendations.

Despite the above benefits, our study has limitations too. The 
extrapolation method that was used to create yearly speeding data as
sumes that the trend (rate of change) of such data remains constant 
beyond the observed 28 days in the study. However, this assumption 
may not hold, especially over extended time periods. As such, the effects 
of speeding on crash risk should be interpreted with caution. In addition, 
in modelling speeding and crash risk, we primarily focused on roadway 

Fig. 8. Kernel densities of the parameter for major speeding proportions in four different models: (a) mixed spline indicator pooled random parameters negative 
binomial model with observed speeding proportions directly in the model (MSIPRPNB–Observed) (red), (b) instrumental variable random parameters negative 
binomial ordered probit fractional split model (PRPNB–OPFS) (orange), (c) an instrumental variable mixed spline indicator pooled random parameters negative 
binomial ordered probit fractional split model (MSIPRPNB–OPFS) (blue) and (d) mixed spline indicator pooled random parameters negative binomial model with 
gradient boosting method (MSIPRPNB–GBM) (green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)
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characteristics and traffic-related factors; however, incorporating 
human factors, such as visual perception, and cognitive workload, and 
linking them with road segments could further enhance predictive ac
curacy of the models. Furthermore, while our model specification 
allowed for temporal instability in the effects of all factors on crash risk, 
our sample data showed such instability only in the effects of traffic 
characteristics. Future research should collect more detailed (behav
ioral) data over extended periods of time to be able to show temporal 
instability in other factors too. Future research may also extend this 
modeling framework to different roadway environments to provide a 
more comprehensive understanding of crash risk.

Finally, the reliability of crash data in our study area (Iran) may have 
been affected by under-reporting (of minor crashes or crashes which 
may not have been documented because there was no severe injuries or 
substantial property damage), data accuracy and inconsistencies in data 
collection. These issues can lead to an incomplete understanding of road 
safety problems and hinder the development of effective policy recom
mendations. Furthermore, variations in reporting protocols between the 
law enforcement agency and healthcare facilities in Iran may have 
created discrepancies in crash records. Future research should address 

these challenges using improved data integration across agencies and 
implementing more comprehensive crash surveillance systems.
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Appendix 

Table A1 
Hyperparameters of the XGBoost model used in this study.

Hyperparameter Description Default Value Value in this study

objective Loss function to optimize reg: squarederror reg: gamma
eval_metric Evaluation criterion None (training loss) rmse
max_depth Maximum depth of trees 6 32
learning_rate (eta) Step size shrinkage 0.3 0.1
subsample Fraction of samples per tree 1.0 0.8
colsample_bytree Fraction of features per tree 1.0 0.8
num_boost_round Number of boosting iterations 10 (if not specified) 1000
early_stopping_rounds Stop if no improvement after N rounds Not enabled 100
min_child_weight Minimum sum of instance weight in a child 1 1 (default)
gamma Minimum loss reduction for a split 0 0 (default)
lambda (L2 reg) L2 regularization term 1 1 (default)
alpha (L1 reg) L1 regularization term 0 0 (default)
scale_pos_weight Weight balance for imbalanced classes 1 1 (default)
tree_method Tree construction algorithm auto auto (default)
nthread Number of parallel threads All cores All cores (default)
seed (random_state) Random seed for reproducibility 0 42 (via train_test_split)

Table A2 
Estimation results of the mixed spline indicator pooled random parameters negative binomial model with observed speeding (endogenous variable) directly in the 
mean function of the negative binomial distribution.

2011 2012 2013 2014 2015 2016 2017 2018

Constant − 1.768 (− 5.63) − − − − − ​ − 1.167 (− 2.12)
Ln(MADT) − − − 1.075 (7.24) − − 1.412 (− 5.61) − −

Percent of heavy vehicles 0.216 (5.15) − − − 1.466 (− 6.57) − 2.387 (5.56) ​ −

Inverse absolute grade** 32.918 (4.35) − − − − − − −

Pavement Condition Index − 0.012 (− 1.84) − − − − − − −

Inner shoulder type − 0.416 (− 2.28) − − − − − − −

Major speeding 
(observed)

​ ​ ​ ​ ​ ​ ​ ​

mean 1.465 (1.450) − − − − − − −

variance 0.006 (16.53) ​ ​ ​ ​ ​ ​ ​
Logarithm of dispersion parameter − 0.880 (− 2.00) − − − − − − −

*Numbers in brackets present the corresponding Z-values.
**The absolute grade was offset by 10 values to compensate the instances where the original grade was zero.
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Table A3 
Estimation results of the ordered probit fractional split model in the first stage of the instrumental variable model for speeding and crash frequency.

Coefficient Standard error t-value P>|z|

Threshold minor speeding | moderate speeding − 49.822 21.916 − 2.273 0.023
Threshold moderate speeding | major speeding − 48.565 21.926 − 2.215 0.026
Sufficient stopping sight distance − 421.345 14.042 − 30.005 0.000
Before curve existence − 218.514 7.527 − 29.028 0.000
Deflection angle − 6.281 0.223 − 28.129 0.000
Outer shoulder width − 75.781 2.713 − 27.933 0.000
Radius 171.123 6.401 26.732 0.000
Widening − 10.902 0.408 − 26.712 0.000
Curve type − 148.386 5.609 − 26.452 0.000
Outer shoulder type − 4.450 0.176 − 25.218 0.000
Center line marking quality 320.249 13.239 24.190 0.000
MADT 1.730 0.071 24.242 0.000
Curve length 3.616 0.161 22.381 0.000
Percent of heavy vehicles 153.404 6.850 22.393 0.000
Degree of curve 9.643 0.421 –22.878 0.000
Inner shoulder width − 67.961 3.302 − 20.581 0.000
Curve direction − 48.282 2.330 − 20.717 0.000
Pavement condition index 25.085 3.463 7.243 0.000
Predictive performance ​ ​ ​ ​
R2 0.27 ​ ​ ​

Table A4 
Estimation results of the random parameters negaive binomial model in the second stage of the instrumental variable model for speeding and crash frequency.

Coefficient Standard error z-value P>|z| 95 % confidence interval
Constant − 15.614 5.304 − 2.94 0.003 − 26.010 − 5.218

Ln(MADT) ​ ​ ​ ​ ​ ​
Mean 1.995 0.705 2.83 0.005 0.612 3.378
Variance over locations 0.002 0.001 2.00 0.046 0.000 0.011
Inverse absolute grade* 27.461 9.371 2.93 0.003 9.093 45.829
Pavement condition index − 0.018 0.008 − 2.14 0.033 − 0.035 − 0.001
Major speeding (instrumented) 3.321 1.339 2.48 0.013 0.694 5.947
Logarithm of dispersion parameter 0.592 0.171 3.46 0.000 0.256 0.927

*The absolute grade was offset by 10 values to compensate the instances where the original grade was zero.

Table A5 
Estimation results of the mixed spline indicator pooled negative binomial random parameters negative binomial model with base and deviation effect of variables for 
speeding and crash frequency.

2011 2012 2013 2014 2015 2016 2017 2018

Time variant variables ​ ​ ​ ​ ​ ​ ​ ​
Constant 0.208 (0.23)* − − − − − − −

Ln(MADT) − 0.228 (− 3.96) ​ − 0.674 (3.99) − 0.336 (− 3.03) − 0.450 (2.86) −

Percent of heavy vehicles 0.159 (3.23) − − − 0.349 (− 2.45) − − 0.759 (2.82) −

Time invariant variables ​ ​ ​ ​ ​ ​ ​ ​
Inverse absolute grade** 24.598 (2.95) − − − − − − −

Major speeding (instrumented) ​ ​ ​ ​ ​ ​ ​ ​
Mean 3.946 (2.34) ​ ​ ​ ​ ​ ​ ​
Variance over locations 0.001 (3.01) ​ ​ ​ ​ ​ ​ ​
Logarithm of dispersion parameter 0.240 (2.30) − − − − − − −

*Numbers in brackets present the corresponding Z-values.
**The absolute grade was offset by 10 values to compensate the instances where the original grade was zero.

Data availability

The data that has been used is confidential.

References

Abdel-Aty, M.A., Radwan, A.E., 2000. Modeling traffic accident occurrence and 
involvement. Accid. Anal. Prev. 32 (5), 633–642.

Afghari, A.P., Haque, M.M., Washington, S., 2018a. Applying fractional split model to 
examine the effects of roadway geometric and traffic characteristics on speeding 
behavior. Traffic Inj. Prev. 19 (8), 860–866.

Afghari, A.P., Haque, M.M., Washington, S., Smyth, T., 2016. Bayesian latent class safety 
performance function for identifying motor vehicle crash black spots. Transp. Res. 
Rec. 2601 (1), 90–98.

Afghari, A.P., Imani, A.F., Papadimitriou, E., van Gelder, P., Hezaveh, A.M., 2021. 
Disentangling the effects of unobserved factors on seatbelt use choices in multi- 
occupant vehicles. Journal of Choice Modelling 41, 100324.

Afghari, A.P., Papadimitriou, E., Pilkington-Cheney, F., Filtness, A., Brijs, T., Brijs, K., 
Cuenen, A., De Vos, B., Dirix, H., Ross, V., 2022. Investigating the effects of 
sleepiness in truck drivers on their headway: an instrumental variable model with 
grouped random parameters and heterogeneity in their means. Anal. Methods Accid. 
Res 36, 100241.

Afghari, A.P., Vos, J., Farah, H., Papadimitriou, E., 2023. “I did not see that coming”: a 
latent variable structural equation model for understanding the effect of road 
predictability on crashes along horizontal curves. Accid. Anal. Prev. 187, 107075.

Afghari, A.P., Washington, S., Haque, M.M., Li, Z., 2018b. A comprehensive joint 
econometric model of motor vehicle crashes arising from multiple sources of risk. 
Anal. Methods Accid. Res 18, 1–14.

Afghari, A.P., Washington, S., Prato, C., Haque, M.M., 2019. Contrasting case-wise 
deletion with multiple imputation and latent variable approaches to dealing with 
missing observations in count regression models. Anal. Methods Accid. Res 24, 
100104.

S. Asadi Ghalehni and A.P. Afghari                                                                                                                                                                                                        Accident Analysis and Prevention 224 (2026) 108284 

15 

http://refhub.elsevier.com/S0001-4575(25)00372-0/h0005
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0005
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0010
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0010
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0010
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0015
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0015
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0015
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0020
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0020
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0020
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0025
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0025
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0025
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0025
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0025
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0030
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0030
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0030
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0035
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0035
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0035
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0040
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0040
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0040
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0040


Afukaar, F.K., Antwi, P., Ofosu-Amaah, S., 2003. Pattern of road traffic injuries in Ghana: 
implications for control. Inj. Control Saf. Promot. 10 (1–2), 69–76.

Ali, A. T., Flannery, A., & Venigalla, M. M. (2007). Prediction models for free flow speed on 
urban streets.

Alnawmasi, N., Mannering, F., 2022. The impact of higher speed limits on the frequency 
and severity of freeway crashes: Accounting for temporal shifts and unobserved 
heterogeneity. Anal. Methods Accid. Res 34. https://doi.org/10.1016/j. 
amar.2021.100205.

Alnawmasi, N., Mannering, F., 2023. An analysis of day and night bicyclist injury 
severities in vehicle/bicycle crashes: a comparison of unconstrained and partially 
constrained temporal modeling approaches. Anal. Methods Accid. Res 40, 100301.

American Association of State and Highway Transportation Officials. (2018). A Policy on 
Geometric Design of Highways and Streets. Publication Code: GDHS-7 ISBN: 978-1- 
56051-676-7.

Anastasopoulos, P.C., Mannering, F.L., 2009. A note on modeling vehicle accident 
frequencies with random-parameters count models. Accid. Anal. Prev. 41 (1), 
153–159.

Anastasopoulos, P.C., Mannering, F.L., 2016. The effect of speed limits on drivers’ choice 
of speed: a random parameters seemingly unrelated equations approach. Anal. 
Methods Accid. Res 10, 1–11.

Barua, S., El-Basyouny, K., Islam, M.T., 2016. Multivariate random parameters collision 
count data models with spatial heterogeneity. Anal. Methods Accid. Res 9, 1–15.

Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B., 2016. Simple online and realtime 
tracking. IEEE International Conference on Image Processing (ICIP) 2016, 
3464–3468.

Bhowmik, T., Yasmin, S., Eluru, N., 2019a. A multilevel generalized ordered probit 
fractional split model for analyzing vehicle speed. Anal. Methods Accid. Res 21, 
13–31.

Bhowmik, T., Yasmin, S., Eluru, N., 2019b. Do we need multivariate modeling 
approaches to model crash frequency by crash types? a panel mixed approach to 
modeling crash frequency by crash types. Anal. Methods Accid. Res 24, 100107.

Bisht, L.S., Tiwari, G., 2022. Safety effects of paved shoulder width on a four-lane divided 
rural highway in India: a matched case-control study. Saf. Sci. 147, 105606.

Boehmke, B., Greenwell, B.M., 2019. Hands-on machine learning with R. Chapman and 
Hall/CRC.

Calvi, A., 2015. A study on driving performance along horizontal curves of rural roads. 
Journal of Transportation Safety & Security 7 (3), 243–267.

Chen, S., Saeed, T.U., Labi, S., 2017. Impact of road-surface condition on rural highway 
safety: a multivariate random parameters negative binomial approach. Anal. 
Methods Accid. Res 16, 75–89.

Chevalier, A., Coxon, K., Chevalier, A.J., Wall, J., Brown, J., Clarke, E., Ivers, R., Keay, L., 
2016. Exploration of older drivers’ speeding behaviour. Transport. Res. F: Traffic 
Psychol. Behav. 42, 532–543.

Choudhari, T., Maji, A., 2019. Effect of horizontal curve geometry on the maximum 
speed reduction: a driving simulator-based study. Transp. Dev. Econ. 5 (2), 1–8.

Coruh, E., Bilgic, A., Tortum, A., 2015. Accident analysis with aggregated data: the 
random parameters negative binomial panel count data model. Anal. Methods Accid. 
Res 7, 37–49.

Council, F.M., Reurings, M., Srinivasan, R., Masten, S., Carter, D., 2010. Development of a 
Speeding-Related Crash Typology. Turner-Fairbank Highway Research Center.

Dhungana, P., Qu, M., 2005. The risks of driving on roadways with 50 miles per hour 
posted speed limit. J. Saf. Res. 36 (5), 501–504.

Dronova, O., Parinov, D., Soloviev, B., Kasumova, D., Kochetkov, E., Medvedeva, O., 
Sergeeva, I., 2022. Unmanned aerial vehicles as element of road traffic safety 
monitoring. Transp. Res. Procedia 63, 2308–2314.

Dzinyela, R., Shirazi, M., Das, S., Lord, D., 2024. The negative Binomial-Lindley model 
with Time-Dependent Parameters: Accounting for temporal variations and excess 
zero observations in crash data. Accid. Anal. Prev. 207, 107711.

Elghriany, A.F., 2016. Investigating correlations of pavement conditions with crash rates on 
in-Service US highways. University of Akron.

Elvik, R., Christensen, P., Amundsen, A., 2004. Speed and road accidents. An evaluation 
of the Power Model. Speed and Road Accidents, An Evaluation of the Power Model, 
pp. 3–7.

Elvik, R., Erke, A., Christensen, P., 2009. Elementary units of exposure. Transp. Res. Rec. 
2103 (1), 25–31.

Fitzsimmons, E. J., Asce, A. M., Souleyrette, R. R., Asce, M., Nambisan, S. S., & Asce, M. 
(2013). Measuring Horizontal Curve Vehicle Trajectories and Speed Profiles : Pneumatic 
Road Tube and Video Methods. March, 255–265. https://doi.org/10.1061/(ASCE) 
TE.1943-5436.0000501.

Fu, X., Liu, J., Jones, S., Barnett, T., Khattak, A.J., 2022. From the past to the future: 
Modeling the temporal instability of safety performance functions. Accid. Anal. Prev. 
167, 106592.

Geedipally, S.R., Lord, D., 2010. Investigating the effect of modeling single-vehicle and 
multi-vehicle crashes separately on confidence intervals of Poisson–gamma models. 
Accid. Anal. Prev. 42 (4), 1273–1282.

Ghalehni, S.A., Boroujerdian, A.M., 2023. Model of encroachment into opposite lanes in 
horizontal curves of rural roads. IATSS Res.

Gheorghiu, A., Delhomme, P., Felonneau, M.L., 2015. Peer pressure and risk taking in 
young drivers’ speeding behavior. Transport. Res. F: Traffic Psychol. Behav. 35, 
101–111.

Hallmark, S. L., McDonald, T. J., Tian, Y., & Andersen, D. J. (2009). Safety benefits of 
paved shoulders.

Heydari, S., 2018. A flexible discrete density random parameters model for count data: 
Embracing unobserved heterogeneity in highway safety analysis. Anal. Methods 
Accid. Res 20, 68–80.

Heydari, S., Forrest, M., 2024. Estimating the effect of proximity to school on cyclist 
safety using a simultaneous-equations model with heterogeneity in covariance to 
address potential endogeneity. Anal. Methods Accid. Res 41, 100318.

Heydari, S., Fu, L., Thakali, L., Joseph, L., 2018. Benchmarking regions using a 
heteroskedastic grouped random parameters model with heterogeneity in mean and 
variance: applications to grade crossing safety analysis. Anal. Methods Accid. Res 19, 
33–48.

Huo, X., Leng, J., Hou, Q., Zheng, L., Zhao, L., 2020. Assessing the explanatory and 
predictive performance of a random parameters count model with heterogeneity in 
means and variances. Accid. Anal. Prev. 147, 105759.

Hussain, F., Li, Y., Arun, A., Haque, M.M., 2022. A hybrid modelling framework of 
machine learning and extreme value theory for crash risk estimation using traffic 
conflicts. Anal. Methods Accid. Res 36, 100248.

Islam, A.S.M.M., Shirazi, M., Lord, D., 2023. Grouped Random Parameters negative 
Binomial-Lindley for accounting unobserved heterogeneity in crash data with 
preponderant zero observations. Anal. Methods Accid. Res 37, 100255.

Islam, M., Hosseini, P., Kakhani, A., Jalayer, M., Patel, D., 2024. Unveiling the risks of 
speeding behavior by investigating the dynamics of driver injury severity through 
advanced analytics. Sci. Rep. 14 (1), 22431.

Jessberger, S., Krile, R., Schroeder, J., Todt, F., Feng, J., 2016. Improved annual average 
daily traffic estimation processes. Transp. Res. Rec. 2593 (1), 103–109.

Jin, J., Huang, H., Yuan, C., Li, Y., Zou, G., Xue, H., 2023. Real-time crash risk prediction 
in freeway tunnels considering features interaction and unobserved heterogeneity: a 
two-stage deep learning modeling framework. Anal. Methods Accid. Res 40, 100306.

Karimi, A., Boroujerdian, A.M., 2021. Explanatory analysis of the safety of short passing 
zones on two-lane rural highways. Transp. Res. Rec. 2675 (4), 320–330. https://doi. 
org/10.1177/0361198120980436.

Kim, S.H., 2023. How heterogeneity has been examined in transportation safety analysis: 
a review of latent class modeling applications. Anal. Methods Accid. Res 100292.

Kwak, S.G., Kim, J.H., 2017. Central limit theorem: the cornerstone of modern statistics. 
Korean journal of anesthesiology 70 (2), 144.

Li, Z., Chen, C., Wu, Q., Zhang, G., Liu, C., Prevedouros, P.D., Ma, D.T., 2018. Exploring 
driver injury severity patterns and causes in low visibility related single-vehicle 
crashes using a finite mixture random parameters model. Anal. Methods Accid. Res 
20, 1–14.

Liu, C., & Chen, C.-L. (2009). An analysis of speeding-related crashes: definitions and the 
effects of road environments.

Mannering, F., 2018. Temporal instability and the analysis of highway accident data. 
Anal. Methods Accid. Res 17, 1–13.

Mannering, F.L., Bhat, C.R., 2014. Analytic methods in accident research: 
Methodological frontier and future directions. Anal. Methods Accid. Res 1, 1–22.

Mannering, F.L., Shankar, V., Bhat, C.R., 2016. Unobserved heterogeneity and the 
statistical analysis of highway accident data. Anal. Methods Accid. Res 11, 1–16.

Marciano, H., Norman, J., 2015. Overt vs. covert speed cameras in combination with 
delayed vs. immediate feedback to the offender. Accid. Anal. Prev. 79, 231–240.

Marcoux, R., Pervaz, S., Eluru, N., 2024. Assessing non-motorist safety in motor vehicle 
crashes–a copula-based approach to jointly estimate crash location type and injury 
severity. Anal. Methods Accid. Res 42, 100322.

Mohammadi, M.A., Samaranayake, V.A., Bham, G.H., 2014. Crash frequency modeling 
using negative binomial models: an application of generalized estimating equation to 
longitudinal data. Anal. Methods Accid. Res 2, 52–69.

Nakamura, A., Nakamura, M., 1998. Model specification and endogeneity. J. Econ. 83 
(1–2), 213–237.

Nassiri, H., Mohammadpour, S.I., 2023. Investigating speed-safety association: 
considering the unobserved heterogeneity and human factors mediation effects. 
PLoS One 18 (2), e0281951.

Natekin, A., Knoll, A., 2013. Gradient boosting machines, a tutorial. Front. Neurorob. 7, 
21.

Oviedo-Trespalacios, O., Afghari, A.P., Haque, M.M., 2020. A hierarchical Bayesian 
multivariate ordered model of distracted drivers’ decision to initiate risk- 
compensating behaviour. Anal. Methods Accid. Res 26, 100121.

Park, B.-J., Lord, D., 2009. Application of finite mixture models for vehicle crash data 
analysis. Accid. Anal. Prev. 41 (4), 683–691.

Patrick, R.H., 2021. Durbin–wu–hausman specification tests. In Handbook of financial 
econometrics, mathematics, statistics, and machine learning. World Scientific, 
pp. 1075–1108.

Perez, M.A., Sears, E., Valente, J.T., Huang, W., Sudweeks, J., 2021. Factors modifying 
the likelihood of speeding behaviors based on naturalistic driving data. Accident 
Analysis & Prevention 159, 106267.

Pervaz, S., Bhowmik, T., Eluru, N., 2024. An integrated multi-resolution framework for 
jointly estimating crash type and crash severity. Anal. Methods Accid. Res 42, 
100321.

Petridou, E., Moustaki, M., 2000. Human factors in the causation of road traffic crashes. 
Eur. J. Epidemiol. 16, 819–826.

Phuksuksakul, N., Eluru, N., Haque, M.M., Yasmin, S., 2025. Econometric approaches to 
examine the onset and duration of temporal variations in pedestrian and bicyclist 
injury severity analysis. Anal. Methods Accid. Res 45, 100362.

Pratt, M.P., Geedipally, S.R., Dadashova, B., Wu, L., Shirazi, M., 2019. Familiar versus 
unfamiliar drivers on curves: Naturalistic data study. Transp. Res. Rec. 2673 (6), 
225–235.

Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified, 
real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, pp. 779–788.

Sadeghi, M., Aghabayk, K., Quddus, M., 2024. A hybrid machine learning and statistical 
modeling approach for analyzing the crash severity of mobility scooter users 
considering temporal instability. Accid. Anal. Prev. 206, 107696.

S. Asadi Ghalehni and A.P. Afghari                                                                                                                                                                                                        Accident Analysis and Prevention 224 (2026) 108284 

16 

http://refhub.elsevier.com/S0001-4575(25)00372-0/h0045
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0045
https://doi.org/10.1016/j.amar.2021.100205
https://doi.org/10.1016/j.amar.2021.100205
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0060
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0060
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0060
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0070
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0070
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0070
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0075
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0075
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0075
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0080
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0080
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0085
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0085
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0085
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0090
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0090
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0090
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0095
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0095
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0095
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0100
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0100
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0105
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0105
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0110
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0110
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0115
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0115
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0115
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0120
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0120
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0120
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0125
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0125
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0130
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0130
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0130
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0135
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0135
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0140
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0140
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0145
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0145
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0145
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0150
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0150
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0150
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0155
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0155
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0160
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0160
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0160
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0165
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0165
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0175
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0175
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0175
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0180
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0180
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0180
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0185
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0185
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0190
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0190
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0190
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0200
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0200
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0200
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0205
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0205
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0205
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0210
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0210
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0210
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0210
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0215
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0215
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0215
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0220
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0220
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0220
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0225
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0225
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0225
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0230
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0230
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0230
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0235
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0235
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0240
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0240
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0240
https://doi.org/10.1177/0361198120980436
https://doi.org/10.1177/0361198120980436
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0250
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0250
http://refhub.elsevier.com/S0001-4575(25)00372-0/optkK1xR04cWG
http://refhub.elsevier.com/S0001-4575(25)00372-0/optkK1xR04cWG
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0255
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0255
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0255
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0255
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0265
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0265
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0270
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0270
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0275
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0275
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0280
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0280
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0285
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0285
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0285
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0290
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0290
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0290
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0295
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0295
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0300
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0300
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0300
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0305
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0305
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0310
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0310
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0310
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0315
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0315
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0320
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0320
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0320
http://refhub.elsevier.com/S0001-4575(25)00372-0/opt1Ae66rpqCB
http://refhub.elsevier.com/S0001-4575(25)00372-0/opt1Ae66rpqCB
http://refhub.elsevier.com/S0001-4575(25)00372-0/opt1Ae66rpqCB
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0325
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0325
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0325
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0330
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0330
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0335
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0335
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0335
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0340
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0340
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0340
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0345
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0345
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0345
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0350
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0350
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0350


Sadeghi, P., Goli, A., 2024. Investigating the impact of pavement condition and weather 
characteristics on road accidents. Int. J. Crashworthiness 1–17.

Shabab, K.R., Bhowmik, T., Zaki, M.H., Eluru, N., 2024. A systematic unified approach 
for addressing temporal instability in road safety analysis. Anal. Methods Accid. Res 
43, 100335.

Shaon, M.R.R., Qin, X., Shirazi, M., Lord, D., Geedipally, S.R., 2018. Developing a 
Random Parameters negative Binomial-Lindley Model to analyze highly over- 
dispersed crash count data. Anal. Methods Accid. Res 18, 33–44.

Soole, D.W., Watson, B.C., Fleiter, J.J., 2013. Effects of average speed enforcement on 
speed compliance and crashes: a review of the literature. Accid. Anal. Prev. 54, 
46–56.

Washington, S., Karlaftis, M.G., Mannering, F., Anastasopoulos, P., 2020. Statistical and 
econometric methods for transportation data analysis. CRC Press.

Welch, G., & Bishop, G. (1995). An introduction to the Kalman filter.
Wen, X., Xie, Y., Wu, L., Jiang, L., 2021. Quantifying and comparing the effects of key 

risk factors on various types of roadway segment crashes with LightGBM and SHAP. 
Accid. Anal. Prev. 159, 106261.

World Health Organization, 2023. Global status report on road safety 2023: summary. 
Geneva: World Health Organization; 2023. Licence: CC BY-NC-SA 3.0 IGO.

Wu, L., Lord, D., Geedipally, S.R., 2017. Developing crash modification factors for 
horizontal curves on rural two-lane undivided highways using a cross-sectional 
study. Transp. Res. Rec. 2636 (1), 53–61.

Xing, L., He, J., Abdel-Aty, M., Cai, Q., Li, Y., Zheng, O., 2019. Examining traffic conflicts 
of up stream toll plaza area using vehicles’ trajectory data. Accid. Anal. Prev. 125, 
174–187.

Yasmin, S., Eluru, N., Haque, M.M., 2022. Addressing endogeneity in modeling speed 
enforcement, crash risk and crash severity simultaneously. Anal. Methods Accid. Res 
36, 100242.

Zhou, Y., Fu, C., Jiang, X., 2024a. Multi-dimensional unobserved heterogeneities: 
Modeling likelihood of speeding behaviors in different patterns for taxi speeders 
with mixed distributions, multivariate errors, and jointly correlated random 
parameters. Anal. Methods Accid. Res 41, 100316.

Zhou, Y., Fu, C., Jiang, X., Liu, H., 2024b. Analyzing the heterogenous effects of factors 
on high-range speeding likelihood of taxi speeders: does explainable deep learning 
provides more insights than random parameter approach? Accid. Anal. Prev. 207, 
107752.

Zhu, X., Srinivasan, S., 2011. A comprehensive analysis of factors influencing the injury 
severity of large-truck crashes. Accid. Anal. Prev. 43 (1), 49–57.

Zubaidi, H., Alnedawi, A., Obaid, I., Abadi, M.G., 2022. Injury severities from heavy 
vehicle accidents: an exploratory empirical analysis. Journal of Traffic and 
Transportation Engineering (english Edition) 9 (6), 991–1002.

S. Asadi Ghalehni and A.P. Afghari                                                                                                                                                                                                        Accident Analysis and Prevention 224 (2026) 108284 

17 

http://refhub.elsevier.com/S0001-4575(25)00372-0/h0355
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0355
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0360
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0360
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0360
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0365
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0365
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0365
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0370
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0370
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0370
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0375
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0375
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0385
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0385
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0385
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0395
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0395
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0395
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0400
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0400
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0400
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0405
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0405
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0405
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0410
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0410
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0410
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0410
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0415
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0415
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0415
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0415
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0420
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0420
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0425
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0425
http://refhub.elsevier.com/S0001-4575(25)00372-0/h0425

	A hybrid statistical-machine learning methodology for addressing endogeneity and temporal instability in speeding-crash fre ...
	1 Introduction
	2 Analytical framework
	2.1 First Stage: Speeding behaviour component
	2.2 Second Stage: Crash frequency component
	2.3 Model performance
	2.4 Model explanation

	3 Data and Empirical Design
	4 Results and Discussion
	4.1 Speeding behaviour component
	4.2 Crash frequency component
	4.3 Statistical evidence for endogeneity between speeding and crash occurrence
	4.4 Model comparison

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Appendix Acknowledgement
	Data availability
	References


