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ARTICLE INFO ABSTRACT

Keywords: Speeding is a key behavioural factor contributing to increased crash frequencies along road segments, especially
Speeding horizontal curves. Estimating the effect of speeding on crashes is, however, very challenging due to several
Crash risk

reasons. Traditional speeding data collection methods often introduce measurement error in the analysis. In
addition, there is a complex inter-relationship between driver behaviour, roadway geometry, and crash risk
leading to endogeneity between speeding and crash risk. While instrumental variable modelling has been pre-
viously used for addressing such endogeneity, the effectiveness of this technique depends on strong instruments
that correlate well with speeding but not with crashes. Moreover, the effects of explanatory variables on crashes
may vary across locations and time too.

This study aims to address these gaps by developing a new methodology combining improved data collection
and a hybrid statistical-machine learning model for better identification of speeding and a more accurate esti-
mation of its effect on crashes. The model, tested on 179 km of horizontal curves along rural roads in Iran,
integrates negative binomial regression and gradient boosting with shapley values. The negative binomial model
is specified with random parameters and mixed spline indicators accounting for unobserved heterogeneity and
temporal instability in the data. Results indicate high predictive power of the machine learning model in pre-
dicting speeding from exogenous variables, complemented by intuitive shapley values and feature importance for
those variables. A comparison of statistical fit between the proposed model and several state-of-the-art modelling
candidates showed that our model is superior to the existing modelling techniques. The results of this model
suggest that curve’s geometry and traffic characteristics are strong predictors of speeding, while driving more
than 20 % over the speed limit substantially contributes to increased crash frequency. The effects of passenger
and heavy vehicle traffic on crashes change over time.

Instrumental variable modelling
Machine learning

Hybrid modelling

Temporal instability

1. Introduction

Traffic crashes are among the top ten causes of deaths and severe
injuries globally and remain a major public health issue, despite ongoing
efforts to improve road safety. These crashes are often complex and are
the result of an interaction between drivers, vehicles, and the road
environment. Driver behaviour is the primary contributor of these
crashes, accounting for nearly 95 % of them in road networks (Abdel-Aty
& Radwan, 2000; Petridou & Moustaki, 2000). In particular, speeding
behaviour — where the average speed exceeds the + 3 % threshold of the
posted speed limit (Chevalier et al., 2016)- has been consistently shown
as a primary contributing factor to the frequency (and severity) of traffic
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crashes (Elvik et al., 2004). It is responsible for approximately 50 % of
all crashes worldwide, a figure that is notably higher in low- and middle-
income countries (World Health Organization, 2023). Speeding-related
crashes are more prevalent on rural roads, horizontal curves, and roads
with elevated speed limits (Choudhari & Maji, 2019; Council et al.,
2010; Dhungana & Qu, 2005). Rural roads, in particular, are unique due
to their distinct roadway geometric features and limited speed
enforcement. Sharp horizontal curves, narrow lanes, and decreased
visibility are common roadway characteristics in these areas contrib-
uting to a higher likelihood of crashes, especially in conjunction with
speeding behaviour (Calvi, 2015; Pratt et al., 2019; Wu et al., 2017).
Additionally, lower traffic volumes typically observed in rural areas may

Received 15 July 2025; Received in revised form 11 October 2025; Accepted 19 October 2025

Available online 24 October 2025

0001-4575/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://orcid.org/0000-0003-1158-880X
https://orcid.org/0000-0003-1158-880X
mailto:a.p.afghari-1@tudelft.nl
www.sciencedirect.com/science/journal/00014575
https://www.elsevier.com/locate/aap
https://doi.org/10.1016/j.aap.2025.108284
https://doi.org/10.1016/j.aap.2025.108284
http://creativecommons.org/licenses/by/4.0/

S. Asadi Ghalehni and A.P. Afghari

encourage drivers to drive at a higher speed, thereby increasing the
likelihood of crashes (Ali et al., 2007). This is particularly concerning
given that rural roads, in many countries, account for a disproportionate
share of fatalities (Afukaar et al., 2003).

Accurate estimation of the effect of speeding on crash risk, however,
is not straightforward because of several reasons. First and foremost,
speeding and crash occurrence may be endogenous because they are
inter-dependent and can influence each other. In econometrics and
causal inference, endogeneity arises when an explanatory variable is
correlated with the error term, often due to simultaneous causality,
omitted variables, or measurement error (Nakamura & Nakamura,
1998). While speeding increases the likelihood of crashes due to reduced
reaction time / longer stopping distances (Nassiri & Mohammadpour,
2023), crashes can influence speed selection of drivers too because
drivers who experience or observe crashes may alter their speed—either
by slowing down due to risk-compensating or by speeding in less regu-
lated areas to compensate for the lost time (Oviedo-Trespalacios et al.,
2020; Soole et al., 2013; Yasmin et al., 2022). This feedback loop means
the two variables affect each other. In addition, unobserved factors may
affect both speeding and crash frequency, creating a spurious relation-
ship. For example, risk-taking drivers are more likely to speed and to be
involved in crashes (Gheorghiu et al., 2015), but this personality trait is
often not measurable particularly in aggregate (segment-specific) crash
studies. Finally, speeding data are commonly collected in locations with
higher risk of crashes and using speed cameras. As a result, the data may
not capture actual driving behaviour of drivers, potentially skewing the
observed relationship between speeding behaviour and crash outcomes
(Yasmin et al., 2022).

Secondly, while many roadway characteristics and features (such as
divided median or shoulder) are designed to mitigate crash frequency
(for instance, by separating the opposing traffic or providing recovery
space for errant vehicles), they may imply a ‘safe opportunity’ for
drivers to exceed the speed limit and take over other vehicles which in
turn may adversely increase crash frequency. Moreover, the effects of
the above factors on speeding behaviour and ultimately on crash fre-
quency may vary across locations (Afghari et al., 2018a; Liu and Chen,
2009). These varied effects are referred to as unobserved heterogeneity
(F. L. Mannering et al., 2016). These effects may vary across time as well
because many external factors such as safety campaigns and enforce-
ment policies result in behavioural changes over time (F. Mannering,
2018). Overlooking either of these three properties (endogeneity, un-
observed spatial heterogeneity and temporal instability) may lead to
biased parameter estimates and erroneous inferences about the effects of
speeding behaviour on crash frequency.

In response to the above issues, advanced methodologies have been
developed and used in modelling crash frequency. Instrumental variable
models (and latent variable models, both under the umbrella of simul-
taneous equation modelling technique) have been used to account for
endogeneity between driver behaviour and crash frequency (Afghari
et al., 2018b, 2019, 2023; Heydari and Forrest, 2024; Yasmin et al.,
2022). These models regress the endogenous variable against all exog-
enous variables and then use its predicted value in the crash frequency
model. Random Parameters (with/without heterogeneity in the means
and/or variances) (Barua et al., 2016; Chen et al., 2017; Coruh et al.,
2015; Heydari, 2018; Heydari et al., 2018; Huo et al., 2020; A. S. M. M.
Islam et al., 2023; Shaon et al., 2018) and latent class (or finite mixture)
models (Afghari et al., 2016; Kim, 2023; Li et al., 2018; Park & Lord,
2009) have been largely used to address unobserved heterogeneity in
the effects of factors on crash frequency. These models allow parameters
to vary across observations (or groups of observations), providing a
more nuanced presentation of the complex dynamics influencing crash
frequency (Anastasopoulos & Mannering, 2016; F. L. Mannering & Bhat,
2014; Washington et al., 2020). Finally, year-specific negative binomial
models (Dzinyela et al., 2024; Fu et al., 2022; Mohammadi et al., 2014),
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year-indicator pooled negative binomial models(Alnawmasi & Man-
nering, 2022, 2023; Bhowmik et al., 2019b; Pervaz et al., 2024), and
most recently, spline-indicator pooled negative binomial models
(Marcoux et al., 2024; Phuksuksakul et al., 2025; Shabab et al., 2024)
have been used to capture instability of model parameters across time.
The spline-indicator pooled model employs spline functions to introduce
temporal variations, offering a more flexible and interpretable way to
capture changes over time, and has been shown to have superior per-
formance to the other two modelling alternatives (Shabab et al., 2024).

Despite the above methodological advancements, there are still
important gaps in understanding the effects of speeding on crash
frequency:

(i) The effectiveness of instrumental variable modelling (in miti-
gating the potential effects of endogeneity bias) highly depends on the
presence of strong instruments (exogenous variables) in the data which
are well correlated with speeding (the endogenous variable) but are not
correlated with crash frequency (the dependent variable). Previous
studies have consistently highlighted the challenge of identifying suit-
able instruments for this purpose (Afghari et al., 2021, 2023). A po-
tential solution for this dilemma is to make use of machine learning
algorithms to create the instrumented variable. These algorithms are not
bound to any distributional assumptions and use all nuances in the data
to predict an outcome and therefore have much higher predictive power
than conventional statistical models. A few recent studies have inte-
grated these algorithms into instrumental variable modelling, although
in a different context, and found that such an integration enhances the
overall accuracy of the models (Afghari et al., 2022; Hussain et al.,
2022).

(ii) Most of the conventional data collection methods for assessing
speeding behaviour result in measurement error in speeding data (the
difference between the measured value of speeding and its unknown -
true value). Overt and fixed speed cameras provide censored data on
speeding because of behavioural adaptation of drivers at the locations of
those cameras (Marciano & Norman, 2015), whereas covert and mobile
speed cameras are easily recognisable with the new capabilities of
smartphones and in-vehicle technologies. The advent of advanced data
collection technologies, such as unmanned aerial vehicles (UAVs), has
further improved the precision and granularity of traffic monitoring,
offering an innovative solution to the biases associated with traditional,
fixed-location sensors (Dronova et al., 2022). UAVs enable capturing
detailed data on vehicle trajectories and speed profiles, providing
unparalleled insights into the interaction between road geometry, traffic
volume, and speeding behaviour (Ghalehni & Boroujerdian, 2023;
Karimi & Boroujerdian, 2021; Xing et al., 2019). This level of detail is
crucial for enhancing the accuracy of crash frequency models and for
developing more targeted interventions to mitigate the risks associated
with speeding-related crashes. In addition, UAVs have fewer
perspective-view issues or calibration requirements in comparison with
fixed cameras (Fig.1). The difficulty in calibrating fixed cameras at long
distances, where the perspective becomes more pronounced, limits the
coverage area of these cameras. In contrast, UAVs with their orthogonal
video recording capabilities, can cover greater lengths with minimum
distortion, providing more accurate and expansive data.

2. Analytical framework

The proposed analytical framework in this study consists of two
components, operating in two stages subsequently. A machine learning
algorithm is used in the first stage, and a statistical model is used in the
second stage in which the output of the first stage is used. A schematic of
the proposed hybrid framework is presented in Fig. 2. The details of this
schematic are presented in the following subsections.

For a better readability of the framework, a few notations are pre-
sented in the following and prior to presenting each component. Let i (i
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Fig. 1. Comparison of distortion view in fixed cameras (a) and (b) versus an unmanned vehicle (¢) (Fitzsimmons et al., 2013).
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Fig. 2. A schematic of the proposed hybrid framework for estimating the relationship between speeding and crash frequency.

=1, 2, ..., D represent the location of each curve, and t (t =1, 2, ..., T)
represent the time period, corresponding with different years of data. Let
k (k =1, 2, 3) represent the magnitude of speeding categories, with k =1
representing 'minor speeding’ (less than 10 % over the speed limit), k =
2 representing "moderate speeding’ (between 10 % and 20 % over the
speed limit), and k = 3 representing "major speeding’ (more than 20 %
over the speed limit). Since the proposed analytical framework is
segment-specific, the speeding behaviour of drivers is aggregated across
a segment and is used in the models as the proportion of vehicles

speeding in the above three categories (more on this will be presented in
Section 3).

2.1. First Stage: Speeding behaviour component

In the first stage of the framework, the speeding behaviour of drivers
(in the form of a proportion) is predicted using a Gradient Boosting
Method (GBM) to serve as an instrument for the observed speeding
behaviour in the second stage. In other words, observed speeding will be
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replaced by predicted speeding in the subsequent crash frequency model
which addresses the potential endogeneity between observed speeding
behaviour and crash frequency. GBMs are ensemble learning techniques
that combine multiple shallow decision trees to capture nonlinear re-
lationships and complex interactions among roadway and traffic char-
acteristics (Natekin & Knoll, 2013; M. Sadeghi et al., 2024; Wen et al.,
2021). Compared to alternatives such as Random Forests, which may
overemphasize variance reduction, or neural networks, which typically
require larger datasets and more intensive calibration, GBMs provide a
balanced trade-off between predictive accuracy, interpretability, and
computational efficiency—making them particularly suitable for the
present dataset.

The GBM is implemented using the XGBoost framework (Boehmke &
Greenwell, 2019), leveraging a Gamma distribution to effectively model
the skewed nature of the speeding data.

The underlying latent propensity for the speeding behaviour
component can be formulated as:

M
Via =3 fulxe) =V +Frloxu) @
m=1

where f/,(ﬂ denotes the estimated proportion of speeding behaviour for
location i and t time period after r iterations, M is the number of additive
trees, and x; represents the input features (analogous to independent
variables in statistical models) influencing the speeding behaviour.

The objective function for minimizing the loss in the GBM model can
be expressed as:

n M
> e Yeio) + Y Q(fm) @
i=1 m=1

where (yii¢, Jiie) is the loss function, and Q(f) represents the regula-
rization term to prevent overfitting and reduce complexity, defined as:

1,
Qf) = 1T+ 52 Yo} 3
n=1

In this formulation, T,, denotes the number of leaves in the mt" tree,
w, signifies the L2 norm of the n' leaf scores, and n indicates the total
number of speeding instances in the sample data.

Regularization in Q(f,) is applied specifically to manage the model’s
complexity by penalizing:

Tree Depth: Limiting the maximum depth of each tree reduces the
number of splits, making trees shallower and less prone to overfitting.

Number of Leaves: Penalizing the number of leaves in each tree
helps prevent the model from memorizing details in the training data,
thereby enhancing its generalization ability.

Leaf Weights (Shrinkage): Each leaf in the GBM has an associated
weight that contributes to the prediction. By penalizing larger weights,
the model ensures that no single tree dominates the prediction, allowing
a more balanced contribution from each tree and improving the model’s
robustness.

This structure, with the combined effects of tree depth, leaf number,
and weight penalties, helps the model avoid excessive complexity while
providing an accurate estimation of speeding behaviour across
iterations.

By employing the GBM model, which effectively identifies key pre-
dictors of speeding through its iterative learning process, the analysis
captures the complex relationships present in the data without neces-
sitating predefined theoretical assumptions. This capacity is crucial for

! Speeding data are usually skewed to the left because minor speeding (less
than 10% above the speed limit) is much more common than moderate and
major speeding (more than 10% above the speed limit) (Perez et al., 2021). This
is the case in the sample of speeding data in this study too.
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isolating the instrumental variable, enhancing the subsequent analysis
in the Random Parameters Negative Binomial (RPNB) model.

2.2. Second Stage: Crash frequency component

In the second stage, the frequency of crashes across road segments is
analyzed using a random parameters negative binomial model
(Anastasopoulos & Mannering, 2009) with spline indicator variables
originally introduced by Shabab et al., (2024). In this approach, spline
indicators provide a piecewise linear representation of time, allowing
explanatory variables to capture gradual changes in their effects across
years rather than abrupt shifts tied to year-specific dummies. By
combining this temporal formulation with random parameters, the
model simultaneously accounts for spatial heterogeneity across loca-
tions and temporal instability in coefficient estimates.

Let us assume that the frequency of crashes at segment i during time t
(cit) follows a negative binomial distribution with the mean (expected
value) y;,. The probability density function of c; can be expressed as:

(ce) = F<Cit+%> ( ! >%<1 ! ) @

F(Cit + 1)F (%) 1+ Ay 1+ Apy,

Where, P, is the probability that segment i will experience c; crashes at
time t, and 4 is the overdispersion parameter in the negative binomial
distribution. y; is structured as a log-link function of exogenous cova-
riates as:

i = eXp (X, + 2,0+ Wiy, + &) 5)

Where, X;; is a vector of exogenous covariates with fixed coefficients (5),
Z; is a vector of exogenous covariates with random coefficients varying
at segment (location) level (6;) allowing for spatial unobserved hetero-
geneity, and following a normal distribution with mean @ and standard
deviation 6. W; is a vector of exogenous covariates with coefficients
varying at temporal (year) level (y,) allowing for temporal instability,
and ¢; is a random error term; exp(e;) follows a Gamma distribution
with mean 1 and variance 1.

Borrowing from Shabab et al., (2024), we create a set of time-
dependent variables as:

Year; = Max(Yearecora — Yearsase, 0); (6)
Year, = Max(Yearecora — Yearsese — 1,0);
Yeary = Max(Year ecora — Yearsase — (N — 1),0);

Where Year,.,q represents the observation year, and Yearps, is the
reference year. A product of the above indicators and the temporally
instable variables (changing more than 5 % over time) are then used as
covariates in Equation (6). This formulation allows for a piecewise linear
representation of temporal effects, enabling a more flexible and efficient
evaluation of changes in parameters over time.

Speeding behaviour is now introduced into the model in the form of
speeding proportions in the Kkt category (minor, moderate, and major)
denoted by Yy;. The log-link function, incorporating the speeding vari-
able(s), is then expressed as:

Hie = exp(XB + Zi0: + Wiy, + Yig0u + ex) %]

where wy;; is a vector of estimable parameters. Yy is, however, endog-
enous with observed crash frequencies and thus is replaced by the pre-
dicted speeding proportions from the Gradient Boosting Model in the
first stage (Yxi). The final log-link function of the mean, incorporating
the instrumental variable becomes:

My = €Xp ()(ltﬂ + Zigi + W;Vt + ?kitwkif + eit) ®)
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This hybrid model formulation (stage 1 and 2, together) is referred to as
the mixed spline indicator pooled random parameters negative binomial
model with gradient boosting method (MSIPRPNB-GBM) in this manuscript
and accounts for the unobserved heterogeneity across segments and
temporal instability while also addressing the endogeneity between
speeding behaviour and crash frequency.

2.3. Model performance

The models in the first and second stages are evaluated based on
various performance metrics. The predictive accuracy of the GBM model
in the first stage is assessed using Mean Squared Error (MSE), Mean
Absolute Error (MAE), R-squared (RZ), the Receiver Operating Charac-
teristic (ROC), and Area Under the Curve (AUC), providing a detailed
evaluation of predictive performance. These metrics are calculated as
follows:

Mean Squared Error (MSE):

MSE = (Yir — Yiae)? ©)

Z|=
M=

Il
—

Where N is the total number of observations, Yy; represents the observed
speeding proportion, and f/ki[ denotes the predicted speeding propor-
tion. Lower MSE values indicate higher predictive accuracy.

Mean Absolute Error (MAE):

MAE = [Yiie — Vi (10

Z| =
M=

I
_

i

The MAE provides a measure of prediction error without squaring the
deviations, making it less sensitive to outliers than MSE. Lower MAE
values signify improved model precision.

R-squared (R?):

Z?Ll (Ykit - ?kit)z

R*=1- —
Zil (Ykit - Ykir)2

1D

where Yy is the mean of observed values. The R? metric provides the
proportion of variance in speeding proportion explained by the GBM
model, with values closer to 1 indicating better explanatory power.

ROC AUC Score:

This score evaluates the model’s ability to differentiate between
speeding severity levels by measuring the area under the Receiver
Operating Characteristic (ROC) curve, which plots the true positive rate
against the false positive rate at various thresholds. The AUC (Area
Under the Curve) quantifies this performance, with values closer to 1
indicating stronger classification ability. A high AUC demonstrates the
GBM model’s effectiveness in accurately identifying instances of each
speeding category.

The performance of the negative binomial models in the second stage
are assessed using Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC):

AIC=2P-2LL (12)

BIC = PLn(N) — 2LL (13)

where P is the total number of estimable parameters, N is the total
number of observations, and LL is the log-likelihood value of the model
at convergence. The model with the lowest AIC and BIC is preferred as it
strikes a balance between goodness of fit and complexity.

By employing many different metrics of performance (MSE, MAE, R?,
ROC AUC, AIC and BIC), the analysis provides a robust evaluation of
predictive accuracy (which is needed for the first stage) and statistical fit
(which is needed for the second stage).
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2.4. Model explanation

To interpret the GBM, both feature importance scores and SHapley
Additive exPlanations (SHAP) values are employed. Feature importance
in the GBM model is calculated using gain-based importance, which
measures the average improvement in model accuracy attributed to
each feature across all trees. Each feature’s importance score is derived
by summing the reduction in prediction error achieved each time that
feature is used for a split and averaging it across splits. Mathematically,
the importance for feature f; is given by:

> Jjes; Gain;

Importance;, = —=——+——
i % ZKeFZjes,k Gain;

14)

where S;, represents all splits involving feature f;, Gain; is the reduction
in loss from split j, and F is the set of all features. This allows for a clear,
quantitative ranking of features according to their contribution to the
model.

In addition, SHAP values offer a comprehensive view of feature
impact by calculating the marginal contribution of each feature to the
model’s prediction for each individual sample (analogous to marginal
effects in the statistical models). Let x; be the i-th sample, x;; the j —th
feature of x;, and y the baseline (expected value) of the model. SHAP
values (¢;) for feature j in sample x; are computed as:

K

Yi=y+ Zf(xi.j) (15)

Jj=1

where f(x;;) denotes the contribution of feature j to the prediction for
sample x;. SHAP thus provides an additive approach to decompose each
prediction, enabling a detailed analysis of how individual features drive
model outcomes.

3. Data and Empirical Design

Speed data in this study were collected using a UAV on rural roads in
Khorasan Razavi and Gilan provinces, in Iran. The extent of the network
is 179 km comprising segments of various lengths, all with horizontal
curves. Speed data were collected over 28 days in May and June 2018. A
total of 1,245 vehicles passed through these curves during this period.
For vehicle detection and tracking, the YOLOv5 model(Redmon et al.,
2016) and a Kalman filter-based Simple Online (Welch & Bishop, 1995)
and Realtime Tracking (SORT) algorithm (Bewley et al., 2016) were
employed. YOLOVS is a state-of-the-art deep learning model which is
able to detect objects using a convolutional neural network. This algo-
rithm divides each video frame into a grid, assigning bounding boxes to
potential objects within each grid cell. Using regression-based proba-
bility estimates, YOLOV5 classifies the detected objects—specifically,
vehicles—while resolving overlapping bounding boxes through non-
max suppression to ensure accurate localization. Following the detec-
tion of vehicles, the SORT algorithm tracks them across frames by uti-
lizing Kalman filtering to predict the position and movement of each
object. The filter models the bounding box centre, scale, and aspect
ratio, alongside their time derivatives. Predicted states are matched to
new detections in subsequent frames using the Hungarian algorithm,
which minimizes identity switches. This process enables the system to
maintain robust tracking, even when objects momentarily disappear
from the frame or experience occlusions, ensuring consistent vehicle
tracking throughout the video. The final output of the software is vehicle
trajectories from which vehicles’ speeds were calculated for the purpose
of this study.

Since the scope of this study is segment-specific, the speeding
behaviour of drivers was aggregated across road segments by taking the
average of actual speed for every driver along the horizontal curve and
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comparing it with the posted limit. The number of speeding vehicles was
then recorded in three categories: (1) minor speeding: less than 10 %
above speed limit (including no speeding),? (2) moderate speeding: be-
tween 10 % and 20 % above the speed limit and (3) major speeding: more
than 20 % above the speed limit (Zhou et al., 2024a). Consequently, the
speeding variable in this study is expressed as a proportion:

Crash data were collected from police reports for the same road seg-
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4. Results and Discussion
4.1. Speeding behaviour component
The GBM model within the first stage of the hybrid model was
implemented using the XGBoost library (version 3.0.0) in Python. In

developing this model, several hyperparameters were determined
through trial and error. The final values included a learning rate of

Number of observed vehicles in each speeding category per segment

Speeding proportion =

ments for eight years, from 2011 through 2018. The data contained
information about the time and location of crashes, severity levels, and
crash type. Additionally, vehicle count data were extracted from traffic
camera datasets provided by the Provincial Departments of Roads and
Urban Development for Khorasan Razavi and Gilan, covering the same
period from 2011 to 2018.

To bring the two datasets (speed and crash data) to the same units, a
proportional (linear) extrapolation method was used to extrapolate
speeding proportions from monthly (28-day observation period) to
yearly data from speeding tickets issued to drivers across the same lo-
cations over the same 8 years as crash data. In doing so, the ratio of
speeding tickets (issued in the same categories as above) across different
months and years were used to determine the monthly and yearly trends
and then these trends were applied to the observed speeding data to
create yearly speeding data for 8 years. The summary statistics of the
final speeding and crash data are presented in Table 1 below.

To further illustrate the potential association between crash fre-
quency and speeding behaviour, binned means of crash frequencies
across all segments with their 95 % confidence intervals, together with a
locally weighted smoothing line (LOWESS) have been plotted in Fig. 3.
In this figure, each point represents the average crash frequency within
equal-width bins of speeding proportions, while the red line indicates
the general trend across the sample. These bins and the line show that
crash frequency increases with higher speeding proportions. The
increasing slope of the LOWESS curve suggests a positive association
between crash frequency and the proportion of speeding, implying that
segments with a greater prevalence of speeding are more likely to
experience higher crash occurrences.

In addition, roadway geometric characteristics were collected for the
same network too. Some of these characteristics, such as lane width,
shoulder width, and grade, were directly measured at the site, while
other variables, such as deflection angle, curve radius, and length, were
calculated from the UAV aerial footage. The radius of curves varied
between 30 and 150 m, while the vertical grade ranged between —8%
and + 8 %. The summary statistics of road geometric data are presented
in Table 2.

To further illustrate the variation in driving behavior across roadway
environments, the distribution of vehicle speeds is presented by posted
speed limit categories. Table 3 summarizes the average and 85th
percentile of speed across road segments with different speed limits,
providing a clearer picture of the actual operating speeds relative to the
posted speed limit.

2 Since the scope of this study is to contrast normal/minor speeding behav-
iour versus high-risk or aggressive speeding, the first speeding category
included non-speeding vehicles too, especially because slight speed limit ex-
ceedance (e.g., 1-5 km/h over the speed limit) is common and often considered
socially acceptable or legally tolerated in Iran.

Total number of observed vehicles per segment

0.001, a maximum depth of 8 for the trees, a subsample of 0.8, and a
total of 1000 trees, with early stopping applied after 100 rounds. A list of
all hyperparameters, including both the default values provided by
XGBoost and the values adopted in this study, is presented in the Ap-
pendix. While trying other values of these hyperparameters may in-
crease the performance of the GBM model, optimizing the
hyperparameters is not within the scope of this study. The dataset was
divided into 80 % training data and 20 % testing data. Two GBM models
were developed, one for minor and one for major speeding categories
(the proportions of the three speeding categories must sum to unity and
so developing three separate models could introduce inconsistencies in
the second stage where their combined predictions might exceed 1). The
final GBM models demonstrated strong predictive performance, with R-
squared (R?) values of 0.842 and 0.834, alongside ROC AUC scores of
0.904 and 0.941, indicating high classification accuracy. Table 4 pre-
sents the predictive performance metrics for these two GBM models.
Results of the SHAP analysis for the two speeding prediction models

Table 1
Summary statistics of dependent variables in the study.
Dependent Definitions Mean  Standard Minimum  Maximum
Variables Deviation
Proportion Number of 0.40 0.16 0.08 0.74
of vehicles driving
Minor less than 10 %
speeding above the
posted speed
limit / Total
number of
observed
vehicles
Proportion Number of 0.41 0.05 0.21 0.48
of vehicles driving
Moderate between 10 and
speeding 20 % above the
posted speed
limit / Total
number of
observed
vehicles
Proportion Number of 0.17 0.24 0.00 0.97
of vehicles driving
Major more than 20 %
speeding above the
posted speed
limit / Total
number of
observed
vehicles
Crash Total number of  3.09 4.60 0.00 22.00
frequency crashes
recorded per
year
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Binned Mean Crash Frequency vs Speeding Proportion with LOWESS
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Fig. 3. Binned mean crash frequency versus speeding proportion with 95% confidence intervals and locally weighted smoothing line (LOWESS).

are illustrated in Fig. 4. Each point in these figures represents one
observation. Features are ranked by their average predictive power on
the outcome variable (speeding proportions), with the location of each
point along the horizontal axis representing this power on the specific
observation. The colour gradient indicates the feature value (low to
high), and the SHAP values indicate the magnitude of the effect. Please
note that visual differences between the minor and major speeding plots
arise from overlapping points with SHAP values near zero—particularly
for low-importance features—not from unequal sample sizes. Features
with wider SHAP value ranges appear denser because their points are
more spread, while features with narrower SHAP value ranges cluster
around zero.

Radius is the most influential feature in predicting minor and major
speeding proportions. Higher values of radius (red dots) contribute to
decreased predicted speeding proportions, particularly for major
speeding category (Fig. 4 (b)). The degree of curve and deflection angle
are among predictors of the speeding behavior too: flatter curves and
lower deflection angles contribute to increased predicted minor and
major speeding proportions.

Pavement Condition Index (PCI) contributes positively to both pre-
dictions, with higher PCI (better pavement quality) linked with
increased predicted speeding proportions. In contrast, curve length
contributes negatively to speeding predictions, where longer curves
contribute to slightly lower predicted proportions of minor and major
speeding. Outer shoulder width has a negative effect on speeding pre-
dictions too, more noticeably for minor speeding.

Widening, MADT, and the percentage of heavy vehicles have mixed
effects. Widening appears to result in decreased minor speeding pro-
portions, while higher MADT (red dots in Fig. 4)b() results in increased
major speeding proportions. Heavy vehicle percentage plays a stronger
role in predicting the minor speeding proportions, where higher values
of this feature reduce the predicted proportion of minor speeding.

Additional features such as edge and centerline marking quality,
grade, and curve type have smaller but consistent effects. Better marking
quality and lower grade values generally contribute to the prediction of
reduced speeding proportions.

To have a better understanding of the contributions of the above
features to the prediction of speeding proportions, their feature impor-
tance (ranked from the highest to the lowest) are presented in Figs. 5 and
6 for the minor and major speeding categories, respectively.

A comparison of the SHAP analysis with the feature importance re-
sults reveals differences in the ranking and predictive power of specific
features. Nonetheless, these features are analogous to instruments in
conventional instrumental variable modelling, and the predicted
speeding proportions from this GBM model are postulated to be less
subject to endogeneity in comparison with the observed speeding pro-
portions. However, an important conundrum is whether this postulation
is valid after all because when the instruments are constructed in a way
that maximize prediction, they might capture the same unobserved
factors (‘noise’ in the language of machine learning) that are correlated
with crash frequency. While proving this exogeneity is very difficult (as
the true effect of speeding on crash frequency in the population is not
known), the shapley values together with the feature importance anal-
ysis in our study show that the GBM’s high accuracy is due to meaningful
features rather than unobserved errors. This explanation is even more
reinforced noting that most of the important features in predicting the
speeding proportions (radius, degree and length of horizontal curves,
type of curves, deflection angle, pavement condition index, quality of
centerline and edge lane markings, and shoulder width) have intuitive
causal link with speeding but are not statistically significant when used
directly in the mean function of the negative binomial model in the
second stage (more on this will be presented in the next section). In other
words, the effect of these features on crashes is only through speeding.

4.2. Crash frequency component

In the second stage of the hybrid framework, the negative binomial
crash frequency model was estimated using the predicted speeding
proportions from the first stage as well as other explanatory variables,
using STATA 17.0 statistical software package. In estimating the crash
frequency model in the second stage, explanatory variables were
selected using a stepwise variable selection criterion. They were tested
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Table 2
Summary statistics of independent variables in the study.

Standard
Deviation

Continuous Mean Minimum Maximum

variables

Temporal
Variation

Monthly
Average
Daily Traffic
(MADT)
(vehicles/
day)

Percentage of 4.38 1.64 1.97 8.32
heavy
vehicle
traffic (%)

Curve length 74.98 47.16 24.7 205.4 <5%
(m)

Widening (m) 1.18 1.73 0 7.5 <5%

Inner lane- 2.04 2.23 0 9.5 <5%
shoulder-
width (m)

Outer lane- 3.02 2.15 0 7.8 <5%
shoulder-
width (m)

Curve radius 64.89 37.68 15 153 <5%
(m)

Deflection
angle (°)

Radius 64.89 37.805 15 153 <5%

Degree of 67.66 99.89 3.82 360 <5%
curve*

Centre line 5.83 2.20 1 8 <5%
marking
quality (of
tenth)

Edge line 3.21 2.16 1 7 <5%
marking
quality (of
tenth)

Road vertical 4.86 2.42 0 8 <5%
slope
(absolute
value)

Pavement 69.88 14.44 37 95 <5%
condition

1319.89  220.42 859 1742 28 %

25.7 %

107.58 39.72 32 170 <5%

index
Categorical

variables
Posted speed

limit
20 km/h 16 0.10 <5%
30 km/h 32 0.21 <5%
40 km/h 40 0.26 <5%
50 km/h 16 0.10 <5%
60 km/h 48 0.33 <5%
Sufficient

stopping

sight

distance
Yes 83 0.54 <5%
No 69 0.46 <5%
Curve type
S-curve 43 0.28 <5%
Normal 109 0.72 <5%
Before Curve

Existence
Yes 61 0.40 <5%
No 91 0.60 <5%
Curve

direction
Right turn 101 0.66 <5%
Left turn 51 0.34 <5%
Outer lane

shoulder-

type
Paved 131 0.86 <5%
Unpaved 21 0.14 <5%

Sample Sample
frequency share

Temporal
Variation

* The central angle is created by two radii extending from the centre of a circle
to its ends. It is 100 m (feet in imperial units) long.

Accident Analysis and Prevention 224 (2026) 108284
™ Thresholds of 50 m and 80 m has been used for this variable according to

(American Association of State and Highway Transportation Officials, 2018).

Table 3
Speed distribution by posted speed limit.

Speed Limit (Km/h) Average Speed (Km/h) 85th percentile speed (Km/h)
20 28.83 37.35
30 44.86 59.54
40 47.69 53.73
50 52.18 64.03
60 47.06 58.76
Table 4

Performance metrics for Gradient Boosting Machine (GBM) models predicting
major and minor speeding proportions.

MSE MAE R-Squared ROC AUC
®? Score
GBM Model for minor 0.007 0.069 0.834 0.941
speeding
GBM Model for major 0.009 0.042 0.842 0.904
speeding

for multicollinearity by computing the Pearson or Spearman correlation
coefficients, and the variables with unacceptably high (>0.7) correla-
tion coefficients were not simultaneously introduced into the model. The
parameters of all variables were tested for random parameters specifi-
cation (across location) and normal distribution was used as the distri-
bution for all of the random parameters. The parameters were
considered random only if their standard deviations are statistically
significant. The parameters of all variables with more than + 5 %
variation during the study period were tested for temporal instability.
The models were estimated using the maximum simulated likelihood
approach with 500 Halton draws. The required number of Halton draws
was selected so that further increasing the number of draws does not
change the estimates significantly. The final specification of the model
was based on statistical significance guided by a 95 % confidence level.
The results of this model are presented in Table 5 and 6 below. In
Table 5, we present a comprehensive examination of temporal fluctua-
tions of each variable’s impact on crash frequency while in Table 6 we
present the net effects of these variables on crash frequency across the
years.

Monthly Average Daily Traffic’> (MADT) exhibited a statistically
significant and temporally dynamic effect on crash frequency, consistent
with the patterns observed in the literature (Shabab et al., 2024). As
shown in Table 5, the coefficient for the natural logarithm of MADT is
zero prior to 2014 and becomes increasingly positive in the subsequent
years, peaking in 2015 and gradually declining thereafter. This shift
underscores the importance of accounting for temporal instability in
modeling traffic safety outcomes. The non-significant role of MADT
during the early years might be due to the dominance of single-vehicle
(such as run-off-road) crashes in those years as illustrated in Fig. 7.

3 While Annual Average Daily Traffic (AADT) has been long used as a mea-
sure of exposure in road safety modelling (Elvik et al., 2009), the choice be-
tween AADT and MADT depends on the purpose of study and the level of
accuracy that is needed. AADT is usually widely available and standardized
across road agencies. It is useful for long-term planning, network-level safety
models, and comparisons between road segments. However, it masks seasonal,
monthly, and temporal fluctuations. It may lead to under- or over-estimation of
risk if crashes correlate with specific seasonal traffic surges. In contrast, MADT
captures temporal variability and is a more precise exposure metric when
crashes show seasonal patterns (Jessberger et al., 2016)— which is the case in
our study. Therefore, we used MADT for our analysis to capture temporal nu-
ances in the effects of exposure on crash frequency.
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Fig. 4. SHAP summary plot illustrating the impact of road and traffic features on (a) minor speeding predictions, (b) major speeding predictions.

Traffic volume might not be a major risk factor for these crashes. After
2014, however, multi-vehicle crashes become dominant and the effects
of MADT become positive and increasing over the next years. This
interpretation supported by changes in the distribution of crash types
across the years is in line with the findings from the literature noting that
increased exposure in dense traffic conditions often leads to a higher
likelihood of interaction-based crashes (Geedipally & Lord, 2010). The
observed pattern reinforces the benefit of the temporally segmented
modelling and the spline-based specification in uncovering evolving risk
within crash data, thereby offering a more nuanced understanding of the
traffic volume-—crash relationship over time.

These findings further reinforce the nonlinear relationship between
traffic volume and crash risk, highlighting the dynamic influence of

traffic flow on roadway safety, especially with respect to different crash
types. Moreover, this finding aligns with those from the existing litera-
ture, suggesting that dynamic traffic conditions play a crucial role in
shaping road safety outcomes (Alnawmasi & Mannering, 2022; Council
et al., 2010).

The percentage of heavy vehicles demonstrated a temporally un-
stable coefficient in its relationship with crash frequency across the
study period. Between 2011 and 2013, the coefficient is positive, sug-
gesting that higher percentage of heavy vehicles increases crash likeli-
hood — a finding consistent with traditional safety concerns of heavy
vehicles because of their large mass, limited maneuverability, and
longer stopping distances (Zhu & Srinivasan, 2011; Zubaidi et al., 2022).
However, between 2014 and 2016, the coefficient becomes negative,
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Fig. 6. Feature importance ranking for the predictors used in the major speeding model.

Table 5
Estimation results of mixed spline indicator pooled random parameters negative binomial model with gradient boosting method — base and deviation effect of
variables.

Variable Year

2011 2012 2013 2014 2015 2016 2017 2018

Time variant variables

Constant —1.756 (—5.61)* - — - - - - —1.231 (-2.27)

Ln(MADT) - - - 1.058 (7.35) - —1.373 (-5.93) - -

Percent of heavy vehicles 0.215 (5.13) - - —1.440 (—6.68) — 2.327 (5.79) — -

Time invariant variables
Inverse absolute grade

33.660 (4.44) - - - - -

Pavement Condition Index —0.015 (—2.18) — — — _ _
Inner Shoulder type —0.387 (—2.10) - — — _ _
Major speeding (instrumented)

Mean 2.058 (2.13) - - — - _
Variance over locations 0.006 (16.62) - — — _ _
Logarithm of dispersion parameter —0.876 (-1.97) - — — _ _

" Numbers in brackets present the corresponding Z-values.

" The absolute grade was offset by 10 values to compensate instances where the original grade was zero.

and sharply increases again in 2017 and 2018. This non-monotonic
trend underscores the temporal volatility of the variable’s effect on
crash risk.

At first glance, the negative coefficient during the mid-period (be-
tween 2014 and 2016) may appear counterintuitive. However, the

10

presence of heavy vehicles could induce more cautious or conservative
driving behavior among other road users, thereby offsetting some of
their inherent risk (Shabab et al., 2024). This behavioral adaptation —
where drivers self-regulate speed, increase following distance, or reduce
overtaking around large trucks — may temporarily lower the overall
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Table 6
Net effects of variables in mixed spline indicator pooled random parameters negative binomial model with gradient boosting method.
2011 2012 2013 2014 2015 2016 2017 2018

Constant —1.756 —3.512 —5.268 —7.024 —8.780 —10.53 —-12.29 —15.27
Ln(MADT) 0 0 0 1.058 2.116 1.801 1.486 1.171
Percent of heavy vehicles 0.215 0.43 0.645 —0.58 —1.805 —-0.703 0.399 1.501
Inverse absolute grade 33.660 33.660 33.660 33.660 33.660 33.660 33.660 33.660
Pavement Condition Index —0.015 —0.015 —0.015 —0.015 —0.015 —0.015 —0.015 —0.015
Inner Shoulder type —0.387 —0.387 —0.387 —0.387 —0.387 —-0.387 —-0.387 —0.387
Major speeding (instrumented)
Mean 2.058 2.058 2.058 2.058 2.058 2.058 2.058 2.058
Variance over locations 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
Logarithm of dispersion parameter —0.876
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Fig. 7. Sample share and frequency of various crash types across different years in the study area (the numbers above bars indicate crash frequencies).

crash rates. Alternatively, changes in fleet composition, enhanced
training or enforcement targeting commercial drivers, or changes in
crash type distributions could have moderated their contribution during
those years.

The inverse of the absolute grade in the negative binomial model has
a statistically significant and positive parameter (33.660 with p-value <
0.001), indicating that as the inverse of the absolute grade increases, the
expected number of crashes increases too. This inverse relationship
suggests that as the absolute grade increases, the gradient of the crash
likelihood decreases, implying that while increasing the steepness of the
road increases crash likelihood, this relationship is not linear, and the
effect becomes less pronounced at higher grades. This finding indicates
that steeper roads experience a higher frequency of crashes compared to
flat segments. One plausible reason for this finding is that increased road
steepness generally leads to reduced vehicle speeds. This finding aligns
with the results from the GBM model too, which highlighted a positive
effect of absolute grade on predicting speeding. As the grade becomes
steeper, vehicles naturally reduce their speed to navigate the incline,
thereby lowering the likelihood of major speeding. Consequently, on
steep grades, the resulting lower speeds contribute to a reduced overall
crash frequency compared with the segments with lower absolute
grades. This finding underscores the importance of considering both the
geometric characteristics of the road and driver behaviour in assessing
crash frequency. While steeper grades might intuitively suggest higher
crash frequency due to increased difficulty in navigation, the reduction
in vehicle speed on inclined segments can mitigate this risk.

Paved inner shoulder was found to have a consistent and statistically
significant negative association with crash frequency across all years, as
evidenced by its stable coefficient (— 0.387) in the model. This negative
coefficient suggests that paved inner shoulders contribute to lower crash
occurrences compared to unpaved ones, likely due to their capacity to
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enhance roadway recovery zones and allow greater maneuverability in
emergency situations. Paved shoulders may also improve driver
perception of lane boundaries and increase operational space, particu-
larly in high-speed environments. This finding is consistent with prior
studies which suggest that geometric enhancements — such as paved
shoulders — provide critical margins for error that can prevent both run-
off-road and sideswipe collisions (Bisht & Tiwari, 2022; Hallmark et al.,
2009).

Pavement condition index is negatively associated with crash fre-
quency, indicating that improved pavement conditions is associated
with fewer crash occurrences. Poorer pavement quality, associated with
lower PCI, could potentially compromise vehicular stability, thereby
increasing crash frequency. This association highlights the importance
of maintaining high-quality road surfaces to promote safety and aligns
with the results from prior studies (Elghriany, 2016; P. Sadeghi & Goli,
2024).

Finally, the parameter estimate for major speeding is 2.058, indi-
cating a positive and statistically significant association with crash fre-
quency. This result implies that higher rates of major speeding lead to an
increased number of crashes. Speeding is a well-established risk factor in
crash occurrence, as it reduces reaction time, increases stopping dis-
tances, and heightens crash severity upon impact. Furthermore, the
variance of the parameter across locations suggests that unobserved
location-specific factors influence the degree to which speeding con-
tributes to crash risk. These factors may include environmental condi-
tions such as vegetation density, which affects drivers’ speed choices by
altering visibility, or weather conditions that influence road friction and
stopping distances. This finding aligns well with extensive evidence
showing that speeding, particularly at major levels, exacerbates both the
frequency and severity of crashes (Alnawmasi & Mannering, 2022;
Yasmin et al., 2022) and underscores the importance of major speeding
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which is often linked with aggressive driving behaviours. It highlights
the need for context-specific speed management strategies that account
for localized conditions to effectively reduce crash likelihood.

4.3. Statistical evidence for endogeneity between speeding and crash
occurrence

In the Introduction section, we presented a theoretical argument
behind endogeneity between speeding and crash occurrence. To provide
statistical evidence for this endogeneity (and hence the need for the 2-
stage hybrid model), we estimated the mixed spline indicator pooled
random parameters negative binomial model with observed speeding
proportions used directly in the mean function of the negative binomial
distribution. The parameter of these speeding proportions was then
compared with those of the hybrid model using the Durbin-Wu-
Hausman statistical test. The result of test is used to demonstrate that
speeding is correlated with the error term of the crash frequency model.
The Durbin-Wu-Hausman test is the most widely used formal test for
showing endogeneity (Patrick, 2021). It compares the difference be-
tween estimates from an instrumental variable model and a regular
model (the hybrid model and the negative binomial model, in our
study). The full estimation results of the negative binomial model with
observed speeding are presented in the Appendix. However, the
parameter of the speeding variable (major speeding proportion) in the
negative binomial model is 1.46 with standard error 1.01. Using these
estimates as well as those of the hybrid model (2.058 with standard error
0.966) in the Durbin-Wu-Hausman test, the p-value of the test was found
to be 0.042, rejecting the null hypothesis on lack of endogeneity.
Therefore, and in addition to the theoretical hypothesis behind the
endogeneity between speeding and crash occurrence, there is statistical
evidence too for this endogeneity which motivated us to develop the
hybrid model.

4.4. Model comparison

To better highlight the significance of our hybrid model, we also
estimated a state-of-the-art instrumental variable negative binomial
model as well as its extension with spline indicator variables and
compared their parameter estimates and statistical fit with those of our
hybrid model. The final model candidates for comparison are:

Model #1: a mixed spline indicator pooled random parameters
negative binomial model with observed speeding proportions directly in
the model (MSIPRPNB-Observed); the model that was used in the
Durbin-Wu-Hausman test;

Model #2: an instrumental variable random parameters negative
binomial ordered probit fractional split model (PRPNB-OPES); an
instrumental variable model in which we regress the speeding variables
(major, moderate, and minor speeding proportions) against all exoge-
nous variables and then use their predicted values in the crash frequency
model. Ordered probit factional split model (Bhowmik et al., 2019a) is
used in the first stage of this model for predicting speeding proportions;

Model #3: an instrumental variable mixed spline indicator pooled
random parameters negative binomial ordered probit fractional split
model (MSIPRPNB-OPFS); an extension of model #1 including the
spline indicator variables for capturing temporal instability; and.

Model #4: a mixed spline indicator pooled random parameters
negative binomial model with gradient boosting method
(MSIPRPNB-GBM); the full proposed hybrid model including spline
indicator variables for capturing temporal instability.

Model #1 serves as the baseline for comparing the parameter of
speeding variable. The comparison between models #2 and #3 de-
termines the suitability of the spline indicator variables in capturing
temporal instability whereas the comparison between models #3 and
#4 determines the suitability of the proposed hybrid framework in
capturing endogeneity.

Full estimation results of models #2 and #3 are presented in the
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Table 7
Goodness of fit measures between the hybrid and the conventional models.
AIC BIC log-likelihood
Model #1* 624.62 666.95 —298.30
Model #2 650.06 668.20 —318.10
Model #3 632.64 668.92 —304.31
Model #4 618.90 647.25 —295.44

" Negative binomial model with temporal instability and observed speeding.
" instrumental variable model without temporal instability.

instrumental variable model with temporal instability.

hybrid model with temporal instability.

Appendix (Tables A3-A5) too. In model #2, the ordered probit fractional
split model in the first stage was used for modelling proportions of the
discrete ordered speeding variable (Bhowmik et al., 2019a) aligning
well with the hypothesis in this study. The statistically significant vari-
ables in this model (Table A3) were mostly the same as the features in
the GBM within the hybrid model, and with intuitive parameter esti-
mates. However, its predictive accuracy is notably lower (R = 0.27)
than the GBM (R? = 0.842), highlighting a significant limitation for its
use in a two-stage instrumental variable crash frequency modelling. The
parameter estimates of the random parameters negaive binomial model
in the second stage of this model (Table A4) are intuitive too and similar
to those of the hybrid model.

In model #3, the same ordered fractional model as in model #2 was
used in the first stage but the random parameters model in the second
stage was extended and included the spline indicator variables for
capturing temporal instability. The parameter estimates of the negative
binomial model in the second stage of model #3 (Table A5) reveal a
similar pattern to those of model #2 and the hybrid model regarding the
statistically significant variables and their effects on speeding and crash
frequency. However, the key distinction between them lies in the
different estimates for the parameter of the major speeding proportion
variable.

The parameter of major speeding proportions in models #2, #3 and
#4 are 3.321, 3.94 and 2.058, respectively. The same parameter in
model #1 is 1.46 — which is believed to be biased due to endogeneity. To
better understand the differences between these parameters, we simu-
lated their distribution and compared their kernel densities. Under the
Central Limit Theorem (Kwak and Kim, 2017), we can assume:

@ N(@, SE(®))

where @ is the parameter estimate for the speeding variable from any of
the models, and SE(®) is its standard error. The corresponding kernel
densities of these parameters (Fig. 8) demonstrate that the variance of
the distribution from the hybrid model is much lower than that of the
other models indicating that this model provides a more efficient
parameter estimate for speeding. Moreover, the distribution from the
model with observed speeding (red curve) is centered furthest to the left,
followed closely by the hybrid model (green curve), both of which
exhibit relatively sharp peaks and narrower spreads, suggesting more
precise estimates. The instrumental variable model without temporal
instability (orange curve) appears more dispersed and centered further
to the right, whereas the instrumental variable model with temporal
instability (blue curve) has the widest distribution and is centered at the
highest values among all models. This finding indicates that the two
modelling methodologies (instrumental variable modelling and hybrid
modelling) may mitigate the endogeneity bias in the parameter for
speeding and yield a more accurate estimate for that parameter. Since
the true value for this parameter is not known, it is not directly possible
to select the best model. However, a comparison of the statistical fit
between the models may shed more light on these findings.

The statistical fit measures between the four model candidates
(Table 7) show that the hybrid model has a lower AIC and BIC (618.90
and 647.25, respectively) in comparison with the rest of the models
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Fig. 8. Kernel densities of the parameter for major speeding proportions in four different models: (a) mixed spline indicator pooled random parameters negative
binomial model with observed speeding proportions directly in the model (MSIPRPNB-Observed) (red), (b) instrumental variable random parameters negative
binomial ordered probit fractional split model (PRPNB-OPFS) (orange), (c) an instrumental variable mixed spline indicator pooled random parameters negative
binomial ordered probit fractional split model (MSIPRPNB-OPFS) (blue) and (d) mixed spline indicator pooled random parameters negative binomial model with
gradient boosting method (MSIPRPNB-GBM) (green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

demonstrating a superior goodness of fit.

The above findings all together show that the hybrid framework with
GBM in the first stage and mixed spline indicator specification of the
negative binomial model in the second stage outperforms the existing
models for the data in this study. These results further highlight the
strength of the machine learning approach in addressing endogeneity
and support the growing body of literature that advocates for the use of
machine learning techniques combined with econometric methods to
overcome the traditional limitations of the later methods in transport
safety modeling (Afghari et al., 2022; Jin et al., 2023; Zhou et al,,
2024b).

5. Conclusions

Crash risk along horizontal curves, measured by the frequency of
crashes at these locations, is influenced by a complex interplay of
roadway geometry, traffic characteristics, and driver behaviour,
particularly speeding. Addressing endogeneity between speeding
behaviour and crash risk remains a key challenge in crash modeling. In
addition, traditional data collection methods for collecting speeding
data often suffer from measurement error because of driver adaptation
with speed cameras. This study aimed to address these gaps by intro-
ducing a novel framework, consisting of speeding data collection by
unmanned vehicles and using these data in a hybrid mixed spline indi-
cator pooled random parameters negative binomial model with gradient
boosting method, for determining the effect of speeding on crash
frequency.

Empirical testing of the proposed hybrid model and comparing it
with the existing instrumental variable models demonstrated its sub-
stantial benefit, in terms of finding suitable instrumental variables for
addressing endogeneity and enhancing prediction accuracy. Shapely
values of the predictors in the gradient boosting model as well as their
feature importance painted an explainable picture of the variables and
their impact on predicting speeding. These values were consistent with
statistically significant variables in the conventional fractional split
model and aligned closely with the findings of (M. Islam et al., 2024),

13

where shapely values were employed for variable selection. This con-
sistency reinforces the robustness of SHAP-based feature importance
analysis, highlighting its reliability in determining critical predictors
within complex traffic safety models. While machine learning models
have high predictive power, they may be prone to overfitting too,
capturing noise rather than true causal variation, which can lead to
misleading estimates. A highly accurate model may replicate observed
values without adequately addressing endogeneity. We demonstrated
that further investigations (such as SHAP analysis, feature importance
and Durbin-Wu-Hausman test) should be conducted to determine an
appropriate balance between accuracy and endogeneity.

Incorporation of random parameters varying across locations into
the hybrid model further enhanced the model’s ability to capture
localized variability. The variance associated with speeding, for
example, illustrated the importance of considering site-specific factors
in crash prediction models. Similarly, the temporal instability observed
in the variability of the vehicular and heavy vehicle traffic over time
emphasized the dynamic nature of traffic patterns and their influence on
crash likelihoods. The incorporation of temporal instability and het-
erogeneity not only improves model accuracy but also provides a more
nuanced understanding of the factors influencing crash frequency,
reinforcing the need for adaptive and context-specific models in trans-
port safety research.

Overall, our study showed that collecting speed via unmanned ve-
hicles and modelling it using a hybrid statistical-machine learning
approach allows for a more reliable and robust estimation of the com-
plex relationship between speeding and crash frequency and may ulti-
mately lead to more effective road safety interventions and policy
recommendations.

Despite the above benefits, our study has limitations too. The
extrapolation method that was used to create yearly speeding data as-
sumes that the trend (rate of change) of such data remains constant
beyond the observed 28 days in the study. However, this assumption
may not hold, especially over extended time periods. As such, the effects
of speeding on crash risk should be interpreted with caution. In addition,
in modelling speeding and crash risk, we primarily focused on roadway
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characteristics and traffic-related factors; however, incorporating
human factors, such as visual perception, and cognitive workload, and
linking them with road segments could further enhance predictive ac-
curacy of the models. Furthermore, while our model specification
allowed for temporal instability in the effects of all factors on crash risk,
our sample data showed such instability only in the effects of traffic
characteristics. Future research should collect more detailed (behav-
ioral) data over extended periods of time to be able to show temporal
instability in other factors too. Future research may also extend this
modeling framework to different roadway environments to provide a
more comprehensive understanding of crash risk.

Finally, the reliability of crash data in our study area (Iran) may have
been affected by under-reporting (of minor crashes or crashes which
may not have been documented because there was no severe injuries or
substantial property damage), data accuracy and inconsistencies in data
collection. These issues can lead to an incomplete understanding of road
safety problems and hinder the development of effective policy recom-
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these challenges using improved data integration across agencies and
implementing more comprehensive crash surveillance systems.
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Appendix
Table Al
Hyperparameters of the XGBoost model used in this study.
Hyperparameter Description Default Value Value in this study
objective Loss function to optimize reg: squarederror reg: gamma
eval_metric Evaluation criterion None (training loss) rmse
max_depth Maximum depth of trees 6 32
learning_rate (eta) Step size shrinkage 0.3 0.1
subsample Fraction of samples per tree 1.0 0.8
colsample_bytree Fraction of features per tree 1.0 0.8
num_boost_round Number of boosting iterations 10 (if not specified) 1000
early_stopping_rounds Stop if no improvement after N rounds Not enabled 100

min_child_weight
gamma

lambda (L2 reg)
alpha (L1 reg)
scale_pos_weight
tree_method
nthread

seed (random_state)

Minimum loss reduction for a split

L2 regularization term

L1 regularization term

Weight balance for imbalanced classes
Tree construction algorithm

Number of parallel threads

Random seed for reproducibility

Table A2

Minimum sum of instance weight in a child

1 1 (default)
0 0 (default)
1 1 (default)
0 0 (default)
1 1 (default)

auto auto (default)
All cores All cores (default)
0 42 (via train_test _split)

Estimation results of the mixed spline indicator pooled random parameters negative binomial model with observed speeding (endogenous variable) directly in the

mean function of the negative binomial distribution.

2011 2012 2013 2014 2015 2016 2017 2018
Constant —1.768 (—5.63) — — — — — —1.167 (-2.12)
Ln(MADT) - - - 1.075 (7.24) — —1.412 (-5.61) — -
Percent of heavy vehicles 0.216 (5.15) - - —1.466 (—6.57) - 2.387 (5.56) -
Inverse absolute grade™ 32.918 (4.35) - - - - - - -
Pavement Condition Index —0.012 (-1.84) - - - - - - -
Inner shoulder type —0.416 (—2.28) - - - - - - -

Major speeding
(observed)
mean 1.465 (1.450) — —

variance 0.006 (16.53)
Logarithm of dispersion parameter —0.880 (—2.00) - -

*Numbers in brackets present the corresponding Z-values.

““The absolute grade was offset by 10 values to compensate the instances where the original grade was zero.
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Table A3
Estimation results of the ordered probit fractional split model in the first stage of the instrumental variable model for speeding and crash frequency.
Coefficient Standard error t-value P>|z|
Threshold minor speeding | moderate speeding —49.822 21.916 -2.273 0.023
Threshold moderate speeding | major speeding —48.565 21.926 -2.215 0.026
Sufficient stopping sight distance —421.345 14.042 —30.005 0.000
Before curve existence —218.514 7.527 —29.028 0.000
Deflection angle —6.281 0.223 —28.129 0.000
Outer shoulder width —75.781 2.713 —27.933 0.000
Radius 171.123 6.401 26.732 0.000
Widening —10.902 0.408 —26.712 0.000
Curve type —148.386 5.609 —26.452 0.000
Outer shoulder type —4.450 0.176 —25.218 0.000
Center line marking quality 320.249 13.239 24.190 0.000
MADT 1.730 0.071 24.242 0.000
Curve length 3.616 0.161 22.381 0.000
Percent of heavy vehicles 153.404 6.850 22.393 0.000
Degree of curve 9.643 0.421 -22.878 0.000
Inner shoulder width —67.961 3.302 —20.581 0.000
Curve direction —48.282 2.330 —20.717 0.000
Pavement condition index 25.085 3.463 7.243 0.000
Predictive performance
R? 0.27

Table A4

Estimation results of the random parameters negaive binomial model in the second stage of the instrumental variable model for speeding and crash frequency.

Coefficient Standard error z-value P>z 95 % confidence interval

Constant —15.614 5.304 —2.94 0.003 —26.010 —5.218
Ln(MADT)

Mean 1.995 0.705 2.83 0.005 0.612 3.378
Variance over locations 0.002 0.001 2.00 0.046 0.000 0.011
Inverse absolute grade* 27.461 9.371 2.93 0.003 9.093 45.829
Pavement condition index —0.018 0.008 -2.14 0.033 —0.035 —0.001
Major speeding (instrumented) 3.321 1.339 2.48 0.013 0.694 5.947
Logarithm of dispersion parameter 0.592 0.171 3.46 0.000 0.256 0.927

*The absolute grade was offset by 10 values to compensate the instances where the original grade was zero.

Table A5

Estimation results of the mixed spline indicator pooled negative binomial random parameters negative binomial model with base and deviation effect of variables for

speeding and crash frequency.

2011 2012 2013 2014 2015 2016 2017 2018
Time variant variables
Constant 0.208 (0.23)* - - - - - - -
Ln(MADT) —0.228 (-3.96) - 0.674 (3.99) —0.336 (-3.03) - 0.450 (2.86) -
Percent of heavy vehicles 0.159 (3.23) - - —0.349 (—2.45) - - 0.759 (2.82) -

Time invariant variables
Inverse absolute grade**
Major speeding (instrumented)

24.598 (2.95) - -

Mean 3.946 (2.34)
Variance over locations 0.001 (3.01)
Logarithm of dispersion parameter 0.240 (2.30) - -

*Numbers in brackets present the corresponding Z-values.

**The absolute grade was offset by 10 values to compensate the instances where the original grade was zero.
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