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Abstract: In order to design high-performance roadways, a robust tool which can 11 

compute the structural response caused by moving vehicles is necessary. Therefore, 12 

this paper proposes a spectral element method-based model to accurately and 13 

effectively predict the 3D dynamic response of layered systems under a moving load. 14 

A layer spectral element and a semi-infinite spectral element are developed to 15 

respectively model a layer and a half-space, and the combinations of these two 16 

elements can simulate layered systems. The detailed mathematical derivation and 17 

numerical validation of the proposed model are included. Addition- ally, this model 18 

is used to investigate the dynamic characteristics of a pavement structure under a 19 

moving harmonic rectangular load. The results show that the proposed model can 20 

accurately predict the dynamic response of layered systems caused by a moving load. 21 

It is also found that the vertical displacement amplitude curves of surface points 22 

caused by a moving harmonic load are asymmetric along the moving direction, and 23 

this property is more dominant at higher velocities. In addition, the amplitudes of 24 

these vertical displacements are smaller if the loading frequency is higher or the loss 25 

factor is bigger. Finally, the loading area and Poisson’s ratio only have effect on the 26 

displacement amplitudes of points in the close vicinity of the loading area. The 27 

proposed model is beneficial to the development of engineering methods for 28 

pavement design and is a promising parameter back-calculation engine for pavement 29 
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quality evaluation. 30 

31 

Keywords: Dynamic response; Layered systems; Moving load; Spectral element 32 

method; Doppler effect 33 



1. Introduction34 

Roadways are important infrastructures and should be well- designed. In order to35 

ensure the performance, a clear understanding of the response of roadways caused by 36 

moving vehicles is necessary. Theoretically, this problem can be regarded as the 37 

dynamic analysis of semi-infinite or layered media caused by a moving load, which is 38 

generally solved by using either analytical or numerical methods. 39 

Analytical methods generally give exact solutions to dynamic problems, and 40 

these methods are usually efficient. For example, Eason (1965) investigated the 41 

stresses in a semi-infinite elastic solid caused by moving surface forces with different 42 

loading conditions using integral transforms. Vostroukhov and Metrikine (2003) 43 

proposed a theoretical model to analyse the steady-state dynamic response of a 44 

railway track caused by moving trains, through which an analytical expression of the 45 

steady-state deflection of the rails was obtained. However, the analytical solutions are 46 

generally only valid for specific structural and loading configurations, and these 47 

solutions are usually difficult to calculate because they often contain complicated 48 

integrals with singular points. 49 

Numerical methods, such as the finite element method (FEM) and the boundary 50 

element method (BEM), are powerful tools for the dynamic analysis of solid media 51 

with different structural combinations and loading conditions. For instance, Zaghloul 52 

and White (1993) developed a three-dimensional dynamic finite element program to 53 

analyse the behaviour of flexible pavements caused by loads moving at different 54 

velocities. Andersen and Nielsen (2003) conducted boundary element analysis of the 55 

steady-state response of an elastic half-space caused by a surface moving load. 56 

However, numerical methods are usually time and resource intensive, and numerical 57 

distortions may occur in some cases. 58 

The limitations of analytical and numerical methods may hinder their application 59 

in engineering, especially for the dynamic analysis of layered systems. Hence, a 60 

semi-analytical method called the spectral element method (SEM) (Doyle, 1997; 61 

Al-Khoury et al., 2002; Lee, 2009) is used in this paper to analyse the 3D dynamic 62 

response of layered systems caused by a moving load. The SEM is promising for 63 

efficient dynamic analysis because it has the advantages of both spectral analysis and 64 

finite element method. In the SEM, one element is sufficient to represent a whole 65 

layer because of the exact description of mass distribution, which reduces the size of 66 



 

the system of dynamic equations and further increases the computational efficiency. 67 

Moreover, this method discretises the continuous integrals into series summations, 68 

which is more convenient for numerical calculation. The SEM has been successfully 69 

used for analysing the 2D dynamic response of layered systems. For example, You et 70 

al. (2018) investigated dynamic response of transversely isotropic pavement structure 71 

under axisymmetric impact load in cylindrical coordinate system based on the SEM. 72 

Yan et al. (2018) applied the SEM to predict the dynamic response of a 2D layered 73 

system subject to a moving harmonic strip load. However, the SEM has rarely been 74 

applied for the 3D dynamic analysis of layered systems under a moving harmonic 75 

rectangular load, which is the main focus of this study. 76 

This paper includes the detailed mathematical formulation of a 3D dynamic 77 

model for layered systems under a moving harmonic rectangular load based on the 78 

SEM. The accuracy of this model has been verified both numerically and 79 

experimentally. The proposed model can be used to analyse the 3D dynamic response 80 

of pavement structures caused by a moving harmonic rectangular load, which 81 

contributes to the development of engineering methods for pavement design. 82 

Furthermore, this model could be combined with proper optimisation algorithms to 83 

back-calculate the parameters of pavement structures by analysing the response, 84 

which is useful for pavement quality evaluation. 85 

2. Model formulation 86 

In this section, the detailed formulation of a model which can predict the 3D 87 

dynamic response of elastic layered systems subjected to a uniformly moving, 88 

harmonically varying, evenly distributed, rectangular surface load is presented. With 89 

considering the loading conditions caused by moving vehicles and structural 90 

parameters of pavement systems, this model can be used as a tool for structural 91 

design to ensure the durability. 92 

2.1. Introduction of moving coordinate system 93 



 

 94 

Figure 1. Schematic representation of coordinate system transformation. 95 

As shown in Figure 1, in order to deal with the moving load problem, it is 96 

convenient to introduce a stationary Cartesian coordinate system (OXYZ) and a 97 

moving Cartesian coordinate system (oxyz) (Jones et al., 1998; Lefeuve-Mesgouez et 98 

al., 2000; Metrikine, 2004). The stationary coordinate system does not move and its 99 

origin is located at the centre of the loading area when time is zero. The moving 100 

coordinate system follows the load and its origin is located at the centre of the 101 

moving loading area. The moving velocity is assumed to be constant and is 102 

described by a vector 
T

x y zc c c   c . The stationary coordinate vector is 103 

notated as  
T

X Y ZX , and the moving coordinate vector is notated as 104 

 
T

x y zx . The relationship between these two coordinate vectors can be 105 

expressed as follows: 106 

 t x X c   (1) 107 

in which t  is time. These two coordinate systems are coincident when 0t  . 108 

Additionally, the partial derivatives in the two coordinate systems have the 109 

following relationships for nonnegative integer n: 110 
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2.2. Wave motion in a semi-infinite medium under a surface moving load 114 

 115 

Figure 2. Schematic representation of a semi-infinite medium under a surface 116 

moving load.  117 

As shown in Figure 2, a homogeneous, isotropic, and linear-elastic semi-infinite 118 

medium is subjected to a surface load which moves along X-axis with a constant 119 

speed c. The corresponding wave motion in this medium is considered first. In the 120 

stationary coordinate system (OXYZ), the equations of motion for the medium can be 121 

expressed by Navier’s equation in the absence of body forces: 122 

  
2

2

0 0 0 2t
   


      



U
U U  (4)  123 

in which 

T

0
X Y Z

   
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 is the Del operator, 
2 2 2

2
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   

  
 is 124 

the Laplacian operator,    
T

, X Y Zt U U UU X  is the displacement vector,   125 

is the mass density, and    and   are Lamé constants defined by Young’s 126 

modulus E  and Poisson’s ratio  . 127 

An elegant approach to solve the Navier’s equation is using the Helmholtz 128 

decomposition, which expresses a displacement field in the following form: 129 

 0 0  U Ψ  (5) 130 

where  ,t X  is a scalar potential related to the P-wave,  and 131 



 

   
T

, X Y Zt    Ψ X  is a vector potential related to the S-wave. It can be 132 

seen that the three components of the displacement vector are related to four other 133 

functions, the scalar potential and the three components of the vector potential, 134 

which indicates that an additional constraint condition is needed (Achenbach, 1999). 135 

The additional constraint condition can have different forms (Vostroukhov and 136 

Metrikine, 2003; Hung and Yang, 2001), but the solution is uniquely determined by 137 

the governing equations and boundary conditions by virtue of the uniqueness 138 

theorem. In this paper, the Gauge condition  0 , 0t  Ψ X  is taken as the 139 

additional constraint condition. 140 

The velocity vector of the load is  
T

0 0cc , which means movement with 141 

constant velocity c  along the x-axis. According to the relationship between the two 142 

coordinate systems, equation (4) has the following form in the moving coordinate 143 

system: 144 

  
2

2 c
t x

   
  

      
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u u u   (6) 145 

in which 

T

x y z

   
   
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 is the Del operator in the moving coordinate system, 146 

2 2 2
2

2 2 2x y z

  
   

  
 is the Laplacian operator in the moving coordinate system, 147 

 
T

, x y zt u u u   u x  is the displacement vector in the moving coordinate 148 

system. 149 

In the moving coordinate system, equation (5) has the following form:  150 

  u ψ   (7) 151 

where  ,t x  and  
T

, x y zt      ψ x  are the scalar potential and the 152 

vector potential in the moving coordinate system, respectively. The Gauge condition 153 

in the moving coordinate system reads  , 0t ψ x . 154 

By substituting equation (7) into equation (6), the following uncoupled wave 155 



 

equations in the moving coordinate system are obtained  (for more details see 156 

Appendix A): 157 
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in which  P 2 /c      is the velocity of the P-wave, and 
S /c    is the 160 

velocity of the S-wave. 161 

In order to solve equations (8) and (9), the following Fourier transform pair with 162 

respect to time is used: 163 

     i1
ˆ , ,

2

tq q t e dt








 x x  (10) 164 

     iˆ, , tq t q e d 




 x x  (11) 165 

where i is the imaginary unit satisfying 2i 1  , ω is angular frequency,  ,q tx  is 166 

an arbitrary quantity in time domain, and  ˆ ,q x  is the corresponding quantity in 167 

frequency domain. After applying the above Fourier transform, equations (7) to (9) 168 

become: 169 

 ˆ ˆˆ  u ψ   (12) 170 
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ψ ψ 0  (14) 172 

in which the “hat” means that these quantities are expressed in the frequency 173 

domain. 174 

In the Cartesian coordinate system, the solutions of equations (13) and (14) can 175 

be retrieved in exponential forms. According to the phase matching principle (Zhao 176 

et al., 2016), different waves should have the same phase at the boundary (e.g. the 177 



 

surface z = 0). Consequently, the P-wave and S-wave have the same wavenumbers 178 

not only in x-direction, but also in y-direction. Therefore, the general expressions of 179 

 ˆ , x  and  ˆ ,ψ x  are: 180 

   P
ii iˆ , yx z
k yk x k z

Ae e e 
 

x  (15) 181 

     S
ii iˆ , yx z

T k yk x k z
B C D e e e

 
ψ x  (16) 182 

where A, B, C, D are unknown coefficients to be determined by the boundary 183 

conditions, 
xk  is the wavenumber in the x-direction, yk  is the wavenumber in the 184 

y-direction, and Pzk  and Szk  are respectively the wavenumbers in the z-direction for 185 

the P-wave and S-wave. Note that the signs of Pzk  and Szk  should be chosen 186 

carefully to ensure that the waves propagate and/or attenuate in the positive 187 

z-direction. After substituting equations (15) and (16) into equations (13) and (14), 188 

the expressions for Pzk  and Szk  can be obtained: 189 
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    (18) 191 

By substituting equation (12) into the expressions of the constitutive equations 192 

in frequency domain, the following relationships between the stresses and the 193 

potentials in frequency domain are obtained: 194 
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in which ˆ
x , ˆ

y , and ˆ
z  are three components of  ˆ ,ψ x . 201 

In addition, by combining the expressions of Pc  and Sc  with equations (17) 202 

and (18), the relationship between Lamé constants can be obtained: 203 
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2x y z z
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k k k
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2.3. Spectral element formulation 205 

In the SEM, the response of an element is determined by its total wave field, 206 

which is the superposition of wave fields originating from different boundaries 207 

(Al-Khoury et al., 2001). In this method, the number of elements needed for a 208 

simulation is the same as the number of layers because one element is sufficient to 209 

simulate a whole layer, which makes it efficient for dynamic analysis of layered 210 

systems. In this section, a layer spectral element and a semi-infinite spectral element 211 

are formulated to simulate a layer and a half-space, respectively. The combinations 212 

of these two spectral elements are capable of modelling different layered systems. 213 

2.3.1. Layer spectral element 214 

As shown in Figure 3(a), the layer spectral element consists of two parallel 215 

horizontal rectangular surfaces, which constrain the waves to propagate within the 216 

element. The element vertically covers the whole simulated layer, and it horizontally 217 

extends to a certain distance after which the response caused by waves is negligible. 218 

In addition, the spectral element of a layer with thickness h is physically defined by 219 

two nodes located at (0, 0, 0) and (0, 0, h), each of which has three degrees of 220 

freedom. In the layer spectral element, the total potentials can be expressed as 221 

follows (Al-Khoury et al., 2001; van Dalen et al., 2015): 222 
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ψ x  (27) 224 

where 1A , 2A , 1B , 2B , 1C , 2C , 1D , and 2D  are the unknown coefficients to be 225 

determined by boundary conditions. The first terms are the potentials of the wave 226 

fields originated from the top surface, while the second terms are the potentials of 227 

the wave fields reflected from the bottom surface. 228 

The Fourier transform is applied to the Gauge condition in the moving 229 

coordinate system to obtain its spectral form, which is expressed as follows: 230 

  ˆ , 0 ψ x   (28) 231 

After substituting equation (27) into equation (28), the following relationships are 232 

obtained: 233 
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Equations (29) and (30) are substituted into equation (27) first to decrease the 236 

number of unknown coefficients. Then equations (26) and (27) are substituted into 237 

equation (12) to obtain the expressions for the displacements in frequency domain, 238 

which have the following forms: 239 
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The displacements of the top node are notated as 1ˆ
xu , 1ˆ

yu , and 1ˆ
zu , and the 243 

displacements of the bottom node are notated as 2ˆ
xu , 2ˆ

yu , and 2ˆ
zu . Then, the 244 

coordinates of the nodes are substituted into equations (31) to (33) to obtain the 245 

nodal displacements, which can be expressed as follows: 246 

 e e

0
ˆ ˆˆ  u L a  (34) 247 

in which the superscript “e” means the corresponding quantities are expressed for an 248 

element, 
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e 1 1 1 2 2 2

0
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x y z x y zu u u u u u   u  is the nodal displacement vector of the 249 

element,  
T

1 2 1 2 1 2
ˆ A A B B C Ca  is the unknown coefficient vector, and 250 

e
L̂  is a frequency and wavenumber dependent matrix which has the following 251 

expression: 252 
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By substituting equations (26) and (27) into equations (19) to (24) and 254 

considering equation (25), the transformed expressions of the stresses can be 255 

obtained: 256 
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x (40) 262 

Based on the Cauchy stress principle, for a certain surface, the relationship 263 

between the surface traction vector t  and the Cauchy stress matrix σ  can be 264 

expressed as follows: 265 

  t σ n   (41) 266 

where n  is the unit outward normal vector of the surface. The tractions of the top 267 

node are denoted as 1

x̂t , 1

ŷt , and 1

ẑt , and the tractions of the bottom node are 268 

denoted as 2

x̂t , 2

ŷt , and 2

ẑt . On the basis of equation (41), the nodal tractions have 269 

the following relationships with the nodal Cauchy stresses: 270 

 1 1 1 1 1 1ˆ ˆ ˆˆ ˆ ˆ, ,x zx y zy z zzt t t         (42) 271 

 2 2 2 2 2 2ˆ ˆ ˆˆ ˆ ˆ, ,x zx y zy z zzt t t      (43) 272 

in which 
1ˆ
zx , 1ˆ

zy , and 
1ˆ
zz  are the Cauchy stresses of the top node, and 

2ˆ
zx , 2ˆ

zy , 273 

and 
2ˆ
zz  are the Cauchy stresses of the bottom node. 274 

 The nodal coordinates are substituted into equations (35) to (40) to derive the 275 

nodal stresses, which are then incorporated into equations (42) and (43) to obtain the 276 



 

expressions of nodal tractions, which are expressed as: 277 

 e e

0
ˆˆ ˆ t H a  (44) 278 

where 
T

e 1 1 1 2 2 2

0
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x y z x y zt t t t t t   t  is the nodal traction vector of the element, 279 

e
Ĥ  is a frequency and wavenumber dependent matrix which has the following 280 

form: 281 
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 282 

with 2 2 2 2

1 Sx y zk k k k   , 2 2 2 2

2 Sx y zk k k k   , and 2 2 2 2

3 Sx y zk k k k   . 283 

By combining equations (34) and (44), the relationship between the nodal 284 

traction vector and the nodal displacement vector is obtained, which can be 285 

expressed as: 286 

 e e e

0 0
ˆˆ ˆ t k u  (45) 287 

in which  
1

e e eˆ ˆ ˆ


 k H L  can be regarded as the element stiffness matrix, and the 288 

detailed expressions of its components are shown in Appendix B. 289 

2.3.2. Semi-infinite spectral element 290 

As shown in Figure 3(b), the semi-infinite spectral element is composed of a 291 

horizontal rectangular surface, and physically defined by a node located at (0, 0, 0) 292 

with three degrees of freedom. In the semi-infinite spectral element, the waves 293 

originated from the surface travel in the positive z-direction and no reflection occurs, 294 

which physically means that the energy is radiated away. Actually, the semi-infinite 295 

spectral element can be regarded as a special case of the layer spectral element that 296 

only contains the top surface, which requires the coefficients of 2A , 2B , 2C , and 297 

2D  in equations (26) and (27) to be zero. Accordingly, the transformed 298 

displacements for the semi-infinite spectral element can be expressed as follows: 299 
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After substituting the coordinates of the node, the nodal displacements can be 303 

expressed as: 304 
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The stresses in frequency domain become: 306 
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After substituting the nodal coordinates and considering equation (42), the nodal 313 



 

traction vector is expressed as: 314 
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By combining equations (49) and (56), the relationship between the nodal traction 316 

vector and the nodal displacement vector is obtained: 317 
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with 2 2 2 2

0 P S S2x y z z zk k k k k k    . 319 
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(b) 

 

Figure 3. Schematic representation of spectral elements: (a) Layer spectral element 320 

and (b) Semi-infinite spectral element. 321 

2.4. Boundary conditions 322 

As shown in Figure 2, the external load is applied on the surface of the layered 323 

system in the positive Z-direction. The load is assumed to be a uniformly distributed 324 

traction over a rectangular area, the amplitude of the load varies with time. In the 325 

moving coordinate system, the loading area is fixed and it can be expressed as 326 

follows: 327 

      0, , ,zp x y t h x y p t  (58) 328 

where  , ,zp x y t  is the traction applied in the positive z-direction,  0 ,h x y  is the 329 



 

spatial distribution function of the traction without dimension,  p t  is the loading 330 

history function of the traction with dimension of force/area. 331 

The spatial distribution function  0 ,h x y  can be expressed as follows: 332 

      0 0 0,h x y H x x H y y    (59) 333 

in which  H   is the Heaviside function, 02x  is the length of the loading area in 334 

the x-direction, and 02y  is the width of the loading area in the y-direction. 335 

According to equations (35) to (41), the distribution of tractions on the 336 

horizontal surfaces is in the form of 
ii yx
k yk x

e e
 , so  0 ,h x y  should be expressed in 337 

the same form to match the traction conditions. This can be achieved by using the 338 

Fourier series representation: 339 

  
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0 , ynxm
k yk x

xm yn

m n

h x y h h e e
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  (60) 340 

where m is an integer that ranges from –M to M and n is an integer that ranges from 341 

–N to N, where M and N should be large enough to ensure the accuracy of the 342 

representation. In addition, 0xmk m X  and 0ynk n Y , where 02X  is the 343 

length of the space window of interest in the x-direction, and 02Y  is the 344 

corresponding width in the y-direction. The dimensions of the space window should 345 

be large enough to cover the influencing area of the applied load. The 
xmh and ynh  346 

are the Fourier coefficients defined as follows: 347 
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The moving load considered in this paper is harmonically varying, hence the 350 

loading history function  p t  can be expressed as follows: 351 

   0i

0

t
p t p e


  (63) 352 



 

in which 0p  is the amplitude of the traction, 0 02 f   with 0  being the 353 

loading angular frequency and 0f  being the loading frequency. By applying the 354 

forward Fourier transform based on equation (10), the expression of  p t  in the 355 

frequency domain is obtained: 356 

    0 0p̂ p      (64) 357 

where     is the Dirac delta function. 358 

Hence, the Fourier transformed expression of the applied surface traction is: 359 

    
iiˆ ˆ, , ynxm
k yk x

z xm yn

m n

p x y p h h e e 


   (65) 360 

In addition, it can be concluded from equation (65) that the expressions of the 361 

potentials should be represented as summations over all xmk  and ynk  to match the 362 

traction conditions. 363 

2.5. Solution scheme 364 

According to the SEM, the combination of several layer spectral elements on top 365 

of a semi-infinite spectral element is capable of simulating a layered system. The 366 

numbering and assembling of these elements follow the same procedure as in the 367 

traditional FEM. However, because of the wavenumber dependence of the element 368 

stiffness matrix in the SEM, the whole assembly process is done for each 369 

wavenumber combination. The total number of the nodes in the spectral element 370 

model of a layered system is notated as l, and the global system of equations for a 371 

certain wavenumber combination can be expressed as: 372 

      0 0
ˆ ˆ ˆmn mn mn   T K U  (66) 373 

in which the superscript “mn” indicates that the quantities correspond to a certain 374 

wavenumber combination of xmk  and ynk ,  0
ˆ mn T  is the global nodal traction 375 

vector with dimensions 3l by 1,  ˆ mn K  is the global stiffness matrix with 376 

dimensions 3l by 3l, and  0
ˆ mn U  is the global nodal displacement vector with 377 

dimensions 3l by 1. 378 



 

According to equation (65), the traction of the top node can be expressed as 379 

follows:  380 

    ˆ ˆ0,0,z xm yn

m n

p p h h    (67) 381 

Therefore, the global nodal traction vector for a certain wavenumber combination 382 

can be expressed as follows: 383 

    0 3
ˆ ˆmn

xm ynp h h T e  (68) 384 

where 3e  is a 3l by 1 unit vector with the third component being 1. 385 

According to equation (66), the global nodal displacement vector for a certain 386 

wavenumber combination is calculated by: 387 

      0 3
ˆˆ ˆmn mn

xm ynp h h   U G e  (69) 388 

in which  ˆ mn G , the inverse of  ˆ mn K , can be regarded as the transfer matrix. 389 

The nodal displacement vectors for different wavenumber combinations are summed 390 

to obtain the total nodal displacement vector caused by the applied load, such that: 391 

      0 3
ˆˆ ˆ mn

xm yn

m n

p h h   U G e  (70) 392 

where  0
ˆ U  is the total nodal displacement vector. Then, the inverse Fourier 393 

transform is used to obtain the nodal displacements in time domain, which can be 394 

expressed as: 395 

    0i

0 0 0 3
ˆt mn

xm yn

m n

t p e h h
  U G e  (71) 396 

According to equations (31) to (33), for a certain wavenumber combination, the 397 

displacement vector of the horizontal plane where a node is located equals the 398 

product of the nodal displacement vector and the term 
ii ynxm
k yk x

e e
 . Therefore, the 399 

displacements of points on the nodal horizontal planes can be calculated as:  400 
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in which  plane

0 , ,x y tU  is a vector with dimensions 3l by 1, which contains the 402 

displacement components of all the horizontal planes where nodes are located. 403 

If the displacement field in a specific layer is desired, the following steps can be 404 



 

followed. Firstly, one obtains the nodal displacement vector of this layer for a certain 405 

wavenumber combination from equation (69). Secondly, one calculates the 406 

corresponding coefficient vector via equation (34). Then, one substitutes these 407 

coefficients into equations (31) to (33) and sums over all the wavenumber 408 

combinations to compute the total displacement field in frequency domain. Finally, 409 

one applies the inverse Fourier transform via equation (11) to obtain the total 410 

displacement field within this layer in time domain. Corresponding stress and strain 411 

fields can also be calculated using the constitutive equations. The procedure to 412 

determine the response fields in a half-space is the same as that for a layer. It should 413 

be highlighted that all the calculated response fields are steady-state solutions, so 414 

they are changing over time with the same frequency as the applied load. For a 415 

certain response field (displacement field, stress field, or strain field), it can be 416 

expressed as follows: 417 

     0i

0, ,
t

t e
f x F x  (73) 418 

where  ,tf x  is a certain response field,  0,F x  is the corresponding 419 

time-independent quantity which is normally complex-valued. 420 

For different loading history functions, a certain component of the response field 421 

vector has different forms: 422 
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in which the subscript “k” represents the considered component of the corresponding 424 

vector,  Re   denotes the real part of a complex term, and  Im   denotes the 425 

imaginary part of a complex term. 426 

Assuming the loading history is in cosine form, equation (74) can be rewritten as 427 

follows accordingly: 428 

          0 0 0 0, Re , cos Im , sink k kf t F t F t          x x x  (75) 429 

Equation (75) indicates that a response field component equals to the real part (or 430 

imaginary part) of corresponding time-independent quantity at a specific time. In 431 

addition, equation (75) can also be written as: 432 



 

      0 0 0, , cos ,k k kf t F t      x x x  (76) 433 

where  0,kF x  is the amplitude of vibration, and  0,k x  is the corresponding 434 

phase angle which satisfies  
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It can be concluded from equation (76) that, in the moving coordinate system, any 436 

response quantity of a point is harmonically varying with the same frequency as the 437 

applied load, but different points have different amplitudes and phase angles, which 438 

consequently forms a periodically varying profile over time. In this paper, all the 439 

results are presented in the moving coordinate system; corresponding results in the 440 

stationary coordinate system can be obtained based on the relationship between the 441 

coordinates. Working in the moving or stationary coordinate system should give 442 

equivalent solutions, because the physical nature of the problem is coordinate system 443 

independent (Louhghalam et al., 2013). 444 

Although the presented model is formulated for elastic layered systems, it can be 445 

combined with different damping models to simulate layered systems with damping. 446 

Note that the damping models should be transformed to the moving coordinate system. 447 

Additionally, the presented model can handle different types of surface moving loads 448 

by changing the spatial distribution function and the loading history function of the 449 

applied load. In this paper, a hysteretic damping model defined in the 450 

frequency-wavenumber domain related to the moving coordinate system is used to 451 

simulate the damping effect in the system by replacing Young’s modulus E with 452 

E[1+iηsgn(ω+ckx)], in which η is the loss factor and sgn(·) is the signum function. In 453 

addition, in view of the practical speeds of vehicles on roadways, all the considered 454 

velocities of the load are taken smaller than the Rayleigh wave speed in layered 455 

systems. 456 

3. Model validation 457 

The accuracy of the presented model is validated in this section. At first, this 458 

model is implemented in a computer program to compute the response of a layered 459 

system by executing the following steps: 460 

(1) For every wavenumber combination, it calculates the element stiffness 461 

matrices and assembles them to the global stiffness matrix; 462 

(2) It applies the boundary conditions and computes the global nodal 463 



 

displacement vector by solving the corresponding global system of equations; 464 

(3) It calculates the response field within a certain layer on the basis of the nodal 465 

displacements and obtains the total response field by summing all the contributions at 466 

different wavenumbers. 467 

Then, two cases are used to compare the simulated results with corresponding 468 

boundary element solutions given by Andersen and Nielsen (2003). These two cases 469 

consider the surface deflections of a homogeneous half-space and a layered system 470 

caused by a moving harmonic rectangular load. The points along the x-axis on the 471 

surface are considered in the result comparison, where specifically the corresponding 472 

amplitudes and phase angles of displacements in z-direction  ,zu tx  are analysed. 473 

Note that the loading amplitude used in the current paper is 106 times that in the 474 

reference literature to make the results comparable with realistic pavement response. 475 

Finally, the proposed model is validated by comparing simulated results with field 476 

measurements. A pavement testing facility called LINTRACK (for more details see 477 

Appendix C) was used to measure the strains of a pavement structure. The measured 478 

maximum longitudinal strains (in moving direction) of the pavement structure are 479 

used for comparison with corresponding simulated results. 480 

3.1. Response of a homogeneous half-space under a moving harmonic load 481 

This case considers the dynamic response of a homogeneous half-space caused by 482 

a harmonically varying load moving on its surface. The load is uniformly distributed 483 

over an area of 3 by 3 m2, and the amplitude is 1/9 MPa (instead of 1/9 Pa in the 484 

literature). The load varies at frequency of 40 Hz and moves in the positive direction 485 

of the x-axis with velocities of 0, 50, 100 and 150 m/s. The structural parameter 486 

values of the half-space are shown in Table 1, these parameter values are 487 

corresponding to some unsaturated sandy soil with moderate stiffness. With 488 

considering the practical speeds of vehicles on roadways, all the moving velocities of 489 

the load considered in this paper are smaller than the Rayleigh wave speed in the 490 

layered systems. 491 

Table 1 Structural parameter values of the half-space 492 

Layer 
ρ E ν η h 

kg/m3 MPa - - m 

1 1550 369 0.257 0.1 Infinite 

 493 



 

The amplitudes and phase angles of the displacements in z-direction  ,zu tx  for 494 

points along the x-axis on the surface of the half-space are calculated by the presented 495 

SEM-based model. In order to obtain converged solutions, 4096 4096  496 

wavenumbers are used, and this holds for all the results shown in this paper. The 497 

simulated results are compared with those given in the reference literature (Andersen 498 

and Nielsen, 2003) in Figure 4. The comparison shows that the results calculated by 499 

these two methods are almost identical for different moving velocities, which proves 500 

the accuracy of the proposed semi-infinite spectral element. In addition, some 501 

observations can be made: 502 

(1) When the load does not move, the displacement amplitude curve along the 503 

x-axis is symmetric with respect to x = 0 and the displacement amplitude is maximum 504 

at x = 0. 505 

(2) When the load moves, the displacement amplitude curve along x-axis is 506 

asymmetric with respect to x = 0. The displacement amplitudes at the points in front 507 

of the load decrease more rapidly than on the other side, and this trend is more 508 

obvious if the moving velocity is higher. 509 

(3) When the moving velocity is increased, the position of the peak of the 510 

displacement amplitude curve along the x-axis shifts to the left, and the maximum 511 

value is slightly higher. 512 

(4) When the moving velocity is zero, the phase angle curve along the x-axis is 513 

symmetric with respect to x = 0. However, with increasing moving velocity, the phase 514 

angles of uz at points in front of the loading area change more rapidly, and 515 

consequently the phase angle curve is denser on this side. 516 

 517 



 

(a) 

  

(b) 

  

(c) 

  



 

(d) 

  

Figure 4. Comparison of uz for points along the x-axis on the half-space surface 518 

calculated by different methods at different moving velocities:  519 

(a) c = 0 m/s, (b) c = 50 m/s, (c) c = 100 m/s, and (d) c = 150 m/s. 520 

3.2. Response of a layered system under a moving harmonic load 521 

This case considers the dynamic response of a layered system caused by a 522 

uniformly distributed harmonic load moving on its surface. The loading area and 523 

amplitude are the same as those in the case of the half-space, while the loading 524 

frequency is 20 Hz and the moving velocities are 0, 25, 50, and 75 m/s in the positive 525 

direction of the x-axis. The layered system is composed of a horizontal layer with a 526 

certain thickness and a homogeneous half-space. The structural parameter values of 527 

the layered system are shown in Table 2. The parameter values of this layered system 528 

correspond to two kinds of soil, and the soil in the layer is softer than that in the 529 

half-space. 530 

Table 2 Structural parameter values of the layered system 531 

Layers 
ρ E ν η h 

kg/m3 MPa - - m 

1 1500 100 0.40 0.1 2.0 

2 2000 300 0.45 0.1 Infinite 

 532 

The displacements in the z-direction  ,zu tx  at points along the x-axis on the 533 

surface of the layered system are computed by the presented SEM-based model, and 534 

the corresponding amplitudes and phase angles are compared with those given in the 535 

reference literature (Andersen and Nielsen, 2003) in Figure 5. The comparison 536 

indicates that the results calculated by the different methods have good agreement for 537 



 

different moving velocities, which confirms the accuracy of the proposed layer 538 

spectral element and its combination with semi-infinite spectral element. Additionally, 539 

some observations can be made: 540 

(1) The displacement amplitude curves along the x-axis on the layered system 541 

surface have similar changing trends as in the case of homogeneous half-space if the 542 

moving velocity is increased. However, the curves have some fluctuations for the 543 

layered system, which might be attributed to the complicated wave field in the layer 544 

spectral element. The half-space has higher stiffness than the layer above it, so the 545 

contribution of the reflected waves is pronounced. 546 

(2) The phase angle curves along the x-axis on the layered system surface are 547 

more complicated, but the changing trends are similar to the case of homogeneous 548 

half-space when the moving velocity is increased. 549 

 550 
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Figure 5. Comparison of uz for points along the x-axis on the layered system surface 551 

calculated by different methods at different moving velocities:  552 

(a) c = 0 m/s, (b) c = 25 m/s, (c) c = 50 m/s, and (d) c = 75 m/s.  553 

The results shown in this section indicate that the displacement amplitude curve 554 

decreases more rapidly in front of the loading area, which is more obvious at higher 555 

velocities. The reason of this phenomenon is the uneven wave field distribution in 556 

the vicinity of the loading area caused by the Doppler effect (Lefeuve-Mesgouez et 557 

al., 2002). The wavelengths of the waves in front of the loading area are shorter 558 

while the wavelengths of the waves behind the loading area are longer. Hence, the 559 

moving load has a smaller influencing area in front of the load than behind it. 560 

3.3. Comparison with field measurements 561 

LINTRACK was used to measure the strains of an asphalt pavement structure 562 

which was designed for a heavily loaded motorway. The first layer is porous asphalt 563 



 

concrete (PAC), the second layer is newly applied stone asphalt concrete (New 564 

STAC), the third layer is old STAC, the fourth layer is asphalt granulate cement 565 

(AGRAC), and the foundation is a thick and well-compacted sand subgrade. The 566 

parameter values of the tested pavement structure are shown in Table 3. Strain 567 

gauges were installed at the bottom of the first layer in the longitudinal direction 568 

(direction of movement). During the measurements, the LINTRACK belt moved 569 

straight over the built-in strain gauges at a constant speed of 2.5 m/s. A constant 570 

force was applied on the tire, while the tire pressure was maintained to be 900 kPa. 571 

Table 3 Parameter values of the tested pavement structure 572 

Layers 
ρ E ν η h 

kg/m3 MPa - - m 

PAC 2090 5525 0.25 0.1 0.05 

New STAC 2395 7225 0.25 0.1 0.06 

STAC 2395 8500 0.25 0.1 0.17 

AGRAC 2141 5400 0.25 0.2 0.25 

Subgrade 1733 126 0.4 0.4 Infinite 

 573 

The maximum longitudinal strains of the pavement structure calculated by the 574 

presented model are compared with those measured by the strain gauges. The results 575 

are shown in Table 4, which indicates a good match between the simulated and 576 

measured data, and thus further proves the accuracy of the presented model. 577 

Table 4 Comparison between the simulated and measured maximum longitudinal 578 

strains 579 

Cases 
Forces Maximum longitudinal strains (10-6) 

kN Simulated Measured 

1 20 19 19 

2 25 21 21 

3 30 22 22 

4 35 24 23 

5 40 25 24 

6 45 27 26 

 580 



 

4. Response analysis of a pavement structure 581 

This section focuses on a specific pavement structure subjected to a surface 582 

moving load, and the parameter sensitivity analysis and stress analysis are conducted. 583 

The reference loading conditions are described as follows: 584 

 A uniformly distributed harmonically varying load moves in the positive 585 

direction of the x-axis on the surface of a pavement structure; 586 

 The moving velocity is c = 25 m/s (90 km/h); 587 

 The loading frequency is 0 20 Hzf  ; 588 

 The loading amplitude is 0 550 kPap  ; 589 

 The dimensions of loading area are 0 02 2 0.2683 mx y  ; 590 

 The dimensions of the space window are 0 02 2 400 mX Y  . 591 

The total force applied on the surface is about 39.6 kN, which is comparable to 592 

the actual traffic load. The detailed reference parameter values of a pavement 593 

structure are shown in Table 5. 594 

Table 5 Reference parameter values of a pavement structure 595 

Layers 
ρ E ν η h 

kg/m3 MPa - - m 

1 2400 1000 0.35 0.1 0.1 

2 2000 500 0.35 0.1 0.3 

3 1600 60 0.35 0.1 Infinite 

 596 

4.1. Parameter sensitivity analysis 597 

By using single factor analysis, the sensitivity of the displacement amplitude 598 

curve along the x-axis on the pavement surface to different parameters is 599 

investigated. The results are shown in Figure 6, in which the response of the 600 

reference structural configuration to the reference loading is shown in solid line. It is 601 

assumed that all the layers in the pavement structure have the same Poisson’s ratio 602 

and loss factor. 603 

4.1.1. Sensitivity to moving velocity 604 



 

The displacement amplitude curves along the x-axis on the pavement surface 605 

caused by a load moving at different velocities (c = 5, 25, and 45 m/s) are shown in 606 

Figure 6(a). The effect of the moving velocity is similar to that observed in the 607 

previous section. However, for a realistic pavement structure, the curves are very 608 

smooth because of the relatively high structural stiffness, and the Doppler effect is 609 

not as significant as that observed for the layered soil systems. In addition, within the 610 

range of analyses, the maximum of the displacement amplitude curve is slightly 611 

affected by the moving velocity. 612 

4.1.2. Sensitivity to loading frequency 613 

The displacement amplitude curves along the x-axis on the pavement surface 614 

caused by a moving load with different loading frequencies ( 0f  = 10, 20, and 30 Hz) 615 

are shown in Figure 6(b). The vertical displacement amplitudes of the surface points 616 

along the moving direction are smaller if the loading frequency is higher, which 617 

might be the result of the damping mechanism playing a more pronounced role. 618 

4.1.3. Sensitivity to loading area 619 

The displacement amplitude curves along the x-axis on the pavement surface 620 

caused by a moving load with different loading areas ( 0s  = 0.036, 0.072, and 0.108 621 

m2) but the same amplitude of the total force (39.6 kN) are shown in Figure 6(c). It 622 

can be seen that the maximum of the curve is higher if the loading area is smaller, 623 

which is caused by the increase of the loading pressure. However, the differences 624 

appear only in the close vicinity of the loading area, the displacement amplitudes of 625 

points outside are almost identical. Therefore, if the applied force is the same, the 626 

effect of the loading area is localised in the close vicinity of the load. 627 

4.1.4. Sensitivity to loss factor 628 

The surface displacement amplitude curves along the x-axis for pavement 629 

structures with different loss factors (  = 0.1, 0.2, and 0.3) under reference loading 630 

conditions are shown in Figure 6(d). It can be seen that the curve is slightly lower if 631 

the loss factor is higher. More energy is dissipated for a system with higher loss 632 

factor, which results in smaller displacements. 633 



 

4.1.5. Sensitivity to Poisson’s ratio 634 

The surface displacement amplitude curves along the x-axis for pavement 635 

structures with different Poisson’s ratios (  = 0.25, 0.35, and 0.45) under reference 636 

loading conditions are shown in Figure 6(e). The maximum of the curve is slightly 637 

smaller if the Poisson’s ratio is larger, while the displacement amplitudes of points 638 

outside the loading area are almost unaffected. 639 

 640 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Figure 6. Sensitivity of the amplitudes of uz for points along the x-axis on the 641 

pavement surface to different parameters: (a) Moving velocity, (b) Loading 642 

frequency, (c) Loading area, (d) Loss factor, and (e) Poisson’s ratio. 643 

It should be highlighted that Figure 6 only shows the amplitudes of uz for points 644 

along the x-axis on the surface. In reality, all quantities at all points are harmonically 645 

varying, as shown in equation (76). Furthermore, for a pavement structure with the 646 

reference structural configuration subjected to the reference loading condition, the 647 

profiles of uz for points along different axes on the pavement surface for t = 0 are 648 

shown in Figure 7. The results show that the profile of uz is asymmetric along the 649 

x-axis while symmetric along the y-axis, which means the Doppler effect appears 650 

only in the moving direction. 651 

(a) 

 

(b) 

 

Figure 7. Profiles of uz for points along different axes on the pavement surface for t = 652 

0: (a) x-axis and (b) y-axis. 653 



 

4.2. Stress analysis 654 

For a pavement structure with the reference loading and structural configuration, 655 

the stresses of points along the x-axis at depth 0.1 m are simulated by the presented 656 

model. The results for t = 0 are shown in Figure 8, which indicates that the points 657 

under the loading area are most critical. For these points, the maximum stress 658 

component is σzz, which is followed by σxx, σzx, and σyy. In addition, the stress 659 

components of σxy and σyz are negligibly small. The stresses calculated by the 660 

presented model could be used for pavement structural design to ensure its 661 

durability. 662 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 8. Stresses of points along the x-axis at depth 0.1 m for t = 0:  663 

 (a) σxx, (b) σyy, (c) σzz, and (d) σzx. 664 

5. Conclusions and recommendations 665 

This paper proposes a SEM-based model which can be used to analyse the 666 



 

dynamic response of layered systems caused by a moving load. Based on the 667 

discussion shown in this paper, the following conclusions can be drawn: 668 

(1) The proposed model is robust for the dynamic analysis of layered systems 669 

under a moving load, and this model is a potential tool for pavement structural 670 

design. 671 

(2) The displacement amplitude curves and phase angle curves along the 672 

moving direction are asymmetric when the load moves, and this asymmetry is more 673 

dominant if the moving velocity is higher. The reason of this phenomenon is the 674 

inhomogeneous wave field distribution caused by the Doppler effect. However, the 675 

moving velocity only has slight effect on the maximum of the surface displacement 676 

amplitude curve within the scope of analysis. 677 

(3) The surface displacement amplitude curve will be lower if the loading 678 

frequency is higher or the loss factor is bigger, and the effect of the former is more 679 

dominant. 680 

(4) If the amplitude of the applied total force is constant, the loading area only 681 

has influence on the displacement amplitudes of points in the close vicinity of the 682 

load. 683 

(5) The Poisson’s ratio has slight effect on the maximum of the displacement 684 

amplitude curve, and it almost does not affect the displacement amplitudes of points 685 

outside the loading area. 686 

(6) The presented model is a promising parameter back-calculation engine for 687 

pavement quality evaluation. 688 

This paper proposed a 3D dynamic model for elastic layered systems under a 689 

moving load, which is combined with a hysteretic damping model to analyse the 690 

response of a pavement structure caused by a moving harmonic load. In order to 691 

consider the frequency-dependent viscous effect in pavement structures, it is 692 

recommended to use more suitable damping models. 693 
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Appendix A 702 

In the moving coordinate system, the Navier’s equation has the following form: 703 

  
2

2

t
   

  
       

  
u u c u

x
 (A1.1) 704 

The Helmholtz decomposition of the displacement field is expressed as: 705 

  u ψ  (A1.2) 706 

By substituting equation (A1.2) into equation (A1.1), considering the identities of 707 

2    and 0 ψ , and interchanging the order of the operators gives: 708 
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c ψ c ψ 0
x x

(A1.3) 709 

This equation will be satisfied if the terms in the square brackets vanish, hence: 710 
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 (A1.5) 712 

with  P 2 /c      and 
S /c   . 713 

If the velocity vector has the form of  
T

0 0cc , then the equations (A1.4) 714 

and (A1.5) become: 715 
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Appendix B 719 

The element stiffness matrix e
k̂  of the layer spectral element can be expressed 720 

as follows: 721 
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 735 

where   is defined as follows: 736 
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Appendix C 739 

LINTRACK is a pavement tester in the Faculty of Civil Engineering and 740 

Geosciences, Delft University of Technology. As shown in Figure C1, it consists of a 741 

free-rolling wheel that moves forward and backward with a guidance system. The 742 

force applied on the wheel can be varied between 15 and 100 kN and the moving 743 

speed can be changed between 0 and 20 km/h. A fully automatic electronic control 744 

system makes it possible to run LINTRACK continuously with automatic data 745 

collection. Various measuring instruments (e.g. strain gauges) can be built into test 746 

sections to collect necessary information about the response of a pavement structure. 747 

 748 

 749 

Figure C1. LINTRACK device with wide base tire. 750 

751 
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