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SUMMARY

This doctoral dissertation explores the development and application of innovative tech-
nologies designed to improve the sustainability of the construction industry by effec-
tively using recycled coarse aggregates (RCA). The primary aim of this research is to de-
velop, implement, and validate novel methods that incorporate advanced technologies
for accurate grading and quality assurance of RCA. By enhancing the efficiency of RCA
repurposing, this work seeks to broaden its use in construction projects, significantly
contributing to environmental sustainability.

The research begins by introducing a novel mobile system specifically designed to
conduct on-site quality inspections of unscreened RCA streams. This technology pro-
vides an easily transportable and efficient solution to assess and categorize RCA on-site,
facilitating its immediate and effective reuse in various construction applications. This
system leverages advanced technologies from the field of raw materials sorting and real-
time data processing to ensure the quality and usability of recycled materials, aiming to
reduce construction waste and enhance material lifecycle management.

The study further investigates the integration of RCA in the production of high-
performance concrete through the industrial-scale implementation of intelligent opti-
mal grading techniques. These techniques detail the integration of optimized grading
algorithms that adjust the composition of RCA to enhance the mechanical properties
of concrete. This methodology not only improves the quality of final concrete but also
demonstrates the practical and scalable use of RCA in demanding construction environ-
ments.

A significant portion of the research is dedicated to the characterization of RCA using
Laser-Induced Breakdown Spectroscopy (LIBS). This technique offers a quick and non-
destructive way to accurately identify and classify materials and contaminants for in-
line quality inspection of RCA. The precision and accuracy of LIBS allow for a detailed
assessment of the RCA quality, crucial for ensuring the structural integrity and longevity
of RCA-based concrete structures.

Further advancements are achieved by integrating LIBS with 3D scanning tech-
nologies. This combination establishes a more precise quality control system for RCA
streams. By enhancing the detection and quantification of undesirable contaminants
within RCA streams, this approach ensures that the materials in the final recycled prod-
ucts meet the required standards, thereby improving the overall reliability of RCA. This
not only maintains but also improves the structural quality of the final concrete.

The dissertation concludes by synthesizing the technological innovations and re-
search findings, emphasizing their implications for both the scientific community and
the construction industry at large. It highlights the environmental benefits of adopting
RCA, including reduced reliance on virgin materials and enhancing the sustainability
of construction practices. Additionally, it outlines a series of future research directions
that focus on refining these technologies, exploring their economic impacts and com-
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Xii SUMMARY

mercial viability, and evaluating the long-term performance of structures built with RCA
concrete.

Overall, this thesis provides a substantial contribution to the field of sustainable con-
struction, offering practical, technology-driven solutions that pave the way for a more
sustainable and environmentally conscious construction industry. The methodologies
developed herein not only push the boundaries of academic research but also present
viable, industry-ready applications that can significantly impact the way construction
materials are recycled and utilized.



SAMENVATTING

Dit proefschrift onderzoekt de ontwikkeling en toepassing van innovatieve technolo-
gieén ontworpen om de duurzaamheid van de bouwindustrie te verbeteren door effec-
tief gebruik te maken van gerecyclede grove aggregaten (RCA). Het primaire doel van dit
onderzoek is het ontwikkelen, implementeren en valideren van nieuwe methoden die
geavanceerde technologieén incorporeren voor nauwkeurige sortering en kwaliteitsbor-
ging van RCA. Door het verbeteren van de efficiéntie van het hergebruik van RCA, streeft
dit werk naar een bredere toepassing in bouwprojecten, wat aanzienlijk bijdraagt aan de
milieuduurzaamheid.

Het onderzoek begint met de introductie van een nieuw mobiel systeem dat speci-
fiek is ontworpen om ter plaatse kwaliteitsinspecties uit te voeren van ongezeefde RCA-
stromen. Deze technologie biedt een gemakkelijk transporteerbare en efficiénte oplos-
sing om RCA ter plaatse te beoordelen en te categoriseren, waardoor het direct en ef-
fectief hergebruikt kan worden in verschillende bouwtoepassingen. Dit systeem maakt
gebruik van geavanceerde technologieén op het gebied van grondstoffen sorteren en re-
altime gegevensverwerking om de kwaliteit en bruikbaarheid van gerecycleerde materi-
alen te waarborgen, met als doel bouwafval te verminderen en het beheer van de mate-
riaalcyclus te verbeteren.

De studie onderzoekt verder de integratie van RCA in de productie van hoogwaar-
dig beton door de industriéle implementatie van intelligente optimale sorteertechnie-
ken. Deze technieken beschrijven de integratie van geoptimaliseerde sorteeralgoritmen
die de samenstelling van RCA aanpassen om de mechanische eigenschappen van beton
te verbeteren. Deze methodologie verbetert niet alleen de kwaliteit van het uiteinde-
lijke beton, maar toont ook het praktische en schaalbare gebruik van RCA in veeleisende
bouwomgevingen.

Een aanzienlijk deel van het onderzoek is gewijd aan de karakterisering van RCA
met behulp van Laser-Induced Breakdown Spectroscopy (LIBS). Deze techniek biedt een
snelle en niet-destructieve manier om materialen en verontreinigingen nauwkeurig te
identificeren en te classificeren voor in-line kwaliteitsinspectie van RCA. De precisie en
nauwkeurigheid van LIBS maken een gedetailleerde beoordeling van de RCA-kwaliteit
mogelijk, cruciaal voor het waarborgen van de structurele integriteit en levensduur van
op RCA gebaseerde betonconstructies.

Verdere vooruitgang wordt bereikt door LIBS te integreren met 3D-
scantechnologieén. Deze combinatie realiseert een nauwkeuriger kwaliteitscon-
trolesysteem voor RCA-stromen. Door het detecteren en kwantificeren van ongewenste
verontreinigingen binnen RCA-stromen te verbeteren, zorgt deze aanpak ervoor dat de
materialen in de uiteindelijke gerecyclede producten aan de vereiste normen voldoen,
waardoor de algehele betrouwbaarheid van RCA verbetert. Dit behoudt niet alleen,
maar verbetert ook de structurele kwaliteit van het uiteindelijke beton.

xiii



Xiv SAMENVATTING

Het proefschrift wordt afgesloten door de technologische innovaties en onderzoeks-
resultaten te integreren, waarbij de implicaties voor zowel de wetenschappelijke ge-
meenschap als de bouwindustrie in het algemeen worden benadrukt. Het benadrukt de
milieuvoordelen van het adopteren van RCA, inclusief verminderde afthankelijkheid van
uitputbare grondstoffen materialen en het versterken van de duurzaamheid van bouw-
praktijken. Daarnaast schetst het een reeks toekomstige onderzoeksrichtingen die zich
richten op het verfijnen van deze technologieén, het verkennen van hun economische
impact en commerciéle levensvatbaarheid, en het evalueren van de langetermijnpresta-
ties van bouwwerken uit RCA-beton.

Over het algemeen levert deze thesis een substantiéle bijdrage aan het gebied van
duurzame bouw, en biedt zij praktische, technologiegedreven oplossingen die de weg
banen voor een duurzamere en milieubewustere bouwindustrie. De ontwikkelde me-
thodologieén verleggen niet alleen de grenzen van academisch onderzoek, maar presen-
teren ook haalbare, industrie-rijpe toepassingen die significant kunnen impact hebben
op de manier waarop bouwmaterialen worden gerecycled en gebruikt.
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2 1. INTRODUCTION

HE construction industry is at a pivotal crossroads, as it grapples with the dual chal-

lenges of meeting the increasing demand for infrastructure while minimizing its en-
vironmental footprint. Traditional construction practices, particularly the extensive use
of concrete, have led to significant environmental concerns, including resource deple-
tion, energy consumption, and land degradation. In response to these challenges, the
adoption of sustainable construction practices has become a global imperative. This
dissertation explores the role of recycled coarse aggregates (RCA) as a sustainable alter-
native to natural aggregates, examining the challenges of quality control and monitoring
associated with their utilization.

The introduction is structured as follows: Section 1.1 provides the background and
motivation for this research, delving into the global need for sustainable construction,
the role of RCA, and the challenges in their broader adoption. Section 1.2 outlines the
specific research objectives that guide this study. Finally, Section 1.3 presents the over-
all structure of the dissertation, offering a roadmap for the topics and methodologies
explored in subsequent chapters.

1.1. BACKGROUND AND MOTIVATION

1.1.1. GLOBAL NEED FOR SUSTAINABLE CONSTRUCTION

As the global population continues to grow and urbanize, the construction industry faces
an unprecedented demand for infrastructure development. This rapid expansion places
immense pressure on natural resources and the environment, highlighting the urgent
need for sustainable construction practices. Traditional methods of construction, par-
ticularly the widespread use of concrete, have significant environmental impacts, in-
cluding resource depletion, high energy consumption, and extensive land degradation.
Addressing these challenges is critical to ensuring that future construction activities
meet the needs of society without compromising the availability of our planet. This sec-
tion explores the escalating demand for construction materials and the environmental
consequences of conventional concrete practices, emphasizing the necessity of sustain-
able solutions in the construction industry.

ESCALATING DEMAND FOR CONSTRUCTION MATERIALS

The global population is projected to reach nearly 10 billion by 2050, predominantly con-
centrated in urban areas (Lee, 2011). This surge necessitates substantial construction
activity to accommodate growing urban populations, including housing, commercial
buildings, transportation networks, and other critical infrastructure. This growth is not
only concentrated in developed regions but is particularly intense in developing coun-
tries where urbanization is accelerating at a rapid pace (X. Q. Zhang, 2016). According to
the United Nations Environment Programme (UNEP), the construction sector accounts
for more than 30% of global resource consumption (UNEP, 2002). This intensive use of
resources highlights the urgent need for sustainable materials and practices that reduce
environmental impact without compromising the demand for infrastructure.

Urbanization and Infrastructure Expansion
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The rapid pace of urbanization and infrastructure expansion has become a defin-
ing characteristic of the 21st century, significantly influencing the demand for construc-
tion materials globally (Wei and Ewing, 2018). As more people migrate to urban areas in
search of better economic opportunities and improved living standards, cities have ex-
perienced unprecedented growth. This urban expansion necessitates the development
of a wide array of infrastructure, including residential buildings, commercial complexes,
transportation networks, and public utilities.

The United Nations estimates that by 2050, nearly 70% of the global population will
reside in urban areas, an increase from the current 56% (Hawksworth and Cookson,
2006). This shift not only drives the need for new construction but also the expansion
and upgrading of existing infrastructure. Consequently, there is a substantial surge in
the demand for essential construction materials, particularly concrete, which is the most
widely used construction material globally. Concrete’s primary component, coarse ag-
gregates, is central to meeting the structural demands of this urban growth. However, the
scale of current urbanization trends places immense pressure on the natural resources
used to produce these materials, prompting a critical evaluation of their sustainability.

Material Consumption Patterns

The consumption patterns of construction materials have evolved in tandem with the
growth in urbanization and infrastructure projects. Over the past few decades, the con-
struction industry has witnessed a substantial increase in the extraction and use of nat-
ural resources, particularly in the production of cement, sand, and aggregates (Kisku
et al,, 2017). These materials form the backbone of modern construction, especially in
developing nations where the need for new infrastructure is most acute.

In many regions, the demand for construction materials far outstrips the local sup-
ply, leading to increased importation and, consequently, higher costs and environmen-
tal impact (Bridge, 2009). The traditional linear consumption model—where resources
are extracted, used, and disposed of—has led to inefficiencies and a significant waste
problem, further exacerbating the sustainability challenges faced by the construction
sector. As material consumption continues to rise, there is an urgent need to move to-
wards more sustainable practices, such as the use of recycled materials, to mitigate the
environmental footprint of construction activities.

Resource Depletion and Sustainability Challenges

The escalating demand for construction materials has brought to light the critical is-
sue of resource depletion. Natural aggregates, a key component in concrete, are derived
from finite geological resources, primarily consisting of crushed stone, sand, and gravel.
The continuous extraction of these materials has led to the depletion of high-quality
sources, pushing the industry to source aggregates from increasingly distant and envi-
ronmentally sensitive areas.

This depletion poses significant sustainability challenges. The environmental im-
pact of aggregate extraction includes habitat destruction, increased greenhouse gas
emissions from transportation, and the loss of biodiversity (Bendixen et al., 2021). Fur-
thermore, the reduced availability of quality aggregates has resulted in higher costs and
the need for alternative materials.
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ENVIRONMENTAL IMPACT OF TRADITIONAL CONCRETE CONSTRUCTION PRACTICES
Traditional concrete construction practices, while foundational to modern infrastruc-
ture development, have significant environmental repercussions. The production and
use of concrete involve processes that heavily deplete natural resources, consume vast
amounts of energy, and contribute to extensive land degradation. These environmental
impacts are increasingly becoming unsustainable, raising concerns about the long-term
viability of conventional construction methods. This section examines the specific envi-
ronmental challenges associated with traditional concrete practices, focusing on water
resource depletion, energy consumption and emissions, and the degradation of land,
thereby highlighting the urgent need for more sustainable alternatives in the construc-
tion industry.

Water Resource Depletion

Traditional concrete construction practices are highly water-intensive, contributing sig-
nificantly to global water resource depletion (Hong et al., 2019). Water is essential in
concrete production for the hydration of cement, which is the binding agent in concrete.
The process demands vast amounts of freshwater, not only for mixing but also for curing
and cleaning purposes on construction sites. This excessive water usage has serious en-
vironmental implications, especially in regions where water scarcity is already a critical
issue.

Globally, the construction industry is one of the largest consumers of freshwater, with
concrete production alone accounting for approximately 9% of total industrial water
usage in 2012 (Miller et al., 2018). In water-stressed regions, this demand exacerbates
the competition for limited water resources, affecting both ecosystems and communi-
ties. Over-extraction of water for concrete production can lead to the depletion of local
aquifers, reduced water quality, and disruption of natural water cycles. It is important
to note that the high water demand for cement hydration persists regardless of whether
natural aggregates or recycled aggregates are used. The unsustainable use of water in
concrete production highlights the need for more efficient practices and alternative ma-
terials that reduce water dependency in construction.

Energy Consumption and Emissions

The production of traditional concrete is an energy-intensive process with significant
environmental consequences. The primary energy consumption stems from the pro-
duction of cement, the most crucial component of concrete. Cement production in-
volves the calcination of limestone at high temperatures in kilns, which requires sub-
stantial amounts of energy, predominantly from fossil fuels. This process not only con-
sumes a large amount of energy but also results in the emission of carbon dioxide (CO5)
and other greenhouse gases.

Cement production is responsible for approximately 8% of global CO, emissions,
making it one of the largest single industrial contributors to climate change (Shen et
al.,, 2015). Additionally, the overall lifecycle of concrete—from raw material extraction to
transportation and construction—further adds to the carbon footprint of the construc-
tion industry. The energy consumed in the production and transportation of aggregates,
as well as the operation of construction machinery, all contribute to the industry’s high
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energy demands and associated emissions.

These emissions have far-reaching impacts on global warming, air quality, and pub-
lic health (Shah et al., 2022). The urgent need to mitigate the environmental impact of
energy consumption in concrete production has spurred research into low-carbon alter-
natives and more sustainable construction practices, including the adoption of recycled
materials and innovative technologies.

Land Degradation

Land degradation is another significant environmental impact associated with tradi-
tional concrete construction practices (Habert et al., 2010). The extraction of raw ma-
terials for concrete, such as sand, gravel, and limestone, requires large-scale mining op-
erations that often lead to severe ecological disruption. These activities cause the de-
struction of natural landscapes, loss of biodiversity, and alteration of ecosystems.

Quarrying and mining for aggregates result in the removal of topsoil and vegetation,
leading to soil erosion, loss of fertile land, and increased vulnerability to flooding. In
many cases, abandoned quarries and mines are left as scarred landscapes, contributing
to long-term environmental degradation. The expansion of mining activities to meet
the growing demand for construction materials also encroaches on agricultural land and
protected areas, further exacerbating land use conflicts.

Moreover, the disposal of construction and demolition waste, which often includes
concrete debris, contributes to land degradation (Rao et al., 2007). Inadequate waste
management practices lead to the accumulation of waste in landfills, occupying vast
areas of land and potentially contaminating soil and groundwater.

These traditional practices underscore an unsustainable trajectory that, if contin-
ued, could lead to irreversible environmental damage, including exacerbating climate
change, depleting natural resources, and reducing biodiversity. This in turn would hin-
der future construction capabilities and jeopardize sustainability goals. To address these
significant impacts, several mitigation strategies have been developed and are being in-
creasingly implemented:

(1) Use of supplementary cementitious materials (SCMs) Materials such as fly ash,
slag, and silica fume can be used to replace a portion of cement in concrete mixtures
(Samad and Shah, 2017). These materials can improve the mechanical properties of
concrete while significantly reducing the carbon footprint associated with cement pro-
duction.

(2) Enhanced recycling of concrete Developing more efficient methods for recycling
concrete can reduce the need for virgin aggregate extraction and can decrease the overall
energy consumption and emissions associated with new concrete production.

(3) Innovations in concrete composition Recent advancements include the develop-
ment of low-carbon cements and carbon capture, utilization, and storage (CCUS) tech-
nologies (McLaughlin et al., 2023). These innovations aim to reduce the carbon emis-
sions from cement manufacturing and enhance the sustainability of concrete structures.
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THE DRIVE FOR SUSTAINABLE CONSTRUCTION

With the increasing recognition of the unsustainable nature of traditional concrete con-
struction, there has been a global push towards sustainable construction practices. The
impetus for embracing sustainable construction practices stems from a confluence of
ecological, economic, and social drivers that collectively address the pressing challenges
posed by conventional construction methods. This shift is essential to achieving envi-
ronmental sustainability while meeting the increasing demands of urban development.
This shift is motivated by the need for:

Reduction of Greenhouse Gas Emissions

A fundamental aspect of sustainable construction is its potential to significantly curtail
emissions associated with global warming (Chen et al., 2024). Innovative construction
methodologies, such as the use of carbon-capturing technologies during the concrete
curing process, actively convert CO, into minerals within the building materials them-
selves. This not only helps reduce the overall carbon footprint but also transforms build-
ings into carbon sinks rather than emitters.

Enhancing Resource Efficiency

Sustainable construction promotes the efficient use of materials throughout the lifecycle
of a building, from construction to demolition (Kabirifar et al., 2020). Techniques such
as prefabrication and modular construction reduce onsite waste and increase the preci-
sion in material usage. These methods not only streamline the construction process but
also allow for the dismantling and reuse of components, thereby extending the material
lifecycle and reducing the demand for new raw materials.

Adoption of Circular Economy Principles

Moving beyond the traditional linear economic model (make, use, dispose), sustainable
construction embraces a circular economy where materials are continually repurposed
(Ghisellini et al., 2018). This approach encourages the use of recycled aggregates and
reclaimed building materials, which conserves resources and decreases dependence on
virgin materials. For example, the use of demolished concrete as recycled aggregate in
new construction projects not only alleviates the pressure on natural resources but also
tackles the problem of construction and demolition waste.

Integration of Smart Technologies

The incorporation of smart technologies in construction processes and building man-
agement systems plays a crucial role in enhancing efficiency and sustainability (NiZeti¢
et al,, 2019). Technologies such as intelligent HVAC systems and automated lighting,
driven by IoT (Internet of Things), optimize energy use and reduce operational costs.
Moreover, the use of Building Information Modeling (BIM) allows for better planning
and management of resources throughout a building’s lifecycle, minimizing waste and
maximizing efficiency.

Policy and Regulatory Frameworks
Strong governmental support is crucial for fostering sustainable construction (Darko et
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al.,, 2018). This can be seen in the implementation of stricter building codes that man-
date energy efficiency and resource conservation. Incentive programs, such as tax re-
bates for green building projects, further encourage developers and builders to adopt
sustainable practices. Additionally, international collaborations and frameworks, like
the United Nations’ Sustainable Development Goals (SDGs), provide a global blueprint
for reducing environmental impact through sustainable construction. Many coun-
tries have adopted national policies to promote green building standards (Y. Zhang
et al., 2017), such as LEED (Leadership in Energy and Environmental Design) in the
United States and BREEAM (Building Research Establishment Environmental Assess-
ment Method) in the UK, which encourage the adoption of sustainable practices in the
construction sector.

These expanded elements illustrate a comprehensive approach to sustainable con-
struction that aligns with global sustainability objectives. By integrating innovative
technologies, adopting efficient practices, and supporting these through robust policy
frameworks, the construction industry can significantly mitigate its environmental im-
pact while continuing to thrive economically and socially. As the world continues to ur-
banize, the construction industry must embrace sustainable practices to ensure that it
can meet future infrastructure needs while preserving the planet for future generations.
This holistic approach not only mitigates the adverse impacts associated with construc-
tion but also aligns with broader sustainability goals, fostering a resilient, inclusive, and
sustainable urban future.

1.1.2. RECYCLED COARSE AGGREGATES

RCA are derived from the processed rubble of demolished concrete structures. As the
construction industry seeks sustainable practices due to environmental concerns and
resource depletion, RCA has emerged as a viable alternative to natural aggregates. Con-
crete is the most widely used construction material globally, and its production con-
sumes considerable natural resources, particularly aggregates. The demolition of old
concrete yields significant amounts of waste, which, if recycled properly, can provide a
sustainable source of aggregates for new construction projects.

SOURCES AND PRODUCTION OF RCA

RCA is typically produced through the demolition of concrete buildings, roads, bridges,
and other structures. Once a concrete structure is earmarked for demolition, it under-
goes a series of processes to become usable aggregate. The primary steps include demo-
lition, debris collection, and crushing. The demolition is carried out using mechanical
breakers, wrecking balls, or controlled explosions. The resulting debris is then collected
and often sorted to separate it into different materials. The concrete chunks are trans-
ported to recycling plants where they are crushed, screened, classified, and washed to
produce aggregates of desired sizes. Advanced technologies such as hydraulic crush-
ers and mechanical screens help in achieving precise sizes and removing contaminants
such as rebar, metal, and glass.
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QUALITY OF RCA

The quality of RCA can vary significantly depending on the source of the original con-
crete and the processing method used. Factors such as the age of the concrete, the pres-
ence of reinforcements, and the type of additives used in the original mix can affect the
properties of RCA. Commonly, RCA is found to be more porous and has a higher absorp-
tion rate than natural aggregates due to the presence of old cement paste attached to
the aggregate particles. This residual cement paste also gives RCA weaker mechanical
properties compared to new aggregates. However, with proper processing and quality
control, RCA can meet the specifications required for many construction applications,
including road base, landscaping, and even new concrete production.

ENVIRONMENTAL AND ECONOMIC IMPLICATIONS OF RCA

The use of RCA is aligned with the principles of sustainable development and circular
economy. By recycling concrete waste, the construction industry can significantly re-
duce its environmental footprint. The production of RCA reduces the need for quarrying
natural aggregates, which can lead to habitat destruction and biodiversity loss. More-
over, it helps in reducing the amount of construction waste sent to landfills, thereby
mitigating landfill usage and associated environmental issues. In addition to RCA, the
recycling process also produces by-products rich in sand and cement, which opens up
new opportunities for reusing these components of concrete in an economically efficient
way. This further enhances the sustainability of the recycling process by maximizing the
value extracted from concrete waste and reducing the demand for new raw materials.

Economically, the use of RCA can lead to cost savings in materials for construction
projects. Although the initial investment in recycling equipment and technology may be
high, the long-term savings in materials and landfill fees can offset these costs. Further-
more, as regulations on waste disposal tighten and natural aggregates become scarcer,
the economic benefits of RCA are likely to increase.

RCA represent a key element in the pursuit of sustainable construction. Through
technological advancements and improved regulatory frameworks, the potential of RCA
to replace natural aggregates can be fully realized, leading to more sustainable construc-
tion practices worldwide. As such, RCA not only offers a pathway to reduce the construc-
tion industry’s environmental impact but also presents a viable economic opportunity
in the face of decreasing natural resources.

1.1.3. CHALLENGES IN RECYCLED COARSE AGGREGATES UTILIZATION
RCA present a promising avenue for sustainable construction, offering a way to repur-
pose waste from demolished structures and reduce the environmental impact associ-
ated with new construction. However, despite these benefits, the utilization of RCA faces
several significant challenges that hinder its broader acceptance and application in the
construction industry. These challenges can be broadly categorized into quality con-
cerns, regulatory and standardization issues, economic considerations, and technical
hurdles.

QUALITY CONCERNS
Variability in Material Properties
One of the primary concerns with RCA is the variability in its physical and chemical
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properties. Unlike natural aggregates, whose properties are relatively consistent and
predictable, RCA can vary widely depending on the source of the original concrete, the
strategy of dismantling and demolition, and the methods used for its processing. This
variability can affect the strength, durability, and performance of the concrete made with
RCA.

Presence of Contaminants

RCA is often contaminated with other materials, such as bricks, glass, wood, gypsum,
and plastics, which can significantly affect the quality and safety of the aggregate. These
contaminants can interfere with the cement’s hydration process, leading to weaker con-
crete. Moreover, harmful substances like lead or asbestos, if present in the demolished
concrete, can pose serious health risks during handling and use.

Residual Mortar Content

RCA contains residual mortar from the original concrete, which can increase the wa-
ter absorption and porosity of the aggregates. This residual mortar also contributes to
a higher surface area compared to natural aggregates, requiring more cement paste to
achieve adequate workability in concrete, thus increasing material costs and potentially
affecting the final strength and durability.

REGULATORY AND STANDARDIZATION ISSUES

Lack of Consistent Standards

The standards for RCA vary significantly across different regions and countries. Without
consistent, universally accepted standards, it’s challenging for the construction industry
to adopt RCA broadly. This lack of standardization also complicates the quality assur-
ance process, making it difficult for engineers and architects to confidently specify RCA
for high-stakes projects.

Certification and Compliance Difficulties

Gaining certification for RCA-based products can be challenging due to the stringent
requirements set by many building codes, which are often designed with natural aggre-
gates in mind. These regulatory barriers can discourage the use of RCA in public and
high-profile projects where compliance with building codes is strictly enforced.

EcoNOMIC CONSIDERATIONS

Cost of Processing

Although using RCA reduces waste and can potentially lower material costs, the initial
costs for processing RCA (including sorting, crushing, and treating) can be higher than
those for natural aggregates. These higher upfront costs can deter businesses from in-
vesting in RCA production, particularly when the price of dumping waste is low.

Market Perception and Acceptance

RCA often suffers from a market perception issue, where it is seen as a lower-quality al-
ternative to natural aggregates. This perception can reduce market demand and limit its
use to non-structural applications. Overcoming this perception requires education and
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demonstrated success stories in RCA’s effective implementation. Educating the market
on the environmental and technical benefits of recycled aggregates is essential for its
broader acceptance (de Larrard and Colina, 2019). Providing insights into best practices
for the production and application of recycled concrete can help address common mis-
conceptions and drive wider industry adoption.

TECHNICAL HURDLES

Inferior Mechanical Properties

Studies have shown that concrete made with RCA can exhibit reduced compressive
strength and slower strength development compared to those made with natural aggre-
gates. This is partly due to the weaker bond that forms between the old cement mortar
and the new cement paste in RCA concrete.

Durability Issues

The higher porosity and water absorption of RCA can lead to durability issues in con-
crete, especially in environments exposed to freeze-thaw cycles and chemical attacks.
These durability concerns are critical for infrastructures such as bridges and roads,
where long-term performance is paramount.

Predictability and Modelling Difficulties

The variability in RCA makes it difficult to predict the exact performance of RCA-based
concrete, complicating the engineering and design processes. Advanced models and
simulations are required to accurately predict how RCA will behave in different con-
ditions, which can be a barrier for smaller firms or projects with limited technical re-
sources.

To mitigate these challenges and enhance the utilization of RCA, several strategies
can be employed. These include developing advanced technologies for better sorting
and treatment of RCA, establishing clearer regulatory standards, and conducting ex-
tensive research to better understand the material properties and behavior of RCA in
concrete. Additionally, educational initiatives to improve the perception of RCA and
demonstrate its viability and benefits in real-world applications are crucial. For all of
these strategies, the availability of data on the quality of RCA is an essential prerequisite
for success. By addressing these challenges head-on, the potential of RCA as a sustain-
able construction material can be fully realized, contributing to more environmentally
friendly and cost-effective building practices worldwide.

1.2. RESEARCH OBJECTIVES

1.2.1. PRIMARY OBJECTIVE

The primary objective of this doctoral research is to enhance the efficiency and reliabil-
ity of RCA for sustainable construction by addressing critical challenges in their qual-
ity assessment and grading. This study is dedicated to developing and implementing
cutting-edge technologies to improve the quality inspection process of RCA. Specifically,
the research aims to integrate advanced sensor technologies and data analytics into a
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streamlined, real-time quality inspection system, thereby promoting sustainability and
reducing the environmental impact of construction practices.

To achieve this, the research focuses on the development and validation of a novel
mobile sensor-based quality inspection system for RCA. This system leverages advanced
sensor technology to provide real-time, accurate data on RCA quality, enhancing their
usability in sustainable construction practices. This overarching goal guides the entire
research effort, aiming to establish a reliable, efficient, and scalable method for assessing
the quality of RCA, thus offering scalable and innovative solutions for the construction
industry.

1.2.2. SPECIFIC GOALS

ENHANCE REAL-TIME PARTICLE SIZE DISTRIBUTION (PSD) ANALYSIS

To achieve accurate, real-time PSD analysis of RCA using a novel sensor-based system
that integrates 3D scanning technology

This technology enables the dynamic assessment of particle size and distribution on
a conveyor belt system, processing over 100 tons of RCA per hour, thus ensuring high
throughput with minimal human intervention.

IMPROVE CONTAMINANT DETECTION

To enhance the detection and identification of contaminants in RCA by incorporating
advanced spectral analysis using Laser-Induced Breakdown Spectroscopy (LIBS)

This method allows for the immediate identification of various material compositions,
including hazardous substances, directly influencing the purity and safety of RCA used
in construction.

INCREASE PROCESSING EFFICIENCY

To develop a system capable of monitoring large quantities of RCA efficiently through
the integration of automated feeding and real-time data feedback

This system includes a high-capacity conveyor setup and advanced rating algorithms de-
signed to optimize the monitoring and processing of RCA at significantly higher speeds
than traditional methods.

ENSURE SYSTEM MOBILITY AND ADAPTABILITY

To create a mobile, containerized system that can be easily transported and deployed
at various demolition sites

This system is designed to withstand different environmental conditions and setup sce-
narios, offering flexibility in on-site recycling operations and enabling efficient RCA pro-
cessing directly at demolition sites to reduce transportation costs and environmental
impact.

VALIDATE SYSTEM ACCURACY AND RELIABILITY

To rigorously test and validate the accuracy and reliability of the sensor-based inspec-
tion system through extensive field trials and comparative analysis with traditional
methods

This includes validating the system’s performance across various operational conditions
and RCA quality levels to ensure consistent and dependable results.
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PROMOTE SCALABLE AND SUSTAINABLE CONSTRUCTION PRACTICES

To promote scalable and sustainable construction practices by integrating advanced
sensor technologies into the recycling and concrete production workflows

This approach is aimed at improving the quality assurance of RCA and fostering a circu-
lar economy within the construction industry. The system’s design facilitates scalability,
allowing it to be adapted for larger or smaller operations without loss of effectiveness.

By addressing these specific goals, this research contributes significantly to advanc-
ing sustainable construction practices, improving the quality and usability of RCA, and
providing a scalable solution for the construction industry.

1.3. OUTLINE

This outline provides a structured preview, organizing the dissertation into six cohesive
chapters. Each chapter focuses on essential aspects of monitoring the quality of RCA,
which are pivotal for advancing sustainable infrastructure. The framework of this disser-
tation is depicted in Figure 1.1.

Chapter 1: Introduction

This introductory chapter sets the stage for the dissertation by underscoring the ur-
gent global need for sustainable construction practices, with a special focus on the use of
RCA. It delves into the pressing environmental challenges posed by construction waste
and articulates the substantial potential of RCA to alleviate these concerns. This chapter
critically examines the primary barriers to RCA adoption, particularly the variability in
quality that contributes to industry reluctance to embrace these materials more widely.
By defining the research context and outlining the objectives, this section highlights the
novel contributions of this study and its significance in propelling forward the practices
of sustainable construction.

Chapter 2: A Mobile System for Quality Control and Monitoring: Design and Imple-
mentation

This chapter introduces a novel mobile system specifically designed for the in-situ
quality inspection of unscreened RCA streams providing a comprehensive look at its de-
sign, setup, and technical specifications. The system is specifically engineered to meet
the rigorous demands of modern sustainable construction, with a detailed rationale be-
hind each component enhancing its efficiency and effectiveness. Through an in-depth
examination, this chapter highlights how the system functions within real-world sce-
narios, playing a pivotal role in advancing quality assurance processes. By detailing the
system’s operational capabilities, it underscores its potential to significantly improve the
handling and usability of RCA, thus driving efficiency in sustainable construction prac-
tices.
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Figure 1.1: Structure of this dissertation

Chapter 3: In-line Recycled Coarse Aggregates Characterization Using Laser-Induced
Breakdown Spectroscopy

This chapter explores the use of LIBS for the detailed characterization of RCA. The
focus is on efficiently identifying and classifying materials within end-of-life (EoL) con-
crete, often contaminated by different waste components which degrade the quality of
RCA. A cluster-based identification algorithm is developed to enhance the precision of
in-line quality inspection of these aggregates as they are processed on a conveyor belt.
This methodology not only supports the high-grade recycling of EoL concrete but also
contributes to closing the material loop in a sustainable manner. The effectiveness of
this approach is demonstrated through rigorous validation, showing high accuracy and
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reliability in identifying contaminants and ensuring the production of clean RCA.

Chapter 4: 3D Surface Analysis to Assess Particle Size Distribution in Unscreened
Recycled Coarse Aggregates for Quality Assurance

This chapter discusses the integration of unscreened RCA in high-performance con-
crete production through an advanced, intelligent grading system. The system employs
automated, non-destructive technology for PSD analysis, markedly enhancing the effi-
ciency of RCA grading. Utilizing sophisticated 3D scanning technology that processes
RCA on a conveyor belt, it analyzes high-resolution point clouds in real time to achieve
optimal aggregate grading. Capable of processing at least 50 tons per hour per conveyor
belt, this innovative technology offers rapid, precise feedback that drives operational de-
cisions and optimizes the recycling process. This approach not only reduces waste but
also promotes the reuse of materials, advancing the quality of concrete production and
reinforcing the sustainability of construction practices.

Chapter 5: Optimizing Contaminant Detection Precision in Recycled Coarse Aggre-
gates via Surface-Condition-Adaptive Method

This chapter presents a quality control system that capitalizes on the integrated tech-
nologies of LIBS and 3D scanning, building upon the foundational insights discussed in
previous chapters. This advanced system is designed to facilitate rapid and precise de-
tection of contaminants in RCA, significantly enhancing the identification and classifi-
cation processes crucial for maintaining RCA quality in construction applications. The
system’s capability to perform real-time, non-destructive analysis allows for the imme-
diate assessment of large volumes of RCA, significantly enhancing the efficiency of re-
cycling processes. This method not only boosts the reliability of RCA but also sets the
groundwork for automated, high-throughput quality control systems in the recycling in-
dustry.

Chapter 6: Conclusion

The final chapter synthesizes the core findings of this dissertation, highlighting their
implications for the recycling industry and sustainable construction. This research sig-
nificantly advances RCA quality inspection through the development of a novel mo-
bile sensor-based system, integrating 3D scanning and LIBS for real-time, on-site as-
sessments. These innovations enhance the efficiency, accuracy, and scalability of RCA
processing, supporting the industry’s shift towards sustainability and circular economy
principles. While the research presents significant advancements, challenges such as
scalability, cost, and integration into existing processes remain. Future research should
focus on refining sensor technologies, exploring economic feasibility, and ensuring long-
term performance and regulatory compliance. These efforts will further enhance the
adoption of RCA in construction, contributing to a more sustainable and resilient built
environment.
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A MOBILE SYSTEM FOR QUALITY
CONTROL AND MONITORING:
DESIGN AND IMPLEMENTATION

Incorporating recycled coarse aggregates (RCA) from End-of-Life (EoL) concrete into con-
struction encounters industry resistance due to concerns over inconsistent quality. The
quality of RCA varies from one batch to another, unlike the more consistent quality of
natural aggregates. Thus, it is essential to automate RCA quality control for the recycling
industry. Traditional methods often fall short of providing the detailed analysis necessary
for quality assurance. This study emphasizes the critical need for reliable evaluations of
RCA to align with industry standards. To address this issue, a new mobile, containerized
sensor-based quality inspection system is proposed. This system features conveyor belts ca-
pable of processing over 100 tons of RCA per hour, substantially increasing efficiency over
lab-based methods. It includes a 3D scanner, the Gocator, which can accurately measure
the particle size distribution (PSD) of large quantities of RCA by rapidly approximating
the shape of particles from just one side of the pile. The accuracy and validity of this
approach are verified using X-ray tomography 3D modeling, comparable to traditional
manual sieving. Additionally, the system uses a laser-induced breakdown spectroscopy
(LIBS) sensor to monitor two conveyor belts simultaneously during high-speed operations.
This enables the continuous production of stable spectral data that accurately reflects the
material’s composition. A modified cluster-based identification algorithm swiftly detects
contaminants in RCA, thereby improving material purity assessments. Incremental learn-
ing techniques are implemented to update existing models as new spectral data becomes
available, dynamically updating chi-square distribution parameters. This ensures con-
tinuous model refinement without the need for complete retraining, enhancing compu-
tational efficiency and sustaining high classification performance. Monitoring data are
recorded on accompanying radio frequency identification (RFID) tags to enhance trace-

Apart from minor updates, this chapter has been submitted for publication.
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ability. This integrated system provides a scalable and flexible solution that enhances the
efficiency and reliability of EoL material management, supporting global sustainable in-
[frastructure initiatives.
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2.1. INTRODUCTION

HE increasing demand for construction materials, alongside the urgency for sustain-
T able waste management, has propelled the recycling of concrete from End-of-Life
(EoL) infrastructures as a progressively feasible solution. This approach has garnered
significant attention within the construction industry, aligning with its pivot towards
sustainable practices. A key aspect of this shift is the increased use of recycled coarse
aggregates (RCA), which are obtained from construction and demolition waste.

Recognizing the potential environmental detriments and the associated carbon foot-
print of unfettered natural aggregate extraction, many countries are promoting sustain-
able practices in the construction domain (Al Martini et al., 2023; Aslam et al., 2020;
Kabirifar et al., 2020; Soto-Paz et al., 2023; Trivedi et al., 2023). The European Union
(EU) has distinctly emerged as a frontrunner, adeptly incorporating sustainable recy-
cling methodologies into mainstream construction practices (Akhtar and Sarmah, 2018;
Gélvez-Martos et al., 2018; Lederer et al., 2020; Marique and Rossi, 2018; Zhang et al.,
2022). This shift is not merely a reaction to environmental urgency, it marks a strategic
transition towards resource conservation and a reduced carbon footprint for the entire
construction sector.

However, the transition to RCA is fraught with challenges, chiefly concerning the as-
surance of the recycled aggregates’ quality and purity (J. Kim, 2022; H. Wu et al., 2023).
These challenges are accentuated when the RCA is sourced from a diverse range of dis-
mantled infrastructures, bringing to the fore issues related to the presence and detection
of contaminants (Alaejos et al., 2013). These contaminants, if not properly identified and
managed, can significantly compromise the integrity and applicability of RCA in new
construction projects (Poon and Chan, 2007; L. Wu et al., 2024). Consequently, address-
ing these quality-related concerns is critical to maintaining the performance, durability,
and reliability of RCA-infused construction (Marin-Cortés et al., 2024; Vegas et al., 2015).
It requires a focused approach towards standardizing the quality assessment methods
and developing stringent guidelines to ensure that the recycled aggregates meet or sur-
pass the performance metrics of their natural counterparts.

Historically, the assessment of RCA primarily relied on traditional methodologies,
characterized by their labor-intensive nature, prolonged time frames, and manual pro-
cedures (Marie and Mujalli, 2019; Tuan et al., 2022). While these methods have served
the industry for a significant period, their inherent limitations, such as potential impre-
cisions and inefficiencies, have become increasingly evident as the construction sec-
tor has progressed. As the industry’s aspirations continue to shift towards achieving
enhanced operational efficiencies without compromising quality, the imperative for a
more innovative, efficient, and precise quality inspection mechanism has grown more
pronounced.

Amidst the prevailing challenges, the emergence of sensor technology provides a
promising solution (Barri et al., 2020; Cabral et al., 2023; Chang et al., 2022; Lotfi et
al., 2015; Trotta et al., 2021; Xia and Bakker, 2014). The rising demand underscores
the potential of recent advancements in sensor technology (Bonifazi et al., 2018; Nalon
et al., 2022; Vegas et al., 2015), which offer real-time, on-site characterization of RCA.
Such state-of-the-art methodologies not only enable prompt feedback, expediting the
decision-making process and any necessary recalibrations in production but also aug-
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ment the overall efficiency of the RCA production and usage cycle. Furthermore, the in-
tegration of real-time sensors into the RCA assessment process signifies more than just
technological evolution, it represents a broader shift towards sustainable construction
practices. By allowing for instant feedback and adjustments, these systems can reduce
wastage, optimize resource use, and ensure that the resulting product meets the neces-
sary quality benchmarks.

\
\

Input
(0~16mm)

EoL concrete Coarse
(16~22mm)

Wet fine fraction
. . . . (0~4mm)
Heating Air classification System (HAS) Advanced Dry Recovery (ADR) Technology

Recycled fine aggregates (RFA) Recycled coarse aggregates (RCA)
(0.25~4mm) (4~16mm)

Recycled cement
paste powder (RCP)
(0~0.25mm)

Sensor-based quality
inspection System

RCP (0~0.25mm) RFA (0.25~4mm) RCA (4~16mm)

Concrete to cement and aggregates (C2CA) Products

Figure 2.1: Concrete to Cement and Aggregate (C2CA) technology

This research delves into the sensor-based quality inspection system integrated into
the Concrete to Cement and Aggregate (C2CA) technology (Figure 2.1). Figure 2.2
presents a flowchart summarizing the methodological steps of the quality inspection.
This quality inspection system employs a 3D scanner Gocator and a laser-induced break-
down spectroscopy (LIBS) sensor to provide a comprehensive granulometric analysis of
RCA and detect any contaminants. The accuracy and validity of the PSD measurement
method are verified using 3D modeling with X-ray tomography, comparable to tradi-
tional manual sieving. Additionally, incremental learning techniques update existing
models as new spectral data becomes available, dynamically adjusting chi-square dis-
tribution parameters. This approach ensures continuous model refinement without the
need for complete retraining, enhancing computational efficiency and sustaining high
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classification performance. The innovative use of advanced sensors enables real-time
assessments on-site, which is particularly valuable in the dynamic context of demoli-
tion sites. By examining operational aspects and evaluating effectiveness in real-world
scenarios, this research aims to highlight how this technology could improve the quality
assessment of RCA. Through experimentation and analysis, the study emphasizes the
advancements in RCA processing, presenting a pathway for industries to achieve sus-
tainable growth while maintaining high-quality standards.
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Figure 2.2: Schematic of quality inspection process

2.2. MATERIALS AND METHODS

2.2.1. MATERIAL SAMPLES

This study used recycled concrete aggregates obtained from discarded concrete, col-
lected during the dismantling of various infrastructures throughout the Netherlands. To
maintain the purity of the EoL concrete, selective demolition methodologies were em-
ployed. To avoid contamination of the samples, we manually separated other demoli-
tion residuals such as brick, foam, glass, gypsum, mineral fibers, plastics, and wood at
the collection sites. This segregation process was part of the sample collection and pre-
processing, aiming to preserve the integrity of the samples.

2.2.2, SENSOR-BASED QUALITY INSPECTION SYSTEM
CONTAINERIZATION
The sensor-based quality inspection system, depicted in Figure 2.3, plays a critical role
in the C2CA technology framework. Housed within a specialized container, this system
performs several vital functions.

The container is partitioned into two areas: an inspection room and a control room.
These sections are separated to prevent any potential harm to operators from the lasers
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Figure 2.3: Sensor-based quality inspection system

used during the inspection process. The inspection room is equipped with sensors for
material analysis, and it includes a vacuum system designed to reduce dust levels inside
the inspection room. Reducing dust is essential, as it enhances the sensors’ accuracy by
lessening their interference with dust particles. The control room is set up to receive and
process various data collected in real-time. It also uses a monitoring system to oversee
activities within the inspection room to ensure operational safety and efficiency.

One of the primary advantages of the container is its mobility, which allows easy
transport to various demolition sites. This mobility increases operational flexibility and
optimizes resource allocation. The container is designed to facilitate the on-site recy-
cling and testing of concrete directly at demolition sites. By processing the demolished
concrete on-site, the need to transport it to a remote facility is eliminated. This not only
reduces the costs associated with transportation but also minimizes the overall expenses
related to the recycling process, as the material is reused or repurposed immediately
without additional handling or processing steps.

Additionally, the container acts as a protective shield against adverse weather con-
ditions, ensuring the system’s functionality despite external environmental challenges.
This safeguard is crucial for maintaining the accuracy of the sensors’ measurements by
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protecting the sensitive equipment from damage. Furthermore, beyond its role in ad-
verse weather conditions, the container’s presence demonstrates the system’s adaptabil-
ity in different field conditions. Such adaptability not only ensures the reliability of data
but also strengthens the overall robustness, resilience, and effectiveness. Consequently,
it expands the applicability of the system across various demolition and recycling con-
texts.

In summary, the containerized setup is fundamental in preserving data integrity, en-
hancing operational flexibility, and ensuring the system’s adaptability. These attributes
are key to the technology’s effectiveness in a variety of demolition scenarios.

COMPOSITION

Laser-Induced Breakdown Spectroscopy

(a) 3D view (b) Close view

Figure 2.4: Sensor-based quality inspection system

The sensor-based quality inspection system (Figure 2.4) comprises two primary sen-
sors: a 3D scanner Gocator and a LIBS sensor. Both sensors are positioned directly above
the conveyor belt. The Gocator specializes in the granulometric analysis of RCA, pin-
pointing/measuring their PSD. This device is adept at generating high-resolution, three-
dimensional point cloud data, capturing nuances in the surface topology and granular
distribution. Meanwhile, the LIBS sensor (Figure 2.5) plays a crucial role in identify-
ing contaminant compositions embedded within the RCA. It achieves this by focusing
ultra-short pulse lasers on the sample’s surface to create plasma, subsequently analyz-
ing the emitted light spectrum from the plasma to determine the material composition
and content of the sample.

A noteworthy aspect of the system’s design is the ingenious incorporation of multiple
reflective mirrors, which facilitates the simultaneous monitoring of RCA on two separate
conveyor belts with the use of only one Nd:TAG laser. This innovative approach not only
reduces the associated costs but also amplifies the system’s overall operational efficacy.
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Figure 2.5: Schematic diagram of LIBS

INSPECTION

The inspection process begins with the introduction of RCA into the system via a feeder,
followed by their deposition onto the conveyor belt, resulting in the formation of a
triangular-shaped pile of RCA. This triangular configuration is designed to ensure a uni-
form distribution of the RCA, extending from the innermost region to the outer edges of
the pile (Figure 2.6). This deliberate arrangement is particularly advantageous as it op-
timally facilitates the surface inspection conducted by the Gocator, allowing for precise
assessment and estimation of RCA properties.

As RCA piles move along the conveyor belt, they are sequentially inspected by both
the Gocator and LIBS sensors. The data generated during these inspections are instan-
taneously recorded in a computer system and subsequently uploaded to a secure cloud
storage platform for long-term archiving and retrieval. Additionally, monitoring data are
also linked to radio frequency identification (RFID) tags attached to the piles to enhance
traceability. The conveyor belt operates at a constant velocity of 0.529 m/s, enabling a
single conveyor belt to transport more than 50 tons of RCA per hour.

2.2.3. ANALYSIS METHODS
PARTICLE MORPHOLOGY
The primary objective of the particle morphology analysis is to achieve a statistical rep-
resentativeness of RCA particles, ensuring that the morphological features such as size,
shape, and orientation are comprehensively and reliably captured. This characteriza-
tion is crucial for understanding the behavior and performance of RCA in various appli-
cations, particularly where particle size distribution significantly impacts material prop-
erties.

The feeding method for the RCA piles is meticulously designed to ensure symmetry,
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Figure 2.6: Layered formation of RCA piles

which justifies focusing the analysis on only one side of the piles. This symmetric feed-
ing method guarantees an even distribution of RCA particles across each layer, as well
as each half-layer, within the piles formed on the conveyor belt (Figure 2.6). However, it
should be noted that the actual PSD and composition throughout the pile are not per-
fectly uniform. Variations in PSD are commonly observed along the slope. For more
detailed information on the equipment used and how uniformity is achieved, please
refer to 4.2.2 Equipment. Despite these variations, this particle distribution allows the
segmentation and analysis process to be both efficient and representative of the entire
pile.

Employing the Fastscape algorithm (Braun and Willett, 2013), originally developed
for terrain analytics, the system performs a watershed segmentation process (Steer et al.,
2022) of 3D point clouds to accurately delineate RCA particles. The segmented regions
are then encapsulated within ellipsoidal envelopes, enabling a quantifiable analysis of
particle morphology, structure, and orientation. This method addresses challenges such
as over-segmentation and ensures accurate geometrical representation through ellip-
soidal fitting, providing a comprehensive statistical and geometrical description of RCA
particles. The process involves several steps:

Initial Segmentation

The procedure begins by applying the watershed algorithm, traditionally used for 2D
digital elevation models, to segment global 3D point cloud data. This adaptation allows
the algorithm to effectively delineate individual particles by treating peaks in the data as
watershed ridges, thereby dividing the data into distinct segments.

Segmentation Correction
Commonly, the initial segmentation results in over-segmentation, where particles are
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divided into smaller, unnecessary parts. To correct this, the method merges particles
that are closely located. This merging is based on two criteria: the proximity of the parti-
cles’ summits and the alignment of their surface normals. Additionally, excessively flat or
elongated particles are removed because they typically do not represent individual parti-
cles. Instead, they often correspond to clusters of fine particles with a size much smaller
than the typical spacing between points in standard point clouds or are the result of
improper particle segmentation. These steps refine the segmentation and enhance the
overall quality.

3D Ellipsoidal Fitting

After the particles have been segmented and appropriately labeled, the next step is to
characterize their geometrical properties. This is done by fitting 3D ellipsoids to each
particle. Ellipsoidal fitting involves a complex optimization process where the best-
fitting ellipsoid is calculated to approximate the shape and size of each particle. This
step is crucial as it quantifies the particle structures, which can be vital for further anal-
ysis and applications.

Morphological Analysis
This method provides detailed geometrical information like the size, shape, and orienta-
tion of each particle. These properties are derived from the dimensions and orientation
of the fitted ellipsoids. The key aspect of this ellipsoidal model is the choice of the second
shortest axis as the main parameter for measuring graduation information. This partic-
ular axis is selected because it effectively represents the particle size, and consequently,
helps in determining the PSD. The use of this axis is beneficial because it strikes a bal-
ance, being more informative than the shortest axis, which might be too small to provide
useful data, and less variable than the longest axis, which could be too sensitive to minor
changes in particle shape. This makes the second shortest axis a reliable and represen-
tative measure for assessing the characteristics of different particles in a sample.

A challenge in this process is the unequal probability of converting different particle
sizes into ellipsoids when translating data obtained from scanning the top layer. This
inequality arises due to several factors:

Resolution Limitations Smaller particles may not be captured with sufficient detail
because of limitations in the resolution of the scanning equipment. This can result in a
failure to properly detect and represent smaller particles in the ellipsoidal fitting process,
leading to unequal representation across different particle sizes.

Obscuration by Larger Particles In a typical top-layer scanning process, smaller parti-
cles can be obscured or overshadowed by larger particles on the surface. Since scanning
often captures the exposed or dominant features, smaller particles may be missed or
inaccurately represented due to this overlap.

Surface Visibility Scanning data typically reflects the surface features of the particles.
Particles that are partially embedded or not fully exposed may not be accurately cap-
tured, resulting in less reliable conversion into ellipsoids for PSD predictions.
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Particle Shape Sensitivity The ellipsoidal fitting process tends to favor particles with
regular, well-defined geometric features, which are easier to model. Particles with more
irregular or subtle shapes may not be as easily translated into representative ellipsoids,
leading to errors or oversimplifications in their representation.

These inconsistencies introduce potential errors in the morphological analysis. To
mitigate this issue, it is essential to apply further calibration and adjust algorithms to
ensure the ellipsoidal fitting process accurately represents particles of all sizes.

3D MODELING WITH X-RAY TOMOGRAPHY
To further verify the accuracy of algorithms simulating particle morphology, medical
imaging techniques are employed to scan samples of RCA piles. It is important to note
that this imaging process is not part of the container technology but is instead used for
offline verification and calibration purposes. This enabled the creation of 3D models of
their interior to capture the actual particle morphology for comparison. Computed To-
mography (CT) imaging, a commonly used modality (Basu et al., 2011), employs X-rays
to acquire multiple angular projections of an object, which are then used to reconstruct
the object’s linear attenuation coefficient distribution. The resulting images are typi-
cally assembled into a series of consecutive axial slices arranged in parallel (Pelc, 2014).
CT scan information is digitally archived, frequently in a format referred to as Digital
Imaging and Communications in Medicine (DICOM). This format arranges the informa-
tion into an organized collection that includes both the imaging data and related meta-
data (Fajar et al., 2022). Metadata parameters like slice thickness, instance number, pixel
spacing, rescale slope, and rescale intercept found in DICOM files are employed during
the data preprocessing phase.

The Hounsfield unit (HU) scale, employed in CT imaging, quantifies the radiodensity
of tissues and materials. It sets the baseline with water at 0 HU and air at roughly -1000
HU, where substances of greater density show higher HU values. The process of con-
verting the linear attenuation coefficient of each material at a specified effective energy
into HU uses the standard equation:

Mmaterial — Hwater

HU = x 1000 (2.1)

Hwater
where u represents the linear attenuation coefficient. In the process known as
Hounsfield scaling or CT number scaling (Huda and Slone, 1996), raw attenuation values
derived from CT scans are converted into Hounsfield units using the equation:

HU = (PVxRS) +RI (2.2)

where PV signifies the pixel value, representing the original value attributed to a pixel
within a CT scan. RS, recognized as the rescale slope, is a scaling factor employed to
modify the pixel values accordingly. Meanwhile, RI, identified as the rescale intercept,
denotes a particular offset value applied to alter the pixel values.

Retrieving pixel arrays from DICOM files, organized by the instance number found in
the metadata, involves adjusting each pixel’s value in the CT image based on the rescale
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slope and intercept values. This process standardizes the pixel values to accurately rep-
resent the actual attenuation coefficients. Following this standardization, the pixel val-
ues are then transformed into HU.

To facilitate a comprehensive comparison with algorithms that simulate particle
morphology, adopting a distinct methodology involving the CT scanning of samples
becomes imperative. Conventional CT scanning techniques typically involve making
equidistant vertical incisions through the sample to capture cross-sectional imagery.
However, to enhance the comparability, it is crucial that slices are made at uniform in-
tervals along an oblique plane parallel to the surface of the sample. This procedure de-
mands the compilation of CT scan images into a cohesive ensemble, which is then used
to construct a 3D model of the sample, employing the transformed HU values. Subse-
quently, this model undergoes re-sectioning to align with the comparative analysis re-
quirements.

DICE SIMILARITY COEFFICIENT

To assess the extent of overlap between results obtained from algorithmic simulations
and X-ray tomography, the Dice similarity coefficient (DSC) (Dice, 1945; Sorensen, 1948)
is employed. The DSC, also known as the Serensen-Dice coefficient, is a statistical met-
ric used to measure similarity, often applied in image processing to gauge spatial over-
lap. This measurement method provides a quantitative way to compare the accuracy
and alignment of the two sets of data, facilitating an objective evaluation of how closely
the simulation results mimic the X-ray tomography findings. The DSC is defined as:

_2x|AnB]

DSC = (2.3)
|Al+B|

where: |An B| is the size of the intersection of two sets (in the context of images, these
would be pixel sets) — basically, the number of pixels that are classified as the foreground
(or as a particular object) in both images.| A| is the number of pixels classified as the
foreground in the first image. |B| is the number of pixels classified as the foreground in
the second image.

The value of the DSC ranges from 0 to 1, where 0 indicates no overlap and 1 indicates
perfect overlap. This coefficient is particularly useful as it quantifies the similarity be-
tween two binary images. In an ideal case, if the predicted segmentation matches the
ground truth segmentation exactly, the DSC would equal 1. Conversely, in an ideal case
where two images have no overlap (anticorrelation), the DSC reaches 0. However, a DSC
value of 0 is rare in practical applications, as it requires a complete absence of object
overlap, meaning where an object exists in one image, it never exists in the correspond-
ing location in the other image.

In more realistic cases, especially when comparing images that may be uncorrelated,
it is essential to consider a more informative lower bound for the DSC. If a fraction p of
the first image contains objects and a fraction g of the second image contains objects,
the DSC for uncorrelated images can be derived as follows:

2
psc=<P9

p+tq

(2.4)
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This formula gives the expected DSC when the two images have no correlation, and the
placement of objects in the two images is independent. Here, p and g represent the pro-
portions of the images that contain objects (foreground). This lower bound helps pro-
vide context for interpreting the actual DSC. This lower bound serves as a benchmark for
understanding how much the actual DSC deviates from the expected value in an uncor-
related scenario. A comparison with this lower bound provides a clearer interpretation
of image similarity, allowing us to discern meaningful correlations even when the DSC is
not close to 1.

CONTAMINANT DETECTION

Contaminant detection in RCA is achieved by employing spectral analysis. This study
builds upon the cluster-based identification algorithm (Chang et al., 2022), which im-
proved data representation. The current research focuses on refining this algorithm to
further increase its operational efficiency and adaptability. These refinements lead to
more reliable contaminant identification by improving the accuracy and speed of the
detection process. In the dynamic field of spectroscopic analysis, environmental factors
influence LIBS spectra, making adaptability to new data crucial for maintaining model
accuracy and relevance (Chen et al., 2020; Wang et al., 2021). Therefore, periodic calibra-
tion is necessary. The incremental learning technique provides a practical approach for
real-time spectral data analysis. This method significantly enhances performance and
flexibility by eliminating the need for complete model retraining, making it well-suited
for applications in environments where data is continuously generated.

Data Preprocessing

To efficiently process spectral data, it is necessary to preprocess the raw data. A first
analysis of the spectra from typical constituents of different materials shows that focus-
ing on the wavelength range of 200-900 nm is sufficient to achieve the desired outcomes,
thereby improving computational efficiency. This preprocessing includes standardizing
the spectral values to ensure uniform magnitude scales across different datasets, thereby
highlighting unique data characteristics. Z-score standardization is used to maintain
the data’s distribution while aligning its mean and standard deviation to zero and one,
respectively. This standardization captures essential data characteristics, such as the
distribution patterns of peaks and troughs.

Parallel Processing for Enhanced Principal Component Analysis Computations
Each laser pulse generates a spectrum denoted as S = (si,$2,...,5n), Where
si (i=1,2,...,N) represents the intensity of plasma emission at wavelengths 1;. N is
the total number of measured wavelengths. This method positions each laser pulse into
an N-dimensional space, creating distinct clusters for different materials based on their
spectral signatures. New laser pulses are either assimilated into existing clusters or iden-
tified as outliers based on how much their spectra deviate from the norm.

The axes of the coordinate system of S can be scaled and rotated to simplify the
multi-dimensional normal distribution of points within a cluster. This simplification
is achieved by defining a new orthonormal coordinate system, represented by N unit
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vectors a = (aj, @y,...,an). In this new coordinate system, the multi-dimensional nor-
mal distribution decomposes to N independent one-dimensional normal distributions,
each aligned with a new axis. Thus, the spectrum in the database transforms into the
new coordinate system as:

52(51»62!'--»£N):(S'al;S'aZ;---rS'aN) (2.5)

Effective categorization does not require all N dimensions; a smaller number 7 is suf-
ficient. This reduction minimizes the influence of irrelevant or noisy parts of the emis-
sion spectra. The significant information is projected into the leading dimensions of
the new coordinate system. After the principal component analysis (PCA) process, the
spectral database for a cluster consists consists of the number n, the principal compo-
nent vectors (¢1,¢2,...,¢,), and a center point E with variances 2, describing the multi-
dimensional normal distribution of the spectra. For a comprehensive explanation of this
process, please refer to 3.2.1 Principal Component Analysis.

By leveraging optimized Basic Linear Algebra Subprograms (BLAS) and Linear Alge-
bra PACKage (LAPACK) libraries and implementing parallel processing (Abdelfattah et
al,, 2021; Psarras et al., 2022), we can significantly enhance the efficiency of PCA com-
putations. These improvements are crucial for handling large datasets, particularly in
applications involving spectral data analysis, where computational demands are high.

The BLAS and LAPACK libraries are fundamental tools for performing efficient linear
algebra computations (Frison et al., 2018; Psarras et al., 2022). BLAS provides low-level
routines for common operations such as vector addition, scalar multiplication, dot prod-
ucts, and matrix multiplication. Optimized implementations, such as OpenBLAS and
Intel Math Kernel Library (MKL) (Frison et al., 2020; Yamazaki et al., 2018), exploit mod-
ern CPU architectures to deliver significant performance improvements through multi-
threading and vectorization. LAPACK extends BLAS functionalities by offering routines
for more complex linear algebra problems, including solving linear systems, eigenvalue
problems, and singular value decomposition (SVD). By leveraging optimized BLAS li-
braries, LAPACK routines can achieve high performance across various hardware archi-
tectures. Parallel computing libraries can parallelize independent tasks like computa-
tions on different data chunks. Optimized BLAS libraries internally use multi-threading
for operations like matrix multiplication, which can be configured to utilize multiple
threads.

Cluster-based Identification
Post-PCA, the database catalogs a material by assigning a finite number of principal
components, n. This step defines a new coordinate system through n orthonormal vec-
tors, facilitating the depiction of spectral data as multi-dimensional normal distributions
around a centroid. Following normalization, principal component values are assumed
to follow a chi-square distribution, which is crucial for classifying materials based on
their spectral data. The conformity to the expected chi-square distribution is verified
through P-value analysis, determining the significance level for recognizing specific ma-
terials.

Each component ¢, (m =1,2,...,n) in the set ({1,¢>,...,¢,) follows a normal distri-
bution with a mean of ¢, and a variance of o2,. After applying z-score standardization,
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each standardized value Z,, is calculated as:

Zm = M (2.6)

\Vom
These standardized values follow a normal distribution with a mean of 0 and a variance

of 1. To test if the data comes from a y2-distribution, the chi-square value is calculated
as:

n n T 2
XZ — Z Zrzn — Z (‘fm 2Em) (2.7)
m=1 m=1 Om
This chi-square value helps determine the likelihood that the data follows the ex-
pected y2-distribution. Each y? can be converted into a probability P-value for the
x2-distribution. A higher y? value corresponds to a lower P-value, indicating greater
confidence that the data does not fit the expected distribution. P-values below a prede-
termined significance level indicate statistical significance. When this significance level
is set as the acceptance criterion for a particular material, any spectra with P-value ex-

ceeding this threshold will be regarded as originating from that material.

New Spectrum Assignment

The y? -distribution of the data within the database for specific materials is used to char-
acterize each material’s spectral signature. When a new spectrum is introduced, it is
compared against the established y2-distributions to determine if it could belong to a
known material. The process involves evaluating the goodness-of-fit of the new spec-
trum within the bounds of each material’s spectral y2-distribution. This comparison
provides a quantifiable level of confidence in assigning the new spectrum to a material,
ensuring that false matches are minimized and the accuracy of material identification is
improved.

Incremental Learning

Implement incremental learning techniques to update the model as new spectral data
becomes available. This can be achieved through online PCA methods and updating
chi-square distribution parameters dynamically.

Given a new spectral observation S; of a material at time ¢ (represents the index of the
data point being introduced, i.e., it is the time step or the sequential position of the data
point), the mean vector p; and covariance matrix C; of the spectral data in the original
N-dimensional space are updated using the following equations (Oyama et al., 2008;
Ozawa et al., 2006):

1
m=ut71+;(8t—ut71) 2.8)

t‘ —

t

Here, the covariance matrix C; is updated prior to performing PCA, capturing the vari-
ability of the spectral data in the original N-dimensional space. This updated covariance

1 1 ,
Ci= Cr—1+;(3t—#t—1)(3z—#z) (2.9
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matrix reflects the latest statistical characteristics of the data, which is essential for ac-
curately calculating the principal components. Subsequently, the principal components
are extracted from the updated covariance matrix C; using eigenvalue decomposition. In
this approach, earlier spectral data are given the same weight as later spectral data, en-
suring equal consideration throughout the time series. However, it is important to note
that alternative methods exist, which prioritize more recent spectral data by assigning
them higher weights, thereby adapting more swiftly to recent changes in the data.

Following PCA, the spectral data is transformed into a lower-dimensional space
where each principal component follows a normal distribution. The chi-square distribu-
tion is then employed to evaluate the goodness-of-fit for new data points. To maintain
the accuracy of this statistical test, it is essential to dynamically update the chi-square
distribution parameters as new data is integrated. 3

Let ¢; represent the vector of principal components at time ¢. The mean ¢, and vari-
ance U% of the principal components are updated incrementally:

E=Tt (-8 (2.10)
2_ 2 = VP_ .2
Oy =0ty (ft ft-l) —07 (2.11)
The chi-square statistic for the new observation ¢, is computed as:
n
Z (ftl 6[ l) (212)

t,t

By continuously updating &, and 02, the model dynamically adjusts to reflect the latest
data distribution, thereby improving classification accuracy and robustness.

This method demonstrated a substantial reduction in computational load compared
to traditional batch PCA, while maintaining similar levels of dimensionality reduction
efficacy (Diaz-Chito et al., 2018). Additionally, the dynamic updating of chi-square pa-
rameters facilitated more accurate and responsive classification, particularly as new data
was introduced.

2.3. RESULTS AND DISCUSSION

2.3.1. PSD CALCULATION

3D POINT CLOUD DATA
Given the observed uniformity and consistency in the distribution pattern of con-
stituents within the RCA piles, it becomes feasible to extrapolate the PSD characteristics
of the entire pile through a focused analysis of the PSD associated exclusively with the
outer surface layer of the pile. This method presents an effective means of obtaining
a representative understanding of the overall PSD of the RCA piles. Using the Gocator
scanner, a comprehensive scan of the RCA pile’s external surface was conducted, yield-
ing detailed 3D point cloud data (Figure 2.7 (a)).

The spatial resolution of this 3D point cloud data is crucial as it affects the accuracy
and detail of the RCA particle measurements. In this context, it's paramount to note
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(a) 3D view of the point cloud data (b) Ellipsoids fitted to each particle

Figure 2.7: Point cloud processing

that the resolution of the point clouds under study demonstrated discernible variances
across different spatial orientations—a phenomenon that has broader implications for
the precision of granulometric assessments.

In the direction parallel to the motion of the conveyor belt, the resolution of 3D point
cloud data is influenced by two factors. The first factor is the velocity of the conveyor
belt, controlled by adjusting the rotational speed of the motor drive. This rotational
speed adjustment is achieved through the manipulation of the motor’s output frequency
and the number of poles. Specifically, the motor drive in this study operates at 50 Hz with
a4-pole design, resulting in a rotational speed of 1500 rpm. Mechanical adjustments in-
clude a gearbox ratio of 19 and a wheel perimeter of 402.116 mm, resulting in a conveyor
belt speed of 0.529 m/s. The second factor affecting the resolution is the encoder resolu-
tion of the Gocator, which was calibrated to record 1024 ticks per revolution, translating
to a point cloud resolution of 0.393 mm along the conveyor belt’s path.

Perpendicular to the conveyor belt, across its width, the resolution depends on the
distance of the Gocator to the surface of the RCA pile. This resolution ranges from 0.375
mm to 1.100 mm, which is inherently tied to the Gocator’s field of view at any given
point in time. For accuracy, the transverse resolution was standardized at 0.375 mm in
this study:.

Vertically, concerning the height or depth of the RCA piles, the Gocator’s advanced
internal mechanisms come into play. The system provides a resolution gradient from a
fine 0.092 mm to a coarser 0.488 mm. This variability highlights the scanner’s versatility
and adaptability in handling different granulometric scenarios, establishing it as a cru-
cial tool in the comprehensive evaluation of RCA piles. In this study, the resolution was
set at 0.092 mm in the vertical dimension.

PSD CALCULATION

The PSD of RCA piles was determined using the method described previously. This in-
volved fitting the 3D point cloud data of the RCA piles into ellipsoidal models (Figure 2.7
(b)) to capture morphological data for each particle. The resulting PSD was effectively
demonstrated through a cumulative percentage retained graph, as depicted in Figure 8.
This graph, supported by calculations of ellipsoidal volume and the RCA’s apparent den-
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sity, provided a clear visualization of the PSD characteristics inherent to the RCA piles.
The insights gained from this analysis are crucial for understanding the aggregate struc-
ture and its potential influence on the performance of concrete.
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Figure 2.8: Cumulative percentage retained graphs

Subsequently, a cross-referential analysis was conducted to validate the accuracy
and reliability of this non-intrusive, surface-based technique for PSD determination.
This entailed comparing the PSD results from the 3D point cloud data with those ob-
tained through the traditional, more invasive method - manual sieving. The comparison
aimed to ascertain the degree of correlation and consistency between the surface PSD
measurements and the actual overall PSD of the entire RCA piles. Figure 2.8 depicts
this comparative study, showing the cumulative percentage retained curves as predicted
from 3D point cloud analytics against those obtained from manual sieving, based on pi-
lot scanning trials. The results indicate a minimal difference between the two methods,
affirming a high degree of accuracy in the surface-based technique.

To further assess the precision and efficacy of this surface-based PSD measurement
technique, the Root Mean Square Error (RMSE) was calculated between the predicted
and manually derived values, resulting in deviations of 4.93%, 5.38%, and 4.27% across
three experiments. These low RMSE values confirm the robustness and precision of this
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surface-based technique in estimating the PSD of RCA piles on a conveyor belt. Initial
results demonstrate a high degree of concordance between the two methods, suggesting
that the 3D scanning approach could effectively approximate the comprehensive PSD
with a significant reduction in manual effort and time.

X-RAY TOMOGRAPHY VALIDATION

(a) Sample box

(b) Processed 3D scanning model (c) Processed X-ray tomography model

Figure 2.9: RCA sample

To further validate this surface-based PSD measurement technique, X-ray tomogra-
phy was employed to capture the morphology of particles beneath the surface of RCA
plies. The internal structure captured by X-ray tomography was compared to the ellip-
soids simulated from 3D point cloud data. A black box (as shown in Figure 2.9 (a)) was
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used to simulate the inclined surface on one side of the formed piles, with RCA spread
inside. The sample was scanned using both 3D scanning and X-ray tomography tech-
niques. The data processed from these methods are shown in Figure 2.9 (b) and (c) re-
spectively.

The ellipsoidal fitting model illustrated in Figure 2.9 (b) originated from 3D point
cloud data obtained through 3D scanning with the Gocator. This process involved seg-
menting the 3D point cloud data and fitting it to the ellipsoidal shape. The 3D model
in Figure 2.9 (c) was generated through layered scanning with X-ray tomography. This
process involved compiling each scanned layer and isolating the particle components
using thresholding. Both models were incrementally sliced from top to bottom, parallel
to the inclined surface, allowing observation of each layer’s cross-section. Then the two
obtained cross-sectional images of each layer were overlapped for comparative analysis.
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(a) Layer 1

(b) Layer 2
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(e) Layer 5
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Figure 2.10: Cross-sectional details

Six representative layers were selected in Figure 2.10, following the top-down slic-
ing depth (specific depths are provided in Table 2.1). On the left are the cross-sectional
details of the simulated ellipsoidal model. In the middle are the cross-sectional details
derived from the 3D model constructed using X-ray tomography, reflecting the real par-
ticle distribution. On the right are the overlapping cross-sections of the two methods for
comparison.

To assess the similarity between cross-sections obtained by the two methods, the
DSC was employed. Following the sequence depicted in Figure 2.10, from (a) to (f), the
DSC values are 0.63, 0.71, 0.82, 0.85, 0.86, and 0.82. From the selected sections, an incre-
mental increase in overlap between the two methods is evident, peaking at 0.86 before
slightly decreasing.

Table 2.1 shows a comparison between the actual DSC and the lower bound of DSC
for each layer. The lower bound of DSC values, ranging from 0.04 to 0.60, represent the
theoretical DSC for uncorrelated images at each layer. As depth increases, particles that
are initially scattered gradually fill the entire region, leading to an increase in the area of
the cross-sections obtained by each method. This, in turn, raises the likelihood of corre-
lation between the images being compared. Despite the increasing lower bound of DSC
values, the actual DSC values remain significantly higher across all layers. The differ-
ence between the actual DSC and the lower bound is most pronounced in the shallow
layers (e.g., Layer 1), where uncorrelated images would have minimal overlap, and less
pronounced in deeper layers (e.g., Layer 6), where even uncorrelated images naturally
have more overlap.This comparison confirms that the algorithm performs well, with the
actual DSC values showing significant improvement over the lower bound, indicating
strong object overlap and similarity between the cross-sections of the two methods.

Initially, lower overlap occurs due to irregularities on the particle surfaces, challeng-
ing their representation in the simulated ellipsoids. As the sections progress, the ellip-
soids better emulate the internal particle distribution, maintaining an overlap of around
0.8. However, in deeper sections of the ellipsoids, a gradual appearance of blank spaces
in the lower-left region is observed. This is attributed to the presence of numerous
smaller particles in that area. In each layer of Figure 2.10, the rightmost image, show-
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Table 2.1: DSC comparison with layers

Layer Depth (mm) Actual DSC Lower bound of DSC
Layer 1 2.0 0.63 0.04
Layer 2 5.0 0.71 0.25
Layer 3 8.0 0.82 0.43
Layer 4 11.0 0.85 0.52
Layer 5 14.0 0.86 0.55
Layer 6 17.0 0.82 0.60

ing the overlapping cross-sections of the two methods, highlights examples with red and
blue dashed boxes. The red dashed box illustrates cases where the algorithm performs
well in fitting the particles across all layers. These particles tend to have a more regular
shape and are larger in size compared to others. In contrast, the blue dashed box repre-
sents particles that the algorithm struggles to fit accurately. These particles are generally
smaller and have irregular shapes. Due to the limited resolution of the Gocator, the algo-
rithm cannot fit these particles well, and they can only be roughly indicated as present.

3D scanning only captures information from the top layer, hence forming a single
layer of smaller ellipsoids. In contrast, X-ray tomography does not encounter this limita-
tion, as additional particles fill the same location, preventing the appearance of blanks.

This comparative analysis further validates the reliability of surface-based PSD mea-
surement techniques. Consequently, the Gocator 3D scanning can be employed for a
quick and convenient estimation of PSD.

2.3.2. CONTAMINANT DETECTION

This study aimed to evaluate the performance differences of the LIBS sensor in captur-
ing spectra from objects under varying environmental conditions. The focus was on
assessing its ability to adapt to new data to maintain model accuracy and relevance in
dynamic spectroscopic analysis. Additionally, the study aimed to understand how the
movement of the conveyor belt might affect the effectiveness of the system’s reflective
mirrors. Spectral measurements from a wide range of materials were recorded under
two conditions: while the conveyor belt was running and while it was stationary.

Figure 2.11 provides a visual representation of the findings. The results reveal mini-
mal variation in the spectra from the materials, regardless of the conveyor belt’s motion.
The minor differences in spectra observed between the moving and stationary states of
the conveyor belt do not significantly impact the overall system performance. This uni-
formity demonstrates the reliability and effectiveness of the system’s design.

Despite the general consistency, there were slight spectral differences noted between
the moving and stationary states of the conveyor belt. These differences, though mi-
nor, could lead to errors when classifying materials with similar chemical compositions,
such as RCP, RFA, RCA, and others. These subtle variations, although not significantly
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affecting overall system performance, must be considered in detailed analyses to avoid
misclassification and ensure accurate results.

The observed differences between spectra collected from a static and moving belt
can likely be attributed to several factors. One key reason may be variations in ambient
conditions, such as the presence of dust or mechanical vibrations, which can cause slight
disturbances in the measurements (Gaft et al., 2007; Mateo et al., 2007). These impurities
can cause the LIBS signal to fluctuate depending on the specific point where the laser
irradiates the sample. The impact of these environmental changes can be exacerbated
by the movement of the sample, as the motion introduces additional variability in the
signal (H. Kim et al.,, 2021). Matrix effects and interferences arising from the surface
shape and condition also play a significant role in these differences. Changes in surface
roughness, curvature, or material composition may alter how the laser interacts with the
surface, further complicating the consistency of spectral data (Cabalin et al., 2010; Mateo
etal., 2007). Finally, the speed of the belt can directly influence the spectrometer’s ability
to capture data accurately. Faster-moving belts may reduce the spectrometer’s ability to
fully detect and analyze the emitted signal due to shorter interaction times (Cabalin et
al.,, 2010). These factors, when combined, help explain the spectral differences observed
between static and moving belt conditions, illustrating the complexities involved in real-
time spectral analysis.

Furthermore, the results also support the system’s ability to perform consistently un-
der different operational scenarios. Its resilience under different operational conditions
underscores its potential as a reliable tool for real-time industrial applications, ensur-
ing consistent and accurate data acquisition regardless of conveyor belt activity. This is
paramount for industries where conveyor belt speeds might vary, and where maintain-
ing measurement consistency is critical.

After acquiring spectra from various materials, a systematic classification was con-
ducted using a cluster-based identification algorithm enhanced by incremental learn-
ing techniques. This algorithm, recognized for its ability to group data by identifying
inherent similarities, was applied to discern patterns within the updated spectral data.
The model’s performance underwent a thorough assessment to ensure its reliability for
practical applications. Remarkably, the model showcased robust performance metrics
for this new system: achieving an accuracy rate of 0.94, a weighted average precision of
0.95, a weighted average recall of 0.94, and an F1-score (weighted average) standing at
0.95 on the validation dataset.

However, while these performance metrics confirm the overall effectiveness of LIBS
as an analytical tool for analyzing recycled concrete aggregates, they do not fully address
the practical concerns of most users, particularly regarding the system’s performance
in detecting essential contaminants. To provide a clearer understanding of the system’s
practical applications, it is crucial to detail the specific contaminant detection limits that
the system can reliably ascertain for each type of contaminant. By providing this infor-
mation, users can better assess the system’s ability to determine whether contaminant
concentrations exceed or stay within quality limits, which is vital for ensuring the quality
and safety of recycled materials in industrial contexts.
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Figure 2.11: Comparison of spectra of different materials in the operation and stationary states of the
conveyor belt

Considering this, the system shows strong market potential. It can monitor RCA
quality at a throughput of 50 tons per hour per conveyor, analyzing approximately 4,000
particles per ton of material. The system is capable of detecting critical contaminants
at concentrations below 50 parts per million (ppm). For materials with strict content
regulations, such as wood, the system meets the required limit of 0.2 cm3/kg, which is
equivalent to 0.08 g/kg or a mass concentration of 80 ppm. This detection limit is based
on ensuring a false positive rate of less than 1 in 2000 for RCA being misinterpreted as
wood, ensuring high confidence in material classification. This further highlights its re-
liability and effectiveness in industrial settings.

These metrics highlight LIBS’s ability to deliver both accuracy and precision quickly,
without compromising the quality of the outcomes. By adopting these advanced analyt-
ical techniques, industries can confidently make strides forward, optimizing the use of
recycled materials and maintaining high-quality standards.
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2.4. CONCLUSION

The increasing global focus on sustainable infrastructure development highlights the
importance of efficiently using EoL materials. This study evaluates the potential of in-
tegrating advanced technologies to analyze and assess RCA obtained from demolition
sites. The integration of a sensor-based quality inspection system within the C2CA tech-
nology framework represents progress in RCA assessment. Housed in a dedicated con-
tainer, this sensor-based system showcases a blend of mobility, resilience, and accuracy
crucial for on-site applications. This setup indicates scalability and adaptability, demon-
strating the practicality of deploying such technologies across diverse demolition con-
texts.

The system’s detailed granulometric analysis using the Gocator and the contaminant
detection by the LIBS sensor provides a comprehensive evaluation of RCA quality. These
analyses address PSD and contaminant content—key factors for material quality and
compliance with industry standards. Additionally, the system’s capability for real-time
data capture and cloud-based storage represents a notable improvement in data man-
agement and accessibility. This supports informed decision-making processes and en-
hances quality control measures. Notably, the efficient monitoring of two conveyor belts
using a single laser and spectrometer highlights the practicality and cost-effectiveness of
this approach, rendering it a viable solution for industry requirements.

Furthermore, this approach avoids invasive and time-consuming sampling meth-
ods that could potentially affect the integrity of the RCA piles. By using non-destructive
scanning techniques, we ensure the piles’ structural and material integrity remains in-
tact while providing valuable insights into their internal properties. The implementation
of the Gocator yielded significant PSD data, aligning well with traditional manual siev-
ing methods. This correlation emphasizes the potential of non-intrusive, technology-
driven methodologies to streamline analysis, saving manual effort and time. It serves as
a crucial link, connecting fundamental aggregate characteristics to concrete composite
properties. PSD analysis offers essential insights into aggregate architecture, influencing
concrete’s performance, durability, and strength. It becomes a tool for informed deci-
sions regarding concrete mix designs, modifications, and optimizations, contributing to
better-quality infrastructure. Ultimately, the Gocator’s application in assessing PSD for
RCA piles represents progress in material characterization. It improves efficiency and
accuracy while supporting sustainability principles and minimal environmental impact.
This innovative approach could potentially influence PSD assessment standards, leading
to more progressive applications in construction and demolition waste management.

In the realm of contaminant detection, the consistent spectral measurements ac-
quired through the LIBS sensor, regardless of conveyor belt activity, establish a reli-
able foundation for the system. This reliability across diverse operational conditions
has the potential to enhance industrial quality assessment practices. The use of the
cluster-based identification algorithm further refines the system’s precision, exhibiting
commendable accuracy and metrics. By adopting incremental learning methods, re-
searchers and practitioners can ensure their models remain current and effective in the
face of ever-evolving data landscapes. The demonstrated consistency and accuracy in
our results suggest the system’s capability to significantly contribute to the quality as-
sessment processes within the construction industry. As industries increasingly adopt
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sustainable construction practices, leveraging such advanced analytical techniques be-
comes pivotal in maximizing the use of recycled materials without compromising qual-
ity standards. This research, therefore, stands as evidence of the effectiveness of our
proposed system while highlighting the broader implications of integrating technology
with sustainability for a more environmentally friendly future.

This research highlights the immense potential of integrating advanced technologi-
cal frameworks into recycled concrete aggregate processing. This marriage of innovation
and precision propels us toward a sustainable future where the quality of recycled mate-
rials is substantiated rather than speculated. The findings presented here demonstrate
that with appropriate technological advancements, industries can harmonize efficiency
with precision, advancing the sustainable agenda while upholding the highest quality
standards. As we progress towards a world that emphasizes sustainability, studies such
as this establish the essential foundation, guaranteeing that we revamp not only materi-
als but also our outlook on quality and efficiency.
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IN-LINE RECYCLED COARSE
AGGREGATES CHARACTERIZATION
USING LASER-INDUCED
BREAKDOWN SPECTROSCOPY

To upcycle End-of-Life (EoL) concrete from demolished buildings, it is essential to effi-
ciently identify the different materials that may contaminate it. The precise identification
and classification of materials and contaminants are vital processes for in-line quality in-
spection of recycled concrete aggregates transported on a conveyor belt. In this study, a to-
tal of eight potential contaminants are considered as target contaminant materials in the
streams made of coarse and fine aggregates resulting from the upcycling of EoL concrete.
These contaminants degrade the quality of the aggregates even at low concentrations, so
it is essential to identify the presence of such contaminants along with the main prod-
ucts of recycling which are recycled coarse aggregates (RCA) and recycled fine aggregates
(RFA). An efficient method is proposed to identify and classify EoL concrete waste along
with RCA and RFA in motion on conveyor belts via laser-induced breakdown spectroscopy
(LIBS) coupled with a cluster-based identification algorithm. The model is verified with
an accuracy of 0.97, a precision (weighted average) of 0.98, a recall (weighted average) of
0.97, and an F1-score (weighted average) of 0.98 for the validation set, under the optimal
conditions. This study suggests that LIBS may be well suited for fast and in-line analysis
of recycled concrete aggregates in industrial applications. This approach presents an in-
novative approach for the quality characterization of secondary materials produced from
EoL concrete being transported on conveyor belts, and therefore can be of great value for
the processing and high-end utilization of EoL concrete.

Apart from minor updates, this chapter has been published in Chang et al., 2022.
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3.1. INTRODUCTION

ONCRETE has long been one of the most popular manufactured construction mate-
C rials. In the conventional production process, the concrete is usually made using ce-
ment and natural aggregates that have well-defined and predictable properties. There-
fore, it is possible to foresee the mechanical and durability properties of the produced
concrete. In contrast, when concrete is made using recycled aggregates, it is impossible
to predict the resulting concrete’s mechanical and durability properties because recy-
cled aggregates have variable properties. That is why it is challenging to upcycle End-of-
Life (EoL) concrete and close the material loop. Because recycled aggregates are often
blended with other construction waste materials, it commonly serves for low-level con-
struction, for example, embankment, sub-base, and leveling of roads (Vegas et al., 2015).

A significant amount of construction work carried out in the 1950s during the post-
World War II economic boom is reaching life expectancy in the next few decades, which
will lead to a rapid increase in construction and demolition wastes (C&DW), particularly
in Europe. A large amount of C&DW cannot be efficiently recycled and is even dumped
directly in landfills, causing environmental pollution (Kabirifar et al., 2021; Nanda and
Berruti, 2021). Meanwhile, it is expected that the demand for concrete will rise in the
coming years, particularly in developing countries (Bonifazi et al., 2018). The gap be-
tween supply and demand for concrete will lead to the consumption of large amounts of
resources, and the over-mining of raw materials for concrete also adds to the damage to
the environment. EoL concrete accounts for the vast majority of C&DW (Lotfi and Rem,
2016), and the most viable solution for EoL concrete is recycling or upcycling. The con-
ventional linear approach to recycling needs to be upgraded to a circular process, that s,
secondary raw materials are obtained from EoL concrete for a green and sustainable so-
lution (Mining, 2015). At present, one of the most popular methods for high-grade con-
crete recycling is the wet process, which produces clean concrete aggregates by washing
coarse aggregates but also produces sludge that needs to be disposed of (Zhang et al.,
2019). In addition, an innovation project called C2CA (Concrete to Cement and Aggre-
gate, “C2CA Technology”, 2024), funded by the European Commission (EC), proposes
a dry alternative to the existing wet process by offering an innovative solution called
Advanced Dry Recovery (ADR) (Gebremariam et al., 2020). This solution significantly
reduces the cost of processing the coarse fraction of high-grade recycled EoL concrete.
The complete recycling of EoL concrete can close the building and demolition lifecycle
and is of great benefit to the environment in terms of reducing the depletion of natural
resources, noise pollution, energy consumption, and dust and gases emissions (Di Maria
etal., 2016).

EoL concrete is a material with a highly variable composition. Its composition re-
sults from the original application and recipe of primary concrete, how the materials
are connected to the building, and the care and measures are taken when the structure
is disassembled and dismantled. The main challenge is safeguarding the quality of the
secondary aggregates resulting from the recycling of the EoL concrete. It is challenging to
keep the demolished concrete as pure material, and it is usually mixed with other build-
ing materials such as bricks, cement paste, foam, glass, gypsum, mineral fibers, plastics,
and wood, all of which are considered waste and can have impacts on the quality of
the resulting recycled concrete. This implies that special technical and organizational
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means are required to ensure that the recycled concrete has the same quality as primary
concrete, despite the problems mentioned above.

Recycled aggregates are a promising alternative to “Virgin Aggregates”. And one of
the main challenging problems affecting the quality of recycled concrete is the pres-
ence of different contaminant particles (i.e., bricks, gypsum, wood, plastic, etc.) (Boni-
fazi et al., 2018) that can severely reduce the strength of the resulting concrete (Silva et
al., 2014). When embedded in concrete, organic substances such as wood are unsta-
ble when subjected to dry-wet and freeze-thaw cycles (Hansen, 1992). Water-soluble
sulfates present in substances such as gypsum can react and may cause expansive reac-
tions (Alexander and Mindess, 2005). In general, the use of crushed waste glass as coarse
aggregates leads to a decrease in the mechanical properties of concrete, primarily due to
its irregular shape, poor surface characteristics, and high friability (Harrison et al., 2020;
Silva et al., 2014). The density of glass is similar to that of stone and bricks, thus com-
plicating its separation, and in addition, non-crystalline metastable silica may undergo
alkali-silica reactions (Hansen, 1992). Therefore, when contaminants normally present
in EoL concrete waste are absent or below the limits demanded by market standards, the
recycled aggregate may be considered "clean" (Lotfi and Rem, 2016; Lotfi et al., 2014; Ser-
ranti et al., 2015) so that EoL concrete can be recycled into clean aggregates to close the
materials’ loop in the construction sector. To upcycle EoL concrete, contaminants must
be identified, monitored, and minimized. It is essential to identify pollutants in sec-
ondary materials produced from EoL concrete to signal exceptions in input quality and
recycling process conditions and guarantee clean recycled aggregate products, which
requires the establishment of an effective classification and quality control system. It is
crucial to exploit efficient, reliable, non-destructive, cost-effective sensing technologies
to identify contaminants automatically. Also, to facilitate the broader use of recycled ag-
gregates as construction material, it is essential to create transparency on the quality of
recycled aggregates through the value chain.

For the recycling process, an important step is the rapid identification of contami-
nants in EoL concrete waste. Under cumbersome industrial circumstances, this task can
be challenging, particularly at high conveyor belt speeds. Nevertheless, given the signif-
icance of improving the quality of secondary materials produced from EoL concrete and
reducing the contaminants therein, different technologies and procedural systems have
been developed to offer unique and feasible approaches. A hyperspectral imaging (HSI)
system in the near-infrared range (Serranti et al., 2012) was applied for quality control
to recognize the recycled aggregates from different contaminants (Serranti et al., 2015).
However, HSI is still not robust enough under harsh industrial conditions. A classifi-
cation method based on the integration of the laser-induced breakdown spectroscopy
(LIBS) spectral emissions (Lotfi et al., 2015; Xia and Bakker, 2014) was proposed for in-
line quality inspection, the success of which relies on the quality of the training set and
the possibly remaining false positives.

Recently, the use of LIBS has gained more attention in the field of resource recovery.
As a simple, rapid, and efficient analytical technique without sampling requirements,
LIBS only samples tiny fractions from a target material’s surface by generating a high
power density beam using an ultra-short pulse laser (Cremers and Radziemski, 2006;
Xia and Bakker, 2014). As the sampled material is ablated, a plasma is formed, result-
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ing in the emission of an observable spectrum. A spectrometer can detect or analyze to
acquire information on the composition of the molecules and atoms of the raw mate-
rial (Lasheras et al., 2011; Xia, 2021). Additionally, the advantages of LIBS include the
removal of impurities from the sample surface by laser ablation, which decreases their
influence on the results; the low cost of analyzing samples compared to other traditional
analytical techniques (Yan et al., 2021); the relative simplicity and ease of use of the in-
strument (Hussain and Gondal, 2013); and the ability to analyze a large number of sam-
ples simultaneously in a short time and to detect a wide range of elements (Fernandes
Andrade et al., 2021). Consequently, LIBS has been widely applied in the areas of ele-
mental detection (Godoi et al., 2011; Hussain and Gondal, 2013), substance identifica-
tion (Gondal and Siddiqui, 2007; Volker et al., 2020), and material classification (Castro
and Pereira-Filho, 2016; Gottlieb et al., 2017).

Furthermore, there are many studies on combining LIBS and various algorithms for
identification and classification, including principal component analysis (PCA) (Junjuri
and Gundawar, 2020), scaled conjugate gradient (SCG) (Yang et al., 2020), classification
and regression tree (CART) (Moncayo et al., 2015), k nearest neighbor (kNN) (Costa et
al,, 2017), soft independent modeling of class analogy (SIMCA) (Pease and Tchakerian,
2014), linear discriminant analysis (LDA) (Gaudiuso et al., 2018), partial least squares for
discriminant analysis (PLS-DA)(Xia and Bakker, 2014), support vector machine (SVM)
(Li et al., 2018), factorial discriminant analysis (FDA) (Baskali-Bouregaa et al., 2020), ar-
tificial neural networks (ANN) (Junjuri et al., 2020), and convolutional neural network
(CNN) (He et al., 2020). Nevertheless, it is still necessary to increase the precision and
sensitivity of this technique. To make algorithms based on LIBS widely available in terms
of efficiency and detection limits, several methodological improvements remain to be
made.

In this study, an EoL concrete waste identification system based on LIBS was devel-
oped, which targeted the precise and automated identification of contaminants. The
system emulated the actual industrial situation as much as possible, with each material
passing underneath LIBS through a conveyor belt. The LIBS single-shot spectra of each
constituent of EoL concrete were collected. Based on these spectral data, a cluster-based
classification algorithm was used to create separate spectral databases for each material,
allowing for precise identification of the constituents according to a single-shot spec-
trum. In addition, the effects of different data pre-processing methods and parameters
were investigated.

3.2. CHEMOMETRIC METHODS

In this research, the chemometric methods combining principal component analysis
and chi-square distribution are used as a classification model (Figure 3.1) for evaluating
single-shot spectral data. Their rationales are introduced in detail herewith.

3.2.1. PRINCIPAL COMPONENT ANALYSIS

As an unsupervised dimensionality reduction method, PCA used for data visualization
and pattern detection of raw data, is the most widely used multivariate data analysis
algorithm in the LIBS community (Pofizka et al., 2018). Although the thousands of di-
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End-of-Life (EoL) concrete
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Establish the acceptance criteria for the database

Classification results

Figure 3.1: Scheme for establishing the cluster-based identification model

mensions of the raw spectral data preserve all the information simultaneously, much
noise is also retained along with it, resulting in data redundancy and leading to an in-
creased computational effort. Therefore, the high-dimensional raw spectral data needs
to be dimensionally reduced.

A database x[s] = (x1,X2,...,xn) [s]; (s =1, 2,...,8) Laser shot of S emission spectra
for a specific material X is generated, where x; (i = 1,..., N) is the intensity of plasma
emission at a wavelength 1;(i =1,2,...,N), N is the number of spectral wavelengths
recorded by the spectrometer. Thus, each spectrum can be considered as a point in an
N-dimensional space. In this case, the thousands of emission spectra of material X form
a cloud in this space that resembles a multi-dimensional ellipsoid. Different materials
appear as different clouds of points. For a new spectrum of an unknown material, the
classification challenge is to locate the cloud to which it belongs or mark it as unrecog-
nizable if it is too far away from any documented cloud in the database.

Due to a significant amount of variation in particle properties or plasma formation
conditions, each spectrum x[s] of material X differs from the centroid x of the clus-
ter, then the spectral cloud as a whole represents a multi-dimensional distribution with
the centroid x as the mean. There is always the possibility to scale (transform) and
rotate the axes of the coordinate system, aiming for a simpler multi-dimensional nor-
mal distribution of the points in the cluster. Notably, it is always possible to have a
new, rotated orthonormal coordinate system with axes aligned along N unit vectors:
er = (ex1,er2,..-,exn); (k=1,2,...,N). Then, in this new coordinate system, the multi-
dimensional normal distribution is equivalent to N independent one-dimensional nor-
mal distributions, one for each new axis. Consequently, the spectrum of material X in
the database has been transformed into the new coordinate system:
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Els1=(&1,¢E2,...,EN) [s] = (x[s] - e1, x[s] - ez,..., x[s] - en) (3.1

Then the center point or average of the spectra of material X is:

E:(a,f_zy,,,,f_]\[)=(2'61,X'62,...,X'QN) (32)

And the deviations of the spectra concerning the center point in the new system are:

A&[s] = (AS1, ALz, ..., AEN) [s] = (x[s] = X) - ey, (x[s] = X) - ea,..., (x[s] - X)-en)  (3.3)

Thus, the components Aég[s] (g =1,2,...,N) and A&;[s] (I =1,2,..., N) of the set of spec-
tral deviations along these new axes are mutually uncorrelated with the centroids, shown
in Eq. 3.4:

13 A2 ifg=1
=Y A& sIAg[s] =4 ¢ (3.4)
5 2. A0ls1AS {o ifg#1
Moving back to the original coordinate system, Eq. 3.4 turns into Eq. 3.5:
1 S -
gZ[(x[S]—fc)'eg] [(x[s] - X)-e] =A5§5g1 (3.9)
1

Eq. 3.5is used to find the appropriate set of new unit vectors e;. The new axes are chosen

in such an order that the variances Afé of the multi-dimensional normal distribution
along the new axes go from high to low values, so that the first one, e;, coincides with
the maximum variance AE%, etc. It is worth noting that not all of these N dimensions
are essential for the subsequent categorization process. Only a much lower number n
of dimensions needs to be considered. This entails that information from parts of the
emission spectra that do not have a large impact (are zero or have little variation except
for noise) is omitted. In contrast, the potentially interesting information is presented in
the preceding dimensions of the new coordinate system. The significant information is
filtered out by projecting the raw spectral data into a low-dimensional space. It is worth
mentioning that the value of n will have a substantial impact on the classification accu-
racy. Therefore, after PCA, the spectral database of S emission spectra for material X will
record a number n[X], a set of unit vectors e;;[X](m=1,2,...,n[X]), a set of vectors of
principal components (6 162, &n X]) [s], and a center point or average (a, 5, . ,%)

along with variances A¢2,, to describe the multi-dimensional normal distribution of the
S spectra in the database.

3.2.2. CHI-SQUARE DISTRIBUTION

If Z1,2,,...,Z; are j independent standard normal distribution N(0,1) random vari-
ables, then the sum of their squares W; = Z + Z + -+ + Z7 is said to have a chi-square
(x?) distribution with j degrees of freedom, which is often expressed as W; ~ ¥2(j) or
Wi ~ x? (Lancaster and Seneta, 2005). The obtained principal components after data
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processing can be regarded as chi-square distributions, and then a cluster-based identi-
fication algorithm will be established accordingly.

After transforming the spectrum of material X to the new set of coordinates and re-
stricting to the first n[X] dimensions, (cf 1,62, En X]) [s] is a realization of the multi-
dimensional normal distribution for the principal components of spectra of material X.
This means that each component &, is normally distributed with mean ¢, and variance

Af%n. Therefore, after z-score standardization, each value:

=— (3.6)

VAgs,
is normally distributed with a mean of 0 and a variance of 1. This implies that if it is
not known which material was hit by the laser, then the spectrum x[s] can be accepted
as originating from material X in case it is highly probable that the set of values Z,, re-

sult from n[X] independent standard normal distributions. According to the chi-square
distribution, the value:

", = Em)®
Kilsl= ), z5 =) " 3.7)
1 T A&,

is used to check whether it is small enough to come from the 7(%;[ x)-distribution.
Each y?[s] can be translated into the probability P-value which is the p[s] of Xi[X]'
distribution. The larger the y?[s], the smaller the P-value p[s], the higher the confidence
level. P-values lower than the selected significance level indicate statistical significance.
By setting the significance level for material X as acceptance criteria, which can be de-
termined according to the P-value p[X] and the associated value of 7(2 [X] for material
X, the fraction of all spectra with P-value p|[s] greater than p[X] or )(2 [s] less than XZ [X]
will be considered as deriving from particles of material X. A small value of the threshold
P-value p[X] indicates that most or nearly all spectra from material X will be accepted,
but it is also possible that spectra from other materials will be misclassified as material
X. Alarge value of the threshold P-value p[X] implies that many spectra will be classi-
fied as not accepted, so these spectra do not contribute to the quality analysis. The issue
is to find a good compromise.

3.3. EXPERIMENT AND DATA PRE-PROCESSING

3.3.1. EXPERIMENTAL SETUP

As shown in Figure 3.2, the LIBS system consisted of a laboratory-scale conveyor belt, a
compact optical module, and an Nd : YAG nanosecond pulse laser for the present study.
The Nd : YAG nanosecond pulse laser (TRLi DPSS Series) emitted at a wavelength of 1064
nm, a pulse width of 8-10 ns, a frequency of 100 Hz, and laser energy of 170 mJ per pulse.
With a 300 mm focal length lens, the laser was focused vertically onto the sample sur-
face to produce laser-induced plasma. The focusing lens collected the plasma emission
spectra and then coupled them to an optical fiber attached to a spectrometer (SPEC-
TRAL Industries, Iris Echelle spectrometer). A delay time of 1.5 us was employed for the
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Figure 3.2: LIBS system

acquisition of the spectra to avoid interference from continuous laser-induced plasma
radiation. The timing of the LIBS experiment was triggered with a digital delay pulse
generator (Quantum Composers). The experiments were performed under atmospheric
conditions. The speed of the conveyor belt was variable and could reach a maximum
speed of 50 cm/s. Samples were moved at a constant speed of 20 cm/s to simulate the
transport of materials on a typical feed conveyor belt. At 100 Hz, the laser shoots every 2
mm on the sample stream.

3.3.2. EOL CONCRETE SAMPLES

Several samples of demolition wastes were collected from demolition sites in the Nether-
lands. Due to selective demolition, the resulting EoL concrete was clean. Other demo-
lition wastes such as bricks and glasses were separately handpicked from demolition
sites. The coarse and fine recycled aggregates were processed by using C2CA technolo-
gies (Gebremariam et al., 2020), where the crushed 0-16 mm was treated with ADR and
classified as the recycled coarse aggregates (RCA) (4-16 mm), and the fine fraction (0-
4 mm). The fine fraction of recycled aggregates was further treated with Heating Air
classification System (HAS) to produce the recycled fine aggregates (RFA) and recycled
cement paste-rich powder. Recycled mineral fibers were collected from demolition sites
and mechanically ground. The flat glass was also collected from demolition sites and
broken into pieces. Recycled gypsum was also in its ground form, while representative
forms of foam, wood, and plastics were used.

3.3.3. DATA PRE-PROCESSING
In general, appropriate pre-processing methods can improve models’ classification re-
sults by reducing the spectral fluctuations between various measurements (Zeaiter et
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al., 2006). This research performed no spectral background subtraction or additional
spectral filtering methods on the raw spectral data. This is to avoid losing the spectral
information of the laser-induced plasma emission after 1.5 us since the laser incidence.
There were a total of 2,400 single-shot spectra per material at the wavelength range from
179.4 nm to 1199.4 nm with a total of 11790 intensity values per shot. To reduce the acci-
dental error, the average of every adjacent 5 intensity values (Averaged by 5) and the av-
erage of every adjacent 10 intensity values (Averaged by 10) were calculated, compared,
and evaluated. In addition, Box-Cox transformation was performed to make the inten-
sity values converge to normal distributions. The spectral dataset for each material was
divided into training and validation (ratio 9:1): 240 single-shot spectra were randomly
selected from each material and combined into a dataset of 2400 single-shot spectra for
validation. The remaining 2160 single-shot spectra per material were used for training
to build a standard library for each material.

3.4. RESULTS AND DISCUSSION

3.4.1. OPTIMIZATION OF PRE-PROCESSING METHODS

Taking the spectral data of bricks as an example, the spectral data using five pre-
processing methods (Box-Cox transformation, Averaged by 5, Averaged by 10, Averaged
by 5 & Box-Cox transformation, and Averaged by 10 & Box-Cox transformation) were
subjected to PCA and compared with the processing methods of the original spectral
data. After PCA dimensionality reduction of the brick spectral data, their cumulative
explained variance is calculated. The various pre-processing methods increased the ex-
plained variance of the first principal component to different degrees. Among the ef-
fects resulting from the single-step pre-processing methods, the Box-Cox transforma-
tion method showed the most significant improvement compared to the two averaging
methods. The difference between the impacts caused by the two averaging methods
was not significant. The superimposed pre-processing methods had a greater influence
than the single-step pre-processing methods, but the differences between them were
not significant. As for the cumulative explained variance, the first 10 principal compo-
nents of all pre-processing methods could represent almost all information of the spec-
tra. The cumulative explained variance of the first 50 principal components of all pre-
processing methods was greater than 0.999, indicating that these principal components
were sufficient to cover most of the brick spectra information. The Box-Cox transforma-
tion method had a negative impact compared to the original spectral data, while both
averaging techniques improved the impact. The averaging methods combined with the
Box-Cox transformation method had a negative effect. However, the two superimposed
pre-processing methods did not differ much from each other.

It is worth mentioning that, in contrast to the conventional spectral analysis models,
this identification model is not mainly dependent on the wave peaks in the LIBS spectra
but the overall distribution of the spectra. Therefore, the wave peaks are not analyzed in
detail in this paper.

The training set of bricks was used to build its unique database, and the classification
results with different pre-processing methods are compared. Because only the spectra of
bricks were used as a training data set, ideally, all spectra should be identified as coming
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from bricks. However, because a uniform p-value was set (for comparison purposes),
some spectra were identified as outliers i.e. not coming from bricks. Although the av-
eraging of the raw spectral data could effectively improve the explained variance, it did
not affect the discrimination of the training set. In contrast, the Box-Cox transformation
method could slightly increase the classification accuracy of the training set.

Furthermore, the validation set of all materials was used to compare the pre-
processing methods. When identifying whether a shot was from bricks, there was little
difference between the identification results of each pre-processing method, with the
Box-Cox transformation method being slightly better. And when identifying whether a
shot was from the outliers, the Box-Cox transformation method improved the identifica-
tion accuracy significantly. In contrast, the technique that averaged every five intensity
values was slightly better than the method that averaged every ten intensity values.

Based on the classification results of the validation set, the impact of each pre-
processing method on the final results of the model is evaluated. Using the raw spectral
data, the model showed the worst accuracy, while the model using Box-Cox transforma-
tion and Averaged by 5 & Box-Cox transformation methods showed the best accuracy,
precision (weighted average), recall (weighted average), and F1-score (weighted average)
all reaching 0.99. Overall, the Averaged by 5 & Box-Cox transformation pre-processing
method was selected to reduce the number of computer operations while achieving bet-
ter accuracy.

3.4.2. OPTIMIZATION OF ACCEPTANCE CRITERIA

As previously mentioned, the number of principal components is the main parameter
that affected the final classification accuracy of the model. Combining the training and
validation sets, 3D plots of the first three principal components for each material are
shown in Figure 3.2. Each point represents a single-shot spectrum. Red dots indicate
single-shot spectra of certain material in the training set, green dots indicate single-shot
spectra of nine materials other than that material in the validation set, and black dots
indicate single-shot spectra of that material in the validation set. There were significant
differences in the results between the different materials, and it was feasible to differen-
tiate the single-shot spectra from various materials based on the transformed principal
components. Different single-shot spectra of the same type of material appeared clus-
tered. For the remaining nine materials, the data points distributed in space were more
or less mixed. So each material could create its own exclusive database separately us-
ing the red dots and identify and classify other materials accordingly. However, choos-
ing too few principal components may result in a poorly differentiated database, with
overlap between different materials. And choosing too many may result in a classifica-
tion model with a too high threshold that excludes too many points that should have
belonged to that material. Thereby, the optimum number of principal components for
each material needed to be selected.
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Figure 3.2: 3D plots of the first three principal components for each material

In addition, the probability P-value of the chi-square distribution also played an es-
sential role in the accuracy of the final model. Thus, combining the number of principal
components and the final P-value was necessary to extract the optimal pairing. After
several rounds of attempts, the best matches for different materials are selected.

3.4.3. DISCUSSION ON FURTHER OPTIMIZATION OF THE ALGORITHM

Once the acceptance criteria and databases for each material were created, the valida-
tion data set was used to check the accuracy of the entire package of models. When com-
paring the validation data set with the established material databases, it could be found
that some single-shot spectra were accepted by two or even three material databases.
Thus, resulting in overlaps for which the belongings of these spectra could not be de-
termined. Among them, the highest number of overlaps was between cement paste and
RCA, with the number reaching 50. This was due to the presence of adhering cement
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paste on the surface of the RCA, which made it difficult to distinguish between the two.
To determine the final attribution of the overlapping spectra, their P-values could be
made use of. In this case, the P-values of each spectrum obtained in the overlapped ma-
terial databases should be compared, and the material database corresponding to the
maximum P-value is the one to which the spectrum belonged.

Moreover, after evaluating all spectra in the validation set through all material
databases, some single-shot spectra were rejected by all material databases. As a re-
sult, the belongings of these spectra could not be determined. In this case, an optional
method is to compare the P-values. Each of these spectra could obtain a corresponding
P-value from each of the ten material databases. The spectrum was then classified into
a material database corresponding to the largest P-value by comparing the magnitude
of the ten P-values for each spectrum. However, among these spectra, some spectra
remained with a P-value of 0 in all ten material databases and could not be classified
according to their P-values. Eventually, these spectra were classified as unrecognizable
spectra.
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Figure 3.3: Confusion matrix of the validation set

The final classification results are shown in Figure 3.3. There were still 0-4 single-shot
spectra of each material that could not be distinguished. Foam and glass were misiden-
tified the most, with up to 10 single-shot spectra of foam being mistaken for glass, which
mainly resulted in a precision of 0.94 for glass. The classification report of the validation
set is shown in Table 3.1. An increase in the value of accuracy, precision, or recall indi-
cated that the model had a better classification performance. Wherein the F1 score is the
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harmonic mean of the precision and recall, which are mutually constrained. The higher
the value of the F1 score is close to 1, the better the model’s classification performance
is. The accuracy of the whole model reached 0.97, with the precision (weighted average)
0f 0.98, the recall (weighted average) of 0.97, and the F1-score (weighted average) of 0.98.

Table 3.1: Classification report of the validation set

Precision Recall F1-score Support
Brick 1.00 0.97 0.98 240
Cement Paste 1.00 0.95 0.98 240
RCA 0.94 0.96 0.95 240
Foam 0.97 0.95 0.96 240
RFA 0.99 0.97 0.98 240
Glass 0.94 0.98 0.96 240
Gypsum 0.99 1.00 1.00 240
Mineral Fibers 1.00 1.00 1.00 240
Plastics 1.00 0.97 0.99 240
Wood 1.00 0.97 0.98 240
Unrecognized 0.00 0.00 0.00 0
weighted avg 0.98 0.97 0.98 240

The results indicated that the combination of LIBS and cluster-based identification
algorithm enabled the precise identification of contaminants in secondary materials
produced from EoL concrete. Materials with similar appearance and composition could
be distinguished almost completely. The graded materials could be used in different
classes of construction work to improve their utilization.

Taking bricks as an example, the raw spectral data of the validation set were classi-
fied as bricks, unrecognized, and misclassified spectra, respectively. From Figure 3.4, it
could be found that the unrecognized spectra were usually caused by the presence of
certain peaks much more significant than typical values (pink lines). In contrast, the
misclassified spectra had an overall scale much smaller than typical values and were
hidden below the typical values. Thus, when translating a spectrum to a point in multi-
dimensional space, the point from the unrecognized spectrum was usually kept away
from the ellipsoid of the brick database, while the point from the misclassified spectrum
was contained within the ellipsoid of the brick database. This explains why these spectra
were classified as unrecognized spectra and misclassified spectra.

There are also a few recommendations for this identification model. Before using the
model for identification, it should be calibrated. Seasonal variations and slow, device-
related changes over a long time can produce a drift in the database center point itself.
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Figure 3.4: The raw spectral data of the validation set with classification results

This part of the calibration must be done continuously while the LIBS system is operat-
ing.

3.5. CONCLUSION

Proposed was a reliable identification technique based on the LIBS spectral emissions
for secondary materials produced from EoL concrete in motion. Object material sourced
from concrete demolition waste was sampled with a laser in the air. Particular attention
was paid to reproducing the working conditions that the feed was experiencing moving
on a conveyor belt in recycling practice as closely as possible. An investigation of the
method was carried out to analyze the technique’s ability to categorize spectra. Firstly
different pre-processing methods were used, out of which the Averaged by 5 & Box-Cox
transformation method reached the most reliable results. To avoid losing any informa-
tion, no spectral background subtraction or other sorts of spectral filtering was applied
to the raw spectral data. Then, the study of the best match between the number of prin-
cipal components and P-values for each material was initiated, leading to the creation of
a database for each material. The overall accuracy of the model reached 0.97 according
to the results of the validation set classification. This approach has excellent accuracy
for single-shot LIBS spectra of material in motion compared to conventional qualitative
LIBS techniques. Moreover, the proposed methodology does not require the character-
ization of individual wave peaks appearing in the LIBS spectra. Although the proposed
model is sensitive to drift and computationally intensive, it is still worth trying because it
is highly reliable in identifying the correct material. Besides, it can be corrected relatively
easily for slowly changing conditions. It works better in a reduced dimensional space of
variables, reflecting that most of the thousands of spectral data do not contain essential
information.

The achieved results demonstrate that the cluster-based classification algorithm is
a practical technique for the rapid and online analysis of EoL concrete in motion and
can serve as a new method and technique for the industrial selection and quality con-
trol of secondary materials produced from EoL concrete. Although only single material
streams are sampled to test the quality characterization model in this research, this val-
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idates the feasibility of employing the technique to identify contaminants in secondary
materials and provides the basis for future tests of mixed product-waste streams. The
ultimate goal of the recycled aggregate quality assessment is to provide users with suf-
ficient information about the quality of the product and how to use the material in the
best way for a particular application. It is also worth noting that further studies on the
levels and grain size distribution of contaminants are needed, which requires finding a
good technique to measure and calculate them directly or indirectly.



BIBLIOGRAPHY

Alexander, M., & Mindess, S. (2005). Aggregates in concrete. CRC Press.

Baskali-Bouregaa, N., Milliand, M.-L., Mauffrey, S., Chabert, E., Forrestier, M., & Gilon,
N. (2020). Tea geographical origin explained by libs elemental profile combined
to isotopic information. Talanta, 211, 120674.

Bonifazi, G., Palmieri, R., & Serranti, S. (2018). Evaluation of attached mortar on recy-
cled concrete aggregates by hyperspectral imaging. Construction and Building
Materials, 169, 835-842.

C2ca technology [Accessed: 2024-08-11]. (2024). https://www.c2ca.tech/

Castro, J. P, & Pereira-Filho, E. R. (2016). Twelve different types of data normalization for
the proposition of classification, univariate and multivariate regression models
for the direct analyses of alloys by laser-induced breakdown spectroscopy (libs).
Journal of Analytical Atomic Spectrometry, 31(10), 2005-2014.

Chang, C., Di Maio, E, Rem, P, Gebremariam, A. T., Mehari, E, & Xia, H. (2022). Cluster-
based identification algorithm for in-line recycled concrete aggregates charac-
terization using laser-induced breakdown spectroscopy (libs). Resources, Con-
servation and Recycling, 185, 106507.

Costa, V. C., Aquino, E W. B,, Paranhos, C. M., & Pereira-Filho, E. R. (2017). Identifica-
tion and classification of polymer e-waste using laser-induced breakdown spec-
troscopy (libs) and chemometric tools. Polymer Testing, 59, 390-395.

Cremers, D. A., & Radziemski, L. J. (2006). History and fundamentals of libs. Laser In-
duced Breakdown Spectroscopy: Fundamentals and Applications, 9-16.

Di Maria, E, Bianconi, E, Micale, C., Baglioni, S., & Marionni, M. (2016). Quality as-
sessment for recycling aggregates from construction and demolition waste:
An image-based approach for particle size estimation. Waste management, 48,
344-352.

Fernandes Andrade, D., Pereira-Filho, E. R., & Amarasiriwardena, D. (2021). Current
trends in laser-induced breakdown spectroscopy: A tutorial review. Applied
Spectroscopy Reviews, 56(2), 98-114.

Gaudiuso, R., Ewusi-Annan, E., Melikechi, N., Sun, X,, Liu, B., Campesato, L. E, &
Merghoub, T. (2018). Using libs to diagnose melanoma in biomedical fluids de-
posited on solid substrates: Limits of direct spectral analysis and capability of
machine learning. Spectrochimica Acta Part B: Atomic Spectroscopy, 146, 106—
114.

Gebremariam, A. T., Di Maio, E, Vahidi, A., & Rem, P. (2020). Innovative technologies for
recycling end-of-life concrete waste in the built environment. Resources, Con-
servation and Recycling, 163, 104911.

Godoi, Q., Leme, E O., Trevizan, L. C., Pereira Filho, E. R., Rufini, I. A., Santos Jr, D., &
Krug, E J. (2011). Laser-induced breakdown spectroscopy and chemometrics

71


https://www.c2ca.tech/

72 BIBLIOGRAPHY

for classification of toys relying on toxic elements. Spectrochimica Acta Part B:
Atomic Spectroscopy, 66(2), 138-143.

Gondal, M. A., & Siddiqui, M. N. (2007). Identification of different kinds of plastics us-
ing laser-induced breakdown spectroscopy for waste management. Journal of
Environmental Science and Health Part A, 42(13), 1989-1997.

Gottlieb, C., Millar, S., Grothe, S., & Wilsch, G. (2017). 2d evaluation of spectral libs data
derived from heterogeneous materials using cluster algorithm. Spectrochimica
Acta Part B: Atomic Spectroscopy, 134, 58-68.

Hansen, T. C. (1992). Recycling of demolished concrete and masonry. CRC Press.

Harrison, E., Berenjian, A., & Seifan, M. (2020). Recycling of waste glass as aggregate in
cement-based materials. Environmental Science and Ecotechnology, 4, 100064.

He, Y., Zhao, Y., Zhang, C,, Li, Y, Bao, Y., & Liu, E (2020). Discrimination of grape seeds
using laser-induced breakdown spectroscopy in combination with region selec-
tion and supervised classification methods. Foods, 9(2), 199.

Hussain, T., & Gondal, M. (2013). Laser induced breakdown spectroscopy (libs) as a rapid
tool for material analysis. Journal of Physics: Conference Series, 439(1), 012050.

Junjuri, R., Gummadi, A. P, & Gundawar, M. K. (2020). Single-shot compact spectrometer
based standoff libs configuration for explosive detection using artificial neural
networks. Optik, 204, 163946.

Junjuri, R., & Gundawar, M. K. (2020). A low-cost libs detection system combined with
chemometrics for rapid identification of plastic waste. Waste Management, 117,
48-57.

Kabirifar, K., Mojtahedi, M., Wang, C. C., & Tam, V. W. (2021). Effective construction and
demolition waste management assessment through waste management hierar-
chy; a case of australian large construction companies. Journal of cleaner pro-
duction, 312, 127790.

Lancaster, H. O., & Seneta, E. (2005). Chi-square distribution. Encyclopedia of biostatis-
tics, 2.

Lasheras, R., Bello-Galvez, C., Rodriguez-Celis, E., & Anzano, J. (2011). Discrimination
of organic solid materials by libs using methods of correlation and normalized
coordinates. Journal of hazardous materials, 192(2), 704-713.

Li, X, Yang, S., Fan, R,, Yu, X,, & Chen, D. (2018). Discrimination of soft tissues using
laser-induced breakdown spectroscopy in combination with k nearest neigh-
bors (knn) and support vector machine (svm) classifiers. Optics & laser technol-
ogy, 102, 233-239.

Lotfi, S., Deja, J., Rem, P, Mr6z, R., van Roekel, E., & van der Stelt, H. (2014). Mechani-
cal recycling of eol concrete into high-grade aggregates. Resources, conservation
and Recycling, 87, 117-125.

Lotfi, S., & Rem, P. (2016). Recycling of end of life concrete fines into hardened cement
and clean sand. Journal of Environmental Protection, 7(6), 934-950.

Lotfi, S., Di Maio, E, Xia, H., Serranti, S., Palmieri, R., Bonifazi, G., et al. (2015). As-
sessment of the contaminants level in recycled aggregates and alternative new
technologies for contaminants recognition and removal. In Emabm 2015. pro-
ceedings of the 15th euroseminar on microscopy applied to building materials
(pp. 319-331, Vol. 1). Delft University of Technology.



BIBLIOGRAPHY 73

Mining, U. (2015). Urban mining: Concepts, terminology, challenges. Waste Manag, 45,
1-3.

Moncayo, S., Manzoor, S., Navarro-Villoslada, E, & Caceres, J. (2015). Evaluation of
supervised chemometric methods for sample classification by laser induced
breakdown spectroscopy. Chemometrics and Intelligent Laboratory Systems,
146, 354-364.

Nanda, S., & Berruti, E (2021). Municipal solid waste management and landfilling tech-
nologies: A review. Environmental chemistry letters, 19(2), 1433-1456.

Pease, P, & Tchakerian, V. (2014). Source provenance of carbonate grains in the wahiba
sand sea, oman, using a new libs method. Aeolian Research, 15, 203-216.

Porizka, P, Klus, J., Képes, E., Prochazka, D., Hahn, D. W,, & Kaiser, J. (2018). On the
utilization of principal component analysis in laser-induced breakdown spec-
troscopy data analysis, a review. Spectrochimica Acta Part B: Atomic Spec-
troscopy, 148, 65-82.

Serranti, S., Gargiulo, A., & Bonifazi, G. (2012). Classification of polyolefins from build-
ing and construction waste using nir hyperspectral imaging system. Resources,
Conservation and Recycling, 61, 52-58.

Serranti, S., Palmieri, R., Bonifazi, G., et al. (2015). Quality control of recycled aggregates
from demolition waste by advanced sensing technology. SARDINIA...

Silva, R., De Brito, J., & Dhir, R. (2014). Properties and composition of recycled aggregates
from construction and demolition waste suitable for concrete production. Con-
struction and Building Materials, 65, 201-217.

Vegas, 1., Broos, K., Nielsen, P, Lambertz, O., & Lisbona, A. (2015). Upgrading the quality
of mixed recycled aggregates from construction and demolition waste by using
near-infrared sorting technology. Construction and Building Materials, 75, 121-
128.

Volker, T., Millar, S., Strangfeld, C., & Wilsch, G. (2020). Identification of type of ce-
ment through laser-induced breakdown spectroscopy. Construction and Build-
ing Materials, 258, 120345.

Xia, H. (2021). Sensor-based quality inspection of secondary resources: Laser-induced
breakdown spectroscopy.

Xia, H., & Bakker, M. (2014). Reliable classification of moving waste materials with libs in
concrete recycling. Talanta, 120, 239-247.

Yan, B., Liang, R., Li, B., Tao, J., Chen, G., Cheng, Z., Zhu, Z., & Li, X. (2021). Fast identifica-
tion and characterization of residual wastes via laser-induced breakdown spec-
troscopy and machine learning. Resources, Conservation and Recycling, 174,
105851.

Yang, Y, Li, C,, Liu, S., Min, H., Yan, C., Yang, M., & Yu, J. (2020). Classification and iden-
tification of brands of iron ores using laser-induced breakdown spectroscopy
combined with principal component analysis and artificial neural networks.
Analytical Methods, 12(10), 1316-1323.

Zhang, C., Hu, M., Dong, L., Gebremariam, A., Miranda-Xicotencatl, B., Di Maio, E, &
Tukker, A. (2019). Eco-efficiency assessment of technological innovations in
high-grade concrete recycling. Resources, Conservation and Recycling, 149, 649—
663.







3D SURFACE ANALYSIS TO ASSESS
PARTICLE SIZE DISTRIBUTION IN
UNSCREENED RECYCLED COARSE
AGGREGATES FOR QUALITY
ASSURANCE

Efficiently measuring and optimizing the particle size distribution (PSD) of recycled coarse
aggregates (RCA) is essential for ensuring their consistent quality and usability in high-
performance concrete production. Unlike primary coarse aggregates, which exhibit mini-
mal quality fluctuation over extended periods and require infrequent testing, RCA quality
varies significantly within shorter intervals (hourly or per truckload). This variation ne-
cessitates a precise and automated method for quality assessment, traditionally absent
in primary aggregate processing, thus limiting RCA’s broader adoption. This study in-
troduces a rapid, automated, and non-contact 3D surface analysis technology to assess
and optimize the PSD of unscreened RCA as they move along a conveyor belt. The RCA
particles, ranging from 4.0 to 16.0 mm, exhibit different shapes. Most particles bulge out-
ward, forming convex structures, while a smaller portion curves inward, creating concave
shapes. A specially designed conical feeder and splitter ensure that RCA particles are de-
posited in continuous, symmetric triangular piles on the conveyor belt. This allows for
representative PSD measurements by analyzing only a strip taken at one side of the pile, in
the studied case located at one-third distance from the pile’s top. The technology employs
a high-resolution 3D point cloud for surface analysis. It directs each point towards the
nearest steepest ascent based on the watershed segmentation algorithm. This gradient-
based approach enables the system to efficiently map the surface topography by tracing

Apart from minor updates, this chapter has been submitted for publication.
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paths from lower points to local summits. This algorithm facilitates rapid and parallel
data processing, significantly reducing computation time. This technology supports real-
time, accurate PSD analysis of large volumes (minimum 50 tons per hour) without halt-
ing the conveyor, achieving a Root Mean Square Error (RMSE) between 4.69% and 6.09%.
Using an optimization method based on the cumulative percentage retained curves, the
technology enhances the quality of unscreened RCA and streamlines the recycling process,
ensuring a stable and high-quality RCA supply to facilities. This advancement provides
essential data for informed decision-making in RCA management and supports the pro-
duction of high-quality RCA, contributing to sustainable resource utilization and waste
reduction in the construction industry.
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4.1. INTRODUCTION

ECYCLED coarse aggregates (RCA) derived from demolition wastes have gained sig-
R nificant attention in sustainable construction practices due to their potential for re-
ducing environmental impact and conserving natural resources (Han and Thakur, 2015;
Mohammadinia et al., 2017; Sinoh et al., 2023). One major challenge in using RCA is the
frequent and substantial fluctuation in quality (Brand et al., 2015; Khoury et al., 2018).
Unlike primary aggregates, which are typically sourced from relatively consistent geo-
logical formations and therefore exhibit stable quality over extended periods (months),
RCA quality can vary dramatically within much shorter timescales, often as brief as an
hour or per truckload. This is primarily due to the heterogeneous nature of demolition
waste, which can include materials from different parts of buildings or various demo-
lition sites (Ibrahim, 2016; Mollaei et al., 2023). It can also result from differences in
recycling processes (Ibrahim, 2016; Mollaei et al., 2023). Consequently, the variability
in the composition and properties of the incoming demolition waste directly affects the
consistency of the RCA produced (Jayasuriya et al., 2018; Pacheco et al., 2019).

The inconsistency in RCA quality can lead to challenges in meeting the strin-
gent specifications required for high-performance concrete applications. Construction
projects often have precise requirements for aggregate quality to ensure the safety and
longevity of structures (Etxeberria, 2020). The inability to consistently meet these re-
quirements with RCA can limit its use in critical applications, despite its environmental
benefits. This variability necessitates more frequent and rigorous testing to ensure that
each batch of RCA meets the necessary standards, adding to the operational costs and
complexity (Kou and Poon, 2015; Lotfy and Al-Fayez, 2015). Additionally, the fluctuating
quality of RCA can impact the efficiency of the recycling process itself. When the qual-
ity of the input materials varies significantly, it can be difficult to optimize the recycling
process parameters (Pedro et al., 2017), such as sorting mechanisms. This can lead to
inefficiencies, increased wear and tear on equipment, and higher energy consumption.
In the worst cases, it might even necessitate reprocessing of batches that fail to meet any
quality standard, further driving up costs and resource use.

To address these challenges, it is crucial to implement a highly automated and real-
time quality assessment process for RCA. However, assessing the physical properties
of recycled aggregates poses challenges in terms of accuracy, efficiency, and real-time
monitoring. Extensive research (Al-Bayati et al., 2016; Chang et al., 2022; Evangelista
et al,, 2015; B. Wang et al., 2021) has been conducted in this area to address these chal-
lenges. Among the various properties of recycled aggregates, one crucial factor is the
particle size distribution (PSD) of RCA. The PSD plays a significant role in determining
the workability and strength of the final concrete product (Meddah et al., 2010; Siregar
etal, 2017; J. Wu et al., 2018). A batch of RCA with a higher proportion of fine particles
can lead to a concrete mix that is too cohesive and difficult to work with, while a batch
with too many coarse particles may result in a mix that lacks sufficient cohesiveness and
strength. These fluctuations can compromise the structural integrity and durability of
the final concrete product. Therefore, the accurate determination of PSD is essential
for evaluating its performance and ensuring its suitability for optimal utilization in var-
ious applications, with a particular emphasis on industrial-scale implementation. This
necessity underscores the importance of optimal PSD in enhancing the overall perfor-
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mance and sustainability of high-performance concrete production.

To determine the PSD of RCA, traditional methods involve manual sampling and lab-
oratory testing (Nedeljkovi¢ et al., 2021; Yoshida et al., 2014). However, these methods
have several limitations, including being expensive, offline, late, and susceptible to hu-
man errors (Florea and Brouwers, 2013). Such methods cannot provide timely feedback
to the operator of the recycling plant, essential for detecting off-spec production and en-
suring stable and guaranteed quality to facilities (C.-R. Wu et al., 2020). The practice of
sampling the plant stream, conducting sieving tests in the laboratory, and then incor-
porating the results back into the plant control system often introduces a significant lag
time. This lag time can delay decision-making processes and hinder the optimization of
recycling operations (Mazhoud et al., 2022). The use of online automated non-contact
measurement techniques for real-time PSD analysis can help mitigate this issue by pro-
viding immediate feedback on the PSD, enabling timely adjustments and optimization
of the recycling process. Online automated PSD measurement delivers a digital result,
and so it is an essential component of digital recycling plants, which offer a further cost
reduction for sustainable concrete production.

Over the past few decades, the use of image-based PSD analysis has gained signif-
icant attention due to the progress in computer vision and digital image processing
(Akashi et al., 2010; Al-Thyabat and Miles, 2006; Gao et al., 2024; Sun et al., 2017; Zhou
et al., 2023). However, conventional image-based (Zeng et al., 2022; Zhou et al., 2023)
systems used for PSD analysis have several limitations that need to be addressed. One
significant limitation is the susceptibility of these systems to surrounding conditions
(Chatterjee et al., 2010; Tafesse et al., 2012). The properties of the material surfaces being
analyzed also pose challenges (Bai et al., 2021; Tessier et al., 2007). Different materials
may reflect or absorb light differently, leading to variations in the captured images. Ac-
quiring information about particles located beneath the surface is another obstacle in
traditional imaging techniques (Hamzeloo et al., 2014; X. Wu et al., 2019). Additionally,
distinguishing between superimposed and non-superimposed particles presents a chal-
lenge in image-based PSD analysis (Hamzeloo et al., 2014; Kistner et al., 2013). Errors
in PSD analysis mainly stem from the analysis methods or algorithms employed (Bam-
ford et al., 2021; Olivier et al., 2020; Yaghoobi et al., 2019; Zhang et al., 2012). If these
methods are not properly validated or optimized, they can contribute to errors such as
over-segmentation and under-segmentation (Engin and Maerz, 2019; Zhangetal., 2020).

In recent years, advancements in 3D scanning technology have revolutionized the
field of object measurement (Bi and Wang, 2010; Moon et al., 2019; Y. Wang et al., 2022).
This technology enables the capturing of detailed geometric information of aggregate
piles on conveyor belts, effectively overcoming challenges related to color or illumina-
tion variations (Thurley, 2011). However, the application of 3D scanners for PSD analysis
of aggregate piles on conveyor belts presents unique challenges. One such challenge is
the high-speed movement of the material on the conveyor belts. As the aggregate piles
are transported rapidly, the particles should move as little as possible and the 3D scanner
must capture precise measurements within a short period. This necessitates the devel-
opment of robust transportation methods, efficient scanning techniques, and hardware
capable of acquiring accurate data in real time. Moreover, handling the large volume
of data generated by the 3D scanner presents a data processing challenge. To achieve
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real-time analysis, sophisticated algorithms are required to efficiently process and ana-
lyze the acquired data. These algorithms should be capable of handling the high data
throughput and extracting meaningful information about the PSD from the scanned
data. Another challenge is the presence of segregation and grouping errors (Thurley,
2011), which refers to the tendency of larger particles to rise to the surface of the pile,
while smaller particles tend to settle at the bottom. This uneven distribution can in-
troduce errors in the PSD analysis. Currently, the analysis of particle piles on conveyor
belts has received less attention in the literature compared to single-layer particle anal-
ysis (Engin and Maerz, 2019; Galdames et al., 2017). Nonetheless, ongoing research is
being conducted to address these challenges and explore new methodologies for ana-
lyzing particle piles on conveyor belts. By developing innovative approaches and algo-
rithms, researchers aim to improve the accuracy and efficiency of PSD analysis using 3D
scanning technology.
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Figure 4.1: Schematic of industrial-scale implementation for intelligent PSD optimization

This study employs 3D surface analysis to efficiently monitor and improve the PSD of
unscreened RCA to achieve optimal PSD for high-performance concrete. This research
involves several key components: a specially designed feeding system for creating stable
triangular piles, a straightforward sampling method for representative surface measure-
ments, a 3D data processing method based on the actual morphological characteristics
of RCA particles for accurate PSD estimation, and an intelligent design of PSD optimiza-
tion. The results and discussion section explores the representativeness of the sampled
areas, the corrections applied to the data, and the performance of the 3D point cloud
processing method in predicting the PSD. The findings contribute to enhancing the un-
derstanding of RCA characterization and provide valuable insights for its efficient uti-
lization in construction applications. Experimental validation and comparison with tra-
ditional manual methods are conducted to evaluate the accuracy and reliability of the
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proposed method. Figure 4.1 illustrates the procedural flowchart, offering a visual sum-
mary of the methodological sequence employed in this study.

4.2, EXPERIMENTAL AND METHODS

4.2.1. MATERIALS

In this study, RCA samples were obtained by implementing C2CA (Concrete to Cement
and Aggregate) technologies to batches of End-of-life concrete from dismantled con-
struction (Gebremariam et al., 2020). Multiple samples of recycled aggregates sourced
from demolition wastes were acquired from different demolition sites across the Nether-
lands. These recycled aggregate samples then underwent a series of processing steps us-
ing the C2CA technologies to generate coarse and fine recycled aggregates. More specifi-
cally, the crushed particles ranging from 0 to 16.0 mm were subjected to treatment using
Advanced Dry Recovery (ADR) (Gebremariam et al., 2020). As a result of this treatment,
the particles were categorized as the RCA with the typical sizes between 4.0 and 16.0 mm.
Additionally, the fine fraction measuring 0 to 4.0 mm was separated as a distinct product
during the processing steps.

4.2.2. EQUIPMENT
FEEDING SYSTEM

(a) Conical feeder and splitter (b) Cross-sectional view of the splitter

Figure 4.2: Feeding system

The feeding system to the conveyor belt of the 3D scanning system (Figure 4.2) con-
sists of two main components: the conical feeder and the splitter. The purpose of this
feeding system is to maintain a consistent flow of the RCA and create stable and sym-
metric triangular piles on the conveyor belt for further analysis. The process starts by
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introducing the RCA at the upper section of the conical feeder, ensuring a smooth and
controlled feeding mechanism. From there, the RCA are conveyed seamlessly into the
splitter, maintaining a consistent flow under the effect of applied vibration. The vibra-
tion frequency was set to 30 Hz, and the magnitude of the vibration was regulated by the
input voltage provided by the controller. The splitter, a crucial element of the system,
is equipped with two sets of symmetrically distributed triangular slots. These slots are
specifically designed to enhance the precise and equal division of the incoming RCA into
two streams. As the RCA entered the splitter (Figure 4.3 illustrates three different scenar-
ios, with the dashed lines representing the trajectories of the RCA particles), they either
fell directly or experienced several reflections off the splitter walls. Eventually, they de-
scended through the bottom slot of the splitter and accumulated on the conveyor belt.

Figure 4.3: Schematic cross-sectional diagram for RCA entering the splitter

This process aims to achieve a symmetrical distribution of RCA particles within each
layer and, by extension, each half-layer of the piles formed on the conveyor belt (Figure
4.4). The design of the conical feeder and the symmetric splitter is intended to ensure
that each type of particle would have an equal probability of being distributed across the
width of the feeder’s rim. This setup aims to maintain uniform distribution within each
half-layer of consistent thickness in the pile, which is formed at a continuous critical
slope. However, it is important to note that the actual PSD and composition across the
pile are not entirely uniform, as demonstrated by subsequent experiments. The PSD and
composition still vary along the slope of the pile.

After conducting several experiments, it was observed that when the conveyor belt
was operating at a speed of 0.529 m/s, the triangular piles featured a base edge 0of 37.0 cm
and a height 0f 9.0 + 0.5 cm. According to this, it can be calculated that a single conveyor
belt can process at least 50 tons of RCA per hour. The stability and uniform distribu-
tion of the triangular piles are essential for subsequent analysis and measurement of the
PSD. This feeding system ensures a controlled and consistent flow of the RCA, enabling
accurate and reliable analysis of the RCA piles on the conveyor belt.

The even distribution and formation of stable triangular piles of RCA on the con-
veyor belt can be explained scientifically by considering the physical properties of the
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(a) Cross-sectional view (b) Layered formation

Figure 4.4: RCA piles

materials and the mechanics of the feeder and the splitter.

(1) Shape and size of RCA The physical properties, like the shape and size of the RCA,
influence how the material flows and piles up. Compared to primary aggregates, RCA has
more angular shapes and includes both convex and concave hull formations. Irregularly
shaped and sized particles tend to interlock and stabilize more quickly, forming distinct
piles.

(2) Feeder design The conical feeder design helps in the controlled and uniform flow of
RCA. The shape of the feeder, along with its vibration frequency and magnitude, ensures
that the RCA is released evenly across the entire width of the splitter.

(3) Splitter configuration The splitter with symmetrically distributed triangular slots
is designed to divide the flow of RCA evenly. This results in two streams that form stable
piles due to the consistent and symmetric division of materials.

(4) Vibrational mechanics The vibration of the system is key. By adjusting the vibra-
tion frequency and magnitude, the RCA is encouraged to move and settle in a uniform
manner, reducing the likelihood of clumping or uneven distribution.

(5) Conveyor belt The movement of the conveyor belt also influences the pile forma-
tion. The speed of the belt needs to be synchronized with the rate of material flow from
the splitter to ensure that the RCA is deposited evenly and forms stable piles.

(6) Gravity and friction Gravity ensures the downward movement of RCA, while fric-
tional forces between the particles and between the particles and the conveyor belt in-
fluence how the piles form and stabilize.

In summary, the even distribution and formation of stable triangular piles are due
to the interplay of material properties, the mechanical design of the feeder and splitter,
vibrational dynamics, and the physics of motion and friction. The result is a pile in which
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each half-layer, as shown in Figure 4.4 (b), and particularly the top layer, is representative
in terms of PSD and composition for the flow as a whole.

3D SCANNING SYSTEM

During the transportation of the RCA on the conveyor belt, the 3D scanner Gocator (Fig-
ure 4.5) was employed to capture 3D point clouds of the RCA piles. The Gocator was
positioned directly above the conveyor belt, situated a quarter of the belt width horizon-
tally from the edge of the conveyor belt. This positioning allowed for optimal access to
scan the data from one side of the RCA piles.

(a) Close view (b) 3D view

Figure 4.5: 3D scanning system

The resolution of the point clouds varied in different directions. Specifically, the res-
olution along the conveyor belt of the obtained point clouds was influenced by two main
factors: the conveyor belt speed and the Gocator’s encoder resolution. The conveyor belt
speed was regulated by adjusting the rotational speed of the motor drive, which could be
varied within an adjustable range by modifying the output frequency and the number of
poles. For this study, the output frequency of the motor drive was set to 50 Hz, with 4
poles, resulting in a rotational speed of 1500 rpm. Considering a gearbox ratio of 19 and
a wheel perimeter of 402.116 mm, the conveyor belt speed was calculated to be 0.529
m/s. In terms of the Gocator’s encoder resolution, it was set to 1024 ticks per revolu-
tion, which yielded a calculated resolution of 0.393 mm for the point clouds along the
conveyor belt. Across the conveyor belt, the resolution ranged from 0.375 to 1.100 mm,
depending on the field of view. For this study, the resolution across the conveyor belt
was determined to be 0.378 mm. For the resolution along the height of the RCA piles, the
Gocator system was set to a constant resolution of 0.083 mm along the height axis.
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4.2.3. SAMPLING METHODS

To enhance the efficiency and accuracy of PSD measurements using the 3D scanner Go-
cator, an approach was developed to estimate the PSD of the entire RCA piles based on
analyzing a single part of their surface. This approach requires careful consideration of
representative sampling for 3D surface analysis.

It is essential to examine the formation characteristics of the material flow. The con-
ical outlet of the silo (Figure 4.2 (a)) generates a radially outward flow of materials, de-
signed so that each type of particle has the same probability to end up anywhere across
the edge of the vibrating feeder, and so, after the splitter, in any of the layers, on each
side of the pile. Since the pile is always at the critical angle, this means that a one-sided
top layer of a given thickness contains the centers of mass of a representative sample of
particles. However, due to the phenomenon of segregation, it is to be expected that the
composition and PSD of particles vary within such a layer from the top of the pile to the
bottom. Besides, the fact that the one-sided layer is representative does not mean that
the particles of which a substantial fraction of the top surface is visible are also represen-
tative for the volume of the layer, and so for the overall particle flow as a whole.

Therefore, for industrial sampling, it is a pragmatic solution to investigate if there
happens to be a range of positions along the side of the pile where these largely visi-
ble particles provide a representative sample. The following steps were undertaken to
achieve this:

(1) Assessing the representativeness of PSD The PSD of the full side surface of the
RCA piles was carefully examined and compared with the overall PSD of the piles. This
analysis provided valuable insights into the relationship between the PSD of the surface
and the entire RCA piles, ensuring representative sampling.

(2) Improving particle sampling accuracy To improve the accuracy of particle sam-
pling on the surface, the sampling area was sprayed with paint (Figure 4.6). Only parti-
cles with at least seventy percent paint coverage as viewed from one side were selected
for sieving. This measure enabled clear distinction from the rest of the RCA piles, facili-
tating more precise sampling of the designated area.

(3) Selecting sampling strips To reduce the amount of data to be processed, 20 mm
wide strips were selected for sampling at specific areas, including one-third and two-
thirds distance from the top, as well as the top and middle portions. The bottom part
of the side surface, which contained scattered small particles and was considered non-
representative, was excluded from the sampling process.

(4) Sieving for comparison Manual sieving using circular sieves was performed on
both the sampled portions and the entire RCA piles to determine their respective PSD.
This involved separating the particles into different size fractions through a series of
sieves and measuring the weight of particles retained on each sieve.
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(a) Full side surface

(b) One-third and two-thirds distance from the top (c) top of the side

Figure 4.6: Sampling from the side surface of the RCA piles

(5) Identifying representative sampling area The most representative sampling area
was identified by comparing the PSD of the sampled areas with the entire RCA piles. This
step ensured that the chosen area closely reflected the overall PSD.

(6) Establishing a numerical relationship A numerical relationship was established
between the PSD of the specific sampling area and the overall PSD of the RCA piles. This
relationship allowed for the estimation of the entire PSD based on the analysis of the
selected area, providing a reliable method for PSD determination.




4. 3D SURFACE ANALYSIS TO ASSESS PARTICLE SIZE DISTRIBUTION IN UNSCREENED
86 RECYCLED COARSE AGGREGATES FOR QUALITY ASSURANCE

4.2.4. ANALYSIS METHODS
3D POINT CLOUD DATA PROCESSING

~ Noise correction

Preliminary segmentation

Over-segmentation
adjustment

3D ellipsoid fitting

Figure 4.7: 3D point cloud data processing

To gather detailed morphological information from the designated sampling area,
the 3D scanner Gocator is used to generate 3D point cloud data of the surface. This
research adopts and improves the single flow algorithm (O’Callaghan and Mark, 1984;
Wilson and Gallant, 2000) by adapting it to the actual morphological characteristics of
RCA particles. The single flow algorithm is a commonly used method in terrain analysis
for hydrological modeling. The enhancements made in this study enable a rapid and
efficient 3D surface analysis of the 3D point cloud data. This method assumes the path
of the steepest slope for point direction and records these directional paths as topolog-
ically ordered vectors of indices. The objective is to extract the size information of each
particle by applying a parallel watershed segmentation (Braun and Willett, 2013; Steer
et al., 2022) to the obtained 3D point clouds. This segmentation process separates the
3D point clouds into distinct regions, each representing an individual particle, or, if the
particle is not strictly convex, a part of a particle. Over-segmentation is corrected based
on proximity, neighbor relations, and surface orientation similarity. The regions corre-
sponding to a single particle are then modeled with ellipsoids to create a representation
of the particle that is suitable for estimating its shape factor, screen size, and volume.
Fitting ellipsoids allow for a quantitative description of particle morphology. The length
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of the second shortest axis of the fitted ellipsoid is adopted as the gradation parameter
for the particles. This parameter provides a measure of particle size, which is crucial for
constructing the PSD. The process, illustrated in Figure 4.7, involves several key steps.

The watershed segmentation method distinguishes itself from the local maxima-
based method, which relies only on identifying the highest neighboring points, by in-
corporating gradient information and global topological data. This combination leads
to more accurate and robust segmentation results. Although both methods initiate from
local extrema, the watershed segmentation method shows better performance, particu-
larly in areas with complex topologies. The key distinctions between the two methods
can be explained through the following aspects:

(1) Segmentation foundation The watershed segmentation method adopts a global
approach by considering not only local extrema but also the overall gradient and flow
direction of the particles. It simulates water rising from local minima, effectively "flood-
ing" the entire region. This approach takes into account the entire topological structure
of particles from the beginning, ensuring that segmentation is influenced by the overall
shape and characteristics of the particles, rather than just local features. This allows it to
form regions that are topologically coherent and consistent with the overall shape of the
particles. The local maxima-based method identifies local peaks in the dataset and uses
these peaks as the starting point for segmentation. However, when applied to complex
topologies, it often misses important details, especially when dealing with irregularly
shaped particles. The reliance on only local features limits its ability to accurately seg-
ment more intricate datasets.

(2) Boundary formation Since the watershed segmentation method is driven by water
flow paths based on gradient information, the segmentation boundaries form naturally
at points where the flow from different basins converges (i.e., along the watershed lines).
This boundary formation mechanism ensures that the segmentation respects the overall
structure of the particles, resulting in smooth and natural boundaries. In contrast, local
maxima methods may produce irregular or jagged boundaries, particularly when dealing
with complex regions.

By integrating global topological information and gradient-based flow, the water-
shed segmentation method provides a more robust and accurate segmentation process,
especially in complex environments where the local maxima-based method might strug-
gle to deliver precise results.

Noise Correction

In 3D point cloud data analysis, the precision and consistency of the data are critical.
Noise and outliers often lead to measurement errors, which significantly affect the anal-
ysis results. For instance, when measuring gaps between particles, the Gocator might
capture lower reflectivity, leading to unusual values (as shown within the red dashed box
in Figure 4.7). These errors not only impact the assessment of particle size and distri-
bution but also interfere with the analysis of other geometric properties. To improve the
reliability and consistency of the results, it is essential to apply preprocessing methods
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such as noise filtering and data smoothing. These methods help refine the data, making
it both more accurate and consistent.

It is important to note beforehand that handling these noise and outliers is crucial
during the initial segmentation process, as it ensures a smoother workflow. However, in
the later stage of over-segmentation adjustment, the actual values of the data become
essential. They represent the physical gaps between two particles, helping to accurately
differentiate between a concave hull, as shown in Figure 4.10 (b), and the case of two
adjacent particles. This distinction reduces the likelihood of incorrect merging.

The base surface of the entire point cloud needs to be horizontally aligned before-
hand. Since the slope angles of the generated RCA piles are relatively consistent, this
characteristic can be leveraged to reorient the base surface of the point cloud easily.
This process ensures that the base surface is perfectly horizontal, with its normal vec-
tor pointing vertically upwards.

In the context of 3D point cloud data collected by the Gocator, the x and y coordi-
nates form a structured grid while the z-axis represents varying height or depth mea-
surements. Typically, noise and outliers stem from abnormal z-axis values. Managing
these erroneous z-values is critical for maintaining the integrity and utility of the data.
To address this issue, linear interpolation is employed across the grid to estimate abnor-
mal z-values based on their spatial arrangement and adjacent data points. This method
is well-suited for the data’s structured nature, characterized by regular spatial intervals.

The process of interpolating abnormal z-values accounts for both horizontal and
vertical spatial relationships to preserve the integrity of the data’s surface geometry. For
each missing or negative z-value, interpolation is performed by forming a plane defined
by at least three surrounding points that are not collinear. The interpolated z-value at
any given point P; (x;, y;, z;) on the grid is then calculated using the formula derived from
the plane equation:

z=ap+bpx+cpy 4.1)

where ay, by, and c, are coefficients determined by the known z-values of the neighbor-
ing points. This strategy ensures that the interpolation considers the gradient changes
both along x and y axes, providing a smooth transition across the grid. To ensure com-
pleteness, any remaining points with abnormal values at the boundaries or within the
dataset, which could not be interpolated due to lack of neighboring data points, are ad-
dressed by backward and forward filling methods.

This interpolation method guarantees that all data points are filled and positive,
reflecting plausible physical measurements. The use of linear interpolation offers a
straightforward and computationally efficient approach to handling missing or erro-
neous data points. It also preserves the geometrical and topological consistency of the
dataset, which is imperative for subsequent analytical tasks such as surface reconstruc-
tion, volumetric analysis, and visualization.

Preliminary Segmentation

The objective of preliminary segmentation is to rapidly divide the 3D point clouds into
different areas by sequentially adding points to the local highest point. Each area in-
cludes a local highest point, facilitating the establishment of computational orders for
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the points that represent the shape of particles. The segmentation creates a structured
dataset with particles represented by local high points and their associated downhill
points. The preliminary segmentation process can be broken down into several key con-
ceptual steps:

* (1) Identification of local highest points: This step involves identifying the local
highest points within the 3D point cloud. These local highest points act as the
starting points for defining individual particle segments.

* (2) Calculation of steepest ascent path: For each point in the 3D point cloud, the
path of steepest ascent towards the nearest local highest point is calculated. This
determines the grouping of points into potential particle segments.

* (3) Segment formation: Based on the paths of the steepest ascent, points are
grouped into segments that are associated with the local highest points identified
earlier.

(1) Identification of local highest points

Using the coordinates of each point P;, the algorithm scans the surrounding points to
identify the highest elevation within the defined kj, neighborhood. This local maximum
TP; is designated as the highest point for that region.

Each point on the surface of the particles is denoted by its coordinates P; (x;, y;, z;).
For every point P;, there is a corresponding particle, denoted as a set of points N(P;),
which contains the total number of n, points. Among these, TP; is identified as the
local highest point. To Identify local highest points, it is important to determine the
uphill point for each point P;.

Uphill point, UP;: For each point P;, the uphill point is the neighboring point where
the point path direction goes to, identified by the steepest ascent from P;.

The steepest ascent to a neighboring point P;(x;,y;,z;) € N(P;) is calculated using
the gradient formula (Kelley, 1962):

dij = \/(xf —xi)?+ (yj — yi)? + () — 2)? 4.2)
zj—2z;
Az;j= fdij’ (4.3)

where d;; is the Euclidean distance between points P; and P;. Each point P; evaluates
its neighboring points to determine its uphill point based on the steepest ascent:

UP;=arg max Agz;; (4.4)

pjEN(P;)
The point with the highest positive gradient value Az;; represents the steepest ascent
from P;.

By calculating the steepest ascent for each point P; to its k,, nearest neighbors, parti-
cles are initially segmented based on the local highest point representing their summits.
Given that a small amount of fine material (2.0-4.0 mm) will be present in the targeted
RCA product, the minimum visible surface area for a single particle should be around 3.1
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mm?. The Gocator sensor has a resolution of 0.393 mm and 0.378 mm in the horizontal
plane, respectively. To establish a clear lower size limit for the visible particle area during
segmentation, and considering that not all measurement points will precisely align with
the particle surface—resulting in a slightly smaller area than 3.1 mm?—the minimum ky
value is set at 20. This value covers an area of 2.971 mm?, preventing the misinterpreta-
tion of larger particles as multiple smaller ones.

(2) Calculation of steepest ascent path

Once the local highest points are identified, the next step is to calculate the steepest as-
cent path for each point in the 3D point cloud. This path determines the direction in
which each point will "climb" towards its nearest local highest point. In this step, the
dataset is organized into a structured format that allows for efficient access and manip-
ulation. The sorting operation arranges the particles based on their spatial properties,
preparing them for the segmentation algorithm. Additionally, an array, denoted as D,
will be created to store all the downhill point information.

To perform this operation, the process assumes that the path direction goes uphill,
following the path of the steepest ascent. For each point P;, it is necessary to identify its
downhill point set.

Downbhill point set DP; 4: For each point P;, the downhill point set includes all points
where their steepest ascent path direction goes to the point P;. Here, d =1,---,ND;,
where ND; is the total number of points, whose steepest ascent pathways converge at
point P;. Essentially, DP; ; comprises all points that consider P; as their uphill point, as
illustrated in equations 4.5 and 4.6:

UPpp,, = P;i (4.5)

DP; 4=1{P; | UP; = P;} (4.6)

For each point P;, initialize ND; values to zero. This count will later be incremented
based on the point path directions determined by the topology. Using the uphill point
U P; information, which specifies where each point P;’s next direction goes to, the down-
hill point counts NDyp, for UP; are then updated. Specifically, for each point P;, once
its uphill point UP; is determined, the count of downhill points for UP; is increased by
1. Specifically, NDyp, is incremented as follows:

NDUpi = NDUpl. +1 4.7)

This procedure is demonstrated using a single example consisting of nine points, as
depicted in Figure 4.8 and Table 4.1. Black dots represent the points in the 3D point
cloud. Black dotted lines show all potential connections between neighboring points.
Blue solid lines indicate the connections made according to the steepest ascent hypoth-
esis (as shown by the arrows) used to construct the topology. Point 9 is assumed to be
the local highest point in the area.

Then, transform the list ND; into an index array ¥, which contains the location of
where the list of downhill points to point P; is stored. The index array ¥ is constructed
to facilitate quick access to the starting point of each point P;’s downhill point list within
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Figure 4.8: Top-down view of a 3D point cloud

Table 4.1: Calculation of relevant parameters in Figure 7

P; 1 2 3 4 5 6 7 8 9
UP; 5 6 6 5 9 9 8 9 9
DP; / / / / 1 2 / 7 5
/ / / / 4 3 / / 6

/ / / / / / / / 8

/ / / / / / / / 9

ND; 0 0 0 0 2 2 0 1 4
¥, 1 1 1 1 1 3 5 5 6

a global list array D. The single dimension array D is used to store all the downhill point
information DP; 4. The array V¥ is built in reverse order, starting from the last point and
moving to the first. The specific steps are as follows:

¥y, =np+1-NDy, 4.8)

VYi1=¥Y;—-ND;, fOI‘iZI’lp,--',Z (4.9)

This ensures that each point P;’s downhill point set in D can be accessed using ¥';, as the
starting index. The initialization and updating of downhill point counts are operations
that scale linearly with the number of points, making the algorithm efficient for large-
scale models.
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Store the count of how many times each point has been designated as the uphill point
into an integer array ®. Initialize this integer array ® with all elements set to zero. For
each point P;, identify its corresponding uphill point UP;. Once identifying U P;, update
D and @, and populate the downhill point list using:

D(\PUpl. +q)UPi) =i (4.10)

DQyp; =Pyp; +1 (4.11)

Here, W yp, indicates the start of the downbhill point in array D for the uphill point UP;.
This step effectively adds a point P; to the list D of its uphill point UP; and increments
the count of downhill points for UP;. Once all points have been processed, downhill
point information of each point P; can be retrieved using:

DP;g=D¥;+a)fora=0,-,¥;;1 -1 4.12)

Here, W¥; is the index in D where the downhill point list for point P; starts, allowing se-
quential access to all downhill points of the point P;.

(3) Segmentation formation

In this step, points are grouped into segments based on the paths of the steepest ascent
calculated in the previous step. Each segment corresponds to a particle, with points be-
ing grouped around their respective local highest points. The use of stacks and index
arrays facilitates the efficient management of these groupings, allowing for rapid com-
putation even with large datasets. The goal is to build a stack S that arranges points from
the lowest point to the highest based on their dependencies in the point network. The
stack helps to ensure that each point is processed in the correct order.

Initialize a stack S and set global variable index f initialized to 1. This index  will
be used to track the current position in the stack S where points are added. For each
top point TPy, A =1,---,n,, initialize B to 1 and invoke the stack addition procedure for
each downhill point of TP, using the list from the downhill point array D. Initiate the
stacking process, this is done recursively:

add_to_stack(Lp, ) for Lp = D (¥1,,, Yrpps1s > Prprsi—1) (4.13)

where A starts from each top point, and g is incremented within the add_to_stack func-
tion, which recursively adds points to the stack. The add_to_stack function is recursive,
ensuring all points contributing to a top point are included before moving to points
contributing to its downhill points, thus effectively creating a well-ordered process for
boundary calculations.

Define and use the function add_to_stack(Lp, B) to recursively add points to the
stack:

S(B) =Lp (4.14)

Continue adding downhill points of L recursively:
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add_to_stack(Y,B) forY =D, Y, +1,---,¥Yrp,, — 1) (4.15)

This recursion continues until a point is reached that has no downhill points.

This process builds the stack by ensuring that all points are added following their
steepest ascent path directions, maintaining a natural order from downstream to up-
stream contributors. This process is recursive, meaning that whenever a point is added
to the stack, all its downhill points are also added to the stack until no more down-
hill points can be added. Points without downhill points do not initiate further recur-
sive calls, preventing unnecessary stack operations and ensuring the recursion remains
bounded.

The stack stores the sequence of all points from 1 to n,. Points are added to the
stack in a specific order that reflects the physical shape of the particles. Importantly,
the structure of the stack ensures that each point is visited exactly once, and the length
of the stack is equivalent to nj,. The stack-building process can be parallelized by dis-
tributing the local highest points among multiple processors. Each processor constructs
a segment of the stack independently.

The arrangement of the stack is displayed in Figure 4.9 (a) according to the scenario
depicted in Figure 4.8. From this example, it is evident that inverting the order of the
points on the stack results in a reversed configuration (Figure 4.9 (b)).

6 8 9 4 2 1

©

2 7 8
{ e {

(a) Stack (b) Inverted stack

Figure 4.9: Stack and inverted stack order

By inverting the order of points in the stack, starting from points without downhill
points (bottom points) and moving uphill, the computation can systematically handle
each particle area. At each junction of the paths, if the junction includes uphill points,
the inverted stack moves to the bottom of each lower branch. This allows for a systematic
and step-by-step calculation of points from the lower areas before continuing past the
junction. If there are no uphill points at the junction, the inverted stack moves to the bot-
tom of another particle. This approach ensures that each point and its downhill points
are calculated before moving upstream, enhancing the accuracy of the model. Equation
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4.16 represents the stack where points are stored in a specific order to be processed from
the bottom points upward through the network.

S@i) fori=np,---,1 (4.16)

The n, points are processed in an order that is appropriate to classify each point to the
particle area. The inverted stack begins at the bottom points and proceeds uphill, fol-
lowing the steepest ascent path. These operations are performed in parallel, ensuring
efficiency even for large datasets. Once completed, a total of n, particles are segmented.

The preliminary segmentation uses the steepest ascent algorithm to rapidly and ef-
ficiently segment 3D point clouds. By calculating the uphill and downhill paths for each
point, the structure enables the creation of particle areas in an organized, computation-
ally efficient manner. The stack construction ensures that points are processed in a log-
ical order from bottom to top, facilitating large-scale model processing.

Over-segmentation Adjustment

Figure 4.10 illustrates cross-sectional views of point clouds obtained by scanning par-
ticles in two different states using the Gocator. In the diagram, the vertical gray lines
represent the structured spacing formed by the Gocator during the scan along the x-
axis, while the red and blue dots depict points captured on the surface of the particles.
In Figure 4.10 (a), the shape described is a convex hull, which is round and smooth. In
contrast, Figure 4.10 (b) shows a concave hull, characterized by indentations or inward
curves.
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(a) Convex hull (b) Concave hull

Figure 4.10: Schematic cross-sectional diagram for 3D scanning of particles

During the preliminary segmentation process, particles with convex hull shapes are
easily identified as a single particle due to their smooth and unbroken outlines. How-
ever, particles with concave hull shapes present challenges; when attempting to extract
local highest points, these shapes are prone to being mistakenly divided into separate
segments, as shown in Figure 4.10 (b) with red and blue sections, resulting in the erro-
neous division into two particles. This leads to over-segmentation. To address this issue,
it is essential to merge adjacent segments that originally belong to the same particle to
ensure accurate recognition and analysis.
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To address the common issue of over-segmentation resulting from the initial water-
shed segmentation, particles are merged based on proximity, neighbor relations, and
surface orientation similarity. Two neighboring particles are merged if they share a bor-
der, and the boundary points between them are continuous. This step ensures that par-
ticles over-segmented due to local topographic maxima or noise are accurately merged.

It is worth reiterating that, in this process, the previously smoothed values obtained
using the interpolation method will no longer be used. Instead, the original values will
be applied. This adjustment allows for more accurate identification of neighboring par-
ticles, preventing incorrect merging. Additionally, it helps to differentiate the concave
hull scenario in 4.10 (b).

After preliminary segmentation, two adjacent particles, designated as PA, and
PA,(u,vefl,---,n,}), to be merged into a single particle, they must meet the following
proximity and continuity conditions: The distance between the boundary points of the
two particles must be sufficiently small to ensure that the two particles share a border.
Additionally, the average absolute difference in the local curvature at these boundary
points should be below a certain threshold to maintain the continuity of the boundary.

When assessing the proximity and continuity between the boundary points of two
adjacent particles PA, and PA,, merging is considered if the distance between the two
particles’ boundary points is less than 0.6 mm, which is derived from the Gocator’s reso-
lutions of 0.378 mm, 0.393 mm, and 0.083 mm. These values suggest that the maximum
distance between two adjacent points in space is approximately 0.6 mm. Additionally,
the boundary points of the two particles should have nearly identical local curvatures to
ensure continuity.

Define BP,, as the set of boundary points in particle PA,, similarly, define BP, as
the set of boundary points in PA,. Let bP;, be a subset of points in BP, and bP;, be a
subset of points in BP,, that satisfy the following conditions: For each boundary point
bP;, € BP,, there exists a boundary point bP;, € BP, such that |bP;, — bP;,|l < 0.6 mm;
Each bP;, uniquely corresponds to the nearest boundary point bP;,. This implies that
bP;, and bP;, should appear in pairs. Define n;, as the number of boundary points
bP;, in BP, that meet these conditions, and n;, as the number of boundary points bP;,
in BP, that meet these conditions. Thus, we have:

np=nNjy =Ny (4.17)

Where 1y, is the number of boundary points satisfying the conditions.

To calculate the local curvature at the point bP;,, it's necessary to approximate the
local surface using points in its vicinity. This involves using a spatial data structure, such
as a KD-tree, to efficiently locate the k; nearest neighbors of each point bP;,. For this
calculation, each point’s neighborhood N(bP;,) comprises the kj; = 9 nearest neighbors.

To model the local surface around each point bP;,,, an optimal quadratic polynomial
is fitted using the least squares method, which is a technique that minimizes the sum of
the squared differences between the observed values and the values predicted by the
model. The general form of the polynomial is:

z=abxz+bby2+cbxy+dbx+eby+fb (4.18)

The coefficients ay, by, ¢y, dp, ep, fp are determined to minimize the squared error sum:
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.Zl zju—(abxju+bbyju+cbxjuyju+dhxju+ebyju+fh)] — min (4.19)
Ju=

where (X;y, ¥ju, Zju) are the coordinates of the points in the neighborhood N(bP;,,).
Once the surface is fitted, the first and second derivatives at each point are calculated
to determine the local curvature. These derivatives are given by:

fx=2apx+cpy+dyp (4.20)
fy=2bpx+cpx+ey (4.21)
frx=2ap (4.22)
fyy=2bp (4.23)
fxy=c¢p (4.24)

The local curvature x at each point can be estimated using the following formula:

 Fax @ ) =2 ey fefy + fry(L+ £D)
201+ f2+ f2)?

Calculate the local curvature for all points bP;,, and bP;;, and compare these values. If

the average absolute difference in local curvature is minimal, it is likely that the two par-

ticles are geometrically continuous and might belong to the same particle. The average
absolute difference in local curvature Ax is defined as:

K

(4.25)

1
Ak=— ) |Kiu—Kipl (4.26)
N juiv=1

If Ak is below a certain threshold (in this case, 3 mm™1), the particles s are considered
geometrically similar and may be candidates for merging. These procedures effectively
assess and resolve merging challenges in the 3D point cloud data of the RCA surface.

It is important to note that this algorithm is not designed to offer a highly detailed
and precise point cloud segmentation method. Instead, its primary purpose is to enable
fast segmentation of the point cloud. In certain exceptional cases, such as the one shown
in Figure 4.11, the initial segmentation may mistakenly identify two separate parts as
red and blue, even though they should be classified as one. A and B represent two ver-
tices that have been identified as separate parts. Clearly, these two parts do not satisfy
the proximity and continuity conditions. As a result, they remain separated during the
over-segmentation adjustment phase. We are currently unable to effectively merge these
types of particles into a single entity based on the aforementioned criteria. However, it
is worth noting that such particle shapes are relatively rare in RCA, and this scenario
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Figure 4.11: Schematic cross-sectional diagram for the special case

occurs only under a specific condition—such as when the particles are in a unique up-
right position with no other particles obstructing the view during the Gocator scanning.
Given the infrequency and specific nature of these cases, their impact on the final results
is minimal, and it is therefore reasonable to disregard them.

3D Ellipsoid Fitting

Following segmentation, each particle’s morphology is determined by fitting a 3D ellip-
soid to describe the geometry of the particle. The optimal fit is achieved by minimizing
the sum of squared distances from the points to the ellipsoid’s surface, under constraints
ensuring the surface represents an ellipsoid. The ellipsoid is defined by the equation:

AeX? + Do )P + CoZ? +2[oy2+28eX2+ 2N XY +2PeX +2qey +2Te2+de =0 (4.27)

where x, y, and z are the relative coordinates to the center of the area being fitted, and
Ge, De,Ce, fer 8e» ey Perqe, Te, and d, are the parameters that define the ellipsoid’s shape,
orientation, and position in the space. This fitting process involves a direct least-square
fitting method and provides crucial morphological parameters such as the diameters of
the major, intermediate, and short axes.

In ellipsoid fitting, flat or nearly flat surfaces tend to introduce greater uncertainty in
the estimated parameters. To address this issue, if the calculated ellipsoid parameters,
specifically the lengths of the three axes, significantly deviate from a reasonable range
(with an upper limit of 22.4 mm), the result should be considered an outlier and filtered
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out. This process helps ensure that uncertainties in flat regions do not excessively impact
the final ellipsoid parameters.

Finally, the cumulative percentage retained graph was plotted based on the volume
of the fitted ellipsoid and the apparent density of the RCA. This graph depicted the PSD
within the specific sampling area, which also represented the estimation of the overall
PSD of the RCA piles.

PSD OPTIMIZATION

The European Standard (Standard, 2002) establishes criteria for the use of recycled ag-
gregates in concrete production. As depicted in Figure 4.12, the standard sets forth both
upper and lower percentage limits for each particle size interval. When the cumulative
percentage retained curve falls within these specified limits, there is no need to adjust
the PSD of the RCA. However, should the RCA sample’s PSD necessitate an adjustment
to meet these specified cumulative percentage thresholds, with material addition being
a permissible efficient method—due to the labor-intensive nature of extracting particles
by specific particle size—a linear programming model can be employed to streamline
this adjustment. The objective is to increment the least possible weight to each parti-
cle size category to comply with cumulative percentage retained curve restrictions. The
following outlines the linear programming methodology for addressing this challenge:

100% 100%

100% - —s=— Upper limitation

—=— Lower limitation

80% -

60% -

40% -

20% -

Cumulative percentage retained

0%

L I L
2.0 4.0 56 8.0 11.2 16.0 224

Sieve size /mm

Figure 4.12: Standard for cumulative percentage retained curves

Variable Definition

For a defined set of particle size intervals in(in = 1,---,8), we categorize the particle
sizes into distinct intervals based on their diameter. Specifically: Interval 1 is defined
for particle diameters greater than 22.4 mm. Interval 2 is defined for particle diameters
from 16.0 mm to 22.4 mm. Interval 3 is defined for particle diameters from 11.2 mm to
16.0 mm. Interval 4 is defined for particle diameters from 8.0 mm to 11.2 mm. Interval 5
is defined for particle diameters from 5.6 mm to 8.0 mm. Interval 6 is defined for particle
diameters from 4.0 mm to 5.6 mm. Interval 7 is defined for particle diameters from 2.0
mm to 4.0 mm. Interval 8 is defined for particle diameters less than 2.0 mm. Within
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each interval in, the variable w;, denotes the total weight of particles present within.
A decision variable aw;, is defined to represent the weight of particles to be added to
particle size interval in.

Objective Function

The primary goal of the objective function is to minimize the total additional weight
across all particle size intervals. The formulation of the optimal function is articulated
as follows:

tn

Minimize Z awinp (4.28)
in=1
subject to
in in
Win=) wm+ Y awm (4.29)
m=1 m=1
tn tn
Wr = Z Winp+ Z awjp (4.30)
jn=1 jn=1
Win .
CPj, = x 100 forin =1,---,7 (4.31)
Wr
Li, <CPip, < Ujp (4.32)
awin =0,V in (4.33)

where fn is the total number of particle size intervals. Constraints 4.28 to 4.33 ensure
that, for each particle size interval i n, the current weight of particles w;,, in addition to
the particles added through the variable aw;,, satisfies the cumulative percentage lower
limit L;;, and upper limit U;,. Here, W;, signifies the total weight of particles across
intervals 1 to in, while Wr represents the weight of all particles combined. CP;,, denotes
the cumulative percentage for interval i n.

4.3. RESULTS AND DISCUSSION

4.3.1. SAMPLING DATA ANALYSIS

REPRESENTATIVE SAMPLING AREA IDENTIFICATION

In the initial analysis, the PSD measured by manual sieving of particles with more than
70% paint on the full side surface was compared and analyzed with the overall PSD of
the RCA piles. Multiple experiments were performed on different batches of RCA to
ensure reliable and representative results. The findings obtained from Figure 4.13 (a)
demonstrated that there was no significant distinction between the two PSDs. Notably,
the calculated root mean square errors (RMSE) for both tests were remarkably low, mea-
suring only 2.05% and 4.46%, which indicated a high level of similarity. These outcomes
strongly supported the conclusion that the PSD data acquired from measuring a single
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side of the triangular RCA piles could effectively represent the PSD of the entire RCA
piles. Consequently, the observed consistency between the PSDs further consolidated
the credibility and feasibility of inferring the PSD of the entire RCA piles based on the
PSD measured at a specific area on the surface of the piles.

Analyzing the full side surface by point cloud analysis is computation-intensive, and
therefore, it is attractive to consider a well-chosen strip of a limited width. After com-
paring and analyzing the PSD of different sampling areas on the side surface of various
batches of RCA piles, it was observed from Figure 4.13 (b)-(e) that 20 mm wide strips
taken at different positions - one-third distance from the top, two-thirds distance from
the top, the top of the side, and the middle of the side - exhibited varying degrees of
representativeness when compared to the overall PSD of the RCA piles.

It was evident that the PSD of the sampling areas tended to be overestimated when
compared to the PSD of the entire pile. This discrepancy arose due to the behavior of the
particles during the feeding process. Specifically, smaller particles have a tendency to
roll down to the bottom of the pile, resulting in a higher concentration of particles in the
2.0-4.0 mm size range at the bottom section. As a result, there are relatively fewer 2.0-4.0
mm size particles in other regions of the pile’s side surface. This uneven distribution of
particles leads to a small percentage of mass in the 2.0-4.0 mm size range at most of the
selected sampling areas. Consequently, when constructing the cumulative percentage
retained curves, there is an overestimation of the PSD in this range.

Among these different sampling areas, the strips taken at the one-third distance from
the top demonstrated the highest level of representativeness. The calculated RMSE for
these strips was 4.10% and 2.48%, respectively. These values indicated a comparably
minimal level of discrepancy between the PSD of the selected strips and the overall PSD
of the RCA piles.

While the strips taken at the one-third distance from the top provided the most accu-
rate representation of the overall PSD, it is important to note that there was still a certain
degree of deviation between the curves of the selected strips and the overall PSD. This
deviation, especially in the 2.0-5.6 mm particle size range, was particularly pronounced.
Therefore, additional experiments were conducted to make necessary corrections and
refine the accuracy of the obtained PSD data.
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(a) Full side surface
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Figure 4.13: Cumulative percentage retained at different sampling areas

The observed results can be attributed to the utilization of the feeding system, which
facilitates a uniform mixing and output of the RCA. As the RCA are transported onto
the conveyor belt, it forms a triangular pile (Figure 4.4 (b)) that is generated layer by
layer symmetrically and uniformly, starting from the inside and progressing toward the
outside. This process allows for the deduction of the overall PSD by analyzing the PSD of
a single full side surface of the outermost layer.

However, it is important to note that within each layer, there may be uneven sepa-
ration, leading to variations in the PSD of different areas. Consequently, the PSD is not
identical across different areas within each layer. More generally, when a different ma-
terial is used or the same material is in different states (e.g., varying humidity levels),
the PSD of the full side surface tends to be representative when employing this feeding
method. In contrast, the areas of representative strips on the surface may not always
be consistent, necessitating further experimentation for comprehensive analysis. In the
present study, the RCA used were treated with the C2CA technique, ensuring a constant
material state and allowing for consistent conclusions to be drawn.
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A total of sixteen sets of experiments were conducted using different batches of RCA,
with samples taken at the one-third distance from the top of the RCA piles, marked and
identified using paint to ensure consistent sampling. These samples, as well as the en-
tire RCA piles, underwent manual sieving to obtain mass percentage data for different
particle size ranges. The collected data of the sampled areas were then compared and
matched with the corresponding data from the entire RCA piles, and the results were
visualized in Figure 4.14.

Table 4.2: The comparison of root mean square errors (RMSE) before and after the adjustment

Root Mean Square Errors Before adjustment After adjustment
(Wt%) (Wt%) (wt%)
Test 1 4.10 3.25
Test 2 4.57 3.97
Test 3 2.63 2.48
Test 4 4.41 1.63
Test 5 5.73 2.32
Test 6 5.68 2.13
Test 7 5.37 1.14
Test 8 5.50 1.43
Test 9 10.04 3.29

Test 10 3.46 1.63
Test 11 2.79 2.77
Test 12 6.54 0.54
Test 13 2.79 2.37
Test 14 7.01 1.45
Test 15 8.30 2.37
Test 16 8.14 5.48

Additionally, a linear fitting was applied to establish a relationship between the sam-
pled data and the overall data. Taking into account experimental errors and the impact
of manual sieving, it can be observed that a certain linear relationship existed between
the sampled data and the overall data within each particle size range. Leveraging the
obtained linear relationship, each mass percentage data of sampled areas was corrected
accordingly. However, due to the corrections made, the sum of percentages for each
particle size range no longer added up to 100%. Therefore, it was necessary to recalcu-
late the percentage for each particle size range to ensure consistency. Table 4.2 provides
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a comparison of the results before and after the correction process. The comparison
demonstrates a decrease in the RMSE for the curves representing the cumulative per-
centage retained of the sampled areas and the entire RCA piles. This reduction in RMSE
values is particularly significant in cases where the initial RMSE was high, indicating a
substantial improvement in the alignment between the curves. However, in cases where
the initial RMSE was already low, the effect of the correction is relatively minor.

These findings highlight the importance of considering experimental errors and ap-
plying appropriate corrections to accurately represent the PSD of RCA piles. By refining
the data through the analysis and correction process, the reliability and accuracy of the
obtained results are enhanced.

4.3.2. PSD ESTIMATION

(a) 3D view of the 3D point cloud data

(b) Ellipsoids fitted to each particle

Figure 4.15: 3D point cloud data processing

Figure 4.15 (a) presents the 3D point cloud data obtained from the 20 mm-wide strip
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located at the one-third distance from the top on the side surface of the RCA piles using
the 3D scanner Gocator. To analyze the data, ellipsoids were fitted to the 3D point cloud
data (Figure 4.15 (b)). The parameters of the fitted ellipsoids, specifically the lengths of
three axes, were statistically analyzed. Among these parameters, the second shortest axis
length was selected as the particle size parameter for particle counting. This selection
was made to replicate the manual sieving process using circular sieves. By utilizing the
second shortest axis length, the methodology aims to approximate the PSD in a manner
consistent with traditional manual sieving techniques.
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Figure 4.16: Cumulative percentage retained curves

To obtain the cumulative percentage retained curves, it was necessary to determine
the mass of each particle size range. The mass was estimated by calculating the volume
and apparent density of each particle separately. The volume of each particle was es-
timated based on the volume of the fitted ellipsoids. Notably, during the estimation of
particle mass, it was observed that smaller RCA particle sizes corresponded to higher
apparent densities. To address this observation, a correction was applied to the mass
of particles in different particle size ranges. By employing the correction method men-
tioned in the previous section, the mass percentages of each particle size range were
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adjusted accordingly. This adjustment facilitated the generation of the final cumulative
percentage retained curves.

Figure 4.16 shows the comparison between the cumulative percentage retained
curves predicted by the 3D point cloud data and those obtained by manual sieving, ac-
cording to the results of three different pilot implementation scanning experiments. To
evaluate the performance of the prediction method, the RMSE between the predicted
values and the manually measured values were calculated for each experiment, yield-
ing values of 5.26%, 6.09%, and 4.69%, respectively. These RMSE values indicated the
good performance and accuracy of the method in predicting the PSD of RCA piles on a
conveyor belt.

4.3.3. ADJUSTMENT FOR OPTIMAL PSD

The above-mentioned predictions of the cumulative percentage retained curves are
compared against the European Standard. From Figure 4.17 (a)(i), (b)(i), and (c), it is
evident that among the three tests, the PSD in Test C meets the upper and lower limits
of the EU standards, eliminating the need for additional adjustments. In contrast, Tests
A and B fall short of these standards, necessitating the incorporation of RCA of varied
particle sizes to achieve the required PSD, as delineated in 4.2.4 PSD Optimization.

Quantitative adjustments for Test A specify that for every 100.0 kg, an addition of
22.3 kg of aggregate is required in the 4.0 to 5.6 mm range, 18.9 kg in the 5.6 to 8.0 mm
range, 18.9 kg in the 8.0 to 11.2 mm range, and 18.9 kg in the 11.2 to 16.0 mm range to
meet the desired standards. It is important to note that the ADR coarse product is wind-
sifted in the final step of the ADR process. If the airflow of the wind sifter is too mild, or
if the ADR is operated at too high a feed rate, too much fine material (2.0-4.0 mm) will
end up in the coarse product. This situation necessitates the addition of a significant
amount of coarser particles to correct the PSD, as seen in Test A, where approximately
80 kg of additional material per 100 kg is required. However, the technology described in
this study could generate a signal that automatically adjusts the wind-sifting airflow to
higher levels, thereby reducing the amount of fines in the coarse product and potentially
eliminating the need for additional material correction.
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Figure 4.17: Comparison before and after optimization

Conversely, Test B necessitates a notably lesser augmentation, with only 0.7 kg of
aggregate required in both the 2.0 to 4.0 mm and 4.0 to 5.6 mm ranges per 100 kg. 1l-
lustrated in Figure 4.17 (a)(ii) and (b)(ii), are the cumulative percentage retained curves
post-aggregate addition, which successfully achieved optimal PSD.

4.4, CONCLUSION

The proposed system introduces a reliable and efficient technology for the intelligent
design of optimal PSD with unscreened RCA, consisting of the following steps: a) feed-
ing RCA onto the conveyor belt; b) sampling a target area using the 3D scanner Gocator;
¢) employing the 3D surface analysis for PSD estimation; d) correcting deviations, and
e) adjusting for optimal PSD by mixing in specific particle sizes or changing the param-
eters of the RCA production process. This technology improves PSD by assessing RCA
piles on a conveyor belt using 3D scanning technology. Continuous measurements can
be obtained without interrupting the material flow, facilitating the effective utilization of
RCA in concrete aggregate recycling. The developed approach allows for the estimation
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of the entire PSD based on the analysis of the PSD data obtained from measuring a 20
mm-wide strip located at the one-third distance from the top of the single side surface
of the triangular RCA piles. It is important to emphasize the significance of this find-
ing, as there was basically no guarantee that the analysis of a small part of the pile side
would give such a good representation of the overall PSD. The analysis and correction
process further improves the accuracy of the obtained PSD data. The 3D surface analy-
sis demonstrates good performance and accuracy in predicting the PSD of RCA piles, as
evidenced by the low RMSE obtained when compared to manually measured values.
This study contributes valuable insights to the field of RCA analysis and provides
a solid foundation for accurate characterization and assessment of the RCA proper-
ties. Additionally, it enhances the efficiency and accuracy of RCA analysis, enabling
researchers and practitioners to obtain reliable PSD information with minimal effort.
The demonstrated effectiveness of inferring the overall PSD from a single measured part
expands the possibilities for efficient and cost-effective analysis of RCA piles, benefit-
ing both researchers and industry professionals in their pursuit of sustainable construc-
tion practices. This timely information empowers decision-makers with the necessary
knowledge to make informed choices regarding the utilization, processing, and manage-
ment of RCA in concrete aggregate recycling. It enhances efficiency and effectiveness in
the recycling process, contributing to sustainable practices and resource optimization.
Moreover, the proposed system offers several advantages over conventional methods:

(1)Non-contact measurement The non-contact nature of the measurement ensures
that the aggregate piles remain undisturbed during the transportation process on the
conveyor belt, preserving their natural arrangement and characteristics. This non-
contact approach contributes to maintaining the integrity of the triangular piles and
minimizes the potential for bias and human error in the assessment of RCA properties.

(2)Simplified data acquisition The system simplifies the data acquisition process by
reducing the number of required measurements, improving efficiency while maintain-
ing accuracy. It eliminates the need for manual sampling, thereby reducing labor costs
and improving overall efficiency.

(3)3D surface analysis Applying 3D surface analysis allows for the precise and detailed
measurement of RCA particle shapes and sizes, even in complex and dynamic environ-
ments. This overcomes the limitations of traditional 2D imaging techniques, leading to
better quality control and more reliable data for optimizing PSD.

(4)PSD optimization The algorithm enables the achievement of optimal PSD with the
minimal addition of various RCA particle sizes, facilitating the development of high-
performance concrete.

(5)Real-time capability The real-time capability of the system enables prompt feed-
back and adjustment of recycling processes, leading to improved productivity and opti-
mal resource utilization.
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While this study shows some clear benefits, it also acknowledges certain limitations
that necessitate additional investigation. Future research could beneficially explore the
scalability of the proposed method, particularly its applicability across diverse aggre-
gate types. Moreover, addressing the existing constraints in the algorithm’s performance
remains a crucial area for further refinement. Subsequent studies might productively
focus on enhancing the algorithm’s efficiency, extending the method’s applicability to a
broader range of conveyor systems, and strategically integrating this technology within
other quality control frameworks to optimize overall process efficiency.
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OPTIMIZING CONTAMINANT
DETECTION PRECISION IN
RECYCLED COARSE AGGREGATES
VIA
SURFACE-CONDITION-ADAPTIVE
METHOD

Recycling coarse aggregates from construction and demolition waste is essential for sus-
tainable construction practices. However, the quality of recycled coarse aggregates (RCA)
often fluctuates significantly, in contrast to the more stable quality of natural aggregates.
Contaminants in RCA notably compromise its quality and usability. Therefore, automat-
ing the quality control of RCA is necessary for the recycling industry. This study introduces
an industry-focused, innovative, and rapid quality control system that combines Laser-
Induced Breakdown Spectroscopy (LIBS) with 3D scanning technologies to enhance the
detection of contaminants in RCA streams. The system involves a synchronized appli-
cation of LIBS for spectral analysis and 3D scanning for the physical characterization of
different materials. Results reveal that the dependability of single-shot LIBS analysis has
been enhanced, thus elevating the precision of contaminant detection. This improvement
is achieved by accounting for the laser shot’s angle of incidence and focal length adjust-
ments. The introduced technology holds potential for application in the real-time exam-
ination of substantial volumes of RCA, facilitating a rapid and reliable quality control
method. This rapid assessment technique delivers online data about the concentration

Apart from minor updates, this chapter has been published in C. Chang et al., 2025.
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of contaminants in RCA, including recycled fine aggregates, cement paste, bricks, foam,
glass, gypsum, mineral fibers, plastics, and wood. This data is both essential and suffi-
cient for choosing a cost-effective mortar recipe and guaranteeing the performance of the
final concrete product in terms of strength and durability in construction projects. The sys-
tem can monitor the quality of RCA flows at throughputs of 50 tons per hour per conveyor,
characterizing approximately 4,000 particles in every ton of RCA, in this way signaling the
most critical contaminants at levels of less than 50 parts per million. With these character-
istics, the system could also become relevant for other applications, such as characterizing
mining waste or solid biofuels for power plants.
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5.1. INTRODUCTION

HE global shift towards sustainable construction practices has increasingly empha-
T sized the importance of recycling materials, particularly in the context of construc-
tion and demolition waste. Among these materials, recycled coarse aggregates (RCA) are
of significant interest due to their potential to reduce environmental impact and con-
tribute to resource conservation (de Andrade Salgado and de Andrade Silva, 2022; Silva
etal., 2017). The quality of the aggregate improves with more thorough waste treatment
(Martin-Morales et al., 2011). Despite its potential, the effective recycling of RCA is ham-
pered by significant challenges in accurately detecting contaminants, a crucial step to
ensure the quality and safety of recycled materials.

The challenge primarily arises from the frequent and significant fluctuations in RCA
quality (Lux et al., 2023). Natural aggregates originate from relatively uniform geologi-
cal sources, maintaining stable quality over long periods. In contrast, RCA quality can
exhibit considerable fluctuations over relatively short intervals due to the diverse nature
of demolition waste. Such waste includes materials from different sections of various
demolition sites and is processed with differences in recycling methods. Therefore, the
non-uniform composition and properties of the input demolition waste directly influ-
ences the uniformity of the resulting RCA.

Research on RCA has predominantly examined how contaminants affect concrete
quality (Abid et al., 2018; Ahmad et al., 2023; Bai et al., 2020). However, precise detection
and classification of these contaminants in RCA have received less attention. Vegas et
al. analyzed mixed recycled aggregates from various European countries, revealing that
near-infrared sorting effectively reduces, if not eliminates, problematic fractions (Vegas
et al., 2015). Serranti and Bonifazi developed strategies to detect asbestos-containing
materials and other contaminants in concrete aggregates derived from demolition waste
(Serranti and Bonifazi, 2020). Xia and Bakker examined different material particle sam-
ples, concluding that the success of practical testing depends on the training set’s quality
and the management of potential false positives (Xia and Bakker, 2014). Despite these
advancements, a significant gap remains in methods for in-situ evaluation of contami-
nants in RCA, particularly their application in industrial scenarios (Bonifazi et al., 2018;
Serranti et al., 2023).

A primary challenge in the field of recycling RCA remains the accurate detection of
contaminants that might evade initial sorting processes. This is particularly crucial in
quality control, where even a small percentage of undetected contaminants can com-
promise the final product’s integrity. False positives in sorting are less critical, as they
result in acceptable losses of non-contaminated material. However, the accurate detec-
tion and minimization of false positives in quality control are essential to ensure the re-
liability and high quality of the recycled aggregates. A high rate of false positives can lead
to RCA being mistakenly identified as contaminated, which can diminish the quality and
value of what was originally high-quality and valuable material. Currently, the field lacks
arapid and precise method for detecting a wide range of contaminants in RCA. This gap
is largely due to the inconsistent and unpredictable nature of these contaminants. These
inconsistencies hinder the accurate detection of contaminants, complicating the devel-
opment of a universal, straightforward method for detecting all contaminants. Conse-
quently, this leads to considerable discrepancies in the quality assessments of RCA. Ad-
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dressing these challenges requires the adoption of efficient, reliable, non-destructive,
and cost-effective sensor technologies. Such technologies would enable automatic con-
taminant detection, addressing the diverse nature of recycled materials. Implementing
this approach will enhance quality control in the use of RCA, ensuring a more consistent
and reliable end product.

Laser-induced breakdown spectroscopy (LIBS) is emerging as a highly promising
technology for real-time, on-site elemental analysis, particularly within the expansive
market of concrete production industries (Mansoori et al., 2011; Yin et al., 2016). LIBS
offers numerous advantages for practical operations, including minimal or no sample
preparation, real-time analysis, and comprehensive element measurement capabilities
(J. Wang et al., 2020). In the concrete sector, LIBS is commonly employed for both iden-
tifying and quantifying chemical elements (qualitative and quantitative) (Cabral et al.,
2023). However, its application in classifying, recognizing, and recycling various con-
struction materials remains underexplored (C. Chang et al., 2022; Elfaham and Eldemer-
dash, 2019; Xia and Bakker, 2014). Gottlieb et al. introduced an algorithm for hetero-
geneous concrete to isolate spectral data of non-relevant aggregates and cement matrix
(Gottlieb et al., 2017). Volker et al. investigated cement paste prisms to distinguish ce-
ment types and noted that additional moisture changes the laser material interaction
and the composition of vaporized material volume, affecting classification (Volker et
al., 2020). Zivkovi¢ et al. used LIBS with microscopic-scale spatial resolution to map
elemental distribution in archaeological samples from the Smederevo Fortress, Serbia
(Zivkovi¢ et al., 2021). Junwei et al. noted that in the cement industry, the matrix of
the cement raw meal varies due to different sources, possibly extending beyond the cal-
ibration sample concentration range (Junwei et al., 2018). Most studies are confined to
laboratory environments, emphasizing the need for environmental considerations dur-
ing measurements (Dietz et al., 2019; Mansoori et al., 2011). Hence, practical application
in concrete industrial production is limited.

A significant challenge for LIBS in quantitative measurements is its relatively high
uncertainty or low repeatability (Z. Wang et al., 2021). This uncertainty in collected spec-
tral data significantly impacts classification accuracy. This is due to various factors, but
most research work was concentrated superficially on the impact of different system pa-
rameters on the emission signals (Kim et al., 2013; J. Wang et al., 2020), temperatures
(Palanco et al., 1999) and ambient gas (Yu et al., 2020) on LIBS performance. While many
algorithms have been developed to classify materials using LIBS, less attention has been
given to surface information analysis to enhance spectral signals. Zhang et al. found that
adjusting lens-to-sample distances improves LIBS’s analytical performance, enhancing
precision and detection limits (Zhang et al., 2012). Wang et al. investigated the effect of
surface roughness on solid samples, concluding that preparing smooth surfaces leads to
more consistent laser-sample interactions and fewer plasma fluctuations (Z. Wang et al.,
2021). However, in practical scenarios, the uneven surfaces of materials like RCA pose
challenges for LIBS to obtain high-quality spectral information.

This study presents an innovative and rapid quality control system that enhances
contaminant detection precision in RCA streams by employing surface-condition-
adaptive LIBS. This advancement results from merging LIBS with 3D scanning tech-
nology, providing vital data on surface conditions at each laser shooting point. Con-



5.2. MATERIALS AND METHODS 119

sequently, this integration substantially enhances the reliability of analytical results ob-
tained from each single LIBS laser shot. For effective operation, precise synchroniza-
tion and calibration of the two sensors are essential. The technique involves a detailed
analysis of the LIBS laser focal length and angle of incidence at the shooting point. The
process continues by filtering the collected spectral data, omitting laser shots that do
not meet the required standards. Then, both the angles of incidence and corresponding
spectral values are incorporated into the cluster-based classification algorithm. This ap-
proach enables the LIBS system to dynamically adjust its analysis based on the real-time
surface conditions of each laser shot, significantly reducing the false-positive rates of
material misclassification. This adaptive strategy markedly elevates the accuracy of ma-
terial classification, thereby facilitating rapid quality control processes for RCA streams
on the conveyor belt. The research thoroughly assesses this surface-condition-adaptive
LIBS method, highlighting its proficiency in precisely identifying a variety of materi-
als commonly encountered in construction waste. Figure 5.1 illustrates the procedural
flowchart, offering a visual summary of the methodological sequence employed in this
study.
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Figure 5.1: Schematic of quality control process

5.2. MATERIALS AND METHODS

5.2.1. MATERIALS

Demolition waste samples (Figure 5.2) were gathered from sites in the Netherlands for
analysis. Distinct materials (bricks, foam, glass, gypsum, mineral fibers, plastics, and
wood) were separated either by hand or with the help of inline sorters available at the re-
cycling facility. The End-of-Life (EoL) concrete was obtained relatively clean through se-
lective demolition. This EoL concrete was then processed using the Concrete to Cement
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and Aggregate (C2CA) technology (Gebremariam et al., 2020). The output was divided
into three categories: RCA ranging from 4.0 to 16.0 mm, recycled fine aggregates (RFA)
between 0.25 and 4.0 mm, and cement paste-rich powder sized 0 to 0.25 mm.

led Coarse Aggreg: led Fine Aggreg: Cement Paste Bricks
(RCA) (RFA)

Mineral Fibers Plastics

Figure 5.2: Demolition waste samples

5.2.2. EQUIPMENT

SENSOR-BASED QUALITY CONTROL SYSTEM

The sensor-based quality control system depicted in Figure 5.3 begins with the process
of transporting the to-be-inspected objects via a feeder to the conveyor belt, which then
conveys them under the sensor system for analysis. This system encompasses two prin-
cipal sensors: the 3D scanner Gocator and the LIBS. Both sensors are mounted on a
fixed frame directly above the conveyor belt. The LIBS is aligned perpendicularly to the
direction of the conveyor belt’s movement, while the Gocator is oriented parallel to it.
The Gocator specializes in detecting the surface conditions of target objects, generating
high-resolution (x-direction: 0.378 mm, y-direction: 0.393 mm, z-direction: 0.083 mm),
three-dimensional point cloud data that effectively captures the detailed surface topog-
raphy. On the other hand, LIBS plays a pivotal role in the recognition and classification
of various objects.

A distinctive feature of the system’s design is the integration of multiple reflective
mirrors. The laser beam is divided and directed using a series of beam splitters and
mirrors (as shown by the red arrows in Figure 5.3) onto two separate conveyor belts. To
further fine-tune the position of the laser beam, a dual-stage system is employed, with
each stage directing a laser beam to one of the conveyor belts. The laser’s position can be
adjusted based on the specific characteristics of the objects being inspected. The laser
beams’ positioning can be adjusted according to the specific attributes of the objects
being inspected. This design enables the simultaneous monitoring of objects on two
distinct conveyor belts using just a single Nd : TAG laser.
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Figure 5.3: Sensor-based quality control system

SYNCHRONIZATION

To enhance spectral analysis through surface information, it is crucial to synchronize the
two sensors. This approach enables enhancement of the analysis of spectra obtained
from LIBS by incorporating surface conditions of the target points captured by the Go-
cator. An integrated encoder is employed for the control and logging of the conveyor
belt, Gocator, and LIBS systems. The integrated encoder’s resolution is set at 4098 pulses
per revolution. Given the conveyor belt’s wheel perimeter of 402.116 mm, the belt ad-
vances 0.098 mm with each pulse of the integrated encoder. Considering the maximum
scanning frequency of the Gocator, its internal encoder resolution is configured at 1024
pulses per revolution. This implies that for every four pulses emitted by the integrated
encoder, the Gocator executes one scan. Consequently, the calculated resolution of the
Gocator along the conveyor belt’s direction of travel is 0.393 mm.

Experimental data indicates a horizontal distance of 6025 integrated encoder pulses,
equivalent to 591.203 mm, between the linear scans of the Gocator and the LIBS laser
shooting point. Based on this, synchronization of the Gocator and LIBS signals is
achieved through the pulse values recorded by the integrated encoder. When the LIBS
emits a laser shot, the corresponding pulse value of LIBS recorded by the integrated en-
coder at that moment is pv. Therefore, the surface targeted at that instant corresponds
to the (pv-6025)/4 scan in the Gocator’s dataset.

CALIBRATION

Within this setup, two sensors have been securely mounted on the same frame. The
LIBS is oriented vertically, while the Gocator sensor maintains a horizontal position and
is perpendicular to the plane of the LIBS (as shown in Figure 5.4). The relative position-
ing of the sensors has been precisely pre-calibrated, ensuring no displacement occurs
between them. The conveyor belt, however, is distinct and separate from this frame.
In practice, the conveyor belt is inserted beneath the frame to align with the operation
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of the sensors. Should the positioning be incorrect, recalibration is required to ensure
accuracy.

Lasernduced Breakdown Spectroscopy
Laser-Induced Breakdown Spectroscopy
{LIBS)

Gocator

(a) Side view (b) 3D view

Figure 5.4: Pre-calibrated sensors

To enhance clarity, a spatial coordinate system, as illustrated in Figure 5.3, is estab-
lished. The x-axis is defined as the direction perpendicular to the Gocator body, pointing
towards the direction of the conveyor belt’s movement. The y-axis runs parallel to the
Gocator body, and the z-axis is oriented vertically upwards from the Gocator body.

To address misalignments between the sensor system and the conveyor belt, which
can introduce measurement inaccuracies, a calibration methodology is necessary.
Specifically, in practical operations, the conveyor belt does not maintain a perfect hori-
zontal position and deviates from the ideal alignment along the z-axis, as well as exhibits
variations along the x and y-axes. The correction approach involves the use of a flat cal-
ibration plate placed on the conveyor belt. Two arbitrary points labeled A and B, are
selected on the plate, ensuring that their y-axis coordinates are not identical. The differ-
ences along the x-axis (Ax) and the y-axis (Ay) between points A and B are recorded.

As the conveyor belt operates, the calibration plate undergoes scanning by the Goca-
tor. Initially, the Gocator captures the coordinates of point A (x4, Y4, 24). After a span of
number t pulses, the Gocator records the coordinates of point B (xp, yp, zp). The respec-
tive differences in the coordinates of points A and B are then calculated as follows:

Ax'=xp— x4
AY' =yp—Ya (5.1)
AZ =zp—zq4
If the conveyor belt is positioned correctly, it should satisfy the following relationships:
Ax'=Ax

Ay =Ay (5.2)
AZ'=0
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If the relationships are not satisfied, this indicates a misalignment in the placement of
the conveyor belt, necessitating an adjustment. Referring to Equation Set 5.3, the values
for the offset in each pulse along the x, y, and z axes (¢, €y, €;) can be accurately calcu-
lated. These values are then employed to implement the required corrective measures.

Xp=Xqg+Ax+ex-t
Yob=YatAy+ey-t (5.3)
Zp=2q+E€z 1

G (x-6025&,, y,-591.203-6025¢,,, 2,-6025 €,)
= ]

L(xlaylazl) *:::: _____________ L q-.(}('xia:yia Zi)

-~ -

L’ (x+6025¢,, y+591.203+6025¢,,, z,+6025¢,)

Figure 5.5: Correlation between the LIBS laser shooting point and the Gocator’s scanning data

The LIBS and the Gocator are both affixed to the same framework, with their relative
positions meticulously pre-calibrated. This ensures that the spatial relationship between
the LIBS and the Gocator remains invariant. This alignment allows for a direct and syn-
chronized correlation between the LIBS laser shooting point and the Gocator’s scanning
data. As illustrated in Figure 5.5, a point G captured by the Gocator travels along the
conveyor belt. When the LIBS is set to emit the laser after 6025 pulses, the target point G
shifts to a new position, denoted as L', due to certain deviations. At this precise moment,
the actual shooting point of the LIBS laser is at L, corresponding to the point G’ previ-
ously scanned by the Gocator. The spatial correlation of points L and 'G’ are related as
follows:

X1 = Xi
y;=yi+591.203 (5.4)
21 =2z

After correction, it can be calculated that the actual corresponding point G’ for the
LIBS laser shooting point L is located at the coordinates (x; — 6025¢, y; —6025¢y, z; —
6025¢,). This representation effectively maps the corrected laser shooting point to the
scanner’s coordinate system, ensuring precise spatial alignment and data integration.

5.2.3. ANALYSIS METHODS

CALCULATION OF 3D POINT CLOUD NORMAL VECTOR

Analyzing the surface condition of objects at laser shooting points requires the determi-
nation of the object’s surface normal. This step aids in calculating the laser shot’s an-
gle of incidence relative to the object’s surface. In this study, a hybrid approach is used
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to estimate normal vectors within 3D point clouds. This method synergistically com-
bines fixed-radius and K-Nearest neighbors (KNN) algorithms (Corral and Almendros-
Jiménez, 2007) to calculate within the smallest possible range around a target point, en-
abling efficient and precise identification of each point’s geometric characteristics in the
cloud.

Neighborhood Definition

The initial step involves defining each point’s neighborhood using a set radius. Given a
point P, with coordinates (x,, y,, z,,) in the 3D point cloud, the neighborhood N(P,) of
P, within a starting radius r is defined as:

N(Py) = {Py

\/(xu_xv)2+(yu—yy)2+(Zu—Zy)z snVu# v} (5.5)

where P, are the points in the point clouds. Considering resolutions along the x, y, and
z axes of 0.378 mm, 0.393 mm, and 0.083 mm, respectively, the starting radius r of 1 mm
is set to guarantee a uniform search area, regardless of point density variations. This
radius-based search encompasses all points within the specified boundary, providing a
comprehensive dataset for further analysis.

Refinement to K-Nearest Neighbors

From the initial neighborhood N(P,), the set is refined to the k-nearest neighbors, con-
strained to a maximum count based on the Euclidean distance - in this case, k = 9. This
refined neighborhood is denoted as N (P,,).

Covariance Matrix Computation
Upon identifying the relevant neighborhood points, for each point P, and its neighbor-
hood Ni(P,), calculate the covariance matrix CMp, as:

CMp, = %Pue%wu) (Po—Pu) (Po-Pu)' (5.6)

where P, is the centroid of the neighborhood points and is given by:

— 1
Py=+ > P (5.7)
PyeNi(Py)

This covariance matrix captures the spatial distribution of the points, forming the basis
for the next steps.

Eigenvalue Decomposition

The core of the normal vector estimation process involves the eigenvalue decomposition
of the covariance matrix CMp,. Through this decomposition, eigenvalues ¢1, ¢2, 3 and
their corresponding eigenvectors 71, 7», T3 are obtained. Eigenvectors signify the pre-
dominant axes of the point distribution. The eigenvalues are ordered as ¢; = ¢ = ¢3.
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Normal Vector Estimation
The normal vector N, at point P, is the eigenvector 73 corresponding to the smallest
eigenvalue ¢3, thus:

N, =1; (5.8)
This choice is grounded in the principle that the smallest eigenvalue’s direction exhibits
the least variance, aligning with the surface normal.

Preprocessing for Noise and Outliers

It is imperative to recognize that irregularities in point cloud density, along with noise
and outliers, can significantly affect the accuracy of normal vector estimation. When the
scanning laser of the Gocator encounters gaps between particles, particularly in areas
that are deeper and darker than the surrounding particle surface, the scanning laser’s re-
flectivity may decrease. This reduction in reflectivity results in abnormal elevation data,
often producing negative values. Such anomalies can introduce substantial errors in
normal vector estimation, especially when calculating the boundary points of particles
based on adjacent data. To enhance the reliability of the results, preprocessing steps
such as noise filtering and smoothing are essential.

It is important to emphasize that these preprocessing steps are specifically designed
for the normal vector estimation process. When processing LIBS spectral data later, the
original Gocator scanning data, including any negative elevation values, should still be
used. The presence of these negative elevation data indicates the areas where gaps be-
tween particles exist, and accurately identifying these areas is critical for subsequent
corrections in LIBS spectral data analysis.

SURFACE-CONDITION-ADAPTIVE CLASSIFICATION ALGORITHM

The quality of the detected spectrum is highly influenced by two factors: the distance of
the focal point of the laser to the object’s surface and the laser shot’s angle of incidence
relative to the object’s surface normal during laser shooting. To ensure optimal analy-
sis, it is essential to exclude spectral data obtained outside the focal length. Moreover,
incorporating the angle values into the spectral data analysis improves accuracy. By inte-
grating these angle values as parameters, the performance of the classification algorithm
is refined and enhanced.

The surface-condition-adaptive classification algorithm for analyzing single-shot
spectral data utilizes chemometric methods that integrate principal component anal-
ysis with the chi-square distribution (C. Chang et al., 2022). To effectively perform prin-
cipal component analysis (PCA), distinct preprocessing methods are required for angle
values and spectral values. This ensures comparability in magnitude and optimal rep-
resentation of each data set’s characteristics. For angle values, normalization is applied.
Given their range of 0 to 90 degrees, they are normalized to a scale of 0 to 1. This is
achieved by employing Min-Max Normalization for each angle value. This transforma-
tion maintains the proportional relationships while making the values more manage-
able. In contrast, spectral values are processed through standardization. The key infor-
mation in spectral data, the distribution patterns of peaks and troughs, is best captured
by z-score standardization. This approach maintains the data’s overall distribution but
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adjusts the mean and standard deviation to a zero mean and unit standard deviation. By
doing so, spectral values are effectively scaled, ensuring a standardized framework for
further analysis.

When shooting material X, each laser shot yields an angle of incidence value d,
and a corresponding spectrum X = (X1, X2,..., Xy), where x; denotes the plasma emis-
sion intensity at wavelength A¢(s = 1,2,...,N), with N representing the total number
of recorded spectral wavelengths. By assessing the angle of incidence and the ac-
tual focal length, spectra that do not meet the criteria are filtered out. Subsequently,
by combining the normalized angle value d’ with the spectrum x, a composite value

= (d',x1,%2,...,xn) is created. Consequently, each laser shot can be considered as a
point in an N + 1 dimensional space. In this space, laser shots from the same mate-
rial form a unique group of point clouds. Different materials are represented by distinct
groups of point clouds. Each new laser shot creates a new point, which is either assigned
to an existing point cloud group or labeled as unrecognizable if it significantly deviates
from known groups.

After PCA processing, the database for material X records a selected principal com-
ponent number n. This corresponds to a new, rotated orthonormal coordinate system
with axes aligned along 7 unit vectors (ej, e,...,e,). The database also includes a set

of vectors of principal components (¢1,¢2,...,¢,), and a center point (a, 5, ... ,E) along

with variances (Aé‘i‘, A&, .., AE%) to describe the multi-dimensional normal distribution
of the spectra for material X.

Following the process of z-score normalization, for each principal component value
Zm (m=1,2,...,n), calculated from the obtained principal components (¢1,¢2,...,¢n),
it'’s presumed to align with chi-square distributions for categorization purposes. Specif-
ically, each Z,, is calculated by the equation:

T = M (5.9)

A&Z,

showing that it conforms to a standard normal distribution, characterized by a zero
mean and unit variance. Leveraging the chi-square distribution framework, the statistic:

=Y Zp=) ——" (5.10)
1 1

Aéz

is scrutinized to verify its alignment with the expected y2-distribution by checking if it is
adequately small. This y? metric is then converted into a probability p-value reflective of
the y?-distribution, with an inverse relationship between y? and the p-value indicating
an increased confidence level. A p-value below a selected significance level suggests
significant statistical relevance. This significance level for material X is set based on its
associated p-value, categorizing spectra with p-values exceeding this significance level
as attributable to material X.
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QUALITY CONTROL METHOD

Initially, the RCA is thoroughly mixed to ensure a uniform distribution. This homogene-
ity is achieved through the utilization of the feeder mechanism, which evenly disperses
the RCA onto the conveyor belt, preparing it for further analysis. Subsequently, the Go-
cator continuously scans the surface of the RCA streams, calculating and detecting vital
parameters such as the actual focal length (corresponding z-values z) and the angle of
incidence d in real-time. These measurements are crucial for the accurate classification
of material types.

Parallel to the scanning process, LIBS targets fixed points on the RCA streams, shoot-
ing continuously. It integrates the obtained spectral data x with the previously calculated
focal length and angle of incidence to identify the material accurately. This classification
process is enhanced by periodically summarizing the frequency of occurrence FC,,; for
each material type X,,,4; within fixed time intervals FI, thereby estimating the content
CE,,,q of various materials in the RCA streams rapidly and efficiently. The specific qual-
ity control process is outlined in Algorithm 1.

The quantified material content data is then synchronized to the cloud in real-time,
allowing for immediate access and analysis. This capability is instrumental in maintain-
ing quality control, as it facilitates the quick classification of any material content that
exceeds predefined limits. Once an anomaly is detected, the system enables swift mark-
ing and manual intervention, ensuring that only materials meeting the desired specifi-
cations are utilized.

5.3. RESULTS AND DISCUSSION

5.3.1. EFFECTS OF FOCAL LENGTH
To determine the effective focal length of the LIBS system, it is essential first to calculate
the diameter wy of the focal spot. This is achieved using Formula 5.11:

_2MPAf

=D (5.11)

wo
Formula 5.11 is employed to determine the 1/¢? spot diameter for a collimated Gaussian
beam (Dickey, 2018). This beam is characterized by a wavelength A and a diameter D at
the lens when it is focused using a lens with a focal length f. If the beam deviates from an
ideal Gaussian, the beam quality parameter M? is introduced to adjust the calculation.
In this LIBS system, the parameters are A = 1064nm, D = 2.5mm, f =300mm, and M? =
1.2. With these parameters, the calculated diameter wy of the focal spot is 195.1 um.

The effective focal length range is defined by the depth of field (DOF) of the focused
beam, calculated as twice the Rayleigh range Zy:

DOF =223 (5.12)

The Rayleigh range (Herman and Wiggins, 1998), a pivotal concept in optics and laser
physics, describes the characteristics of a Gaussian beam. It is the distance from the
beam’s narrowest point (the beam waist) to the point where the beam’s diameter in-
creases by a factor of v/2. Within this distance, the beam is considered to be approxi-
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Algorithm 1 Quality control module

Input: Laser shooting point P, (x,, yu, z,) and spectrum x
Output: Estimated content CE of each material type X,,,4

1: If a thenny point in the neighborhood has z,, <0

2 Delete spectrum x

3: Else

4 z — Calculate the corresponding z-value at the point P,

5: d — Calculate the angle of incidence at the point P,

6 If z > focal length limit or d > angle of incidence limit then

7 Delete spectrum x

8 Else

9 d' — Apply Min-Max normalization to d
10: x' — Apply z-score standardization to x
11: C — Combine d’ and x’
12: For each material database X,,,; (md =1,2,...,10) do
13: €1,¢2,...,{n) — Apply PCAto C
14: Zyp =2t (m=1,2,..,n)

A,
—\2
2 n 72 n (5'”75'”)

15: p-value — y“ =%1Z;, =¥{ v
16: If p < significance level then "
17: Spectrum x is classified as the material type X,;,4
18: Else
19: Spectrum x is classified as not the material type X;,,4
20: End If
21: End For
22: End If
23: End If

24: Initiate Frequency summary process

25: Set fixed time intervals FI for summarization

26: For each interval fi € FI do

27: Initialize frequency count FC,,; for each material type X,,,4

28: For each classification result within the interval fi do

29: Increment the frequency count FC,,; for the corresponding material type
Xmd

30: End For

31: Calculate the content estimate CE,,4 for each material type X;,,4

32: Store the content estimate CE,,,4

33: End For

34: Aggregate all interval content estimates CE,,; to obtain the total estimated content
CE

35: Return Estimated content CE for each material type

36: End frequency summary process
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mately collimated, meaning that the spread of the beam is very minimal. The mathe-
matical expression for the Rayleigh range is typically:

2
Tw,

ZR

where the parameter M? is included to accommodate for the increased divergence in
non-ideal beams. In this study, Zp is calculated to be 23.4 mm.

At the Rayleigh range Zg, although the beam’s expansion results in a doubling of the
cross-sectional area and corresponding changes in energy density, the impact on the
generated spectra remains relatively stable, as demonstrated in Figure 5.6 (a) and (b) for
the RCA example. This stability can be attributed to several key factors:
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Figure 5.6: Effect of parameters on spectra (RCA)

(1) Beam collimation within the Rayleigh range The Rayleigh range defines the dis-
tance over which a laser beam remains relatively collimated during propagation (Her-
man and Wiggins, 1998). Within this range, although the cross-sectional area of the
beam increases, the beam remains well-collimated, meaning the energy is still concen-
trated in a relatively small region (Musazzi and Perini, 2014). As a result, the changes in
energy density do not significantly affect the laser-sample interaction. This interaction
is sufficiently strong to generate a consistent plasma, leading to relatively stable spectral
intensity.

(2) Nonlinear effects in plasma formation LIBS relies on the formation of plasma at
the sample surface by the laser beam. The formation of plasma and the intensity of
the emitted spectra often involve nonlinear processes. Even with variations in energy
density, these nonlinear responses—such as saturation effects or plasma shielding—can
partially compensate for the changes, resulting in less significant variations in spectral
intensity compared to the energy density changes (Z. Wang et al., 2021).
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(3) Tolerance to focal changes Within the Rayleigh range, the focal spot of the laser,
though expanding, still falls within a relatively narrow depth of focus. Within this depth
of focus, the conditions of interaction between the laser beam and the sample surface
remain relatively consistent, ensuring that the conditions for plasma formation remain
within an effective range. These conditions preserve the uniformity of the spectral sig-
nals (Gravel et al., 2011). As long as the energy density does not drop below the thresh-
old required for plasma formation, the spectral signal can still maintain a high inten-
sity. In other words, even if the energy density is halved, it remains within the effective
range necessary to sustain plasma generation. Therefore, even though the beam’s cross-
sectional area doubles, the energy density remains sufficiently uniform within this depth
of focus, limiting the extent of spectral intensity variations (Dickey, 2018).

These factors collectively ensure that, within the Rayleigh range, the spectral inten-
sity remains within a controllable range despite variations in the energy density due to
beam expansion.

Experimental results from various materials reveal that optimal spectra can be suc-
cessfully obtained within a 30.0 mm distance from the focal point. Thus, a focal length
range of 23.4 mm is identified as the optimal limit for effective spectral acquisition. This
conclusion draws upon both empirical evidence and theoretical analysis, which shows
that this specific focal distance consistently produces the most accurate and reliable
spectral data across different material types, enhancing the precision of the spectro-
scopic analysis.

Considering the size of the measured particles, which are all smaller than 23.4 mm, it
is reasonable to assume that laser shooting points are typically within the effective focal
length. However, there is a possibility that the laser shoots may pass through the gap
between two surface particles, penetrating below the surface layer, which is the outer-
most layer of the particle pile, as illustrated in Figure 5.7. Laser shots in such scenarios,
potentially beyond the Rayleigh range, are challenging to evaluate. This is also reflected
in the Gocator scanning data, where the corresponding z-values are negative. Conse-
quently, this laser shot’s incidence angle on the material’s surface cannot be precisely
determined. Based on this unique characteristic, these laser shot data can be excluded.

5.3.2. EFFECTS OF THE ANGLE OF INCIDENCE
Experiments conducted on various materials revealed that spectral data, which are ca-
pable of characterizing material properties, is obtained when the laser shot’s angle of
incidence is between 0 and 60 degrees relative to the object’s surface normal. For ex-
ample, in the case of RCA, as illustrated in Figure 5.6 (a) and (c), the peak values of the
spectral maxima indicated by the red circles are 65,269.526 A.U. and 43,072.738 A.U. at
incidence angles of 0 degrees and 60 degrees, respectively. This represents a decrease of
approximately 34%. Despite differences in specific numerical values, the overall trend
of the spectra is highly consistent. Particularly, both spectra exhibit similar peak and
trough distributions across different wavelength ranges, indicating that the character-
istic peak positions remain relatively stable at both 0 degrees and 60 degrees incidence
angles, with only variations in intensity.

When the angle of incidence exceeds 60 degrees, spectral values tend to be signifi-
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Laser beam

Figure 5.7: Laser shoots the gap between two particles

cantly lower. For instance, in the case of RCA, at a 70-degree angle (Figure 5.6 (d)), the
spectral intensity not only drops substantially compared to the spectra at 0 degrees (Fig-
ure 5.6 (a)) and 60 degrees (Figure 5.6 (c)) but also loses many characteristic peaks, mak-
ing them challenging to correct algorithmically. This reduction is primarily attributed to
the increased surface area impacted by the laser shots at steeper angles, leading to di-
minished reflected energy and consequently lower spectral values detected. Other stud-
ies indicate that LIBS signal intensity decreases markedly when the angle of incidence
exceeds 60 degrees (Brennetot et al., 2003; Lépez-Moreno et al., 2007; Palanco et al.,
2002).

Both angle of incidence and focal distance variations lead to changes in the laser spot
size on the sample surface, thereby affecting the energy density and, consequently, the
spectral intensity in LIBS. However, angle variation generally exerts a more significant
impact on spectral intensity than focal distance changes. The reasons are as follows:

(1) Energy density distribution As the angle of incidence increases, the laser beam
projects onto the sample surface as an elongated ellipse (Képes et al., 2021), leading
to a less uniform energy density distribution. This non-uniformity is particularly pro-
nounced along the major axis of the ellipse, where the energy density is lower, reducing
the efficiency of plasma formation and, consequently, the spectral intensity. Addition-
ally, the matrix effect of the sample’s surface morphology on LIBS should not be over-
looked (Xiang et al., 2024). In contrast, when changes in the focal distance affect the
energy density by altering the spot size, this effect is typically less pronounced within
the Rayleigh range, where the beam remains relatively well-collimated and energy is still
concentrated (Fortes et al., 2013).

(2) Variation in reflection and absorption As the angle of incidence increases, the pro-
portion of laser energy reflected from the sample surface also increases, while the energy
absorbed by the sample decreases. This reduction in absorbed energy further dimin-
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ishes the formation of plasma and reduces the intensity of the resulting spectral signal
(Palanco et al., 2002). In contrast, focal distance changes primarily affect the focusing of
the laser on the sample surface. Although this also impacts spectral intensity, the effect
is relatively minor compared to the substantial differences in reflection and absorption
efficiency caused by angle variation.

(3) Effects in plasma formation The angle of laser incidence significantly affects
plasma formation and consequently influences the intensity of the spectral signal.
Plasma formation is highly dependent on the energy density delivered to the sample sur-
face, exhibiting a distinct nonlinear behavior with a clear energy density threshold. As
the incidence angle increases, the laser irradiance decreases, making plasma formation
more challenging. Larger incidence angles alter the ablation geometry and reduce the
efficiency of laser ablation, leading to a decrease in the ablated mass and a significant
weakening of plasma emission intensity (Breves et al., 2017; Képes$ et al., 2021; Lei et al.,
2019). Plasmas generated at larger ablation angles are typically smaller and potentially
less dense (Breves et al., 2017).

Under orthogonal incidence, plasma expansion primarily occurs perpendicular to
the target surface. In contrast, with non-orthogonal incidence, the majority of the sam-
ple material’s emission is observed along the sample surface normal, despite plasma
expansion following the incident laser pulse (J. J. Chang and Warner, 1996; Ilyin et al.,
2015). Variations in the incidence angle result in decreased energy density due to a
larger interaction area and the enhanced plume shielding effect of the expanding plasma
(Zhangetal., 2012). This reduction in energy density can fall below the threshold needed
for effective plasma formation, resulting in reduced excitation of plasma particles and a
significant decrease in spectral intensity (Brennetot et al., 2003; Fortes et al., 2013).

The spatial distribution of plasma on the sample surface is not uniform but rather
diffuses outward in a hemispherical shape, with the highest radiation intensity occur-
ring in the direction normal to the sample surface and decreasing around it. As the in-
cidence angle increases, the non-uniform distribution of plasma and the directionality
of radiation intensity contribute to weaker LIBS signals (Z. Wang et al., 2021). Addition-
ally, changes in the incidence angle can induce plasma asymmetry (Képes et al., 2021).
In non-orthogonal ablation, the initial plasma is divided into two components: one that
follows the ablation pulse and primarily emits continuous radiation, and another com-
posed of sample material expanding along the sample normal (Képes et al., 2021). The
interaction between these two plasma components and the position of the collection
system significantly impacts the quality of the LIBS signal (Képes et al., 2021; Z. Wang
etal., 2021).

Non-orthogonal incidence makes the interaction between the laser pulse and the
plasma more complex. The plasma structure generated under non-orthogonal inci-
dence is more intricate, with less homogeneous ionic emissivity profiles compared to
the orthogonal case. This discrepancy is likely due to the varying height dependency of
the interaction between the laser radiation and the shockwave (Képes$ et al., 2021). Even
small deviations from orthogonal incidence significantly reduce the vertical homogene-
ity of the ionic emissivity profiles, likely because ionization predominantly occurs at the
shockwave boundaries (Képes et al., 2020). Furthermore, the shockwave produced by
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non-orthogonal ablation is more complex than that generated by orthogonal ablation
(Liu et al., 2013). This non-homogeneity in the distribution of emitting species in the
plasma may result in self-absorption, which decreases emission line intensity as the ob-
servation angle varies (Képes et al., 2021).

In summary, increasing the incidence angle reduces the fluence of the laser ablation
pulse, which affects plasma uniformity and spectral signal strength. Therefore, it is es-
sential to account for the impact of angle variation on plasma formation and spectral
collection when conducting quantitative LIBS analysis.

While focal length variations can also affect energy density, the uniformity of the laser
energy distribution means that the plasma formation is less likely to be severely compro-
mised, resulting in a less dramatic impact on the spectral signal.

Although both angle and focal length variations within the Rayleigh range can lead to
changes in the interaction area, angle variation has a more significant impact on spec-
tral intensity. Angle variations disrupt the uniformity of energy delivery to the sample
and result in a less efficient plasma formation process, leading to a more substantial re-
duction in LIBS signal strength compared to focal length variations. These combined
factors make angle variation a more critical parameter in determining the strength of
the spectral signal in LIBS.

RCA are generally more angular and irregular in shape compared to natural aggre-
gates, leading to significant variations in surface conditions. These irregularities can
cause inconsistent laser-sample interactions, particularly when the laser’s angle of inci-
dence varies across the surface. Such variations in angle directly affect the energy den-
sity of the laser on the sample, leading to fluctuations in the intensity and accuracy of
the spectral data obtained.

To mitigate these effects, we have normalized the angle of incidence and integrated
it into our cluster-based classification algorithm. By doing so, the algorithm accounts
for the changes in spectral data resulting from different incidence angles, ensuring that
the analysis remains accurate regardless of these variations. This adjustment is espe-
cially critical in situations where maintaining a consistent angle of incidence is difficult,
such as when dealing with the rough and uneven surfaces typical of RCA. As a result,
this approach enhances the reliability and precision of spectral analysis, ensuring more
consistent material classification and quality control.

5.3.3. QUALITY CONTROL TEST RESULTS

In this study, we meticulously collected data for a variety of materials, each characterized
by specific angle and spectral values. To rigorously evaluate our classification methodol-
ogy, we partitioned this dataset into two subsets: a training set and a validation set. The
partitioning adhered to a 9:1 ratio, ensuring a balanced distribution for effective model
training and validation. Specifically, for the purpose of validation, we randomly selected
100 entries for each material, resulting in a comprehensive validation set encompassing
a total of 1000 entries. Conversely, the training set comprised the remaining 900 entries
per material. This extensive dataset facilitated the development of a robust standard
library, pivotal for the accurate classification of materials based on their spectral signa-
tures and surface conditions.
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Figure 5.8: Confusion matrix of the validation set

Figure 5.8 delineates the classification outcomes, offering a comparative analysis of
the results obtained without considering surface conditions against those that are fac-
tored in these conditions. Further, the validation set’s classification efficacy is docu-
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mented in Table 5.1 and Table 5.2. These tables provide an insightful examination of
the classification performance, highlighting the precision, recall, and F1 score among
other metrics, thereby offering a transparent overview of our methodological accuracy
and efficacy.

Table 5.1: Classification report of the validation set without consideration of surface information

Precision Recall F1-score Support

Brick 0.98 0.97 0.98 100
Cement Paste 0.98 0.94 0.96 100
Foam 1.00 0.94 0.97 100
Glass 0.98 0.98 0.98 100
Gypsum 1.00 0.97 0.99 100
Mineral Fiber 1.00 0.97 0.99 100
Plastic 0.94 0.98 0.96 100
RCA 0.91 0.93 0.92 100
RFA 0.94 0.96 0.95 100
Wood 1.00 0.96 0.98 100
Unrecognized 0.00 0.00 0.00 0

weighted avg 0.97 0.96 0.96 1000

Subsequently, the constructed standard library was employed in a real-world sce-
nario to continuously monitor the quality of RCA streams transported on the conveyor
belt, following its processing through the C2CA treatment. The monitoring experiments
were specifically designed to assess the content of various contaminants within the RCA
streams. The experimental findings reveal that the concentration of contaminants in the
RCA streams was within the permissible limits set forth by the EN 12620 standard (Stan-
dard, 2002), which delineates the requirements for aggregates to be used in concrete.

5.3.4. ACCURACY AND EFFICIENCY IN QUALITY CONTROL

Significant enhancements in the algorithm are noted when incorporating surface con-
ditions. The algorithm with consideration of surface conditions demonstrates im-
provements in precision (weighted average), recall (weighted average), and F1-score
(weighted average), all reaching 0.99. This is a significant advancement over the algo-
rithm that did not account for surface conditions, which achieves a precision (weighted
average) of 0.97, recall (weighted average) of 0.96, and F1-score (weighted average) of
0.96. It is important to acknowledge that the test set was approximately 40 times too
small to ensure that materials, such as wood and plastics with stringent maximum con-
centration specifications, can be detected at the highest quality limit levels (0.1cm? per
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Table 5.2: Classification report of the validation set with consideration of surface information

Precision Recall F1-score Support

Brick 1.00 1.00 1.00 100
Cement Paste 0.99 0.97 0.98 98
Foam 1.00 0.98 0.99 98
Glass 0.99 0.99 0.99 99
Gypsum 1.00 0.99 1.00 99
Mineral Fiber 1.00 0.99 0.99 99
Plastic 0.97 1.00 0.99 99
RCA 0.96 0.97 0.96 97
RFA 0.96 0.98 0.97 99
Wood 1.00 0.99 1.00 98
Unrecognized 0.00 0.00 0.00 0

weighted avg 0.99 0.99 0.99 987

kg, or about 1 in 4,000 particles).

Nevertheless, the system has demonstrated high efficiency, accuracy, and significant
market potential. It can monitor the quality of RCA flows at a throughput of 50 tons per
hour per conveyor, analyzing approximately 4,000 particles per ton of RCA. This allows
the system to detect critical contaminants at concentrations below 50 parts per million.
For materials with stringent content regulations, such as wood, the system can meet the
required limit of 0.2 cm3/kg, equivalent to about 0.08 g/kg or a mass concentration of 80
ppm, further demonstrating its reliability.

Notably, the most significant improvements include the complete elimination of the
unrecognized category and a reduction in confusion primarily to materials with simi-
lar chemical compositions. These improvements are highlighted by the disappearance
of previously unrecognized classifications and the significant reduction in misclassifica-
tions involving materials with similar chemistry, particularly where RCA was previously
misclassified as other materials.

Specifically, the improvements include both the removal of previously unrecognized
laser shots and a reduction in misclassifications. The elimination of these previously
unrecognized laser shots arises from two factors. Firstly, it is evident that some ineffec-
tive data have been removed from various materials (except for brick). This is attributed
to the probability of laser shooting the gaps between particles during consecutive laser
shots. These laser shots are highly beyond the focal point, resulting in the exclusion of
previously unrecognized laser shots. Secondly, the incorporation of the angle parameter
aids in identifying and correcting these unrecognized laser shots. A notable instance of
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this improvement is observed in the case of brick. Analysis of prior literature (C. Chang
et al., 2022) reveals that misclassified laser shots typically display smaller scales than
normal and are obscured by typical values. The diminished spectral values of these laser
shots, possibly caused by the angle of incidence issues, make classification challenging.
By incorporating the angle of incidence of laser shots into the algorithm, these small-
scale shots can be accurately identified and classified, leading to a decrease in misclas-
sification.

However, RCA, RFA, and cement paste remain susceptible to classification errors.
Challenges arise from multiple factors. One major issue is the difficulty of ensuring the
complete removal of residues during the material processing stage. In particular, the
adhesion of cement paste to RCA surfaces complicates differentiation. Additionally, the
size overlap between RCA and RFA, both sharing a boundary at 4.0 mm, further compli-
cates their distinction, especially in this marginal size range where they exhibit greater
similarity. The inherent heterogeneity of the materials adds another layer of complex-
ity to the classification task. Moreover, the chemical compositional similarities among
RCA, RFA, and cement paste amplify the presence of misclassifications. RCA, obtained
by crushing concrete from demolished structures, generally consists of larger fragments
of original aggregates, such as gravel or crushed stone, along with adhered mortar. Its
chemical composition is primarily characterized by calcium oxide (Ca0O), silicon diox-
ide (SiO2), aluminum oxide (Al,O3), iron oxide (Fe»O3), and magnesium oxide (MgO).
The presence of residual mortar in RCA introduces additional variability in its chemical
profile, distinguishing it from natural aggregates. In contrast, RFA, which comes from
the finer fractions of the same source as RCA, consists of sand-sized material and finer
residues from the original concrete. Although the chemical composition of RFA is sim-
ilar to that of RCA, it contains higher proportions of calcium hydroxide [Ca(OH),] and
other hydrated compounds due to its finer particle size and greater surface area. Ce-
ment paste, which acts as the binding phase in concrete, mainly consists of calcium
silicate hydrate (C-S-H), calcium hydroxide, and unhydrated cement particles, with a
notable presence of calcium carbonate (CaCO3) due to carbonation. The similar yet het-
erogeneous chemical compositions of RCA and RFA lead to minimal differences in their
spectral signatures (as shown in 5.9) when analyzed using LIBS. These inconsistencies
in data acquisition complicate the development of a reliable database, as the collected
spectra may not accurately represent the material’s true characteristics. Consequently,
this leads to reduced recognition accuracy when these databases are used for material
classification. To overcome these challenges, more precise analysis and algorithms are
necessary to improve accuracy.

Several strategies can enhance classification effectiveness. Exploring alternative
methods, such as the integration of additional sensors (e.g., moisture sensors) and con-
sidering scale differences in classification, could lead to improved outcomes. Alterna-
tively, increasing the ratio of training and validation and using a greater number of spec-
tral data for database construction can align data distribution more closely with a nor-
mal distribution. This alignment is beneficial for PCA, resulting in more accurate predic-
tions. Therefore, extensive future experimentation is recommended to develop a robust
database and improve overall accuracy.
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Figure 5.9: LIBS data

5.3.5. ECONOMIC FEASIBILITY

This quality control system is designed for a plant that processes approximately 150 tons
per hour of EoL concrete. Similar plants in Europe typically operate around 4,000 hours
per year, with downtime ranging from 10% to 20%. To justify the investment, the sys-
tem needs to process 500,000 tons annually. The facility cost is approximately €300,000,
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which equates to an additional 0.60 euro/ton of input material or around 1.00 euro/ton
for RCA and RFA if the facility is to break even within one year. Given that typical aggre-
gate prices in the EU range from 10.00 to 15.00 euro/ton, investing in a quality control
system that not only ensures product quality but also supports a digital concrete recy-
cling process and reduces labor costs is economically feasible.

5.4. CONCLUSION

This study introduces a novel rapid quality control system for contaminant detection in
RCA streams via surface-condition-adaptive LIBS. A key advancement is the integration
of a synchronized system that merges spatial data from a 3D scanner with the spectral
data from LIBS. This novel approach effectively tackles the issue of variable surface con-
ditions on objects, which affect the laser shot’s focal length and angle of incidence. These
factors have previously impeded the precision of traditional LIBS applications. By adapt-
ing the spectra based on the surface position and orientation, as determined by 3D scan-
ning, this method significantly reduces unrecognizable classifications and misclassifi-
cation rates, enhancing the reliability of material classification. The surface-condition-
adaptive LIBS method demonstrates improvements in precision (weighted average), re-
call (weighted average), and F1-score (weighted average), all reaching 0.99. This level
of accuracy is pivotal for the rapid quality control of RCA streams on the conveyor belt,
underpinning its utility in ensuring the quality of RCA utilized in construction projects.

The advancements of this study enhance the reliability of single-shot analyses of
LIBS, thereby reducing the occurrence of false positives during the material classifica-
tion process. In situations where the concentration of contaminants is extremely low,
false positives can significantly influence the results of theoretical simulations. For ex-
ample, with a 1% wood content that is uniformly distributed, the likelihood of detecting
wood is only once in every 100 samples. However, false positives in other materials could
falsely inflate the estimated wood content, greatly impacting the quality assessment of
RCA. By precisely adjusting the angle of incidence and eliminating spectra outside the
focal range, the quality of the spectra has been improved, and the incidence of false pos-
itives has been substantially lowered. This enhancement is essential for preserving the
integrity and reliability of recycling processes.

This study highlights the potential of surface characterization in the recognition of
different materials. The diversity in surface properties of different materials presents a
unique opportunity for precision in material classification. Detailed analysis of these
surface characteristics, combined with existing technologies, enables more accurate
recognition of various materials. The integration of 3D scanning with LIBS allows for
a detailed understanding of surface conditions, which plays a pivotal role in enhanc-
ing the accuracy of material classification. This research underscores the significance of
surface properties in the classification process and paves the way for further advance-
ments in material recognition technology. Moreover, future research should investigate
automated analysis techniques for discerning particle size distributions in different ma-
terials. The use of advanced sensors allows for the swift collection of particle size data of
a specific material in mixed material streams, augmenting the efficiency and precision
of recycling processes.

Beyond waste management and recycling, this research has broader implications
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across various industries where material classification and detection of particle flows
are pivotal. However, the study also acknowledges the complexities in distinguishing
materials with similar spectral signatures. The challenge remains in fine-tuning the LIBS
methodology to distinguish between such materials with greater specificity. Future re-
search could focus on enhancing the algorithmic aspect of LIBS data interpretation, po-
tentially incorporating machine learning techniques to refine the classification process.
Moreover, exploring the synergy of LIBS with other analytical techniques could offer a
more comprehensive understanding of material classification and detection.

Importantly, this study has broader implications for environmental sustainability.
It exemplifies the potential of combining advanced scanning and spectroscopy tech-
nologies with real-time data analysis and cloud synchronization to enhance construc-
tion material recycling processes. Through the rapid quality control of RCA streams, it
promotes more efficient recycling of construction waste, thereby reducing the environ-
mental impact of building materials and prompting their use in the building sector. This
approach aligns with global efforts towards circular economies, where maximizing the
reuse and recycling of materials is paramount.
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6.1. SUMMARY OF RESEARCH CONTRIBUTIONS

6.1.1. KEY FINDINGS AND DISCUSSIONS

HE overarching goal of this dissertation was to enhance the efficiency and reliabil-
T ity of RCA quality inspection, thereby supporting sustainable construction practices
and advancing the circular economy. The research specifically focused on developing
a novel sensor-based system capable of assessing RCA quality in real-time during pro-
cessing at recycling sites. Through this research, it is anticipated that more efficient, eco-
nomically viable, and environmentally friendly methods will be developed, significantly
impacting the construction industry’s approach to material recycling and reuse.

INNOVATIONS IN RCA QUALITY INSPECTION

The core of this dissertation was the development and empirical validation of a novel
mobile sensor-based system designed to enhance the efficiency and accuracy of RCA
quality assessment. This system integrates advanced sensor technologies, including 3D
scanning and LIBS, to provide real-time, on-site quality checks of RCA at demolition
sites. The implementation of these technologies marks a significant improvement over
traditional manual and labor-intensive quality assessment methods.

The 3D scanner, specifically the Gocator, was employed to measure the PSD of RCA.
The Gocator’s ability to generate high-resolution three-dimensional point cloud data
enabled it to capture geometrical properties of the RCA particles with high precision.
This method proved crucial in overcoming the limitations of previous image-based tech-
niques, which often struggled with accuracy due to lighting conditions and the physical
characteristics of the materials.

Furthermore, the integration of the LIBS sensor facilitated the detection of various
contaminants within the RCA. The sensor’s capability to perform rapid spectroscopic
analysis allowed for the identification of materials such as gypsum, glass, and plastics,
which can adversely affect the quality and durability of recycled concrete. The combi-
nation of these technologies within a single mobile platform provided a comprehensive
tool for RCA quality assessment that is both scalable and adaptable to various opera-
tional environments.

EFFECTIVENESS OF THE IMPLEMENTED TECHNOLOGIES

The effectiveness of the introduced technologies was validated through extensive test-
ing and comparison with traditional methods. The findings revealed that the sensor-
based system could process and analyze over 100 tons of RCA per hour, demonstrating
a substantial increase in efficiency compared to older methods. Moreover, the system
achieved a RMSE of less than 5% in its PSD analysis, indicating a high level of accuracy.

This research highlighted significant improvements in the operational efficiency and
reliability of RCA quality assessments. By enabling real-time feedback, the system al-
lows for immediate adjustments in the recycling process, enhancing the overall quality
of the RCA. Such capabilities are crucial for meeting industry standards and ensuring the
structural integrity of constructions utilizing RCA.
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6.1.2. IMPLICATIONS FOR SUSTAINABLE CONSTRUCTION

The findings from this research underscore the significant potential for RCA to con-
tribute to more sustainable construction practices. By improving the methods for in-
specting, grading, and certifying RCA, the construction industry can reduce its environ-
mental impact and reliance on virgin materials. The methodologies developed in this
thesis offer practical solutions that can be adopted by industry stakeholders to meet in-
creasing demands for sustainability.

ENVIRONMENTAL IMPACT REDUCTION

One of the primary implications of integrating RCA into construction practices is the sig-
nificant reduction in environmental impact. Traditional construction methods heavily
rely on the extraction of virgin materials, which not only depletes natural resources but
also causes considerable environmental degradation including habitat destruction, wa-
ter pollution, and increased carbon emissions due to the transportation and processing
of these materials. In contrast, the use of RCA conserves natural resources by divert-
ing waste materials from landfills and reducing the need for virgin aggregate extraction.
This shift not only alleviates the pressure on natural aggregates but also minimizes the
ecological disturbances associated with mining operations.

The methodologies developed in this thesis, particularly the novel systems for in-
specting and grading RCA, ensure that the quality of recycled materials meets the strin-
gent requirements of modern construction standards. By improving the reliability of
RCA through enhanced quality control measures, this research supports the broader
adoption of recycled materials, contributing to circular economy principles in the con-
struction sector. This circular approach not only reduces waste but also lowers green-
house gas emissions by decreasing the energy consumption associated with the produc-
tion and transportation of new construction materials.

ECONOMIC BENEFITS AND MATERIAL EFFICIENCY

The adoption of RCA is not only environmentally advantageous but also economically
beneficial. By utilizing waste materials, construction companies can significantly reduce
material costs. The cost of extracting and processing virgin materials is steadily increas-
ing due to stricter environmental regulations and decreasing availability. RCA offers a
cost-effective alternative that can provide substantial savings on material expenses. Fur-
thermore, the methodologies for efficient sorting and grading of RCA, as developed in
this thesis, enhance the usability of recycled materials, thereby increasing their market
value and attractiveness to industry stakeholders.

Material efficiency is another critical aspect underpinned by the use of RCA. Efficient
material use involves not only the recycling of waste but also optimizing the lifecycle per-
formance of the materials. The advanced inspection and grading systems introduced
in this thesis enable the precise classification of RCA, ensuring that the right quality of
material is used for appropriate construction applications. This tailored approach maxi-
mizes the functional performance of recycled materials and extends the lifespan of con-
struction projects, further contributing to sustainability goals.
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MEETING SUSTAINABILITY DEMANDS

The methodologies outlined in this thesis align with the increasing demands for sustain-
able construction practices. Stakeholders across the construction industry—including
policymakers, builders, and consumers—are increasingly prioritizing sustainability due
to its environmental, economic, and social benefits. The practical solutions provided
by this research equip industry players with the tools needed to implement sustainable
practices effectively. These tools not only facilitate compliance with environmental reg-
ulations but also enhance the overall sustainability profile of construction projects, mak-
ing them more appealing to eco-conscious consumers and investors.

Moreover, the integration of RCA as a key component of sustainable construction
practices serves as a model for other industries looking to adopt circular economy prin-
ciples. The success of RCA can inspire similar innovations in the use of recycled mate-
rials across different sectors, broadening the impact of sustainable practices on a global
scale.

6.2. CHALLENGES AND LIMITATIONS

6.2.1. TECHNOLOGICAL CHALLENGES

Complexity of RCA Quality Assessment

RCA are inherently variable due to their origin from diverse demolition sites. This vari-
ability poses a significant challenge for quality assurance and control. The sensor-based
technologies implemented, including 3D scanning and LIBS, although innovative, still
struggle with accurately characterizing materials with highly heterogeneous properties.
Differentiating between various contaminants and RCA in a mixed stream, especially at
high throughput rates, occasionally led to errors in material classification.

Sensor Sensitivity and Calibration

The sensors used, particularly the LIBS, require frequent recalibration to maintain ac-
curacy, which can be cumbersome in a high-throughput industrial environment. Envi-
ronmental factors such as dust, moisture, and varying ambient temperatures also affect
sensor performance, complicating the consistent application of this technology on dif-
ferent demolition sites.

Data Processing and Analysis

The large volume of data generated by real-time, high-resolution 3D scanning presents
significant challenges in data processing and analysis. The computational load to pro-
cess and analyze this data in real-time requires substantial processing power, which can
be a limiting factor in deploying these systems in mobile settings or where resources are
constrained.

6.2.2. METHODOLOGICAL LIMITATIONS

Sampling Representativeness

While the methodologies developed aimed to provide a comprehensive analysis of RCA,
the representativeness of sampling continues to be a challenge. The method of selecting
specific strips or sections of the RCA stream for analysis may not consistently capture the
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complete variability of the aggregate properties. This sampling issue could lead to an
underestimation or overestimation of qualities such as strength, durability, and purity
across the entire batch of RCA.

Scale of Implementation

The transition from laboratory-scale or pilot-scale studies to full-scale industrial appli-
cations highlighted several scalability challenges. Issues such as the integration of sensor
systems into existing recycling operations, adapting to different types of recycling equip-
ment, and the economic implications of technology retrofitting were significant. These
factors often restrict the immediate adoption of advanced technologies in existing RCA
processing facilities.

6.2.3. ECONOMIC AND PRACTICAL LIMITATIONS

Cost Implications

The high cost of advanced sensor technologies and the necessary computational and
data storage infrastructure can be prohibitive. The initial setup cost, ongoing mainte-
nance, and operation costs pose significant barriers to widespread adoption, especially
in regions or markets where cost-efficiency is a critical deciding factor.

Training and Expertise
The operation of advanced sensor-based systems requires specialized knowledge and
training. The lack of skilled personnel capable of managing these sophisticated systems
can limit the practical deployment of such technologies. Moreover, the ongoing need for
technical support and expertise to troubleshoot and maintain these systems adds to the
operational complexity.

Regulatory and Standardization Issues

There is a lack of standardized protocols for the use of sensor-based technologies in RCA
quality assessment. Regulatory uncertainties and the absence of universally accepted
guidelines for the use of such technologies in construction material recycling further
complicate their adoption. Ensuring compliance with local and international standards
for construction materials remains a challenge when new technologies are introduced.

6.2.4. ENVIRONMENTAL AND SUSTAINABILITY LIMITATIONS

Energy Consumption

The energy requirements for operating high-power sensors and data processing systems
are significant. This aspect is often at odds with the sustainability goals of recycling op-
erations, particularly in scenarios where the energy source is not renewable. Balancing
technological advancement with environmental sustainability is a critical consideration
that needs further exploration.

Technology Lifecycle
The environmental impact of manufacturing, maintaining, and eventually disposing of
advanced technological equipment used in RCA processing has not been fully explored.
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The lifecycle assessment of such technologies is necessary to ensure that their environ-
mental footprint does not negate the sustainability benefits offered by recycling RCA.

These challenges and limitations highlight the complexities involved in integrating
advanced sensor-based technologies into RCA processing operations. While the poten-
tial benefits of these technologies are significant, addressing these hurdles is essential
for their successful implementation and for maximizing their impact on sustainable
construction practices. Future research should focus on overcoming these challenges
through innovative solutions, improved system designs, and strategies that enhance the
practical and economic feasibility of technology deployment in the recycling of con-
struction and demolition waste.

6.3. FUTURE RESEARCH DIRECTIONS

This dissertation has laid a robust foundation for the utilization of RCA in construction,
emphasizing sustainability and technological advancement. However, as the domain of
sustainable construction evolves, so too must the technologies and methodologies that
support it. This section outlines a comprehensive roadmap for future research, focus-
ing on technological enhancements, economic evaluations, scalability assessments, and
long-term performance studies of RCA-utilized structures.

6.3.1. TECHNOLOGICAL REFINEMENTS

The use of LIBS and 3D scanning has proven transformative in analyzing and ensuring
the quality of RCA. Future studies should aim at increasing the resolution and accuracy
of LIBS to detect finer compositional nuances that may affect the performance of RCA in
concrete. This could involve integrating advanced spectroscopic techniques that allow
for deeper material characterization at the molecular or atomic level.

Further, enhancing the speed of 3D scanning technologies can expedite the quality
control processes, allowing for real-time data acquisition and analysis. The development
of more sophisticated algorithms for faster processing and interpretation of 3D imaging
data will significantly reduce the turnaround time from RCA collection to usage. Integra-
tion of machine learning models that can predict RCA quality based on historical data
and real-time scans could streamline the decision-making process in RCA utilization.

6.3.2. ECONOMIC IMPACT AND SCALABILITY
The economic implications of adopting RCA on a large scale are multifaceted. Future
research should involve detailed cost-benefit analyses comparing the lifecycle costs of
structures built with traditional materials versus those constructed with RCA-enhanced
concrete. This analysis should include not only initial construction costs but also long-
term maintenance, repair, and eventual decommissioning costs. Environmental cost
accounting should also be incorporated to assess the savings in carbon emissions and
natural resource depletion.

Scalability studies are essential to understand the barriers and facilitators to the
widespread adoption of RCA in different regional markets. These studies should con-
sider local availability of RCA, regulatory environments, and existing supply chains for
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construction materials. By identifying specific regional challenges and opportunities,
tailored strategies can be developed to promote the adoption of RCA.

6.3.3. COMMERCIAL VIABILITY

Investigating the commercial viability of the developed technologies involves assessing
market readiness and industry acceptance. Surveys and pilot studies within the con-
struction industry can provide insights into the perceived benefits and drawbacks of RCA
usage from a commercial perspective. Furthermore, developing business models that
can economically justify the initial higher costs of implementing advanced technologies
for RCA processing and utilization may accelerate their adoption.

Partnerships with construction firms and public infrastructure projects could serve
as test beds for demonstrating the practical benefits and economic feasibility of RCA.
These partnerships could also facilitate adjustments to the technology based on real-
world feedback and performance metrics, ensuring that the solutions developed are not
only scientifically sound but also commercially viable.

6.3.4. LONG-TERM PERFORMANCE AND SUSTAINABILITY
To validate the durability and practicality of RCA-enhanced concrete, longitudinal stud-
ies on structures built with this material are crucial. Such studies would track perfor-
mance over time under various environmental conditions and usage scenarios. This re-
search should also explore the repairability and recyclability of RCA concrete, examining
if structures built with RCA can be efficiently maintained or further recycled.
Incorporating sustainability assessments that examine the lifecycle environmental
impact of RCA utilization—from extraction and processing of original materials to the
end-of-life of the structure—will provide a holistic view of the benefits and potential
drawbacks of RCA. This could help in refining RCA processing techniques to further min-
imize environmental impact.

6.4. CONCLUSION

The path forward for RCA and associated technologies involves a blend of technical in-
novation, economic analysis, and practical testing. By continuing to explore these av-
enues, the research community can enhance the viability and desirability of RCA in con-
struction, thereby contributing to a more sustainable and economically feasible con-
struction industry.
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