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Abstract— Autonomous vehicles have a great potential in the 
application of both civil and military fields, and have become 
the focus of research with the rapid development of science and 
economy. This article proposes a brief review on 
learning-based decision-making technology for autonomous 
vehicles since it is significant for safer and efficient 
performance of autonomous vehicles. Firstly, the basic outline 
of decision-making technology is provided. Secondly, related 
works about learning-based decision-making methods for 
autonomous vehicles are mainly reviewed with the comparison 
to classical decision-making methods. In addition, applications 
of decision-making methods in existing autonomous vehicles 
are summarized. Finally, promising research topics in the 
future study of decision-making technology for autonomous 
vehicles are prospected. 

I. INTRODUCTION

With the development of science and economy, 
autonomous driving technology has gradually become the 
focus of researches since its broad application prospects in 
the field of both military and civilian. In the field of military, 
highly intelligent autonomous military vehicles can 
effectively assist soldiers in numerous tasks such as 
intelligence acquisition, fire strikes, and monitoring [1]; 
while in the field of civil, autonomous vehicles have a great 
potential in reducing traffic accidents and alleviating traffic 
congestion [2]. 

Autonomous vehicle is a comprehensive intelligent 
system that integrates environmental perception, path 
planning, decision-making and motion controlling 
technologies [3]. As the “brain” of autonomous vehicles, 
decision-making system is significant for the safe and 
efficient driving of vehicles, and how to design high 
intelligent and reliable decision system gradually become the 
focus of research in the field of autonomous driving. 
Decision-making is expressed to generate human-level safe 
and reasonable driving behaviors considering surrounding 
environmental information, motion of other traffic 
participants and state estimation of ego vehicles; then the 
generated driving behaviors are taken into account by the 
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motion control system to achieve efficient operation of 
autonomous vehicle [4, 5]. 

There are several published reviews on decision-making 
for autonomous vehicles. A brief review about framework 
and typical methods for decision-making was presented in [6], 
while a survey on classical methods of fusion of planning and 
decision-making was summarized in [7]. In addition, a  
comprehensive overview of autonomous driving technology 
was summarized in [8, 9], however the content of 
decision-making was not detailed enough. Considering the 
importance of decision-making technology for autonomous 
vehicles and the tendency of recent development for related 
methods, the main difference in this article is presenting a 
systematic review mainly on learning-based decision-making 
methods that have emerged in recent years with the 
summarization of applications in existing autonomous 
vehicles. We hope that this review study will contribute to the 
research of decision-making methods for autonomous 
vehicles in the future. 

This article is organized as follows. Section Ⅱ presents a 
detailed introduction of the general outline and framework 
for decision-making system. Section Ⅲ reviews 
learning-based methods related to decision making for 
autonomous vehicles as well as some respectable related 
works using classic methods. Section Ⅳ summarizes the 
applications of decision-making methods carried out in 
existing vehicles. Section Ⅴ discusses the future development 
direction and research focus of decision-making methods for 
autonomous vehicles. 

II. THE OUTLINE OF DECISION-MAKING SYSTEM

In order to carry out specific research for decision-making, 
a clear understanding of the general framework of 
decision-making system in autonomous driving technology is 
essential for designing efficient methods. This section 
presents a general outline of decision-making system in 
autonomous vehicles based on the summary of related 
researches.  Four aspects: specifically, inputs and outputs 
(IOs), design criteria, design constrains and applications 
scenarios of decision-making system for autonomous 
vehicles are summarized in the following contents. In 
addition, the complete designing framework of 
decision-making system is illustrated in Figure 1. 

Decision-Making Technology for Autonomous Vehicles: 
Learning-Based Methods, Applications and Future Outlook 

Qi Liu, Xueyuan Li, Shihua Yuan, Zirui Li 

2021 IEEE Intelligent Transportation Systems Conference (ITSC)
Indianapolis, USA. September 19-21, 2021

978-1-7281-9142-3/21/$31.00 ©2021 IEEE 30

20
21

 IE
EE

 In
te

rn
at

io
na

l I
nt

el
lig

en
t T

ra
ns

po
rt

at
io

n 
Sy

st
em

s C
on

fe
re

nc
e 

(IT
SC

) |
 9

78
-1

-7
28

1-
91

42
-3

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IT
SC

48
97

8.
20

21
.9

56
45

80

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2021 at 07:37:09 UTC from IEEE Xplore.  Restrictions apply. 



  

A. Inputs and Outputs of Decision-Making System 
Decision-making system in autonomous vehicles is the 

transition of environmental perception system and motion 
planning system. In general, the inputs of decision-making 
system are environmental clues and status of ego vehicle, 
while the outputs are a serious of strategies including 
high-level behaviors and low-level control commands that 
are fed into motion planning system [10].   

Specifically, the inputs of decision-making system can be 
summarized as following aspects: 

 

Figure 1. Designing framework of decision-making system 

Surrounding environmental information. Raw data is 
usually collected from different types of sensors (Lidar, 
camera, radar, etc.) equipped on vehicles, and then are 
processed to generate perception results mainly including 
static and dynamic objects information, road information and 
traffic signs information.  

Status of ego vehicles. It mainly represents location 
acquired by GNSS/IMU system and motion information from 
motion estimation system. 

High-Definition Map (HD Map). A wealth of information 
accurate to the lane level can be provided by HD Map, that 
can be utilized as an auxiliary means of environmental 
perception system of ego vehicles to enhance the perception 
accuracy and reduce the computational cost. 

The outputs of decision-making system can be concluded 
as below: 

High-level behaviors, such as merging, overtaking, lane 
keeping and lane changing. 

Low-level control commands, mainly including longitude 
velocity, acceleration and angular velocity, acceleration. 

B. The Design Criteria of Decision-Making System 
The purpose of decision-making system is to generate 

human-like safe and high reliable driving strategy, a serious 
of design criteria are needed to be formulated to achieve 
better decision and five aspects are summarized below [8, 11]. 
Good real-time performance for decision-making; balance 
between driving safety and efficiency (usually the priority of 

safety is higher than driving efficiency); reasonable and 
correct generated decision; ride comfort of vehicles (steering 
stability, less emergency brake); high capability of faults 
detection. 

C. The Design Constrains of Decision-Making System 
Researches of decision-making methods needs to 

consider numerous types of factors to achieve a more 
complete system; several designing constrains for 
decision-making system can be extracted from related works 
that are listed as follows. 

Information of surrounding environment. In general, 
objects information within a certain distance around ego 
vehicle need to be considered. For instance, position and 
speed of other vehicles; the prediction of pedestrian and 
vehicles behaviors; static obstacles placed or dropped on 
roads; road drivable areas; traffic and road signs. 

Information of local traffic regulations. This constrain 
mainly refers to the following of traffic rules for ego vehicles 
when making decision, including road speed limits, U-turn 
allowance, no parking, etc.  

Current status of ego vehicles. This part includes the 
location, speed and heading of ego vehicles; the current lane, 
and the next lane to be entered should also be considered. 

Results of path planning. Path planning can be divided 
into global path planning and local path planning, and 
decision-making process mainly considers the results of local 
path planning in the current environment. 

Historical decision-making results. This part specifically 
refers to the sequence of historical decisions made by the ego 
vehicles at the last moment (or the previous few moments), 
which should be taken into account for decision-making at 
the current moment. 

Driving ethics. This part refers that vehicles must comply 
with driving ethics during operation [12], such as giving 
courtesy to pedestrians, giving ways to special vehicles 
(ambulances, firetruck), turning off the high beams for 
opposite vehicles at night, etc. 

D. Application Scenarios of Decision-Making System 
Decision-making is required in almost all scenarios, as 

long as autonomous vehicle is in operation status. With the 
increasing requirements for decision-making systems due to 
the complexity of driving environment, related researches are 
focusing on V2V or V2P cooperation in some typical 
scenarios including general road section, express way, urban 
intersection, merging traffic and roundabout.  

III. REVIEW OF DECISION-MAKING METHODS 

In this section, learning-based decision-making methods 
for autonomous vehicles are mainly overviewed; in addition, 
related works using classical methods for decision-making 
are also summarized for the completeness of different 
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methods. Characteristic of different methods are compared in 
TABLE Ⅰ. 

A.  Classical Methods 
In general, classical methods for decision-making can be 

divided into three categories: rule-based methods, 
optimization methods and probabilistic methods. 

1) Rule-Based Methods 
Rule-based decision-making methods depend on a rule 

database constructed according to numerous traffic laws, 

driving experience and driving knowledge; strategies are then 
determined considering different status of vehicles. 

The most representative of rule-based methods is the 
Finite State Machine (FSM) methods. FSM is a mathematics 
model with discrete input and output, corresponding actions 
are generated depending on the responding to external events 
and states of agents are then transited from one to another. 
FSM can be divided into three categories according to the 
logic structure of different states, specifically tandem type, 
parallel type and hybrid type [11]. Characteristic of different 
types of FSM are illustrated in TABLE Ⅱ. 

TABLE I.  CHARACTERISTIC OF DIFFERENT METHODS FOR DECISION-MAKING  

Methods Refs Pros Cons 

Classical  
Methods 

Rule-based  
Methods [13-19] 

 Strong interpretability and adjustability 
 Strong feasibility of implementation since its 

low requirements for hardware 
 Good decision-making breadth 

 Difficult to handle complex driving conditions 
since the lack of decision-making depth 
 Poor robustness for dynamic driving 

environment   
Optimization  

Methods [20-26] 
 Optimized decisions can be generated  
 Interaction between different traffic 

participants can be better modeled 
 The assumption of "optimal strategy" for agents 

is often inconsistent with practical applications 

Probabilistic  
Methods [27-31]  Convenient to combine with other types of 

methods 
 Low computational efficiency and difficult to 

generate optimal decision in complex 
environment 

Learning-Based 
Methods 

Statistic  
Learning-Based 

Methods 
[32-34] 

 Good versatility 
 Suitable for simple scenarios with sufficient 

environmental information 
 Requirement for plenty of training datasets 
 Low decision-making accuracy 

Deep  
Learning-Based 

Methods 
[35-40] 

 High decision-making accuracy for specific 
scenarios 
 End-to-end system ensures the full utilize of 

environmental information 

 Poor universality of algorithms in dynamic 
scenario. 
 Requirement for plenty of training datasets thus 

quality of the datasets will greatly influence the 
effect of algorithm 

Reinforcement  
Learning-Based 

Methods 
[12, 41-55] 

 Better modeling of uncertain and dynamic 
environments 
 Flexible framework of algorithms with high 

expandability 

 Greatly depends on the establish of reward 
function 
 Poor stability, over-fitting in DRL methods. 

TABLE II.  COMPARISON OF DIFFERENT TYPES OF FSM 

Types 
Characteristic 

Features Pros Cons 

Tandem Sub-states are connected in tandem structure with 
unidirectional state transmission.  

 Good traversal depth 
 Suitable for simple decision scenarios  Poor system stability 

Parallel Sub-states are arranged in multi-point connection 
structure to provide parallel decision. 

 Good traversal breadth 
 Parallel processing of multiple states 
 High system stability and expandability 

 High system complexity 
 Lack of traversal depth 

Hybrid Sub-states are connected in both tandem and parallel 
structure. 

 Good traversal depth and breadth. 
 Wide range of application scenarios 

 High system complexity 
 Low computational efficiency  

FSM methods have already been widely used in some 
existing typical autonomous vehicles. For instance, tandem 
type was utilized in Talos [13]; parallel type was used in 
Junior [14] and Bertha [15]; while hybrid type was carried out 
in Odin [16]. 

Apart from typical FSM that has been utilized in existing 
vehicles, some researches are also carried out depending on a 
specific rule base. In [17], a hybrid flow diagram was 
designed for generating decision results through a series of 
judgment conditions of the surrounding environment; the 
feasible trajectory was selected without detailed prior maps 
and algorithms were verified on “AUTOPIA” instrument 
vehicle. In [18], a “multi-point turn” decision framework was 
proposed for vehicle steering control basing on a rule that 
minimized steering widths. In [19], a hierarchical framework 
was established for tactical and strategical behavior 
generation; the framework had the advantage of high 

generality and expandability that can be combined with 
various of scenarios.   

2) Optimization Methods 
Optimization methods usually rely on a reward or utility 

function to generate decision results.  

Model Predictive Control (MPC) is one of the feasible 
methods for decision-making. In [20], MPC was carried out 
for the controlling of whole traffic situation, where high-level 
behaviors of ego vehicle were generated and other vehicles 
were indirectly influenced by the ego’s behaviors. In [21], 
vehicle-pedestrian interaction was considered through a 
multi-state forced pedestrian motion prediction model, MPC 
was then utilized to generate low-level control commands for 
ego vehicle. In [22], MPC was combined with Inverse 
reinforcement learning (IRL) to establish more suitable cost 
function. 
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Game-Theory is another optimization method for solving 
decision-making problems. An assumption that all agents 
will adopt the “optimal strategy” is put forward first and 
behaviors are generated according to the corresponding 
strategies of other agents. In [23], a Stackelberg game was 
utilized to solve the decision-making for more than 30 
vehicles; however, it suffered from low average speed and 
large number of constraint violations [6]. In [24], 
market-based mechanisms were established for modeling the 
cooperative behavior of platoons of autonomous vehicles; 
two auction clearing rules were tested in a microscopic traffic 
model and showed a stable cooperation. In [25], an 
interactive game tree was designed for cooperation of 
vehicles in the merging scenario of dense urban traffic; 
results showed a good real-time performance with 0.08s for 
the entire decision-making loop. 

Evaluation-based methods can also be utilized for 
selecting optimum driving behaviors. In [26], a multiple 
attribute-based decision-making method was proposed based 
on AHP and TOPSIS; AHP was used for obtaining the 
weights of different attributes, while TOPSIS was used to 
generate optimum behaviors. The algorithm had been 
verified on “Intelligent Pioneer” platform in urban scenario.  

3) Probabilistic Methods 
Probabilistic methods generate behavior results basing on 

the probability theory in mathematics. A probabilistic model 
needs to be established for determination of behaviors. 

In [27], a probabilistic graphical model (PGM) was 
carried out to estimate intentions of surrounding vehicles in 
the merging scenario, and motion commands were generated 
through an off-the-shelf ACC distance keeping model 
without the requirement of acceleration information of other 
vehicles. In [28], a robust Two-Sequential Level Bayesian 
Decision Network (TSLDN) was proposed for 
decision-making in lane change scenario; risk assessment 
through an Extended collision (ETTC) and Dynamic 
Predicted Inter-Distance Profile (DPIDP) were developed to 
ensure safe probabilistic behaviors generation. In [29], a 
similar work was carried out by authors from [28]; the 
original decision framework was extended to handle evasive 
action selection and Extended Kalman Filter was also 
combined to ensure more safer behaviors. 

B.  Learning-Based Methods 
Learning-based methods refers to the utilization of 

artificial intelligence technologies to achieve 
decision-making for autonomous vehicles. Usually, driving 
data samples need to be established first, and different 
learning methods or network structures are then adapted to 
realize autonomous learning of vehicles to generate 
reasonable decisions based on different environmental 
information. Learning-based methods can be divided into 
three categories: statistic learning-based methods, deep 
learning-based methods and reinforcement learning-based 
methods. In addition, some datasets [30, 31] can also be used 

for the verification of learning-based decision-making 
algorithms for autonomous vehicles. 

1) Statistic Learning-Based Methods 
Statistic learning-based methods enable autonomous 

vehicles to master human-like decision-making capabilities 
through a large amount of training data. Typical statistic 
learning-based methods include SVM, AdaBoost, etc. 

In [32], SVM was trained for decision-making in lane 
change scenario taking relative position and velocity as inputs; 
trajectory was generated with the combination of MPC with 
several safety constraints. On the basis of [32], SVM was also 
carried out in [33] for lane change decision-making; more 
constraints including lane change benefits, safety and 
tolerance were considered, and Bayesian parameters 
optimization was adopted for better determination of 
parameters in lane change model; the algorithm was finally 
verified in “Zhongtong” autonomous bus with an accuracy of 
86.27%.  

Apart from SVM methods. In [34], AdaBoost was used 
for decision-making in “Cut-In” scenario with risk 
assessment; speed of ego vehicles and the agents were chosen 
as input while distance to collision (DTC) was chosen as 
output. Results showed that this method can fulfill safe 
manoeuvre. 

2) Deep Learning-Based Methods 
The framework of deep learning method is similar to that 

of traditional machine learning, the main difference is that 
deep learning methods utilize neural network structure to 
learn the features of data, and generate classification or 
regression results. End-to-end systems have been designed to 
achieve decision-making for autonomous vehicles thanks to 
the advantages of deep learning methods in image processing. 
Usually, sensors data are chosen as input and low-level 
control commands are generated through the trained neural 
networks.  

Vision sensor is widely equipped on autonomous vehicles 
because of its high performance-cost ratio, thus some 
end-to-end researches are developed based on the process of 
visual image. In [35], images captured from a single 
front-camera were chosen as input; a CNN was trained for 
end-to-end decision-making to generate steering commands 
for lane keeping. A similar work was carried out by NIVIDIA 
in [36], the main difference was that images from three 
cameras are used as input to generate steering commands. In 
[37], “DriveNet” was proposed based on the structure of 
CNN; three consecutive frames of images captured from a 
single front-camera were selected as input, and algorithm was 
verified in driving environments with various illumination 
condition. 

To generate more complete control instructions, both 
straight and steering commands were computed through three 
types of inputs including visual images, measurement and 
high-level commands. In [38], two networks are trained, one 
combined all aforementioned factors together while another 
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one considered high-level commands as a branched switch. 
Results showed that the latter performed better in accuracy of 
decision. In [39], Attention Branch Network (ABN) was 
designed to achieve end-to-end decision-making. Original 
visual images were input first, and the "attention map" was 
generated in the middle layer of the designed network. 
Finally, throttle and steering commands were generated by 
the combination of “attention map” and convolution feature 
of the original images with expected velocity of ego vehicle. 

In addition to visual images, some researches were also 
carried out based on Lidar point cloud data (PCD). In [40], 
driving path was produced by FCN integrating Lidar PCD, 
IMU and navigation information from Google map. In [41], 
Lidar PCD was converted to a grid map first, then FCN and 
Inverse Reinforcement Learning (IRL) were combined to 
construct an end-to-end system with better cost function, and 
finally a serious of actions were generated. The above several 
exemplary works are summarized in TABLE Ⅲ. 

TABLE III.  SUMMARY OF EXEMPLARY RELATED WORKS WITH DEEP LEARNING-BASED METHODS 

Refs Network 
IOs 

Performance Hardware 
Inputs Outputs 

[36] CNN Visual image Steering command 3 hours and 100 miles in total of driving in Monmouth County, 
NJ with 98% time of autonomours driving NVIDIA DRIVE PX 

[37] DriveNet Visual image Steering commands 15.81 RMSE of trajectory with 1.70ms/fps in 11.8km of 
driving datasets with different illumination condition NVIDIA GTX1070 

[38] CNN Visual image Straight and steering 
commands 

88% success rate in CARLA simulator; 
2 hours driving nearly without missed turns in physical world NVIDIA TX2 

[39] ABN Visual image and 
expected velocity  

Throttle and steering 
commands 

Defined the “autonomy score” to evaluate the algorithms: 
92.7 for throttle control; 97.2 for steering control Not mentioned 

[40] FCN Lidar point clouds Driving trajectories 88.56% of precision in regions of 60×60 meters 
93.44% of precision in regions of 40×40 meters NVIDIA GTX980Ti 

[41] FCN with IRL Lidar point clouds Discrete set of 
actions Totally 120km of driving in a modified GEM golf cart Not mentioned 

3) Reinforcement Learning-Based Methods 
Reinforcement learning (RL) method is currently one of 

the most commonly used learning-based methods for 
decision-making.  The goal of reinforcement learning is to 
learn strategies to maximize returns by trying various 
behaviors, behaviors of agents can be adjusted according to 
reward functions. Existing data as well as new data obtained 
through exploration of the environment can be used to update 
and iterate the existing model cyclically. 

RL method usually depends on Markov Decision 
Processes (MDPs) to describe the interaction states of agent 
and environment. Considering that states cannot always be 
observed, Partially Observable Markov Decision Process 
(POMDP) has been proposed to describe the state space in a 
more realistic way. The key to decision-making with RL 
method is to efficiently solve MDPs or POMDP. Related 
approaches can be divided into typical solvers and solvers 
combining with deep learning methods.  

a)  Solvers with Typical Methods 

In [42], interaction of pedestrians with vehicles was 
modeled as MDPs; two Q-functions for different scenario 
were combined to generate decision results. In [12], driving 
ethics were considered including three different policies, 
specifically ralwsian contractarianism, utilitarianism and 
egalitarianism; MDPs was proposed and solved based on 
typical Bellman’s equation.  

Apart from solving decision-making with MDPs, 
POMDP were also utilized by numerous researchers. In [43], 
POMDP was presented for decision-making through 
occluded intersection, and then solved by traversing a typical 
belief search tree. A similar method was proposed in [44], 
however the POMDP framework was solved by Adaptive 
Belief Tree (ABT) to achieve higher computing efficiency. 

Moreover in [45], POMDP was solved by “TAPIR” toolkit; 
and blind areas of ego vehicle were taken into account to 
generate safer behaviors. 

It is vital to model the uncertainty of traffic environment 
when utilizing POMDP for decision-making. In [46], discrete 
Bayesian Network was carried out for the modeling of 
uncertainty of traffic environment; and POMDP was solved 
by fusion of “MCVI” and “SARSOP”. While in [47], 
dangerous traffic situations were additionally considered and 
modeled by Dynamic Bayesian Network (DBN) to generate 
human-like behaviors with anticipation.  

b)  Solvers Combining with Deep Learning Methods 

With the rapid development of deep learning methods in 
the field of supervised learning, deep reinforcement learning 
(DRL) methods have showed a large potential in high 
intelligent decision-making. The main idea of DRL is to 
incorporate neural networks into RL frameworks. 
Representative DRL methods including Deep Q Network 
(DQN), Deep Deterministic Policy Gradient (DDPG), and 
Asynchronous Advantage Actor-Critic (A3C). 

Solving MDPs and POMDP with higher real-time 
performance is critical to their practical applications in 
autonomous vehicles. In [48], decision-making at 
intersections was modeled as Hierarchical Options MDP 
(HOMDP) that only considered current observation to reduce 
computational cost; algorithm was designed based on 
POMDP and solved by typical DQN. While in [49], research 
work focused on the improvement of DQN to improve 
computational efficiency; a “Rainbow DQN” with safe 
constraint was carried out to generate safe driving behaviors 
with high sample efficiency. 
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Learning to generate safer behaviors is also crucial in 
DRL framework. In [50], POMDP was utilized with the 
combination of “risk-sensitive” approach; the framework was 
solved by Offline Deep Distributional Q-Learning with 
Online Risk Assessment to achieve safe decision-making. In 
[51], decision-making at occluded intersection was modeled 
as MDPs; a stricter risk-based reward function was designed 
to punish risk situation instead of only collision happening; 
finally, a generic “risk-aware DQN” was proposed for 
solving the model. Moreover in [52], driving scenario was 
also modeled as MDPs; multiple neural networks were 
assembled with additional randomized prior functions to 
optimize the capacity of typical DQN in solving uncertain 
environments; the proposed algorithm has been verified to 
realize safe decision-making in a highly uncertain 
environment for autonomous driving. 

Establishing a benchmark of different scenarios is very 
important for the verification of the DRL algorithms. In [53], 

POMDP was solved to generate collision-free behaviors by a 
hybrid algorithm named “HyLEAP” combining belief tree 
methods and neural networks; in addition, “OpenDS-CTS” 
benchmark was established for verification of 
decision-making mainly in car-pedestrian accident scenarios. 

More types of tasks at intersection were considered in 
[54], the decision problem was modeled as MDPs and solved 
by “Multi-Task DQN” that has shown good performance in 
simulation of different intersection scenarios; experiment was 
also carried out in an unsignalized T-junction. In [55], 
different driving tasks were modeled through a hierarchical 
framework integrating both high-level policy and low-level 
control; high-level policy was generated by solving POMDP 
with Advantage Actor-Critic (A2C), while low-level control 
was computed through vehicle kinematic model. The above 
several exemplary works are summarized in TABLE Ⅳ. 

TABLE IV.  SUMMARY OF EXEMPLARY RELATED WORKS WITH REINFORCEMENT LEARNING-BASED METHODS 

Refs 
Decision-Making 

Scenario Interaction Verification 
Model Solver Level 

[12] MDPs Search-based Low Straight road considering ethics  V2V Simulation 

[42] MDPs Defined Q-functions Low Straight road near school V2P Simulation 

[47] POMDP Search-based Low Intersection considering traffic flow forecast V2V Simulation 

[48] HOMDP DQN High Typical Intersection V2V Simulation 

[49] MDPs Rainbow DQN High Lane change in express way V2V Simulation 

[51] MDPs risk-aware DQN High Occluded intersection V2V Simulation 

[53] POMDP HyLEAP Low Typical Intersection V2P Simulation 

[54] MDPs Multi-Task DQN High Intersection without traffic signs V2V Simulation and 
experiment 

[55] POMDP A2C High; Low Merging in express way V2V Simulation 

IV. APPLICATIONS OF DECISION-MAKING TECHNOLOGIES 
IN EXISTING AUTONOMOUS VEHICLES 

This section summarizes the applications of 
decision-making methods in some typical existing 
autonomous vehicles as well as recent works with 
verification in real vehicles, that are arranged in TABLE Ⅴ.  

V. FUTURE OUTLOOK 

In this section, the future research emphasis of 
decision-making for autonomous vehicles are forecasted on 
the following aspects.  

A.  The Vehicle-Pedestrian Interaction 
The design of algorithms for decision-making algorithm 

must consider the interaction with other traffic participants. 
However, most research works focus on the decision-making 
under vehicle-vehicle interaction, and rarely consider 
vehicle-pedestrian interaction. Decision-making in view of 
interaction with pedestrians is crucial for safe driving since 

pedestrians are vulnerable traffic participants. Dividing the 
behavior of pedestrians with clear boundary, analyzing and 
predicting of actions for pedestrians should be integrated into 
the future researches for decision-making system.  

B.  Safer and More Comfortable Decision-Making System 
Safety is the most important factor for driving, part of the 

research works has incorporated safety into the consideration 
of decision-making [56, 57]. However, ride comfort should 
also be emphasized. On the basis of ensuring safe and 
efficient driving, constraints such as vehicle dynamics and 
evaluation index for ride comfort need to be included to 
achieve better optimization for generated decision.  

C.  Fusion of Different Methods for Decision-Making  
Classical methods have clear levels, strong scalability and 

adjustability, and has the advantage of breadth traversal; 
while learning-based methods has concise structure, and it is 
suitable for processing specific scenarios with the advantage 
of deep traversal. The Fusion of different methods at different 
level of decision-making can achieve complementary 

35

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2021 at 07:37:09 UTC from IEEE Xplore.  Restrictions apply. 



  

advantages that should be considered in the future. For 
instance, the high level utilizes finite state machine method 
for preliminary decision, while the bottom level trains a 
distributed learning model based on specific scenarios for 
more intensive decision to realize a highly intelligent 
decision-making system integrating breadth and depth. In 
addition, how to ensure the efficient docking of different 
algorithms will also become the research focus of fusion 
methods. 

D. Robust Decision-Making in Complex Environments 
Decision-making methods need to provide instructions 

that are safe and efficient in complex environment. Apart 
from general traffic information; interaction and cooperation 
with other traffic participants, dynamic change of 
environment, weather and time variation should also be 
considered in the decision-making system. 

TABLE V.  APPLICATIONS OF DECISION-MAKING IN EXISTING AUTONOMOUS VEHICLES 

Basic Information Application of Decision-Making 
Performance 

Name Date Methods Inputs Outputs 

Junior [14] 2007 FSM Environmental information 
from sensors High-level behaviors Average speed 20km/h in urban environment of 

2007 Darpa Challenge 

Odin [16] 2007 FSM Environmental information 
and warpoints 

High-level behaviors with 
different priority 

Average speed 20.92km/h in urban environment 
of 2007 Darpa Challenge 

Talos [13] 2007 FSM Drivability map with 
waypoints High-level behaviors Urban environment of 2007 Darpa Challenge. 

(speed not mentioned) 
BRAiVE 

[58] 2013 FSM Environmental information, 
map and driver cooperation High-level behaviors 13,000km in total from Italy to Shanghai. (speed 

not mentioned) 

Bertha [15] 2014 FSM Environmental information 
and digital road map 

High-level behaviors with 
overrule of driver 

Average speed 30km/h from Mannheim to 
Pforzheim (103km in total) 

Zhongtong 
[33] 2019 SVM 

Three influencing factors 
generated from lane change 

scenario 
Longitude velocity and 

steering angle 
Average speed 28km/h in urban environment 
with decision-making accuracy of 86.27% 

AUTOPIA 
[17] 2019 Hybrid flow 

diagram 
Environmental information 

from sensors Feasible trajectory Longitude Speed within 10km/h to 20km/h in 
dynamic scenario with different driving task 
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