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Samenvatting

Deze nota beschrijft een onderzoek betreffende het gedrag van deeltjes-wolken
in tweedimensionale snelheidsvelden. De resultaten kunnen in ruime zin geïn

terpreteerd worden, maar zijn in het bijzonder van belang voor de versprei
ding van stoffen in oppervlaktewateren van grote horizontale uitgebreidheid
en een in verhouding geringe diepte of laagdikte. De relevantie voor de zee
is wellicht wat groter dan voor meren, omdat op zee de energie-toevoer aan
het snelheidsveld een belangrijke konstante komponent van astronomische oor
sprong bezit, zodat de energie-inhoud van het snelheidsveld (op verschillende
lengteschalen) minder fluktueert dan in meren het geval kan zijn.

Synthetische velden zijn gebruikt van goed gedefinieerde struktuur, zodat nu
merieke experimenten konden worden uitgevoerd onder beheersbare omstandighe
den, wat in de natuur niet mogelijk is. Door de resultaten met experimenten
en waarnemingen in het veld te vergelijken, verkrijgt men inzicht in de om
standigheden en mechanismen in de natuur en in de wijze waarop men deze kan
modelleren.

De huidige computer-faciliteiten maken het niet alleen mogelijk deze funda
mentele onderzoekingen met synthetische velden met een gedetailleerde spek
trale struktuur uit te voeren, maar ook om bestaande stromingsmodellen aan te
vullen met spektrale komponenten die in het stromingsmodel niet gereprodu
ceerd worden, maar essentieel zijn voor een juiste modellering van versprei
dingsverschijnselen. Soms is een meer eenvoudige benadering toelaatbaar, die
minder reken-inspanning vergt, maar de spektrale benadering blijft steeds de
beste.
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Summary

This report presents a study on the behaviour of particle clouds in two-di
mensional velocity fields. The results can be applied in a general way but
are especially of interest for the dispersion of matter in surface waters of
a large horizontal extent and relatively small depth or layer thickness. They
may be somewhat more relevant to seas than to lakes, because at sea the ener
gy supply feeding the velocity field contains an important constant component
(of astronomical origine) so that the energy content (at various length sca
les) of the velocity field will not fluctuate as strongly as may be the case
in lakes.

Synthetic fields have been used of weIl defined spectral structure so that
numerical experiments could be performed under controlled conditions , which
is not possible in nature. By comparing the results with experiments and ob
servations in the field, one obtains insight into natural conditions and pre
vailing mechanisms and how to model these adequately.

Present computer facilities do not only enable these basic studies with syn
thetic fields of detailed spectral structure but also make it possible to
supplement existing flow models with spectral modes which are not reproduced
by the flow model while they are essential for proper modelling of disper
sion. Sometimes simpIer means to the same end with less computational effort
are permissible although they remain inferior to the spectral approach.
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1. Introduction

velocity fields of large bodies of open water are usually structured in
space in a complicated way, showing mar ked changes on very short and very
large distances as weIl. Some of these features are rather constant, some are
changing in time, sometimes in a systematic way, like tidal currents.

For the dispersion of matter, the structure or "organization" in space is
quite dominant, as it will be demonstrated in later chapters. One might say
that time dependence only affects dispersion phenomena appreciably if it af
fects the spatial structure strongly and with some persistance. In this con
text spatial structure can be read as : spectral structure in space, i.e.,
qualitatively: how strong are the variations in velocities at various distan
ces or "length scales".

In this report, the behaviour of passive particles is considered. In the
case of passive transport, the velocity field of the watermass is not affec
ted by the presence of the materials transported. If the unaffected natural
field would be known in sufficient detail, no further physical knowledge
would be required to predict ~ispersion patterns. "Any passive particle fol

lows, by definition, the local velocity at its successive positions. It is
not necessary to include its Brownian or molecular motion, since the dis
placements thereby are negligible with respect to the ubiquitous canplex
'macroscopic' water motion •••". "For all practical purposes it would be no
problem if only averages of the velocities over a certain volume (say,
liter or even a cubic meter) and certain time intervals (say, of 10 s) would
be known. Tc compute the effect of a contlnuous release, it would 'only' be
needed to make a kinematic computation, releasing a particie, say every
second, and computing the path of all particles in small steps of time and
space, in accordance to the grid size of the given velocity field. After
about 2 weeks (in the 'prototype'), a million positions would have been com
puted. In spite of the discreteness of the particles and their finite number,
for practical purposes the concentration field at that moment would be known
in sufficient detail. Carrying on sufficiently long would reveal how long it
takes to reach a steady mean in various parts of field and how large fluctua
tions and periodic changes are around this mean.

One of the purposes of this imaginative exercise is to show that diffusion
(molecular or other) has not entered the computation in a quantitative way
and qualitatively only at the moments the 'concentration' was reviewed. At
those moments it was assumed that limited numbers of particles in relatively
small volumes represent a more or less even distribution of a much greater
number of molecules of the rea1 pollutant. If more exact estimates are
needed, it only means that smaller steps in time and space have to be taken
or more particles per second have to be released, which is no objection for
an imaginary operation" (VAN DAM, 1982).
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The 'thought experiment' of this citation needs not to remain entirely
imaginary if we drop the requirement that all velocites should be "real"
(measured) or, at least, determinist ie (computed in a deterministic model).
In any case, veloeities should be given on the smallest scale of interest and
up. If we can only use grid veloeities computed by a two-dimensional flow mo
del, the field contains no structured details below a length scale of several
meshes which means that the whole "spectrum" of scales over the entire domain
of the model usually ranges less than a factor of hundred and often little
more than a factor of ten. An extension with at least the same factor at the
side of the smaller scales is most desirabie. This can be done in a statisti
cal manner and on a basis of calibration. The statistical representation of
the smaller scales is no serious drawbackJ the precise location of a concen
tration is usually less important than its value. Further, it may be noted
that in the case of a continuous souree in a tidal current, pronounced "sub
grid" details in the distribution of released matter are caused by the time
dependenee of the current rather than by its spatial structure (figures 1 and
2) •

The important feature of dilution after the moment of release, largely de
pends upon the spatial structure of the veloei ty field and can be studied
conveniently by consider ing instantaneous release only. For the purpose of
investigating the relations between spectral velocity structure and "dilu
tion" in two dimensions, in chapter 2 synthetic fields will be defined, com
posed of harmonie functions of space. By modulation of these fields by very
slow as weIl as quite rapid changes in time, it will be shown that the spa
tial structure of the fields dominates the dispersion process and only most
rigidly "frozen" fields may give results that differ significantly from those
obtained with similar fields that change in time. Variations in time in our
simulation will be only obtained by generation and extinction of spectral
components, and not by superimposing periodie or residual veloeities. There
have been several considerations for this choice. One of them is the aim of
maintaining a consistent spectral approach. Addition of 'external' velocities
influences the weight of spectral components. Especially veloeities of a lar
ger order of magnitude than those of the veloeities of the "eddies", reduce
the contr ibution of the concerned eddies to the dispersion by reducing the
'residence time' of partieles in the eddies. This has been confirmed by nume
rical experiments. In addition, the superposition of 'external' veloeities
and the eddy veloeities seems rather unnatural. Especially the smaller eddies
will be entrained by a 'main stream' rather than the stream passing through
the eddies. By this entrainment, the eddies become material entities: parti
eles largely remain within the eddy during its lifetime. One might argue that
by this principle the smaller eddies should be entrained by larger ones and
so on. Such a mechanism cannot be realized in an analytic form and had to be
abandoned. Afterwards, the results of the simulations do not show a recogniz
able effect of this (possible) anission • Maybe tbis is due to tbe filetthat
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in each simulation the velocities in all classes of eddies are of the same
order and also to the circumstance that possible impacts are repeated on each
length scale in a similar way, so that the spectrum is affected uniformly (if
att all), with preservation of its structure.

Since the degree of stationarity is adjusted by means of eddy lifetimes
and by the fact that the individual spectral components are fixed in space
(no entrainment of smaller eddies by larger ones), the case of complete sta
tionarity is contained within the range of tuning.

The above set up has certain consequences when relating the results to ex
periments in nature, in particular in tidal streams. Dye patches move up and
down on the tidal currents over distances which remain larger than the patch
diameter for long periods (like 100 to 300 hrs). The history of such a patch
is looked at internally, i.e. in a frame attached to the patch itself. lts
dispersion is due to the water movements relative to its movement as a
whoie. This is still true when the patch size becomes larger than the tidal
excursion. The velocities corresponding to our numerical model are the
"internal" velocities.

Reversely, if the synthetic spectral model has been calibrated on the ba
sis of dye patch experiments and will be used to supplement a given (tidal)
flow field (chapter 8), the synthetic "eddies" have to be defined in a frame
that moves with the given field.

For marine applications, the restriction to two dimensions is no serious
limitation. At the scales on which three-dimensional effects are important or
even predominant (scales to one or a few km), they can be modelled by means
of a deterministic approach of the vertical structure of horizontal veloci
ties and a relatively simple concept of vertical exchange. When the latter
becomes insufficient, this is usually due to stratification problems and a
spectral approach would be of little help.

2. Mathematical formulation, numerical procedure.

In the most general case, the two-dimensional velocity fields used in this
study are superpositions of a finite number of components of the form

ux,
1

2 Tt y,
1a, cos (---

1 1\
(1 )+ ~ )
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in which xi corresponds to an arbitrary fixed direction in the plane and Yi
to the direction perpendicular thereto. Ài can be called a wavelength and ai
is an amplitude that is constant for a stationary component and time depen
dent if the component lS not stationary. If (and only if) all components are
stationary, the entire field is stationary.

The only type of non-stationary components so far used in this study have
a finite life cycle with length T (figure 3) during which the amplitude rises
smoothly to a maximum and returns to zero according to

a (t) = a {1 + cos (2: t + 't' )} (2 )

In all cases where this was applied, a new life cycle of a particular compo
nent was started at each moment a(t) becarne zero, preserving amplitude and
wave length, but with a different phase angle ~. Further, so far, all compo
nents uxi were accompanied by similar components Uyi, like formulated earlier
(VAN DAM, 1980a ,b IC I 1982) as

l
a.cos(2TI~ + ~ ), E.a.cos(2~X + ~ )]J E.A. X. J J . y.

J J J J J
(3 )

The simulations reported here have been made with all ejlZ1. One (Ux,
uy)-component of this form (with Ej=l) constitutes an infinite fleld of con
gruent eddies contained in squares on an angle of 45· with the (x,y)-axes
(figure 4). A congruent field but with the sides of the squares in the direc
tion of the (x,y)-axes, has a somewhat more complicated analytic form in
terms of x and y (PASMANTER 1985, VAN DAM 1985b):

ux
(4 )

but for our purpose there is no reason to use this forrnulation.
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Initially, all components were defined on the same pair ofaxes (x,y).
This generates a certain degree of order in the velocity field, also if all
phase angles 1> are chosen randomly (figure 5). This order is also reflected
in partlcle tracks (flgure 6) if we "freeze" the field (stationary case), but
it shows not so clearly in patterns formed by advected blobs of fluid, at
least as long as these are still smaller than the largest eddies (figure 7) •

Recently, a version of the computer programme was built with arbitrary
directions of (x,y) for each eddy component (figure 8). This irnpliesthat the
paired structure as in (3) and (4) was maintained for the individual com
ponents so that the fields can still be completely decomposed into eddies en
closed by squares (l=l) or rectangles (Cf1). As said before, the option f,l
was not used so faro

In the most general case, there is no specific arrangement by "eddies" but
just a combination of spectral modes of the form (1), with random directions
Xi. One may observe that if the nurnberof modes is even, also in this general
case the field can be canpletely decanposed in "eddies" but now of the gene
ral form (3) or (4). It is interesting to note, that this can be done in many
different ways (if the number of modes is not very small) and that the decom
position can be realized arbitrarily either by quite elongated "eddies" as
well as by mixed, or (if the spectr urn is dense enough) almost "square" ed
dies. If the nurnber of modes is add, the decomposition can be made similarly
in many different ways, but now in each case there is one single mode left
over.

Of course it is an important feature of the fields mentioned that they all
satisfy the continuity condition for a two-dirnenslonal non-compressible
fluid,

~u ~u
~ +:__:t_ = 0
bx 3y (5 )

since each of the constituent modes (1) do so.
rf the syntnetic fields are to be used to supplement flow fields in flow

models of actual situations (varying depth) , continuity is not longer strict
ly given by (5). As long as the variations in depth or layer thickness are
relat ively small compared with average val ues, (5) may still be goad enough
for the supplementary eddy field. In certain cases it may be desirabie to re
place (5) by the corresponding form with transports ~ h (with h • local and
temporal water depth) instead of velocities ~ (VAN DAM, 1985a).



I
I
I
I
I
I
I

-I
I
I
I
I
rt
I
I
I
I
I
I
I

..
- 7 -

Numerical procedure

Por investigating the transport properties of the velocity fields as defined
above, groups of particles were released instantaneously and then advected by
the prescribed field. Since there are no other displacements than the advec
tion by the velocity field, there will be no dispersion at all if all parti
cles are instantaneously released at one identical position. The same would
be true in physical reality: particles with exactly identical positions are
identical particles • Cbnsequently, the particle set has to be attributed a
finite initial size. This is done by a preceding ordinary isotropic twodimen
sional random walk of all particles starting from a single common position,
which leads to an isotropic distribution of particles, approaching a normal
(gaussian) density distribution with increasing number of time steps and num
ber of particles. For our purposes, the precise shape of the initial distri
bution thus obtained, is of little importance.

From this initial distribution of finite diameter, the particles are ad
vected by the synthetic non-divergent two-dimensional velocity field only.
This is done by displacing the particles one by one in finite time steps,
using a simple numerical scheme of first or second order. using the second
order (Runge Kutta) scheme , larger time steps can be taken for obtaining a
same accuracy. The accuracy has to be such that a particle follows the move
ments of the smallest eddies to a sufficient extent. If only the dispersive
properties of the velocity field have to be investigated and the field is not
rigidly stationary ("frozen"), it is sufficient if the particle remains in
the domain of a single eddy (also the smallest) during several time steps,
say 10.

If al is the velocity amplitude of the smallest eddy, wave length À1 =
Àmin, the suggested criterion roughly implies

10-1 Àmin
(6 )

(in fact dependent upon the numerical scheme) •
A much stricter criterion has to be applied if the purpose of a calcula

tion is, to show that in a stationary field of the concerned type, most par
ticle trajectories, now coinciding with streamlines, are closed curves (fig
ures 6 and 8) of the size ot the largest eddies or smaller. Then the time
step length required depends upon the size of the smallest eddy as weIl as of
the largest one, and of course upon velocity as weIl. The required steps are
roughly one to two orders of magnitude smaller than would follow from (6).
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The length

(7 )

with N - 2
~ (xn-x)

N

N _ 2
~(Yn-Y)

2 n=lcr = =-.;;_---y
(8 )

0-2 =x N

(N= number of particles)

has been used as the size measure of particle patches.

3. Energy and velocity spectra.

A component of the form (1) has a particular direction xi. It is assumed
however that all directions have egual chances, in other words that the su
perimposed fields are (averagely) isotropic. This means that the usual one
dimensional formulations of spectra can be applied (MONIN and OZMIDOV,
1985). One may state that any series of wavelengths Ài or wavenumbers ki =
21t'/Ài constitutes a spectrum, but in order to get insight in spectral struc
tures and to be able to compare these with theoretical concepts (usually for
mulated in a cont i nuous form) a regular spacing of spectral "lines" is re
guired. From a viewpoint of sImi Larity between different scale ranges it
seerns a logical choice to space the successive wavelengths of the various
components by egual factors rather than egual differences. If this is done,
it appears that the velocities of the various components are simply related
to the usual concept of characteristic velocities or eddy velocities at the
various length scales.

The spectral structure of a velocity field in the space domain is often
characterized by an energy density function E(k) (kinetic energy per unit
mass and unit wave number), which means that if only velocities in a small
range of wave nurnbers,dk, are considered, the (average) kinetic energy of a
unit of mass in the field would be

dEkin'"E(k)dk (9 )

Theoretical forms of E(k) are practically always of the simple type

(10)

in which ck stands for var ious expressions , depending -upon the theory con
cerned. The best kwown case is probably the kinetic energy spectrum in the
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so-called inertial (sub)range of (three-dimensional) turbulence at high
Reynolds numbers (m= 5/3) ,

E (k) = Cl e 2/3 k-s/3 (1 1)

in which t is the rate of energy dissipation, equaling the spectral energy
flux (flowing from larger to smaller eddies) and the external supply of ki
netic energy (to the largest eddies of the range). There are no goed theoret
ical reasons or empirical evidence that (11) should also hold for the
spectrum of horizontal eddies in seas.

Tc link the kinetic energy concept to dispersion one wishes to der ive a
typical veloei ty for a certain length scale (wave length) or corresponding
wave number. From a viewpoint of similarity and considering that the required

veloc ity should have relevanee to the exchange of water masses at the con
cerned length scale, it seems appropriate to relate the size of the interval
dk in expression (9) to k by dk = ak, where 0( represents a certain fraction
( 0(<<1 ) • Then

dEkin = ()I.. kE (k) ( 12)

being the kinetic energy (per unit mass) in the chosen interval, the charac
teristic velocity at this "sealen should be

f

vc"V 1~1"'{o(kE(k)}1 (13 )

e.g. if E(k) has the form (10), then

(14)

This defines a spectrum of velocities of the shape

1-m
.2.

m-l
\ -2.-

- 1\ (15 a,b)or

in conformity with conventions. For example the
(formula (11) ) gives with (1Sb) the well-known result

case m=s/3well-known

Vc - ( 16)
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Equations (13) and (14) remind to the fact that the velocities Vc contain
an arbitrary factor 0<1/2. A particular choice of ex with a particular energy
spectrum E{k) gives a velocity spectrum in absolute terms and in this way
discrete synthetic spectra can be related to given forms of E{k). By spacing
the "lines" of discrete spectra by equal factor~ their absolute values will
depend upon the relative size ~* of the spacing intervals in the same way as
"c depends on ex according to (17).

It is generally assumed (MONIN and OZMIDOV 1985 and references therein)
th at the effective dispersion coefficient of a (two-dimensional) patch of
size L (as defined by (9) ), defined as

1 dL2
K (L) = 4 dt (17 )

is proportional to the size L as well as to the characteristic velocity
associated with the length scale À=L in the velocity spectrum:

K (L) ,.., L )( ve (L) (18)

As we have seen, Vc is defined except for a constant factor. One could use
(18) to define vc in an absolute sense. This becomes more feasible with the
availability of a simulation model that provides K{L) for given spectra.

For the spectra of type (10), (18) implies

m+1z-
K (L) "'" L (19 )

with the two best known examples

m = 5/3 (20)

m = K ,..,L (21)

corresponding (by (17)) to a growth of Laf ter an instantaneous point release
at time to as

L ,.., (t - tol 3/2 (22)

and L ,.., (t - tol (23)

respectively.
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The numerical simulations with the discrete spectra as described in the fore
going are in agreement with (22) and (23) (figure 9) which can be seen as a
confirmation of the conventional assumption (18) as weIl as of the proper
functioning of the simulation model.

The general form of (22), (23) in terms of (10) is
2

L '" (t-to) 3-m (24)

but it should be borne in mind that the above considerations and resulting
relationships are only valid within the ranges covered by the spectra of the
concerned type (10), Le. for patches of a size weIl within the range of
length scales covered by these spectra. Other cases will be dealt with in
later chapters •

In the numerical experiments described in this report, only spectra of the
type (10) have been used and except in the case of figure 9 (m = 5/3 and m =
1) the experiments have been restricted to the case m = 1. In asense, this
can be seen as an arbitrary choice, but there is also the practical
consideration that for a long range of scales, spectra with m ~ 1 give a
quite fair description of dispersion in the North Sea. The range of applica
bility of a constant m ~ , has recently even been extended considerably by
combining the k-1 spectrum for the horizontal eddies with an explicit model
ling of the processes in the vertical (vertical velocity profiles combined
with vertical exchange).

The case m = 1 is also attractive because of its simplicity. All (average)
velocity amplitudes in one spectrum with fractional spacing ~ become mutual
ly equal and the various expressions become even simpler than they already
are (for arbitrary m):

(25)

dEkin = ex Ck (26 )

(27)

and as far as L is within the spectral range:

L fV (t - tol (28 )

for patches resulting from instantaneous point release.
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It was said earlier that only instantaneous 'point' sources have been stu
died, although a finite initlal patch size is necessary. In practice the ini
tial size has a lower bound set by the finite length of the spectral range.
If it would be taken (much) smaller than the smallest eddy the patch would
inltially not only be dispersed very slowly but also be stretched into
thready shapes which would be an unadequate initial condition for the later
process within the spectral range. The finite initial size implies that the
theoretical point of time to of (24) and (28) in fact lies before the start
of tne simulation. The patch always starts with a specific ·age" with respect
to toe Only if in the double-logarithmic plot of L as a function of t the
initial age is correctly estimated, L (t) will show as a straight line (apart
from deviations due to the stochastic aspects of the simulations). It can be
noted that in most cases (figures 9, 12, etc.) the initial position of L(t)

is indeed not precisely chosen on the straight line that should be expected
with a proper time scale. Because of the logarithmic scale, the small shift
in time soon becanes unnoticeable when time proceeds. The effect is similar
to what happens when the release time (of a finite patchl) of a dye experi
ment is identified with the start of a theoretical instantaneons point re
lease. If in a graph, the measured curve deviates from the theoretical one
with a constant time shift (for larger times rather soon becaning invisible
in the logarithmic plot) , it means in fact that the two functions are identi
cal.

4. Variability in time.

Perfectly statlonary velocity fields do not occur under natural conditions

and certainly not in surface waters. This could be a good reason to leave
them out of consideration. Indeed, although touched briefly in this chapter,
they will remain a theoretical extreme of the cases to be viewed.

In (realistic) non-stationary fields, usually a certain degree of station
ariness can be discerned. Especially for the larger eddies sane persistency
is quite likely and will also exert more inf!uence on observed transport
phenomena than small eddies could do. In general , large eddies live longer
than small ones and in most simulations the lifetimes were taken proportional
to the size of the eddies. In the usual case m - 1, this means that the life
times are equal in terms of the nurnber of revolutions • In this chapter the
possible influence of the degree of variabilitY/stationariness on dispersion
will be investigated.

The (unrealistic) case of complete stationarity (infinite lifetime of all
eddies) is of sane interest for understanding the influence of lifetimes upon
dispersion. When individual particles are released on arbitrary locations of
a stationary field consisting of say 5 to 8 eddy canponents of type (3) it
appears that a majority of these particles follow closed trajectories (fig
ures 6 and 8) and to such an extent that most of the surface area in the
plane is enclosed by such contours. Because of the stationariness the
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trajectories coincide with streamlines. An area enclosed by a closed
streamline, can only contain streamlines that are closed as weIl. Initially
it was believed that in fact all streamlines in fields composed of stationary
components of type (3) were closed and that exceptional trajectories crossing
the area analyzed, might be numerical artefacts caused by singularities which
in fact only were boundaries of zero thickness, separating zones with "nor
mal" eddy structures. In a later experiment (figure 8) it appeared that the
longer trajectories were not so exceptional and that under considerable
reduction of time step size, most of them remained completely stabIe and ap
parently were quite realo Then the area of computation was widened and it was
found that several of the seemingly open tracks closed within a larger domain
than first considered. It is now clear that although most streamlines are

closed around an area of the size of the largest eddies or smaller, a number
of tracks covers a much greater surface, enclosing several areas of the size
of the largest eddies. It remains possible that in fact all streamlines are
closed but this can never be proven by calculating (finite numbers of) parti
cle tracks. A theoretical proof has not been found either, even for the case
of equal orientation of all (xi, Yi).

A general proof of the kind here suggested, is not essential for our prac
tical purposes. The factual data obtained with the stationary field are suf
ficient evidence for understanding the results obtained with gradually in
creasing lifetimes of eddies (figures 10 and 11). If for infinite lifetimes
all tracks would close within areas of the order of the largest eddies or
smaller, dispersion in the stationary field would be blocked at length scales
L of the same order as Àmax or smaller. After it was found that certain
tracks extend over much larger areas, it can be understood that the blocking

occurs indeed in certain cases, but not always (figures 10 and 11). The
figures show that, at the other hand, a certain degree of trapping mayalso
occur when lifetimes are not quite infinite but long compared with the period
observed. This is of course what should be expected. It is of more importance
that the initial cloud lies entirely within a closed streamline than that
this streamline is strictly stationary. If its lifetime is longer than the
observed period, an effect of trapping should be obvious. The fact that in
perfectly stationary fields the cloud may extend over much larger distances
than Àmax is a warning against fast conclusions on the basis of L(t) - plots
only. A few particles travelling far beyond the range within which most other
particles remain captured, may cause L-values of the same order as when all
particles were spread over the larger distance. An (almost) "normal" rate of
spreading only measured by L(t) is therefore no good evidence for actual nor
mal dispersion. To find out whether longer lifetimes do not yet impede
dispersion compared to shorter lifetimes, we will have to look at the
character of the distribution as a whole rather than at a rough measure like
L(t). For many other purposes the quantity L is good enough.
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5. Spectral density, spectral gaps and cut-off.

The synthetic, superpositional character of the artificial fields implies
that they are composed of a finite number of modes (formula (1)) or eddy
classes (formula (3)) so that we might speak of a "line spectrum". In this
chapter the question is considered to how the dispersion properties of the
fields depend upon the density of the spectral lines. This is closely related
to the effects of spectral gaps and cut-off.

In figure 12 it is shown that cutting off a spectrum of some given density
at a certain maximum wave length, rather results soon into a classical diffu
sion behaviour of the dispersion process: patch diameter increasing with the

square root of time (EINSTEIN 1905, CRANK 1967, and many others). The level
of the t 1/2 - line, corresponding with the value of the diffusivity K, rises
with increasing density (preserving the velocity amplitudes of the individual
components) of the cut-off spectrum. If we replace the cut-off by a "cut-out"
or gap of sufficiently large width, the same effect will occur at the lower
end of the gap. The larger eddies at the other end will initially have no in

fluence if they are sufficiently "far away": then the velocity field they
form is virtually uniform within the small area covered by the particle cloud
near the low end of the gap. When the cloud grows larger, the large eddies
wil! gradually cause a steeper increase of cloud size L(t) (figure 13). The
figure shows that the gap has to be rather wide to have a clear influence
shown by a noticeable dip in the L(t) curve.

It is interestin~ to see how the constant value of K, reached 50 soon af
ter L has become > )\max (figure 12), depends upon the features of the under
lying spectrum.

It should be expected that if there is only one eddy field of type (3)
with amplitude a and wavelength À, and yet stationarity is avoided in sorne
way (to prevent trapping of particles) , the resulting value of K will be

K = ko a À (29)

in which ko is a dimensionless coefficient. If there are several eddy compo
nents with mutually quite different wavelengths À1, À2, ••• À1, the disper
sive effect of each of them will be almost independent of that of the
others. In that case the total diffusivity would be given by

J

K = koL aj Àj (30)
j=l

In the case m = 1:
J

~ 1 -(fA -l)J
K = ko aL_ Àj = _

j=l 1 - f~

(fÀ = ratio between successive values of Àj)

ko a .0 max (31)
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On the other hand, if all Àj would be the same, there would be a partial
mutual extinction of the different cornponents and we should expect

K=~a V À~+... + À\=Jr.6aÀ\{;

rather than koaÀ J as would follow from (31).

(32)

Also in a spectral range with rather small distances between the wave
lengths Àj, it should be expected th at there is some interference and the
ratio between K and 2:aj Àj (or aE ~j) will become smaller than kc in (30)
and (31).

The ratio between K and .L" aj Àj has been determined for all simulations
of this type per formed so far (tabIe 1). In all cases L aj Àj= a2Àj (spec
trum of type (10) with m=l). The number of wavelengths per (logarithmic) dec
ade ,N, ranged from 4 to 16, so the constant factor ~ between successive val
ues ranged trom '0'/4 to 101/16 and the relative "channel width" Ol'=f)\. - 1
from 0.7783 to O. 1545. It is remar kable that the expected decrease of the
ratio k with increasing density N does not show, even at the level of N=16
(fA=101/16=1.1545) although the spread in the figures is quite small (tabIe
1) •
Apparently, the decrease at this level is still smaller than the spread of
about 7 OiO (fiest 3 groups of 3 cornputations only). Sc we may conclude that
the average 0.0357 of the fiest three groups of computat-Ions is a good

Table 1

Number of Number of Factor fA relative TOtal Ratio
computations wavelengths between channel number kaK: (al:À)

per decade successive width of
N (*) wavelengths ~* components

fA (cf A -1)

3 4 10 1/4 0.7783 8 0.0345
3 } { 8 0.0390

8 10 1/8 0.3335 }0.358
3 15 0.0326
4 16 10 1/16 O. 1545 29 0.0387

(*) In these simulations, number of selected wavelengths per decade and
number of "componentslO (of form (3» per decade are identical
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estimate of the dimensionless factor kc of the expressions (30) and (31).
With the value of ko, thus derived, dispersion coefficients K in the range

L > Àmax can he determined for various situations. An interesting case is the
asymptotic value of K for J=ClOwith a given velocity amplitude a (or spectrum

aJ) and a given Àmax < L.
For a given relative spectral line distance ~* and a given Àmax, the ex

pression (30) voor K wil! usually have a finite value for J-+co. tt1isis cer
tainly so for the case (31) where the summation amounts to a geometr ic
series. lts limit for J-+CQ

K =ko a lim
00 J-co

=koa Àmax fÀ

J

~
J =1

(f~ -1)-1= (33)

f-j
f>. Àmax =

kc a À max (Q*+1) 01'*-1

Some examples with the above value ko= 0.0357, with the choice )\max = 1000,
a=O.OS and with the same spectral densities as in table 1, are given in table
2. The added case J=l should be seen as a theoretical limit at the lower end
of the range of the number of componerrt s, J, since for one component, non
stationarity cannot be obtained in the same way as for J>l.

N J= co

(formula (33))

one component
(J=l)(formula (30))

N components
(upper decade)
J =N (see (34))

K=1.785
1.785
1.785

4
8

16

3.671
6.423

11.98

4.0785
7. 1396

13.317

Table 2
[L 2J [T-~
(any units)

The contribution of the upper decade (0.1 Àmax to Àmax) amounts to
exactly 90% of the total of K, since for J terms (the sum of) a geometric se
ries equals the limit for J=co multiplied by l-rJ. In this case

(34)

sc if the spectrum does not extend indefinitely at the side of the smaller
wavelengths , the contribution of the part below the upper decade is even
smaller than 10%.
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It should be expected that with further increase of the dens ity of the
spectral components, the linear relationships (30), (31) will not remain val
id. If the number of components within a certain range is increased further,
K will gradually increase slower than proportional to the number of compo
nents and the dependence upon N will finally tend to a square root relation
ship like (32). Apparently, the densities used 50 far, are too small to dem
onstrate this.

In the range Amin < L < Àmax, the situation is qu i te different. At the
same relatively low densities of spectral modes as above, no apparently lin-
ear relationship between K and the individual contributions of single modes

was found, in complete agreement with theoretical considerations.

In the range A min < L < Àmax, K is not a constant for the whole spec
m+l

tral range, but it is proportional to L2
is proportional to L:

(formuLa (19», so for m'"1, it

K(t) I\,; L(t) (35)

and since form m=1, L(t) "" (t-to) (formula (28», also

K(t),...,(t-to) (36 )

se the investigation of the influence of spectra on K and or L in the case
m=1 is completely equivalent and amounts to investigating the behaviour of P
in

L(t)-P x (t-to) (37)

where P is aveloci ty. The notation P has been chosen after JOSEPH and
SENDNER (1958) who have used it in essentially the same sense.

Figure 14 represents the results of a number of numerical experiments with
m= 1 in the range À min < L < Àmax for various densities of spectral modes
but a fixea value (=0.05) of the velocity amplitude a in all cases. This a,
in terms of (27) is equivalent to a fixed velocity vc* in a channel of varia
bIe width 0.* and by (27)

(38)

in agreement with the fact that the energy density will increase if more com
ponents of the same intensity are taken within a fixed range. The energy
within one channel ~*

dE* kin- Ol!' ck"" 0(* (39)
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is in all cases the same, but in a fixed channel width ex
cxvc*2

dEkin = O<ck ""- ,.,()(*-1
0<'*

The velocity "c associated with such a fixed channel is a measure for K(L)
for given L (formula (18» and (since m=l) also for P (=2K:L for all t). By

(40)

(40)
1

2 (41)

So that we may expect
1--

P IV 0.* 2 (42)

P has to be found from the data represented in figure 14. The figure il
lustrates that tor relatively small t, a systematic influence of the density

(c.q. channel width) is obscured by the stochastic elements in the simula
tion. At large t, the stochastic effects gradually average out and at the end
(t-to=107), all curves are arranged in the expected order and the best way to
estimate P seems to consider just these final values of L which ideally
should equal Pxl07• In figure 15 the thus obtained values P (~) are plotted
against Oc*-l/land the result seems a fair confirmation of the theoretical
expectation (42). Later, the data set was somewhat extended; the results
plotted in the same way, are shown in figure 16.

The relation between Vc and Q* is not linear and the relation between Vc
and the number of modes per decade or other fixed (logarithmic) interval is

not either. The relation between ~* and such a density dr (r refers to the
ratio between the boundaries of the interval) is

dr
~*+1) ~ r (cconstant)

(43a)

or log (or+l)#v dr-1 (43b)

For high densities dr (small 0\*) this relation tends to an inverse propor
tionality and then (42) could be replaced by P"" \(dÇ; in the available mate
rial the densties are just too low to justify this approximation. The plot of
P against Vdr (fig. 17) differs indeed from figures 15 and 16, although it
just happens not to be so evident that the correlation is indeed worse, as
should be expected.

For m=l, the definition of K (equation (17» implies K - LxP while at the
same time K",LKVc(L) by (18). It is clear that in this case Vc does not de
pend upon L, but it does contain an arbitrary factor (exin equation (27». So

P is a possible choice for a specific value of vc' determining a value CXp
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of 0( by (27):

(44)

From dEkin*=O*ck' the kinetic energy in one channel a* (containing one spec
tral component), ck can be computed. The spectral component in the present
simulations is of type (3) with all êj=l and all aj-a( t) as prescribed by
(2). Taking the probably most reliable value of P (case N-16 in the set of
figure 14) and after computing ck for this case (using (1) with (2),

squaring, averaging etc.) we find ~p=0.157 or

(45)

There is no point in writing this estimate with a larger number of digits.

6. Patch shapes.

6.1 "External" shape.

Our particle clouds are statistical representations of "patches" contai
ning a much larger number of dispersing elements, such as dissolved molecules
in a patch of pollutant or in a cloud of tracer. For example, in a common
rhodamine tracer experiment at sea there will be a number of rhodamine mole
cules of the order of 1025 or 1026. Of course, to define the essential 20 ho
rizontal character istics of the distr ibutions a representative sample con
taining a much smaller number of partlcles will be sufficient.

If only a general length measure such as L (equation (7» is to be inves
tigated, the number of particles can be very smalle In the studies of L (t)
reported in the preceding chapters, the number of particles in most cases was
only 50. No extra information on L (t) would be gained when a larger number
would be used. The rather great deviations of L(t) relative to the average
behaviour and correspondingly among individual simulations can be attributed
to the limited number of spectral modes and their intermittency in time with
mutually random phase (e.g. figure 18 A and B with 2 and 4 components per de
cade respectively and figure 14 with 2,4,8 and 16 camponents). Indeed a tend
ency to smoother curves and smaller mutual differences for higher density of
spectral components can be noticed, but the available number of computations
is still rather limited. There is a clear tendency of convergence and smaller
deviations for larger times. One of the reasons is the very small number of
"active" modes in the initial stages. In fact, it might have been better to

start with somewhat larger patches with the same values of Àmin. A further
extension of the spectra to smaller wavelengths would have the same effect
without reduction of the range of computation, but meets serious problems of
computation times.
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Also patch shapes are in the initial stages less regular than later, (fi
gure 19) due to the initially small number of active modes •.This situation is
somewhat artificial but at the other hand, also in nature rather odd shapes
may be found. Apparently the real spectra are not always smooth and simple.

Beside the studies of particle clouds, in a number of simulations the de
velopment of closed (initially circular) contours was followed (figures 7 and
20). In fact there is a close relationship between evolving contours and
clouds of particles (figure 20). In the figure the initial circle is somewhat
smaller than the cloud of particles released at the same time in the same
velocity field, but the particle cloud becomes gradually arranged in a simi
lar fashion. If a second circle, just enclosing the entire cloud would have
been released, this contour would have developed in a similar way as the
smaller one, but would always keep the particles of the cloud enclosed.

The contours become soon untractable by computer simulation but the unli
mitedly growing particle patches considered in preceding chapters remain en
closed by such contours at any time and the surface area within these con
tours is rigidly constant. The unlimited growth in extension of the patch and
the increasingly regular distribution of the enclosed particles , implies a
tremendous growth of contour length and an inconceivable fine threadiness at
large times. It is clear that at some moment even a minute molecular diffu
sion is sufficient to "erase" the very thin threads and homogenize local dis
tributions. But also without such a mechanism the inhomogeneities will at
some time become imperceptible on a macroscopic level, which illustrates the
minor importance of molecular diffusion in this kind of processes.

The development of this type of contours has relations with chaos theory.
The contour length grows exponentionally in time (LICHTENBERG & LIEBERMAN,
1983; BROWN, 1988) except for long times in stationary fields.

6.2 "Internal" Shape.

After it was seen that on microscopic scales "contouring" may lead to ex
tremely involved patterns, it can be observed that after some time the par
ticle distributions become smooth enough to allow the construction of zones
separated by "contours" of particular concentrations, provided that many more
particles are released than needed to study L(t)=VOX2(t) + oy2(t). The ques
tion of the "internal" distribution of concentrations in clouds generated in
turbulent and other eddy fields has already attracted much theoretical in
terest in the past(JOSEPH & SENDNER, 1958; ORUBO, 1962a,b; OZMlDOV, 1958,
1968; PASMANTER, 1980; SCHÖNFELD, 1962; TALBOT & SENDNER, 1973; VAN DAM,
1980a, 1982). Quite a few different distributions have been proposed (JOSEPH
& SENDNER, 1958; NEUMANN & PIERSON, 1966; NIHOUL, 1975; ORUBO, 1962a,b; ORUBO
& PRITCHARD, 1960; SCHÖNFELD, 1962) but the value and theoretical
significance of these functions is not very clear.
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A first result from numerical simulation in an artificial eddy field has
been published by VAN DAM (1982) but the way of obtaining the distr ibution
function can be criticized (figure 21). The distribution shown is more
pointed than the gaussian and this feature it has in common with most
theoretical predictions. At sea, measured distr ibutions seem to be rather
variable, even during one experiment (VAN DAM & SYDOW 1970, WEIDEMANN (ed.)
1973) but the rather complex patch shapes (maybe poorly reconstructed from
the limited number of cross sections) justify some doubt in most cases, so
that a numerical simulation still seems an attractive alternative • It was
tried recently to improve the result of 1982 (1000 particles) in a simulation
of 2000 particles, but this still gives results that are too sensitive to the
way of analyzing particle positions, although again there seems to be some
preference for distributions more pointed than the gaussian (figure 22).

At present, for a better result a very large computation with more parti
cles and longer simulations time seems necessary but there are same doubts
about the priority of such an exercise and the possibilities of a meaningful
interpretation.

7. Application to North Sea data.

Several authors have already concluded that patch diffusion in the North
Sea can reasonably weIl be described with (24) with a value of the exponent
of (t-to) close to 1, which means in terms of an energy spectrum of type (10)

2 . da value of m close to 1. Usually the exponent 3-m of (t-to) was estlmate a
little larger than 1, which would imply that also m would be somewhat larger.

Recently, simulations have been performed with explicit modelling of the
processes in the vertical, which dominate the dispersion of patches up to si
zes of one to a few km. In the same simulations, the dispersion by horizontal
eddies was modelled with an isotropic process corresponding to m=1. The cur
ves resulting from combining the two mechani~s, compared with data sets like
figure 23 give no goed reason for taking m somewhat smaller or larger than 1
as long as one general value of m is used, without differentiation between
various parts of the North Sea.

The description with m=1 implies a behaviour of L-(t-to) for large scales
(beyond the range of in'fluence of the vertical processes) and the present
estimate of P (defined by (37» on basis of the data set of figure 23 is
P=0.0067 ms-1 and by (45) we find Ck=2.87x10-4m2s-2•

Summar izing, a fair simulation of dispersion in the North Sea can be
obtained by modelling the processes in the vertical, combined with a simula
tion that conforms with a simple energy density spectrum of horizontal eddies

(46)

corresponding to a value of diffusion velocity P as defined by (37)
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P=O.0067 ms-1 (47)

Typical eddy diffusivities for large t follow from

(48)

In initial periods of the order of one day (and often longer) the effec
tive K will be larger than would follow from (48), caused by shear dispersion
due to vertical velocity shear and vertical exchange.

The above approach is quite global and does not account for local differ

ences. It is likely that Ck will be smaller in regions of weaker tidal flow,
the tides being one of the important sources of energy to the spectrum of
velocity variations as a whoIe. ZIMMERMAN (1978) has described how vorticity
at particular scales is generated by the interaction between the tides and
the topography structure of the bottom at related length scales •

Exper iments indicate that also in time there may be important variations
in spectral energy distributions, but it is often difficult to distinguish
the part of the dispersion due to vertical shear from that of the purely
horizontal structure. Especially if there is some stratification, these ef
fects influence the total dispersion for a long period, up to several days.

In figure 24 an example is given in which it is clear that at least some
dispersion agent has disappeared or sharply decreased in time: from ta to
tb' L increases with and exponent of t, much smaller than O.S, the minimum
that is possible with an averagely stationary spectral structure. One should
keep in mind however that is is only evident that the mechanism has dis
appeared or strongly decreased within the area of the patch. But the patch
has been displaced in the meantime and the possibility should be left open
that this is the main cause of extinction of the concerned agent within the
patch.

8. Concluding remarks.

Dispersion in two dimensions can be simulated just by advection, in a re
alistic fashion.This technique avoids the problems of gradient type diffusion
concepts which are known to be incorrect except in wide spectral gaps that
usally do not exist in the range to be modelled • The technique also avoids
paradoxes such as arise with random walk techniques, also if the latter are
refined by application of "scaling" in tune with the spectral structure of
the velocity fields (VAN DAM, 1982, 1985b,C,d, 1986).

Because of these two fundamental properties, the advective approach is the
ideal way of modelling dispersion from the physical point of view. Disadvan
tages are of purely practical nature and concern the amount of computational
effort.
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If a reliable numerical flow model is available, the best results willof
course be obtained if the complete velocity structure generated by this model
is utilized in the computation of the advection of matter and only the modes
that are absent or too weak in the computed flow field are supplemented by a
synthetic eddy field. Subgrid modelling is easy but only feasible by using
discrete particles to represent the dispersing constituents • An example in
which the subgrid modelling has indeed been performed by means of additional
spectral modes, is presented in figure 25.

In practice, it willoften be unavoidable to apply more economical
techniques and the results may in many cases be acceptable. The availability
of a fundamentally better method however facilitates a critical use of other
means and can in many instances provide valuable supplementary information
such as on fluctuations and spatial variability of concentrations •
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In the case of a continuous source in a tidal current, pronounced
sub-gr id details are caused by the time dependence of the cur
rent.
Example from MAIER-REIMER, 1973
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In the case of a continuous source in a tidal current, pronounced
sub-grid details are caused by the time dependence of the cur
rent.
~ample from VAN DAM, 1985d
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Change of velocity 5IIplitude in time, in non-stationary version
of eddy simulation model.
Phases rI, make random jump at times with a(t)..Oix.y
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Figure 5 Particular "order" in veloei ty field if all canponents are de
fined on the same pair ofaxes (x,y)
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Figure 6 If all canponents are defined on the same pair ofaxes (x,y) ,
this is reflected by a certain order in a set of particle tracks
(stationary field)
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Advection of fluid blob < )\max in a stationary field
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Figure 23 Results from instantaneous point release expèriments in the North
Sea (VANDAM,1980a, 1982)
For comparison some results added from a region without tides
(IJsselmeer, SUIJLEN, 1975)
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From VAN DAM, 1985e


