
DELFT UNIVERSITY OF TECHNOLOGY

REPORT 11-06

Flexible and multi-shift induced dimension reduction algorithms
for solving large sparse linear systems

Martin B. van Gijzen, Gerard L.G. Sleijpen and Jens-Peter Zemke

ISSN 1389-6520

Reports of the Department of Applied Mathematical Analysis

Delft 2011

Copyright 2011 by Department of Applied Mathematical Analysis, Delft, The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission from Department of Applied Mathematical Analysis, Delft University of
Technology, The Netherlands.

Report 11-06, DIAM, TU Delft &

Bericht 156, INS, TU Hamburg-Harburg
c© 2011 Martin B. van Gijzen, Gerard L.G. Sleijpen, and Jens-Peter M. Zemke

FLEXIBLE AND MULTI-SHIFT INDUCED DIMENSION REDUCTION
ALGORITHMS FOR SOLVING LARGE SPARSE LINEAR SYSTEMS∗

MARTIN B. VAN GIJZEN†, GERARD L.G. SLEIJPEN‡, AND JENS-PETER M. ZEMKE§

Abstract. We give two important generalizations of the Induced Dimension Reduction (IDR) approach for the
solution of linear systems. We derive a flexible and a multi-shift Quasi-Minimal Residual IDR (QMRIDR) variant.
Numerical examples are presented to show the effectiveness of these new IDR variants compared to existing ones
and to other Krylov subspace methods.

Key words. Iterative methods; IDR; IDR(s); Krylov subspace methods; large sparse nonsymmetric linear
systems.

AMS subject classifications. 65F10 (primary); 65F50

1. Introduction. IDR(s) [28, 35] is a family of fast and remarkably robust methods for
solving linear systems

Ax = r0 = b−Ax0

with A ∈ CN×N a large, sparse, and, in general, non-symmetric matrix. IDR(s) has attracted
considerable attention: for an overview, see [11, 38, 39], for analysis and more recent generalizations,
see [12, 24, 23, 26, 27]. In this contribution we extend the family by two new members of type
IDR, more specifically, of type Quasi-Minimal Residual IDR (QMRIDR): a flexible QMRIDR
(FQMRIDR) variant and a multi-shift QMRIDR (MSQMRIDR) variant.

1.1. Motivation. The analysis contained in [12, 24, 26, 27] clearly reveals that IDR methods
are specially structured Krylov subspace methods. As the field of Krylov subspace methods has
been researched for quite a while, many ideas successfully applied there should carry over to the
context of IDR based methods with little effort. In this note we sketch two such generalizations,
namely, the implementation of a flexible IDR method and the implementation of a multi-shift IDR
method. Both these methods are based on a Minimal Residual (MR) approach like MinRes [17],
GMRes [20], or QMR [7]. The prototype IDR(s) in [28] relies on an Orthogonal Residual (OR)
approach in OrthoRes-style, i.e., the basis vectors are simply the residuals. OR approaches like
CG [13] or FOM [18, 20] break down whenever the underlying (oblique or orthogonal) projection
of the operator A is singular and lead, in general, to badly conditioned updates for the approximate
solution vectors. It is well known that other choices of basis vectors lead to a more stable scheme and
that methods based on MR approaches still can be carried out in case of intermediate singularities.

For these reasons we sketch a scheme to come up with a more stable set of basis vectors,
exhibit the underlying structure of a generalized Hessenberg decomposition, show how to apply
the MR approach, and apply the flexible and the multi-shift paradigms from the context of Krylov
subspace methods. The difference in the latter is the one between Hessenberg decompositions and
generalized Hessenberg decompositions, i.e., the choice of vectors in the pre-image of the operator
A: in classical Krylov methods the last basis vector is multiplied by A, in IDR based methods a
linear combination v of previously obtained basis vectors is multiplied by (a linear polynomial of
exact degree 1 in) A. The adoption of flexible and multi-shift paradigms to the recent extension
IDRStab [26] of the IDR approach to use higher degree polynomials will be treated elsewhere.

1.2. Notation. We use standard notation. The system matrix is denoted by A ∈ CN×N ,
the identity matrix of size n by letter I = In ∈ Cn×n, its columns by ej ∈ Cn, 1 6 j 6 n, and
its elements by δij , 1 6 i, j 6 n. There exist extended variants of the identity matrix and its
columns: In ∈ C(n+1)×n denotes In with an additional zero row appended at the bottom, and ej ,

∗Version of August 29, 2011, 11:30.
†Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The

Netherlands, (e-mail: M.B.vanGijzen@tudelft.nl),
‡Mathematical Institute, Utrecht University, P.O. Box 80010, 3508 TA Utrecht, The Netherlands, (e-

mail: sleijpen@math.uu.nl),
§Institut für Numerische Simulation, Technische Universität Hamburg-Harburg, Schwarzenbergstr. 95, D-21073

Hamburg, Germany (e-mail: zemke@tu-harburg.de).

1

1 6 j 6 n, denotes its columns. The zero matrix of size k is denoted by Ok, a zero vector of length
k by ok. In context of Krylov methods, unreduced Hessenberg matrices Hn ∈ Cn×n and their
unreduced extended counterparts Hn ∈ C(n+1)×n naturally arise. To simplify notation, we use
Un ∈ C(n+1)×n to denote the upper triangular matrix Un ∈ Cn×n appended with an extra zero
row at the bottom. The columns of matrices are denoted by the same letter, e.g., the columns of
Hn ∈ C(n+1)×n are denoted by hj ∈ Cn+1, 1 6 j 6 n, and the columns of Un ∈ Cn×n are denoted
by uj ∈ Cn, 1 6 j 6 n. The transpose and complex conjugate transpose of matrices and vectors
is denoted by appending T and H, respectively. The Moore-Penrose- or pseudo-inverse is denoted
by appending †. Subspaces are denoted by calligraphic letters like S, Kn, and Gj . In this report,
the notation Gj ⊂ Gj−1 denotes strict inclusion of sets, i.e., implies that Gj 6= Gj−1. The Euklidian
norm for vectors and the corresponding operator norm for matrices is denoted throughout by ‖ · ‖.
The letter n is reserved to denote the current step, e.g., n ∈ N; s ∈ N is the codimension of the
space S defining IDR(s); the parameter j ∈ N0 denotes the index of the current Sonneveld space.
By nature of IDR methods, j = bn/(s+1)c depends on n and s, where bxc ∈ Z denotes the largest
integer with bxc 6 x ∈ R. Similarly, dxe ∈ Z denotes the smallest integer with R 3 x 6 dxe. We
remark that like in [12] we use a simplified way to denote Krylov subspace methods, e.g., we write
GMRes in place of GMRES as is done in the original publication, since the acronym stands for
the phrase Generalized Minimal RESidual.

1.3. Outline. In §2 we sketch an implementation of an IDR variant intended to compute
a basis in a stable manner. The arising coefficients are gathered in a generalized Hessenberg
decomposition in §2.3. This generalized Hessenberg decomposition forms in §3 the basis to derive
a QMRIDR implementation along the lines of the QMR approach in [7]. The flexible QMRIDR
variant is developed in §4, the multi-shift QMRIDR variant in §5. For the reader’s convenience
pseudo-code implementations of the main algorithms are collected in §6; illustrating numerical
examples are given in §7. We conclude with some remarks about possible generalizations in §8.

2. A generalized Hessenberg relation for generating vectors in Sonneveld spaces.
In this section we review the principle of Induced Dimension Reduction (IDR) methods and give
a stable algorithm for generating vectors g1, . . . ,gn+1 in the nested Sonneveld spaces G0, . . . ,Gj ,
j = b(n + 1)/(s + 1)c, to be defined below. As was shown in [12], the matrices

Gn =
(
g1, . . . ,gn

)
, Gn+1 =

(
Gn,gn+1

)
(2.1)

built from such vectors satisfy a so-called generalized Hessenberg decomposition [12, p. 8, Eqn. (2.1)]

AGnUn = Gn+1Hn,

where Un ∈ Cn×n is upper triangular and Hn ∈ C(n+1)×n is unreduced extended Hessenberg; the
entries of Un and Hn are uniquely determined by the recurrence coefficients. IDR(s) is a short term
Krylov subspace method; this is reflected in the structure of the Sonneveld pencil (Hn = IT

nHn,Un)
[12, Definition 4.4] that has upper bandwidth s. In the following, we sketch how to obtain a stable
set of vectors g1, . . . ,gn+1 together with the corresponding generalized Hessenberg decomposition.

2.1. The Sonneveld subspaces Gj. IDR methods generate vectors gi, i = 1, . . . , n + 1, in
the IDR spaces, a special case of Sonneveld subspaces [26, Definition 2.2, p. 2690], which are nested
subspaces of shrinking dimension.

Let the subspace G0 be the full Krylov subspace K(A,g1) = KN (A,g1):

G0 = K(A,g1) = KN (A,g1) = span{g1,Ag1, . . . ,AN−1g1}.

In case of non-derogatory A ∈ CN×N and a generic starting vector g1 ∈ CN , G0 = CN . Cases
exist where G0 ⊂ CN . Starting from G0, the Sonneveld spaces Gj are recursively defined by

Gj = (A− µjI)(Gj−1 ∩ S) j = 1, 2,

Here, S is a space of codimension s, which is best described as the left null space of a fixed, full
rank N × s matrix R̃0:

R̃0 =
(
r̃1 r̃2 · · · r̃s

)
.

2

The matrix R̃0 is sometimes referred to as the matrix of initial shadow residuals or shadow vectors.
The columns of R̃0 are typically chosen to be orthonormalized random vectors, for a reason see
the convergence analysis of IDR based methods in [27]. The parameter µj is a complex number
that can, in principle, be chosen freely. We will sketch a method to select a ‘good’ µj in a later
section. By construction the Sonneveld spaces are nested, but we can say more:

Theorem 2.1 (IDR Theorem [28]). Under mild conditions on the matrices A and R̃0,
(i) Gj ⊂ Gj−1 for all Gj−1 6= {o}, j > 0.
(ii) Gj = {o} for some j 6 N .
For the proof we refer to [28, 24]. As a consequence of the IDR Theorem, gn = o ∈ Gj = {o} for

some n, i.e., IDR methods are in principle direct methods. Like Lanczos based methods, the finite
termination property is lost in finite precision and the methods deviate. This is not surprising, as
IDR methods are based on some underlying Lanczos process, see [26, 12]: we can characterize the
IDR Sonneveld spaces in terms of the orthogonal complement of left block Krylov subspaces

Kj(AH, R̃0) =
{j−1∑

i=0

(AH)iR̃0ci | ci ∈ Cs
}

as

Gj = {Mj(A)v | v ⊥ Kj(AH, R̃0)}, where Mj(z) =
j∏

i=1

(z − µi),

see [24, Theorem 11, p. 1104]. Numerical experiments indicate that the “local closeness” of this
Lanczos process to an unperturbed one is the driving force behind IDR based methods.

The Sonneveld spaces Gj as defined above use linear factors of the form A − µjI. This is
slightly different from the definition of the Sonneveld spaces used in [28] that uses linear factors
I−ωjA, ωj 6= 0, i.e., linear factors that are normalized such that the polynomial 1−ωjz takes the
value one at z = 0. The difference in definition of the linear factors stems from the fact that in
[28] the aim is to generate residuals in the Sonneveld spaces, which leads to the prototype IDR(s)
algorithm. The present goal, however, is to generate a stable set of vectors gn. In contrast to
residuals, the vectors gn can be scaled. This property makes the choice µj = 0 admissible, whereas
the corresponding choice ωj = ∞ clearly is not.

2.2. An algorithm for generating vectors in Gj. The algorithm that we describe next
is one of many possible algorithms to generate vectors gn ∈ Gj . As is explained in [28, 35], s + 1
vectors in Gj−1 are needed to compute a vector in Gj . The first vector in a new subspace Gj is up to
a multiple uniquely defined. The other vectors, however, are not. The algorithm below computes
in each Sonneveld space Gj s + 1 orthonormalized vectors gi, i = j(s + 1) + 1, . . . , (j + 1)(s + 1),
j = 0, 1, We distinguish three different phases in the algorithm: (1) the generation of s + 1
vectors in G0, (2) the generation of the first vector in Gj , j > 0, and (3) the computation of s
additional vectors in Gj , j > 0. We remark that we always use and store as little vectors as
possible to compute the next vector; other schemes are possible.

2.2.1. Generating s + 1 vectors in G0. The first s + 1 vectors should be in K(A,g1), and
hence can be generated with any Krylov subspace method. Since in our specific algorithm we want
to generate orthonormalized vectors gi, we use Arnoldi’s method. Let g1 be a normalized starting
vector, then the next s vectors g2, . . . ,gs+1 are computed by the recursion

gn+1βn+1,n = Agn −
n∑

i=1

giβi,n, n 6 s. (2.2)

The parameters βi,n, i = 1, . . . , n are uniquely determined by the orthogonality conditions gn+1 ⊥
gi, i = 1, . . . , n,

βi,n = gH
i Agn, i = 1, . . . , n,

and βn+1,n > 0 is selected such that the normalization condition ‖gn+1‖2 = 1 is fulfilled, i.e.,

βn+1,n = ‖Agn −
n∑

i=1

giβi,n‖.

3

Note that (2.2) can also be written as

Agn =
n+1∑
i=1

giβi,n, n 6 s ⇔ AGs = Gs+1Hs. (2.3)

In the terminology of [12] the latter equality in (2.3) is the Hessenberg decomposition that captures
the quantities from Arnoldi’s method. This Hessenberg decomposition is the leading part of the
generalized Hessenberg decomposition that captures our QMRIDR variant, e.g., the leading s× s
part of the upper triangular Un, for all n > s, is the identity matrix Is.

2.2.2. Generating the first vector in Gj, j > 0. Suppose that after n iterations (with
n = j(s + 1), j > 0) we have explicitly available the vectors gn−s, . . . ,gn ∈ Gj−1. A vector
vn ∈ (Gj−1 ∩ S) can then be computed by

vn = gn −
n−1∑

i=n−s

giγi,n, (2.4)

in which the γi,n are uniquely determined by the condition that vn ∈ S:

R̃H
0 vn = o. (2.5)

Combining (2.4) and (2.5) yields an s × s linear system from which the parameters γi,n, i =
n− s, . . . , n− 1, can be determined. After selection of a new parameter µj , the first vector t ∈ Gj

can be computed by

t = (A− µjI)vn. (2.6)

To select a new µj , we aim at minimizing the norm of t. An order to avoid a very large value of µj ,
which leads to a small angle between t and vn, we combine the minimization with the strategies
explained in [25]. We refer to Section 6 for the precise algorithm to compute µj . As a final step
we normalize the vector t which gives us gn+1:

gn+1βn+1,n = t, βn+1,n = ‖t‖. (2.7)

The equations (2.4), (2.6), and (2.7) can be combined to give

gn+1βn+1,n = (A− µjI)
(
gn −

n−1∑
i=n−s

giγi,n

)
,

which can be rewritten to

A
(
gn −

n−1∑
i=n−s

giγi,n

)
=

(
gn −

n−1∑
i=n−s

giγi,n

)
µj + gn+1βn+1,n. (2.8)

2.2.3. Generating s additional vectors in Gj, j > 0. Suppose that after n iterations (with
(j + 1)(s + 1) > n > j(s + 1), j > 0) we have explicitly available the vectors gn−s, . . . ,gn ∈ Gj−1.
Furthermore suppose that some of these vectors are already known to be in Gj , namely, suppose
that gj(s+1)+1, . . . ,gn ∈ Gj .

A new vector t ∈ Gj can be computed by repeating steps (2.4)–(2.6). Since a linear combina-
tions of vectors in the subspace Gj is also in Gj , the vector

gn+1βn+1,n = t −
n∑

i=j(s+1)+1

giβi,n (2.9)

is also in Gj . The parameters βi,n are again selected such that the vectors gj(s+1)+1, . . . ,gn ∈ Gj

are orthonormalized. This implies that

βi,n = gH
i t, i = j(s + 1) + 1, . . . , n,

4

and we chose βn+1,n > 0 to normalize gn+1, which implies

βn+1,n =
∥∥t − n∑

i=j(s+1)+1

giβi,n

∥∥.

The equations (2.4), (2.6), and (2.9) can be combined, which gives the following relation between
the vectors gi:

gn+1βn+1,n = (A− µjI)
(
gn −

n−1∑
i=n−s

giγi,n

)
−

n∑
i=j(s+1)+1

giβi,n. (2.10)

Rearranging this equation by sorting terms involving A to the left gives the following relation:

A
(
gn −

n−1∑
i=n−s

giγi,n

)
=

(
gn −

n−1∑
i=n−s

giγi,n

)
µj +

n+1∑
i=j(s+1)+1

giβi,n. (2.11)

2.3. A generalized Hessenberg decomposition for the vectors gn. We define the vec-
tors ui ∈ Cn, hi ∈ Cn+1, i = s + 1, . . . , n, as follows:

ui =

oi−(s+1)

−γi−s,i

...
−γi−1,i

1
on−i

, hi =

oi−(s+1)

−γi−s,iµj

...
−γi−1,iµj

µj

on−i+1

+

oj(s+1)

βj(s+1)+1,i

...
βi+1,i

on−i

 =
(
ui

0

)
µj +

oj(s+1)

βj(s+1)+1,i

...
βi+1,i

on−i

 .

We remark that the index j in the part defined by the β’s depends on the index i. The first s vectors
ui ∈ Cn and hi ∈ Cn+1, i = 1, . . . , s, are defined to be those that contain in the first s and s + 1
elements the columns of Us = Is and Hs, respectively, from the Hessenberg decomposition (2.3)
resulting from Arnoldi’s method. By defining the matrices

Un =
(
u1, · · · ,un

)
, Hn =

(
h1 · · · hn

)
, (2.12)

equation (2.3), (2.8), and (2.11) can be compactly written as a generalized Hessenberg decompo-
sition

AGnUn = Gn+1Hn. (2.13)

The matrix Un is an n × n upper triangular matrix with upper bandwidth s. Hn is an (n +
1) × n extended Hessenberg matrix, also with upper bandwidth s. The generalized Hessenberg
decomposition (2.13) will be at the basis of the solution algorithms for linear systems that we will
present in the next sections.

Example 1. To illustrate the structure of Un and Hn, we give these matrices for s = 2
and n = 7. The first s columns of the matrices correspond to the initialization phase, where,
s + 1 orthonormal vectors in G0 are generated (i.e., the initial vector plus s additional vectors).
Subsequent blocks of s + 1 columns corresponds to the same subspace Gj, in this case column 3–5

5

correspond to G1, and column 6 and 7 to G2.

U7 =

1 −γ1,3

1 −γ2,3 −γ2,4

1 −γ3,4 −γ3,5

1 −γ4,5 −γ4,6

1 −γ5,6 −γ5,7

1 −γ6,7

1

, (2.14)

H7 =

β1,1 β1,2 −µ1γ1,3

β2,1 β2,2 −µ1γ2,3 −µ1γ2,4

β3,2 µ1 −µ1γ3,4 −µ1γ3,5

β4,3 β4,4 + µ1 β4,5 − µ1γ4, 5 −µ2γ4,6

β5,4 β5,5 + µ1 −µ2γ5,6 −µ2γ5,7

β6,5 µ2 −µ2γ6,7

β7,6 β7,7 + µ2

β8,7

. (2.15)

2.4. A remark on the computation of µj. In the generalized Hessenberg decomposition
that we have outlined above, all vectors gi ∈ Gj−1 \ Gj , (j − 1)(s + 1) < i 6 j(s + 1), are
orthonormalized for 1 6 i 6 n + 1, 1 6 j 6 b(n + 1)/(s + 1)c + 1. The resulting algorithm is
therefore in spirit close to Arnoldi’s algorithm. The two algorithms coincide for n 6 s.

After every s + 1 steps of the algorithm a new value for µj has to be selected. In the spirit
of Arnoldi’s algorithm it is a natural idea to select a new µj to make the first g-vector in Gj

orthogonal to the last g-vector in Gj−1. However, from many experiments (not reported in this
paper) we concluded that this choice for µj may lead to very slow convergence or even stagnation
of the solution algorithms based on the generalized Hessenberg decomposition (2.13) that will be
presented in the next sections. In this paper we limit us to giving the strategy for selecting µj

which gave us the best results. The detailed algorithm for computing this µ will be presented as
Algorithm 2 in Section 6.

3. A solution algorithm based on the generalized Hessenberg decomposition. In
this section we will outline a quasi-minimal residual algorithm for solving the systems Ax = r0.
The derivation of the algorithm is analogous to that of MinRes [17], GMRes [20], and QMR
[7]. We remark that since BiCGStab [32, 31] is an IDR method the first implementation of an
QMRIDR method is QMRCGStab [1], the QMR implementation of BiCGStab. More recently,
a QMR variant of the prototype IDR(s) [28] has been published, cf. [4]. Our QMRIDR variant is
a genuine implementation based on a stable basis expansion; the variant based on the prototype
IDR(s) [28] shares the problems of the latter, especially the numerical instability arising for larger
values of s.

For simplicity we assume that the starting vector is x0 = 0. The goal is to find approximate
solution vectors xn ∈ Kn(A, r0) such that the norm of the corresponding residual r0 − Axn is
minimized:

‖r0 −Axn‖ = min
x∈Kn

‖r0 −Ax‖. (3.1)

We assume that in the nth iteration we have available matrices Gn, Un, Gn+1 and Hn that satisfy
Eqn. (2.13). Moreover, we start the process with g1‖r0‖ = r0, so that Gn+1e1‖r0‖ = r0, with e1

the first canonical basis vector of length n + 1. We construct xn as a linear combination of the
columns of Gn by putting

xn = GnUnzn = Vnzn (3.2)

with unknown coefficient vector zn ∈ Cn. Here, we did define V =
(
v1, . . . ,vn

)
, with vi = gi,

1 6 i 6 s, and vi, s < i 6 n defined by Eqn. (2.4). The second equality in (3.2) is based on the
definitions of Gn and Un in Eqn. (2.1) and Eqn. (2.12), respectively.

6

Substituting this expression in (3.1) yields a minimization problem for the vector zn:

‖r0 −AGnUnzn‖ = min
z∈Cn

‖r0 −AGnUnz‖.

Using r0 = Gn+1e1‖r0‖ and AGnUn = Gn+1Hn gives

‖Gn+1(e1‖r0‖ −Hnzn)‖ = min
z∈Cn

‖Gn+1(e1‖r0‖ −Hnz)‖. (3.3)

Unfortunately, the matrix Gn+1 does not have orthonormal columns, else zn would be the solution
to the uniquely solvable least-squares problem∥∥e1‖r0‖ −Hnzn

∥∥ = min
z∈Cn

∥∥e1‖r0‖ −Hnz
∥∥. (3.4)

Since

‖Gn+1(e1‖r0‖ −Hnzn)‖ 6 ‖Gn+1‖ ·
∥∥e1‖r0‖ −Hnzn

∥∥, (3.5)

we ‘quasi-minimize’ (3.3) by minimizing this upper bound. We remark that we know a priori that

‖Gn+1‖ 6
√
d(n + 1)/(s + 1)e, (3.6)

because every consecutive block of (s + 1) columns consists of orthonormal vectors.
The relation (3.6) is proven as follows: let j = d(n + 1)/(s + 1)e and define for 1 6 i 6 j

the block matrices G(i)
n+1 = Gn+1(:, (i − 1)(s + 1) + 1 : min(i(s + 1), n + 1) with orthonormal

columns, and denote the corresponding grouping of elements for some generic w ∈ Cn+1 by w(i) =
w((i− 1)(s + 1) + 1 : min(i(s + 1), n + 1). Then

‖Gn+1‖2 = max
‖w‖=1

‖Gn+1w‖2 = max
‖w‖=1

∥∥ j∑
i=1

G(i)
n+1w

(i)
∥∥2

6
j∑

i=1

max
‖w(i)‖=1

‖G(i)
n+1w

(i)‖2 =
j∑

i=1

max
‖w(i)‖=1

‖w(i)‖2 =
j∑

i=1

1 = j.

(3.7)

Clearly, the upper bound in Eqn. (3.5) is minimized by the solution of Eqn. (3.4). The solution of
this system can be determined with the aid of the tall QR decomposition of Hn:

Hn = Q
n
Rn, Q

n
∈ C(n+1)×n, Rn ∈ Cn×n, (3.8)

in which Qn is a matrix with orthonormal columns and Rn is upper triangular. Since Hn only
has one nonzero subdiagonal, the QR decomposition of Hn is typically computed using Givens
rotations. The solution to (3.4) is then given by

zn = R−1
n QH

n
e1‖r0‖ = H†

ne1‖r0‖,

which must be combined with (3.2) to give the approximate solution vector xn.
The equations outlined above completely define the approximate solution vector, and can in

principle be used to compute this vector. However, the direct näıve application of these equations
to compute xn requires that Gn is explicitly available: the resulting algorithm would be a long
recurrence algorithm in which the storage requirement and work per iteration grow with the number
of iterations.

Next we will explain how the approximate solution vector

xn = GnUnR−1
n QH

n
e1‖r0‖ = VnR−1

n QH
n
e1‖r0‖. (3.9)

can be computed using short recurrences, in a way such that the storage requirements and work per
iteration are constant. As was remarked before, the matrix Hn is an extended upper Hessenberg
matrix with upper bandwidth s. From this nonzero pattern immediately follows that hi ⊥ hj , |i−

7

j| > s + 1, with hi and hj the ith and jth column of Hn, respectively. Therefore the upper
triangular matrix Rn has upper bandwidth s + 1. We introduce the auxiliary matrix

Wn = GnUnR−1
n = VnR−1

n .

In order to compute wn, the nth column of Wn, we write

WnRnen = GnUnen = Vnen, (3.10)

in which en is the nth canonical basis vector of dimension n. The vector GnUnen = Vnen is
explicitly available: it is the vector vn, cf. Eqn. (2.4). Equation (3.10) can therefore be rewritten
as

n∑
i=n−l−1

wiRn(i, n) = vn, (3.11)

in which Rn(i, n) is entry (i, n) of the matrix Rn. From (3.11) it follows that the update formula
for wn is

wn =
(
vn −

n−1∑
i=n−s−1

wiRn(i, n)
)
· 1
Rn(n, n)

. (3.12)

Note that this is a short recurrence formula: only the s + 1 most recent vectors wi, n− (s + 1) 6
i 6 n− 1, are needed to compute wn. Let the vector φn be defined by

φn = QH
n
e1‖r0‖.

This vector grows by one entry in every iteration when a new Givens rotation is applied. The
approximate solution vector is then given by

xn = Wnφn

Since xn−1 = Wn−1φn−1, the short recurrence update for xn becomes

xn = xn−1 + wnφn(n), (3.13)

in which φn(n) is the nth coefficient of the vector φn.
All the elements of the solution algorithm have now been derived. In Section 6 we will put all

the elements in place in the form of relatively easily implementable algorithms. However, before
we present the algorithms we will make two straightforward generalizations.

4. Flexible QMRIDR(s). The first generalization is to include a variable preconditioner in
the solution algorithm. The idea to change the preconditioner in a Krylov subspace method in
every step dates back to 1993: flexible GMRes [19]. More recent variants include GMRESR [33],
flexible CG [15], flexible QMR [29], and flexible BiCG and flexible BiCGStab [36]. The latter is
a flexible IDR variant, as BiCGStab is from the IDR family. In contrast to flexible BiCGStab,
where the preconditioning matrix remains constant for every 2 = s + 1 steps1, we allow for a
different preconditioning matrix in every step: let Pn be the preconditioning matrix that may be
different in every iteration n. A generalized Hessenberg relation is derived by replacing equation
(2.6) by

t = (AP−1
n − µjI)vn. (4.1)

If we put v̂i = P−1
i vi, 1 6 i 6 n, then it is easy to see by following the steps explained in Section 2

that this leads to the Hessenberg relation (cf. [19])

AV̂n = Gn+1Hn,

1We count the number of matrix-vector multiplications as steps to obtain a fair comparison between different
iterative methods.

8

in which the matrix V̂n has the vectors v̂i, i = 1, . . . , n, as its columns. In general, this relation
no longer can be written in the form of a generalized Hessenberg decomposition, which is why we
term it a Hessenberg relation. Now we look for an approximate solution vector of the form

xn = V̂nzn. (4.2)

Using r0 = Gn+1e1‖r0‖ and AV̂n = Gn+1Hn gives

‖Gn+1(e1‖r0‖ −Hnzn)‖ = min
z∈Cn

‖Gn+1(e1‖r0‖ −Hnz)‖

This is exactly the same minimization problem as (3.3), which again we solve by quasi minimizing.
Proceeding in the same way as in (3.9), we compute the QR decomposition Hn = Q

n
Rn and we

introduce the auxiliary matrix

Wn = V̂nR−1
n .

In order to compute wn, the nth column of Wn, we write

WnRnen = V̂nen,

in which en is the nth canonical basis vector of dimension n. We notice that

V̂nen = v̂n = P−1
n vn.

The update formula for wn therefore becomes

wn =
(
P−1

n vn −
n−1∑

i=n−s−1

wiRn(i, n)
)
· 1
Rn(n, n)

.

Finally, the solution vector xn is computed using Eqn. (3.13).
From the outline above it follows that the only modification needed with respect to the algo-

rithm without preconditioning is in the computation and storage of the extra vector

v̂n = P−1
n vn.

An interesting observation is that if n 6 s the columns of Gn+1 form an orthonormal set and as
a result a true minimization is performed: the method outlined above is in that case mathematically
equivalent with FGMRes [19]. On the other hand, when using a variable preconditioner, the
vectors that are generated by performing the IDR recurrences do not satisfy the IDR theorem any
more: we cannot expect the vectors gi, 1 6 i 6 n+1, to stem from a sequence of nested subspaces.
We can retain part of the IDR properties by choosing a new preconditioner only every s + 1 steps
like in flexible BiCGStab, but despite this restriction the resulting method will no longer be a
Krylov subspace method in general.

5. Multi-shift QMRIDR(s). Multi-shift methods have been considered in [3, p. 230–231],
see also [10]. Many multi-shift Krylov subspace methods exists, we mention multi-shift QMR
and multi-shift TFQMR [6], multi-shift GMRes(k) [9], multi-shift FOM(k) [22], and multi-shift
BiCGStab(`) [8]. For some general comments and applications we refer to [14]. Implementation
details may play a vital rôle, see the accurate multi-shift CG implementation in [30].

The QMRIDR(s) algorithm can be easily adapted to solve shifted systems of the form

(A− σI)xσ = r0 = b.

We assume that in the nth iteration we have available matrices Gn, Un, Gn+1 and Hn that satisfy
(2.13), with Gn such that g1‖r0‖ = r0. We use as the initial approximation x0 = o. Initial
approximations such that the direction of the first residuals is independent of σ are mandatory:
the condition g1‖rσ

0‖ = rσ
0 must hold simultaneously for all shifted systems. Analogous to the

solution algorithm for the unshifted system, we construct approximate solution vectors xσ
n as a

linear combination of the columns of Gn by putting

xσ
n = GnUnzσ

n = Vnzσ
n. (5.1)

9

Note that we can also write this as

xσ
n = Gn+1Unzσ

n, (5.2)

in which Un ∈ C(n+1)×n is the matrix Un with an extra zero row appended at the bottom. Using
this notation, we can formulate the minimization problems for the shifted systems as

‖r0 − (AGnUn − σGn+1Un)zσ
n‖ = min

z∈Cn
‖r0 − (AGnUn − σGn+1Un)z‖.

Using r0 = Gn+1e1‖r0‖ and AGnUn = Gn+1Hn gives∥∥Gn+1(e1‖r0‖ − (Hn − σUn)zσ
n)

∥∥ = min
z∈Cn

∥∥Gn+1(e1‖r0‖ − (Hn − σUn)z)
∥∥. (5.3)

In order to ‘quasi-minimize’ (5.3) we solve the least-squares problems∥∥e1‖r0‖ − (Hn − σUn)zσ
n

∥∥ = min
z∈Cn

∥∥e1‖r0‖ − (Hn − σUn)z
∥∥.

The solution of these systems can be determined by computing the tall QR decompositions of all
shifted Hessenberg matrices Hn − σUn:

Hn − σUn = Qσ

n
Rσ

n, Qσ

n
∈ C(n+1)×n, Rσ

n ∈ Cn×n. (5.4)

A short recurrence update formula for the approximate solution vectors xσ
n is determined in the

same way as for the unshifted case. With the vectors φσ
n defined by

φσ
n = (Qσ

n
)He1‖r0‖, (5.5)

and the update vectors wσ
n for the shifted systems given by

wσ
n =

(
vn −

n−1∑
i=n−s−1

wσ
i Rσ

n(i, n)
)
· 1
Rσ

n(n, n)
, (5.6)

the approximate solution vectors xσ
n for the shifted systems are recursively computed by

xσ
n = xσ

n−1 + wσ
nφσ

n(n). (5.7)

We remark that the last four steps, the only steps actually depending on the shifts σ, i.e., those
sketched in Eqns. (5.4)–(5.7), can be carried out in parallel and require exactly the same amount
of floating point computations per step for all σ.

6. Algorithms. In this section we give pseudo-code implementations of the main algorithms.
The first algorithm, i.e., Algorithm 1, is a pseudo-code implementation of the flexible variant
of QMRIDR(s) using double classical Gram-Schmidt orthonormalization as orthonormalization
scheme and Givens rotations for the updated solution of the nested extended Hessenberg least-
squares problems.

The naming of the data structures used in the algorithms corresponds to the naming of the
matrices and vectors as used in the previous sections. Only the data corresponding to the previous
s iterations is stored. Columns of matrices are denoted by small characters, e.g., the variable h
as used in the algorithm contains the nonzero elements of the last column of Hn. All data are
stored in consecutive order. For example, the variable G as used in the algorithm contains in
iteration n the vectors gn−s+1, . . . ,gn. The oldest vector is stored in the first column of G and the
latest vector in the last column. To maintain this ordering, in line 17 columns 2 to s are copied
to positions 1 to s − 1. The new vector g is then stored in column s. This results in additional
overhead that should be avoided by using indirect addressing. For clarity, however, we present the
algorithm with consecutive ordering of the data.

Algorithm 1 requires, apart from storage for the matrices A and Pn and some scalars, storage
for 3s + 6 N -vectors.

10

Algorithm 1 Flexible QMRIDR(s)

input: A ∈ CN×N ; x0,b ∈ CN ; s > 0; R̃0 ∈ CN×s; TOL ∈ (0, 1);
output: Approximate solution x such that ‖b−Ax‖ 6 TOL · ‖b‖.
1: g = b−Ax0; x = x0; µ = 0; M = O ∈ Cs×s; G = O ∈ CN×s; // Initialization
2: W = O ∈ CN×(s+1); w = o ∈ CN ; cs = o ∈ Cs+2; sn = o ∈ Cs+2;
3: φ = 0; φ̂ = ‖g‖; g = 1

φ̂
g; n = 0; j = 0; ρ = φ̂; ρ0 = ‖b‖;

4: while ρ/ρ0 > TOL do
5: for k = 1, s + 1 do
6: n = n + 1
7: u = o ∈ Cs+2;u(s+1) = 1; // Initialize new column of U

8: m = R̃H
0 g; // Construct v ⊥ R̃0

9: if n > s then
10: Solve γ from Mγ = m;
11: v = g −Gγ;
12: u(1:s) = −γ;
13: else
14: v = g;
15: end if
16: M(:,1:s−1) = M(:,2:s);M(:,s) = m;
17: G(:,1:s−1) = G(:,2:s);G(:,s) = g;
18: Solve v̂ from Pnv̂ = v; // Variable preconditioning
19: g = Av̂;
20: if k = s + 1 then
21: j = j + 1; µ = COMPMU(g,v); // New Sonneveld space
22: end if
23: g = g − µv;
24: h = µu; // Initialize new column of H
25: if k < s + 1 then
26: β = GH

(:,s−k+1:s)g; g = g −G(:,s−k+1:s)β;

27: β̂ = GH
(:,s−k+1:s)g; g = g −G(:,s−k+1:s)β̂;

28: β = β + β̂;
29: h(s+1−k+1:s+1) = h(s+1−k+1:s+1) + β;
30: end if
31: h(s+2) = ‖g‖; g = 1

h(s+2)
g;

32: r = o ∈ Cs+3; r(2:s+3) = h; // Initialize new column of R
33: lb = max(1, s + 3− n);
34: for l = lb, s + 1 do
35: t = r(l);
36: r(l) = cs(l)t + sn(l)r(l+1);
37: r(l+1) = −sn(l)t + cs(l)r(l+1);
38: end for
39: [cs(s+2), sn(s+2), r(s+2)] = ROTG(r(s+2), r(s+3));
40: φ = cs(s+2)φ̂; φ̂ = −sn(s+2)φ̂;
41: cs(:,1:s+1) = cs(:,2:s+2); sn(:,1:s+1) = sn(:,2:s+2);
42: w = (v̂ −Wr(1:s+1))/r(s+2);
43: W(:,1:s) = W(:,2:s+1); W(:,s+1) = w;
44: x = x + φw;
45: ρ = |φ̂|

√
j + 1; // Compute upper bound for residual norm

46: end for
47: end while

11

The algorithm for computing µ using the strategy explained in [25] is given as Algorithm 2. Note
that with respect to the computation of a stable basis we could take µ = 0 if |ω| < eps, with
eps the relative machine precision. The occurrence of ω = 0 leads to breakdown in IDR(s), a
breakdown that does not take place in the basis expansion. OR methods break down because the
Hessenberg matrices are singular, in which case MR methods like QMRIDR(s) stagnate, compare
with [2]. In the context of IDR methods this stagnation is incurable, which is clearly visible in the
structure of the matrix Hn once one of the µ’s is zero, as the first columns are all orthogonal to
the later columns. We depict as example the matrix H7 in Eqn. (2.15) with µ1 = 0, explicitely
denoting the new zeros thus introduced:

H7 =

β1,1 β1,2 0
β2,1 β2,2 0 0

β3,2 0 0 0
β4,3 β4,4 + µ1 β4,5 −µ2γ4,6

β5,4 β5,5 + µ1 −µ2γ5,6 −µ2γ5,7

β6,5 µ2 −µ2γ6,7

β7,6 β7,7 + µ2

β8,7

. (6.1)

The MR solutions, or coefficient vectors, zk = H†
ke1‖r0‖, and the MR approximations xk = Gkzk,

k > 2 satisfy the trivial recurrences

zk+1 =
(
zk

0

)
, xk+1 = xk, k > 2. (6.2)

To circumvent this incurable stagnation we use as the default value for µ the cheap estimate√
‖A‖1 · ‖A‖∞ for ‖A‖. Better choices for the default value of µ exist, e.g., we could use

good eigenvalue approximations to the small eigenvalues of A obtained from the Sonneveld pencil
(Hn,Un) [12]; this is an active area of research.

Algorithm 2 COMPMU

input: t,v ∈ CN ;
output: µ;
1: κ = 0.7; // Value κ = 0.7 is recommended in [25]
2: ω = (tHv)/(tHt);
3: ρ = (tHv)/(‖t‖‖v‖);
4: if |ρ| < κ then
5: ω = ωκ/|ρ|;
6: end if
7: if |ω| > eps then
8: µ = 1/ω;
9: else

10: µ =
√
‖A‖1 · ‖A‖∞;

11: end if

The Givens rotations are computed with the BLAS algorithm ROTG, which is given as Algorithm 3.
This algorithm computes cs, sn, and r such that(

cs sn
−sn cs

) (
a
b

)
=

(
r
0

)
.

The multi-shift QMRIDR algorithm is presented as Algorithm 4. The algorithm is very similar to
FQMRIDR, with as most important differences that no preconditioner is used in the multi-shift
QMRIDR, and the computation of the update vectors for every shifted system is done in a loop
(line 34 to line 45) over the number of shifts.

Algorithm 4 requires, apart from storage for the matrix A and for scalars, storage for 2s+3+
nσ(s + 3) N -vectors, with nσ the number of shifts.

12

Algorithm 3 ROTG

input: a, b ∈ C;
output: cs, sn, r;
1: if |a| < eps then
2: cs = 0; sn = 1; r = b;
3: else
4: t = |a|+ |b|; ρ = t

√
(a/t)2 + (b/t)2;

5: α = a/|a|;
6: cs = |a|/ρ; sn = αb/ρ; r = αρ;
7: end if

0 20 40 60 80 100 120 140 160 180 200 220
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

Number of MATVECS

lo
g(

|r
|/|

b|
)

QMRIDR(s) with true residual norms

s=1
s=2
s=4
s=8
GMRES

(a) Convergence QMRIDR(s), true residual norm.

0 20 40 60 80 100 120 140 160 180 200 220
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

Number of MATVECS

lo
g(

|r
|/|

b|
)

Convergence QMRIDR(s) with upper bound on residual norm

s=1
s=2
s=4
s=8
GMRES

(b) Convergence QMRIDR(s), upper bound.

Fig. 7.1. Convergence of QMRIDR(s), left true residual norms, right upper bound

7. Numerical experiments. The experiments that are presented in this section have been
performed on a standard laptop computer running under Linux, with four Intel R© CoreTM i5 CPU’s
and 4GB of RAM using Matlab 7.11.

In all our experiments we take for r̃1, . . . , r̃s the orthogonalization of s normally distributed
random vectors, with mean 0 and standard deviation 1, i.e., stated in form of a Matlab command:
R̃0 = orth(randn(N,s)).

7.1. Example 1: SHERMAN 4. In the first experiment we investigate how sharp the
upper bound (3.6) on the residual norm is, and compare the convergence of QMRIDR(s) with
the convergence of IDR(s), and with the optimal convergence of full GMRes. To this end we have
chosen the matrix SHERMAN 4 with corresponding right-hand side from the MATRIX MARKET.
The system consists of 1104 equations. This classic test problem is reasonably well conditioned,
and as a result it suffices to use a small value for s. In the computations we have used s = 1, 2, 4,
and 8. The required tolerance is ‖ri‖/‖r0‖ < 10−8.

Figure 7.1(a) gives for the four different choices for s for every iteration the true residual norms
for QMRIDR(s) and Figure 7.1(b) the upper bound on the residual norm. Also given in these
figures are the convergence curves for full GMRes, which shows how close (increasingly closer
for larger s) the QMRIDR-convergence curves are from optimal, even for small values of s. The
upper bound on the residual norms is quite useful for this example: a termination criterion based
on the cheap upper bound requires only a small number of additional iterations compared with a
termination criterion based on the true residual norm. We have observed this for many other test
problems as well.

Figure 7.2(a) shows for comparison the convergence of IDR(s) (and of full GMRes) for the
same test problem. Clearly, the convergence of QMRIDR(s) is much smoother. We remark,
however, that the rate of convergence of the two methods is essentially the same. We consider
the smoother convergence of QMRIDR(s) a nice, but not very important feature of the method.
Smooth convergence of the residual norms can easily be achieved in IDR(s) as well by using a
residual smoothing technique. The Matlab code that is described in [35] incorporates as an option
residual smoothing using the technique developed by Hestenes and Stiefel [13, §7, p. 418–419], see
also Schönauer and Weiß [21, 37]. Figure 7.2(b) shows the resulting monotonic convergence. Also

13

Algorithm 4 Multi-shift QMRIDR(s)

input: A ∈ CN×N ; b ∈ CN ; σi ∈ C, i = 1, . . . , nσ; s > 0; R̃0 ∈ CN×s; TOL ∈ (0, 1);
output: Approximate solutions xσi such that ‖b− (A− σiI)xσi‖ 6 TOL · ‖b‖, i = 1, . . . , nσ.
1: g = b; ρ = ‖g‖, ρ0 = ρ; g = 1

ρg; xσi = o, i = 1, . . . , nσ; // Initialization
2: µ = 0; M = O ∈ Cs×s; G = O ∈ CN×s; w = o ∈ CN ;
3: for i = 1, nσ do
4: Wσi = O ∈ CN×(s+1);
5: csσi = o ∈ Cs+2; snσi = o ∈ Cs+2;
6: φσi = 0; φ̂σi = ‖g‖;
7: n = 0; j = 0;
8: end for
9: while ρ/ρ0 > TOL do

10: for k = 1, s + 1 do
11: n = n + 1
12: u = o ∈ Cs+2;u(s+1) = 1; // Initialize new column of U

13: m = R̃H
0 g; // Construct v ⊥ R̃0

14: if n > s then
15: Solve γ from Mγ = m;
16: v = g −Gγ;
17: u(1:s) = −γ;
18: else
19: v = g;
20: end if
21: M(:,1:s−1) = M(:,2:s);M(:,s) = m; G(:,1:s−1) = G(:,2:s);G(:,s) = g; g = Av;
22: if k = s + 1 then
23: j = j + 1; µ = COMPMU(g,v); // New Sonneveld space
24: end if
25: g = g − µv;
26: h = µu; // Initialize new column of H
27: if k < s + 1 then
28: β = GH

(:,s−k+1:s)g; g = g −G(:,s−k+1:s)β;

29: β̂ = GH
(:,s−k+1:s)g; g = g −G(:,s−k+1:s)β̂;

30: β = β + β̂; h(s+1−k+1:s+1) = h(s+1−k+1:s+1) + β;
31: end if
32: h(s+2) = ‖g‖; g = 1

h(s+2)
g;

33: ρ = 0;
34: for i = 1, nσ do
35: r = o ∈ Cs+3; r(2:s+3) = h− σiu; // Initialize new column of Rσi

36: lb = max(1, s + 3− n);
37: for l = lb, s + 1 do
38: t = r(l); r(l) = csσi

(l)t + snσi

(l)r(l+1); r(l+1) = −snσi

(l)t + csσi

(l)r(l+1);
39: end for
40: [csσi

(s+2), sn
σi

(s+2), r(s+2)] = ROTG(r(s+2), r(s+3));

41: φσi = csσi

(s+2)φ̂
σi ; φ̂σi = −snσi

(s+2)φ̂
σi ; csσi

(:,1:s+1) = csσi

(:,2:s+2); snσi

(:,1:s+1) = snσi

(:,2:s+2);
42: w = (v −Wσir(1:s+1))/r(s+2); Wσi

(:,1:s) = Wσi

(:,2:s+1); Wσi

(:,s+1) = w;
43: xσi = xσi + φσiw;
44: ρ = max(ρ, |φ̂|

√
j + 1); // Compute upper bound for maximum residual norm

45: end for
46: end for
47: end while

14

0 20 40 60 80 100 120 140 160 180 200 220
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

Number of MATVECS

lo
g(

|r
|/|

b|
)

Standard IDR(s)

s=1
s=2
s=4
s=8
GMRES

(a) Convergence IDR(s).

0 20 40 60 80 100 120 140 160 180 200 220
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

Number of MATVECS

lo
g(

|r
|/|

b|
)

Convergence IDR(s) with residual smoothing

s=1
s=2
s=4
s=8
GMRES

(b) Convergence IDR(s) with smoothing.

Fig. 7.2. Convergence of IDR(s) without and with residual smoothing

here we remark that the rate of convergence of IDR(s) with and without smoothing is essentially
the same. For completeness we give the numbers of iterations for the different methods in Table 7.1.

s QMRIDR(s) QMRIDR(s) IDR(s) IDR(s)
True residual norm Upper bound No smoothing Smoothing

1 193 209 193 193
2 179 181 184 181
4 148 149 155 154
8 141 143 145 145

Table 7.1
Sherman 4: Iterations for the different (QMR)IDR variants

7.2. Example 2: SHERMAN 2. Next we consider the matrix SHERMAN 2 with corre-
sponding right-hand-side, consisting of 1180 equation. This problem is very ill conditioned and as
a result IDR(s) requires a high choice for s to converge [35]. The purpose of this example is to
illustrate that for high values of s QMRIDR(s) may converge considerably faster than IDR(s).

We solve this problem with QMRIDR(s) and with IDR(s), with values of s ranging from 20 to
140. The required tolerance for this example is ‖ri‖/‖r0‖ < 10−4. The upper bound on the residual
norm is used in the termination criterion. Table 7.2 gives for QMRIDR(s) and IDR(s) for the
different values of s the number of iterations to reach the required accuracy. As can be seen from

Method Iterations Method Iterations
QMRIDR(20) 1100 IDR(20) 1983
QMRIDR(40) 431 IDR(40) 945
QMRIDR(60) 294 IDR(60) 802
QMRIDR(80) 137 IDR(80) 779
QMRIDR(100) 131 IDR(100) 624
QMRIDR(120) 119 IDR(120) 337
QMRIDR(140) 119 IDR(140) 136

Table 7.2
Sherman 2: Iterations for increasing s

the table, IDR(s) requires for all choices of s, except s = 140, considerably more iterations than
QMRIDR(s). This can be explained by the fact that QMRIDR(s) always keeps the last (s + 1)-
block of g-vectors orthonormal, which for high values of s yields a quasi-minimization that is close
to the real minimization of the residual norm. If the number of iterations is less than s, the quasi
minimization becomes a true minimization, since then all the g-vectors are orthonormal. In that
case QMRIDR(s) and GMRes are mathematically equivalent. This is illustrated in Figure 7.3,

15

which shows the convergence for QMRIDR(s) and IDR(s) for s = 140, and of full GMRes. Note
that the required number of iterations for GMRes is 119, which is smaller than s. Since also the
upper bound on the QMRIDR residual norm is exact as long as the number of iterations is smaller
than s, the convergence curves for GMRes and QMRIDR(s) coincide. The SHERMAN 2 example

0 20 40 60 80 100 120 140
−5

−4

−3

−2

−1

0

1

2
Convergence for IDR(140), QMRIDR(140), and GMRES

Number of iterations

lo
g(

|r
|/|

b|
)

IDR(140)
QMRIDR(140)
GMRES

Fig. 7.3. SHERMAN 2: Convergence of QMRIDR(140), IDR(140), and of full GMRes

is in our experience exceptional in the sense that the convergence of IDR(s) for small values of s
is far worse than the convergence of GMRes. For such problems that require large values for s
QMRIDR(s) gives a real computational advantage over IDR(s).

7.3. A convection-diffusion-reaction problem. The third example is a finite difference
discretization of a convection-diffusion-reaction problem. We will use this example to illustrate the
numerical behavior of QMRIDR, first as a flexible method, and then, as a multi-shift method.
We start with the definition of the test problem; Section 7.3.2 gives the experiment where QM-
RIDR(s) is combined with a varying preconditioner, and Section 7.3.3 describes the experiment
where QMRIDR(s) is used to simultaneously solve several shifted systems.

7.3.1. Description of the test problem. The system that we use in the experiments is the
finite difference discretization of the following convection-diffusion-reaction equation with homoge-
neous Dirichlet boundary conditions on the unit cube:

−ε∆u + ~β · ∇u− ru = F.

The right-hand-side vector F is defined by the solution u(x, y, z) = x(1 − x)y(1 − y)z(1 − z).
The problem is discretized using central differences with as grid size h = 0.025. The resulting
linear system consists of approximately 60,000 equations. We take the following values for the
parameters: ε = 1 (diffusion), ~β = (0/

√
5 250/

√
5 500/

√
5)T (convection). The value for r

(reaction) depends on the experiment. The resulting matrices are highly nonsymmetric and for
r > 0 indefinite, properties that make the resulting systems difficult to solve with an iterative
solver. In all experiments we use the upper bound on the residual norm. After the iterative
process has ended the norm of the true residual is computed to verify that the required accuracy
is achieved.

The required tolerance is ‖ri‖/‖r0‖ < 10−8.

7.3.2. Flexible QMRIDR(s). In the first experiment we take r = 0. We use in every
iteration 20 steps of full GMRes as preconditioner.

Figure 7.4 gives for every iteration the upper bound on the residual norms of QMRIDR(s)
for four values of s. Also included in this figure is the convergence curve for (full) FGMRes.

16

For this experiment, the computing times are almost completely determined by the GMRes-
preconditioning iterations. As a result, the required number of iterations is a good measure for the
relative performance of the different methods.

0 5 10 15 20 25
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Number of iterations

lo
g(

|r
|/|

b|
)

Convergence QMRIDR(s) upper bound residual norm

s=1
s=2
s=4
s=8
FGMRES

Fig. 7.4. Convergence of QMRIDR(s) with a variable preconditioner

The first observation is that all four QMRIDR variants achieve the required accuracy: the
algorithm is in this respect robust for variations in the preconditioner. The second observations is
that the rate of convergence for s = 1, s = 2, and s = 4 is almost the same, with a trend towards
a lower rate of convergence for higher s. This tendency is stronger if less GMRes iterations are
performed. The explanation is that with a variable preconditioner the g-vectors are no longer in
a sequence of nested subspaces, since the IDR-theorem does not hold any more. If less GMRes
iterations are performed, the preconditioner becomes more variable. The third observation is
QMRIDR(8) performs considerably better than the other QMRIDR variants. This illustrates
that for larger values of s the quasi-minimization of the residual is close to a true minimization.
As a result, the convergence of QMRIDR(8) is closer to the optimal convergence of FGMRes.
Also, the convergence curves of the two methods coincide for the first s iterations. The convergence
of QMRIDR(16) (not shown) completely coincides with the convergence of FGMRes, since the
required number of iterations of FGMRes and of QMRIDR(16) is 12, which is smaller than
s = 16.

In general, we have observed in many experiments that choosing a large value of s (i.e., in
the order of the number of FGMRes iterations) can bring the convergence of QMRIDR(s) with
a variable preconditioner arbitrarily close to the (optimal) convergence of full FGMRes. If for
reasons of memory usage a relatively small value for s is used, it is most of the time best to choose
s = 1 if a strongly variable preconditioner is being used.

7.3.3. Multi-shift QMRIDR(s). In the following experiments we take five different shifts:
r = 0, r = 100, r = 200, r = 300, and r = 400, and study the simultaneous solution of the five
shifted systems. Figure 7.3.3 shows in four different subplots the convergence curves for every
shifted system for QMRIDR(1), QMRIDR(2), QMRIDR(4), and QMRIDR(8). Note that in
QMRIDR(s) the (upper bound) on the residual norms is available for all shifted systems at no
extra cost.

Although the multi-shift QMRIDR(s) algorithm requires the computation of only one set
of g-vectors, which implies a big saving in matrix-vector multiplications, the saving in vector
and scalar operations is less since many of these operations are related to solving the (projected)
shifted system. Moreover, convergence is faster for systems with a smaller shift, while in the
multi-shift algorithm termination occurs once the ‘slowest’ system has converged, which means
that unnecessary operations are performed for the other systems. So the question arises how much
more efficient the multi-shift algorithm is compared to the solution of the shifted one after the
other. The answer to this question is very problem and implementation dependent, but to give
at least the answer for the given problem and implementation we have tabulated in Table 7.3 the
number of iterations and CPU time for the multi-shift algorithm, and the accumulated numbers of

17

0 50 100 150 200 250 300
−10

−8

−6

−4

−2

0

2

Number of MATVECS

lo
g(

|r
|/|

b|
)

s = 1

r=0
r=100
r=200
r=300
r=400

(a) Multi-shift QMRIDR(1).

0 50 100 150 200 250 300
−10

−8

−6

−4

−2

0

2

Number of MATVECS

lo
g(

|r
|/|

b|
)

s = 2

r=0
r=100
r=200
r=300
r=400

(b) Multi-shift QMRIDR(2).

0 50 100 150 200 250 300
−10

−8

−6

−4

−2

0

2

Number of MATVECS

lo
g(

|r
|/|

b|
)

s = 4

r=0
r=100
r=200
r=300
r=400

(c) Multi-shift QMRIDR(4).

0 50 100 150 200 250 300
−10

−8

−6

−4

−2

0

2

Number of MATVECS

lo
g(

|r
|/|

b|
)

s = 8

r=0
r=100
r=200
r=300
r=400

(d) Multi-shift QMRIDR(8).

Fig. 7.5. Convergence for the simultaneous solution of five shifted systems

iterations and CPU time if the systems are solved subsequently. The results in Table 7.3 show that

Simultaneous solution One system at a time
s Iterations (CPU time) Iterations (CPU time)
1 297 (8.2s) 1450 (21.6s)
2 194 (6.6s) 928 (15.2s)
4 153 (7.4s) 742 (15.3s)
8 134 (9.1s) 659 (25.9s)

Table 7.3
Convection-diffusion-reaction problem: iterations and CPU-time for the solution of the five shifted systems

the saving in CPU-time of multi-shift QMRIDR(s) over the subsequent solution of the shifted
system with QMRIDR(s) for a single shift is significant.

7.4. A Helmholtz problem. The final example is the Finite Element discretization of a
Helmholtz equation. The test problem models wave propagation in the earth crust. We will illus-
trate the performance of flexible QMRIDR(s) in combination with a variable multigrid precondi-
tioner. Then we apply multi-shift QMRIDR(s) to simultaneously solve the Helmholtz equation
at different frequencies.

7.4.1. Description of the test problem. The test problem that we consider mimics three
layers with a simple heterogeneity. The problem is modeled by the following equation:

−∆p−
(

2πf

c(x)

)2

p = s in Ω = (0, 600)× (0, 1000), (7.1)

s = δ(x1 − 300, x2) for x1 = (0, 600), x2 = (0, 1000), (7.2)
∂p

∂n
= 0 on ∂Ω. (7.3)

18

The sound source s is located at the surface and transmits a sound wave with frequency f . Homo-
geneous Neumann conditions are imposed at the boundaries. The local sound velocity is given as
in Figure 7.6.

0 100 200 300 400 500 600

0

100

200

300

400

500

600

700

800

900

1000

2000 m/s

1500 m/s

3000 m/s

x−axis (m)

de
pt

h
(m

)

Fig. 7.6. Problem geometry with sound velocity profile

The problem is discretized with linear finite elements which leads to a system of the form

(K− z1M)p = b, z1 = (2πf)2,

in which K is the discretized Laplacian, and M a mass matrix. The gridsize is h = 12.5m
which yields a system of almost 3700 equations. The system is symmetric and indefinite. In all
experiments we use the upper bound on the residual norm. After the iterative process has ended
the norm of the true residual is computed to verify that the required accuracy is achieved.

The tolerance used in the experiments is ‖ri‖/‖r0‖ < 10−8.

7.4.2. Flexible QMRIDR(s). Shifted Laplace preconditioners for the discrete Helmholtz
equation are of the form

P = K− z2M.

The shift z2 is chosen on the one hand to ensure a fast rate of convergence and on the other hand
such that the systems with P are easily solvable. In practice, z2 is chosen such that the action of
P−1 is well approximate by one multigrid cycle. In the experiments we use z2 = −iz1 [5, 34]. The
action of P−1 is approximated by one cycle of AGMG, the AGregation based algebraic MultiGrid
method proposed by Notay [16]. AGMG uses a Krylov subspace method as smoother at every
level. As a result this multigrid operator is variable (changes in every iteration), and a flexible
method must be used if AGMG is used as a preconditioner.

In this experiment we take f = 8. The convergence of QMRIDR(s) with one cycle of AGMG
as preconditioner is displayed in Figure 7.7. This figure gives for every iteration the upper bound
on the residual norms of QMRIDR(s) for eight values of s. Also included in this figure is the
convergence curve for (full) FGMRes.

For this problem it pays off to choose s larger, also for small s. This is in contrast to the
previous example, which gave only a faster rate of convergence for s in the order of the number
of FGMRes iterations to solve the system. This difference stems from the fact that the AGMG
preconditioner is less variable than the GMRes inner iterations that were used as preconditioner

19

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Number of MATVECS

lo
g(

|r
|/|

b|
)

Convergence FQMRIDR(s)

s=1
s=2
s=4
s=8
s=16
s=32
s=64
s=128
fgmres

Fig. 7.7. Convergence of QMRIDR(s) with a variable preconditioner

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−10

−8

−6

−4

−2

0

2

Number of MATVECS

lo
g(

|r
|/|

b|
)

s = 1

f=1
f=2
f=4
f=8

(a) Multi-shift QMRIDR(1).

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−10

−8

−6

−4

−2

0

2

Number of MATVECS

lo
g(

|r
|/|

b|
)

s = 2

f=1
f=2
f=4
f=8

(b) Multi-shift QMRIDR(2).

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−10

−8

−6

−4

−2

0

2

Number of MATVECS

lo
g(

|r
|/|

b|
)

s = 4

f=1
f=2
f=4
f=8

(c) Multi-shift QMRIDR(4).

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−10

−8

−6

−4

−2

0

2

Number of MATVECS

lo
g(

|r
|/|

b|
)

s = 8

f=1
f=2
f=4
f=8

(d) Multi-shift QMRIDR(8).

Fig. 7.8. Convergence for the simultaneous solution of five shifted systems

in Section 7.3.2. For s = 128, the convergence curves of FGMRes and QMRIDR(s) coincide
almost completely, since the two methods are mathematically equivalent in the first s iterations.
The computing time for QMRIDR(16) is about the same as for full FGMRes, both take about
4s, but QMRIDR(16) uses of course much less memory than FGMRes.

7.4.3. Multi-shift QMRIDR(s). In the next experiments we use the multi-shift QM-
RIDR(s) algorithm to simultaneously solve four shifted systems, for the frequencies f = 1, f = 2,
f = 4, and f = 8. Figure 7.8 shows in four different subplots the convergence curves for every
shifted system for QMRIDR(1), QMRIDR(2), QMRIDR(4), and QMRIDR(8). Only for s = 8
all systems are solved to the required accuracy within 2000 iterations. Note that no preconditioner
is used in these experiments. The convergence curves for the different frequencies are more spread
out than for the previous example, but the spread in the shifts for this example is also much bigger
than for the previous example.

20

For this example the multi-shift algorithm is only slightly faster than for solving the systems
consecutively: multi-shift QMRIDR(8) takes 6.2s and solving the systems one by one with QM-
RIDR(8) takes 7.2s.

8. Concluding remarks. We have presented two new members from the family of IDR meth-
ods highlighting the rôle of the underlying generalized Hessenberg decomposition. The derivation of
the flexible and the multi-shift QMRIDR should allow others to easily incorporate ideas from the
context of Krylov subspace methods to the slightly more sophisticated IDR methods. The numeri-
cal experiments clearly reveal that IDR is a scheme that allows to narrow the gap between optimal
long-term recurrences like GMRes and Lanczos based methods without the need for complicated
truncation or restart schemes. We repeat here the remark2 given in the abstract of [40]:

“. . . can be viewed as a bridge connecting the Arnoldi-based FOM/GMRes meth-
ods and the Lanczos-based BiCGStab methods.”

With QMRIDR, we have the IDR method that gives the perfect bridge to GMRes and FGMRes:
for s large enough, mathematical equivalence is reached.

9. Acknowledgements. The authors would like to thank Olaf Rendel for pointing out the
proof for the upper bound in Eqn. (3.6) and the occurrence of incurable breakdowns in case of
µ = 0.

REFERENCES

[1] T. F. Chan, E. Gallopoulos, V. Simoncini, T. Szeto, and C. H. Tong, A quasi-minimal residual variant
of the Bi-CGSTAB algorithm for nonsymmetric systems, SIAM J. Sci. Comput., 15 (1994), pp. 338–347.
Iterative methods in numerical linear algebra (Copper Mountain Resort, CO, 1992).

[2] Jane Cullum and Anne Greenbaum, Relations between Galerkin and norm-minimizing iterative methods
for solving linear systems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 223–247.

[3] Biswa Nath Datta and Youcef Saad, Arnoldi methods for large Sylvester-like observer matrix equations,
and an associated algorithm for partial spectrum assignment, Linear Algebra Appl., 154/156 (1991),
pp. 225–244.

[4] Lei Du, Tomohiro Sogabe, and Shao-Liang Zhang, Quasi-minimal residual smoothing technique for the
IDR(s) method, JSIAM Letters, 3 (2011), pp. 13–16.

[5] Y. A. Erlangga, C. W. Oosterlee, and C. Vuik, A novel multigrid based preconditioner for heterogeneous
Helmholtz problems, SIAM J. Sci. Comput., 27 (2006), pp. 1471–1492 (electronic).

[6] Roland W. Freund, Solution of shifted linear systems by quasi-minimal residual iterations, in Numerical
linear algebra (Kent, OH, 1992), de Gruyter, Berlin, 1993, pp. 101–121.

[7] Roland W. Freund and Noël M. Nachtigal, QMR: a quasi-minimal residual method for non-Hermitian
linear systems, Numer. Math., 60 (1991), pp. 315–339.

[8] A. Frommer, BiCGStab(`) for families of shifted linear systems, Computing, 70 (2003), pp. 87–109.
[9] Andreas Frommer and Uwe Glässner, Restarted GMRES for shifted linear systems, SIAM J. Sci. Comput.,

19 (1998), pp. 15–26 (electronic). Special issue on iterative methods (Copper Mountain, CO, 1996).
[10] C. W. Gear and Y. Saad, Iterative solution of linear equations in ODE codes, SIAM J. Sci. Statist. Comput.,

4 (1983), pp. 583–601.
[11] Martin H. Gutknecht, IDR explained, Electron. Trans. Numer. Anal., 36 (2009/10), pp. 126–148.
[12] Martin H. Gutknecht and Jens-Peter M. Zemke, Eigenvalue computations based on IDR, Bericht 145,

TUHH, Institute of Numerical Simulation, May 2010. Online available at http://doku.b.tu-harburg.de/
volltexte/2010/875/.

[13] Magnus R. Hestenes and Eduard Stiefel, Methods of conjugate gradients for solving linear systems, J.
Research Nat. Bur. Standards, 49 (1952), pp. 409–436 (1953).

[14] B. Jegerlehner, Krylov space solvers for shifted linear systems, arXiv.org HEP-LAT preprint, technical report
IUHET-353, Indiana University, Department of Physics, 1996. Online available at arXiv.org: http://

arXiv.org/abs/hep-lat/9612014, see also http://cdsweb.cern.ch/record/316892/files/9612014.pdf.
[15] Yvan Notay, Flexible conjugate gradients, SIAM J. Sci. Comput., 22 (2000), pp. 1444–1460 (electronic).
[16] , An aggregation-based algebraic multigrid method, Electron. Trans. Numer. Anal., 37 (2010), pp. 123–

146.
[17] C. C. Paige and M. A. Saunders, Solutions of sparse indefinite systems of linear equations, SIAM J. Numer.

Anal., 12 (1975), pp. 617–629.
[18] Y. Saad, Krylov subspace methods for solving large unsymmetric linear systems, Math. Comp., 37 (1981),

pp. 105–126.
[19] Youcef Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14 (1993),

pp. 461–469.
[20] Youcef Saad and Martin H. Schultz, GMRES: a generalized minimal residual algorithm for solving non-

symmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.
[21] W. Schönauer, Scientific Computing on Vector Computers, Elsevier, Amsterdam, 1987.

2This remark is about ML(k)BiCGStab, a predecessor of IDR(s), in some sense the first IDR(s) variant.

21

http://doku.b.tu-harburg.de/volltexte/2010/875/
http://doku.b.tu-harburg.de/volltexte/2010/875/
http://arXiv.org/abs/hep-lat/9612014
http://arXiv.org/abs/hep-lat/9612014
http://cdsweb.cern.ch/record/316892/files/9612014.pdf

[22] V. Simoncini, Restarted full orthogonalization method for shifted linear systems, BIT, 43 (2003), pp. 459–466.
[23] Valeria Simoncini and Daniel B. Szyld, Interpreting IDR as a Petrov-Galerkin method, SIAM J. Sci.

Comput., 32 (2010), pp. 1898–1912.
[24] Gerard L.G. Sleijpen, Peter Sonneveld, and Martin B. van Gijzen, Bi-CGSTAB as an induced dimen-

sion reduction method, Appl. Numer. Math., 60 (2010), pp. 1100–1114.
[25] Gerard L.G. Sleijpen and Henk A. van der Vorst, Maintaining convergence properties of BiCGstab

methods in finite precision arithmetic, Numer. Algorithms, 10 (1995), pp. 203–223.
[26] Gerard L.G. Sleijpen and Martin B. van Gijzen, Exploiting BiCGstab(`) strategies to induce dimension

reduction, SIAM J. Sci. Comput., 32 (2010), pp. 2687–2709.
[27] Peter Sonneveld, On the convergence behaviour of IDR(s), Technical Report 10-08, Department of Applied

Mathematical Analysis, Delft University of Technology, Delft, 2010.
[28] Peter Sonneveld and Martin B. van Gijzen, IDR(s): a family of simple and fast algorithms for solving

large nonsymmetric systems of linear equations, SIAM J. Sci. Comput., 31 (2008/09), pp. 1035–1062.
[29] Daniel B. Szyld and Judith A. Vogel, FQMR: a flexible quasi-minimal residual method with inexact

preconditioning, SIAM J. Sci. Comput., 23 (2001), pp. 363–380. Copper Mountain Conference (2000).
[30] Jasper van den Eshof and Gerard L.G. Sleijpen, Accurate conjugate gradient methods for families of

shifted systems, Appl. Numer. Math., 49 (2004), pp. 17–37.
[31] H. A. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of

nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 631–644.
[32] H. A. van der Vorst and P. Sonneveld, CGSTAB, a more smoothly converging variant of CG-S, Report

90-50, Department of Mathematics and Informatics, Delft University of Technology, 1990.
[33] H. A. van der Vorst and C. Vuik, GMRESR: a family of nested GMRES methods, Numer. Linear Algebra

Appl., 1 (1994), pp. 369–386.
[34] M. B. van Gijzen, Y. A. Erlangga, and C. Vuik, Spectral analysis of the discrete Helmholtz operator

preconditioned with a shifted Laplacian, SIAM J. Sci. Comput., 29 (2007), pp. 1942–1958 (electronic).
[35] Martin B. van Gijzen and Peter Sonneveld, An elegant IDR(s) variant that efficiently exploits bi-

orthogonality properties., Technical Report 10-16, Department of Applied Mathematical Analysis, Delft
University of Technology, Delft, 2010. (revised version of report 08-21).

[36] Judith A. Vogel, Flexible BiCG and flexible Bi-CGSTAB for nonsymmetric linear systems, Appl. Math.
Comput., 188 (2007), pp. 226–233.

[37] Rüdiger Weiß, Convergence Behavior of Generalized Conjugate Gradient Methods, Dissertation, Universität
Karlsruhe, 1990.

[38] N. Nakashima Y. Onoue, S. Fujino, A difference between easy and profound preconditionings of IDR(s)
method, Transactions of the Japan Society for Computational Engineering and Science, (2008). (in
Japanese).

[39] , An overview of a family of new iterative methods based on IDR theorem and its estimation., in
Proceedings of the International Multi-Conference of Engineers and Computer Scientists 2009, vol. II,
IMECS 2009, Hong Kong, March 18–20 2009, pp. 129–2134.

[40] Man-Chung Yeung and Tony F. Chan, ML(k)BiCGSTAB: a BiCGSTAB variant based on multiple Lanczos
starting vectors, SIAM J. Sci. Comput., 21 (1999/00), pp. 1263–1290 (electronic).

22

	Title and Authors
	Abstract
	Keywords
	AMS Subject Classification
	Introduction
	Motivation
	Notation
	Outline

	A generalized Hessenberg relation for generating vectors in Sonneveld spaces
	The Sonneveld subspaces Gj
	An algorithm for generating vectors in Gj
	Generating s+1 vectors in G0
	Generating the first vector in Gj, j>0
	Generating s additional vectors in Gj, j>0

	A generalized Hessenberg decomposition for the vectors gn
	A remark on the computation of muj

	A solution algorithm based on the generalized Hessenberg decomposition
	Flexible QMRIDR(s)
	Multi-shift QMRIDR(s)
	Algorithms
	Numerical experiments
	Example 1: SHERMAN 4
	Example 2: SHERMAN 2
	A convection-diffusion-reaction problem
	Description of the test problem
	Flexible QMRIDR(s)
	Multi-shift QMRIDR(s)

	A Helmholtz problem
	Description of the test problem
	Flexible QMRIDR(s)
	Multi-shift QMRIDR(s)

	Concluding remarks
	Acknowledgements
	References

