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Abstract 
This research focuses on using Sentinel-2 optical imagery to provide a means of high-resolution              
monitoring and evaluation of changes in Total Suspended Matter (TSM) concentration in the Brantas river               
basin. In situ spectral measurements as well as laboratory results show an extremely turbid nature of the                 
Brantas River surface water. Current monitoring of the river water quality, is done by point               
measurements representing point estimations of the water quality in time and space. Interactions within              
the system are mostly unknown. Having accurate knowledge of near real time water quality information               
will greatly enhance the effectiveness of the monitoring organizations, especially if this comes in a high                
spatial and temporal resolution. The Sentinel- 2 remote sensing platform delivers information which can              
be used to derive such data with a 10m resolution and revisit time of 5 days. To estimate TSM                   
concentrations a multi-conditional algorithm is developed. It uses linear regression for low to medium              
TSM concentrations based on the green and red band reflectance values and polynomial regression for               
high to extremely high TSM concentrations based on the red edge NIR band. Testing the multi-conditional                
algorithm on the WISP-3 in situ spectral data shows the model’s performance is good with r2 = 0.79, RMSE                   
= 66.5 mg/L and NRMSE = 9.7%. Performance of the multi-conditional algorithm is found to be poor when                  
based on Sentinel-2 (S2) bottom of atmosphere data from bands green, red and red edge NIR. However,                 
when recalibrating the polynomial model on Sentinel-2 atmospherically uncorrected top of atmosphere            
data, results are more promising: r2 = 0.75, RMSE = 64.2 mg/L and NRMSE = 11.3% . Also, TSM estimates                    
from remote sensing reflectances atmospherically corrected by different processors are compared, from            
which ACOLITE (RMSE = 5.0 mg/L, NRMSE = 25.3%) performs significantly better than C2RCC (RMSE =                
11.3 mg/L, NRMSE = 57.5%) and Sen2Cor (RMSE = 42.8 mg/L, NRMSE = 217%). This study shows that 1)                   
high-resolution spatial and temporal variation of TSM concentration estimation can be made visible             
within the Brantas river basin, 2) an overview of TSM concentration estimation of the entire basin at one                  
moment in time can be achieved and visualised, 3) an extensive historical record of TSM concentration                
estimations can be accessed, and 4) information is provided to prioritize sampling locations and field               
surveying times. 

Keywords: remote sensing, Total Suspended Matter, WISP-3, Sentinel-2, Brantas river, multi-conditional           
algorithm, atmospheric correction 
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Biochemical oxygen demand 
Case 2 Regional Coast Colour 
Colored dissolved organic matter 
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Chemical oxygen demand 
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International Organization for Standardization 
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Sentinel Application Platform 
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SWIR Shortwave infrared 
SWQP Surface water quality parameter 
SWT Surface water temperature 
TOA Top of Atmosphere 
TSM Total Suspended Matter 
TSS Total Suspended Solids 
TU Turbidity 
TU Delft University of Technology 
WISP-3 Water Insight handheld spectrometer 
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1 
Introduction 

Immediate action is needed to improve - or at least stop further degradation of - the water quality of the                    
Brantas river. It has deteriorated over the past decades (Roosmini et al. 2018; Fulazzaky 2009), as it has in                   
several other river basins in Indonesia. This research focuses on using Sentinel-2 optical imagery to               
provide a means of high-resolution monitoring of changes in Total Suspended Matter concentration. It is a                
way of evaluating optical surface water quality parameters within the Brantas project. This project is               
titled “Fostering inclusive growth, health and equity by mainstreaming water quality in River Basin              
Management” and has started in 2018. Its aim is to make water quality an integral part of water                  
management in the Brantas catchment. The overall goal is to significantly improve water quality, in such a                 
way that chances of exposure to water-borne diseases are reduced and the river can function as a                 
sustainable source of water again (Ertsen et al. 2018). Pollution comes from multiple sources (e.g.               
industry such as sugar cane, food seasoning MSG, textile and paper factories, urban raw sewage, domestic                
waste, agriculture). This increased export of inorganic nutrients can cause several negative environmental             
impacts, such as loss of habitat and biodiversity (Rabalais 2002). Also, an increase of phytoplankton               
blooms can result in hypoxia and increased fish mortality (Diaz and Rosenberg 2008; Turner et al. 2003).                 
Problems with dumping of waste in the Brantas River have been reported too, ranging from household                
waste, such as diapers (Suhanti, n.d.), to industrial waste such as bags full of aluminium ash (Bruijns                 
2018). 

Monitoring of the river water quality is currently done by point measurements representing point              
estimations of the water quality in time and space. Sampling of the whole river takes several days to                  
weeks. Therefore, no accurate image can be obtained of the river system as a whole, and obtaining spatial                  
and temporal variations of river water quality is almost impossible (Jerry C. Ritchie, Zimba, and Everitt                
2003). How do tributaries influence the main river? How do water quality parameters influence each               
other? Interactions within the system are basically unknown. Also, stakeholders need to be able to identify                
polluters, especially when tasked with enforcing the law. Having accurate knowledge of near real time               
water quality information would greatly enhance the effectiveness of the organizations, especially if this              
comes in a high spatial and temporal resolution. Information derived from satellite missions can provide               
this information. It is a potentially advantageous method for cheaper, continuous measurements, with an              
ability to estimate SWQPs without being physically present. 

Since the early 1970s, it has been successfully proven that optical remote sensing can be used to derive                  
concentrations from water quality parameters by measuring the light reflected by the water. This makes               
the technique suitable for estimating optical surface water quality parameters (SWQPs). However, these             
techniques are mostly applied on considerably large water bodies like oceans, large, inland lakes and               
broad rivers. The current status of the use of optical remote sensing shows that water quality estimates                 
from remote sensing are well established in estuarine and coastal zones (Brando and Dekker 2003; Chen,                
Hu, and Muller-Karger 2007; Hellweger et al. 2004), but less well developed in river systems (Tomsett and                 
Leyland 2019). This research will study if these methods can also be applied on a river system like the                   
Brantas. However, using optical remote sensing data in river corridors, introduces specific problems due              
to their optical complexity. Generally speaking, the use of optical remote sensing for small water bodies                
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comes down to a trade-off between high-resolution data and availability of (narrow) hyperspectral bands.              
The widths of rivers examined in this study vary from 20 - 160 meters (with exception of the Waduk                   
Sutami reservoir, which gets as wide as up to 800 m). Therefore, the Sentinel- 2 platform is chosen as a                    
data source, delivering data with 10m resolution (only pixels consisting of pure water can be used). 

 
The ultimate goal of this study is to find out if continuous water quality monitoring of a narrow river                   
flowing through a large area (e.g. the whole Brantas River basin) at once is possible by remote sensing,                  
and if so, if it can reveal spatial and temporal information at high resolution. If water quality changes over                   
time can then be mapped continuously, as to fill the gaps from point measurements as they are conducted                  
now, valuable information is added in a higher temporal and spatial resolution than is possible at present. 
 
For the Brantas river system, the most important water quality parameters are DO, BOD5 and COD. These                 
water quality parameters, however, are lacking a distinctive optical signal. Nonetheless, concentrations of             
non-optical variables may be correlated with optical variables such as Chl-a concentrations, TU, TSM,              
CDOM and SWT, which do affect the reflected radiation (Kallio 2000; Abayazid, El-Adawy, and Others               
2019; El Din and Zhang 2017). To limit the scope of this study as to make it actually feasible, it will only                      
look at TSM concentrations. So, in other words, at first the water quality parameter variable with the                 
easiest detectable optical signature is investigated. Since a range of low to extremely high turbidity levels                
can be expected to be found in the Brantas river system, a multi-conditional algorithm is developed, able                 
to incorporate different TSM models, combining each model’s sensitivity characteristics and which can be              
individually tuned for specific ranges.  
 
To estimate TSM concentrations, this study will focus on: 

1. Developing a reliable multi-conditional algorithm based on single and multiple band models,            
using linear and polynomial relationships, or a combination of both; 

2. Validating results from satellite imagery by data from a hyperspectral handheld radiometer,            
which in turn is validated by in situ laboratory measurements, all together resulting in a spectral                
fingerprint of the Brantas river; 

3. Creating and analyzing modelled time series (2015-2020) of TSM concentrations for nearly 60             
locations along the Brantas River.  

 
The algorithm developed during this study finds its usability in accurately estimating TSM concentrations              
in river systems, which is important for ecosystem studies and sediment transport monitoring. The              
method used can be adopted to also derive algorithms for other water quality parameters. Summarizing,               
the main topic is estimating TSM concentrations by means of optical remote sensed satellite imagery. This                
report shows how a regionally calibrated multi-conditional algorithm can be developed, which uses data              
and methods publicly available.  
 
Following this introduction, this thesis continues with a theoretical background providing information to             
understand methods and instruments used. It is divided in two main parts: remote sensing and in situ                 
measuring techniques. This chapter focuses on the relation between surface water quality and remote              
sensed images, and the use of optical imagery and the need of atmospheric corrections. The part on in situ                   
measuring techniques explains the theory of the equipment used. 
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The materials and methods chapter shows and explains the by this study followed procedures. Also, data                
processing techniques and steps are explained. How are objectives fulfilled and how will the research               
questions be answered? The chapter is finalized with a workflow diagram. For developing TSM models,               
the specific steps are explained showing how to get to a multi-conditional algorithm. Also, the boundary                
selection method is shown. 
 
The results chapter shows the results of applying the described methods on both own in situ data,                 
collected during fieldwork missions in Indonesia, and historical data from project stakeholders. Results             
are discussed, after a brief introduction on typical water reflectance spectra observed in the Brantas river                
system. This chapter, in combination with the discussion chapter, forms the heart of the report, since all                 
results are visualised, reviewed, compared and discussed. The report ends with conclusions and             
perspectives on further research on optical and non-optical SWQPs. Also, perspectives for stakeholders             
and the Brantas project as a whole are shown.  
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2 
Theoretical background 

This chapter will provide a brief overview of the theoretical knowledge needed to be able to understand                 
the relations and models used. Principles are explained of remote sensing technologies for water quality               
assessment, how this works for TSM concentration estimation and how spectral data is derived for in situ                 
reflectance measurements. Also, how measurements are performed from space, including atmospheric           
correction procedures, are briefly discussed. 
 

2.1 Surface water quality assessment by optical remote sensing in general 
Water quality assessment is the process of measuring chemical, physical and biological characteristics of              
surface water and identifying the possible contamination sources affecting the water quality (Usali and              
Ismail 2010). Development of remote sensing techniques for monitoring water quality began in the early               
1970s and are now widely used to monitor water quality parameters such as suspended sediments,               
chlorophyll, temperature, which all have a distinct optical signal, changing the energy spectra of reflected               
solar or thermal radiation (Jerry C. Ritchie, Zimba, and Everitt 2003). Most other chemicals and               
bio-physical constituents do not directly affect or change the spectral or thermal properties of surface               
waters. They can only be inferred indirectly from measurements of other water quality parameters, which               
are affected by these constituents. 
 
Sensors mounted on satellites can measure the radiation reflected from the water surface, at various               
wavelengths. Absorption and backscattering characteristics of surface water can be significantly           
influenced by substances in the water (Jerlov 1976; Kirk 1983). Thereby, remote sensing has the ability to                 
measure changes in spectral signals backscattered from water. Measured changes are expressed in water              
quality parameters by means of empirical or analytical models. The optimal wavelength to be used               
depends on the substance measured, as well as on the concentration of the substance measured.               
Furthermore, the optimal wavelength to be used also depends on sensor characteristics. 
 

2.2 Using optical remote sensing to estimate TSM concentrations 
Early techniques measured spectral and thermal differences in emitted energy from water surfaces. First              
empirical approaches to estimate suspended sediments were developed by Ritchie et al. (1975). Many              
researchers now use the visible and near infrared bands in their investigations to obtain robust models                
between water leaving reflectances and TSM concentrations (Jerry C. Ritchie, Zimba, and Everitt 2003;              
Shafique et al. 2003; Jerry C. Ritchie, Cooper, and Schiebe 1990; J. C. Ritchie and Cooper 1991; F. Wang et                    
al. 2006). Nowadays, TSM is among the most commonly measured water quality parameters which are               
estimated by use of remote sensing (Onderka 2008; Sudheer, Chaubey, and Garg 2006; Wu 2003; Bhatti et                 
al. 2008). 
 
TSM concentrations are best estimated using wavelengths between 700 and 800 nm (Oxford 1976).              
However, optimum wavelength to be used differs depending on the TSM concentration itself (Curran and               
E. M. M. Novo 1988). Early research (Jerry C. Ritchie, Cooper, and Schiebe 1990; J. C. Ritchie and Cooper                   
1991) already shows that if the range of suspended sediment is roughly between 0 and 50 mg/L                 
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reflectance from almost every wavelength will be linearly related to suspended sediment concentrations.             
For higher concentrations, saturation effects have been observed when computing the TSM concentration,             
especially for lower wavelengths. That is why a multi-conditional approach is found best to derive an                
algorithm being able to estimate concentrations from low to high concentrations. Approach followed is              
demonstrated by Novoa et al (2017). It uses a switching method that automatically selects the most                
sensitive TSM vs. water leaving reflectance relationship to always use the most sensitive wavelength              
information with the strongest relationship, avoiding the earlier mentioned saturation effect.  
 

2.3 Remote sensing on river corridors 
Using optical remote sensing data in river corridors, introduces specific problems due to their optical               
complexity. Optical absorption and backscattering results in high optical variability. The effect of the              
atmosphere on the signal received by satellite sensors is significant, especially in the lower (blue/green)               
wavelengths. In order to retrieve useful water leaving reflectances, accurate modelling of atmospheric             
absorption and scattering effects as well as specular water surface reflection effects is required (Gao et al.                 
2009). Further challenges in estimating water leaving reflectances at the surface are indicated as follows,               
and in accordance with Moses et al. (2017): 

1. The proximity to terrestrial sources of atmospheric pollution will result in an optically             
heterogeneous atmosphere that is difficult to model; 

2. The adjacency effects from neighbouring land pixels around the water body adds unwanted             
signal; and 

3. The significantly large reflectance of water in the near-infrared region due to high sediment              
concentrations, as often is seen in inland turbid waters, prevents the use of atmospheric              
correction models which are widely available but adopted for either land surfaces or oceans. 

 

2.4 Remote sensing measuring techniques: on site and from space 
This study uses two types of remotely sensed data: 1) in situ spectral measurements from the handheld                 
radiometer WISP-3 and 2) from the Sentinel-2 satellite mission platform. This section briefly explains how               
each type of data is obtained. 
 

2.4.1 Hyperspectral handheld in situ data 
The handheld hyperspectral radiometer WISP3 is used for collecting subsurface irradiance reflectance            
values R(0-) to assess the water colour and derive water quality parameters. To derive R(0-) values,                
information of three measurements is combined. Light penetrates the water surface. A part is absorbed               
and a part is reflected by particles in the water, which in the end define the water colour. The water colour                     
is determined by measuring three channels: 

a. Downwelling irradiance Ed (mW/(m2 * nm) 
b. Downwelling radiance Ld (mW/(m2 * nm * sr) 
c. Upwelling radiance Lu (mW/(m2 * nm * sr) 

 
Spectral irradiance is the irradiance of a surface per unit wavelength, and is measured in (milli)watts per                 
square metre per nanometre. Spectral radiance is the radiance of a surface per unit wavelength. These are                 
directional quantities measured in (milli)watt per steradian per square metre per nanometre. 
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Lu includes all light leaving the water (water leaving radiance Lw) as well as sky light reflected at the water                    
surface. Ld is the downwelling radiance and Ed consists of the downwelling irradiance that is incident on                 
the water surface. The WISP-3 is equipped with three single radiometers, measuring Ed, Ld and Lu at 401                  
bands (400 – 800 nm), shown in detail in figure 1. From measuring Ed, Ld and Lu, the reflectance R(0-) and                     
Remote sensing reflectance values Rrs can be calculated. The reflectance is a ratio between downwelling               
and upwelling light. It therefore shows how much of the incoming sunlight is left after travelling through                 
the water. Rrs is calculated as follows: 
 

Rrs =  Ed

L  − ρ Lu * d  
With: 

 = sky correction, the radiance of skylight at zenith angle of 42°ρ  

 ≈ 0.028 (Mobley 1999)ρ  

 
The reflectance R(0-) is calculated as follows: 
 

RR (0 )− =  rs * Q *  n2

1−r0
 

With: 
Q = PI 

 = the Fresnel coefficient for 0-degree angle of incidencer0  

 = 0.021r0  

 = the index of refractionn  

 = 1.341 for ocean waters and 1.333 for freshwaters (Dekker and Peters 1993)n  

This study deals with fresh water so:  .81n2

1−r0
= 1  

 

 

Figure 1: Schematic overview of three separate above surface spectra          
of sky and water used to derive R(0-) water leaving reflectance (Peters            
and Laanen, n.d.). 

 
When comparing the spectra for quality checking, the irradiance (Ed) should always have the highest               
values of the three separate spectra. The downwelling radiance (Ld) is a fraction of Ed and should                 
therefore be significantly lower (approximately a factor 10). However, both Ed and Ld measure the sky,                
and therefore the spectral shapes should be following the same pattern. The downwelling radiance Lu               
should be much lower than Ld. If there is a high sediment load, factors with a negative influence on the                    
measurement may be at play. This can be bottom visibility, macrophytes, floating plants, garbage or               
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inappropriate measuring angles. The prominent dip near 765 nm results from atmospheric conditions:             
this dip is caused by oxygen in the atmosphere. The peak at 763 nm is caused by absorption of 02. In                     
general, the region around 760 - 770 nm is highly influenced by interference from the atmosphere, there is                  
a lot happening at the same time. Therefore, I will focus on the section beyond the atmospheric absorption                  
dip of 770 nm. At all times absorption dips which can be seen on all channels should be avoided. 
 

2.4.2 Sentinel-2 satellite mission 
The European Space Agency introduces its Sentinel-2 mission as follows (European Space Agency n.d.): 
“The Copernicus Sentinel-2 mission comprises a constellation of two polar-orbiting satellites placed in the              
same sun-synchronous orbit, phased at 180° to each other. It aims at monitoring variability in land surface                 
conditions, and its wide swath width (290 km) and high revisit time (10 days at the equator with one                   
satellite, and 5 days with 2 satellites under cloud-free conditions) will support monitoring of Earth's               
surface changes.” Though originally developed for monitoring land surfaces, it has proven its usability for               
analysing water surfaces, too. Table 1 shows an overview over spatial resolutions, band number, central               
wavelengths and band widths. 
 

Table 1: Wavelengths and bandwidths of the 3 spatial resolutions of the            
MSI instruments 

 

The majority of studies on TSM concentrations tends to use relatively coarse (250 m) MODIS data                
focussing on large, well-gauged rivers such as the Yangtze (J-J Wang and Lu 2010), the Amazon                
(Mangiarotti et al. 2013; Santos et al. 2018), the Changjiang (Liu et al. 2006) and the Solimoes                 
(Espinoza-Villar et al. 2018). Medium resolution images (20–30 m) are used to investigate TSM              
concentrations e.g. where the Mississippi and Missouri rivers meet (Umar, Rhoads, and Greenberg 2018)              
and in the Yangtze (Jian-Jun Wang et al. 2009). Because of the very nature of the Brantas river system with                    
typical river widths of only 30 - 100 m the use of Sentinel-2 answers the need of high-resolution data with                    
resolution in the visible light and NIR bands of 10 m and red edge NIR band of 20 m.  
 

2.4.2.1 Atmospheric correction procedures 
Atmospheric interference is significantly large over water bodies. From the signal measured by satellites              
over inland water, about 90 percent stems from atmospheric contribution (Pereira-Sandoval et al. 2019).              
This is caused by atmospheric haze which scatters light, especially in the lower (blue, green) wavelengths.                
Interferences increase as reflected radiance from water decreases, meaning water with high clarity or high               
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algae concentrations are most affected (Gholizadeh, Melesse, and Reddi 2016). Proper atmospheric            
correction procedures play an important role when estimating water quality from water leaving             
reflectance values, especially if they are based on single or multiple relations using bands from the visible                 
light spectrum (Filipponi 2018). Over an open ocean, atmospheric interference can be fairly easily              
corrected by assuming that the water leaving radiance in the NIR is equal to zero. When this assumption                  
holds, an algorithm based on a relatively simple dark-pixel correction can be performed. Over inland and                
coastal waters, this assumption does not hold due to the fact that the water-leaving radiance in the NIR is                   
greater than zero. Presence of water components like sediments and dissolved organic particles are              
mostly responsible for this signal.  
 
 
AC of S2 data can be done by the Sentinel-2 Level-2A Prototype Processor, which is labelled Sen2Cor for                  
Sentinel 2 (atmospheric) Correction. From the Sen2Cor Configuration and User Manual (“Sen2Cor            
Configuration and User Manual” 2017): 
 
“Sen2Cor performs a pre-processing of Level-1C (L1C) Top of Atmosphere (TOA) image data, and applies a                
scene classification and atmospheric correction and a subsequent conversion into an ortho-image            
Level-2A Bottom-Of-Atmosphere (BOA) reflectance product. Outputs are an Aerosol Optical Thickness           
(AOT) map, a Water Vapour (WV) map and a Scene Classification map together with Quality Indicators                
data.” 
 
The S2 MSI mission was not designed for aquatic remote sensing, therefore also the Sen2Cor is not                 
designed for water bodies. Sen2Cor is based on the dark dense vegetation approach (Kaufman and Sendra                
1988). This approach assumes that vegetation is sufficiently dark. Also, it is assumed that the ratio                
between BOA at different wavelengths is constant. To be used successfully, this algorithm requires some               
pixels to correspond to dense dark vegetation (Ouaidrari and Vermote 1999). 
 
Another available AC model is provided by the ACOLITE algorithm, initially developed to perform AC over                
water from Landsat-8 OLI optical multispectral data. It has been extended for the use on S2 data. ACOLITE                  
bundles the atmospheric correction algorithms and processing software developed at RBINS for aquatic             
applications of Landsat (5/7/8) and Sentinel-2 (A/B) satellite data and several other metre scale satellites               
such as Pléiades-1 A/B, SPOT 6/7, RapidEye, PlanetScope, and WorldView-2 imagery. ACOLITE performs             
both the atmospheric correction and can output several parameters derived from water reflectances.             
ACOLITE is based upon the Dark Spectrum Fitting (DSF) atmospheric correction algorithms for aquatic              
applications. The method is based on the fact that meter scale satellites have a relatively narrow swath,                 
therefore assuming the atmosphere is homogeneous over a (sub)scene. By this assumption, the             
atmospheric path reflectance can be estimated from multiple targets in the same scene. These targets are                
selected based upon the lowest TOA reflectances in all bands. This is a fundamentally different approach                
compared to other water-focused AC models, which use predefined “dark” bands (oftentimes being the              
NIR and SWIR). The ACOLITE algorithm automatically finds the best band, yielding in the lowest               
atmospheric path (Vanhellemont and Ruddick 2018). 
 
Also, the Case-2 Regions CoastColour (C2RCC) algorithm (Brockmann et al. 2016) can be used for AC. It                 
relies on a large database derived from in situ measurements of radiative transfer simulations inverted by                
neural networks. Besides the aforementioned atmospheric correction algorithms for the Sentinel-2A MSI            
also iCOR, l2gen and Polymer are publicly available. Research shows that most AC models show high                
uncertainties, in many cases >100% and sometimes up to >1000% (Warren et al. 2019). In this study, the                  
uncorrected images (L1C) will be compared between the S2 standard Sen2Cor (L2A) and the most               
promising AC models for aquatic applications, being ACOLITE and C2RCC (Pereira-Sandoval et al. 2019). 
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2.4.2.2 Cloud masking 
Classification of clouds, cirrus, snow, shadows and clear sky areas is an important step in the                
pre-processing of optical remote sensing images (Hollstein et al. 2016) and crucial when using remote               
sensed images for retrieval of surface reflectance values (Hagolle et al. 2010; Muller-Wilm et al. 2013) 
 
The correct retrieval of surface reflection values becomes impossible for optically thick clouds and pixels               
affected by cirrus. Shadows of clouds must be treated as individual cases for a physically correct retrieval                 
of surface reflectance values (Hollstein et al. 2016).  
 

2.4.2.3 Errors introduced in spectral data from satellites 
Sun-glint can significantly affect S2 MSI data at specific viewing azimuth angles, especially when              
approaching the summer solstice (Filipponi 2018). Another effect which might introduce errors can be              
caused by the adjacency effect: influence on measured pixel reflectance values by the reflectance of               
adjacent pixels. Literature shows that target pixels which are darker than the background, become              
brighter but also cases are observed where it is the other way around: target pixels, which are brighter                  
than the background, become darker. Adjacency effects start playing a role within high spectral              
resolutions with resolutions higher than 1000 m (Ma Jianwen et al. 2006). 
 

2.4.2.4 Google Earth Engine as a remote sensing analysis platform 
When using the vast amount of data provided by satellite missions one can choose one out of two options:                   
either bring the data to your algorithm (i.e. manipulating data locally, offline) or bring the algorithm to the                  
data (i.e. data processing in the cloud, and by doing so making use of the joint processing speed of the                    
available servers). The Google Earth Engine (GEE) will be used for S2 data processing of this study, in                  
conjunction with ESA’s Sentinel Application Platform (SNAP) software. GEE contains servers with            
petabytes of satellite imagery available at high performance computation speed (Gorelick et al. 2017).              
SNAP will be used for processing and evaluating results from 3 types of atmospheric correction               
procedures: 1) forced atmospheric correction, 2) ACOLITE and C2RCC. ArcMap 10.7.1 will be used for               
building maps showing spatial distribution of model estimated TSM concentrations in the Brantas river              
basin. 
 

2.5 In situ laboratory TSM measuring techniques 
The determination of laboratory values for Total Suspended Matter is done by taking a well-mixed,               
measured volume of a water sample and filtering it through a pre-weighed glass fiber filter. The filter is                  
heated to constant mass at 104 ± 1º C and then weighed. The mass increase divided by the water volume                    
filtered is equal to the TSM in mg/L. This method is suitable for the determination of solids in potable and                    
surface waters as well as wastewaters with TSM concentrations of up to 20,000 mg/L. 
 

2.6 Statistical parameters for performance assessment 
The performance of each model is assessed using the coefficient of determination r2, the root mean square                 
error (RMSE in mg/L) and the normalized root mean square percentage error (NRMSPE also in %). THe                 
NRMSPE is added to intercompare performance of different models, or models based on a different               
dataset.  
 
R2 is the proportion of the variance in the dependent variable (TSM concentration) that is predictable from                 
the independent variable (Rrs). R2 provides a measure of how well the observed outcomes are mimicked                
by the model, based on the proportion of total variation of outcomes explained by the model.  
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RMSE is a widely used standard way to measure the error of a model in predicting quantitative data. The                   
error is expressed in measured units and by this it is a suitable way of evaluating the usefulness and                   
accuracy of a model. It can be used to compare errors of different models for the same dataset and not                    
between datasets, since it is scale-dependent. RMSE is the square root of the average of the squared errors.                  
By this, the effect of each error on the RMSE is proportional to the size of the squared error. This means                     
larger errors have a disproportionately large effect on RMSE, so it is sensitive to outliers. RMSE is                 
calculated as follows: 
 

MSE [mg/L]  R =  √∑
n

i=1
n

(y   − y )  i
︿

i
2

   

 
 , y , . . . , y  are predicted values  y︿ 1  ︿ 2   ︿ n  

 , y , . . . , y  are observed values  y 1  2   n  

 is the number of  observations  n  

 
As the last statistical parameter used in this study, NRMSE is added for assessment of model performance.                 
NRMSE also expresses the magnitude of the error in relation to the actual values, but since it's normalized                  
for the dataset, values can be compared between models, based on different datasets. NRMSE is calculated                
as follows: 
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3 
Materials and methods 

The goal of this chapter is to show the methodology used, starting with taking initial measurements until                 
finishing with a multi-conditional algorithm to derive TSM concentrations from optical remote sensed             
data. The chapter starts with defining the study area, followed by how data is collected and processed.                 
Quality assessment of collected data is explained along the way. Then, model development is explained.               
The chapter ends with showing a workflow diagram summarizing all of the above.  
 

3.1 Study area 
Choosing the Brantas basin as a case follows from its importance: the Brantas River is East Java's longest                  
river. It flows 260 km from its spring at Mt. Arjuno to the point where it branches into two rivers, the                     
Surabaya River and the Porong River. The Surabaya River (40 km) splits into the Mas River and Jagir                  
River, just before it enters the inner part of Surabaya City. Porong (53 km), Mas and Jagir River (both                   
approximately 14 km long) all drain into the Madura Strait. Approximately 30 million people live in the                 
Brantas River watershed (PJT-I Public Corporation 2005). 
 
The Brantas River basin is subdivided in an upper, middle and lower part. The upper part flows through a                   
reservoir, named Waduk Sutami. WISP-3 measurements and water samples for lab analysis are taken              
along the whole stretch of the river, from source to sea, although most measurements are taken                
downstream of Waduk Sutami. See figure 2 on the next page for an overview of the Brantas Basin.  
 
Through 35 organizations (PJT-I Public Corporation 2003) that play a role in water resources              
development and management of the Brantas River, a long time series with a vast amount of data is                  
available on approximately 8 different rivers in or near the Brantas river basin. This study will focus on                  
the Brantas river, Surabaya River and Porong River, as depicted in figure 2. 
 
To increase the chances of finding significant differences in measured water leaving reflectances, sample              
sites are identified where the most extreme possible differences in DO, BOD, COD and TSM are known to                  
be measured in the past or at least are expected to occur on a very short distance from one another. Also,                     
sampling sites are chosen to represent the whole river stretch with associated distinctive water quality:               
fairly clean water upstream, more contaminated water at the start of the industrial area and severely                
contaminated water downstream in the heavily populated metropolitan area just before discharging into             
the Madura Strait. These sampling sites are shown in figure 3 below. More detailed information on                
locations is given in the next section on data collection. 
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Figure 2: Overview of Brantas River and all its branches. Fieldwork sample sites are located along                
all branches, from source to sea. Individual sampling sites are shown in figure 3. 
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3.2 Data collection 
This section first shows a general overview of fieldwork missions and their data production. After,               
explanations can be found about databases encompassing on site historical measurements, in situ             
laboratory and spectral measurements and an explanation about retrieval of hyperspectral satellite data. 
 

3.2.1 Results overview from fieldwork missions 
1. In total 14 sampling campaigns have been carried out between December 2019 and March 2020,               

with a duration of 1 or 2 days each.  
2. In total 285 WISP-3 measurements are taken. In most cases, 3-5 measurements are taken at the                

same sampling site, within one minute. Sometimes the measuring angle to the sun was slightly               
altered. This was done to be able to later select the best measurements with the least noise.  

3. In total a combination of 27 WISP-3 measurements and results from laboratory analysis passed              
the quality check and can be used for regression analysis (match-ups WISP-3 and laboratory              
data).  

4. Satellite images of only 2 days during the sampling period have a cloud percentage < 20 %.                 
Because of the high percentage of small cloud patches, for every image all locations are examined                
separately, instead of choosing images on total cloud cover percentage. 

 
During the course of this study, and especially during fieldwork campaigns, close cooperation with PJT-1,               
EPA and BBWS resulted in successfully collecting and analysing water samples. I joined them on their                
regular sampling campaigns, and in between I organised my own. Figure 3 shows an overview of all                 
locations with match-ups of WISP-3 and laboratory measurements. From these 12 locations, a total of 27                
measurements can be used for linear and logarithmic regression. 
 

 

Figure 3: Overview showing locations with match-ups of WISP-3 and laboratory           
measurements 
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3.2.2 On site historical measurements from external datasets  
Regular water quality monitoring activities in the Brantas basin are performed by 3 organizations:  

1. Brantas Water Resources Management Organization (BBWS),  
2. Environmental Provincial Agency East Java (EPA) and  
3. Perum Jasa Tirta-1, Agency for Brantas and Bengawan Solo River Basins (PJT-1). 

Generally speaking, BBWS, EPA and PJT-1 measure pH, DO, TDS, temperature and conductivity on-site              
while all other variables (approximately 35 more) are measured in the laboratory. Databases were              
provided for use in this study by PJT-1 (2019), EPA (2015-2018) and BBWS (2016-2020). Unfortunately,               
the BBWS data came without exact measuring dates and therefore are excluded from further analysis. 
 

3.2.3 On site and laboratory surface water sampling 
Since the initial set-up of this study was broader, also investigating other water quality parameters, during                
all fieldwork campaigns DO and temperature measurements were done by myself on site with an AZ 8403                 
Portable Digital Dissolved Oxygen DO Tester. Samples from the lake are taken in an upstream, middle and                 
downstream part, each time at 3 different depths (0.3m, 5m and 10m). Water samples from the river are                  
taken at three spots at every cross section: at 25%, 50% and 75% of the width from the water surface.                    
Water samples at all sampling locations are taken by means of ‘hand-grab’ method and are taken from the                  
top water layer, usually the top 20 cm of the water. 
 
Choices of sample sites are greatly based upon data from PJT-I and upon information provided by Ecoton,                 
BBWS and EPA. To obtain in situ data, the following points were considered: 

I. Sampling in cooperation with PJT-I, EPA and BBWS was done in accordance with their existing               
fieldwork sampling schedule. Measurements from the handheld WISP-3 are collected in order to             
correlate in situ spectral with traditional measurements. To be able to correlate data from these               
sample sites with satellite imagery from the nearest cloudfree overpasses, fieldwork campaigns            
are planned as much as possible on actual days with a S2 satellite overpass. Per cross section 3                  
samples are taken: 25%, 50% and 75% of the river width. This is done to be able to determine the                    
variation of water quality parameters over the width, possibly estimating the adjacency effect.             
Samples with the spectrometer will be taken at the exact same spots as the samples for lab                 
analysis. 

II. Generally, sample sites are chosen in such a way that the chances are biggest to encounter water                 
with the widest range possible in measured values for SWQPs. This is done in order to calibrate                 
the model for a range as wide as possible. 

III. Apart from joining aforementioned organizations on their fieldwork missions, own missions were            
conducted in order to get an evenly distributed network of sampling locations for the entire basin.  

 

3.2.3.1 Quality assessment of Standard Laboratory Operating Procedure 
The EPA uses standardized protocols (i.e. SNI, APHA) to measure each water quality variable in their own                 
laboratory. PJT-1 uses its own laboratories in Malang and Mojokerto. The PJT-1 water quality laboratory               
management is ISO-certified. BBWS collects water samples and has them analysed at the laboratories of               
PJT-1. 
 
Water samples taken by myself when conducting fieldwork measurements alone were analysed at the              
laboratory of the Environmental Engineering Department of ITS (Sepuluh Nopember Institute of            
Technology). These samples were analyzed using a gravimetric method following an unknown protocol.  
 

3.2.4 WISP-3 reflectance data 
After taking WISP-3 measurements, they are uploaded onto a platform provided by Water Insight BV,               
called WISPweb. Here, metadata is added for every single measurement. On WISPweb, measurements can              
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be searched, filtered and compared. It is a very useful tool to investigate individual above water spectra                 
for quality assessment. Also basic, visual analysis of the water colour can be performed and spurious                
measurements can be easily flagged out.  

 
3.2.4.1 Quality assessment of methods with WISP-3 in-situ measurements 
From the WISP-3 User Guide (Peters and Laanen, n.d.): 
“The WISP3 uses a unique configuration of fiber optics. To validate this approach, WISP3 measurements               
were compared against other non handheld or mounted spectroradiometers and laboratory           
concentrations.” The WISP-3 is also calibrated against a NIST (National Institute of Standards Technology)              
traceable light source. 
  
The handheld WISP-3 radiometer averages 15 automated samples each time the button is pushed. For this                
study 3 to 5 manually induced measurements (of 15 samples each) per sampling station were performed,                
in order to do a quality control check on those sets of measurements. Average values of those sets of                   
measurements are used, except when 1 out of all manually induced measurements was more than 20% off                 
(that measurement then was neglected). 
 
The water leaving reflectance R(0-) is a ratio and should therefore never be lower than 0 or higher than 1.                    
Values higher than 1 should be flagged and not used. High reflectance values can be caused by sun glint or                    
mirror-like reflection of the water surface. Most of the impact from sun glint is seen in the blue-green                  
bands, although sometimes it affects the whole spectrum (higher reflectance / more noise overall). 
 
To validate the estimated TSM concentrations from spectral images derived from the WISP-3             
measurements, in situ data from the laboratory is used. 

 

3.2.5 Hyperspectral satellite images 

3.2.5.1 Image acquisition 
The Sentinel-2 mission consists of two satellites 2A and 2B in a sun-synchronous orbit and is originally                 
taken into operation and is optimized for (monitoring of) land surface conditions. Over the years, it has                 
proven its value for water quality monitoring though. It is used in this research because its products are                  
freely available and because of the high-resolution of the images in the visible and near infrared domain,                 
as shown in table 2. 
 

Table 2: Overview of Sentinel-2 bands in the visible and NIR domain 

Sentinel-2 
band 

Band name 
Central 

wavelength 
[nm] 

Resolution 
[m] 

Band 2 Blue 492 10 

Band 3 Green 559 10 

Band 4 Red 665 10 

Band 5 Red edge 1 704 20 

Band 6 Red edge 2 741 20 

Band 7 Red edge 3 783 20 

Band 8 NIR 833 10 

 
For comparison, results of water sample analysis are taken as often as possible within 2 hours before and                  
after satellite overpass. Individual S2 images are downloaded from the Copernicus Open Access Hub. For               
each match up with laboratory samples, the atmospherically corrected bottom of atmosphere (level 2A)              
product as well as the atmospherically uncorrected top of atmosphere product (level 1C) is downloaded               
for further analysis. Bulk data acquisition of S2 data is done through the GEE platform. 

 21 
 

https://paperpile.com/c/qjU5q7/6gy91


 

 

3.2.5.2 Quality assessment of Sentinel-2 optical satellite imagery 
A first, visual inspection is undertaken by analyzing the RGB color composite image of the remotely sensed                 
data. Thereby, images with sun glint and cloud cover can be easily identified and manually taken out of the                   
dataset. Also, to check if derived reflectance values actually stem from water pixels and not spurious or                 
land pixels, spectra are plotted containing all bands. In this way a check is possible to see if the typical                    
water signal can be deduced. 
 

3.2.5.3 Sentinel-2 bands simulated from WISP-3 data 
The high-resolution WISP-3 data is used to calculate Sentinel-2 output on bands 1 to 7 (averages are taken                  
over from WISP-3 data over the bandwidth of Sentinel-2 bands). In this way, accurate Sentinel-2 like data                 
is produced, without errors introduced by atmospheric correction procedures.  
 

3.3 Data processing WISP-3 
This section describes the calibration and fingerprinting procedures to achieve high quality hyperspectral             
WISP-3 data.  
  

3.3.1 Calibration 
During transportation of the WISP-3 to Indonesia, one out of two shock indicators went off. It was decided                  
to use the equipment nonetheless, with possible need of calibration afterwards. First analysis of the               
results showed indeed unrealistically high water leaving reflectances. After receival of the WISP-3 by              
Water Insight, it was at once re-calibrated. The WISP-3 was checked against 4 other WISP-3’s (including                
the Gold Standard WISP-3) and it turned out that the water leaving and sky radiance and channels               Ld   Lu   

were way off. The orientation of the lenses were affected severely. Ed measurement values were not                
affected. After re-calibrations, resulting R(0-) were now between 0 and 1, as expected. The shapes of the                 
spectra are maintained throughout the recalibration process, the numbers are normalized.  
 
The WISP-3 provides values for Lu, Ld and Ed at 401 bands. Also, subsurface irradiance reflectance values                 
R(0-) are directly calculated and provided, using a constant value for  (sky correction).ρ   

 

3.3.2 Stefan Sims’ fingerprinting algorithm 
Because of the extremely high turbidity levels encountered , sun glint seemed to be a problem in a                  
substantial part of the measurements. It was decided to correct for this sun glint by using the                 
fingerprinting algorithm developed by Simis and Olsson (2013). This algorithm optimizes the sky             
correction factor depending on features specific to each measurement. Optimization of is done based  ρ           ρ     

on identification of atmospheric absorption features that are present in the upwelling and downwelling              
radiance received by the sensors. The algorithm provides a unique value of for each measurement. With            ρ     

optimized values - unique for every measurement - the and values showed overall slightly ρ          (0 )  R −    Rrs      

lower values. See Appendix A for an overview of the effect of fingerprinting on the spectra of 27 selected                   
matched-up measurements. 
 

3.4 Data processing hyperspectral satellite images 
This section shows a short overview of the atmospheric correction models used, of how atmospheric               
correction of a L1C S2 image is forced by a ground control point and how clouds are masked before using                    
S2 images for analysis. 
 

3.4.1 Atmospheric correction models 
For this study, L1C uncorrected data and atmospherically corrected data by Sen2Cor, C2RCC and ACOLITE               
algorithms are used. All these processors are, all in their own way and with different levels of accuracy,                  
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able to correct for the effect of the aerosol contributions. For each AC model the followed procedures are                  
outlined in the subparagraphs below, along with parameter values used (if applicable). 
 

3.4.1.1 Sen2Cor 
Since March 23, 2016 Sentinel-2 L1C data has been available in Google Earth Engine. On March 27, 2019                  
also S2 L2A was added to the GEE catalog. This creates possibilities to process images in bulk for whole                   
time series. Sen2Cor data was computed and released from late 2018 onwards by ESA. All Sen2Cor                
processing has been done on Google’s servers, in the cloud on.  
 

3.4.1.2 C2RCC 
To be able to process L1C images into C2RCC and ACOLITE corrected images, downloaded copies of L1C                 
images are necessary. Therefore, L1C is collected from The Copernicus Open Access Hub and processed               
using a built-in feature of SNAP to achieve C2RCC corrected images. SNAP can also be used for reading the                   
output files and for extracting specific pixel values corresponding to in situ sampling stations. To use the                 
C2RCC algorithm, first the whole scene has to be resampled to the same resolution (10m is chosen,                 
corresponding to the resolution of band 2, 3, 4 and 8). For the C2RCC processor, the valid pixel expression                   
is changed from B8 > 0 && B8 < 0.1 to B8 > 0 && B8 < 0.3, to avoid masking out of large parts of the                           
Brantas river. The temperature is adjusted to reflect the yearly mean river water temperature of 28 ℃                 
(standard is 15 ℃). Also, the option is checked to ‘Output AC reflectances as Rrs instead of Rhow’, as to                    
achieve values which can be compared directly without any conversions to outcomes of other AC models.  
 

3.4.1.3 ACOLITE 
ACOLITE can be run using a graphical user interface (GUI) or a command-line interface (CLI). The GUI                 
offers only limited configuration (limited file input/output, settings, output parameters and loading/saving            
of settings files). Therefore this study uses the CLI mode to make full use of the models capabilities. The                   
specific aquatic related parameters are set to l2w_parameters =         
Rrs_*,spm_nechad2016,chl_re_moses3b74, the standard l2w_mask_threshold = 0.0215 is set to l2w_mask          
= False to avoid any unwanted masking out of narrow river segments. Due to the high sediment loads, NIR                   
bands give high reflectance values making water pixels susceptible for being masked out. The output is                
stored as a .nc (netCDF) file and can be opened, read and manipulated in SNAP. 
 

3.4.1.4 Forcing atmospheric correction 
To use forced atmospheric correction on a S2 image, a calibrated WISP measurement from WISPweb is                
used as a ground control point. First, from the WISP data, the remote sensing reflectance (Rrs) is calculated.                  
Next, the top-of-atmosphere reflectance data from the satellite are retrieved. Now using the pin manager               
within the SNAP environment, precise pixel values can be obtained for the exact location where the WISP                 
measurement was taken. From here, the reflected light which is assumed to be due to the atmosphere can                  
be calculated, as the difference between the WISP measurement and the TOA value of the pixel. The                 
satellite TOA data for S2 is already converted to irradiance reflectance. What is derived from the WISP                 
data is radiance reflectance, so there is just a factor PI difference between WISP and satellite units. Now, as                   
a last step, the by WISP-data forced atmospherically corrected data for the whole image can be calculated                 
using the band-math tool of SNAP. A more detailed approach can be found in the manual on forced AC by                    
Peters and Laanen (n.d.). 
 

3.4.2 Cloud masking of L1C and L2A products 
To detect clouds, cirrus, cloud shadows and water pixels in the Sentinel-2 MSI images, decision trees as                 
well as the classical Bayesian approach are used, as provided by Hollstein et al. (2016). The method was                  
adapted to be used in GEE by Rodrigo E. Principe and made open source in geetools. 
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3.5 Development of multi-conditional TSM algorithm 
This section describes the method followed to develop the multi-conditional TSM algorithm. 
 

3.5.1 Basic TSM models tested 
First, the built-in WISP-3 models are mimicked, according to algorithms developed by Rijkeboer (2000).              
This is done to see how well the different models perform and to see if they can be used and tuned to local                       
circumstances. Results are shown in Appendix B. The built-in algorithms are considered suitable for a               
range of moderately to highly turbid waters. In this case however, investigated water bodies turned out to                 
be extremely turbid, which resulted in the WISP-3 algorithm reaching its maximum detection limit. This               
led to significant underestimation of TSM concentrations. Secondly, basic, well known and well defined              
TSM models were tested. The 7 bands in the visible spectrum of the Sentinel-2 (based on WISP-3                 
averages) are related to results of laboratory measurements. Simple and multiple linear regression is              
performed to test 1 band and 2 band combination algorithms. The end result is a 1 and a 2 parameter                    
empirical algorithm based on single bands or band combinations of bands 1 to 7 tuned to local                 
circumstances, calibrated on high-resolution WISP-3 data. The same approach has been followed using the              
original WISP-3 high-resolution data, resulting in empirical algorithms based on single bands or band              
combinations of the 401 bands (400 – 800 nm). All results are shown in Appendix C based on individual                   
WISP-3 bands and in Appendix D for the S2 simulated bands. Appendix E shows an inter-comparison of                 
TSM algorithms based on single and multiple WISP-3 and S2 bands. Derived algorithms either perform               
moderately over the whole range of TSM concentrations, or only well on small, specific ranges. Therefore,                
these results are not considered satisfactory. The development of a multi-conditional TSM algorithm will              
combine the models, each performing best within their own range.  
 
Development of the multi-conditional TSM algorithm is based on linear relations for low to medium TSM                
concentrations, based on reflectances in the green and red band. For high to extremely high TSM                
concentrations, a polynomial relationship in the red edge NIR band is used. For each of the three to be                   
used, separate TSM models, the dataset is split in 60% for calibration and 40% for validation part. By                  
taking these steps, the method developed by Novoa et al (2017) is roughly followed.  
 

3.5.2 Algorithm bounds selection 
The switching reflectance R(0-) values can be best selected based on the saturation behaviour of the most                 
sensitive band(s). The selection is done by comparing the in situ R(0-) reflectance values of the green vs                  
red band and the red vs NIR band. The data points are modelled using a logarithmic regression curve. This                   
curve starts linearly and bends at the point where the saturation of the most sensitive bands starts                 
occurring (although it plots as a straight line on a logarithmic scale). The actual value of this saturation                  
point is computed where the first derivative of the regression curve equals 1 (slope = 1). This is the point                    
between a horizontal (complete saturation) and vertical line.  
 

3.5.3 Multi-conditional TSM algorithm validation 
Validation of the performance of the multi-conditional algorithm based on WISP-3 data is done by the 40%                 
data saved for validation. Validation of the performance of the multi-conditional algorithm based on S2               
data is done by comparing historical data provided by PJT-1 and EPA with modelled values. 
 

3.5.4 Model and algorithm performance 
The statistical parameters used to describe the models performances r2, RMSE, and NRMSE are calculated               
using the Python (Notebook) code as shown in figure 4. 
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Figure 4: The statistical parameters used to describe the models          
performances R2, RMSE, and NRMSE and how they are calculated using the            
following Python (Notebook) 

 

3.6 Development of model based on linear regression of S2 match-ups with            
historical in situ measurements 
The by this study developed MCA can be used on S2 derived remote sensing reflectances, given an                 
accurate estimation of reflectance values by a valid atmospheric model. For time series analysis this               
means processing over 290 S2 L1C products (2015 - 2020) into AC corrected images. By doing so, pixel                  
values can be extracted for match-up with the in situ historical TSM dataset. Each run takes approximately                 
50 min (ACOLITE) until 8 hours (C2RCC). Executing this proposed method exceeds available             
computational power and time given this study, if doing this for all available images. Therefore, only L1C                 
(2015-2020) and L2A (2018-2020) are available for bulk processing. Since reflectance values in L1C              
(RMSPE 320%) and L2A (RMSPE 211%) are so far off from actual values (compared to WISP-3                
measurements), predicted values from S2 cannot be used as input for the MCA developed by this study.                 
What can be, and is done, however is matching the historical dataset with TSM values from the Brantas                  
project stakeholders with the S2 L1C dataset 2015-2020. Based on this new dataset with 42 matched                
values, logarithmic regression can be performed to derive an algorithm for calculating TSM concentrations              
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based on Rrs from S2. Since only band 7 can be used, the method followed is a simplified version of the                     
one used to develop the MCA.  
 

3.7 Summary of workflow from first idea to end product 
Figure 5 shows a flowchart with an overview of all general process steps to take by this study, as a                    
summary of this chapter. To estimate TSM concentrations a multi-conditional algorithm is developed             
using linear regression for low to medium TSM concentrations based on green en red band reflectance                
values and polynomial regression for high to extremely high TSM concentrations based on the red edge                
NIR band.  

 

 
Figure 5: The flow chart shows an overview of all general process steps to take in this study. It is adopted and                      
modified from Gholizadeh et al. (2016). 
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4 
Results 

In this section, results are shown - and briefly discussed - starting from scratch. Starting with analyzing in                  
situ hyperspectral radiometer measurements until lastly applying the multi-conditional algorithm on           
satellite data, in various ways. First, some typical water reflectance spectra are shown, as well as a                 
description of bio-optical properties of the Brantas River system as measured during the fieldwork              
campaigns. Relationships between spectra and TSM concentrations are shown, modelled and used to build              
the multi-conditional algorithm. After, the algorithm is tested on Sentinel-2 data to check how well the                
model(s) perform(s).  
 

4.1 Typical water reflectance spectra 
Development of the multi-conditional algorithm is based on the database of WISP-3 subsurface irradiance              
reflectance values R(0-) from 27 measurements corresponding to laboratory analysis, from samples            
collected between December 2019 and March 2020. Figure 6 shows some typical spectra, after              
re-calibration and fingerprinting following the method described by Simis and Olsson (2013). Rapidly             
increasing values for R(0-) for low concentrations of TSM (7 - 65 mg/L) are observed in the range of                   
400-600 nm. From figure 6 it becomes apparent that the reflectance in the red band is more sensitive than                   
the reflectance in the green band to TSM concentration changes between 35 - 132 mg/L. Sensitivity for                 
low TSM concentrations in the NIR band are low, but rapidly increase for concentrations higher than 65                 
mg/L, and for extreme high concentrations it is the most sensitive band. 
 

 

Figure 6: Selected subsurface irradiance reflectance values R(0-) for         
different TSM concentrations (mg/L) measured in the Brantas River.         
Vertical lines depict the green (541-577 nm), red (650-681 nm) and           
NIR red-edge (773-793 nm) bands of the Sentinel-2 satellite mission          
sensors.  
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The overview of selected reflectance spectra in figure 6 also shows the extremely turbid nature of the                 
Brantas River surface water. High turbidity levels are easily recognized by the typical tail signature (high                
reflectance values > 750 nm). Most measurements show spectra with a tail similar to the 898 mg/L                 
example from figure 6. 
 
Figure 7 shows generally increasing TSM concentrations when following the river downstream. The high              
peak at Mojokerto 11 BUP is caused by inflow of a tributary. So, the river behaves in this respect as                    
expected, showing increasing TSM concentrations from increasing run off, tributaries and increasing            
urbanization along the river stretch. Figure 7 shows combined data from December 2019 and March 2020                
and therefore does not show any detailed information on the river system, other than showing a clear,                 
general pattern.  
 

 

Figure 7: TSM concentrations as measured by laboratory going         
downstream from left to right, in the period between December 2019           
and March 2020. As expected, in general, TSM concentration         
increases when going downstream. The high peak at Mojokerto 11          
BUP is caused by inflow of a tributary.  

 

4.2 Bio-optical properties of the Brantas River surface water 
All measurements considered in this research are taken downstream of the reservoir Waduk Sutami. All               
measurements downstream of Kediri (lets say, halfway) show high reflectance values for all bands >750               
nm: the distinctive signal for extremely turbid water. Most measurements also seem to have surface               
reflectance added to the signal. This fits the turbid profile, since high turbidity levels results in less                 
absorption, which was already recognized by Oxford (1976). An increased backscatter effect in the              
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direction of the incident light source is observed, which is characteristic for extremely high turbidity               
samples. In most measurements, no clear signature of Chl-a or CDOM was detected. Turbidity dominates               
most of the spectra, all the time.  
 
Some measurements of the more upstream area of the river system show a peak around ~700 nm, which                 
is interesting. Literature indicates this peak to be related with an increase of Chl-a concentration that                
displaces the peak position in the NIR part. This is typically observed in highly turbid or productive water                  
bodies (Z. Wang et al. 2017). Some spectra show a slight dip for phycocyanin absorption at 620 nm. It                   
must be noted these observations only hold for the measurement period of this research: December 2019                
- March 2020. Details of spectra of three measurements are shown below, to demonstrate the highly                
variable nature of the river system and to show some interesting features. 
 

 

Figure 8: WISP-3 subsurface irradiance reflectance for sample        
location 150m upstream of Kranagkates Bridge, in the upstream         
region, just 1.5 km downstream of the Waduk Sutami dam.          
Corresponding laboratory measurement shows a TSM concentration       
of  7.2 mg/L. 

 
Figure 8 shows R(0-) for a location near Karangkates Bridge in the upstream part of the middle section of                   
the Brantas River, about 11 km upstream of Blitar, just 1.5 km downstream of the Waduk Sutami dam. The                   
right bank is sparsely populated, the left bank mostly agriculture lands. Fairly clear water is observed (the                 
clearest of the whole dataset). As is often the case for inland lakes and waters, the middle part of the                    
reflectance is pronounced. Since this is the region for green light, it indicates the presence of algae. Chl-a                  
typically has a high absorption at 665 nm and fluorescence emission at 710 nm, which both can clearly be                   
seen here. The spectrum in figure 8 shows a slight dip for phycocyanin absorption at 620 nm. Also, the                   
mean specific phytoplankton absorption coefficient at 676 nm is visible. Bottom visibility at this particular               
location is confirmed by the elevated signal >750 nm where no high sediment load is observed, also a peak                   
could be expected at 810 nm (from benthic plant for example). The associated light attenuation Kd = 2.4                  
corresponds with a Secchi disk depth of 0.47m, which would have been the water depth approximately. 
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Figure 9: WISP-3 subsurface irradiance reflectance for sample        
location in Trisula, Blitar, in the upstream region. Corresponding         
laboratory measurement shows 91 mg/L TSM. 

 
Figure 9 shows R(0-) for a location near a populated area in the upstream part of the middle section of the                     
Brantas River. It is located roughly 13 km downstream of the Waduk Sutami dam (reservoir). The                
signature shows a peak for sediment load around 650 nm. The prominent dip near 765 nm results from                  
atmospheric conditions: this dip is caused by oxygen in the atmosphere. This sample is pronounced               
especially in the green and red part of the spectrum. This water appears brown-reddish, due to the high                  
sediment load.  
 

 

Figure 10: WISP-3 subsurface irradiance reflectance for sample        
location in Wringinanom, in the downstream, industrialized region of         
the Brantas River. Corresponding laboratory measurement shows a        
TSM concentration of 238 mg/L. 

 
Figure 10 shows R(0-) values for a location at Tambangan Wringinanom (a ferry service near ECOTON                
office, taken on 08-02-2020). Here in the lower part of the Brantas river, the river is named Surabaya                  
river. The location is still 28 km upstream of Surabaya city, but already in a heavily populated area and in                    
the important industrial district of Gresik. This spectrum shows high overall reflectance >750 nm:              
indicating very turbid water. The effect of surface reflectance added to the signal is probably also present.                 
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The peak around 700 nm could be due to highly turbid water or productive waters with an increase in                   
Chl-a displacing the peak position from 710 to 700 nm (Z. Wang et al. 2017). 
 

4.3 Relationship between WISP-3 and TSM concentration 
So, now a general understanding of the bio-optical properties of the river system have been established,                
we can focus on WISP-3 spectra versus TSM concentration solely, to derive relationships for developing an                
algorithm to estimate these TSM concentrations. The figures below show relationships of TSM             
concentrations and the R(0-) reflectances in bands green, red and NIR (respectively S2 band 2, 3 and the                  
red edge band 7). The values used are derived from the high-resolution WISP-3 measurements and               
averaged for the respective total band widths of the corresponding Sentinel-2 bands. This is done because                
in the end the goal is to use Sentinel-2 remote sensed data to estimate TSM concentrations. By doing so, a                    
realistic estimate is made for values in the S2 bands. The next paragraphs and accompanying figures show                 
the relationship between reflectances and TSM concentrations of the bands 2, 3 and 7. 
 
Figure 11 emphasises a linear relationship between the green band and TSM concentration < 30 mg/L.               
The linear correlation is good (r2 = 0.91, RMSE = 5.3 mg/L and NRMSE = 13.2%). It can be clearly seen that                      
the signal gets saturated quickly, for TSM concentration of above 30 mg/L the signal already gets                
scattered. Figure 12 shows a similar pattern for the red band, which saturates at higher TSM                
concentrations. Above 150 mg/L the signal is 100% saturated, but scattering already starts at around 80                
mg/L. Also here a good linear fit can be achieved for lower concentrations (r2 = 0.92, RMSE = 12.6 mg/L                    
and NRMSE = 10.1%). Early research (Jerry C. Ritchie, Cooper, and Schiebe 1990; J. C. Ritchie and Cooper                  
1991) already shows that if the range of suspended sediment is roughly between 0 and 50 mg/L                 
reflectance from almost every wavelength will be linearly related to suspended sediment concentrations.             
This research however shows the linear relationship holds for even slightly higher concentrations of TSM. 
 

 

Figure 11: Scatter plot showing comparison between TSM        
concentration and reflectance values in S2 green band (B3, central          
wavelength 559 nm). It can be clearly seen that the signal gets            
scattered for concentrations > 30 mg/L and is fully saturated for TSM            
concentrations > 100 mg/L. 
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Figure 12: Scatter plot showing comparison between TSM        
concentration and reflectance values in the S2 red band (B4, central           
wavelength 559 nm). The relationship follows a similar pattern as          
the green band, at different concentrations: the signal gets scattered          
for concentrations > 80 mg/L and is fully saturated for TSM           
concentrations > 150 mg/L. 

 

 

Figure 13: Scatter plot showing comparison between TSM        
concentration and reflectance values in the S2 red-edge band (B7,          
central wavelength 783 nm). The relationship follows a different         
pattern than the green and red band, without saturation for higher           
TSM concentration.  

 
As TSM concentrations increase, a curvilinear relationship is observed. This is demonstrated by figure 13               
with a very good polynomial fit for higher TSM concentrations, without any signs of saturation. The                
polynomial fit is reasonably well with r2 = 0.82, RMSE = 58.3 mg/L and NRMSE = 7.9%. This behaviour was                    
also already recognized by Ritchie et al. (1990) and Ritchie and Cooper (1991) and recently confirmed by                 
Novoa et al. (2017). Figure 14 shows similar increase in reflectance values for the green and red band, and                   
a clearly sharper increase of both the green and red band compared to the red edge NIR band. This proves                    
the higher sensitivity in the green and red band for lower TSM concentrations, compared to the NIR band. 
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Figure 14: in situ reflectances R(0-) for TSM concentrations until          
140 mg/L, showing similar sensitivity in the green and red band,           
and a clearly lower sensitivity for the red edge NIR band.  

 
All the above is summarized in figure 15 below. The green band really shows full saturation, the red band                   
nearly full and the NIR band shows a continuing relationship for high TSM values. The flattening of the                  
curves combined with different sensitivity of the available bands to changing TSM concentrations, is best               
utilized in a multi-conditional approach for developing an algorithm to estimate TSM concentrations. 
 

 

Figure 15: the good linear relationship for low TSM concentrations          
but flattening of the curves in the green and red band for higher             
TSM concentrations suggest to use a multi-conditional algorithm        
development approach, where the green and red band are best used           
for lower TSM concentrations and the NIR band can be used for high             
TSM values, following the still clearly visible relationship at high          
TSM concentrations.  
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4.4 Multi-conditional TSM algorithm based on WISP-3 data 
The goal is to develop an algorithm to estimate TSM concentration from water leaving reflectance values.                
The first two paragraphs have pointed out that low TSM concentrations are best estimated using the green                 
band linear relation, moderate TSM concentrations by the red band linear relation and high and extremely                
high values by the polynomial relationship in the NIR band. These characteristics are best modelled using                
a multi-conditional algorithm. For this, separate models will be used as described above. When to switch                
from one model to the next is based on the saturation of the most sensitive band. So, now the values for                     
the switching bounds for switching from one model to the next have to be determined. The next paragraph                  
shows how these bounds are calculated. 
 

4.4.1 Switching bounds selection 
The switching reflectance R(0-) values are selected based on the saturation behaviour of the most               
sensitive bands. The selection is done by comparing the in situ R(0-) reflectance values of the green vs red                   
band and the red vs NIR band. The data points are modelled using a logarithmic regression curve. Figure                  
16 shows the scatterplot for the green band vs red band. We earlier already saw (figure 14) that                  
sensitivity for the green and red band are almost similar (green band slightly more sensitive than the red                  
band), which is proven by what we see in figure 16 (the points almost plot a straight line). This is not in                      
line with results found by Novoa et al. (2017), which showed decreasing sensitivity in the green band for                  
higher reflectance values in the red band. Because in this case the sensitivity does not differ greatly, no                  
point will be found where the slope of the tangent of the regression curve will be 1. If the tangent                    
anywhere would have had a slope of 1, the corresponding y-intercept value would be the value for the                  
switching bound. Therefore, a switching bound for changing between algorithms based on the green and               
the red band will be done iteratively, in such a way that it yields the highest r2 value for the model as a                       
whole. This will be done simultaneously with optimizing the performance of the multi-conditional             
algorithm, described in the next paragraph.  
 

 

Figure 16: Scatterplots of reflectance R(0-) at 559 vs 665 nm for the             
in situ measurements. This comparative plot shows a slightly higher          
sensitivity in the green band than the red band TSM concentrations,           
being almost similar. The orange solid line corresponds to the          
logarithmic regression line between the green and red band. The          
dashed grey line is the tangent in point (0.01, 0.05), shown as a red              
diamond in the figure. As the tangent is drawn in the figure, it is the               
steepest it gets, with a slope of 0.71. 
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Figure 17: Scatterplots of reflectance R(0-) at 665 vs 783 nm for the             
in situ measurements. The red solid line corresponds to the          
logarithmic regression line between the red and red edge NIR band.           
The dashed grey line is the tangent in point (0.15, 0.29), the point is              
highlighted as a green diamond in the figure. Here the tangent has            
slope of 1, the corresponding y-intercept value for the switching          
bound is 0.14. 

 
Figure 17 shows the comparative plot between the red band and the NIR band. For lower values of TSM                   
concentration the red band is more sensitive, shown by the steeper increase in R(0-) values for the red                  
band, compared to the NIR band. Also, the saturation of the red band is clearly visible for higher                  
reflectance values. The figure shows how the switching value s665-783 is derived for switching from the red                 
to the red edge NIR band algorithm. It corresponds to the y-intercept of the tangent of the regression                  
curve where the slope of the tangent equals 1. This is at the point (0.15, 0.29). The corresponding                  
y-intercept value for the switching bound is 0.14. All interval bounds are based on the R(0-) value in the                   
red band, as this is the intermediate band between the green and the red edge NIR band. The overall                   
observed behaviour is very similar as found by Novoa et al. (2017), the value for the switching bound for                   
switching from the red to the NIR band slightly higher (0.14 versus 0.12). 
 

4.4.2 Performance of multi-conditional algorithm 
Now, after the bounds have been determined, the performance of the algorithm can be tested. For each                 
relationship in the appropriate band, linear or logarithmic regression functions are modelled. From these,              
parameter values are found for the TSM models. The models are shown in table 3, together with their                  
respective parameter values. The table also shows which switching bound values are used, and which TSM                
concentration range is associated with it. 
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Table 3: TSM models and associated switching bound values and TSM concentrations for three models used in                 
the multi-conditional algorithm. The model using reflectance information from the green and red band are               
linear, the model based on the NIR red edge band is a polynomial function. 

Interval range of R(0-) values 
in the red band 

TSM model Application range of TSM 
concentration (mg/L) 

R(0-)red band <= 0.057 𝛼 * R(0-)green band 0 - 30 

0.057 < R(0-)red band <= 0.142 β * R(0-)red band 30 - 80 

0.142 < R(0-)red band ɣ * R(0-)NIR
2 + δ * R(0-)NIR + ε > 80 

 
With: 𝛼 = 203.66, β = 329.28, ɣ = 4431.62,  δ = 36.36 and  ε = 44.45. 
 
Now, using the multi-conditional algorithm on the S2 band reflectance values, averaged from the WISP-3               
measurements, the performance of the model can be tested. It is compared to the original 27 laboratory                 
measurements gathered during the fieldwork campaigns, as shown in figure 18. The performance of the               
model is quite well with values for statistician parameters as shown in table 4 below. Scatterplot with                 
residual values is shown in figure 19. 
 

 

Figure 18: Modelled TSM concentrations for the 27 matched up          
measurements by the multi-conditional algorithm vs the laboratory        
results. The model performs quite well with r2  = 0.79. 
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Table 4: showing statistical parameters for the multi-conditional TSM         
algorithm 

r2 [-] 0.79 

RMSE [mg/L] 66.5  

NRMSE [%] 9.71 

 

 

Figure 19: Residuals from comparing the modelled TSM vs laboratory          
values. Overall the model functions well, though still a considerable          
number of estimates is more than 50 mg/L off. 

 
From figure 18 and figure 19 it becomes clear that the model performs well for TSM concentrations up to                   
250 mg/L but is less accurate in estimating the peaks depicting TSM concentrations of 300 mg/L and                 
higher. More match-ups between in situ spectral and in situ laboratory measurements are necessary to               
achieve more accurate results, since the used database only consists of 27 matched measurements. 
 

4.5 Exploring Sentinel-2 data 
Now, having derived a multi-conditional algorithm for TSM concentrations in the Brantas River based on               
in situ spectral measurements, the next step is to involve satellite remote sensed data. It is generally                 
acknowledged that accuracy of satellite images is greatly affected by - amongst others - atmospheric               
correction procedures and uncertainties (Gernez et al. 2015). Therefore, ACOLITE and C2RCC processors             
will be used, being two of the most promising models for aquatic purposes according to Warren et al.                  
(2019). Results will be compared to the Sentinel-2 standard applied Sen2Cor results atmospherically             
uncorrected images to indicate difference in performances of the models. 
 

4.5.1 Atmospheric correction of S2 data 
To be able to assess the performance of the selected AC models, it is necessary to compare their results to                    
the above water in situ spectral measurements from the WISP-3, assuming it is the closest to the truth as                   
can be achieved. To be able to do so, match-ups are needed between satellite images and in situ                  
measurements. The WISP-3 dataset is matched with S2 L1C images to find these match-ups.  
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4.5.1.1 Match-ups from recent fieldwork missions for atmospheric correction 
Appendix I shows an overview of in situ sampling days, region and sampling stations, dates from which                 
Sentinel-2 images are available and corresponding cloud cover. Only match-ups exist for 1 sample on               
28-02-2020 and 9 samples on 24-03-2020 due to high cloud cover percentage during the fieldwork               
campaign period. So unfortunately extensive (statistical) analysis cannot be performed. Nonetheless the            
found match-ups provide valuable information, which is shown below. 
 

4.5.1.2 Comparing uncorrected and AC model results and performances 
Figure 20 shows 1 match-up from 28-02-2020 at Jagir Sluice. From the figure it can be seen that the effect                    
of the atmosphere on measured Rrs is biggest in the lower wavelengths. For wavelengths > 605 nm L1C                  
and L2A show very comparable Rrs values. Overall, taking the above water WISP-3 measurement as ‘the                
truth’, the S2 AC L2A clearly overestimates Rrs greatly, where the C2RCC processor seems to               
underestimate Rrs. From this one measurements, ACOLITE seems to perform best. To check if these               
assumptions hold, 23 other locations are checked for the same image (28-02-2020). Since only a single                
WISP-3 measurement matches for that date, the whole image is atmospherically corrected (forced by              
WISP-3). This only holds by assuming that the difference between WISP-3 measurement Rrs and L1C Rrs                
at Jagir Sluice, holds for every pixel in the image (constant atmospheric influence for the whole image).                 
Results are shown in Appendix J, which show that the aforementioned assumption does not hold. Forced                
by WISP-3 spectra differ greatly compared to other spectra, and even result in negative values.  
 

 

Figure 20: Comparison of spectra derived by using a set of AC models             
for Jagir Sluice on 28-02-2020, showing the effect of the atmosphere           
on measured Rrs and performances of the AC models compared to a            
ground truth measurement. The S2 L2A seems to greatly         
overestimate the Rrs values, whereas the C2RCC underestimates        
them. ACOLITE gives the best result. 

 
The search for match-ups between above water spectral measurements and satellite imagery also gives 9               
hits for 24-03-2020. That day, in situ measurements were taken on Waduk Sutami (WS). Figure 21 shows                 
spectra derived for one of the locations. Also here, S2 L2A greatly overestimates Rrs. C2RCC performs best                 
at low and high wavelengths, ACOLITE performs best for the green, red and red edge band 1. Comparisons                  
for all locations matched on 24-03-2020 are shown in Appendix K. 
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Figure 21: Comparison of spectra derived by using a set of AC models             
for a sample location on Waduk Sutami on 24-03-2020, the S2 L2A            
seems to greatly overestimate the Rrs values. C2RCC performs best at           
low and high wavelengths, ACOLITE performs best for the green, red           
and red edge band 1. 

 

4.5.1.3 TSM concentration estimates based on AC corrected Rrs values 
Based on the above derived atmospherically corrected Rrs, TSM concentrations can be estimated using the               
MCA derived by this study for the above mentioned match-ups. For comparison, the MCA is also applied to                  
the L1C Rrs values, using only the information from the NIR band (least atmospheric influence). Figure 22                 
shows the resulting TSM estimates graphically, plotted against the TSM concentrations estimated by             
WISP-3 spectra. Outcomes of one extra model are visualized in this figure as well, labelled L1C (LR S2).                  
These values are derived from a newly developed singe band polynomial model calibrated on match-ups               
between S2 data and historical in situ laboratory TSM measurements (see 4.5.2.3 Algorithm based on S2                
atmospherically uncorrected L1C data and historical in situ dataset). 
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Figure 22: Resulting TSM estimates derived by using Rrs values          
computed using the ACOLITE, C2RCC and Sen2Cor processors for the          
match-ups found on 28-02-2020 and 24-03-2020. Estimates are plotted         
against the TSM concentrations estimated by WISP-3 spectra. 

 
Although this dataset is too small to derive statistically trustworthy outcomes, table 5 shows an indication                
of RMSE (mg/L) and NRMSE (%) . From both the figure and the table is becomes clear that for this dataset                     
ACOLITE performs best (RMSE = 5 mg/L), followed by C2RCC (RMSE = 11,3 mg/L) and Sen2Cor (RMSE =                  
42,8 mg/L). Using uncorrected L1C Rrs as input performs worst (RMSE = 69,7 mg/L).  
 

Table 5: An indication of RMSE, and NRMSE values for derived TSM            
concentrations by using ACOLITE, C2RCC and Sen2Cor processors. 

 

 
To make better predictions, derive stronger relationships and get better calibrated model parameters,             
more match-ups between in situ spectra and satellite imagery are needed. Because of persistent cloud               
cover during the fieldwork missions, these could not be obtained. A big(ger) dataset of match-ups does                
exist though, being match-ups between historical in situ water sampling by laboratory and satellite              
imagery, dating back to 2015. What if this data is used to derive a new algorithm? It will be based solely on                      
L1C (since validating performance of AC models is not possible without ground truth measurements)              
matched with in situ derived TSM concentrations. The results of this method are shown in the next                 
paragraph. 
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4.5.2 Using uncorrected S2 data for TSM estimations 
Due to its very nature, the effect on recorded reflectances by the atmosphere is biggest in the lower                  
wavelengths of the visible spectrum, and smaller in the NIR. If differences in TOA and BOA reflectances are                  
negligibly small - considering it as input for a model - no AC is needed at all. To explore this possibility,                     
first all reflectance values measured in B7 (red edge NIR, central wavelength of 783 nm) of S2 are                  
examined more closely. This band is chosen since it is the band with the highest wavelengths which can                  
still be compared by WISP-3 measurements (WISP-3 range goes up to 800 nm). The next paragraph shows                 
an exploration of the vast amount of (atmospherically uncorrected) data offered by the S2 platform.  
 

4.5.2.1 Time series spectral information Sentinel-2 bands  
Since its launch, the readily available data from the S2 platform comes in an atmospherically uncorrected                
format called level 1C, or L1C. Since December 2018, also atmospherically corrected images can be               
downloaded as level 2A, or L2A. This correction is done using the Sen2Cor algorithm, optimized for use                 
over land surfaces. Since the influence of the atmosphere is small in the NIR region, it is expected that the                    
L1C and L2A show small or even negligible differences.  
 
For this research a combined historical database was built holding measurements from EPA, BBWS and               
PJT-1 with a total of 58 measuring stations for the river basin under consideration. For all of these, time                   
series have been computed for S2 B7 L1C and L2A reflectance values. Computed time series are visualized                 
in Appendix F. A selection of these series is shown below in figure 23, figure 24, figure 25 and figure 26.                     
These figures clearly show small differences between reflectance values in the L1C and L2A products for                
most locations. Still, differences are observed which could be large enough to have a significant effect on                 
the calculated TSM concentration based upon these reflectance values. Moreover, all locations show, some              
more pronounced than others, a strong seasonal effect.  
 
When trying to understand the seasonal effect, one has to understand the local, general weather system.                
On Java island, most of the weather stations show a very distinctive wet and dry seasonal variation due to                   
the Malaysian-Australian monsoon (Lee 2015; Aldrian and Djamil 2008). The dry season is generally from               
April - October, making the monsoon last from November until the end of March. Rainfall occurs mostly in                  
short, heavy bursts. From the figures below it can be seen that in January, during the peak of the rainy                    
season, reflectance values are highest, around the start of July, during the dry season, lowest. This makes                 
perfect sense considering the increasing amount of soil particles washed away by runoff. Also, density of                
images is highest in the dry season (no clouds), and lower in the rainy season (especially during the peak                   
in January). The S2A satellite was launched June 23, 2015, so that is where the time series starts. The                   
second satellite S2B was launched March 7, 2017, which is clearly visible by the sudden increase of                 
density of measurements. Also, after every launch, one can expect that in the months following small                
changes to procedures, calibrations and other adjustments are made, possibly affecting the measured             
reflectance values. That might explain the more scattered data points observed in the figures below, just                
after every launch date.  
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Figure 23: Remote sensing reflectances Rrs (sr-1 ) for S2 B7 L1C and L2A compared for location Jembatan By                  
Pass Kepanjen. A strong seasonal effect can be observed. In January, reflectance values are highest, in                
summer around the start of July, lowest. 

 

 

Figure 24: Remote sensing reflectances Rrs (sr-1 ) for S2 B7 L1C and L2A compared at location Jembatan                 
Sengguruh. L2A values are considerably lower for this location.  
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Figure 25: Remote sensing reflectances Rrs (sr-1 ) for S2 B7 L1C and L2A compared at location Dam Paras                  
Lawang.  

 

 

Figure 26: Remote sensing reflectances Rrs (sr-1 ) for S2 B7 L1C and L2A compared at location Jembatan                 
MERR Surabaya.  

 

4.5.2.2 Match-ups between uncorrected S2 data and TSM measurements from historical data in situ              
measurements 
After having established a general understanding of how reflectance values in the red edge NIR (band 7)                 
domain vary in space and time, the next step is to determine if a clear relationship between reflectance                  
values from S2 band 7 and TSM concentrations exists (as is found for TSM concentrations and above water                  
radiometric measurements). To achieve this goal, the historical database of BBWS, EPA and PJT-1 is               
explored and matched with results as shown above. Match-ups between those in situ measurements and               
satellite imagery - given a positive correlation can be found - can serve as a database to derive parameters                   
for a new model. This model then is solely based on satellite data and in situ laboratory measurements                  
(called L1C LR). In paragraph 4.5.1.2 Comparing uncorrected and AC model results and performances it               
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was already shown that L1C differs too greatly from WISP-3 Rrs values to serve as validation for the                  
earlier derived multi-conditional algorithm.  
 
An in situ measurements database from 15-02-2019 to 15-11-2019 was provided by PJT-1. From this, 45                
match-ups are found matching satellite imagery taken the same day. The same search and matching               
strategy was performed on the EPA database dating 14-09-2015 to 24-01-2020. This search resulted in 43                
match-ups, with satellite imagery taken the same day. No match-ups are found for measurements from the                
BBWS. This is no surprise since the database only consists of a few measurements. Until the day of writing                   
this report, no more data was received from BBWS, unfortunately (which is a pity, since theirs is a huge                   
database). In total 86 match-ups were found in the period 15-02-2019 until 24-01-2020. Results are               
graphically shown in figure 27. 
 

 

Figure 27: Match-ups between in situ historical TSM data from PJT-1 and EPA and S2 band 7 L1C                  
reflectance values. A lot of noise can be observed in the data, especially for low TSM concentrations. 

 
Figure 27 shows that when simply plotting Rrs values against laboratory TSM values, as was done as the                  
first step when analyzing WISP-3 measurements, a relationship seems to be visible, but not so strong at all.                  
A first attempt at answering what happens here, and why, is done by plotting a 3rd characteristic as colour                   
in figure 28 and figure 29. In the first case, the season in which the measurements are taken is shown in a                      
different colour and with a different marker. The same flattening curve can be seen as for the relationship                  
between spectral data and laboratory measurements, as was seen earlier (figure 13) for the WISP-3 data.                
Still, also obviously a lot of noise in this data can be seen, which cannot be explained by seasonality. The                    
differentiation made on dry and wet seasons does not explain the noise. What is remarkable to see                 
however, is that the combination of highest reflectance values and highest TSM concentrations measured              
are found in the dry season.  
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Figure 28: Match-ups between in situ historical TSM data from PJT-1 and EPA and S2 band 7 L1C                  
reflectance values. The noise cannot be explained by the influence of seasonal circumstances. 

 
The same exploration as differentiating on season, has been done for the effect of river width on the noise                   
(see Appendix G, where also Waduk Sutami widths are taken into account, ranging uptop over 800m), also                 
showing not be the answer. Since figure 27 shows results combined from all 58 locations, a differentiation                 
on location can be made to know why this effect is observed.  
 

 

Figure 29: Match-ups between in situ historical TSM data from PJT-1 and EPA and S2 band 7 L1C                  
reflectance values. The noise cannot be explained by the influence of river widths.  

 
Results shown above assume that found values for Rrs stem from actual water pixels. Due to errors in                  
location details or mismatches in georeferencing the satellite imagery, it could be that Rrs values are from                 
actual land pixels. To find out if these accidental land pixels can be pointed out and excluded as non-valid                   
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measurements, whole spectra (all bands) from satellite imagery are plotted and examined. Results for              
selected measurements (one per location and only for a subset of sampling locations, for illustration               
purposes) are shown in figure 30 below. All results from all measurements for all locations are shown in                  
Appendix H. From this inspection in can be concluded that location 0, 1, 2, 7 and 20 depict Rrs values                    
which actually can represent the spectrum of a water pixel, whereas locations 5, 6 and 15 represent a                  
spectrum typically derived from a land pixel.  
 

 

 
Figure 30: Match-ups of S2 and in situ data, from which spectra are plotted for bands 1- 8, to be able to label                       
pixels as water, land or spurious. 

 
The investigation described above has been done for all sampling locations which have matched in situ                
measurements with satellite data (the dataset of 86 match-ups). Now, spurious or data coming from land                
pixels, can be flagged out and neglected. Al full list of results of classification of these pixels is shown in                    
Appendix L. After doing so, 44 match-ups remain, which are shown in figure 31. 
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Figure 31: Match-ups S2 L1C data and EPA + PJT-1 lab results after flagging out spurious and landpixels 
 

4.5.2.3 Algorithm based on S2 atmospherically uncorrected L1C data and historical in situ dataset 
The curvilinear relationship which is observed is modelled using a polynomial fit. A log transformation is                
used allowing linear regression to perform the curve fitting. The polynomial fit is reasonably well with r2 =                  
0.75. Results are shown in figure 32. 
 

 

Figure 32: Scatter plot showing comparison between TSM concentration         
and reflectance values in the S2 (uncorrected) red-edge band (B7, central           
wavelength 783 nm).  

 
The 2-degree polynomial function reads: 
 

 TSM [mg/L] = 𝝵 * R(0-)NIR
2 + η * R(0-)NIR + θ 

 
with: 𝝵 = 9431.62, η = 36.36 and θ = 15.2.  
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Now, using the newly developed model on the uncorrected S2 band reflectance values, the performance of                
the model can be tested.  Performance of the model is depicted below in table 6.  
 

Table 6: summarizing performance of     
the model based on S2 L1C data matched        
with historical in situ TSM     
concentrations 

r2 [-] 0.75 

RMSE [mg/L] 64.2  

NRMSE [%] 11.3 

 
The model outcome is compared to the original TSM laboratory measurements from the match-ups, and               
plotted against each other as shown in figure 33. Scatterplot with residual values (predicted - actual) is                 
shown in figure 34. 
 

 

Figure 33: TSM laboratory measurements plotted against the model         
outcome. 
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Figure 34: Residuals plot for the modelled TSM concentrations. 
  

4.5.2.4 Time series of modelled TSM concentrations using the model based on S2 L1C data 
In this section, a comparison is made between modelled TSM values and laboratory measurements using               
the model based on S2 data L1C band 7, as derived above. The performance of this method is illustrated in                    
figure 35, figure 36,  figure 37 and figure 38 below. 
 

 

Figure 35: Modelled and laboratory TSM data for Waduk Sutami using the polynomial relationship based               
on S2 L1C B7 data (atmospherically uncorrected) 
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Figure 36: Modelled and laboratory TSM data for Waduk Sutami tengah. Like for Waduk Sutami hulu only                 
the polynomial relationship based on band 7 is used, based on S2 L1C data. Figure 35 and this figure show                    
information from  sample sites in the upstream area of the Brantas basin. 

 

 

Figure 37: Modelled and laboratory TSM data for Ngagel / Jagir Sluice. This figure shows information                
from  a sample site in the downstream area of the Brantas basin. 
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Figure 38: Modelled and laboratory TSM data for Jembatan Ngrame II Mojokerto location. This figure               
shows information from  a sample site in the downstream area of the Brantas basin. 

 
For a full overview of the above shown results for all sample sites which are investigated, see Appendix M.                   
Though modelled as well as laboratory measurements are too scarce in numbers to interpolate and               
construct continuous time series, it can be seen that measured values follow the same trend, it can be                  
concluded that the modelled values reasonably well represent the range expected from laboratory values.              
Observed high concentrations > 100 mg/L will not be outliers, since they fall within the range of observed                  
values by PJT-1, EPA and results from this research. The range of observed values matches the range of                  
modelled values. What is evident in any case is that the model works reasonably well for low TSM values.                   
For high values no matches with laboratory values can be found, most probably because these high                
concentrations are related to rainfall events, thus clouds, thus no satellite image.  
 
What also can be observed from the figures above, is an increased scattering of data from late 2019                  
onwards. It could be an effect of changing rainfall patterns, due to El Nino. After checking it turned out that                    
sea surface temperature conditions in the tropical Pacific remained neutral in terms of the El               
Niño-Southern Oscillation (ENSO) status, signifying that neither El Niño nor La Niña is currently prevailing               
(Abram et al. 2020). 
 
From all figures above it is evident that in order to get more accurate results, more match-ups between in                   
situ measurements and satellite imagery are needed, with a smaller time window for matching. However,               
with the available data, it has been shown that one more way of matching in situ spectral and satellite                   
remote sensed data can be followed. The last section of this results chapter will show snapshots in time of                   
TSM concentrations for the entire basin in two ways. 
 

4.6 Snapshot of TSM concentration in time for entire river basin 
This paragraph shows snapshots in time of TSM concentration estimates for the entire Brantas river               
stretch. Two methods are used: 1) based on the model derived from S2 data and in situ historical data                   
using an atmospherically uncorrected image and 2) based on the MCA using an atmospherically corrected               
image by the ACOLITE processor, both for the same day (24-03-2020), as shown below. 
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4.6.1 Using algorithm based on uncorrected S2 L1C data 
On average, TSM estimates by the single band algorithm developed for S2 atmospherically uncorrected              
data results in values 1.5 times higher than the MCA based on ACOLITE corrected data for the reservoir                  
and up to 1.8 times higher for narrow river stretches. Results are shown in figure 39 and figure 40. 
 

 

Figure 39: TSM concentrations for Waduk Sutami, modelled by using the           
single band algorithm developed for S2 atmospherically uncorrected L1C         
data, image sensed March 24, 2020. 

 

 

Figure 40: Modelled TSM concentrations for a river stretch near Kediri using            
the single band algorithm developed for S2 atmospherically uncorrected L1C          
data, image sensed March 24, 2020. It can be seen that river edges still show               
unrealistically high TSM values.  

 

4.6.2 Using MCA and atmospherically corrected image by ACOLITE  
Estimated values correspond well with the values expected. TSM values are highest at the inflow point,                
and gradually decrease going downstream through the reservoir. It can be seen that reservoir and river                
edges still show unrealistically high TSM values. From the figures it can be seen that cloud edge detection                  
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is still a problem, the edges create extremely high reflection values, resulting in very high TSM estimates                 
they are of course not expected to be. Figure 41 figure 42. 
 

 

Figure 41: TSM concentrations for Waduk Sutami, modelled by using the           
multi-conditional algorithm on an atmospherically corrected image using the         
ACOLITE processor, image sensed March 24, 2020. 

 
 

 

Figure 42: Modelled TSM concentrations for a river stretch near Kediri using            
the multi-conditional algorithm based on atmospherically corrected S2        
products by using the ACOLITE processor. It can be seen that river edges still              
show unrealistically high TSM values.  
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Figure 43 below shows three zoomed in details of river stretches with different river widths. From the                 
figure it becomes evident that river widths of less than 40 m become a challenge to estimate TSM                  
concentrations for. Parts with generally higher values than neighbouring cells, which could indicate being              
a mixed cell or more greatly affected by adjacency effects.  
 

 

Figure 43: Three zoomed in details of river stretches with different river widths. Top left               
shows a location near Kediri (with sampling station Bendungan Waru Turi Kediri            
depicted in the middle of the picture) river widths in this picture ranges from 45 to 180 m.                  
Top right a river stretch just upstream of Waduk Sutami is shown, near Kepanjen. River               
width varies from 20 to 40 m. The lower image shows the area around sampling station                
Jagir Sluice, where the Surabaya river splits into Jagir and Mas river. Jagir river continues               
to the east and is approximately 40 m wide. Mas river going north is not wider than 20 m.                   
At the fork the river measures approximately 65 m.  
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4.7 Summary of results 
Starting with figure 44, it was shown that the good linear relationship for low TSM concentrations                
saturates (flattening of the curves) in the green and red band for higher TSM concentrations. Therefore, a                 
multi-conditional algorithm is developed, where the high sensitivity of the green and red band for lower                
TSM concentrations is used in combination with the information from the NIR band for high TSM values,                 
which still clearly shows an increasing relationship at high TSM concentrations. Interval ranges, models              
used per interval and for which TSM concentration range the models are used are shown in table 7. The                   
performance of the model is summarized in table 8 
 

 
Figure 44: Green en red bands get saturated (flattening of the           
curves) for higher TSM concentrations, whereas the NIR band keeps          
holding information even for high TSM concentrations. 

 
Table 7: TSM models and associated switching bound values and TSM concentrations for three models used in                 
the multi-conditional algorithm 

Interval range of R(0-) values in 
the red band 

TSM model Application range of TSM 
concentration (mg/L) 

R(0-)red band <= 0.057 𝛼 * R(0-)green band 0 - 30 

0.057 < R(0-)red band <= 0.142 β * R(0-)red band 30 -80 

0.142 < R(0-)red band ɣ * R(0-)NIR
2 + δ * R(0-)NIR + ε > 80 

 
With: 𝛼 = 203.66, β = 329.28, ɣ = 4431.62,  δ = 36.36 and  ε = 44.45. 
 

Table 8: R-squared, RMSE and NRMSE      
for the MCA 

r2 [-] 0.79 

RMSE [mg/L] 66.5 

NRMSE [%] 9.7 
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Figure 45: TSM estimates derived by using Rrs values computed by the            
ACOLITE, C2RCC and Sen2Cor processors for the match-ups found on          
28-02-2020 and 24-03-2020. Estimates are plotted against the TSM         
concentrations estimated by WISP-3 spectra. 

 
After establishing the MCA, different atmospheric correction models were investigated. The resulting            
modelled TSM estimates are shown in figure 45. Although this dataset is too small to derive statistically                 
trustworthy outcomes, table 9 shows an indication of RMSE and NRMSE . From both the figure above and                  
the table below it becomes clear that for this dataset ACOLITE performs best (RMSE = 5 mg/L), followed                  
by C2RCC (RMSE = 11,3 mg/L) and Sen2Cor (RMSE = 42,8 mg/L). Using uncorrected L1C Rrs as input                  
performs worst (RMSE = 69,7 mg/L). 
 

Table 9: An indication of RMSE, RMSPE and NRMSPE values for derived TSM             
concentrations by using ACOLITE, C2RCC and Sen2Cor processors. For         
comparison, also values are given when TSM is estimated from Rrs values            
given by the L1C S2 product.  

 

 
Figure 46 shows the polynomial fit to match-ups between S2 L1C Rrs values and historical in situ TSM                  
measurements. This second model is derived to be able to use the fast amount of data offered by the S2                    
platform without need of atmospheric correction or above water radiometric measurements and to see              
how this method compares to the earlier derived MCA. 
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Figure 46: Scatter plot showing comparison between TSM concentration         
and reflectance values in the S2 (uncorrected) red-edge band (B7,          
central wavelength 783 nm).  

 
The 2-degree polynomial function reads: 
 

 TSM [mg/L] = 𝝵 * R(0-)NIR
2 + η * R(0-)NIR + θ 

 
with: 𝝵 = 9431.62, η = 36.36 and θ = 0.15.  
 
The newly developed model based on the uncorrected S2 band reflectance values is tested for its                
performance and shown in table 10. 
 

Table 10: summarizing performance of     
the model based on S2 L1C data matched        
with historical in situ TSM concentrations 

r2 [-] 0.75 

RMSE [mg/L] 64.2  

NRMSE [%] 11.3 
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5 
Discussion 

In situ spectral measurements as well as laboratory results show an extremely turbid nature of the                
Brantas River surface water. A linear relationship between the green band and TSM concentration < 30               
mg/L is found (r2 = 0.91, RMSE = 5.3 mg/L and NRMSE = 13.2%). The signal in the green band gets                     
saturated for TSM concentrations > 30 mg/L, which is in contrast with findings of Novoa et al. (2017), who                   
observed saturation occurring already at around 10 mg/L. A similar pattern is observed for the red band,                 
which saturates at higher TSM concentrations of around 80 mg/L (50 mg/L by Novo et al.). Also here a                   
good linear fit can be achieved for lower concentrations (r2 = 0.92, RMSE = 12.6 mg/L and NRMSE =                   
10.1%). Sensitivity for the green and red band are similar. This contrasts with results found by (Novoa et                  
al. 2017), which show a sharper increase in reflectance for the green band compared to the red for                  
concentrations below 10 mg/L. Observed differences in saturation bounds can be very well caused by the                
limited number of observations of this study, especially in the low TSM concentration range. However, the                
sharper increase in red band reflectance compared to NIR bands for concentrations below about 50 mg/L                
is confirmed by this study. As TSM concentrations increase, a curvilinear relationship is observed. This is                
demonstrated by a polynomial fit for higher TSM concentrations in the red edge NIR band, without any                 
signs of saturation. Thereby the same behaviour is observed as seen by Ritchie et al. (1990) and Ritchie                  
and Cooper (1991). The polynomial fit is reasonably well with r2 = 0.82 but results in fairly big errors                   
(RMSE = 58.3 mg/L and NRMSE = 7.9%). The overall performance of the model (combining the three                 
separate models) is acceptable with a r2 value of 0.79, but also high estimated error values with RMSE =                   
66.5 mg/L and NRMSE = 9.7%. The overall model behaviour though is very similar as found by Novoa et al.                    
(2017). RMSE values get high for the model based on the NIR and and for the overall multi-conditional                  
algorithm. Outliers are observed, especially for high TSM laboratory values, where reflectance values stay              
relatively low. This might be caused by the fact that particles in the upper water layer in extremely turbid                   
water mask out information from lower layers in the water column. Also, fluctuations observed in               
laboratory TSM values are expected to be caused by the fact that the database holds data from 4 different                   
laboratories. Some follow different protocols, and one laboratory uses an unknown protocol. When             
examining errors in between observed and predicted values, the influence of each individual error on the                
overall RMSE is proportional to the size of the squared error. This results in large errors having a                  
disproportionately large effect on the RMSE (high sensitivity to outliers) (Willmott and Matsuura 2006;              
Pontius, Thontteh, and Chen 2008). 
 
The high turbidity levels lead to an increased optical complexity, for inland water which is already                
complex to investigate by remote sensing. Especially atmospheric correction poses a challenge            
(Vanhellemont and Ruddick 2015; Sterckx et al. 2015). Sen2Cor, ACOLITE and C2RCC processors were              
used by this study to atmospherically correct TOA reflectance values. These processors are freely              
available. Only a view match-ups were achieved between field reflectance data measured simultaneously             
and S2 images. Therefore, no thorough validation of the performance of the different AC models can be                 
undertaken. Nonetheless, when examining the 10 match-ups which are found and compared to the above               
water reflectance values, it can be concluded that ACOLITE produces the smallest error (RMSE = 5.0                
mg/L), followed by C2RCC (RMSE = 11,3 mg/L) and Sen2Cor (RMSE = 42,8 mg/L). If S2 TOA (L1C) data                   
can be used directly, for example the NIR bands where atmospheric interference is smallest, no               
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atmospheric correction is required altogether. Therefore, performance of the NIR polynomial fit was             
tested on L1C data from B7. This resulted in a RMSE of 69,7 mg/L for the set of 10 match-ups. The S2 L2A                       
(Sen2Cor) seems to greatly overestimate the Rrs values (up to 3 times as high as WISP-3 control                 
measurements), C2RCC performs best at low and high wavelengths (band 1, 2 (blue) and 8 (NIR)),                
ACOLITE performs best for band 3 (green), band 4 (red) and band 7 (red edge 1). Generally speaking                  
C2RCC underestimates Rrs values slightly, whereas ACOLITE gives the best result overall.  
 
The poor performance of Sen2Cor could be very well caused by the algorithm approach which uses the                 
dark dense vegetation approach (DDV method). This method is clearly better adapted to the atmospheric               
correction of land surfaces (Kaufman and Sendra 1988). All results from Sen2Cor, C2RCC and ACOLITE               
follow the same pattern quite well. However, big differences are observed in absolute Rrs values. Since                
TSM estimates are calculated directly from these values (and not from a ratio for example), large effects                 
are also observed in final estimated TSM concentration values. That using Sen2Cor results in greatly               
overestimated Rrs values is no surprise, since the processor was developed for land surfaces and lacks                
sensitivity to be used on (small) water bodies. In particular, Sen2Cor produces high values in the blue part                  
of the spectrum, up until 3.5 times as high as above water reflectance values. This may be due to sunglint,                    
but most probable because of atmospheric correction errors which are more pronounced in the case of                
water leaving signal. Toming et al. (2016) states that Sen2Cor will likely be the first choice for many users                   
to test. This may well be, but it is strongly advised not to use it for any final estimation of TSM values. For                       
first explorations however, it is an attractive product since it is readily available either from the                
Copernicus Open Access Hub or from Google’s servers by requesting it via Google’s Earth Engine.  
 
Skipping atmospheric correction altogether would greatly reduce workload and needed resources.           
Atmospheric effects are biggest in the blue part of the spectrum. Effects decrease nearly exponentially               
with increasing wavelength. The red and NIR bands are relatively least affected by atmospheric effects.               
Since TSM show good relationship with the NIR band, it is worthwhile investigating if TOA NIR remote                 
sensing reflectances can be used to estimate TSM concentrations. Indeed, Toming et al. (2016) showed               
that results obtained with TOA reflectance values were better than with BOA reflectance values in case of                 
all studied parameters, when using Sen2Cor as AC processor. This study investigated the influence of the                
atmosphere by comparing L1C and L2A products in the red edge NIR band (band 7). For most of the nearly                    
60 locations it showed differences are as small as to be considered negligible. Nearly all investigated S2                 
red edge NIR band reflectance data showed a strong seasonal effect. It can be seen that in January, during                   
the peak of the rainy season, reflectance values are highest, around the start of July, during the dry season,                   
lowest. This makes perfect sense considering the increasing amount of soil particles washed away by               
increasing runoff during the rainy season. Also, density of images is highest in the dry season (no clouds),                  
and lower in the rainy season (especially during the peak in January). Confirming these temporal               
variations in TSM concentrations (and most likely other water quality parameters) seen by conventional              
point sampling methods is vital for comprehensive assessment and management of the Brantas river              
system. 
 
Having confirmed the relatively small atmospheric influence in the NIR end of the spectrum, match-ups               
are searchd between S2 TOA data in band 7 and in situ laboratory TSM concentrations from a historical                  
database (2015-2020). Analyzing the historical database gave nearly 90 match-ups. When plotting Rrs             
values against laboratory TSM values, the expected curvilinear relationship is visible, along with a lot of                
noisy data. Inspection of all individual measurements was necessary by examining the full spectra (band 1                
-8) for every sample. By doing so, spurious and land pixels could be identified and deleted. It turned out to                    
be a vital process to understand the data. Mismatches can be due to measurement errors, archiving errors                 
or because of mismatches in georeferencing the raw satellite data. Based on the cleaned up dataset of                 
match-ups a new model was developed, performing comparably to the multi-conditional algorithm based             
on WISP-3 derived simulated S2 data with r2 = 0.75, RMSE = 64,2 mg/L and NRMSE = 11,3%. A reason for                     
the derived high RMSE can be the fact that match-ups are now considered valid if the measurement is                  
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taken on the same day. Due to the high frequency dynamics of the river and its constituents, a smaller time                    
window is suggested. The best would be to work with a maximum of 30 min before and after satellite                   
overpass. To actually know how dynamics of the river behave, future research could focus on taking                
multiple in situ laboratory or spectral measurements to map variations within one day. Thereby              
information is gathered to decide on the maximum allowed time window. By using the model based on S2                  
and historical data, sensitivity to atmospheric correction in the lower wavelength bands is no issue               
anymore. This matching process could also be undertaken by the ACOLITE processor corrected images,              
with use of the multi-conditional TSM algorithm. This will most likely result in the best performance and                 
most accurate TSM estimates. The scope of this study however lacks the time as well as the computational                  
power to have done so. Therefore, TSM estimates are modelled based on the polynomial relationship in                
the red edge NIR band. The modelled values very well represent the from laboratory values expected                
range of concentrations. High concentrations fall within the range of observed values by PJT-1, EPA and                
results from this research. The range of observed values matches the range of modelled values. Density of                 
either the in situ measurements nor the modelled estimates is high enough to compute actual time series.                 
Statistical analysis of the model performance therefore will need more data from shorter time intervals as                
input.  
 
When computing snapshots in time of TSM estimates for the whole river from source to mouth, ACOLITE                 
in combination with the MCA produces realistic values. For the reservoir Waduk Sutami for example TSM                
values are high at the inflow point, very similar to in situ measurements, and gradually decrease going                 
downstream through the reservoir. Modelled values represent the sparsely available in situ            
measurements very well. When examining river stretches, it can be seen that river edges still show                
unrealistically high TSM values. Alos cloud (edge) and cloud shadow detection is still a problem. Cloud                
edges result in very high TSM value estimations where - of course - they are not expected to be. Also trees                     
and river banks overgrown by bushes pose challenges to accurately estimate TSM values. When using TOA                
uncorrected reflectance values from band 7 and model based on match-ups from that information, for the                
reservoir and broad waterways 1.4 times higher TSM estimates are found, for narrower river stretches               
this factor goes to  1.7. 
 
ACOLITE seems to be the clear winner if it comes done to which AC processor should be used. When                   
choosing an AC model however, correction of inherent effects like sunglint and adjacency of land pixels                
should be also assessed. However, ACOLITE does not apply an adjacency correction approach. The              
processor does need a dark pixel from shadowy land, and thereby land pixels can contribute to the                 
contamination of the measured reflectance value of adjacent water pixels. In situations where large              
reflectance contrasts occur, the atmospheric backscatter component of the adjacency effect can have             
significant influence on ground measurements (Richter et al. 2006) and should therefore be taken into               
account. This is in accordance with Guanter et al. (2007) who state that especially at wavelengths above                 
700 nm the impact of adjacency effects is strong since neighbouring land pixels show distinctly higher                
reflectance values. Validity of the results of this study is limited by the absence of using an adjacency                  
correction approach. Also, cloud edge detection in analyzing the satellite imagery is still a challenge.               
Linking to the adjacency effect, the unrealistically high TSM value estimates at the river banks are most                 
likely caused either by vegetation or by the adjacency effect. Also, these could be actual mixed pixels of                  
land and water. These values are partly neglected and cut out by changing the boundaries set for pixel                  
identification, though this approach limits the usability of narrower river segments. 
  
Limitations found by this study using remotely sensed Sentinel-2 satellite data are limitations due to               
revisit times in combination with non-usable images due to cloud cover in the rainy season. Also                
uncertainties are introduced by data processing. For more in-depth statistical analysis and for enhancing              
models performances, more match-ups are needed between satellite imagery and in situ spectral and              
laboratory measurements, taken within a short timeframe. Match-ups found by this study were low in               
numbers due to conducting fieldwork in mainly the rainy season. By better timing and more frequent                
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sampling, this number could have been increased. Also, atmospheric correction issues limit usefulness of              
remote sensing data. The applied method of skipping atmospheric correction altogether and using             
uncorrected TOA L1C data only works for estimating TSM concentrations and will not work for estimating                
other surface water quality parameters, as TSM concentration is not a ratio (of bands). Altogether, the high                 
(10m) resolution delivered by the Sentinel-2 sensor is a great advantage in narrow river monitoring.               
However, the critical band for analysing TSM concentrations (band 7) is only available in 20 m resolution.                 
It was shown that where the river only consists of 1 pixel, no realistic values are obtained for TSM                   
estimates. However, if 3 or more pixels are present. reasonably well estimates are derived. This opens                
great potential for monitoring of river surface water quality on a regional and national scale. This study                 
was a first attempt to test the capabilities of the Sentinel-2 satellite mission for narrow river surface water                  
quality estimation, starting with examining TSM concentrations. The followed approach of linking in situ              
laboratory measurements, above water radiometric measurements and remote sensed satellite data           
worked very well. The results on performances of atmospheric correction models may be considered              
preliminary, since only a handful of match-ups of in situ reflectance data is not enough to validate overall                  
performance of atmospheric correction models. It was shown that in situ spectral measurements are not               
absolutely necessary for establishing a relationship between satellite derived reflectance values and in situ              
laboratory measurements, but they are however crucial to validate atmospheric correction models. 
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6 
Conclusions 

Data analysis presented in this thesis shows that the Brantas river surface water classifies as an extremely                 
turbid water type. The high turbidity levels and corresponding strong reflectance, mask almost all other               
water quality signatures. TSM laboratory measurements by gravimetry confirm overall high (>100 mg/L)             
to extremely high (800 mg/L) TSM concentrations. 
 
Single and multiple band models have not only been tested based on linear and polynomial relations, but                 
also on band ratios. Testing the multi-conditional algorithm on the WISP-3 in situ spectral data shows the                 
model’s performance can be expressed as r2 = 0.79 with RMSE = 66.5 mg/L and NRMSE = 9.71%. The                   
model shows comparable good results as found by Novoa et al. (2017). Performance of the               
multi-conditional algorithm while using a combination of linear and polynomial functions is found to be               
poor when based on S2 L2A data from bands green, red and red edge NIR. Using only the TSM polynomial                    
model recalibrated and based on S2 L1C data from the red edge NIR band (atmospherically uncorrected                
data) shows good results (r2 = 0.75, RMSE = 64,2 mg/L and NRMSE = 11,3%). When examining the 10                   
match-ups which are found and compared with the above water reflectance values, it can be concluded                
that ACOLITE produces the smallest error (RMSE = 5.0 mg/L), followed by C2RCC (RMSE = 11,3 mg/L)                 
and Sen2Cor (RMSE = 42,8 mg/L). 
 
In situ laboratory measurements offer high accuracy, but are time consuming and labor intensive. Thus, it                
is not feasible to provide a simultaneous water quality database on a regional scale (Duan, Takara, et al.                  
2013; Duan, He, et al. 2013). When comparing model data to historical measurements, it becomes               
apparent that the proposed method from this study gives much more specificity than previous measuring               
methods and point data collection as until now practised by PJT-1, EPA and BBWS. A strong seasonality                 
effect is observed in the data derived from satellite data, which confirms findings from point sampling in                 
situ measurements with the current measuring frequency (but with long periods of no data in between).                
Data derived with the proposed method helps place in situ point measurements in their context of                
long-term water quality monitoring. This reinforces the observation that remotely sensed data can             
enhance the abilities of water resources managers and decision makers to monitor river systems more               
effectively, as was also shown by Gholizadeh et al. (2016). Using this technique in near future management                 
decisions fits the intention of the Indonesian Government of scaling-up PJT-I to be a nationwide water                
resources management body to manage national strategic river basins in the future (Subijanto, Ruritan,              
and Hidayat 2013).  
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Using Sentinel-2 data, 5 day estimates are achieved with a spatial resolution of 10-20m, depending on                
which S2 bands are used. In accordance with Kallio (2000), the results of this study show that with                  
applying remote sensing: 

1. Spatial and temporal variation of TSM concentration estimations in the Brantas           
River system can be made visible; 

2. An overview of TSM concentration estimation of the entire basin at one moment             
in time  can be achieved; 

3. An extensive historical record of TSM concentration estimations can be accessed,           
enabling trend analysis; 

4. Information is provided to prioritize sampling locations and field surveying          
times.  

 
Restrictions to usability apply due to - among others - river width (usability sharply decreases with river                 
widths < 40m) , cloud coverage, vegetation along river banks, adjacency effect, atmospheric interference              
and timeframe of match-ups. Although this study shows that capabilities of remote sensing to assess river                
surface water quality are undeniable, remote sensing should always be used in combination with              
traditional sampling methods and field surveying. 
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7 
Perspectives 

This section gives an overview of research topics which would enhance or better explain the results found                 
in this study. It is relevant to investigate the influence of the adjacency effects from neighbouring land                 
pixels on the river water pixels, along the river bank. This can be done by investigating variance of TSM                   
concentrations over the width of the cross section. For this study, WISP-3 measurements at 25%, 50% and                 
75% of all cross sections were taken when going out on field trips. So, the data to investigate the adjacency                    
effect is readily available, but falls outside the scope of, and timeframe for this particular study. Also, it is                   
expected that the magnitude of the adjacency effect differs by land cover type of the surrounding pixels, a                  
hypothesis worthwhile investigating. To investigate further what the effect is of different AC models and               
to see which one performs best for the task at hand, comparison of corrected images from different                 
platforms would be useful (PlanetScope vs Sentinel-2 for example), using additional AC models like iCOR,               
l2gen and Polymer. 
 
Commonly, DO, BOD5 and COD are used as a first indicator of the water quality in the Brantas river. These                    
however, are water quality parameters lacking a distinctive optical signal. Nonetheless, concentrations of             
non optical variables may be correlated with optical variables, such as Chl-a concentrations, TU, TSM,               
CDOM and SWT, which do affect the reflected radiation. In this context, an indirect relationship between                
satellite multispectral data and COD, BOD, and DO can be assumed (Jerry C. Ritchie, Zimba, and Everitt                 
2003; Kallio 2000). An approach could be to first investigate the relationship between DO and TU / TSM or                   
other in the laboratory data. It must be noted that such an empirical relationship has very limited validity                  
in time, space and sensor used. Even if a perfect relationship could be established empirically, one should                 
be able to determine the indirect parameter and the relationship. Literature (Abayazid, El-Adawy, and              
Others 2019; El Din and Zhang 2017; Arief 2017) shows quite high correlation between optical and                
non-optical water quality parameters, but often fails to explain these relationships physically. So, if this               
approach is followed, and an empirical relationship is found, validity greatly depends on whether this               
relationship can be physically explained. Without physical explanation, the relationship only holds for the              
one specific moment in time and space.  
 
Modelled TSM concentration time series show a very clear seasonal trend. Further investigations could              
focus on the difference in the values from same timeslots of the year. Does the water quality change over                   
time (long term changes)? What are maximum and minimum observed values for different seasons? Do               
peaks always occur at the same time of the year? If patterns can be modelled, something can be done with                    
predictability. What is the observed period? Is the trend changing e.g. as a result of global warming? In                  
samples from more upstream areas of the Brantas river system a peak around ~700 nm is observed,                
which might indicate an increase of Chl-a concentration that displaces the peak position in the NIR part (Z.                  
Wang et al. 2017). The Brantas might be a good case to investigate these findings. Lastly, results from                  
models derived by this study can serve as input for rainfall run-off and discharge models. By doing so,                  
sediment transport and erosion from upstream catchments can be evaluated and thereby may be a               
valuable tool in sediment transport monitoring. 
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Appendix A: Effect of fingerprinting algorithm on WISP-3 in situ 
spectra 

 

 

Figure 47: Subplots showing all 27 matched up WISP-3 measurements after recalibration and which are               
matched to laboratory analysed water samples. Blue lines show the Rrs values before fingerprinting (based               
on a constant sky correction factor), the orange lines show the Rrs values after fingerprinting (based on                 
measurement unique sky correction factors). The plots nicely show the overall extremely turbid water type               
(high reflectance values > 750 nm), but also variation where the reflectance values are high in the blue and                   
red region, but low at higher wavelengths. These samples are taken more upstream in the basin, where                 
water is clearer.  
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Appendix B: Built-in algorithms WISP-3 compared to laboratory 
results TSM concentrations 

At first, as a first try, known relationships from literature were used– based on data and circumstances                 
from the Brantas region – to relate TSM concentrations and lab results. The same relationship was used to                  
tune the parameters according to data from this research. The resulting models performed quite poorly. I                

looked into , and . Based on those  og10(Sentinel  )  l − 2 Red Band  og10( )l Sentinel−2 Red Band

Sentinel−2  Blue Band   n( )l Sentinel−2 Blue Band
Sentinel−2 Green Band

    

results I could say there is a relationship, especially for lower and higher TSM concentrations, but the                 
deviation was great for lab values > 220 mg / L. The same trends could be seen for all linear relationships                     
(single band, band ratios). 
 
Firstly, calculated TSM concentrations according to Rijkeboer (2000) his algorithms were modelled. She             
developed algorithms for several water types: 

• Water type 1: eutrophic small peat pools 
• Water Type 3: Dutch canals called ‘boezemwateren’ 
• Water type 4: eutrophic large peat pools 
• Water type 5: silt-rich rivers and silt-rich large shallow lakes 
• Water type 6: deep clear lakes and tidal waters 

The WISP-3 built-in algorithm is based on water type 6.  
 
The graphs below in figure 48 firstly show how extremely turbid the water can be, with TSM                 
concentrations up to almost 900 mg/L. Results from the Rijkeboer (2000) and WISP-3 algorithm reach               
their maximum detection limit, resulting in significant underestimation of TSM concentrations.  
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Figure 48: The figure on the left shows TSM concentrations according to lab results and calculated using                 
Rijkeboer (2000) algorithms. Also, the WISP-3 results are shown from the built-in algorithm, which is an                
adopted version of Rijkeboer’s water type 6 model. The lab results show how extremely high TSM                
concentrations can get (up to almost 900 mg/L). It is clearly visible that the Rijkeboer and the WISP-3                  
algorithm reach their maximum detection limit. The figure on the right shows differences from TSM               
concentrations according to lab results and calculated using Rijkeboer (2000) algorithms.  
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Appendix C: Comparing results of single and multiple band 
algorithms based on WISP data and laboratory results 

Simple (single) linear regression for all bands WISP and lab results 
For extremely turbid waters it makes sense to look at the elevated signal >750 nm, especially around 800                  
nm. Water absorption decreases between 770 and 860 nm with the lowest absorption coefficient at               
~810nm. Therefore, one can notice easily if there is any other parameter present (such as sediment,                
phytoplankton, dissolved organic matter or benthic plant at the bottom). These parameters will             
backscatter the light signal and create a higher peak ~810 nm (except the WISP-3 does not extend beyond                  
800nm).  
 
Linear regression is performed on all 401 bands of the WISP-3 measurements matched with lab results.                
The goodness-of-fit is assessed from the regression model simply by looking at r2 values and calculating                
NRMSE (%). In general,65% of the samples are used to train the model, and the remaining 35% of samples                   
to test the model. Figure 8 shows r2 values from linear regression of all 401 WISP-3 bands and lab results,                    
figure 51 and figure 49 show zoomed in details of figure 50. 
 

 

Figure 50: r 2 values after linear regression for all         
separate 401 bands from the WISP-3      
measurements. It shows that reflectance values in       
the blue and green bands have a low correlation.         
Correlation increases in the red region and is        
highest for the bands above 740 nm. 
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Figure 51: zoomed in detail of figure 50. Absorption         
by oxygen and ozone in the atmosphere dominates        
the visible part of the spectrum. The peak at 763 nm           
is caused by absorption of 02. In general, the region          
around 760 - 770 nm is highly influenced by         
interference from the atmosphere, there is a lot        
happening at the same time. Therefore, I will focus         
on the section beyond the atmospheric absorption       
dip of 770 nm. At all times, I want to avoid           
absorption dips which can be seen on all channels. 

 

 

Figure 52: zoomed in part of figure 50 and figure 51,           
showing r2 values from linear regression of bands        
770 – 800 nm with lab results. The orange x’s show           
the local maxima. Corresponding r2 values are       
shown in table 11. 

 
Table 11: WISP-3 bands and their corresponding r2        
values from linear regression with lab results,       
graphically shown in figure 52. 
 Wavelength  

[nm] 
r2 

1 776 0.72 

2 791 0.71 

3 788 0.71 

4 799 0.70 
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Multiple linear regression for all WISP bands and lab results 
To check whether a combination of 2 bands algorithm performs better than a 1 band algorithm, all                 
uniquely possible combinations of two of the 401 WISP-3 bands are tested with multiple linear regression                
analysis. The resulting r2 values are plotted and shown in figure 53, ranging from high to low correlation. 
 

 

Figure 53: r 2 values from linear regression for all         
unique combinations of the 401 bands from the        
WISP-3 measurements. Generally, combinations of     
higher wavelengths show higher r2 values. 

 
The combination of the 779 and 784 nm bands result in the highest r2 value of 0.89. This band                   
combination gives the following algorithm: 
 

SM  ( ) 101200 R   98800 R(0 )  88.69  T L
mg =  *  (0 )− 779 −  *  − 784 +   

 
When combining bands with highest r2 value resulting from single linear regression, the combination of               
776 and 788 nm gives the highest r2 value (0.81). This results in the following algorithm: 

 
SM  ( ) 37140 R   34540 R(0 )  53.40  T L

mg =  *  (0 )− 776 −  *  − 788 +   

 
TSM algorithms applied to set of 27 matched up measurements corresponding to lab samples              
Based on WISP-3 bands 
Figure 54 shows plots of the TSM concentrations calculated by 1 and 2 WISP-3 band algorithms, plotted                 
against TSM concentrations as calculated by Rijkeboer and from lab analysis. Both models perform              
relatively well. The 2-band algorithm performs slightly better in predicting the high peaks in TSM               
concentrations. Figure 55 shows the differences in TSM concentrations between calculated values by the              
single and multiple WISP-3 band algorithms, the Rijkeboer algorithm and lab results. The 2-band              
algorithm clearly performs best.  
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Figure 54: TSM concentrations calculated by 1 and        
2 WISP-3 band algorithms, plotted against TSM       
concentrations as calculated by Rijkeboer and from       
lab analysis. Both models perform relatively well.       
The 2-band algorithm performs slightly better in       
predicting the high peaks in TSM concentrations.  

 

 

Figure 55: Differences in TSM concentrations      
between calculated values by the single and       
multiple WISP-3 band algorithms, the Rijkeboer      
algorithm on the one hand and the lab results on          
the other. The 2-band algorithm clearly performs       
best.  

 
To summarise, table 12 below shows r2 values for the 2 and 1 WISP-3 band algorithm, Rijkeboer’s water                  
type 6 algorithm and the lab results. 
 
 

Table 12: r2 values for the 2 and 1 WISP-3 band algorithm,            
Rijkeboer’s algorithm and the lab results 

 WISP-3 bands  
779 and 784 

WISP-3 
band 776 

TSM 
Rijkeboer 

Lab 
results 

r2 0.89 0.72 0.42 1.0 
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Appendix D: Comparing results of single and multiple band 
algorithms based on Sentinel-2 simulated data and laboratory 
results 

Simple (single) linear regression for all bands Sentinel-2 bands and lab results  
All bands 1-7 from S2 are simulated by averaging high resolution WISP-3 data. When looking at TSM                 
concentrations as measured in laboratories, plotted against Rrs values corresponding to Sentinel-2 bands             
1, 2 (blue) and 3 (green), no clear relationship can be detected as can be seen from figure 56. 
 
 

 

Figure 56: Pair plots showing lab results against Rrs values derived from WISP-3 measurements              
corresponding to Sentinel-2 bands 1, 2 (blue) and 3 (green). No clear relationship can be detected.  

 
When looking at TSM concentrations as measured in laboratories, plotted against Rrs values corresponding              
to Sentinel-2 bands 4 (red), 5 (central wavelength 704 nm), 6 (central wavelength 741 nm) and 7 (central                  
wavelength 783 nm), a possible linear relationship can be seen, especially for the bands with higher                
wavelengths. Table 13 below shows r2 values when linear regression is applied on these relationships. 
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Table 13: This table show r2 values when simple linear regression is applied on bands 1 to 7 from the                    
Sentinel-2 mission 

 Rrs 
Band 1 

Rrs Band 2 
(blue) 

Rrs Band 3 
(green) 

Rrs Band 
4 (red) 

Rrs 
Band 5 

Rrs 
Band 6 

Rrs 
Band 7 

Lab results 
[mg/L] 

r2 0.118 0.203 0.19 0.316 0.425 0.692 0.716 1.0 

 
Linear regression with band 7 gives the highest r2 value. Using Sentinel-2Band 7 remote sensing reflectance                
values from band 7  to predict the laboratory measurements results in the following algorithm: 
 

SM  ( ) 10720 R (Band 7) 95.50T L
mg =  *  rs −   

 
Multiple linear regression for all bands Sentinel-2 bands and lab results 
Also, all possible unique combinations of Sentinel-2 bands are tested to predict TSM concentrations. This               
results in r2 values from which the top 10 are as shown in table 14 below.  
 

Table 14: This table show r 2 values when        
multiple linear regression is applied on all       
unique combinations of 2 of the bands 1 to 7          
from the Sentinel-2 mission 

 Combination r2 
1 (Band_5, Band_7) 0.78 

2 (Band_5, Band_6) 0.77 

3 (Band_6, Band_7) 0.77 

4 (Band_4_red, Band_7) 0.77 

5 (Band_4_red, Band_6) 0.76 

6 (Band_3_green, Band_7) 0.73 

7 (Band_1, Band_7) 0.72 

8 (Band_2_blue, Band_7) 0.72 

9 (Band_3_green, Band_6) 0.71 

10 (Band_1, Band_6) 0.69 

 
The best performing combination of Band 5 and Band 7 result in the following algorithm: 
 

SM  9280 R 0310 R 171.33  T ( L
mg) = 1 *  rs (Band 7) − 1 *  rs (Band 5)  +   

 
TSM algorithms applied to 27 measurements corresponding to lab samples Based on Sentinel-2             
bands 
Figure 57 shows plots of the TSM concentrations calculated by algorithms using the Sentinel-2 bands, as                
well as the 1 as 2 parameter models, plotted against TSM concentrations as calculated by Rijkeboer and                 
from lab analysis. The 2-band algorithms perform slightly better in predicting the high peaks in TSM                
concentrations. Figure 58 shows TSM concentrations between calculated values by the single and the best               
performing multiple Sentinel-2 algorithms, as well as the lab results. 
 
Figure 59 shows the differences in TSM concentrations between calculated values by the single and the                
best performing multiple Sentinel-2 algorithms, the Rijkeboer algorithm and lab results. The 2-band             
algorithm only performs slightly better. 
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Figure 57: TSM concentrations calculated by 1 and 2         
Sentinel-2 band algorithms, plotted against TSM      
concentrations as calculated by Rijkeboer and from lab        
analysis. The 2-band algorithm performs slightly better       
in predicting the high peaks in TSM concentrations. 

 

 

Figure 58: The 1 and 2-band algorithm seem to equally          
well perform. 

 

 

Figure 59: Differences in TSM concentrations between       
calculated values by the single and multiple Sentinel-2        
band algorithms, the Rijkeboer algorithm and lab results.        
The 2-band algorithm seems to perform slightly better. To         
summarize, all relevant r2  values are shown in table 15. 
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Table 15: r 2 values for the 2 and 1 Sentinel-2 band algorithms, Rijkeboer’s algorithm and the                
lab results 

 TSM 
Band 

7 

TSM 
Band 5 and 

6 

TSM 
Band 5 and 

7 

TSM 
Band 6 and 

7 
Rijkeboer 

Lab 
results 

r2 0.72 0.77 0.78 0.77 0.42 1.0 
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Appendix E:  Inter-comparison of TSM algorithms based on single 
and multiple WISP-3 and Sentinel-2 bands 

TSM based on single band WISP-3 and Sentinel-2 inter-comparison  
To conclude this chapter, the single band WISP-3 and Sentinel-2 are compared, as well as the multiple                 
band algorithms. Figure 60 shows pair plots of single band WISP-3776 nm and Sentinel-2Band 7 algorithms                
compared to lab results. Figure 60 shows graphs depicting the TSM concentrations as calculated by the                
single band WISP-3776 nm and Sentinel-2Band 7 algorithms, compared to lab results. Figure 62 graphically               
shows the differences calculated from TSM concentrations as calculated by the aforementioned            
algorithms.  
 

 

Figure 60: pair plots of single band WISP-3776 nm and          
Sentinel-2Band 7 algorithms compared to lab results 

 

 

Figure 61: graphs depicting the TSM concentrations as calculated by          
the single band WISP-3776 nm and Sentinel-2Band 7 algorithms,         
compared to lab results 
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Figure 62: Differences calculated from TSM concentrations as        
calculated by the single band WISP-3776 nm and Sentinel-2Band 7          
algorithms, compared to lab results 

 
TSM based on multiple band WISP-3 and Sentinel-2 inter-comparison 
Figure 63 shows pair plots of multiple band (WISP-3779 nm + WISP-3784 nm) and (Sentinel-2Band 5 +                 
Sentinel-2Band 7) algorithms compared to lab results. Figure 64 shows graphs depicting the TSM              
concentrations as calculated by these multiple band WISP-3 and Sentinel-2 algorithms, compared to lab              
results. Figure 65 graphically shows the differences calculated from TSM concentrations as calculated by              
the aforementioned algorithms. 
 

 

Figure 63: pair plots of multiple band (WISP-3779 nm +          
WISP-3784 nm) and (Sentinel-2Band 5 + Sentinel-2Band 7)        
algorithms compared to lab results 
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Figure 64: graphs depicting the TSM concentrations as calculated by          
the multiple band (WISP-3779 nm + WISP-3784 nm ) and (Sentinel-2Band 5 +            
Sentinel-2Band 7 ) algorithms, compared to lab results 

 

 

Figure 65: Differences calculated from TSM concentrations as        
calculated by the multiple band (WISP-3779 nm + WISP-3784 nm) and           
(Sentinel-2Band 5  + Sentinel-2Band 7 ) algorithms, compared to lab results 
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Appendix F: Time series spectral information band 7 Sentinel-2 
L1C and L2A compared for 59 locations 
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Figure 66: Time series spectral information Sentinel-2 B7 L1C and L2A for 59 locations  
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Appendix G: Match-ups S2 B7 data with historical TSM values, 
investigating reason for noise 

The historical database of BBWS, EPA and PJT-1 is explored and matched with results from S2. Match-ups                 
between those in situ measurements and satellite imagery - given a positive correlation can be found - can                  
serve as a database to derive parameters for a new model, solely based on satellite data and in situ                   
laboratory measurements. 

 

Figure 67: Match-ups between S2 L1C  and laboratory results, river width plotted as third variable 
 

 

Figure 68: Match-ups between S2 L2A  and laboratory results, river width plotted as third variable  
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Appendix H: Whole spectra (all bands) L2A from S2 satellite 
imagery from all are measurements for all locations 
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Figure 69: All measurements for all 59 locations plotted for quality checking if reflectance values stem from                 
water pixels, or spurious or land pixels.   
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Appendix I: Overview of sampling days, region and sampling 
stations 

This appendix gives an overview of in situ sampling days, region and sampling stations, dates from which                 
Sentinel-2 images are available and corresponding cloud cover. Only match-ups exist for 1 sample on               
28-02-2020 and 9 samples on 24-03-2020 due to high cloud cover percentage during the fieldwork               
campaign period. So unfortunately extensive (statistical) analysis cannot be performed. Nonetheless the            
found match-ups provide valuable information which is used by this study. 
 
Table 16: Overview of sampling days, region and sampling stations, dates from which Sentinel-2 images are                
available and corresponding cloud cover. Only images with cloud cover < 20% are usable which are                
matched the same day.  

Date Region Sample stations 
Sent-2 
image 

 

Cloud coverage 
Sent-2 image [%] 

30-dec Surabaya Tambangan Bambe 30-dec 60.4 

2-jan Porong Porong Upstream  4-jan 98.0 

23-jan Brantas Bendungan Waru Turi, Ngujang    
bridge, Ngunut Ferry Dock, Trisula     
Blitar, Kanigoro 1, Kanigoro 2 

24-jan 34.7 

24-jan Brantas Karangkates bridge 150 m    
upstream 

24-jan 34.7 

16-feb Kali Jagir Jagir Sluice 

18-feb 69.9 
17-feb Kali Jagir Jagir Sluice 

19-feb Kali Jagir Jagir Sluice 

20-feb Kali Jagir Jagir Sluice 

21-feb Brantas Jembatan Sukoanyar, Jembatan   
Pulorejo, Jembatan Kali Brantas Toll     
Mojokerto By Pass 

23-feb 19.7 

22-feb Kali Jagir Jagir Sluice 23-feb 19.7 

23-feb Kali Jagir Jagir Sluice 23-feb 19.7 

28-feb Kali Jagir Jagir Sluice 28-feb 17.1 

7-mrt Brantas Mojokerto 01 BDO, 07 BRG, 11 BUP 9-mrt 74.7 

9-mrt Kali Jagir Jagir Sluice 9-mrt 74.7 
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Appendix J: Comparing results of AC models including 
forced-by-WISP-3 for 24 locations along the Brantas River (S2 
image 28-02-2020) 
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Appendix K: Comparing results of AC models including above 
water spectral measurements by WISP-3 for 9 locations on Waduk 
Sutami (S2 image 24-03-2020) 
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Appendix L: Overview of 59 investigated locations with water / 
land pixel indication 

# Sampler and Sample location name Land / water/ spurious pixel 

0 PJT-1 Waduk Sutami hulu Water 

1 PJT-1 Waduk Sutami tengah Water 

2 PJT-1 Waduk Sutami hilir Water 

3 PJT-1 Pakel Tambangan Water 

4 PJT-1 Jembatan Padangan Water 

5 PJT-1 Cangkir Tambangan Land 

6 PJT-1 Karangpilang Land 

7 PJT-1 Ngagel / Jagir Sluice Water 

8 BBWS Jembatan Ngoro (1st location) Land 

9 BBWS Jembatan Pulorejo (2nd location) Water 

10 BBWS Jembatan Tol Mojokerto (3rd location) Land 

11 EPA Arboretum Malang Kota Batu Kec. Bumiaji Land 

12 EPA Jembatan Pendem Land 

13 EPA Jembatan Dinoyo Land 

14 EPA Jembatan Soekarno - Hatta Depan Univ. Brawijaya 
Malang 

Land 

15 EPA Jembatan Gadang Land 

16 EPA Jembatan By Pass Kepanjen Land 

17 EPA Jembatan Sengguruh Spurious 

18 EPA Jembatan Kali Pare Spurious 

19 EPA Jembatan Selopuro Blitar Water 

20 EPA Jembatan Glondong / Satreyan Blitar Water 

21 EPA Jembatan Kademangan Land 

22 EPA Tambangan Ngunut 2 Tulungagung Land 

23  EPA Jembatan Ngujang Water 

24 EPA Jembatan Masjid Agung Kediri / Bandar Ngalim Water 

25 EPA Jembatan Meritjan Water 
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26 EPA Jembatan Papar Kediri Water 

27 EPA Jembatan Kertosono Water 

28 EPA Jembatan Ploso Water 

29 EPA Jembatan Padangan Water 

30 EPA Jembatan Ngembul / Kesamben Blitar Land 

31 EPA Jembatan MERR Surabaya Land 

32 EPA Tambangan Wonorejo Surabaya Land 

33 EPA Jembatan Bungkuk Ngagel Land 

34 EPA Jembatan Sono Kembang Land 

35  EPA Jembatan Pasar Besar Land 

36 EPA Jembatan Petekan Land 

37 EPA Jembatan Jetis IV Mojokerto Land 

38 EPA Jembatan By Pass Water 

39 EPA Jembatan Ngrame II Mojokerto Land 

40 EPA Jembatan Tanjang Rono (dekat PG. Krembung) 
Mojokerto 

Spurious 

41 EPA Jembatan Porong Water 

42 EPA Tambangan Tlocor Water 

43 EPA Jembatan Canggu Water 

44 EPA Jembatan Perning Water 

45 EPA Jembatan Legundi Land 

46 EPA Tambangan Cangkir Land 

47  EPA Tambangan  Bambe Land 

48 EPA Sebelum Intake PDAM Jemb. Karangpilang Land 

49 EPA Jembatan Karangpilang Baru Sepanjang Land 

50 EPA Bendungan Gunungsari Water 

51 EPA Jembatan Gunungsari Water 

52 EPA Hulu Kali Tengah Land 

53 EPA WWG Kali Tengah Land 
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54 EPA Jembatan Bambe Land 

55 EPA Jembatan Lawang Land 

56 EPA Dam Paras Lawang Land 

57 EPA Jembatan Kraton Land 

58 EPA Jembatan Tumpang Purwosari Land 

 
The table above shows the classification of the individual locations as used during S2 image analysis. It                 
turns out that 23 out of 59 (39%) are actual water pixels, 33 (56%) are land pixels and 3 (5%) are                     
spurious pixels. It shows that careful selection of coordinates of sample locations is necessary.  
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Appendix M: Comparing TSM in situ measurements with modelled 
values based on S2 L1C B7 for all 59 locations  

This appendix should be consulted using Appendix L, since that appendix shows whether pixels are               
considered to be land or water pixels after examination of individual spectra derived from these locations. 
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Data Management Plan (DMP) 
Editable Form adapted from CESSDA using DMPonline 

Integrated parts from the Delft University Fund DMP Template 

1. Overview

Title of the project/study Estimating Total Suspended Matter in Low to Extremely High 

Level Turbid River Surface Waters using a WISP-3 

Hyperspectral Radiometer and Sentinel-2 (S2) Optical 

Imagery 

Date of this plan Last updated Friday, 31 July 2020 

Version of this plan This is version 3.1. Major changes or updates will increase the 

main number (i.e. the number before the dot, e.g. 2.0). 

Intermediate updates with minor changes will increase the 

secondary number (i.e. the number after the dot, e.g. 1.1).  

Description of the project This study will be the final work (thesis) of my MSc program 

Water Management, Civil Engineering. Choosing the Brantas 

River as case follows from its importance: The Brantas River 

is East Java's largest river  with a watershed area of about 

12,000 km2 and stretches 320 km from its spring at Mt. 

Arjuno to the point where it branches into two rivers, the 

Surabaya River and the Porong River, both of which drain into 

the Madura Strait. Approximately 30 million people are living 

in the Brantas River watershed. Through 35 organizations 

that have a role in water resource development and 

management of the Brantas River, a long time series with a 

fast amount of data is available. This study will focus on the 

Surabaya River.  This study will use remotely sensed data 

validated against in situ data from monitoring databases to 

identify Total Suspended Solids (TSM) using optical satellite 

data. 

Project timeline Research proposal Oct – Nov 2019 

Literature study Dec. 2019 

Set-up collaborations Dec. 2019 – Jan. 2020 

Gather historical data Jan. – Apr. 2020 

Site visits Jan. – Mar. 2020 

Sampling with PJT-1, BBWS, EPA Jan. – Mar. 2020 
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Analysis laboratory Env. Eng. Dep. 

ITS 
Dec. – Feb. 2020 

Analysing results, mining satellite 

data, modelling algorithms 
May. – July 2020 

Presenting results Aug. 2020 

Institution leading the 

collaboration 

Technische Universiteit Delft is leading the project, in close 

cooperation with Ecoton, BBWS Brantas, Jasa Tirta I Public 

Corporation, WLN Indonesia (PT. WLN), Tauw B.V. and 

Netherlands Enterprise Agency 

Responsible for the data 

resulting from this project 

Dr.ir. Maurits W. Ertsen Senior lecturer Water Management 

Resources (m.w.ertsen@tudelft.nl) in the role as project 

leader of “Fostering inclusive growth, health and equity by 

mainstreaming water quality in river basin management in 

the Brantas river basin, Indonesia” (referred to in this 

document as “the  Brantas project”). 

Origin of Data: produced or 

issued by principle 

researcher 

1. Data produced by principle researcher:

a. WISP-3 handheld radiometer water leaving

reflectance measurements

b. Dissolved Oxygen and temperature

measurements by a handheld AZ 8403 Portable

Digital Dissolved Oxygen DO Tester

2. Laboratory measurements issued for this research and

carried out by the laboratory of the Environmental

Engineering Department of ITS (Sepuluh Nopember

Institute of Technology):

a. Total Suspended Solids (TSS)

b. Dissolved oxygen (DO)

c. Chlorophyll-a (Chl-a)

d. Turbidity (TU)

e. Chemical oxygen demand (COD)

f. Biological oxygen demand (BOD)

All collected data have a quantitative nature. Collection of new 

measurements is necessary because no dataset exists of 

water leaving reflectance values for the Brantas River. 

Furthermore, these measurements need to be taken at the 

same time as in situ laboratory examined water samples are 

taken, to be able to validate and calibrate the proposed 

algorithms.  

Origin of Data: from 

existing, external data 

sources 

1. Existing, external data sources:

a. In situ measurements:

mailto:m.w.ertsen@tudelft.nl
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i. Perum Jasa Tirta I, Agency for Brantas

and Bengawan Solo River Basins (PJT-

1)

ii. Brantas Water Resources Management

(BBWS)

iii. Environmental Provincial Agency East

Java (EPA)

b. Satellite related data:

i. Sentinel-2 MSI 2A and 2B reflectance

values in band 1 to 8A

ii. Atmospheric correction algorithms, 

scripts and data:

1. Sen2Cor

2. C2RCC

3. ACOLITE

From the Sentinel-2 platform, all images of the Brantas river 

basin (granule T49MFM) are used from the start of the 

mission 2015 until now. Most images are analysed online 

using the Google Earth Engine (GEE). Only resulting 

reflectance data for specific locations are downloaded and 

stored for further analysis (.csv files). Top of atmosphere 

(TOA) images of match-ups with in situ reflectance data are 

downloaded, archived and analysed, being data from 17-11-

2019, 30-12-2019, 28-02-2020 and 08-04-2020. These are 

left intact in the .jp2 format and are analysed using SNAP and 

ArcMap. Sen2Cor bottom of atmosphere (BOA) data is 

specifically downloaded through GEE for appropriate sampling 

locations. C2RCC and ACOLITE calculations of BOA reflectance 

values are processed offline on a personal computer. 

Resulting images (SNAP standard BEAM-DIMAP format and 

.nc format) are stored, analysed and archived on a local SSD. 

Integration of data sources External datasets holding values of water quality parameters 

are delivered as excel files, as PDF or hard copy. Laboratory 

results requested by this study are delivered hard copy or as 

PDF. Own in situ data is noted hard copy in the field and 

transferred into excel file format the same day. All data is 

converted into .csv files in order to be read by the Python 

Notebook interface. 

Satellite reflectance values are extracted by either GEE or by 

using SNAP and stored as .csv files for further analysis using 

the Python Notebook interface. Files resulting from 

atmospheric correction using the ACOLITE algorithm (.nc 

files) are directly read in Python. 

Raw WISP-3 samples are taken from the devices SD-card and 

uploaded on WISPweb, a web-based user interface for 

storing, reading, analysing and downloading WISP-3 data. It 
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also provides running algorithms estimating a selection of 

water quality parameters and a means of adding metadata to 

the individual measurements. Downloaded data is formatted 

as .csv files for further analysis using Python.  

All analysis and producing resulting figures, graphs and tables 

is done using Python. All relevant scripts are bundled and 

archived.    

Principal researcher 

/creator 

J.C. Wiggins

Contact details principal 

researcher 

joris@wiggins.nl, 0031-6-24646303 

ORCID iD https://orcid.org/0000-0003-4351-8304 

Collaborating researchers None 

Funding organizations and 

project’s title in the funding 

contract 

1. Delft University

Fund

Grant number: 2019-060 

“Water quality monitoring and 

evaluation using optical satellite 

data in the delta of the Brantas 

River, Indonesia” 

2. Lamminga

Fonds

Grant number: Lamm-19-41-PV 

“Veldwerk in Surabaya, Indonesië 

2019-2020 in het kader van MSc 

Thesis project Afdeling Water 

Management” 

3. Sustainable

Water Fund 

(FDW) of the 

Ministry of 

Economic 

Affairs of the 

Kingdom of the 

Netherlands 

Grant number: NL-KVK-27378529-

FDW16046RI 

“Fostering inclusive growth, health 

and equity by mainstreaming water 

quality in river basin management in 

the Brantas River basin, Indonesia” 

Data producer Organizations which have the administrative responsibility for 

the data: J.C. Wiggins, ITS Env. Eng. Department ITS, PJT-1, 

BBWS and EPA, ESA (European Space Agency) 

Project data contacts + e-

mail address 

ITS Env. Eng. Dep. ITS Edy Pratikno 

edypratikto27@gmail.com 

PJT-1 Astria Nugrahany  

astria@jasatirta1.net 

mailto:joris@wiggins.nl
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BBWS BBWS Brantas Water Quality Staff 

kualitasair.bbwsbrantas@gmail.com 

EPA Immanuel Kharisma 

imkh40@gmail.com 

ESA EOSupport@Copernicus.esa.int 

Project data overall 

contact 

J.C. Wiggins, MSc. student of Water Management, faculty of

Civil Engineering of the TU Delft

Data owner(s) and 

respective roles 

J.C. Wiggins Project owner, data 

producer, responsible 

for updating the DMP 

and making sure that 

it’s followed 

PJT-1, BBWS and EPA, ESA Stakeholders, data 

producer and data 

owners 

Costs and Resources Are there costs you need to consider to buy specific 

software or hardware? 

ArcGIS for Desktop software is provided as part of following 

the Geographic Information Systems (GIS) Specialization 

offered by UC Davis University of California, USA. 

the Sentinel Application Platform (SNAP) is a common 

architecture for all Sentinel Toolboxes is being jointly 

developed by Brockmann Consult, SkyWatch and C-S. Its use 

is without costs.  

Expenses for hardware are limited to costs of USB drives and 

an external hard drive for back-up of research data. 

Are there costs you need to consider for storage and 

backup? 

a. Dropbox €11,99 monthly plan (all data files, S2 data

downloads)

b. Google Drive €4,39 monthly plan (results of GEE

scripts and data requests, draft versions of thesis,

transcriptions of research interviews and meetings,

fieldwork photos)

c. Microsoft OneDrive for free (Python Notebook and

Spyder scripts, results of data analysis by Python).

d. All files are also stored locally on a SSD.

Are potential expenses and resources for (preparing 

the data for) archiving covered? 



107 

No, own personal expense. If need arises, a request for 

financial help can be delivered to the institution leading the 

collaboration (TU Delft). 

What resources will be dedicated to data management 

ensuring that data will be FAIR? 

At this moment none, since it is (not yet) decided to make the 

data publicly available. In preparation of such an event, 

guidelines of the CESSDA data management expert guide are 

followed as closely as possible in setting up, using and 

archiving the data regarding this study.  

2. Organizing and documenting your data

Data collection What type(s) of data will be collected? 

All collected data have a quantitative nature. Data collected 

are water quality parameters, water leaving reflectance 

values and atmospheric conditions. 

What is the scope, quantity, and format of the 

material? 

In situ water sampling (handheld radiometer for reflectance 

values, TSS, DO, Chl-a, TU, COD, BOD) for this study is done 

at 20 locations. Historical data is gathered from a total of 58 

locations throughout the basin (PJT-1, BBWS and EPA 

sampling stations). All data is delivered either hard copy, as 

excel files, as PDF or as .csv file. All data is formatted as .csv 

file. Satellite and atmospherically corrected data are delivered 

as .jp2, .geotiff or as .nc file. Pixel values per band are 

extracted and formatted as .csv file.  

What is the total amount of data collected (in 

MB/GB)? 

Google Drive 1.2 GB 

Dropbox 63.6 GB 

OneDrive 190 MB 

Total 64.99 GB 

Data organization How will you organize your data? 

Dropbox all data files fieldwork data (in situ 

measurements, WISP-3 datasets), S2 data 

downloads, PlanetScope satellite data 

downloads, ArcGIS files and databases, 

acquired databases, project proposal, word 
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documents and presentation files midterm 

and greenlight meeting, intermediate  

versions of thesis report including lay-out, all 

letters and official documentation for 

internship ITS and residence permit 

Indonesia, all official letters for data 

requests and set-up collaborations 

Google Drive results of GEE scripts and GEE data requests, 

draft versions of thesis, transcriptions of 

research interviews and meetings, fieldwork 

photos 

Microsoft 

OneDrive 

Python Notebook and Spyder scripts, results 

of data analysis by Python 

WISPweb Online storage of all raw WISP-3 

measurements, in a GUI which allows 

visualization, analysis, metadata updates, 

calibration and export of subsets of data 

Will the data be organized in simple files or more 

complex databases? 

Most data are organized in simple files (.csv format) to be 

readable and writable by Python, Spyder, ArcGIS, GEE and 

Excel. Datasets of external sources are formatted in the same 

structure and combined before analysing.  

What is your process for quality assurance? What are 

your quality measures? Specific quality standards or 

quality management models applied: 

Quality assessment of Standard Laboratory Operating 

Procedure 

The EPA uses standardized protocols (i.e. SNI, APHA) to 

measure each water quality variable in their own laboratory. 

PJT-1 uses its own laboratories in Malang and Mojokerto. The 

PJT-1 water quality laboratory management is ISO-certified. 

BBWS collects water samples and has them analysed at the 

laboratories of PJT-1. 

Water samples taken by myself were analysed at the 

laboratory of the Environmental Engineering Department of 

ITS. These samples were analysed using a gravimetric 

method following an unknown protocol. 

Quality assessment of methods with WISP-3 in-situ 

measurements 

The WISP3 uses a unique configuration of fibre optics. This 

approach is validated against other non-handheld or mounted 
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spectroradiometers and laboratory concentrations. The WISP-

3 is also calibrated against a NIST traceable light source. 

The WISP-3 radiometer averages 15 automated samples for 

each measurement. For this study 3 to 5 manually induced 

measurements (of 15 samples each) per sampling station 

were performed, in order to do a quality control check on 

those sets of measurements. Average values of those sets of 

measurements are used, except when 1 out of all manually 

induced measurements was more than 20% off, that 

measurement was neglected. 

The reflectance (R0) is a ratio and should therefore never be 

lower than 0 or higher than 1. Values higher than 1 are 

flagged and not used.  High reflectance values can be caused 

by sun glint or mirror-like reflection of the water surface. To 

validate the estimated TSM concentrations from spectral 

images derived from the WISP-3 measurements, in situ data 

from the laboratory are used. 

Quality assessment of Sentinel-2 optical satellite imagery 

A first, simple, quick visual inspection is undertaken by 

analysing the RGB colour composite image of the remotely 

sensed data. Thereby, images with sun glint and excessive 

cloud cover can be easily identified and manually taken out of 

the dataset. All images are later in the process checked in 

bulk in GEE and cloud and cloud shadow pixels are flagged 

and left out of analysis. To check whether selected pixels for 

analysis are indeed water pixels, spectra are plotted and 

checked for their signal (distinctive water / land or spurious 

pixel). 

Data type and size There are no specific requirements for compatibility and 

comparability of my data. Also, there are no specific 

standards that I want to implement, e.g. naming conventions 

or standardized coding structures. 

File format All data is delivered either hard copy, as excel files, as PDF or 

as .csv file. All data is formatted as .csv file. Satellite and 

atmospherically corrected data are delivered as .jp2, .geotiff 

or as .nc file. Pixel values per band are extracted and 

formatted as .csv file. Resulting graphs and visualizations are 

saved as .png files. 

Folder structure & names Python scripts are saved in a folder structure following the 

sequential steps undertaken to get from raw data input to 

final results of analysis. I.e. the main folder for scripts used 

for analysis are stored in OneDrive>Brantas>Final_report. 

This folder holds the following subfolders: 

a) Step 01 Re-calibration

b) Step 02 Fingerprinting
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c) Step 03 Typical spectra and bio-optical properties

d) Step 04 WISP-3 spectra vs lab results

e) Step 04.1 Linear green and red bands and polynomial

NIR band curve fitting

f) Step 05 Bounds selection MCA

g) Step 06 Performance of MCA

h) Step 07 Timeseries Sent-2 bands

i) Step 08 Match-ups Sent-2 and lab results

j) Step 09 Applying MCA to recent Sent-data

All data which is used as input for scripts is stored in a 

separate folder, as is all data produced as output stored in a 

specific folder. These folders have subfolders to sort data per 

above shown steps in the process.  

Resulting .png files with plots and visualizations is stored in 

OneDrive>Brantas>Final_report>visualization. External 

scripts are saved and run from separate folders, named after 

the author. For example, the scripts for fingerprinting the 

WISP-3  spectra and all associated results are stored in 

OneDrive>Brantas>StefanSimis. 

Fieldwork data is sorted by source and file type. All original 

data is stored as such and alterations are done only on copies 

of the original datasets.  

File structure & names Names of individual scripts are structured as follows: <What 

is done by the script><What does it use as input><What does 

is give as output>.ipynb. E.g. “Create files for fingerprinting 

Input is 27 measurements WISP after re-calibration data 

output is files for fingerprinting algorithm.ipynb”. 

Fieldwork data is named after the source and date of 

sampling.  

Documentation No other separate files accompanying the data will be 

produced besides this document. At this moment, no 

database structure is used, besides the above described 

folder structure. 

Metadata Are the data produced and/or used in the project 

discoverable with metadata? 

The WISP-3 data has added, detailed metadata added and 

stored in WISPweb. The data is available for users of the 

platform and only when they are granted access.  

S2 data comes with its own metadata files and formats. They 

are left as is. 

What metadata will you use? 
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For all ArcMap files (visualization of geoinformation, maps and 

details of satellite imagery analysis) get added, ArcGIS 

standard metadata files.  

PROCESS PLAN 
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3. Processing your data

Versioning How will you version your scripts during the project? 

Scripts of first try-outs on analysing data are stored in 

OneDrive>Brantas>archive. After, a sequence of steps was 

determined, and scripts were sorted following that sequence. 

A first series is stored in OneDrive>Brantas>after_calibration 

following the structure as depicted under the “Folder structure 

& names” part of this plan. The final version of all scripts 

following this sequence can be found under 

OneDrive>Brantas>final_report. 

How can different versions of a data file be separated? 

The file names are defined in such a way that they reflect 

what version it is. This is done by adding a date and a version 

number to the file name. The general convention is followed, 

being using the date format (YYYY-MM-DD) as the start of the 

file name, allowing you sorting of files in chronological order. 

Every time major changes are made to datasets; a new 

version is stored. Raw data is preserved at all times by 

creating a copy of raw datasets before any manipulations are 

done. 

Interoperability Which software will you use? 

ArcGIS for Desktop (ArcGIS Desktop 10.7.1, ArcGIS Service 

Pack: 0 (build 0)) is used for all GIS related work. All data is 

stored in geodatabases, collection of files in a folder on disk 

that can store, query, and manage both spatial and nonspatial 

data. Geodatabases can be read by ArcGIS software or 

accessed and managed using MS Access.  

SNAP is used for all S2 downloaded data and is ideal for Earth 

Observation processing and analysis. All data is stored as 

BEAM-DIMAP format (SNAP-standard) and can be opened 

with whatever version of SNAP installed. 

Scripts (javascript) for the GEE web-based user interface 

environment are stored, accessed and executed online. The 

latest versions are available for registered users.  

Python Notebook 6.1.6 is used for data import, analysis and 

visualization. All scripts are stored as .ipynb. 

Spyder 3.3.6 is used for reading, adjusting and executing 

Stefan Simins scripts for fingerprinting (correcting reflectance 

value measurements for sun glint and measuring angle). 

Scripts are stored as .py files. 

Data quality How will data quality be evaluated? 

WISP-3 reflectance measurements are evaluated online using 

WISPweb. To check if spectral measurements are okay, 
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guidelines of the “WISP-3 User Guide” (n.d., Water Insight 

B.V. The Netherlands), follow these steps:

Check R(0) directly after measurement. The reflectance (R0) 

is a ratio and should therefore never be lower than 0 or higher 

than 1. Sometimes the reflectance around 400nm is negative. 

If this occurs only on the leftmost side of the graph and the 

values are just below zero, the data can still be used. Treat  

these measurements with care though. 

Ed, Ld and Lu can be examined in WISPweb. The irradiance 

(Ed) should always have the highest values of the three 

separate spectra. The downwelling radiance (Ld) is a fraction 

of Ed and should therefore be much lower (e.g. a factor 10). 

However, both measure the sky and the spectral shape should 

therefore be relatively similar. The downwelling radiance (Lu 

the 'water' signal) should be much lower than Ld. If not, check 

if there was a high sediment load (than the spectra might be 

correct), or if there were factors with a negative influence on 

the measurement, such as bottom visibility, macrophytes, 

floating plants or garbage, or wrong measuring angles. 

What data quality control measures will be used? 

See under Data organization > Quality assessment of this 

document. 

Responsibilities and 

resources 

Who will be responsible for data management? 

The principal researcher will be responsible for data capture, 

data management, metadata production, storage and 

backup, data archiving and data sharing. 

What resources will you require to deliver your plan? 

Time and effort are spent within the timeframe of this thesis 

project to prepare the data for own use and archiving / 

preservation. I have sufficient storage and equipment to 

undertake these tasks. 

4. Storing your data and metadata

Type of data Are you collecting personal data or do your data in any 

other way require special protection? 

No personal data is stored. All data is op the general type. 

Who needs access Is it necessary to have remote access to the data? Are 

you e.g. transmitting data from the field? 

It is not required to have remote access to the data. All S2 

data however is remotely accessed using the GEE. 

How important is fast access? 
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Fast access does not play any significant role. To speed up 

computational time, as much data processing on S2 data is 

done using GEE’s server power. 

Is simultaneous and synchronised access by several 

people required? 

Simultaneous and synchronised access by several people is 

not required. 

Storage and back-up How will the data be stored and backed up during the 

research? 

Storage and back up will be in three places: 

● On Laptop of principal researcher

● On a portable storage device (hard drive)

● Divided on online storage platforms Google Drive, Dropbox

and OneDrive, as specified under 1. Overview > Costs and

Resources.

The principal researcher will be responsible for the storage 

and back up of data. This will be done weekly. 

If required by the TU Delft, a final version ready for archiving 

/ sharing will be made available through Git(lab)/subversion 

repository at TU Delft. If so, also all data will be uploaded to 

the 4TU.Centre for Research Data. 

How much data are you going to generate and how 

much storage capacity will you need, including 

backups? 

All data combined holds 64.99 GB. This is the size of the data 

on the online storage platforms combined (working 

documents). Back-ups on the laptop and portable storage 

device are equal of size. Only the last version of every back-

up is stored. 

Which media types will you use and how often will you 

replace them? 

A laptop (SSD) is used, as well as a portable hard disk and 

online storage capacity is used.  

The final version of the MSc thesis will be uploaded to TU 

Delft’s Thesis Repository (http://repository.tudelft.nl). 

Required storage 64.99 GB 

Storage period For how long is storage required? 

The digital version of the MSc thesis is published and offered 

within an Open Access framework for a not by time defined 

period. 

File formats Are you certain that your data and files are stored in a 

format for which there will still be suitable software 
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available to access and process the stored information 

in ten years? 

Yes, all raw data is stored in .csv file format. Processed data 

in ArcGIS and SNAP format might get outdated, but it is not 

likely so. 

Security How will you manage access and security? 

Both the laptop and external storage device are password 

protected. The risks are that the computer will be hacked and 

the external drive stolen. Secondary risk is malfunctioning f 

either the SSD disk from the laptop or the external hard drive. 

Malfunctioning of the laptop is minimized by installing a new 

motherboard just before the start of the study.  The laptop 

has anti-virus and anti-malware software installed which is 

updated daily. The laptop is not used for other any other 

purpose than all work associated with this study. The external 

device is in a locked cabinet. Moreover, the data files stored 

online are also password protected. 

Budget What is the associated cost of storing and backing up 

data? 

See under 1. Overview > Costs and Resources 

 MENT PLAN 

5. Protecting your data

Type of data Data can be differentiated into three categories: 

- Critical data: data that enables the identification of an

individual

- Sensitive data: data that is competition-sensitive or

confidential

- Standard data: data that is not critical nor sensitive

All data collected, used and archived during the course of this 

study belongs to the standard data category. See under 4. 

Storing your data and metadata > Security for more details.  

Ethical review Does your project require approval by a local ethics 

committee? 

No, this is not required. 

Informed consent Does your research involve human subjects? 

No, so no informed consent issues are at play. 

(sensitive) Personal data 

/confidential information / 

protecting participants  

Will you process any personal data? Tick all that apply 

No personal data will be recorded or processed. 



116 

Intellectual property rights 

(IPR)/Copyrights 

Are there IPR or copyright issues to consider? 

Data from PJT-1 was shared for this research under strict 

regulation. Data of PJT-1 may be used solely for data analysis 

regarding this study. Data of PJT-1 is not allowed to be made 

public or shared in any way with third parties. 

Have you established who owns the copyright in your 

data? Might there be joint copyright? 

There is no joint copyright. All original data owners who 

shared their data, stay copyright owner. All except PJT-1 have 

allowed me to use and share their data at will. 

Will permission be needed to collect/reuse the data? 

Permission is granted by all parties to collect their data. 

Permission is granted by all parties except PJT-1 to share their 

data.  

Will these rights be transferred to another organisation 

for data archiving? 

No rights will be transferred to another organisation. 

Restrictions Not all data can be publicly shared - please explain 

below which data and why cannot be publicly shared 

See under 5. Protecting your data > Intellectual property 

rights (IPR)/Copyrights (above). 

6. Archiving and publishing your data

Metadata and deposit of 

data 

Metadata Policy 

Anyone may access the metadata free of charge. The 

metadata may be re-used in any medium without prior 

permission for not for-profit purposes and resold 

commercially provided the OAI Identifier or a link to the 

original metadata record are given. 

Will the data you produce and/or used in the project be 

usable by third parties, in particular after the end of the 

project? 

Yes, all data is available via request at the principal 

researcher, also after the end of the project. If required by TU 

Delft, the data will be made available via an appropriate 

online data archive. 

Which data and associated metadata, documentation 

and code will be deposited? 

At first, none. The data however is as much as possible 

prepared to be deposited in a later stage. 
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What methods or software tools are needed to access 

the data? 

ArcGIS for Desktop, the Sentinel Application Platform (SNAP), 

Jupyter Notebook and Spyder Python environments as well as 

the web-based GEE interface. 

Will the application of a persistent identifier to your 

data be ensured? 

If the data will be published, a persistent identifier will be 

applied. 

Deposit timing and 

duration 

When will your data be made available for re-use? Is 

there an embargo period? 

The data for re-use will be made available if need be or on 

request, and in any case after handing in the final version of 

the MSc thesis. There is no embargo period. 

How long does the data need to be retained? For how 

long should the data remain reusable? 

If the data will be deposited, it will be and the end of the 

project in an appropriate data depository e.g. through 

Git(lab)/subversion repository at TU Delft. There is no 

additional cost. Where possible I will store files in open 

archival formats (e.g. word files converted to .txt files and 

excel files converted to .csv.) Where this is not possible, I will 

include information on software used and by what version 

number. 

Access Does the data contain anything sensitive? 

The data does not contain anything sensitive. 

Can the information in this data collection be linked 

with anything in another data collection which might 

lead to participant’s identities being disclosed? 

No, since no sensitive data is collected and stored, this is not 

an issue. 

If ‘restricted access’ is to be chosen who will manage 

the access to this request? 

‘Restricted access’ will not be chosen as access type. 

Data Policy 
Access to Full Data Items is controlled because sharing of 

collected data from PJT-1 is not allowed. Copies of full data 

items generally can be reproduced, displayed by and given to 

third parties in any format or medium for personal research 

or study, educational, or not-for-profit purposes without prior 

permission or charge, provided that: 

1. the authors, title and main bibliographic details are

given;



118 

2. a hyperlink and/or URL are given for the original

metadata page;

3. the content is not changed in any way.

Data items must not be sold commercially in any format or 

medium without formal permission of the copyright holders. 

Some full items are individually tagged with different rights 

permissions and conditions. Mentioning of the TU Delft 

repository is appreciated but not mandatory. 

Are any restrictions on data sharing required? 

No, there are no restrictions on data sharing required. 

Data licensing How will your data be licensed to permit the widest re-

use possible? 

This study aims at complying with the open data pilot. Hence 

all data produced shall be aimed at open access. The currently 

installed Data management plan clearly states the open 

access foundation saying that Free and open access without 

any restrictions shall be granted to the metadata of the data. 

Furthermore, it aims to identify unnecessary or obsolete 

barriers towards open access. 

Have you considered which kind of licence is 

appropriate for sharing your data and what, if any, 

restrictions there might be on re-use? 

Yes, restriction apply due to requirements of third parties, see 

under 6. Archiving and publishing your data > Data Policy. 

If you are purchasing or re-using someone else’s data 

sources have you considered how that data might be 

shareable, for example negotiating a new licence with 

the original supplier? 

Yes, this was allowed by all parties except PJT-1. 

7. Discovering data

Identification of needs Do you plan to use existing data for your research? 

Yes, data requests are done to share data from parties which 

are responsible for water quality and water quantity 

management (PJT-1, BBWS and EPA).  

What is the purpose for which you need the data? 

The data is needed to compute timeseries for several water 

quality parameters (most importantly TSM, DO, COD and BOD 

but data exists of in total over 40 different water quality 

parameters).  

What do you want to learn from the data? 
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This data can reveal trends (yearly, monthly or seasonally) 

which are possibly overlooked when zooming in on shorter 

timeslots. 

What type of data do you need? 

Needed data has a quantitative character. 

Search for data Do you know where the data may be located? 

Yes, the data is kept in own, local data repositories by 

respective data owners.  

How do you plan to search for the data? 

I know where to find the data. I need to organize access, and 

therefor data requests are posted at all parties in separate 

letters directed to the head of departments or head of the 

organization. The letters are translated by Reza Pramana 

K.E.R.Pramana@tudelft.nl, PhD researcher at TU Delft. 

Letters are signed by Dr.ir. Maurits W. Ertsen 

(m.w.ertsen@tudelft.nl), head of the Brantas project. 

Gaining access to data What are the (expected) terms and conditions for data 

access and use? 

Since all data requests will be posted at partners of the 

Brantas project, it is expected that they will grant access to 

all data asked for, without further costs. 

What is the (expected) process for gaining access to 

the data? 

1. Getting consent of the project leader (Maurits Ertsen)

to ask stakeholders for data

2. Write letters and get them translated by Reza

Pramana.

3. Send data request to respective head of departments.

4. Wait for approval from respective board of directors.

What is the (expected) time-span of the process for 

gaining access to the data? 

The expected timeframe is a couple of weeks until 2 months, 

since it is known that all requests have to be discussed by the 

respective board of directors. 

What are the (expected) costs for data access and use? 

If the data requests are honoured, it is expected to come 

without further costs. 

mailto:K.E.R.Pramana@tudelft.nl
mailto:m.w.ertsen@tudelft.nl
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