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Executive Summary 
 

 

Ocean acidification, also referred to as the evil twin of global warming, occurs due to the CO2 

absorption of the oceans from the atmosphere. Both the pH and carbonate saturations are 

altered with this absorption process. The optimal operating conditions of the biological systems 

in the marine environment are therefore no longer maintained. The marine species are reacting 

in various ways to this change, eventually leading to a loss in biodiversity.  With the current 

trend in emissions, the pH levels of the oceans are expected to decrease from 8.1 to 7.8 by the 

end of the century. In combination with the other stressors, it is projected that OA will have a 

wide range of impacts on marine life and its services to humanity. The representation of these 

implications is limited in environmental assessment tools such as Life Cycle Assessment. 

 

This research explores the relationship between the changing acidity of the oceans and marine 

biodiversity loss. This relation is quantified through utilizing the ecotoxicology impact 

assessment approach for LCA. Following this approach, an endpoint characterization model is 

developed for ocean acidification. The approach consists of the development and integration 

of fate, exposure, effect and damage models. The fate model, expressing the relation between 

the GHG emissions (CO2, CO, CH4) and change in acidity of the ocean is based on the work 

of Bach et al. (2016). The effect model has been developed by constructing species sensitivity 

distributions utilizing species response data from 5 taxonomic groups (mollusca, 

echinodermata, fish, cnidaria, crustacea) to obtain the potentially affected fraction of species 

with changing pH. Furthermore, 3 different categorizations (climate zones, calcification, 

exposure duration) were made to assess their effects on species responses. The results revealed 

that there is no significant difference in responses based on different exposure durations or 

climate zones. Calcifying species on the other hand is found to have a higher sensitivity to 

ocean acidification as the change in carbonate chemistry directly influences the shell and 

skeleton formation of these organisms. Lastly, these models were integrated into an endpoint 

characterization model for ocean acidification. From the 3 GHG emissions included within the 

scope of this research, CO2 has the highest (CFCO2 = 4.883  104(𝑃𝐷𝐹)𝑚3/𝑘𝑔𝐺𝐻𝐺) and CH4 has 

the lowest (CFCH4 = 4.072  104(𝑃𝐷𝐹)𝑚3/𝑘𝑔𝐺𝐻𝐺) impact on marine biodiversity loss due to 

OA.  These ecosystem damage indicators can be utilized in the impact assessment phase of the 

Life Cycle Assessment to translate the inventory results into impact on marine biodiversity.  

 

Through the quantification of the impacts of ocean acidification, the effects of this major 

stressor on marine life can be better understood and targeted strategies can be developed. 

However, more research is required to increase the robustness of these models through 

expanding the species scope and incorporating temporal and geographical aspects into the 

models. Furthermore, the cascading effects of the changing ocean pH are still unknown and its 

consequences on ecosystems and socio-economic structures are unprecedented. To establish 

science-based targets and strategies to conserve the species richness in marine life, the extent 

of our understanding of the damage caused by anthropogenic actions needs to be further 

explored and estimated for the future.  
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Chapter 1. Introduction 
 

 

1.1. Ocean Acidification 
 

Atmospheric carbon dioxide (CO2) levels have increased up to 47% since the industrial 

revolution, reaching 412 ppm in 2019 (Buis, 2019).  According to the global measurements of 

several scientific institutes, this concentration is going to continue rising due to the increasing 

global energy consumption and deforestation (Figure 1) (Buis, 2019). This long-term trend will 

escalate the severity of climate change impacts through the complex interactions of the climate 

system. The climate system is composed of different components of planet earth such as the 

atmosphere and the land surface, as well as the biogeochemical cycles (Ahmed, 2020).  The 

impacts of climate change are therefore observed and expected both within and across these 

components, leading to a large variety of emerging outcomes. Some of these outcomes can be 

listed as extreme weather conditions, water scarcity, and disruption of marine and terrestrial 

ecosystems (IPCC, 2014).  

The consequences of the changing climate and the impact of anthropogenic activities are 

observed and measured for global ecosystems in various forms. Global warming is the most 

well-known and discussed impact of climate change. Global warming is a predictable 

consequence of heat-trapping greenhouse gas (GHG) emissions released to the atmosphere, 

primarily due to the combustion of fossil fuels. Through the increased human interference due 

to industrialization, the planet is warming much faster compared to the previous centuries. With 

its current rate, the warming is expected to reach 1.5 °C within the two centuries after 2030 

(IPCC, 2018).  

 

 
Figure 1 Concentration of CO2 in the atmosphere in ppm over the course of 60 years (Buis, 2019) 
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Being the primary carbon sink of the earth, oceans have tempered this rise by absorbing up to 

40% of the anthropogenic GHG emissions during the last 200 years (Woods et al., 2016). 

Approximately 525 billion tons of CO2 have dissolved in the oceans since the beginning of the 

industrial revolution (Fabry et al., 2008). This flow of carbon is beneficial for mitigating global 

warming by reducing the GHG concentration in the atmosphere. However, the large quantities 

of dissolved CO2 also imply a shift in the chemical balance, eventually lowering the pH of the 

oceans (Doney et al, 2009). This phenomenon is called ocean acidification, commonly referred 

to as the “evil twin of global warming” (Cooke et al., 2019). 

 

 

Ocean pH levels have shifted from 8.2 to 8.1 while the carbonate ion concentration within the 

ocean has been reduced by 16% within the Anthropocene (Bach et al., 2016).  IPCC (2014) 

scenarios estimate that the ocean acidity will fall to 1.5 times lower than its current value and 

that the carbonate ion concentration will decrease by 50% by 2100 (Bach et al., 2016). The low 

emission scenarios suggest a shift of the ocean pH from 8.1 to 7.95, whereas the high emission 

scenarios suggest 8.1 to 7.8 (Azevedo et al., 2015). Considering the volume of the oceans and 

the logarithmic measurement of the pH scale, the impacts of such variation in acidity is 

detrimental, especially on marine organisms and ecosystems (Woods et al., 2016).  

 

 

The alterations within the biogeochemical cycles in the oceans have significant effects on the 

marine species and ecosystems (Doney et al., 2009). According to Bach et al. (2016), these 

effects can be categorized as primary, secondary and tertiary effects. The primary effects 

represent the changes in water chemistry. The more acidic the water gets, the fewer carbonate 

ions (CO3
2-) will be present in the water. Secondary effects are described in terms of the 

reaction of organisms to OA. Secondary effects of OA are classified based on the distinctive 

biophysical reactions of the organisms such as acidosis, reduced larval survival and decreased 

calcification. Decreased calcification especially is the most well-known effect of OA and it 

implies the reducing ability of calcifying organisms to form shells and skeletons due to the 

reduction in CO3
2- (Figure 2). Because of the complex interconnectedness of marine organisms, 

the secondary effects have the potential to disrupt the marine food web and life on an ecosystem 

level. This disruption causes a loss in marine biodiversity, which is described as the tertiary 

effects. 
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Figure 2 Time sequence of shell dissolution of the Antarctic pteropod Limacina helicina due to OA (exposure times; top left 

= 0 days, top right = 15 days, bottom left = 30 days, bottom right = 45 days) Photo credit: David Liittschwager/National 

Geographic Stock 

 

Bach et al. (2016) express that the IPCC 2014 report evidenced the necessity and importance 

of OA research and discussions, which lead to an increase in scientific research on the topic. 

The majority of research results confirm that marine ecosystems will be significantly 

influenced. Nevertheless, these results do not currently represent realistic gradual alterations in 

habitats and biodiversity. This is because the research is mostly based on short-term laboratory 

and mesocosm experiments to gather species responses to acidification. Therefore, it does not 

reflect the cascading of impacts due to the interactions between species within ecosystems. 

Moreover, data availability is a major concern considering the vast number of species within 

marine life and requires enhancements through further research (Woods et al., 2016). Overall, 

the extent of the impact of OA on marine biodiversity is largely unknown and underrepresented 

in the environmental assessment tools, which is hampering the capability of taking both 

adaptive and mitigative action with regards to the conservation of marine species. Further 

research and model developments are required to understand and mitigate its impacts. 

 

  



 5 

1.2. Ocean Carbonate System and Calcification Process 
 

Ocean Carbonate System 

When atmospheric CO2 dissolves on the surface of the ocean, a near-equilibrium reversible 

reaction between CO2 and H2O takes place (Bach et al., 2016) (see Eq 1.2.1). The first chemical 

compound formed from the CO2 and H2O reaction is carbonic acid (H2CO3). H2CO3 further 

dissolves into bicarbonate (HCO3
-) and hydrogen ions (H+). Eventually, the remaining H+ 

dissociates from HCO3
-, which results in 2 H+ and a carbonate ion (CO3

-2). The rates of 

disassociation of aqueous CO2 and HCO3
- are dependent on the pH levels of the ocean. Despite 

this fact, estimates of global averages of these rates are provided in the scientific literature 

(Royal Society Great Britain, 2005; Doney et al., 2009). Being an unstable acid, up to 90% of 

the H2CO3 dissociates rapidly into HCO3
- and hydrogen ions (H+). Following this conversion, 

9% of the HCO3
- further dissolves into CO3

-2 and H+.  

 

CO2(aq.) + H2O ↔ H2CO3 ↔ HCO3
- + H+ ↔ CO3

-2 + 2H+           (1.2.1) 

 

 

This alteration in seawater chemistry has two interpretations that are interconnected. First of 

all, as described above, when the aqueous CO2 increases, the H+ concentration increases. As 

pH represents the negative logarithm of the H+ concentration, an increase in H+ concentration 

means a lower pH value (Doney et al., 2009). Secondly, H+ released from the reaction binds 

with already existing CO3
2-, which decreases the overall available CO3

2- in the surface waters. 

In other words, the more dissolved CO2, the higher H+ and lower CO3
2- in terms of 

bioavailability. This balance can be observed from the Bjerrum plot (see Figure 3). 

  

 

 
Figure 3 Bjerrum plot showing the change in seawater chemistry due to OA (Barker & Ridgwell, 2012) 
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Calcification Process of Marine Species 

 

The inorganic carbon equilibrium in Eq. 1.2.1 takes place on the surface of the ocean with a 

timescale of one year. In longer time scales, CO2 absorption potential of the surface waters 

becomes dependent on the dissolved calcium carbonate (CaCO3) in the ocean (Doney et al., 

2009). CaCO3 dissolves from the sediments in the ocean into CO3
2- and calcium ions (Ca2+). 

In time, CO3
2- ions move through pelagic zones of the ocean and react with available Ca2+ (see 

Eq. 1.2.2) to form the shells or skeletons of the calcifying marine species and organisms such 

as corals, crustaceans and echinoderms. However, as the concentration of H+ originated from 

aqueous CO2 is higher compared to CO3
2-, H+ bind with both the previously existing and CO2 

based CO3
2- in the ocean, which lowers the CaCO3 formation rate (called calcification) of the 

marine organisms.  

 

CaCO3 ↔ CO3
2- + Ca2+               (1.2.2) 

 

The rate of this calcification process is dependent on the saturation state, denoted as 𝛀 (see 

Eq.1.2.3). The saturation state is calculated using Ca+2 and CO3
2- concentrations and the 

solubility product Ksp’. Temperature, pressure, salinity and mineral phase are the parameters 

that affect the solubility product value (Doney et al., 2009). Therefore, Ksp’ values change 

depending on the location of the ocean. For instance, as solubility is lower in higher water 

temperatures, warm waters in the tropics and subtropics have a higher saturation state 

compared to polar regions. The same reasoning applies to the vertically differentiated zones 

within the ocean. At greater depths, solubility is higher and saturation is lower due to high 

water pressure. The mineral states are classified into two: aragonite and calcite. Compared to 

aragonite, calcite is a more stable mineral form, which makes it approximately 50% less soluble 

(Mucci, 1983). When the saturation state is lower than 1 (𝛀 < 1) Eq 1.2.2 can shift towards the 

side of CO3
-2 and Ca+2. When 𝛀 > 1, calcification occurs through formation of CaCO3. Being 

highly dependent on carbonate ion concentration, saturation state and the calcification ability 

of organisms are estimated to be negatively affected by increasing levels of aqueous CO2.  

 

𝛀 = [Ca+2][CO3
2-] / Ksp’               (1.2.3) 

 

 

  



 7 

1.3. Scientific Knowledge Gap 
 

The impact of anthropogenic activities on marine ecosystems and biodiversity is currently 

underrepresented in impact assessment methods. According to Woods et al. (2016), there are 

7 major drivers of marine biodiversity loss: climate change, seabed damage, overexploitation, 

invasive species, eutrophication induced hypoxia and lastly, ocean acidification. In 

combination with these other stressors, it is projected that OA will have a wide range of impacts 

on marine life and its services to humanity (Fallis., 2013). Overall, OA is expected to influence 

3 areas of protection: the natural environment, natural resources and human health (Bach et al., 

2010).  

In order to be able to establish effective ecosystem-based protection and management systems 

for the ocean, first, the impacts of OA should be quantitatively modelled and anticipated (Olsen 

et al., 2018). The cascade of impacts of the changing pH is currently unknown. Understanding 

such unprecedented consequences of OA in the near future is essential for protection of 

ecosystems. Life Cycle Assessment (LCA) is one of the core analytical tools utilized to 

quantify the environmental impacts of all of the life stages of product and service systems. 

LCA allows for impacts to be tangible through quantification of effects with impact indicators 

(Rosenbaum, 2016). However, the focus of impact assessments in LCA has been mainly 

directed towards terrestrial and freshwater ecosystems. While a fate model has been 

constructed for OA by Bach et al., (2016), an endpoint characterization model is not yet 

developed. Thus, a comprehensive impact indicator for OA in LCA is currently missing 

(Woods et al., 2016).  

Development of in-depth cause-effect chains regarding the species responses to OA is 

necessary to provide a foundation for modelling the cascading effects of OA (Woods et al., 

2016). Such mechanistic understandings of marine ecosystems, especially spatially explicit 

ones are currently lacking in the scientific literature. Furthermore, there are limitations in terms 

of the development of modelling methodologies for marine impacts (Woods et al., 2016). The 

global representation of the marine species as well as a consistent interpretation of changes in 

acidity is lacking (Olsen et al., 2018). Furthermore, a limited number of published scientific 

resources are available to reflect the extent of marine biodiversity loss induced by acidification. 

The scope of these publications mostly covers calcifying species, like Azevedo et al. (2015), 

or warm water species. The representation of non-calcifying species as well as colder region 

species are limited (Bach et al., 2016), as well as the consequences of longer durations of 

exposure to a gradual decrease in acidity (Doney et al., 2009). 
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1.4. Aim of Research  
 

The objective of this thesis research is to address these gaps in knowledge described in Chapter 

1.3. The overarching goal is to quantify the link between GHG emissions and loss of 

biodiversity in marine life. The initial aim is to quantify the first section of the impact pathway 

through understanding the ocean acidification potential of the emitted GHG (SQ1). The 

secondary aim is to understanding the negative effects of this pH change on the species 

richness. Hence, SQ2 is formulated. To shed light on the missing aspects in literature such as 

the limitations in inclusion of non-calcifying species and the effects of geographical and 

temporal variations separate models will be developed and analysed. The tertiary aim is to link 

the quantify the impact relations obtained by answering the first two questions through 

developing a comprehensive impact indicator to be used in LCA.  

 

The main research question and the 3 sub-research questions of this thesis are:   

Main RQ: How do GHG emissions affect marine biodiversity loss through ocean 

acidification?  

 SQ1: How do GHG emissions affect ocean acidification?  

 SQ2: How does the change in ocean acidity affect species richness? 

 SQ3: What is the OA endpoint characterization model for LCA that describes the 

relation between GHG emissions and marine biodiversity loss?  
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Chapter 2. Methods 
 

 

2.1. Life Cycle Assessment  
 

Life Cycle Assessment (LCA) is an analytical method commonly used by industrial ecologists. 

Its purpose is to understand and assess the impacts of a product or process from cradle-to-grave 

(Muralikrishna et al., 2017). Cradle-to-grave implies all of the stages from raw material 

extraction to waste management. The inputs (resources and energy) and the resulting outputs 

(pollutants and waste) are determined for each of these stages and translated into the extent of 

their impact on categories such as sustainable resources, biodiversity and climate change 

(Muralikrishna et al., 2017). LCA is an enabler in terms of choosing the products with life 

cycles with minimal impact on the environment and society. 

 

Application of LCA 

 

LCA is a systemic approach with four main phases (Brusseau, 2019). The first phase is the goal 

and scope in which the object of the study is specified. When the object of the study is 

determined, the following step is data collection and modelling, known as the inventory phase. 

The third phase is the impact assessment, referred to as LCIA. The purpose of LCIA is to 

quantify and evaluating the contributions to the impact categories selected in stage one. The 

fourth and final phase is the interpretation. This phase is aimed at translating the quantitative 

results into meaningful outcomes based on the objectives of the researchers and stakeholders 

involved throughout the life cycle. In the interpretation phase, the impact results are compared 

with the expectations and with other products, processes or services. 

 

Development of LCA 

 

The research on the environmental impacts of products began around the 1960s. The initial 

studies had a relatively narrow focus, involving impact categories based on energy analysis 

and pollution (Guinee et al., 2011). Before long, the context of analysis became comparative 

and it was realized that the impacts of most of the products are not predominantly from the use, 

but rather in life stages such as transport and production (see Figure 4).  With these 

developments, systems perspective and cradle-to-grave analysis were integrated into the 

assessment of the environmental impact of the consumer products.  
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Figure 4 Cradle-to-grave stages used in LCA 

 

Guinee et al. (2011) categorize the development of LCA in decades. The two decades from 

1970 to 1990 are identified as “Decades of Conception”. This period is characterized by the 

broadening scope of LCA through the additions of emissions, waste and resource requirements 

of products. Moreover, the first impact assessment method was introduced by the Swiss Federal 

Laboratories for Materials and Testing in 1984. Throughout the decades of conception, LCA 

was mainly applied by firms who had diverging interests in performing the assessment, without 

any standard methodological framework. In order to resolve this challenge, the succeeding 

decade from 1990 to 2000 became the “Decade of Standardization” (Guinee et al., 2011). 

Within this decade, “The Code of Practice '' established by the Society of Environmental 

Toxicology and Chemistry (SETAC) and international standards developed by the 

International Organization for Standardizations (ISO). These two associations covered two 

facets of the standardization requisite of LCA within the given time period. While SETAC 

focused on harmonizing and optimizing the methods, ISO created international guidelines on 

how to approach the procedural aspects of the assessment. Impact assessments methods such 

as endpoint and damage approaches and CML 1992 also developed within this time frame.  

 
 

Despite the main focus of standardization, ISO 14044, (2006) highlights that “there is no single 

method for conducting LCA” due to the wide scope of the assessment both in terms of the 

products and goals of the assessment. With the increasing attention and broadening scope of 

LCA, the necessity to diversify in methodologies arose. This encompasses the optimization of 

supporting tools for LCA, development of databases and indicators, and prioritization of 

transparency and reliability of the assessments. Several institutions such as UNEP and SETAC 

launched initiatives and partnerships to focus on these improvements and LCA evolved into 

becoming one of the primary analytical tools for decision-making regarding sustainable 

development (Brusseau, 2019). To understand the unprecedented impacts of anthropogenic 
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actions, LCA methodologies are under continuous development. The temporal and spatial 

specifications of the impacts are researched, impact categories are improved and novel 

indicators are developed. 

 

 

2.2. Ecotoxicology Impact Assessment Approach for LCA  
 

The methodological framework of this thesis was formulated based on the ecotoxicology 

impact assessment approach for LCA, as described by Rosenbaum (2016). 

 

Methodologies for including ecotoxicity as an indicator category in LCA originate from the 

field of environmental hazard and risk assessments. Within the last decade, the maturity of 

these approaches became sufficient to be widely used in the application of impact assessments. 

The ecotoxicological approach aims to quantify the effects of environmental alterations caused 

by chemicals on biological systems. These effects are measured for specific chemicals in a 

specific environment. For OA, these chemicals are the GHG emissions and the environment is 

the ocean. This cause and effect process begins from the source of emission and ends in the 

response of biological systems. To assess the effects, toxicological tests are utilized. These 

tests estimate the relationship between the concentration and the effect of the chemicals on 

certain species. The level of toxicity of the given chemical, the characteristics of the exposed 

environment and the biological systems within this environment are key variables in 

determining the extent of the effect. Another variable is the duration and intensity of exposure 

of the life forms in that medium to the chemical. Understanding the variables and the interaction 

between them along the impact path can be rather complex. Thus, cause-effect pathways are 

utilized to understand and analyse these environmental impact mechanisms.  

 

Cause-effect pathways establish the causal relationship between the environmental 

interventions and their effects, from the release of the chemicals to the environment to their 

impact on ecosystems (see Figure 5). Once this pathway is established for a chemical, different 

category indicators can be chosen for application by practitioners. A category indicator is “a 

quantifiable representation of an impact category” (ISO 14040, 2006). This choice is 

commonly made considering the goal of the assessment and the type of input data, and it 

depends on the availability of a mature methodology for that category indicator. 
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Figure 5 Structure of the endpoint-oriented model based on Eco-Indicator 99 methodology (Goedkoop, M., & Spriensma, R., 

2001) 

 

Cause-effect pathways in the ecotoxicological approach can be translated into impact indicators 

for LCIA through 2 different methods. These two methods are referred as midpoint and 

endpoint models which represent the impact in different stages of the chain (Bare et al., 2000).  

Midpoint indicators focus on the effects that are earlier in the cause-effect chain, relatively 

closer to the interventions (Goedkoop, M., & Spriensma, R., 2001). The uncertainty of the 

results increases as one moves further in the causal chain, so the midpoint models commonly 

have the advantage of relying on robust data and scientific information with a higher degree of 

reliability (Bare et al., 2000).  Endpoint indicators, on the other hand, present the results closer 

to the actual effect that represents greater relevancy to decision-makers (Bare et al., 2000). In 

the case of OA, the change in the acidity of the ocean is reflected by the midpoint indicator. 

This environmental mechanism has a higher level of certainty and robustness. Although the 

level of uncertainty increases with increasing complexity further along the chain, the endpoint 

indicator provides the actual effect of this mechanism on an ecosystem by quantifying the loss 

of marine biodiversity (see Figure 6). Endpoint modelling is the selected approach for this 

thesis to be able to communicate the effects of OA on biodiversity.  
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Figure 6 Simplified version of the cause-effect chain for OA including midpoint and endpoint indicators, based on Bach et 

al. (2016) 

To construct the endpoint model for OA with a mechanistic approach, the cause-effect chain is 

evaluated in separate sections. As explained above, the midpoint model reflects the change in 

pH of the ocean due to airborne GHG emissions (Figure 6). This requires the modelling of the 

fate of the emissions from source to dissolution in the ocean. For the endpoint model, this factor 

needs to be complemented with the extent of exposure and responses of the marine species. 

This way, the extent of damage on marine biodiversity can be established in relation to the 

GHG emissions (Figure 6). According to Rosenbaum et al. (2016), these sections of the cause-

effect chain are reflected in 4 distinct models for toxic chemicals (in this case, GHG  

emissions);    

(1) The fate model, 

(2) The exposure model, 

(3) The effect model, 

(4) The damage model.       

The definitions and modelling approaches are explained further under the Chapters 2.3, 2.4 

and 2.5. These models are used as factors to calculate an endpoint characterization factor for 

OA. This approach is elaborated in Chapter 2.6. Data is categorized to further understand 

whether there are geographic, taxonomic or time-based differences in species responses.  
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Research Flow Diagram 
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2.3. Fate and Exposure Models 
 

The objective of the fate model method is to explore the effect of GHG emissions on the OA. 

The fate model expresses the probability of a substance entering a specific environment. It is 

the initial step of modelling the mechanisms of ecotoxicity impacts of a substance for LCA 

(Rosenbaum, 2015). The type of the medium and the geography of the source of the emissions 

affect the behaviour of the chemicals. For the case of OA, the emissions are released directly 

into the air and then a certain percentage of them dissolve in the ocean, altering the acidity 

levels of the water. The fate model for OA is intended to denote the extent of this change in 

water chemistry on a global level. 

 

The exposure model on the other hand expresses the contact between a target species and the 

pollutant, which is elucidated by the concept of bioavailability (Rosenbaum, 2015). It covers 

the duration and frequency of exposure to a substance and is influenced by the amount of 

chemical available within the given medium. In the case of OA, the probability of the partial 

reactions in Eq. 1.2.1 is taken into consideration to account for bioavailability. Homogeneity 

is assumed in terms of exposure of the organisms to chemical composition change along the 

global ocean surface area.  The reason for this assumption is that the airborne emissions 

dissolve in the ocean surface and it is not within the scope of this research to account for the 

changes in the bioavailability of the dissolved hydrogen ions in different geographical locations 

and along the different depths of the ocean.  

 

The chemical behaviour of CO2 in ocean water is well-known and denoted by Eq. 1.2.1, as 

previously described in Chapter 1.2. Moreover, the current ocean carbon cycle models enable 

the estimation of variations in ocean carbonate chemistry in relation to atmospheric CO2 

concentrations (Doney et al., 2009). Having established quantitative models that operate on a 

global scale makes it possible to construct a fate model for OA that is aligned with the LCA 

method. In the paper “Characterization model to assess ocean acidification within life cycle 

assessment”, Bach et al. (2016) develop a midpoint characterization model based on the cause-

effect chain. The midpoint model utilizes the fate model to calculate the characterization factor 

for OA. In this thesis, the methodological steps of Bach et al. (2016) were followed to construct 

the fate model, in order to quantify the impacts of GHG emissions on ocean chemistry. The 

midpoint characterization factor in this model is Ocean Acidification Potential (OAP), which 

is the product of the fate factor (per elementary flow i) and the fate sensitivity factor (see Eq. 

2.3.1). The fate sensitivity factor as denoted by Bach et al. (2016) is reflective of the exposure 

model described by Rosenbaum (2015). The exposure model was therefore included as the fate 

sensitivity factor within this modelling approach. 

 

Ocean Acidification Potentiali =  Fate Factori  Fate Sensitivity Factori                              (2.3.1) 

 

The fate factor represents the portion of the substances ending up in the ocean and is calculated 

by Eq. 2.3.2. To answer SQ1, the first step is to identify the elementary flows in terms of their 

relevance to this impact category. In the case of OA, CO2, CH4 and CO were determined as the 

most significant emissions (Bach et al., 2016) and therefore selected as the elementary flows. 
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CO2 can directly dissolve in the water, however, CH4 and CO need to be converted into CO2 

before entering the ocean. The conversion factor in Eq. 2.3.2 represents the share of these 

substances (CH4 and CO) that are converted to CO2. The conversion reactions occur in the 

troposphere through OH- ions (Wuebbles and Hayhoe, 2002). This induces the need to start by 

calculating the percentage of substances entering the troposphere, which is expressed by the 

distribution factor. This calculation was done using the values obtained from the literature. The 

unit of the conversion factor is gCO2/gi. 

 

Fate Factori =  Distributioni  Conversioni  Dissolutioni                                        (2.3.2) 

 

Ultimately, the dissolution factor was computed to account for the fact that the environmental 

compartment within the model is water. Only 25-30% of the atmospheric CO2 dissolves in the 

ocean and the rest remains in the atmosphere as GHGs, contributing to global warming (IPCC, 

2013). The dissolution factor integrates this dissolving percentage of the substance into the fate 

factor and was calculated by the ratio of the overall amount of dissolved CO2 over the overall 

share of CO2 able to be dissolved (see Eq. 2.3.3). The latter is equal to the sum of shares of the 

3 elementary flow that are able to dissolve (see Eq. 2.3.4). The shares of substances able to 

dissolve are the product of distribution and conversion factors for the given substance. 

 

Dissolution Factori = Overall amount of dissolved CO2 / Overall share of CO2 able to be 

dissolved                      (2.3.3) 

  

The overall share of CO2 able to be dissolved = share of CO able to dissolve + share of CO2 

able to dissolve + share of CH4 able to dissolve                 (2.3.4) 

 

The dissolution factor is the same for all the substances because CO2 is the only chemical 

composition from the 3 elementary flows that can directly dissolve in the ocean. Thus, the 

dissolution factor can be calculated after knowing the share of CO2 available in the troposphere, 

including the CO2 converted from CO and CH4. However, the conversion and distribution 

factors are different per substance. Consequently, after determining the common dissolution 

factor, fate factors for CO, CO2 and CH4 were calculated separately. Unit of the fate factors is 

gCO2/gi as the distribution and dissolution factors are unitless whereas the unit of the conversion 

factor is gCO2/gi. 
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Figure 7 Distribution, conversion and dissolution pathways of CO2, CO and CH4 based on Bach et al. (2016) 

 

Fate sensitivity factor denotes the alterations in the ocean chemistry due to the dissolution of 

the substances. The approach of Heijungs et al. (1992) for terrestrial and freshwater 

acidification was utilized to determine the fate sensitivity factor. The primary effect from the 

cause-effect chain (the amount of H+ released per gram of substance) was selected as the 

category indicator as recommended by Bach et al. (2016).  

 

The probability of each reaction taking place is different within the chemical balance denoted 

by Eq. 1.2.1. Accordingly, to determine the fate sensitivity factor, the number of released H+ 

ions was calculated per reaction, incorporating the probability of that reaction taking place. 

Then this number was divided by the molar mass (g/mol) of CO2, which leads to the fate 

sensitivity factor with the unit of mol/gCO2. Similar to the dissolution factor, the fate sensitivity 

factor is the same for all 3 substances as the focal point is dissolution, which always occurs in 

the form of CO2. Having computed the fate sensitivity factor and the fate factors for each 

substance, the OAP can now be calculated by Eq. 2.3.2 to conclude the fate model and exposure 

models. Through the multiplication of the fate (gCO2/gi) and fate sensitivity factors (mol/gCO2), 

the OAP has the unit of mol/gi, where i = CO2, CO, CH4. 
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2.4. Effect Model 
 

The effect model denotes the percentage of species that become affected by the exposure of the 

chemical in the given environment (Rosenbaum, 2015). The function of the effect factor is to 

link and translate the pH change in the ocean into an ecosystem damage indicator; marine 

biodiversity loss. The effects are typically measured by standardized lab tests and “effect” can 

have many meanings such as reduced growth, calcification, mortality and oxygen consumption 

rates. The results of these lab tests are commonly reported with dose-response curves which 

denote the response of the species to chemical exposure as a function of the concentration of 

the chemical in the environment (Spurgeon et al., 2020). USEtox model, which is endorsed by 

Rosenbaum (2015), calculates the effect factor by looking at the hazardous concentration 

(HC50) values. HC50 stands for the concentration level at which 50% of the species in the 

ecosystem that are negatively affected and can be determined from the species sensitivity 

distributions. An SSD is a probabilistic model that reflects the sensitivity of an ecosystem or a 

collection of species in response to being exposed to a substance (Rosenbaum, 2015). 

 

While the overarching approach remains to be based on the chapter by Rosenbaum (2015), 

several methods were tested and combined in order to develop an effect model. The main 

reason for this approach is the issue of data availability. Regardless of the choice of method, 

the initial step was data collection on species responses to OA. The aim is to calculate a global 

effect factor that would be used in LCIA, thus the data should be representative of marine 

species on a global scale. However, due to the vast variety of marine species and ecosystems, 

it is not currently possible to find and include species response data with full taxon coverage. 

In order to collect data and ensure representativeness per taxon and geographical area, key 

meta-analyses were identified through a literature search. 

 

In the article “Towards a meaningful assessment of marine ecological impacts of LCA”, Woods 

et al. (2016) provide an overview of the cause-effect based methods related to the drivers of 

marine biodiversity loss, including OA. In this study, the authors provide a list of quantitative 

approaches (Zeebe et al., 2008, Doney et al., 2009, Azevedo et al., 2015) that are recognized 

by the scientific community. From this list, the most recent study is Azevedo et al. (2015), 

which is also referred to by Bulle et al. (2019) as the “first LCA compliant model covering 

marine acidification”. Therefore, the method of Azevedo et al. (2015) was initially chosen as 

the framework for constructing the effect model. In their method, the authors focus on 

observing the effects of OA on calcifying species through constructing SSDs. The initial 

approach was to expand the dataset to increase the species scope. However, due to data 

unavailability, the approach of Azevedo et al. (2015) is not utilized further to construct the 

effect model. The modelling approach of Azevedo et al. (2015) can be found in Appendix H. 
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Data Collection 

 

The next attempt at data acquisition was to construct a list of potential sources of raw data 

collection. The authors of several key meta-analyses such as Hendriks et al. (2010), Kroeker et 

al. (2013) and Wittmann et al. (2013) were contacted to gain access to the raw data collections 

they used to perform these analyses. The datasets acquired from these meta-analyses were 

analysed in terms of compatibility with the data requirements of the ecotoxicological approach 

and being the most suitable, the dataset of Wittmann et al. (2013) was selected. The study by 

Wittman et al. (2013) is a meta-analysis that studies the effects of altered seawater carbonate 

chemistry on various marine species. Consequently, their analysis approach was adopted in 

order to be able to work with the data format of the provided dataset. In this dataset, responses 

of the species to OA are not expressed in terms of effect size, which is the common approach 

in meta-analyses in this field of research. Instead, the authors collected the species responses 

from multiple experiments and then categorized these responses as none, negative or positive. 

The effects are not quantified and there is no distinction between life processes. Non-calcifying 

species are included within the scope and there are 5 different animal taxa: cnidaria, 

echinoderms, molluscs, crustaceans and fish. Physiological performance of the species such as 

growth, morphology, fertilization, behavioural changes, immune response and metabolic rate 

are collected. Overall, there are 153 species included in the analysis which are further 

categorized based on the duration of the experiments. 

 

The species responses were analysed across different pCO2 ranges which were determined using 

representative concentration pathways (RCPs) based on the work of Meinshausen et al. 

(2011).  The pCO2 bins range from 500-651, 651 - 850, 851 - 1370, 1371 - 2900, 2901 - 10000 

and above 10000 µatm (Wittmann et al., 2013). Most of the experimental data include the 

response measurements for 2 to 3 different pCO2 values. To compensate for the missing data for 

the rest of the pCO2 bins, the authors employed 2 main assumptions. The first assumption 

indicates that if a species shows negative effects at low pCO2 levels, then it will also be 

negatively affected at the higher pCO2 levels. The second assumption is that if a species has the 

same effect at a high and a low pCO2 levels, then that effect will be the same for the pCO2 levels 

in between those high and low values. The interpretation of negative, positive and none was 

done by comparing the results to the effects observed in the control treatments. In most of the 

studies, the control treatment is approximately around 380 µatm and only the studies before 

February 2012 were included. 
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Expansion and Processing of the Dataset 

 

For this thesis research, the dataset of Wittmann et al. (2013) was expanded with the purpose 

of including more data points from the recent scientific literature and to be able to conduct 

analysis based on different categorizations of data. Pangaea is an Open Access Library for data 

related to earth system research (Data Publisher for Earth & Environmental Science, 2021). 

This data source was identified from the paper “Data compilation on biological response to 

Ocean Acidification: An update” (Yang et. al, 2016) and was used as the data platform to 

collect more species response data. As previously mentioned, the format of the database 

requires the responses to be categorized into positive, negative and none. It is claimed by the 

authors that this categorization is based on expert opinions. In order to be aligned with this 

approach, only the papers with clear declarations on the trend of the impact - as significantly 

negative or positive - were added to the dataset, leaving the interpretation to the authors of the 

articles. This limits the number of studies that can be included in the expansion of the current 

dataset. If there are multiple experimental data available for a single species and the effects are 

different from each other for the same pCO2 bins, then priority was given to the experiments 

with the longest duration and then to the results indicating a negative effect. 

 

The additional data collection was performed based on the underrepresented data categories. 

The data available for the fish species as well as the species that live in polar regions are limited 

within the dataset from the meta-analysis of Wittmann et al. (2013).  The keywords “fish” and 

“ocean acidification” were used to initiate the literature search within Pangaea in order to 

collect more responses of fish species. The experiment results between the years 2014 and 2021 

were scanned and selected depending on their relevance and their alignment with the criteria 

explained above. Response types such as metabolic and behavioural effects are included in the 

fish data. 17 new studies on fish species are added to the dataset (see Appendix A). In order to 

enlarge the scope of the polar species, two rounds of search were executed. The keyword “OA” 

was coupled with “arctic” and “antarctic” respectively. The search included studies from 2013 

to 2021, which resulted in the addition of 10 new studies from the polar region (see Appendix 

A). 

 

Overall, the number of scientific studies within the given time frame is larger than the number 

of data points added to the dataset. There are several reasons for this selective addition. First 

of all, some species such as Amphiprion percula, Godus morhua and Acanthochromis 

polyacanthus are repetitively present in the experiments in OA research. For Amphiprion 

percula, 7 different studies were already included within the dataset for the given species, 

indicating a negative response across all of the pCO2 bins. Therefore, an addition of a new study 

with a shorter duration did not alter the response results in the dataset. Moreover, some 

researchers such as Mccormick et al. (2018) or Nagelkerken et al. (2016) examined the effect 

of OA on the interaction between prey-predators, the symbiotic relationships between different 

species or the combined effects of OA and temperature change. These types of studies were 

also excluded due to the multitude of independent variables within the experiments. Another 

example is the type of studies that looked into the effects of fluctuating aquatic CO2 as the 

independent variable is the change in CO2 pressure rather than a distinct pCO2 value. Last but 
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not least, most of the OA experiments focus on highly abundant species such as various algae 

types, which were not included in the scope of this research. 

 

Categorizations 

 

Information on both the experiment variables (temperature, duration, type and number of 

variables, control pressures) and species characteristics (class, habitat) were recorded in the 

dataset because the response of the marine species to the acidifying ocean is dependent on 

various factors. Temperature, for instance, is one of these factors and a prominent one. The 

temperature of the water affects the solubility of aragonite and the saturation state, therefore 

influences the bioavailability. The effect of temperature on the chemical states and reactions 

can lead to diverse outcomes in terms of species response. Another variable is the duration of 

the experiments that were conducted to measure the responses. Longer durations of exposure 

to a less alkaline environment are expected to increase the rate and extent of the changes 

occurring within the biological systems. While this remains true, the possibility of adaptation 

of species over longer durations also remains a valid possibility. In order to understand the 

impact of some of these variables on the results, the data were categorized into certain sections. 

 

The core categorizations of the species response analysis were geographical zones (temperate, 

tropical, polar), duration of experiments (acute, sub-acute, chronic) and calcification capability 

of the taxons (strongly calcifying, slightly calcifying). The reasoning behind the geographical 

classification is that the rate of OA is different in different latitudes. Polar oceans are considered 

the most vulnerable regions due to the different saturation states induced by lower temperatures 

(Schmutter et al., 2017). In terms of calcification, the strongly calcifying taxa were considered 

as molluscs, echinoderms and cnidaria, whereas the slightly calcifying taxa were grouped as 

fish and crustaceans based on the approach of Wittmann et al. (2013). The strongly calcifying 

species have lower metabolic rates, are relatively more sedentary and build heavier skeletons 

through calcification. Crustaceans and fish, on the other hand, have significantly lower 

intensity in calcification, higher mobility and better acid-base regulation (Wittmann et al., 

2013). Last but not least, the boundaries of categorization in terms of the duration of the 

experiments are dependent on whether the species is a vertebrate or an invertebrate. From the 

5 taxa, fish is vertebrate while the remainder are invertebrates.  The distinction was made based 

on the work of Rosenbaum (2015). Acute duration indicates brief periods of exposure and is 

measured in relation to the lifetime of the species. Acute exposure duration is <7 days, which 

is the same for both vertebrates and invertebrates. Chronic experiment duration indicates longer 

periods of time that would be equivalent to one or more life cycles or sensitive periods of the 

given species. Sensitive periods describe specific time thresholds at which the species groups 

become more vulnerable towards negative influences from the environment (Bodin et al., 

2011). The chronic period is >32 days for vertebrates and >21 days for invertebrates. The 

period between acute and chronic was classified as sub-chronic duration. 
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Modelling Approach 

 

Following the data collection and processing stages, the effect of OA was modelled. The SSDs 

were constructed that indicate the relationship between PAF and pH. The data under each 

category was grouped based on their taxon. To account for the global relative species richness 

of each taxonomic group, global normalization factors were calculated. The number of extant 

number of species were obtained from the literature (see Appendix C). These factors represent 

the ratio of the number of extant species per taxon to the total number of extant species for the 

5 taxa (see Appendix C). The total number of global extant species for the taxonomic groups 

included in this study is calculated as 132,000. For instance, the number of extant species for 

Echinodermata is found to be 7000. The global normalization factor for this taxon is therefore 

7,000/132,000 = 0.053. Weighted averages of the negatively affected fractions per each 

taxonomic group were obtained using the global normalization factors. In this way, the 

negatively affected fraction of species per each pCO2 range for each category were obtained. 

 

Due to the assumptions explained in the dataset acquisition section, there are different numbers 

of responses per each pCO2 bin. In order to account for this, weighing factors were determined 

as the ratio of the number of species responses within a bin to the total number of responses in 

that category. Then, the averages of the upper and lower limits of the bins were calculated to 

have one partial pressure value per PAF. The responses of the control group were recorded as 

zero because the control groups function as a reference to measure the extent of change. The 

control pressures of the categories on the other hand are calculated by taking the average of the 

control pressures of the experiments within the categories. These control values were then used 

as the initial data point of the regressions.  

 

The ecotoxicological models use the concentration of the chemicals as the independent 

variable. However, the independent variable for the model at this stage was represented by the 

pCO2, which is partial pressure rather than concentration. Therefore, the mean pCO2 values were 

converted to pH (see Appendix B). Eq. 2.4.4 expresses the relationship between pH and pCO2 

on a global scale and was utilized for this conversion (Feely et al., 2009) (see Figure 8). The 

negatively affected fraction of species and their associated pH values were then fitted into a 

non-linear regression using Eq. 2.4.5 to construct the SSDs. Eq. 2.4.5 denotes a species 

sensitivity curve with a variable slope called hillslope, where A is equal to log10HC50. HC50 

represents the hazardous concentration level at which 50% of the species are affected.  

 

𝑝𝐻 =  −0.38  ln(𝑝𝑐𝑜2) + 10.32                         (2.4.4) 

 



 24 

 
Figure 8 pCO2 - pH relationship on a global scale (Feely et al., 2009) 

 

 

𝑌 =  
100

1+ 10(𝐴−𝑥)𝐵                (2.4.5) 

  

The original hillslope equation (see Eq. 2.4.6) is a commonly used 4 parameter logistic model 

for dose-response analysis (Gadakgar et al., 2015). The 4 parameters in this equation are; 

bottom response, top response, HC50 and hillslope coefficient. “x” represents the logarithm of 

dose or concentration, whereas “y” represents the response in a normalized form. Bottom and 

top values indicate the asymptotes of the non-linear regression. As the response values are 

represented in percentages, the bottom value was set as 0 and the top as 100. Setting these 

values as such reveals that Eq. 2.4.5 is a form of Eq. 2.4.6; that the variable “B” in Eq. 2.4.5 is 

equal to the Hillslope coefficient in Eq. 2.4.6. Hillslope coefficient, also known as the slope 

factor, is unitless and quantifies the steepness of the curve (Gadakgar et al., 2015). The higher 

the slope factor, the steeper the slope of the regression (see Figure 9). The slope of the model 

is indicative of the sensitivity of the species as it denotes the rate of change of the effect with 

changing pH. In other words, having a steeper slope indicates higher sensitivity to a change in 

concentration.  

 

𝑌 = 𝐵𝑜𝑡𝑡𝑜𝑚 +
𝑇𝑜𝑝−𝐵𝑜𝑡𝑡𝑜𝑚

1+(
10𝐿𝑜𝑔𝐻𝐶50

10𝑥 )𝐻𝑖𝑙𝑙𝑠𝑙𝑜𝑝𝑒
              (2.4.6) 
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Figure 9 Hillslope curves indicating different slope values  

 

The models were constructed and analysed in R (see Appendix I). The nls() function, which 

stands for “nonlinear least squares”, was used for finding the two variables (A and B) in Eq. 

2.4.5. The function of nls() is to determine the parameter values of nonlinear fits (Baty et al., 

2015). The slope factor and pH50 values (pH value at which 50% of the species are negatively 

affected) were used to analyse the sensitivity of the species within each category to the change 

in acidity of the ocean. In ecotoxicology, the SSDs tend to express the increasing effect with 

increasing concentration. In the case of pH, this is reversed as pH is equal to the negative 

logarithm of H+ ions. Therefore, the absolute value of the b value was considered while 

comparing the slopes of the regressions.  

 

For assessing the goodness of fit of the models, pseudo R2 values were calculated per SSD.  In 

linear regression, the goodness of fit is generally expressed as R2. However, in a non-linear 

regression, R2 is considered an inadequate measure (Spiess & Neumeyer, 2010). Instead, 

modified versions of R2 such as Cox-Snell, Efron or Nagelkerke R2 are suggested by the 

literature for the non-linear models (Smith & McKenna, 2013). Being one of the most 

commonly utilized Pseudo R2 versions for non-linear regressions, Nagelkerke R2 was selected 

as the statistic for SSDs. The second statistic chosen for analysing the goodness of fit is the 

residual standard error, which is the standard deviation of the residuals of the regression. 

Smaller residual standard error values imply better fits.  

 

Once the strength of the models was assessed by obtaining these two statistics, they were 

compared to each other to evaluate the species response data in different categories. The 

selected approach for this comparison is the introduction of interaction variables to the free 

parameters of the models (A and B) (Karaca-Mandic et al., 2012). These variables were added 

to Eq. 2.4.5 in a way that can move the parameter values up or down and tested against 0. M is 

the interaction variable for parameter A and N is for parameter B (see Eq. 2.4.7). To account 

for the different categories within the datasets, (for example, polar species versus tropical 
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species) a binary indicator variable (ind) was also included in the equation. Both the estimations 

for the interaction variables and their p values were utilized to analyze whether the difference 

between model parameters is statistically meaningful enough to calculate individual effect 

factors. Effect factors were then calculated for the statistically meaningful categorizations and 

for the SSD constructed using all of the data points. 

 

𝑦 =
100

1+10(𝐴+𝑀𝑖𝑛𝑑−𝑥)•(𝐵+𝑁𝑖𝑛𝑑)             (2.4.7)

   
 

According to Rosenbaum (2015), the effect factor typically has the dimension of PAF and the 

unit of m3/kg. The effect factor is the ratio of 50% change in PAF to the corresponding change 

in hydrogen ion concentration (see Eq. 2.4.10). The pH values at 0% and 50% PAF values are 

converted to hydrogen ion concentrations using Eq. 2.4.8. The difference between these two 

concentrations were calculated using Eq. 2.4.9, which indicates the HC50 values. The litre in 

the unit of  𝛥[H+] is then converted to m3. The effect factor for OA was calculated using Eq. 

2.4.10 and has the unit of (PAF) m3/mol. 

 

𝐴𝑡 𝑃𝐴𝐹 50%, [𝐻+] =  10−𝑝𝐻50 

𝐴𝑡 𝑃𝐴𝐹 0%, [𝐻+] =  10−𝑝𝐻0                  (2.4.8) 

10−𝑝𝐻50 − 10−𝑝𝐻0 =   𝛥[𝐻+]               (2.4.9)

             

𝐸𝐹 =
0.5 𝑃𝐴𝐹

𝛥[𝐻+]
               (2.4.10) 
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2.5. Damage Model  
 

The last model in characterization modelling is the damage. This is also called the severity 

model and it incorporates the furthest section of the ecotoxicity impact pathway into the 

endpoint model (see Figure 10). After knowing the effects of a toxic chemical on the biological 

systems within an environment, the damage model can be constructed by transforming the 

potentially affected fraction (PAF) of species to the potentially disappeared fraction (PDF) of 

species, reflecting the damage on ecosystem quality. However, there is no consensus from the 

scientific community on how to determine PDF (Rosenbaum, 2015). One of the current 

approaches in LCA, as also utilized in ReCiPe, is assuming that 50 % of the potentially affected 

fraction of species will disappear from the ecosystem (Rosenbaum, 2015). Therefore, the 

damage factor was calculated using Eq. 2.5.1. 

 

𝑃𝐷𝐹 = 𝑃𝐴𝐹 /2              (2.5.1) 

 

 
Figure 10 Conceptual representation of ecotoxicity impact pathway in life cycle impact assessment (LCIA) (Angeler et al., 

2019) 
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2.6. Characterization Model  
 

The characterization model indicates the relation between an elementary flow and its impact 

through the characterization factor (see Figure 10). The ISO 14040 (2006) definition of the 

characterization factor is: “a factor derived from a characterisation model which is applied to 

convert the assigned LCI results of the common unit of the category indicator”. The model is 

constructed in relation to a specific category indicator. As discussed previously, for OA, the 

midpoint category indicator was selected as OAP and the endpoint indicator as the loss of 

marine biodiversity. The third sub-research question was answered by employing the results of 

the first two sub-questions. Fate, exposure, effect and damage factors were calculated to answer 

these questions. As explained in Chapters 2.3 and 2.5, the exposure factor was already 

integrated into the fate model and the severity factor was obtained by translating PAF to PDF 

by multiplying with 0.5. Consequently, the characterization factor for the endpoint 

environmental mechanism of OA was determined by multiplying the fate, exposure, effect and 

damage factors (see Eq.2.6.1), which links the OAP at the midpoint to marine biodiversity loss 

at the endpoint. The unit of the endpoint characterization factor is (PDF) m3/kg-GHG emitted.  

 

𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 =

𝐹𝑎𝑡𝑒 𝐹𝑎𝑐𝑡𝑜𝑟  𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝐹𝑎𝑐𝑡𝑜𝑟  𝐸𝑓𝑓𝑒𝑐𝑡 𝐹𝑎𝑐𝑡𝑜𝑟  𝐷𝑎𝑚𝑎𝑔𝑒 𝐹𝑎𝑐𝑡𝑜𝑟             (2.6.1) 
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Chapter 3. Results 
 

3.1. Fate and Exposure Model Results 
 

In this chapter, the results of the fate and exposure models are provided to answer the first sub-

question; “How do GHG emissions affect ocean acidification?”.  

 

The fate and exposure model results are based on the work of Bach et al. (2016). As can be 

seen in Table 1, there are 3 different OAPs, each for a different GHG emission. CO2 is the 

chemical that dissolves in the ocean; therefore, the distribution and conversion factors are equal 

to 1. Thus, CO2 has the highest potential for changing the pH of the ocean compared to CO and 

CH4 (OAPCO2 = 2.47  10-3 mol H+/gGHG). Though having similar values with CH4, CO has the 

lowest distribution factor compared to the other two substances (0.871). However, due to 

having a lower conversion factor compared to CO, CH4 has the lowest acidification potential 

(OAPCH4 = 2.05  10-3 mol H+/ gGHG). The fate sensitivity factors are representative of the 

exposure factors and are equal for all of the emission types (2.45  10-2 mol H+/g CO2). Further 

explanations and calculations to obtain the results in Table 1 can be found in Appendix D.  

 

 

Table 1 Results of the Fate and Exposure Model for the 3 elementary flows 

 
CO CH4 CO2 

Distribution Factor 0.871 0.878 1 

Conversion Factor 

(gCO2/gGHG)  

1 0.95 1 

Dissolution Factor 0.1008 0.1008 0.1008 

Fate Sensitivity Factor 

(mol H+/gCO2) 
2.45  10-2 2.45  10-2 2.45  10-2 

OAP (mol H+/ gGHG) 2.15  10-3 2.06  10-3 2.47  10-3 
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3.2. Effect Model Results 
 

In this chapter, the results of the effect model are provided to answer the second sub-question; 

“How does the change in ocean acidity affect the marine species richness?”. The effect of the 

alterations of ocean carbonate chemistry on species richness is analysed. Within each 

categorical comparison, model parameters, the goodness of fit results and statistical 

significance of the difference between groups are presented.  

 

Calcification Category Results 

 

There are two groups in this categorization: “(strongly) calcifying species” and “slightly 

calcifying species”. The calcifying species consist of 3 taxonomic groups: mollusca, 

echinodermata and cnidaria, overall including 96 species responses. The slightly calcifying 

species consist of 80 species responses from 2 taxonomic groups: fish and crustacea. As 

explained in Chapter 2, the calcifying species are expected to be affected more by OA than the 

remainder of the species groups. This assumption is tested by constructing SSDs, which is 

shown in Figure 11. 

 

 

 
Figure 11 SSDs of calcifying and slightly calcifying species 
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The goodness of fit of these regressions are analysed by looking at the Pseudo R2 and RSE 

values. Although the R2s are quite similar for these two groups, slightly calcifying species SSD 

has a slightly better fit compared to calcifying species (R2
scal = 0.898 > R2

cal = 0.870). This is 

also endorsed by the higher RSE of the calcifying SSD (RSEcal =11.90), indicating a larger 

error compared to the other regression (RSEscal = 9.52).  

 

Table 2 Model parameters, number of species, average control pH values (pH0) and goodness of fit results for category 

"calcification" 

Category pH50 Hillslope 
Number of 

Species 
Average pH0 ΔpH Pseudo R2 

 
RSE 

Calcifying 

species 
7.743 -2.447 96 8.046 0.303 0.870 

 

11.90 

Slightly 

calcifying 

species 
7.581 -1.891 80 7.983 0.402 0.898 

 

9.52 

     

 

 

By looking at the graphs (see Figure 11), it can be seen that there is a difference in the predicted 

values, especially at lower pH levels. The gap between the two regression lines is narrowing 

down with the increasing pH. Beyond this visual interpretation, the difference between the 

SSDs of calcifying and slightly calcifying species is assessed by utilizing the estimated model 

parameters. The calcifying species have a higher pH50 value (7.743) compared to the slightly 

calcifying species (7.581). This implies that 50% of the calcifying species are already 

negatively affected at higher pH values (lower CO2 pressure). Furthermore, the calcifying 

species also have a higher rate of change (2.447) compared to slightly calcifying species 

(1.891), highlighting a higher sensitivity. The percentage of the negative responses changes 

more rapidly by increasing acidity when the slope is higher. The difference between the control 

and pH50 values endorse this trend as well. At control pH (pH0), the negatively affected 

percentage of species is equal to zero for all categories. A pH change of 0.303 is required for 

50% of the calcifying species to be affected. This value is higher for slightly calcifying species 

(0.402). To sum up, all of the indicators of sensitivity (pH50, slope and ΔpH) confirm that the 

calcifying species are indeed more sensitive to OA. 
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Table 3 Interaction term test results for calcification category, including the estimated values for the differences between the 

model parameters and their p-values 

 Estimation p-value 

M 0.199 0.031 

N -0.501 0.576 

 

The statistical significance of the difference between the categories is tested to validate the 

decision to calculate separate effect factors for this category. It is assumed that the p-value at 

0.05 for the estimation of the interaction terms is significant. The difference between the pH50 

values (M) is estimated to be 0.199 with a p-value of 0.031. This error rate is lower than the 

selected significance threshold and therefore considered acceptable. The p-value for the 

differences in slopes of the regressions (N) is not significant enough with a p-value of 0.576. 

However, the test results are considered to confirm the hypothesis on the difference between 

categories as one of the model parameters is statistically significant. Therefore, the effect 

factors are calculated for both groups within this category. 

 

Effect factor for calcifying species: 

 

𝐴𝑡 𝑃𝐴𝐹 50%, [𝐻+] =  10−7.743 = 1.807 10−8 𝑚𝑜𝑙/𝐿 

𝐴𝑡 𝑃𝐴𝐹 0%, [𝐻+] =  10−8.046 = 8.994  10−9 𝑚𝑜𝑙/𝐿 

𝛥[𝐻+] = 9.077 10−9
mol

L
∗ (

1000L

1𝑚3
) =  9.077 10−6mol/𝑚3  

 

𝐸𝐹𝑐𝑎𝑙 =
0.5 𝑃𝐴𝐹

9.077 10−6 𝑚𝑜𝑙/𝑚3  =  5.508  104 (𝑃𝐴𝐹) 𝑚3/ 𝑚𝑜𝑙   

 

Effect factor for slightly calcifying species: 

 

𝐴𝑡 𝑃𝐴𝐹 50%, [𝐻+] =  10−7.581 = 2.624 10−8 𝑚𝑜𝑙/𝐿 

𝐴𝑡 𝑃𝐴𝐹 0%, [𝐻+] =  10−7.983 = 1.039 10−8 𝑚𝑜𝑙/𝐿 

𝛥[𝐻+] = 1.584 10−8
mol

L
 (

1000L

1𝑚3
) =  1.584 10−5mol/𝑚3 

 

𝐸𝐹𝑠𝑐𝑎𝑙 =
0.5 𝑃𝐴𝐹

1.584  10−5  𝑚𝑜𝑙/𝑚3  = 3.165  104 (PAF) m3/ mol 

 

The fraction of the potentially affected species is higher for calcifying species (EFcal = 

 5.508  104 (𝑃𝐴𝐹) 𝑚3/ 𝑚𝑜𝑙) compared to slightly calcifying species (EFscal = 3.165  104 

(PAF) m3/ mol). 
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Climate Zones Category Results 

 

There are three groups in this categorization: “polar species”, “temperate species” and “tropical 

species”.  The polar species category includes 21 species, which is the least amount of data 

points compared to the other two categories. The temperate region with 73 species and the 

tropical region with 82 species are close to each other in terms of the number of data points. 

SSDs of the species from these 3 regions are constructed to explore whether there are 

differences in the effect of OA on species based on geographical differences (see Figure 12). 

The goodness of fit of the polar region SSD is the lowest amongst the 3 groups (R2
polar = 0.837, 

RSE = 14.30). Both the temperate and tropical categories have R2 values higher than 0.9, 

indicating better fits of models. Tropical region SSD has a better fit compared to the other 

groups by having both the lowest RSE (8.67) and highest R2 (0.959). 

 

 

 
Figure 12 SSDs of species from polar, temperate and tropical regions 

 

 

 

Even though the difference is not large between the 3 groups, the SSDs show that the most 

sensitive group is the species from the polar region. The temperate and tropical SSDs are 

overlapping, especially within the pH range between 7 and 8. Polar SSD is positioned more 

towards the right side of the graph (see Figure 12) with a higher pH50 value (7.790) compared 
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to the temperate (7.703) and tropical (7.686) regions, which are almost the same. The temperate 

region has the highest slope value (2.943) in comparison to the other two regions. The 

difference between the control pH and pH50 (ΔpH) for the polar species group is equal to 0.264, 

which is the smallest value amongst the 3 groups.  

 
Table 4 Model parameters, number of species, average control pH values and goodness of fit results for category "climate 

zones” 

Category 
pH50 Hillslope 

Number 

of 

Species 

Average 

pH0 
ΔpH 

Pseudo 

R2 

 

RSE 

Polar 7.790 -2.593 21 8.055 0.264 0.837  14.30 

Temperate 7.703 -2.943 73 7.986 0.283 0.916  9.35 

Tropical 7.686 -2.429 82 8.043 0.357 0.959  8.67 

 

 

To understand if the model parameters statistically differ between the 3 groups, interaction 

variables are introduced and tested. As the indicator variable is selected as binary in the 

interaction term test, 2 groups are tested against each other at a time. The p-values of all of the 

tests show that there is no statistically significant (p > 0.05) difference between the 3 SSDs (see 

Table 5). The small difference between the temperate and tropical SSDs is also seen from the 

high p-value of the test between the groups (0.823). Consequently, no separate effect factors 

are calculated for the climate zones category.  

 
Table 5 Interaction term test results for climate zones category, including the estimated values for the differences between 

the model parameters and their p-values 

Test  
Estimation p-value 

Polar vs. Temperate 
M 0.072 0.378 

N 0.102 0.944 

Polar vs. Tropical 
M 0.097 0.259 

N -0.239 0.860 

Temperate vs. Tropical 
M 0.025 0.680 

N -0.342 0.731 
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Duration Category Results 

 

The exposure lengths of the marine species to acidic environments are different in each 

experiment. To test whether there is a difference in responses to shorter and longer exposure 

durations, the data is divided into 3 groups. The first group is “acute responses” which includes 

the experiments that are less than 7 days of exposure. 58 of the experiments belong to this 

category. Another one of these 3 groups is “chronic responses”. This group has the highest 

number of species responses (78). Chronic indicates longer exposure to an acidic environment. 

The third group is the “sub-chronic responses” with 40 experiments. 

 

When a species is exposed to a substance for longer durations, the primary assumption is that 

the effects will be more severe. However, there is also the possibility of adaptation and 

alterations in behaviour throughout those longer exposure times. With the purpose of assessing 

the impact of this time variable on the species response, SSDs are constructed per group (see 

Figure 12). The acute SSD has the lowest RSE (6.34) amongst the 3 groups (RSEchronic = 10.40, 

RSEsubchronic = 10.60). Even though this is the case, all 3 SSDs are considered good fits due to 

having R2 value higher than 0.9.  

 

 

 
Figure 13 SSDs of species groups with different groups of experiment durations (acute, chronic, sub-chronic) 
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The highest pH50 value (7.805), as well as the steepest slope (3.454), belong to the sub-chronic 

group. This shows that the sub-chronic responses have a high sensitivity in terms of responding 

to acidification. It is visible in Figure 13, acute and chronic models are eminently similar. The 

pH50 of the chronic group (7.698) is very close to the value of the acute group (7.674); the 

difference between the pH50 of these two models is as low as 0.024. A pH change of 0.359 is 

required for 50% of the species to get affected for the acute group whereas this difference is 

equal to 0.312 for the chronic group.  

 
Table 6 Model parameters, number of species, average control pH values and goodness of fit results for category "duration" 

Category pH50 Hillslope 
Number 

of 

Species 

Average 

pH0 
ΔpH 

Pseudo 

R2 

 

RSE 

Acute 7.674 -2.738 58 8.033 0.359 0.921  6.34 

Sub-

chronic 
7.805 -3.454 

40 8.023 
0.218 0.912 

 
10.60 

Chronic 7.698 -2.585 78 8.010 0.312 0.935  10.40 

 

 

The significance of the difference between the SSDs is tested by the introduction of the 

interaction terms (see Table 7). The similarity between the acute and chronic SSDs are 

confirmed with the high p-values for both parameter estimations (Mp-value = 0.891, Np-value 

= 0.826). As none of the p values for the model parameters reveal statistical significance (p < 

0.05), these SSDs are not utilized for calculation of separate effect factors.  

 
Table 7 Interaction term test results for duration category, including the estimated values for the differences between the 

model parameters and their p-values 

Test  
Estimation p-value 

Acute vs. Subchronic 

M 0.074 0.337 

N -0.570 0.056 

Acute vs. Chronic 
M 0.010 0.891 

N -0.239 0.826 

Chronic vs. Subchronic 
M 0.064 0.393 

N -0.332 0.694 
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Main SSD Results & Effect Factor 

 

All of the species response data (in total 176 species) is utilized to construct the main SSD (see 

Figure 14). There are 5 different taxonomic groups within the dataset which include varying 

numbers of extant species. The model parameters obtained from this SSD (see Table 8) are 

utilized to calculate the global effect factor for the endpoint characterization model. The SSD 

has a good fit with the Pseudo R2 value of 0.961.  

 

 

 
Figure 14 Main SSD including species response data from the 5 taxonomic groups 

 
Table 8 Model parameters, number of species, average control pH values and goodness of fit results for the main SSD 

Category pH50 Hillslope 
Number of 

Species 
Average 

pH0 
ΔpH 

Pseudo 

R2 

 
RSE 

All 

species 

7.649  -2.167  176 8.009 0.360  0.961 

 

 9.409 

 

The main SSD has a pH50 value of 7.649 and the hillslope of 2.167. The pH difference required 

for the percentage of affected species to become 50% is 0.360. The effect factor for the global 

characterization model is calculated using the pH50 value of this SSD. First the hydrogen ion 

concentration at PAF = 0 and PAF = 0.5 are calculated from the pH values obtained from the 

SSD to calculate HC50. 
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𝐴𝑡 𝑃𝐴𝐹 50%, [𝐻+] =  10−7.649 = 2.243  10−8 𝑚𝑜𝑙/𝐿 

𝐴𝑡 𝑃𝐴𝐹 0%, [𝐻+] =  10−8.009 = 9.795 10−9 𝑚𝑜𝑙/𝐿 

 

The difference between these two concentrations is calculated as: 

𝛥[𝐻+] = 1.264  10−8
mol

L
 (

1000L

1𝑚3
) =  1.264  10−5mol/𝑚3  

 

The ratio of 𝛥PAF and 𝛥concentration gives the effect factor as: 

𝐸𝐹 =
0.5 𝑃𝐴𝐹

1.264  10−5 𝑚𝑜𝑙/𝑚3  =  3.954  104 (𝑃𝐴𝐹) 𝑚3/ 𝑚𝑜𝑙   
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3.3. Characterization Model Results 
 

Characterization factors are calculated and presented in this chapter to answer the third sub-

question: “What is the OA endpoint characterization model for LCA that describes the relation 

between GHG emissions and marine biodiversity loss?” Additionally, characterization factors 

for the calcifying and slightly calcifying species are provided based on the effect factors 

calculated in Chapter 3.2. 

 

Main Characterization Factors 

 

The fate factors, effect and damage factors are utilized to calculate the characterization factors 

using Eq. 2.6.1. The gGHG in the unit of the OAP is converted to kgGHG by multiplying the 

results with 1000. Furthermore, the damage factor is incorporated into the characterization 

model by converting PAF to PDF using Eq. 2.5.1. The calculations for obtaining the 

characterization factor for the main SSD can be found below (see Eqs. 3.3.1, 3.3.2, 3.3.3.): 

 

𝐶𝐹𝐶𝐻4 = (
2.06  10−3 𝑚𝑜𝑙

𝑔𝐺𝐻𝐺
)  (

1000𝑔𝐺𝐻𝐺

1𝑘𝑔𝐺𝐻𝐺
)  (

3.954  104(𝑃𝐴𝐹)𝑚3

𝑚𝑜𝑙
)   

1 (𝑃𝐷𝐹)

2 (𝑃𝐴𝐹)
 

= 4.072  104(𝑃𝐷𝐹)𝑚3/𝑘𝑔𝐺𝐻𝐺                 (3.3.1) 

 

𝐶𝐹𝐶𝑂 = (
2.15  10−3 𝑚𝑜𝑙

𝑔𝐺𝐻𝐺
) (

1000𝑔𝐺𝐻𝐺

1𝑘𝑔𝐺𝐻𝐺
)  (

3.954 104(𝑃𝐴𝐹)𝑚3

𝑚𝑜𝑙
) 

1 (𝑃𝐷𝐹)

2 (𝑃𝐴𝐹)
 

= 4.251 104(𝑃𝐷𝐹)𝑚3/𝑘𝑔𝐺𝐻𝐺                 (3.3.2)     

 

𝐶𝐹𝐶𝑂2 = (
2.47  10−3 𝑚𝑜𝑙

𝑔𝐺𝐻𝐺
) (

1000𝑔𝐺𝐻𝐺

1𝑘𝑔𝐺𝐻𝐺
)  (

3.954  104(𝑃𝐴𝐹)𝑚3

𝑚𝑜𝑙
)

1 (𝑃𝐷𝐹)

2 (𝑃𝐴𝐹)
 

= 4.883  104(𝑃𝐷𝐹)𝑚3/𝑘𝑔𝐺𝐻𝐺                 (3.3.2)     

 

OAPs of the 3 elementary flows are linked to marine biodiversity loss through PDF within the 

characterization model. CO2 has the highest characterization factor (4.883  104(𝑃𝐷𝐹)𝑚3/

𝑘𝑔𝐺𝐻𝐺 )  due to having the highest OAP. CF for CO2 indicates that for each kg of CO2 emitted, 

the relative species loss will be higher compared to CO and CH4. 

 
Table 9 Endpoint characterization factor results for OA for the 3 elementary flows (CO, CO2, CH4) 

𝑪𝑭𝑪𝑯𝟒 (𝑷𝑫𝑭)𝒎𝟑/𝒌𝒈𝑮𝑯𝑮 𝑪𝑭𝑪𝑶 (𝑷𝑫𝑭)𝒎𝟑/𝒌𝒈𝑮𝑯𝑮 𝑪𝑭𝑪𝑶𝟐 (𝑷𝑫𝑭)𝒎𝟑/𝒌𝒈𝑮𝑯𝑮 

𝟒. 𝟎𝟕𝟐  𝟏𝟎𝟒 4.251 104 4.883 104 
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Calcification Category Characterization Factors 

 

The results for the calcifying and slightly calcifying species are calculated (see Appendix F for 

calculations) using the same method as the main SSD of calculations.  Due to having a higher 

effect factor both in comparison to the main SSD and the slightly calcifying group, calcifying 

species have the highest characterization factor values.  

 

 
Table 10  Endpoint characterization factor results for OA for calcifying species and slightly calcifying species, for the 3 

elementary flows (CO, CO2, CH4) 

 
𝑪𝑭𝑪𝑯𝟒 (𝑷𝑫𝑭)𝒎𝟑/𝒌𝒈𝑮𝑯𝑮 𝑪𝑭𝑪𝑶 (𝑷𝑫𝑭)𝒎𝟑/𝒌𝒈𝑮𝑯𝑮 𝑪𝑭𝑪𝑶𝟐 (𝑷𝑫𝑭)𝒎𝟑/𝒌𝒈𝑮𝑯𝑮 

Calcifying 

species 5.673104 5.921  104  6.802  104 

Slightly 

calcifying 

species 
3.260 104 3.402 104 3.909 104 
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Chapter 4. Discussion 
 

4.1. Relevance of Research  
 

It is of vital importance to develop a new paradigm to guide policymakers in integrating the 

development of societies and maintaining ecosystem stability (Steffen et al., 2015). The 

planetary boundaries framework is constructed by an international group of scientists to 

support such development, exploring the limits of reversibility of the changes imposed on 

planet earth by humanity. OA and biosphere integrity (expresses the loss of biodiversity) are 

two of the nine planetary boundaries within this framework that are related to this research. 

OA is currently below the safe boundary (see Figure 15). On the other hand, the rate of change 

in the ecosystems and biodiversity, especially in terms of genetic diversity, is already in the 

zone of high risk with serious impacts (Steffen et al., 2015) (see Figure 15). To tackle this rapid 

decline in global biodiversity, strategic targets are being determined by associations like the 

Convention on Biological Diversity (CBD). Aichi targets were set until 2020, including 

strategic goals of to reduce the pressure on biodiversity (4 of them were found relevant to 

marine biodiversity) (Carr et al., 2020). Following the Aichi targets, new strategic goals were 

set for the next 10 years and nations began uniting with the aim of reversing the loss of 

biodiversity. One example of this is the Leaders Pledge for Nature, which involves 10 different 

commitment areas that are expected to be translated into meaningful actions (United Nations, 

2020).  To sum up, the awareness on marine acidification and biodiversity is increasing and 

more research is urgently needed to understand, minimize and tackle the impacts of OA (Fallis, 

2013).  

 

 
Figure 15 Planetary Boundaries diagram (Mahaffy et al., 2019) 
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The discipline of industrial ecology applies a systematic approach using multiple perspectives 

from societal, economic and environmental spheres to create a holistic understanding around 

the anthropogenic impacts.  Even though it is currently highly underrecognized, the effects of 

ecosystem and biodiversity loss cascade through all these spheres. A reduction of biodiversity 

in marine life implies a reduction of biotic resources for humanity. This is especially visible 

for corals. Within the 100 km range of coral reefs, the population of people is estimated to be 

around 400 million. This population mainly rely on aquatic resources to maintain their 

livelihoods, thus are directly affected by the marine ecological shifts causing issues in food 

security and safety (Schmutter et al., 2016). Both the fishing and tourism sectors are influenced 

through the decreased abundance and productivity of marine species (Gascuel & Cheung, 

2019). Due to the high complexity of the balances and processes within the ecosystems, 

unprecedented consequences of rapid marine biodiversity loss beyond these known socio-

economic implications are expected in the future.  

OA is an environmental stressor that causes a significant threat to marine biodiversity (Gascuel 

& Cheung, 2019). Therefore, exploration and incorporation of the extent of this threat is highly 

relevant to the field of IE. LCA is one of the core analytical tools of IE that can represent this 

threat in a quantitative way. In this thesis research, this quantitative model is established to 

create a basis of research for exploring further implications of OA and loss of biodiversity.  

 

4.2. Reflections on the results of the research 
 

The SSDs modelled for the 3 categories revealed that the calcifying and slightly calcifying 

species respond to OA differently, whereas there is no difference in effect in different climate 

zones or experiment durations. Furthermore, the characterization model results indicate that 

CO2 is the GHG with the highest impact on marine biodiversity loss through OA when 

compared to CO and CH4. Reflections on the outcomes of the research and validation of 

significant results through comparison with scientific literature can be found below.  

 

4.2.1. Calcification SSD 

 

Reflections on the Results 

 

OA has varying impacts on different marine organisms. This variation is based on the 

physiological characteristics of the species groups. Each species has a different range of 

chemistry in which they optimally function. For instance, the carbonate chemistry in the 

habitats affect the rate of calcification ability of the organisms. The aragonite saturation state 

decreases with increasing acidity and as a consequence the calcification rate of the calcifying 

species declines.  Additionally, when the bioavailability of carbonate ions decreases to a level 

outside this optimal range of operation, more energy needs to be spent to form shells and 

skeletons (Fallis, 2013). This implies that there is less energy left for other life processes such 

as growth and fertilization. The effect of reduced aragonite saturation state is therefore not 

limited to calcification ability (McOwen et al., 2019).  Overall, the calcifying organisms are 
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expected to react more to OA based on the suggestions from scientific literature (Fabry et al., 

2008; Azevedo et al., 2015; Kroeker et al., 2013).  

 

The influence of the calcification ability of the marine species on the extent of negative 

responses to changing pH is tested through modelling separate SSDs for calcifying and slightly 

calcifying organisms. The SSD models for calcification category indicate that the calcifying 

species are more sensitive to OA compared to slightly calcifying species. The effect factor for 

the calcifying group (5.508 104 (PAF) m3/ mol) is higher than the slightly calcifying group 

(3.165 104 (PAF) m3/ mol). This implies that with each additional mol of hydrogen ions, more 

species will be potentially affected in the calcifying group. These effect factors can be utilized 

together with regionalized fate and exposure models in LCIA, especially for the biodiversity 

hotspots such as coral reefs and conservation areas. Furthermore, separate effect factors for 

calcifying and slightly calcifying species can be coupled with other relevant biodiversity 

indicators such as “warm water coral degradation” (Woods et al., 2016) to better understand 

the extent of impact of multiple stressors such as global warming and ocean acidification.  

 

Reducing and mitigating the effects of OA for all marine species can be done by regulating and 

decreasing the GHG emissions released to the atmosphere. However, the results indicate that 

more urgent attention is required to conserve and recover calcifying marine species. This can 

be done by developing comprehensive conservation strategies for the marine ecosystems that 

are dense with calcifying organisms such as coral reefs. These ecosystems are facing other 

major threats along with global warming and OA, such as overharvest, pollution, and 

destructive fishing practices. Knowing that there is a higher extent of pressure exerted on 

calcifying species by OA, the focus on relief from other stressors and threating aspects should 

be amplified to conserve these endangered ecosystems.  

 

Last but not least, it needs to be considered that there is high variability in responses and that 

genetic adaptation to these changing conditions remains a possibility in the long run (Fallis, 

2013). Along with this, other environmental conditions such as nutrient availability, 

temperatures and light levels in the habitats also have an effect on the physiological conditions 

of the organism, as well as the ecosystem level impacts. Though it is demanding to set all of 

these as control variables in the experiments, future studies should incorporate these aspects as 

much as possible within the modelling processes to obtain more realistic estimations of the 

responses in near future.  

 

Validation of Results 

 

The results obtained from the calcification SSDs are compared to two scientific resources with 

the purpose of validation. The first comparison is with the study of Wittmann et al. (2013). In 

this study, the sensitivity results of 5 different taxa are calculated (see Appendix G). For the 

sake of comparison with the results of this thesis, the pCO2 values corresponding to the 50% 

PAFs were converted into pH values using Eq. 2.2.4 (see Appendix G). Crustaceans (pH50 = 

7.416) were found to be less sensitive compared to cnidaria, echinoderms and molluscs (pH50 



 46 

= 7.789), while fish (pH50 = 7.869) show the highest vulnerability (Wittmann et al., 2013). This 

high vulnerability is explained by Wittmann et al. (2013) through the limited number of fish 

data included in the dataset. In this research, the dataset of this study was expanded and taxa 

vulnerabilities were recalculated (refer to Appendix G). While a slightly higher value for pH50 

was obtained for Crustaceans (pH50 = 7.427), this taxonomic group remained to be the least 

sensitive to OA. Furthermore, the sensitivity of the fish data was reduced significantly to a pH50 

= 7.23. Overall, when the taxonomic groups are classified as slightly calcifying versus 

calcifying species, the results of this research and Wittmann’s study are aligned. Both results 

suggest that the calcifying species have a higher sensitivity to OA.  

 

The second comparison is with the study done by Azevedo et al. (2015). 3 different SSDs are 

constructed by this paper that gives the relation between PAF and pH change in the marine 

environment. These SSDs are solely focused on calcifying species. Moreover, unlike this 

research, the categorization of the dataset was made on different life processes: growth (pH50 

= 7.28), survival (pH50 = 7.35) and reproduction (pH50 = 7.11). There are some similarities in 

the trends of the results such as the lack of detrimental effects for the crustaceans and higher 

sensitivity for highly calcifying species (Azevedo et al., 2015). However, the pH50 results 

obtained by Azevedo et al. (2015) are different compared to the ones obtained from the SSD 

model for calcifying species in this research (pH50 = 7.74) (see Chapter 3.2 for the model). 

 

Potential reasons for this difference could be listed as; the number of species data utilized to 

construct the SSDs, the scope of variable types included in the analysis and the differences in 

modelling methods. 40 out of the 82 species response data was considered detrimental in their 

SSDs whereas the number of calcifying species data was 96 in this research, which is a higher 

degree of representativeness of species. In terms of the variables, responses reflecting 

metabolic changes were excluded from the scope of their model. Such variables were included 

within the scope of this research. Metabolic changes might be less reflective of the disappeared 

fraction of species, thus, it could have created a bias in the results obtained from the SSDs. Last 

but not least, as discussed in Chapter 2.4, due to the data availability, the SSDs were calculated 

by using the negatively affected fraction of species for the calcifying category rather than 

obtaining individual pH50 values for each species before constructing the SSDs. This variation 

in approaches can be considered as the main reason for the differences in the results. 

 

4.2.2. Climate SSDs 

 

Reflections on the Results 

 

Three different climate zones were assessed in this research in terms of the species sensitivity 

to OA. The results of the analysis revealed that there is no significant difference in the 

responses of the organisms in the polar, temperate and tropical regions. Therefore, no 

individual characterization factors were calculated for these regions. This might be due to the 

resilience and adaptation capabilities of the different species groups that live in these climate 

zones. The communities may adapt to the variations in pH over the long term and tolerate its 

effects. Moreover, the results could be biased as the temperatures in the experiments are not 
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always the same as the habitat temperatures of the species. The seasonal changes within these 

regions are also not taken into consideration as most of the experiments measured the responses 

in a fixed environment with a specific temperature. Overall, the results do not indicate a 

significant species sensitivity variance between the 3 climate zones.  

 

4.2.3. Duration SSDs 

 

Reflections on the Results 

 

Both the species and ecosystem-based responses to OA in the long-term is largely unknown 

(Fabry et al., 2008). It is crucial to model and estimate these effects to determine the right 

course of action for mitigation. In this research, the SSDs based on experiment duration did not 

show any significant difference from each other. The chronic and acute responses to a chemical 

would be expected to differ in severity. However, the results indicate that the sensitivity of 

acute and chronic groups are the almost the same whereas the sub chronic SSD revealed a 

higher pH50 value compared to both acute and chronic responses. As there is no significant 

difference between the duration based SSDs, it is found that there is no requirement for 

prioritizing chronic or acute responses for the development of characterization models for OA.  

 

The reasons for obtaining such results could be that the experiments are not considering the pH 

change in a gradual manner. One being the control group, there tend to be 2-3 different pH 

levels introduced in separate containers during the experiments. In reality, the species are 

exposed to pH change incrementally. In longer durations with gradual pH change, the species 

can adapt to the environment and make trade-offs in terms of energy with other life processes 

to ensure their survival (Doney et al., 2009). This could lead to lowered sensitivity in chronic 

experiments. Incorporation of this aspect to future studies might produce more realistic results 

in terms of the effects of experiment duration. The method of collecting and analysing the 

species response data could be another point of improvement for the future models. The 

variables and species types are very different from each other in the dataset that was utilized in 

this research. The durations are categorized regardless of these types in this study. In future 

studies, measuring one response type, such as growth rate, for the same species in different 

durations might reveal the impacts of exposure duration more accurately. 

 

4.2.4. Characterization Model 

 

Reflections on the Results 

 

The model consists of 3 different characterization factors that represents the ecosystem damage 

indicators for OA. CO2 is the substance with the highest endpoint characterization factor for 

OA (4.833  104(PDF)m3/kgGHG
 ). This is a logical result because it has the highest fate factor 

as there is no chemical conversion required in the atmosphere. This value is the lowest for CH4 

(4.072  104(PDF)m3/kgGHG
 ) as CH4 partially reaches the atmosphere and needs to be 

converted to CO2. CO on the other hand has a factor closer to CH4. This indicates that the 

distribution factor has a considerable impact on the fate of these elementary flows.  
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Obtaining these characterization factors allows for the conversion of the inventory results of 

the 3 GHG in an LCA study into category indicator results for OA. This will provide insights 

regarding protection and conservation of marine ecosystems. Knowing the impacts of different 

GHG enables the practitioners to identify the hotspots and design targeted solutions to reduce 

the impact on oceans. These characterization factors provide a comprehensive indication of the 

implications of the impacts of emissions by incorporating the effects further along the cause-

effect chain.  

 

Validation of Results 

 

Comparing these factors with reference literature is not currently possible. So far, the 

characterization factor for marine acidification is only calculated by Bulle et al. (2019). In their 

approach, the fate model utilizes GTP100 as a proxy for marine acidification and the effect 

model is based on the work of Azevedo et al. (2015), which solely focuses on calcifying 

species. GTP100  focuses on the temperature change potential in the atmosphere over 100 years 

only due to CO2 emissions. Beyond these differences, the characterization factors for marine 

acidification are provided in a different unit (PDF m2 yr/kgCO2), which eliminates the 

possibility of comparison. Through researching characterization factors for several indicators 

for the marine environment, it was found that there is a need for harmonization of the units 

while reflecting biodiversity. This would both make it easier to understand and enable 

comparison of different indicators in terms of impact.   



 49 

 

4.4. Limitations of Research & Suggestions for Further Research 
 

Fate and Exposure Models 

The fate and exposure models used in this research can be developed further considering 

several aspects. First of all, not all acidifying substances are included in these models. 

Examples of such substances are nitrogen and sulphur oxides (NOx, SOx). These chemicals can 

be directly released into the ocean, especially creating a higher impact in the coastal ecosystems 

(Pierre et al., 2011), or can react with water in the atmosphere and form acid rain (Bach et al., 

2016). Either way, both NOx and SOx alter the ocean chemistry towards reducing the pH. As a 

result, the pathways of these emissions need to be explored further to understand their 

contribution to OA and incorporated into the fate and exposure models for LCIA.  

Another significant point is the absence of the time element in the fate and exposure models. 

The time from the initial pH change until the time the ocean might recover from this change is 

not represented in the current models. For most of the fate factors, such as GWP, the time 

aspect (in terms of year or day) is incorporated to consider the temporal scope of the impacts, 

which represents the duration of the GHGs emissions remaining in the atmosphere. This 

temporal scope has different implications for different sections of the cause-effect model for 

OA. The emissions that reach the atmosphere react into different chemical forms and then 

dissolve in the ocean. This is then followed by a series of reactions within the ocean that result 

in the alteration of the acidity by the release of H+ ions. Then, various life processes of the 

marine species get affected by the gradual pH change. None of these processes occur 

instantaneously. This would be an of improvement for the models for OA in future research.   

Geographical differentiation is yet another aspect that can be considered as an improvement 

for the fate model for OA. The characteristics of the ocean (such as temperature or salinity) at 

the point of dissolution might alter the extent of pH change in different regions (Doney et al., 

2009). The types of species are also variable in different latitudes. According to literature, 25-

30% of the total CO2 is assumed to be dissolving, but higher accuracy in the dissolution rates 

can be obtained if regional values are obtained in the future for the fate model. From the 3 

climate zones analysed in this research, the polar regions are expected to be more affected by 

OA compared to temperate and tropical regions (see Figure 16). There are several reasons for 

this. First of all, polar oceans have lower temperatures. This indicates higher solubility of the 

atmospheric CO2, and therefore a higher magnitude of change in surface pH by any additional 

unit of dissolved CO2. Lower temperatures also lead to lower aragonite saturation states as 

described in Chapter 1.2. With lower saturation states, a higher number of species are affected 

by OA due to lower calcification rates, and dissolving shells and skeletons of organisms (Fallis, 

2013). Besides the high temperatures, the reduction of sea ice cover induced by global warming 

increases the ocean surface area that is in direct contact with the atmosphere. More CO2 

dissolves in the ocean with increasing air-water contact. When this is coupled with the fresh 

water originating from the melting sheets, the surface ocean pH in polar regions is expected to 

decrease even more in the near future (Fallis, 2013). Such conditions influence the extent of 
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impact of OA on species richness. Understanding and incorporating these impacts to the fate 

and exposure models is important to identify the zones and species that require the most 

immediate attention.  

 

 

 

 
Figure 16 Model-derived maps of historical and projected global ocean pH levels (up) and aragonite saturation states (down), 

based on Fallis (2013) 

 

Another level of detail for future fate and exposure models would be the incorporation of the 

vertical differentiation within the ocean (Doney et al., 2009). The CO2 dissolves from the 

surface of the ocean, which has a different temperature compared to the bottom of the ocean, 

and there are different circulation pathways that affect the flow of water from one location to 

the other. Moreover, the species types and distributions differ in benthic and pelagic regions. 

With the differences in pH in between these regions, the exposure of different organisms to 

different pH levels should be considered to develop a more robust exposure factor.   

 

Species Response Data 

 

Discovery and synthesis of species response data in this thesis research has proven to be 

challenging. The research on the impact of OA on marine species gained acceleration within 

the last two decades. While there were only 18 published papers per year in 2004, this number 

increased to 365 studies in 2014 (Yang et al, 2016). Despite the recent developments, the 

research area is still relatively novel which imposes some challenges around data collection. 

Some of the experimental data are not even archived or not accessible and even if they are, 

there are several repositories which present the data in different formats. The representation of 
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the carbonate chemistry, the parameters used for reporting the outcomes of the experiments 

and their units vary significantly (Yang et al., 2016). This makes it hard to collect and compare 

the species response data, thus there is a need for harmonization in the reporting of the results 

in experiment-based OA research.  

The taxonomic representativeness of the dataset is open for improvement. The species response 

data are modelled and evaluated to be reflective of the biological response on a global scale. 

The overarching challenge in achieving this is the vast number of marine species and 

ecosystems. The number of estimated species in marine life is around 1.4 - 1.6 million and only 

226,000 of them have been identified so far (Bouchet, 2006). Considering only a small fraction 

of these identified species are utilized in OA experiments, it is not currently possible to find 

and include species response data with a full taxonomic coverage.  

 

Within the scope of this thesis, 5 different taxa were included (echinodermata, mollusca, 

cnidaria, fish and crustacea). Photosynthetic organisms which include large taxonomic groups 

such as phytoplanktons were excluded from the scope. Moreover, geographical location of the 

species data is not evenly distributed. According to Yang et al. (2016), the majority of the 

reported responses belong to the species in the Northern Hemisphere. The extent of research 

for the species in the southern hemisphere and polar regions is still limited. Along with this, 

the reporting of the habitats of species is not consistent and not always clearly denoted. Some 

studies indicate the species habitats as the polar region, whereas, in other studies the same 

species habitat is denoted as temperate region. This can indeed be the case for some species, 

but it presented challenges in classifying (in terms of habitats) and collating different 

experiment results for some species.  

Lastly, the fact that experimental data is utilized in this analysis creates a limitation as it 

represents responses in highly specific conditions rather than reflecting the reality.  Most of the 

time the experiments report the responses of cultured organisms that are observed in an isolated 

environment. The laboratory conditions may impose changes in responses compared to the 

actual behaviour of the species in their natural habitats. The marine ecosystems are complex 

and dynamic and involve interactions of the organisms with each other and with the marine 

environment. This is inevitably excluded in a laboratory setting. The reduction in accuracy is 

especially the case for the experiments in which interaction-based variables, such as predatory 

behaviour, are utilized. Moreover, within the marine ecosystems, the chemical balances and 

temperature are not fixed qualities. However, these are static control variables in the 

experimental setups, and they are also different in most of the experiments. According to Fallis 

et al. (2013), mesocosm studies or incorporation of natural gradients could be addressing the 

complexity of the environment more realistically and thus might be considered as preferable 

setups for future research to resolve such issues.  
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Effect Modelling Approach 

 

Initially, the method of the study from Azevedo et al. (2015) was initially selected to construct 

the models. The raw data was not provided by the authors; thus, the supplementary information 

of the article was utilized to trace back the steps of the method. The experimental data utilized 

in the calculation of one of the SSD models were acquired and the same approach was applied 

to test the applicability of the method. Some of the calculations did not lead to the same results 

as denoted in the publication, therefore, other meta-analyses were examined to obtain raw 

data.  This led to a shift from the original choice of methods to construct the effect model.  

 

The dataset of Wittmann et al. (2013) was used as the base dataset and expanded further to 

improve the species representativeness for polar regions and fish taxon. The format of the 

dataset that was constructed by the authors is therefore maintained. There are implications of 

this format on the choice of the SSD modelling approach. The method suggested by 

Rosenbaum (2008) and applied by Azevedo et al. (2015) starts with fitting the responses (in 

relation to the control responses) of a single species into a logistic regression to obtain EC50 

values (effect concentration affecting 50% of the individuals). Then, these EC50 values are 

utilized in another regression which gives the HC50 value. It wasn’t possible to apply this 

method to the dataset on hand. This is because the responses are recorded as negative, positive 

or none per each species along 6 pCO2 bins rather than the values of the actual responses. 

Therefore, once the negatively affected percentage of species were calculated for the given 

category, this data is directly fit into a logistic regression to obtain HC50. This change in 

methodology can be considered as a limitation of this research and improvements can be made 

by applying the Rosenbaum (2008) approach to a similar data scope of species in future 

research. This way, the method would be fully aligned with the established ecotoxicology 

impact assessment approach for LCA. Observing the extent of the difference in the results 

would be interesting to assess the effectiveness of the approach used in this research.  

According to Wittmann et al. (2013) crustaceans tend to build lighter skeletons and have a 

more efficient pH regulation mechanism compared to cnidaria, echinoderms and molluscs. On 

the other hand, even though fish mostly do not display calcifying structures, some fish species 

produce CaCO3 based components such as the otoliths, as well as their skeletons (Grossel, 

2019). Therefore, crustaceans and fish are categorized as the slightly calcifying category in this 

analysis. The choice of categorizing the taxonomic groups as such creates biases in the results. 

This is due to the gradual differences both between and within the groups. Not all species within 

these taxonomic groups have the same calcification ability. However, if more distinctions than 

5 taxonomic groups were made in terms of categorization with the extent of data available, the 

statistical power of the models would decrease significantly.  

 

The approach selected for assessing goodness-of-fit presents limitations regarding the 

statistical power of the models. Nagelkerke R2 was selected as the statistic to evaluate the 

goodness-of-fit. However, these values are considerably high (see Chapter 3).  considering the 

limited number of data points that are fitted into the regression to construct the SSDs When 

other R2 values such as Efron R2 were calculated for the regressions, the results differed from 
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the Nagelkerke R2 values. As Nagelkerke R2 is a commonly used statistic, these values were 

presented in the report. However, to ensure a greater statistical certainty and coherence with 

regards to the models, more data points should be incorporated into the models.  

 

A categorization around life processes (growth, reproduction, survival) as done by Azevedo et 

al. (2015) was originally intended to be included as a part of the analysis. However, within the 

current data collection format, there is no distinction between experiment variables. Instead, 

the number and types of variables were collected and listed per species. Moreover, Azevedo et 

al. (2015) excluded variables associated with metabolic processes or behavioural aspects. The 

variety of experiment variables were higher within the dataset of Wittmann et al. (2013). These 

variables were grouped together rather than being recorded separately for each experiment, 

which made it harder to classify into distinct life processes. Consequently, life process 

categorization was not included in the scope of this thesis. The effect of swimming behaviour 

and the effect of fertilization success are different on the loss of biodiversity. Therefore, the 

variable types should be classified depending on their influence on PDF and explored 

accordingly in future studies.  
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Chapter 5. Conclusion 
 

 

This research explores the relationship between the changing acidity of the oceans and marine 

biodiversity loss. This is done through developing an endpoint characterization model for OA 

to be utilized in LCIA. The model includes 3 different characterization factors based on the 

type of GHG (CO, CH4 and CO2). With 4.883  104 (PDF)m3/kgGHG, CO2 emissions has the 

highest impact on marine biodiversity. From these factors CH4 turned out to be the lowest 

(4.072  104 (PDF)m3/kgGHG. Along with the model development, influences of different 

climate zones (polar, temperate, tropical), calcification ability and duration of exposure (acute, 

sub chronic, chronic) on species responses were analysed. The results revealed that duration 

and climate zone are not significant in terms of species response to OA, whereas the calcifying 

species (mollusca, echinodermata, cnidaria) were found to be more sensitive to OA compared 

to slightly calcifying ones (crustacean, fish).  

 

The model developed in this research differs from previous models in scientific literature due 

to incorporating slightly calcifying species in SSDs and assessing different influencing 

parameters on species response. Including this endpoint indicator for OA in LCA makes it 

possible to quantify the extent of impact that the service and product systems have on marine 

biodiversity loss. This allows for creating targeted solutions for both limiting the emissions 

from the production hotspots, as well as developing strategies to conserve threatened ecosystem 

such as coral reefs.  

 

To sum up, OA has adverse effects on marine species richness. Most of these effects are 

currently not well-understood. More research is required to expand the collection of 

experimental data and to explore the unprecedented consequences of OA when coupled with 

other stressors such as global warming. The changes in ocean chemistry on a regional scale as 

well as the socio-economic and ecosystem level implications of OA need to be monitored 

closely. Incorporating the quantified impacts of OA in analytical tools such as LCA is of vital 

importance to have a grasp of the implications of our actions. With the addition of temporal 

and geographical aspects into the characterization model, future studies could contribute to 

developing a more robust category indicator for OA. Urgent attention is needed to further 

understand and mitigate the impacts OA, and to conserve the marine ecosystems.  
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Appendix B: pCO2 – pH conversion 

 
 

Table 11. pCO2 ranges of the bins, average pCO2 per bin and the corresponding pH values 

pCO2 range pCO2 average pH 

500 - 650 550.0 7.922 

651 - 850 750.5 7.804 

851 - 1370 1110.5 7.655 

1371 - 2900 2135.5 7.406 

2901 - 10000 6450.5 6.986 

10000 10000 6.820 
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Appendix C: Global normalization factors and number of extant species for each 

taxonomic group 
 

Table 12 Global normalization factors and number of extant species per taxon, and their corresponding references 

Taxon 
Global normalization 

factor 
Number of extant 

species 
Reference 

Echinodermata 0.053 7000 Ho & Rast, 2016 

Mollusca 0.379 50000 
Appeltans et al., 

2012 

Crustacea 0.303 40000 Hobbs, 2012 

Fish 

(Actinopterygii) 
0.197 26000 Dixon et al., 2016 

Cnidaria 0.068 9000 Fautin et al., 2020 

 

 

 

Appendix D: Fate Model Calculations 
 

Distribution Factor 

  

Both CO and CH4 are converted into CO2 in the atmosphere by reacting with oxygen 

(Wuebbles and Hayhoe, 2002). The troposphere is the layer of the atmosphere where this 

conversion occurs. In order to know the extent of these conversions, first, the distribution of 

these emissions within the atmosphere should be determined. The distribution factor indicates 

this percentage of the emissions entering the troposphere. All of the emitted CO2 initially ends 

up in the troposphere. While this is the case for CO2, only 87.1% of the CO reaches the 

troposphere. A similar but slightly higher percentage, 87.8%, is suggested by the literature for 

CH4 (Kirscheke et al., 2013). The distribution factors for each elementary flow are therefore; 

  

Distribution FactorCO = 0.871 

Distribution Factor CH4 = 0.878 

Distribution FactorCO2 = 1 

  

Conversion Factor 

 

The troposphere is a natural sink for methane. While CO directly transforms into CO2 in the 

troposphere, CH4 goes through a series of reactions. CH4 first gets oxidized through reacting 
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with OH- ions which eventually results in the formation of CH2O and H2O. This oxidation is 

influenced by the bioavailability of ozone and nitrogen oxides within the troposphere (Bach et 

al., 2016). Then, CH2O further reacts into CO. The percentage of CH4 converted to CO is 

estimated as 95% based on the suggestion Holloway and Wayne (2010). According to 

literature, 100% of the CO converts to CO2 through oxidation. 

  

Overall, the total amount of CO2 in the troposphere is a sum of direct (CO2) and indirect 

emissions (CH4 and CO). Conversion factor allows the calculation of the latter. This factor is 

considered as 1 for CO2 as it is the required chemical formulation to dissolve in the ocean. The 

conversion factors of the elementary flows are: 

  

Conversion FactorCO = 1 gCO2/gCO 

Conversion Factor CH4 = 0.95 gCO2/gCH4 

Conversion FactorCO2 = 1 gCO2/gCO2 

  

Dissolution Factor 

  

Following the conversion of all of the elementary flows into CO2, the dissolution of CO2 in the 

ocean is calculated. The dissolution factor is accounting for the fact that the selected 

environment is a water body for the fate model. There is a certain chemical equilibrium within 

the ocean regarding the fate of CO2. This equilibrium explains how aquatic CO2 is transformed 

or stored (IPCC, 2013). On one hand, the CO2 is converted into different chemical forms to be 

utilized by the marine species to support their life processes and there is a continuous flow of 

CO2 in between different layers of depth within the ocean. On the other hand, some of the 

dissolved CO2 is stored on the floor of the ocean in sediment form rather than dynamically 

being converted and transported within the water. This static form of CO2 within the ocean 

does not have an effect on OA and is 1% of the total amount of CO2 dissolved in the ocean.  

  

According to IPCC (2013), the percentage of CO2 dissolving in the ocean is between 25 - 30%. 

The average of these two numbers, 27.5%, is assumed as the percentage of all atmospheric CO2 

ending up in the ocean. Thus, 1% of 27.5% of the dissolved CO2 reflects the percentage of 

stored CO2, which is equal to 0.225%. 0.225% is subtracted from the dissolved percentage, 

27.5%, leading to 27.225% as the total amount of dissolved CO2 contributing to OA.  

  

Total amount of dissolved CO2 = 27.225% 

  

The dissolution factor gives the ratio of the total amount of dissolved CO2 to the share of CO2 

able to be dissolved (see Eq. 2.3.3). To calculate the latter, the shares of each elementary flow 

that can dissolve in the ocean are calculated individually and added together using Eq. 2.3.4. 

These shares are determined by multiplying the distribution and conversion factors of each 

elementary flow.  

  

Share of CO able to be dissolved = 0.871 x 1 = 0.871 
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Share of CH4 able to be dissolved = 0.878 x 0.95 = 0.834 

Share of CO2 able to be dissolved = 1 x 1 = 1 

  

The sum of these three values is equal to 2.705. The dissolution factor for all the elementary 

flows is therefore 0.27225/2.705 = 0.1008 (see Eq. 2.3.3).  

  

Dissolution FactorCO,CH4,CO2 = 0.1008 

  

Fate Sensitivity Factor 

  

Fate sensitivity factor translates the percentage of aquatic CO2 into the dissolved H+ ions as 

these ions cause the alteration of the acidity of the water body. As can be seen in Eq. 1.2, the 

initial release of H+ ions is due to the conversion of CO2 into HCO3
-. Within this conversion, 

one H+ ion is released per one CO2 molecule. According to Doney et al. (2009), the probability 

of this reaction taking place is 90%. In other words, 90% of the CO2 molecules will be 

converted into H+ ions through the first conversion. The second part of the equilibrium reaction 

expresses the conversion from HCO3
- to CO3

-2 and two H+ ions. The value found in literature 

for the probability of this happening is 9%. To calculate the total number of released H+ ions, 

the number of H+ ions per equation is multiplied with the probability of that reaction and these 

two values are added together; 

  

(1 H+ ion) x 0.9 +  (2 H+ ions) x 0.09 = 1.08 H+ ions released per one CO2 molecule. 

  

In order to find the category indicator, which is the “moles of released H+ ions per gram of 

CO2”, the number of H+ ions is divided by the molar mass of CO2 (44 g/mol); 

 

Fate sensitivity factor = 1.0844 g/mol= 2.45 x 10-2 mol H+/gram CO2. 

  

 

Ocean Acidification Potential 

 

So far, the journeys of each substance from emission to the ocean are explored in 3 distinct 

stages. The emissions get distributed within the atmosphere, get converted into CO2 and a share 

of this atmospheric CO2 dissolves within the ocean. By obtaining the product of these 3 factors, 

it is possible to calculate the fate factors of each elementary flow using Eq.2.3.2; 

  

Fate FactorCO = 0.871 x 1 x 0.1008 = 0.0878 gCO2/gCO 

Fate FactorCH4 = 0.878 x 0.95 x 0.1008 = 0.0841 gCO2/gCH4 

Fate FactorCO2 = 1 x 1 x 0.1008 = 0.1008 gCO2/gCO2 

  

As previously described, the OAPi is the product of these individual fate factors and the fate 

sensitivity factor (see Eq. 2.3.1); 

  

OAPCO = 0.0878 x 2.45 x 10-2 = 2.15 x 10-3 mol H+/gGHG 
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OAPCH4 = 0.0841 x 2.45 x 10-2= 2.06 x 10-3 mol H+/gGHG 

OAPCO2 = 0.1008 x 2.45 x  10-2 =  2.47 x 10-3 mol H+/gGHG 
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Appendix F: Characterization factor calculations for calcifying and slightly calcifying 

species 

 

Calcifying Species: 

𝐶𝐹𝐶𝐻4 = (
2.06 10−3 𝑚𝑜𝑙

𝑔𝐺𝐻𝐺
) (

1000𝑔𝐺𝐻𝐺

1𝑘𝑔𝐺𝐻𝐺
)  (

5.508  104(𝑃𝐴𝐹)𝑚3

𝑚𝑜𝑙
)

1 (𝑃𝐷𝐹)

2 (𝑃𝐴𝐹)
 

= 5.673 104(𝑃𝐷𝐹)𝑚3/𝑘𝑔𝐺𝐻𝐺                  

 

𝐶𝐹𝐶𝑂 = (
2.15 10−3 𝑚𝑜𝑙

𝑔𝐺𝐻𝐺
) (

1000𝑔𝐺𝐻𝐺

1𝑘𝑔𝐺𝐻𝐺
) (

5.508  104(𝑃𝐴𝐹)𝑚3

𝑚𝑜𝑙
)

1 (𝑃𝐷𝐹)

2 (𝑃𝐴𝐹)
 

= 5.921 104(𝑃𝐷𝐹)𝑚3/𝑘𝑔𝐺𝐻𝐺                     

 

𝐶𝐹𝐶𝑂2 = (
2.47 10−3 𝑚𝑜𝑙

𝑔𝐺𝐻𝐺
) (

1000𝑔𝐺𝐻𝐺

1𝑘𝑔𝐺𝐻𝐺
) (

5.508  104(𝑃𝐴𝐹)𝑚3

𝑚𝑜𝑙
)

1 (𝑃𝐷𝐹)

2 (𝑃𝐴𝐹)
 

= 6.802  104(𝑃𝐷𝐹)𝑚3/𝑘𝑔𝐶𝑂2                    

 

Slightly Calcifying Species: 

 

𝐶𝐹𝐶𝐻4 = (
2.06 10−3 𝑚𝑜𝑙

𝑔𝐺𝐻𝐺
) (

1000𝑔𝐺𝐻𝐺

1𝑘𝑔𝐺𝐻𝐺
)  (

3.165104(𝑃𝐴𝐹)𝑚3

𝑚𝑜𝑙
)

1 (𝑃𝐷𝐹)

2 (𝑃𝐴𝐹)
 

= 3.260 104(𝑃𝐷𝐹)𝑚3/𝑘𝑔𝐺𝐻𝐺                  

 

𝐶𝐹𝐶𝑂 = (
2.15  10−3 𝑚𝑜𝑙

𝑔𝐺𝐻𝐺
) (

1000𝑔𝐺𝐻𝐺

1𝑘𝑔𝐺𝐻𝐺
) (

3.165104(𝑃𝐴𝐹)𝑚3

𝑚𝑜𝑙
)

1 (𝑃𝐷𝐹)

2 (𝑃𝐴𝐹)
 

= 3.402 104(𝑃𝐷𝐹)𝑚3/𝑘𝑔𝐺𝐻𝐺                     

 

𝐶𝐹𝐶𝑂2 = (
2.47 10−3 𝑚𝑜𝑙

𝑔𝐺𝐻𝐺
) (

1000𝑔𝐺𝐻𝐺

1𝑘𝑔𝐺𝐻𝐺
) (

3.165 104(𝑃𝐴𝐹)𝑚3

𝑚𝑜𝑙
)

1 (𝑃𝐷𝐹)

2 (𝑃𝐴𝐹)
 

= 3.909 104(𝑃𝐷𝐹)𝑚3/𝑘𝑔𝐺𝐻𝐺                     
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Appendix G: Taxon based SSD results 
 

Results calculated in this research: 

 

 
Table 13 Taxon based model parameters, number of species and goodness of fit measure 

Taxon pH50 Hillslope 
Number of 

Species 
Pseudo R2 

Echinodermata 7.745 -2.821 30 0.864 

Mollusca 7.751 -2.392 44 0.982 

Crustacea 7.427 -2.185 39 0.911 

Fish 7.723 -2.971 41 0.843 

Cnidaria 7.666 -2.565 22 0.951 

 

 

Results of Wittmann et al. (2013): 

 

 

 
Figure 17 Parameters, goodness of fit and resulting pH50 values of the taxon sensitivity curves from Witmann et al. (2013) 
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Table 14 P50 values obtained by Wittmann et al. (2013) that are converted to pH for the sake of comparison with the 
results of this research 

Taxon pH50 pCO2 

Echinodermata 7.748 870 

Mollusca 7.789 781 

Crustacea 7.416 2086 

Fish 7.869 632 

Cnidaria 7.694 1003 

 

Appendix H: The modelling method of Azevedo et al. (2015) 
 

Experimental species response data for calcifying species were collected by the authors and 

further categorized into three main life processes: growth, survival and reproduction. The next 

steps in the approach of Azevedo et al. (2015) are: 

 

1. Adjusting the species response data to empirical relative responses (eRRi) per species, 

using the formula: 

 

eRRi =  1 - Ri/Rr                                                                                         (H.1) 

 

where Ri is the reported response at pH i and Rr is the reference response (i.e., highest 

reported pH level). 

 

2. Fitting eRRi and pHi values into individual logistic regressions to obtain pH50 values 

(equivalent of EC50 for pH) using the formula: 

 

            𝑐𝑅𝑅 =  
1

1+10(𝑝𝐻50−𝑝𝐻)/β
                                                                           (H.2) 

 

where   cRR stands for calculated relative response and  β is the slope of the logistic 

function. The logistic function has two parameters and 1 degree of freedom, therefore 

only the experiments with 3 or more eRRi and pH values were utilized to create logistic 

regressions. 

 

3. Classifying the regression results based on β and p values: 

 Detrimental if β < 0 and p value <= 0.05 

 Beneficial if β > 0 and p value <= 0.05 

 Uncertain if β = 0 or p value > 0.05 

 

4. Calculating of means (μ) and standard deviations (σ) of the pH50 values obtained from 

regressions that were classified as detrimental in step 3. 
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5. Constructing SSDs per life process by fitting μ and σ values into a cumulative normal 

distribution indicated by the equation: 

 

𝑃𝐴𝐹𝑖 =  
1

√2𝜋𝜎
𝑒−(𝑝𝐻− 𝜇)2/2𝜎2

              (H.3) 

 

where PAF denotes potentially affected fraction of species. 

 

The intention was to expand the scope of the dataset of Azevedo et al. (2015) by including data 

for both slightly-calcifying and calcifying species, as well as species from the polar region to 

replicate the approach described above for a larger number of data. The purpose of this was to 

construct more comprehensive SSDs based on geographical classification rather than life 

processes. However, the raw data was not provided by the authors. The only available 

information from this study was the results of the logistic regressions from step (2) and the list 

of experiments included in the assessment. With the attempt to utilize this information and test 

the approach, the methodological steps from (1) to (5) were replicated for 5 of the experiments 

with the data found from the original papers referred by the authors. Some of the obtained 

results did not align with the results that were presented in the paper. Therefore, the approach 

was no longer utilized for the effect model.  

Appendix I: Code in R  

 

Code for modelling the Calcification Category SSDs: 
 

library(readxl) 

library(ggplot2) 

library("rcompanion") 

 

#code to model the SSD for calcifying species data with a taxonomic grouping 

#step 1: weighted averages per bin per taxon; c(mollusca, echinodermata, cnidaria) 

bin0 <- c(0,0,0) #control 

bin1 <- c(50 , 62.5, 40) # response of the first pco2 bin - each number represent one taxa 

bin2 <- c(64.7, 33.3, 38.5) 

bin3 <- c(51.4, 67.9, 44.4) 

bin4 <- c(90.3, 84.6, 85.7) 

bin5 <- c(93.9, 100, 100) 

bin6 <- c(100,100,100) 

 

#step 2: calculating the weighted average of each bin using the global normalization factors per taxonomic group 

w_gsr_c <- c(0.379, 0.053, 0.068) 

w_avg_b0 <- weighted.mean(bin0, w_gsr_c) 

w_avg_b1 <- weighted.mean(bin1, w_gsr_c) 

w_avg_b2 <- weighted.mean(bin2, w_gsr_c) 

w_avg_b3 <- weighted.mean(bin3,w_gsr_c) 

w_avg_b4 <- weighted.mean(bin4, w_gsr_c) 

w_avg_b5 <- weighted.mean(bin5, w_gsr_c) 

w_avg_b6 <- weighted.mean(bin6, w_gsr_c) 

y_c <- c(w_avg_b0, w_avg_b1, w_avg_b2, w_avg_b3, w_avg_b4, w_avg_b5, w_avg_b6) 

 

#step 3: defining the pH values including the average control variable of the category 

x_c <- c(8.0461, 7.922231, 7.804119, 7.655225, 7.406747, 6.986673, 6.820071)  

 

#step 4: defining weights of the bins based on the total number of species data entry per given bin 
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bin_weights_c <- c(1, 0.358, 0.62963, 1, 0.8765, 0.83, 0.802) 

 

#step 5: defining the logistic regression function with two parameters 

cfunc <- function(x,a,b) {100 / (1 + 10 ^ ((a - x) * b))} 

 

#step 6: defining the nonlinear least squares (nls) function for the regression 

cal_fit <- nls(y_c ~ cfunc(x_c,a,b), start = list(a = 7.5, b = -2), weights = bin_weights_c) 

summary(cal_fit) 

 

#step 7: calculating the nagelkerke R2 

nullfunct = function(x, m){m} 

null.model = nls(y ~ nullfunct(x, m), start = list(m = 50), weights = bin_weights_c) 

nagelkerke(cal_fit, null = null.model) 

 

#------------------ 

#code to model the SSD for slightly calcifying species data with a taxonomic grouping 

#step 1: weighted averages per bin per taxon; c(crustacea, fish) 

bin0 <- c(0,0) #control 

bin1 <- c(16.7, 30) # response of the first pco2 bin - each number represent one taxa 

bin2 <- c(18.2, 52.9) 

bin3 <- c(30, 57.1) 

bin4 <- c(48, 91.3) 

bin5 <- c(91.7, 74.2) 

bin6 <- c(100,100) 

 

#step 2: calculating the weighted average of each bin using the global normalization factors per taxonomic group 

w_gsr_sc <- c(0.303, 0.197) 

w_avg_b0 <- weighted.mean(bin0, w_gsr_sc) 

w_avg_b1 <- weighted.mean(bin1, w_gsr_sc) 

w_avg_b2 <- weighted.mean(bin2, w_gsr_sc) 

w_avg_b3 <- weighted.mean(bin3, w_gsr_sc) 

w_avg_b4 <- weighted.mean(bin4, w_gsr_sc) 

w_avg_b5 <- weighted.mean(bin5, w_gsr_sc) 

w_avg_b6 <- weighted.mean(bin6, w_gsr_sc) 

y_sc <- c(w_avg_b0, w_avg_b1, w_avg_b2, w_avg_b3, w_avg_b4, w_avg_b5, w_avg_b6) 

 

#step 3: defining the pH values including the average control variable of the category 

x_sc <- c(7.9833, 7.922231, 7.804119, 7.655225, 7.406747, 6.986673, 6.820071)  

 

#step 4: defining weights of the bins based on the total number of species data entry per given bin 

bin_weights_sc <- c(1, 0.2909, 0.50909, 0.8727, 0.8727, 1, 0.982) 

 

#step 5: defining the logistic regression function with two parameters 

cfunc <- function(x,a,b) {100 / (1 + 10 ^ ((a - x) * b))} 

 

#step 6: defining the nonlinear least squares (nls) function for the regression 

scal_fit <- nls(y ~ cfunc(x,a,b), start = list(a = 7.5, b = -2), weights = bin_weights_sc) 

summary(scal_fit) 

 

#step 7: calculating the nagelkerke R2 

 

nullfunct = function(x, m){m} 

null.model = nls(y ~ nullfunct(x, m), start = list(m = 50), weights = bin_weights_sc) 

nagelkerke(scal_fit, null = null.model) 

 

#---------------------- 

 

#step 8:visualization of the SSD including the regression and the data points per bin per each taxon 

#define dataframe for calcifying and slightly calcifying species 

df_calcification <- read_excel("~/Desktop/dataset OA V4.xlsx", sheet = "calcification results") 

x <- df_calcification$pH 

y <- df_calcification$neg_affected 

category <- df_calcification$`calcification` 

#plot SSDs 

g <- ggplot(df_calcification, aes(x,y, color = category, shape = category)) + xlim(5,10) + ylim(0,105) 

g  + labs(x = "pH", y = "Potentially Affected Fraction of Species (PAF)") +  

  stat_function(fun = cfunc, args = list(coef(cal_fit)["a"], coef(cal_fit)["b"]), color = "orangered1") +  
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  stat_function(fun = cfunc, args = list(coef(scal_fit)["a"], coef(scal_fit)["b"]), color = "cornflowerblue") + theme_classic() 

+ geom_point()  

#------------------- 

 

#step 9: interaction term test  

#define variables  

w <- df_calcification[c(1:14), c(5)]$weight 

ind <- df_calcification[c(1:14), c(4)]$ind  #identification variable for categories 

 

#it --> interaction variable for testing 

# fit the data to the function 

it_test <- nls(y ~ 100 / (1 + 10 ^ ((a+a_it*ind - x) * (b+b_it*ind))), start = list(a = 7.5, b = -2, a_it = 0, b_it = 0), weights = 

w) 

summary(it_test) 

 

Code for modelling the Climate Category SSDs: 
library(readxl) 

library(ggplot2) 

library("rcompanion") 

 

#code to model the SSD for polar data with a taxonomic grouping 

#step 1: weighted averages per bin per taxon; c(mollusca, crustacea, echinodermata, fish) 

bin0 <- c(0,0,0,0) #control 

bin1 <- c(100, 50, 100, 0) # response of the first pco2 bin - each number represent one taxa 

bin2 <- c(75, 66.7, 50, 0) 

bin3 <- c(60, 60, 50, 100) 

bin4 <- c(100, 80, 66.7, 100) 

bin5 <- c(100, 100, 100, 50) 

bin6 <- c(100,100,100, 100) 

 

#step 2: calculating the weighted average of each bin using the global normalization factors per taxonomic group 

w_gsr_p <- c(0.379, 0.053, 0.303, 0.197) #mollusca, echinodermata, crustacea, fish 

w_avg_b0 <- weighted.mean(bin0, w_gsr_p) 

w_avg_b1 <- weighted.mean(bin1, w_gsr_p) 

w_avg_b2 <- weighted.mean(bin2, w_gsr_p) 

w_avg_b3 <- weighted.mean(bin3,w_gsr_p) 

w_avg_b4 <- weighted.mean(bin4, w_gsr_p) 

w_avg_b5 <- weighted.mean(bin5, w_gsr_p) 

w_avg_b6 <- weighted.mean(bin6, w_gsr_p) 

y_p <- c(w_avg_b0, w_avg_b1, w_avg_b2, w_avg_b3, w_avg_b4, w_avg_b5, w_avg_b6) 

 

#step 3: defining the pH values including the average pH value of the experiments within the category 

 

x_p <- c(8.0548, 7.922231, 7.804119, 7.655225, 7.406747, 6.986673, 6.820071) #average pH values of each bin 

 

#step 4: defining weights of the bins based on the total number of species data entry per given bin 

bin_weights_p <- c(1, 0.3125, 0.75, 1, 0.8125, 0.81, 0.75) 

 

#step 5: defining the logistic regression function with two parameters 

cfunc <- function(x,a,b) {100 / (1 + 10 ^ ((a - x) * b))} 

 

#step 6: defining the nonlinear least squares (nls) function for the regression 

polar_fit <- nls(y_p ~ cfunc(x_p,a,b), start = list(a = 7.5, b = -2), weights = bin_weights_p) 

summary(polar_fit) 

 

#step 7: calculating the nagelkerke R2 

 

nullfunct = function(x, m){m} 

null.model = nls(y ~ nullfunct(x, m), start = list(m = 50), weights = bin_weights_p) 

nagelkerke(polar_fit, null = null.model) 

 

 

#------------ 

#code to model the SSD for temperate data with a taxonomic grouping 

#step 1: weighted averages per bin per taxon; c(mollusca, crustacea, echinodermata, fish, cnidaria) 

bin0 <- c(0,0,0,0,0) #control 
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bin1 <- c(45.5, 0, 66.7, 0,0) # response of the first pco2 bin - each number represent one taxa 

bin2 <- c(75, 0, 37.5, 25, 25) 

bin3 <- c(64.7, 20, 71.4, 22.2, 25) 

bin4 <- c(94.1, 40, 84.6, 100, 100) 

bin5 <- c(88.9, 90, 100, 87.5, 100) 

bin6 <- c(100,100,100, 100,100) 

 

#step 2: calculating the weighted average of each bin using the global normalization factors per taxonomic group 

w_gsr_te <- c(0.379, 0.053, 0.303, 0.197, 0.068) #mollusca, echinodermata, crustacea, fish, cnidaria 

w_avg_b0 <- weighted.mean(bin0, w_gsr_te) 

w_avg_b1 <- weighted.mean(bin1, w_gsr_te) 

w_avg_b2 <- weighted.mean(bin2, w_gsr_te) 

w_avg_b3 <- weighted.mean(bin3,w_gsr_te) 

w_avg_b4 <- weighted.mean(bin4, w_gsr_te) 

w_avg_b5 <- weighted.mean(bin5, w_gsr_te) 

w_avg_b6 <- weighted.mean(bin6, w_gsr_te) 

y_te <- c(w_avg_b0, w_avg_b1, w_avg_b2, w_avg_b3, w_avg_b4, w_avg_b5, w_avg_b6) 

 

#step 3: defining the pH values including the average pH value of the experiments within the category 

 

x_te <- c(7.9860, 7.922231, 7.804119, 7.655225, 7.406747, 6.986673, 6.820071) #average pH values of each bin 

 

#step 4: defining weights of the bins based on the total number of species data entry per given bin 

bin_weights_te <- c(1, 0.3519, 0.5, 1, 0.889, 0.91, 0.852) 

 

#step 5 is the same function definition for all regressions 

 

#step 6: defining the nonlinear least squares (nls) function for the regression 

temperate_fit <- nls(y_te ~ cfunc(x_te,a,b), start = list(a = 7.5, b = -2), weights = bin_weights_te) 

summary(temperate_fit) 

 

#step 7: calculating the nagelkerke R2 

 

nullfunct = function(x, m){m} 

null.model = nls(y ~ nullfunct(x, m), start = list(m = 50), weights = bin_weights_te) 

nagelkerke(temperate_fit, null = null.model) 

 

#--------------------------------------------------- 

#code to model the SSD for tropical data with a taxonomic grouping 

#step 1: weighted averages per bin per taxon; c(mollusca, crustacea, echinodermata, fish, cnidaria) 

bin0 <- c(0,0,0,0,0) #control 

bin1 <- c(50, 0, 50, 37.5, 50) # response of the first pco2 bin - each number represent one taxa 

bin2 <- c(40, 0, 22.2, 66.7, 44.4) 

bin3 <- c(30.8, 20, 70, 70.6, 50) 

bin4 <- c(81.8, 40, 90, 86.7, 83.3) 

bin5 <- c(100, 90, 100, 73.7, 100) 

bin6 <- c(100,100,100, 100,100) 

 

 

#step 2: calculating the weighted average of each bin using the global normalization factors per taxonomic group 

w_gsr_tr <- c(0.379, 0.053, 0.303, 0.197, 0.068) #mollusca, echinodermata, crustacea, fish, cnidaria 

w_avg_b0 <- weighted.mean(bin0, w_gsr_tr) 

w_avg_b1 <- weighted.mean(bin1, w_gsr_tr) 

w_avg_b2 <- weighted.mean(bin2, w_gsr_tr) 

w_avg_b3 <- weighted.mean(bin3,w_gsr_tr) 

w_avg_b4 <- weighted.mean(bin4, w_gsr_tr) 

w_avg_b5 <- weighted.mean(bin5, w_gsr_tr) 

w_avg_b6 <- weighted.mean(bin6, w_gsr_tr) 

y_tr <- c(w_avg_b0, w_avg_b1, w_avg_b2, w_avg_b3, w_avg_b4, w_avg_b5, w_avg_b6) 

 

 

#step 3: defining the pH values including the average pH value of the experiments within the category 

 

x_tr <- c(8.0432, 7.922231, 7.804119, 7.655225, 7.406747, 6.986673, 6.820071) #average pH values of each bin 

 

#step 4: defining weights of the bins based on the total number of species data entry per given bin 

bin_weights_tr <- c(1, 0.35, 0.6667, 0.9833, 0.9667, 1, 1) 
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#step 5 is the same function definition for all regressions 

 

#step 6: defining the nonlinear least squares (nls) function for the regression 

tropical_fit <- nls(y_tr ~ cfunc(x_tr,a,b), start = list(a = 7.5, b = -2), weights = bin_weights_tr) 

summary(tropical_fit) 

 

#step 7: calculating the nagelkerke R2 

 

nullfunct = function(x, m){m} 

null.model = nls(y ~ nullfunct(x, m), start = list(m = 50), weights = bin_weights_tr) 

nagelkerke(tropical_fit, null = null.model) 

 

 

#--------------------- 

##step 8:visualization of the SSD including the regression and the data points per bin per each taxon 

df_climate <- read_excel("~/Desktop/dataset OA V4.xlsx", sheet = "climate zones results") 

 

x <- df_climate$pH 

y <- df_climate$neg_affected 

category <- df_climate$`climate zone` 

 

g <- ggplot(df_climate, aes(x,y, color = category, shape = category)) + xlim(5,10) + ylim(0,105) 

g   + labs(x = "pH", y = "Potentially Affected Fraction of Species (PAF)") +  

  stat_function(fun = cfunc, args = list(coef(polar_fit)["a"], coef(polar_fit)["b"]), color = "orangered1") +  

  stat_function(fun = cfunc, args = list(coef(temperate_fit)["a"], coef(temperate_fit)["b"]), color = "limegreen") + 

  stat_function(fun = cfunc, args = list(coef(tropical_fit)["a"], coef(tropical_fit)["b"]), color = "cornflowerblue") + 

theme_classic() + geom_point() 

#------------------- 

#step 9: interaction term test  

 

#polar vs temperate 

#define variables  

x <- df_climate[c(1:14), c(2, 3)]$pH 

y <- df_climate[c(1:14), c(2, 3)]$neg_affected 

w <- df_climate[c(1:14), c(4)]$weight 

ind <- c(1,1,1,1,1,1,1,0,0,0,0,0,0,0)  #identification variable for categories 

#ind <- c(0,0,0,0,0,0,0,1,1,1,1,1,1,1) 

 

#it --> interaction variable for testing 

# fit the data to the function 

it_test_temp_polar <- nls(y ~ 100 / (1 + 10 ^ ((a+a_it*ind - x) * (b+b_it*ind))), start = list(a = 7.5, b = -2, a_it = 0, b_it = 

0), weights = w) 

summary(it_test_temp_polar) 

 

#polar vs tropical 

#define variables  

x <- df_climate[c(1:14), c(2, 3)]$pH 

y <- df_climate[c(1:7,15:21), c(2, 3)]$neg_affected 

w <- df_climate[c(1:7,15:21), c(4)]$weight 

ind <- c(1,1,1,1,1,1,1,0,0,0,0,0,0,0)  #identification variable for categories 

#it --> interaction variable for testing 

# fit the data to the function 

it_test_trop_polar <- nls(y ~ 100 / (1 + 10 ^ ((a+a_it*ind - x) * (b+b_it*ind))), start = list(a = 7.5, b = -2, a_it = 0, b_it = 

0), weights = w) 

summary(it_test_trop_polar) 

 

 

#temperate vs tropical 

#define variables  

x <- df_climate[c(8:21), c(2, 3)]$pH 

y <- df_climate[c(8:21), c(2, 3)]$neg_affected 

w <- df_climate[c(8:21), c(4)]$weight 

#ind <- c(0,0,0,0,0,0,0,1,1,1,1,1,1,1)  #identification variable for categories 

ind <- c(1,1,1,1,1,1,1,0,0,0,0,0,0,0)  

#it --> interaction variable for testing 

# fit the data to the function 
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it_test_trop_temp <- nls(y ~ 100 / (1 + 10 ^ ((a+a_it*ind - x) * (b+b_it*ind))), start = list(a = 7.5, b = -2, a_it = 0, b_it = 

0), weights = w) 

summary(it_test_trop_temp) 

 

Code for modelling the Duration Category SSDs: 
 
library(readxl) 

library(ggplot2) 

library("rcompanion") 

 

#code to model the SSD for acute data with a taxonomic grouping 

#step 1: weighted averages per bin per taxon; c(mollusca, crustacea, echinodermata, fish, cnidaria) 

bin0 <- c(0,0,0,0,0) #control 

bin1 <- c(0, 100, 50, 50, 0) # response of the first pco2 bin - each number represent one taxa 

bin2 <- c(33, 100, 12.5, 77.8, 50) 

bin3 <- c(30, 50, 70, 73.3, 16.7) 

bin4 <- c(85.7, 100, 80, 100, 33.3) 

bin5 <- c(100, 100, 100, 66.7, 100) 

bin6 <- c(100,100,100, 100,100) 

 

#step 2: calculating the weighted average of each bin using the global normalization factors per taxonomic group 

w_gsr_a <- c(0.379, 0.053, 0.303, 0.197, 0.068) #mollusca, echinodermata, crustacea, fish, cnidaria 

w_avg_b0 <- weighted.mean(bin0, w_gsr_a) 

w_avg_b1 <- weighted.mean(bin1, w_gsr_a) 

w_avg_b2 <- weighted.mean(bin2, w_gsr_a) 

w_avg_b3 <- weighted.mean(bin3,w_gsr_a) 

w_avg_b4 <- weighted.mean(bin4, w_gsr_a) 

w_avg_b5 <- weighted.mean(bin5, w_gsr_a) 

w_avg_b6 <- weighted.mean(bin6, w_gsr_a) 

y_a <- c(w_avg_b0, w_avg_b1, w_avg_b2, w_avg_b3, w_avg_b4, w_avg_b5, w_avg_b6) 

 

#step 3: defining the pH values including the average pH value of the experiments within the category 

x_a <- c(8.0329, 7.922231, 7.804119, 7.655225, 7.406747, 6.986673, 6.820071) #average pH values of each bin 

 

#step 4: defining weights of the bins based on the total number of species data entry per given bin 

bin_weights_a <- c(1, 0.1818, 0.52273, 0.9773, 0.7727, 0.98, 1) 

 

#step 5: defining the logistic regression function with two parameters 

cfunc <- function(x,a,b) {100 / (1 + 10 ^ ((a - x) * b))} 

 

#step 6: defining the nonlinear least squares (nls) function for the regression 

acute_fit <- nls(y_a ~ cfunc(x_a,a,b), start = list(a = 7.5, b = -2), weights = bin_weights_a) 

summary(acute_fit) 

 

#step 7: calculating the nagelkerke R2 

 

nullfunct = function(x, m){m} 

null.model = nls(y ~ nullfunct(x, m), start = list(m = 50), weights = bin_weights_a) 

nagelkerke(acute_fit, null = null.model) 

 

 

#------------ 

#code to model the SSD for sub-chronic data with a taxonomic grouping 

#step 1: weighted averages per bin per taxon; c(mollusca, crustacea, echinodermata, fish, cnidaria) 

bin0 <- c(0,0,0,0,0) #control 

bin1 <- c(50,0, 100, 25,0)  

bin2 <- c(100, 0, 50, 28.6, 0) 

bin3 <- c(100, 16.7, 85.7, 40, 0) 
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bin4 <- c(100, 44.4, 85.7, 71.4, 100) 

bin5 <- c(100, 88.9, 100, 100, 100) 

bin6 <- c(100,100,100, 100,100) 

 

#step 2: calculating the weighted average of each bin using the global normalization factors per taxonomic group 

w_gsr_sc <- c(0.379, 0.053, 0.303, 0.197, 0.068) #mollusca, echinodermata, crustacea, fish, cnidaria 

w_avg_b0 <- weighted.mean(bin0, w_gsr_sc) 

w_avg_b1 <- weighted.mean(bin1, w_gsr_sc) 

w_avg_b2 <- weighted.mean(bin2, w_gsr_sc) 

w_avg_b3 <- weighted.mean(bin3,w_gsr_sc) 

w_avg_b4 <- weighted.mean(bin4, w_gsr_sc) 

w_avg_b5 <- weighted.mean(bin5, w_gsr_sc) 

w_avg_b6 <- weighted.mean(bin6, w_gsr_sc) 

y_sc <- c(w_avg_b0, w_avg_b1, w_avg_b2, w_avg_b3, w_avg_b4, w_avg_b5, w_avg_b6) 

 

#step 3: defining the pH values including the average pH value of the experiments within the category 

 

x_sc <- c(8.0229, 7.922231, 7.804119, 7.655225, 7.406747, 6.986673, 6.820071) #average pH values of each bin 

 

#step 4: defining weights of the bins based on the total number of species data entry per given bin 

bin_weights_sc <- c(1, 0.2857, 0.67857, 0.9643, 1, 0.93, 0.929) 

 

#step 5: defining the logistic regression function with two parameters 

cfunc <- function(x,a,b) {100 / (1 + 10 ^ ((a - x) * b))} 

 

#step 6: defining the nonlinear least squares (nls) function for the regression 

sc_fit <- nls(y_sc ~ cfunc(x_sc,a,b), start = list(a = 7.5, b = -2), weights = bin_weights_sc) 

summary(sc_fit) 

 

#step 7: calculating the nagelkerke R2 

 

nullfunct = function(x, m){m} 

null.model = nls(y ~ nullfunct(x, m), start = list(m = 50), weights = bin_weights_sc) 

nagelkerke(sc_fit, null = null.model) 

 

 

#------------------ 

#code to model the SSD for chronic data with a taxonomic grouping 

#step 1: weighted averages per bin per taxon; c(mollusca, crustacea, echinodermata, fish, cnidaria) 

bin0 <- c(0,0,0,0,0) #control 

bin1 <- c(53.8, 0, 60, 0, 40) # response of the first pco2 bin - each number represent one taxa 

bin2 <- c(66.7, 20, 44.4, 0, 40) 

bin3 <- c(52.4, 33.3, 54.5, 33.3, 58.3) 

bin4 <- c(90, 50 , 88.9, 100, 100) 

bin5 <- c(90.5, 90, 100, 75, 100) 

bin6 <- c(100,100,100, 100,100) 

 

#step 2: calculating the weighted average of each bin using the global normalization factors per taxonomic group 

w_gsr_ch <- c(0.379, 0.053, 0.303, 0.197, 0.068) #mollusca, echinodermata, crustacea, fish, cnidaria 

w_avg_b0 <- weighted.mean(bin0, w_gsr_ch) 

w_avg_b1 <- weighted.mean(bin1, w_gsr_ch) 

w_avg_b2 <- weighted.mean(bin2, w_gsr_ch) 

w_avg_b3 <- weighted.mean(bin3,w_gsr_ch) 

w_avg_b4 <- weighted.mean(bin4, w_gsr_ch) 

w_avg_b5 <- weighted.mean(bin5, w_gsr_ch) 

w_avg_b6 <- weighted.mean(bin6, w_gsr_ch) 

y_ch <- c(w_avg_b0, w_avg_b1, w_avg_b2, w_avg_b3, w_avg_b4, w_avg_b5, w_avg_b6) 
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#step 3: defining the pH values including the average pH value of the experiments within the category 

 

x_ch <- c(8.0096, 7.922231, 7.804119, 7.655225, 7.406747, 6.986673, 6.820071) #average pH values of each bin 

 

#step 4: defining weights of the bins based on the total number of species data entry per given bin 

bin_weights_ch <- c(1,0.4915, 0.62712, 1, 0.9492, 0.9, 0.831) 

 

#step 5: defining the logistic regression function with two parameters 

cfunc <- function(x,a,b) {100 / (1 + 10 ^ ((a - x) * b))} 

 

#step 6: defining the nonlinear least squares (nls) function for the regression 

ch_fit <- nls(y_ch ~ cfunc(x_sc,a,b), start = list(a = 7.5, b = -2), weights = bin_weights_ch) 

summary(ch_fit) 

 

#step 7: calculating the nagelkerke R2 

 

nullfunct = function(x, m){m} 

null.model = nls(y ~ nullfunct(x, m), start = list(m = 50), weights = bin_weights_ch) 

nagelkerke(ch_fit, null = null.model) 

 

#---------------- 

##step 8:visualization of the SSD including the regression and the data points per bin per each taxon 

df_duration <- read_excel("~/Desktop/dataset OA V4.xlsx", sheet = "duration results") 

 

x <- df_duration$pH 

y <- df_duration$neg_affected 

category <- df_duration$`effect` 

 

g <- ggplot(df_duration, aes(x,y, color = category, shape = category)) + xlim(5,10) + ylim(0,105) 

g + labs(x = "pH", y = "Potentially Affected Fraction of Species (PAF)") +  

  stat_function(fun = cfunc, args = list(coef(acute_fit)["a"], coef(acute_fit)["b"]), color = "orangered1") +  

  stat_function(fun = cfunc, args = list(coef(ch_fit)["a"], coef(ch_fit)["b"]), color = "limegreen") + 

  stat_function(fun = cfunc, args = list(coef(sc_fit)["a"], coef(sc_fit)["b"]), color = "cornflowerblue") + theme_classic() + 

geom_point()   

#------------------- 

 

#interaction term  

 

#Acute vs subchronic 

#define variables  

x <- df_duration[c(1:14), c(2, 3)]$pH 

y <- df_duration[c(1:14), c(2, 3)]$neg_affected 

w <- df_duration[c(1:14), c(4)]$weight 

ind <- c(1,1,1,1,1,1,1,0,0,0,0,0,0,0)  #identification variable for categories 

#it --> interaction variable for testing 

# fit the data to the function 

it_test_a_sc <- nls(y ~ 100 / (1 + 10 ^ ((a+a_it*ind - x) * (b+b_it*ind))), start = list(a = 7.5, b = -2, a_it = 0, b_it = 0), 

weights = w) 

summary(it_test_a_sc) 

 

#acute vs chronic 

#define variables  

x <- df_duration[c(1:7,15:21), c(2, 3)]$pH 

y <- df_duration[c(1:7,15:21), c(2, 3)]$neg_affected 

w <- df_duration[c(1:7,15:21), c(4)]$weight 

ind <- c(1,1,1,1,1,1,1,0,0,0,0,0,0,0)  #identification variable for categories 

#it --> interaction variable for testing 

# fit the data to the function 
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it_test_a_ch <- nls(y ~ 100 / (1 + 10 ^ ((a+a_it*ind - x) * (b+b_it*ind))), start = list(a = 7.5, b = -2, a_it = 0, b_it = 0), 

weights = w) 

summary(it_test_a_ch) 

 

#temperate vs tropical 

#define variables  

x <- df_duration[c(8:21), c(2, 3)]$pH 

y <- df_duration[c(8:21), c(2, 3)]$neg_affected 

w <- df_duration[c(8:21), c(4)]$weight 

ind <- c(0,0,0,0,0,0,0,1,1,1,1,1,1,1)  #identification variable for categories 

#it --> interaction variable for testing 

# fit the data to the function 

it_test_sc_c <- nls(y ~ 100 / (1 + 10 ^ ((a+a_it*ind - x) * (b+b_it*ind))), start = list(a = 7.5, b = -2, a_it = 0, b_it = 0), 

weights = w) 

summary(it_test_sc_c) 
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